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A B S T R A C T

Accurate and efficient estimation of rare events probabilities is of significant importance, since often the
occurrences of such events have widespread impacts. The focus in this work is on precisely quantifying
these probabilities, often encountered in reliability analysis of complex engineering systems, based on an
introduced framework termed Approximate Sampling Target with Post-processing Adjustment (ASTPA), which
herein is integrated with and supported by gradient-based Hamiltonian Markov Chain Monte Carlo (HMCMC)
methods. The developed techniques in this paper are applicable from low- to high-dimensional stochastic
spaces, and the basic idea is to construct a relevant target distribution by weighting the original random
variable space through a one-dimensional output likelihood model, using the limit-state function. To sample
from this target distribution, we exploit HMCMC algorithms, a family of MCMC methods that adopts physical
system dynamics, rather than solely using a proposal probability distribution, to generate distant sequential
samples, and we develop a new Quasi-Newton mass preconditioned HMCMC scheme (QNp-HMCMC), which
is particularly efficient and suitable for high-dimensional spaces. To eventually compute the rare event
probability, an original post-sampling step is devised using an inverse importance sampling procedure based
on the already obtained samples. The statistical properties of the estimator are analyzed as well, and the
performance of the proposed methodology is examined in detail and compared against Subset Simulation in
a series of challenging low- and high-dimensional problems.
1. Introduction

In this work, we develop a framework for estimation of rare events
probabilities, a commonly encountered important problem in several
engineering and scientific applications, often observed in the form
of probability of failure (𝑃𝐹 ) estimation or, alternatively, reliability
stimation. In many practical applications, failure probabilities are for-
unately very low, from 10−4 to even 10−9 and lower, and calculating
uch small probabilities presents many numerical and mathematical
hallenges, particularly in cases with high dimensional random spaces
nd/or expensive computational models, that practically limit the af-
orded number of model calls. The number of model calls is thus of
reat importance in these problems and one of the critical parameters
hat limits or prohibits use of several available techniques in the
iterature.
The reliability estimation problem has a long history in the en-

ineering community [1–5]. One of the significant early successes
as the discovery of the so called First Order Reliability Method
FORM) [6,7], long investigated by Der Kiureghian, Ditlevsen and
o-workers [8,9], and many others, e.g., Shinozuka [10], providing
lso several enhancements, including second order effects (SORM)
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by Breitung [11]. In FORM/SORM methods, the search for the most
probable failure point (MPP) is usually performed by gradient-based
optimization methods [12,13]. Although these asymptotic approxi-
mation methods are usually computationally inexpensive, they have
several limitations and may involve considerable errors, particularly
in high-dimensional problems or in problems with highly nonlinear
limit-state functions [6,14]. As such, various sampling-based methods
have also been suggested by the reliability community, e.g., Schuëller
and Pradlwarter [15], to tackle the problem in its utmost generality,
with crude Monte Carlo approaches being prohibitive for this type of
problems due to their excessive computational demands. Only some
of many notable contributions can be seen in [16–20], describing and
studying the state-of-the-art Subset Simulation and its enhancements,
originally presented in [21], and in [22–24] utilizing importance
sampling schemes, often also combined with the cross-entropy method
[25–29]. Alternative approaches include directional and line sam-
pling [30–33], the PHI2 method for time-variant reliability [34], and
asymptotic sampling strategies [35,36], among others. The problem of
estimating rare event probabilities has also attracted a great deal of
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attention in other relevant communities and in mathematical litera-
ture, with several suggested methods sharing many similarities with
FORM/SORM approaches, e.g.,[37], and Subset Simulation, such as
in approaches involving Sequential Monte Carlo samplers for rare
events [38–40], interacting particle system methodologies [41,42],
multilevel splitting methods [43,44] and forward flux sampling [45],
o name but a few.
In this paper, we are presenting a new solution approach to the

roblem by combining gradient-based approaches, already familiar to
he engineering community and often available in computational tools,
ith Markov Chain Monte Carlo (MCMC) sampling methods in the form
f Hamiltonian MCMC. MCMC methods [46] are plausibly the most
roadly accepted ones to generate samples from target distributions, in
ases where direct sampling is not possible. Despite notable successes,
any MCMC methods scale poorly with the number of dimensions and
an become inefficient. For complicated multivariate models, classic
ethods such as random-walk Metropolis–Hastings [47] and Gibbs
ampling [48] may require an unacceptably long time and number
f samples to adequately explore the target distribution. Originally
eveloped by Duane et al. [49] and to a large extent understood and
opularized through the works of Neal [50,51], Hamiltonian Markov
hain Monte Carlo (HMCMC), usually called Hamiltonian Monte Carlo
HMC) in the literature, produces Markov chain samples based on
amiltonian dynamics principles, is characterized by much better scal-
bility [51,52] and faster mixing rates, is capable of generating samples
ith much weaker auto-correlation, even in complex high-dimensional
andom spaces [53], and has enjoyed broad-spectrum successes in most
eneral settings [54]. Balanced against these features and achievements
s of course the need for multiple gradient evaluations in each HMCMC
teration, making the method more computationally intensive per iter-
tion than other algorithms, such as random-walk Metropolis–Hastings
nd Metropolis-adjusted Langevin [55,56], for example. Girolami and
alderhead introduced a Riemannian Manifold Hamiltonian Monte
arlo (RMHMC) approach in [57,58] that has demonstrated signifi-
ant successes in many challenging problems but requires computing
igher-order derivatives of the target distribution. Overall, the two
mpediments to using Hamiltonian MCMC methods are the required
radients, since analytical formulas are not always available and nu-
erical techniques are computationally costly, particularly in high
imensions, and the heedful tuning of the involved parameters [51].
he first issue can in certain cases be solved by automatic differen-
iation (e.g. [54,59]) and stochastic gradient approaches [60], while
or the second a fully automated state-of-the-art HMCMC algorithm
as been developed by Hoffman and Gelman, known as the No-U-Turn
ampler (NUTS [61]). NUTS introduces, among others, an expensive
ree building procedure, in order to trace when the Hamiltonian tra-
ectory turns back on itself. Many of these approaches are not however
elevant and/or applicable to the analyzed problem in this work, since,
n general, many rare event and reliability problems involve complex,
omputationally expensive models, complicating and/or precluding use
f automatic differentiation and data-based stochastic gradient tech-
iques, as well as methodologies that require a considerably high
umber of model calls per problem, such as NUTS.
A new computationally efficient sampling framework for estimation

f rare events probabilities is thus presented in this work, having
xceptional performance in quantifying low failure probabilities for any
ype of reliability problems described in both low and high dimensional
tochastic spaces. The introduced methodology is termed Approximate
Sampling Target with Post-processing Adjustment (ASTPA) and comprises
a sampling and a post-processing phase. The sampling target in ASTPA
is constructed by appropriately combining the multi-dimensional ran-
dom variable space with a cumulative distribution function that utilizes
the limit-state function. Having acquired the samples, an adjustment
step is then applied, in order to account for the fact that the samples are
drawn from an approximate target distribution, and to thus correctly
quantify the rare event probability. An original inverse importance sam-
2

pling procedure is devised for this adjustment step, taking its name from s
the fact that the samples are already available. Although the ASTPA
framework is general and can be combined with any appropriate Monte
Carlo sampling method, it becomes substantially efficient when directly
supported by gradient-based Hamiltonian Markov Chain Monte Carlo
(HMCMC) samplers. To address the scalability issues a typical HMCMC
sampler may manifest in high-dimensional spaces, a new Quasi-Newton
mass preconditioned HMCMC approach is also developed. This new
sampling scheme follows an approximate Newton direction and esti-
mates the pertinent Hessian in its burn-in stage, only based on gradient
information and the BFGS approximation, and eventually utilizes the
computed Hessian as a preconditioned mass matrix in the main non-
adaptive sampling stage. An approximate analytical expression for the
uncertainty of the computed estimation is also derived, showcasing
significant accuracy with numerical results, and all involved user-
defined parameters of ASTPA are thoroughly analyzed and general
default values are suggested. Finally, to fully examine the capabilities
of the proposed methodology, its performance is demonstrated and
compared against Subset Simulation in a series of challenging low- and
high-dimensional problems.

2. Failure probability estimation

The failure probability PF for a system, that is the probability of a
efined unacceptable system performance, can be expressed as a 𝑑-fold
integral, as:

𝑃𝐹 = E[𝐼𝐹 (𝜽)] = ∫𝑔(𝜽)≤0
𝐼𝐹 (𝜽)𝜋𝛩(𝜽)𝑑𝜽 (1)

here 𝜽 is the random vector [𝜃1,… , 𝜃𝑑 ]𝑇 , 𝐹 ⊂ R𝑑 is the failure event,
(𝜽) is the limit-state function that can include one or several distinct
ailure modes and defines the system failure by g(𝜽)≤ 0, I(.) denotes
he indicator function with 𝐼𝐹 (𝜽) = 1 if 𝜽 ∈ g(𝜽)≤ 0 and 𝐼𝐹 (𝜽) = 0
therwise, E is the expectation operator, and 𝜋𝛩 is the joint probability
ensity function (PDF) for Θ. As is common practice for problems of
his type, in this work the joint PDF of Θ is the standard normal one,
ue to its rotational symmetry and exponential probability decay. In
ost cases this is not restrictive, since it is uncomplicated to transform
he original random variables X to Θ, e.g. [62]. When this is not
he case, however, and the probabilistic characterization of X can be
efined in terms of marginal distributions and correlations, the Nataf
istribution (equivalent to Gaussian copula) is commonly used to model
he joint PDF, and the mapping to the standard normal space can be
hen accomplished [8,63].
The focus in this work is to analyze the described integration

n Eq. (1) under very general settings, including the following chal-
enging sampling context: (i) Computation of Eq. (1) can only be
one in approximate ways; (ii) the relationship between 𝜽 and 𝐼𝐹 is
ot explicitly known and for any 𝜽 we can merely check whether it
elongs to the failure set or not, i.e. calculate the value 𝐼𝐹 (𝜽); (iii) the
omputational effort for evaluating 𝐼𝐹 (𝜽) for each value of 𝜽 is assumed
o be quite significant, so that it is essential to minimize the number of
uch function evaluations (model calls); (iv) the probability of failure
F is assumed to be very small, e.g. in order of 𝑃𝐹 ∼ 10−4 − 10−9;
v) the parameter space R𝑑 is assumed to be high-dimensional, in
he order of 102 and more, for example. Under these general settings,
everal sampling methods, including direct Monte Carlo approaches
nd NUTS [61], become highly inefficient and fail to address the
roblem effectively. Subset Simulation (SuS) [21] has however proven
uccessful and robust in dealing with problems of this type and is shown
o outperform other relevant methods in numerous papers, e.g. [24,31].
uS relies on a modified component-wise Metropolis MCMC method
hat can successfully work in high dimensions and does not require
burn-in sampling stage. A notable adaptive conditional sampling
aCS) methodology within the SuS framework is also introduced by Pa-
aioannou et al. in [16], providing important advantages and enhanced
erformance in several cases. Relevant SuS variants are thus utilized
n this work, for validation and comparison purposes with our pre-
ented methodology that completely deviates from SuS and is efficiently

upported by a direct Hamiltonian MCMC sampling approach [64].
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3. Hamiltonian Markov Chain Monte Carlo

3.1. Standard HMCMC with leapfrog integrator

Based on the aforementioned discussion in the previous sections,
Hamiltonian dynamics can be used to produce distant Markov chain
samples, thereby avoiding the slow exploration of the state space that
results from the diffusive behavior of simple random-walk proposals.
This Hamiltonian approach was firstly introduced to molecular simu-
lations by Alder and Wainwright in [65], in which the motion of the
molecules was deterministic. Duane et al. in [49] united the MCMC
and molecular dynamics approaches. Given 𝑑-dimensional variables of
interest 𝜽 with (unnormalized) density 𝜋𝛩(.), the Hamiltonian Monte
arlo method introduces 𝑑-dimensional auxiliary momentum variables
and samples from the joint distribution characterized by:
(𝜽, 𝐳) ∝ 𝜋𝛩(𝜽) 𝜋𝑍|𝛩(𝐳|𝜽) (2)
here 𝜋𝑍|𝛩(.|𝜽) is proposed to be a symmetric distribution. With 𝜋𝛩(𝜽)
nd 𝜋𝑍|𝛩(𝐳|𝜽) being uniquely described up to normalizing constants,
he functions 𝑈 (𝜽) = − log𝜋𝛩(𝜽) and 𝐾(𝜽, 𝐳) = − log𝜋𝑍|𝛩(𝐳|𝜽) are
ntroduced as the potential energy and kinetic energy, owing to the
oncept of the canonical distribution [51] and the physical laws which
otivate the Hamiltonian Markov Chain Monte Carlo algorithm. The
otal energy 𝐻(𝜽, 𝐳) = 𝑈 (𝜽) + 𝐾(𝜽, 𝐳) is often termed the Hamiltonian
. The kinetic energy function is unconstrained and can be formed in
arious ways according to the implementation. In most typical cases,
he momentum is sampled by a zero-mean normal distribution [51,
3], and accordingly the kinetic energy can be written as: 𝐾(𝜽, 𝐳) =
log𝜋𝑍|𝛩(𝐳|𝜽) = − log𝜋𝑍 (𝐳) = 1

2 𝐳
𝑇𝐌−1𝐳, where 𝐌 is a symmetric,

positive-definite inverse covariance matrix, termed mass matrix.
HMCMC generates a Metropolis proposal on the joint state-space

(𝜽, 𝐳) by sampling the momentum and simulating trajectories of Hamil-
tonian dynamics in which the time evolution of the state (𝜽, 𝐳) is
overned by Hamilton’s equations, expressed typically by:
𝑑𝜽
𝑑𝑡

= 𝜕𝐻
𝜕𝐳

= 𝜕𝐾
𝜕𝐳

= 𝐌−1𝐳, 𝑑𝐳
𝑑𝑡

= − 𝜕𝐻
𝜕𝜽

= − 𝜕𝑈
𝜕𝜽

= ∇𝜃(𝜽) (3)

here (𝜽) denotes here the log-density of the target distribution.
amiltonian dynamics prove to be an effective proposal generation
echanism because the distribution 𝜋(𝜽, 𝐳) is invariant under the dy-
amics of Eq. (3). These dynamics enable a proposal, triggered by an
pproximate solution of Eq. (3), to be distant from the current state, yet
ith high probability acceptance. The solution to Eq. (3) is analytically
ntractable in general and thus the Hamiltonian equations need to be
umerically solved by discretizing time using some small step size, 𝜀.
symplectic integrator that can be used for the numerical solution is

he leapfrog one and works as follows:

𝐳𝑡+𝜀∕2 = 𝐳𝑡 − ( 𝜀
2
) 𝜕𝑈
𝜕𝜽

(𝜽𝑡), 𝜽𝑡+𝜀 = 𝜽𝑡 + 𝜀 𝜕𝐾
𝜕𝐳

(𝐳𝑡+𝜀∕2),

𝐳𝑡+𝜀 = 𝐳𝑡+𝜀∕2 − ( 𝜀
2
) 𝜕𝑈
𝜕𝜽

(𝜽𝑡+𝜀)
(4)

he main advantage of using the leapfrog integrator is its simplicity,
hat is volume-preserving, and that it is reversible, due to its sym-
etry, by simply negating 𝐳, in order to generate a valid Metropolis
roposal. See Neal [51] and Betancourt [53] for more details on energy-
onservation, reversibility and volume-preserving integrators and their
onnections to HMCMC. It is noted that in the above leapfrog integra-
ion algorithm, the computationally expensive part is the one model
all per step to acquire the 𝜕𝑈

𝜕𝜽
term. With 𝜏 the trajectory or else

path length, taking 𝐿 = 𝜏∕𝜀 leapfrog steps approximates the evolution
(𝜽(0), 𝐳(0)) ⟶ (𝜽(𝜏), 𝐳(𝜏)), providing the exact solution in the limit
𝜀 ⟶ 0.

Typically, a simple Gaussian momentum is used for the Hamilto-
nian, 𝜋𝑍|𝛩(𝐳|𝜽) = 𝜋𝑍 (𝐳) = 𝐍(𝟎,𝐌) (or 𝐳 ∼ 𝐍(𝟎,𝐌)) and the mass matrix
𝐌 is often set to the identity matrix, I. A generic procedure for drawing

𝐼𝑡𝑒𝑟 samples via HMCMC is described in Algorithm 1, where again
(𝜽) is the log-density of the target distribution of interest, 𝜽0 are initial
3

Algorithm 1 Hamiltonian Markov Chain Monte Carlo

1: procedure HMCMC(𝜽0, 𝜀, L, (𝜽), 𝑁𝐼𝑡𝑒𝑟)
2: for 𝑚 = 1 𝑡𝑜 𝑁𝐼𝑡𝑒𝑟 do
3: z0 ∼ N(0, I) ⊳ momentum sampling from standard normal
4: distribution
5: 𝜽𝑚 ← 𝜽𝑚−1, 𝜽̃ ← 𝜽𝑚−1, z̃ ← z0
6: for 𝑖 = 1 𝑡𝑜 𝐿 do
7: 𝜽̃, z̃ ← Leapfrog(𝜽̃, z̃, 𝜀) ⊳ leapfrog integration
8: end for
9: 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦:

10: 𝛼 = min
{

1,
exp((𝜽̃) − 1

2
z̃𝑇 z̃)

exp((𝜽𝑚−1) − 1
2
z0𝑇 z0)

}

⊳ Metropolis step

11: 𝜽𝑚 ← 𝜽̃, z𝑚 ← -z̃
12: end for
13: end procedure

values, and L is the number of leapfrog steps, as explained before. For
each HMCMC step, the momentum is first resampled and then the L
leapfrog updates are performed, as seen in Eq. (4), before a typical
accept/reject MCMC Metropolis step takes place.

3.2. HMCMC parameters

The HMCMC performance and efficiency is well known to rely
on selecting suitable values for the 𝜀 and L parameters. For a fixed
trajectory length 𝜏, the stepsize 𝜀 balances the trade-off between ac-
curacy and computational cost. In this work, we select the stepsize
𝜀 in such a way so that the corresponding average acceptance rate
is approximately 65%, as values between 60% and 80% are typically
assumed optimal [51,52,61]. The dual averaging algorithm of Hoffman
and Gelman [61] is adopted to perform this task, used here only in the
burn-in phase, to tune 𝜀. To determine the number of leapfrog steps, 𝐿,
we estimate an appropriate to use trajectory length 𝜏 based on a few
simulation runs, so as to have a sufficiently high so called normalized
Expected Square Jumping Distance (ESJD), 𝜏−1∕2E‖𝜃(𝑚+1)(𝜏) − 𝜃(𝑚)(𝜏)‖2,
as introduced in [66], and then we randomly perturb each trajectory
length 𝜏(𝑚) in the range [0.9𝜏, 1.1𝜏] to further avoid periodicity (𝑚
denotes the 𝑚th iteration of HMCMC). In all our numerical experiments
herein, we determine 𝐿 and 𝜏 in this manner, as we have found it to
work well in practice. The role of these parameters and techniques for
determining them have been quite extensively studied in the literature
and for more details we refer to [51,52,61].

4. Quasi-Newton mass preconditioned HMCMC (QNp-HMCMC)

In complex high-dimensional problems, the performance of the typ-
ical HMCMC sampler, presented as Algorithm 1, may deteriorate and a
prohibitive number of model calls could be required. A variety of meth-
ods have been proposed in the literature to address this issue. Among
others, a Riemannian Manifold Hamiltonian Monte Carlo (RMHMC) has
been suggested in [57] that takes advantage of the manifold structure
of the variable space, at the cost of calculating second- and third-
order derivatives of distributions and using a generalized leapfrog
scheme, requiring additional model calls per leapfrog step. Although
possible in some cases regarding second-order derivatives, e.g. [67],
in the majority of cases higher-order derivatives are not provided by
computational models, such as finite element models. In addition, the
computational cost still increases importantly and extra model calls
per leapfrog step are usually restrictive for computationally expensive
models.

In this work, we instead address the high-dimensionality perfor-
mance issue in a different, Newton-type context, without needing ad-

ditional model calls per leapfrog step and by only using the Hessian
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Fig. 1. An analytical target distribution, simulated target distribution samples based on our QNp-HMCMC method, and a fitted Gaussian Mixture Model describing the simulated
amples, from left to right plot, respectively.
t
i

nformation of the target distribution, either the exact one, when
elevant information is provided freely by the computational model,
r, even more general, an approximate one that does not increase the
omputational cost. An approximate Hessian can be given in a system-
tic manner based on already available gradient information, similar
o Quasi-Newton methods used in nonlinear programming [68]. The
well-known BFGS approximation [68] is thus utilized for our Quasi-
ewton type Hamiltonian MCMC approach and all numerical examples
n this work are analyzed accordingly, based solely on this most general
pproximate Hessian case. Let 𝜽 ∈ R𝑑 , consistent with the previous
ections. Given the 𝑘th estimate 𝐖𝑘, where 𝐖𝑘 is an approximation to
he inverse Hessian at 𝜽𝑘, the BFGS update 𝐖𝑘+1 can be expressed as:

𝑘+1 = (𝐈 −
𝒔𝑘𝒚𝑇𝑘
𝒚𝑇𝑘 𝒔𝑘

)𝐖𝑘(𝐈 −
𝒚𝑘𝒔𝑇𝑘
𝒚𝑇𝑘 𝒔𝑘

) +
𝒔𝑘𝒔𝑇𝑘
𝒚𝑇𝑘 𝒔𝑘

(5)

here I is the identity matrix, 𝒔𝑘 = 𝜽𝑘+1 − 𝜽𝑘, and 𝒚𝑘 = −∇(𝜽𝑘+1) +
(𝜽𝑘) where  ∶ R𝑑 ⟶ R denotes the log density of the target
istribution, as before. There is a long history of efficient BFGS updates
or very large systems and several numerical techniques can be used,
ncluding sparse and limited-memory approaches.
Two relevant studies in the literature on Quasi-Newton extensions

nd connections to MCMC algorithms can be found in [69,70]. Our
eveloped method, however, has fundamental differences that are sum-
arized in that we are focusing on Hamiltonian methods, we are
sing two integrated coupled phases, an adaptive and a non-adaptive,
nd finally we consistently incorporate the Quasi-Newton outcomes
n both stages of momentum sampling and simulation of Hamiltonian
ynamics. In more detail, in the adaptive burn-in phase of the algorithm
e are still sampling the momentum from an identity mass matrix,
= 𝐈, but the ODEs of Eq. (3) now become:

̇ = 𝐖𝐌−1𝐳, 𝐳̇ = 𝐖∇𝜃(𝜽) (6)

hich is equivalent to the implicit linear transformation 𝜽′ = 𝐖𝜽,
nd 𝐖 is given by Eq. (5). Accordingly, the leapfrog integrator is then
reformulated as:
𝐳𝑡+𝜀∕2 = 𝐳𝑡 + ( 𝜀

2
)𝐖∇𝜽(𝜽𝑡), 𝜽𝑡+𝜀 = 𝜽𝑡 + 𝜀𝐖𝐳𝑡+𝜀∕2,

𝐳𝑡+𝜀 = 𝐳𝑡+𝜀∕2 + ( 𝜀
2
)𝐖∇𝜽(𝜽𝑡+𝜀)

(7)

ence, this new dynamic scheme efficiently and compatibly adjusts
oth the 𝐳 and 𝜽 evolutions based on the local structure of the target
istribution, and also features a Quasi-Newton direction for the mo-
entum variables, allowing large jumps across the state space. The
inal estimation of the approximated inverse Hessian matrix, 𝐖, in the
daptive burn-in phase is then used in the subsequent non-adaptive
hase of the algorithm as a preconditioned mass (inverse covariance)
atrix, 𝐌 = 𝐖−1, used to sample the Gaussian momentum 𝐳 ∼

𝐍(𝟎,𝐌). As such, typical Hamiltonian dynamics are now used, albeit
with this properly constructed mass matrix that takes into account the
4

scale and correlations of the position variables, leading to significant
efficiency gains, particularly in high-dimensional problems. The BFGS
procedure in Eq. (5) normally provides a symmetric, positive-definite
𝐖 matrix in an optimization context. However, in our case we are
using BFGS under different settings that may not satisfy the curvature
condition 𝒔𝑇𝑘 𝒚𝑘 > 0, resulting in occasional deviations from positive-
definiteness. Several standard techniques can be then implemented to
ensure positive-definiteness, such as a damped BFGS updating [68] or
the simple addition 𝐖𝑛𝑒𝑤 = 𝐖𝑜𝑙𝑑 + 𝛿𝐈, where 𝛿 ≥ 0 is some appropriate
number. A straightforward method to determine 𝛿 is to choose it larger
than the absolute value of the minimum eigenvalue of 𝐖𝑜𝑙𝑑 . Another
echnique involves utilizing a semidefinite programming approach to
dentify an optimized diagonal matrix to add to 𝐖𝑜𝑙𝑑 . Alternatively, 𝐖
can be updated only when the curvature condition is satisfied, which
directly guarantees positive definiteness. To further ensure the stability
of the sampler, a positive threshold can be introduced to the curvature
condition instead of zero, e.g., 𝒔𝑇𝑘 𝒚𝑘 > 10. This latter approach has
been used and has worked well in this work. Since the final estimation
of 𝐖 in the adaptive burn-in phase is then extensively utilized in the
subsequent non-adaptive phase, we suggest use of a directly provided
positive-definite matrix𝐖 at this step. This can simply be accomplished
by adding one more burn-in iteration step at the end of the burn-in
phase, until an appropriate sample, directly supported by a positive
definite 𝐖 matrix is identified.

Our derived Quasi-Newton mass preconditioned Hamiltonian Markov
Chain Monte Carlo (QNp-HMCMC) method is concisely summarized and
presented in Algorithm 2. Overall, QNp-HMCMC is a practical, efficient
approach that only requires already available gradient information and
provides important insight about the geometry of the target distribu-
tion, eventually improving computational performance and enabling
faster mixing.

5. Approximate Sampling Target with Post-processing Adjustment
(ASTPA)

In order for an appropriate number of samples to discover and
enter the relevant regions, contributing to the rare event probability
estimation, a suitable approximate target distribution is constructed in
this work, as analyzed in Section 5.1, then sampled by Hamiltonian
MCMC methods that can effectively reach regions of interest. For their
initial stage, our HMCMC samplers have an adaptive annealed phase.
This adaptive phase will be thoroughly explained later in Section 5.3.
To estimate the pertinent probability, Eq. (1) needs to be then adjusted
accordingly, since the samples are sampled from our constructed target
distribution and not 𝜋𝛩(𝜽). An original post-sampling step is devised at
this stage, using an inverse importance sampling procedure, described
in Section 5.2, i.e. first sample, then choose the importance sampling
density automatically, based on the samples. Fig. 1 concisely portrays

the overall approach by using a bimodal target distribution with 𝑃𝐹 ∼
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3.95×10−5. The gray curves represent the parabolic limit-state function
𝑔(𝜽) of this problem, with the failure domain being outside 𝑔(𝜽). The left
figure displays the constructed target distribution, which in this simple
2D case can be visualized. The middle figure shows drawn samples
from the target distribution by our suggested QNp-HMCMC algorithm,
described in Section 4, and the right figure demonstrates the inverse
importance sampling step. All these different steps will be discussed in
detail in the following sections.

5.1. Target distribution formulation

The basic idea is to construct an approximate sampling target
distribution that places higher importance to the failure regions, to
efficiently guide the samples to these domains of interest, and then the
probability of failure can be quantified using an inverse importance
sampling procedure. Eq. (1) can be computed by directly sampling
𝐼𝐹 (𝜽) 𝜋𝛩(𝜽). However, this direct approach cannot be practically and
effectively used in most general cases since the support domain of
the non-smooth indicator function 𝐼𝐹 (𝜽) is only the failure regions (𝜃
∈ g(𝜽)≤ 0), making it challenging of locating and adequately sam-
pling the failure domains, especially in cases of high-dimensional and
multi-modal spaces. In this work, the indicator function is hence ap-
proximated by a one-dimensional output likelihood function, that is
based on the limit-state expression 𝑔(𝜽), supporting the entire domain
𝛩. This likelihood function, 𝓁𝑔𝜽 , is expressed as a logistic cumulative
distribution function, 𝐹𝑐𝑑𝑓 , with mean 𝜇𝑔 , and a dispersion factor 𝜎,
as:

𝓁𝑔𝜽 = 𝐹𝑐𝑑𝑓

(

−𝑔(𝜽)
𝑔𝑐

|

|

|

|

𝜇𝑔 , 𝜎
)

= 1

(

1 + 𝑒

(

( 𝑔(𝜽)𝑔𝑐
) + 𝜇𝑔

(
√

3
𝜋 )𝜎

)

)

(8)

where both 𝜇𝑔 , 𝜎, parameters are described in detail in Section 5.1.1,
𝑔(𝜽) is the limit-state function, and 𝑔𝑐 is a scaling constant. Similar
approaches to approximate the indicator function can be seen in [24,
29], whereas it was used in a completely different context, focusing
on quantifying the probability of failure using a sequential importance
sampling method, as well as in problems related to reliability-based
design optimization, such as in [71], where several different options are
compared, and in [72], where the indicator function is approximated
by a cumulative distribution function based on the limit-state function
and a related model prediction error. The non-normalized target PDF
is then defined as:

ℎ̃(𝜽) = 𝓁𝑔𝜽 𝜋𝛩(𝜽) = 𝐹𝑐𝑑𝑓

(

−𝑔(𝜽)
𝑔𝑐

|

|

|

|

𝜇𝑔 , 𝜎
)

𝜋𝛩(𝜽) (9)

and combining Eqs. (8) and (9), the ℎ̃(𝜽) is finally expanded as:

ℎ̃(𝜽) =

(

1 + 𝑒

(

( 𝑔(𝜽)𝑔𝑐
) + 𝜇𝑔

(
√

3
𝜋 )𝜎

)

)−1

𝜋𝛩(𝜽) (10)

here 𝜋𝛩(.) denotes the multivariate standard normal distribution PDF
n this work, 𝜋𝛩(𝜽) = 𝐍(𝟎, 𝐈), describing the multidimensional variable
pace Θ. This approximate target distribution ℎ̃(𝜽) is smooth and
supports both the safe and failure domains, emphasizing on the failure
one, and can be sampled efficiently, particularly by the gradient-based
HMCMC samplers which can take informed large jumps across the state
space, exploring all regions of interest. The (𝜽) in Sections 3 and 4 is
hus the logarithmic form of the ℎ̃(𝜽) distribution, (𝜽) = ln(ℎ̃(𝜽)).
The reason for the scaling 𝑔(𝜽)∕𝑔𝑐 is mainly to properly and gener-

lly adjust the influence of the limit-state surface on the whole standard
ormal space Θ, and to standardize parameter values, aiming at a
niversal algorithm and settings. Eq. (11) defines recommended values
or the scaling constant 𝑔𝑐 and the suggested 𝑞 range [3 5] was found
o work well in practice. Nonetheless, it is worth mentioning that these
5

w

Algorithm 2 Quasi-Newton mass preconditioned Hamiltonian Markov
Chain Monte Carlo (QNp-HMCMC)
1: procedure QNp-HMCMC(𝜽0, 𝜀, L, (𝜽), BurnIn, 𝑁𝐼𝑡𝑒𝑟)
2: W = I
3: for 𝑚 = 1 𝑡𝑜 𝑁𝐼𝑡𝑒𝑟 do
4: if 𝑚 ≤ 𝐵𝑢𝑟𝑛𝐼𝑛 then
5: z0 ∼ N(0,M) ⊳ where M = I
6: 𝜽𝑚 ← 𝜽𝑚−1, 𝜽̃ ← 𝜽𝑚−1, z̃ ← z0, B ← W
7: for 𝑖 = 1 𝑡𝑜 𝐿 do
8: 𝜽̃, z̃ ← Leapfrog-BurnIn(𝜽̃, z̃, 𝜀, B)
9: Update W using Eq. (5)
0: end for
1: 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦:

2: 𝛼 = min
{

1,
exp((𝜽̃) − 1

2
z̃𝑇 z̃)

exp((𝜽𝑚−1) − 1
2
z0𝑇 z0)

}

13: 𝜽𝑚 ← 𝜽̃, z𝑚 ← -z̃ ⊳ If proposal rejected: W ← B
4: else ⊳ If 𝑚 > 𝐵𝑢𝑟𝑛𝐼𝑛
5: z0 ∼ N(0,M) ⊳ where M = 𝚺−1 =W−1

6: 𝜽𝑚 ← 𝜽𝑚−1, 𝜽̃ ← 𝜽𝑚−1, z̃ ← z0
7: for 𝑖 = 1 𝑡𝑜 𝐿 do
8: 𝜽̃, z̃ ← Leapfrog(𝜽̃, z̃, 𝜀, M)
9: end for
0: 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦:

1: 𝛼 = min
{

1,
exp((𝜽̃) − 1

2
z̃𝑇 M−1z̃)

exp((𝜽𝑚−1) − 1
2
z0𝑇 M−1z0)

}

22: 𝜽𝑚 ← 𝜽̃, z𝑚 ← -z̃
23: end if
24: end for
25: end procedure
26:
27:
28: function Leapfrog-BurnIn(𝜽, z, 𝜀,B)
29: z̃ ← z + (𝜀∕2)B∇𝜽(𝜽)
30: 𝜽̃ ← 𝜽 + 𝜀Bz̃
31: z̃ ← z̃ + (𝜀∕2)B∇𝜽(𝜽̃)
32: return 𝜽̃, z̃
33: end function
34:
35:
36: function Leapfrog(𝜽, z, 𝜀,M)
37: z̃ ← z + (𝜀∕2)∇𝜽(𝜽)
38: 𝜽̃ ← 𝜽 + 𝜀M−1z̃
39: z̃ ← z̃ + (𝜀∕2)∇𝜽(𝜽̃)
40: return 𝜽̃, z̃
41: end function

values may need further investigation when the proposed framework is
directly used in non-Gaussian spaces.

𝑔𝑐 =

⎧

⎪

⎨

⎪

⎩

𝑔(𝟎)
𝑞

, 𝑞 ∈ [3 5] if
(

(

𝑔(𝟎) > 7
)
⋃
(

0 < 𝑔(𝟎) < 2
)

)

1, otherwise
(11)

Fig. 2 illustrates the described approach in constructing the target
istribution ℎ̃(𝜽) in Eqs. (9) and (10) under the ASTPA framework,
mphasizing also on the effect of the scaling constant 𝑔𝑐 . The gray
sland-shaped curve is the well-known multi-modal Himmelblau’s func-
ion (particularly popular in mathematical optimization), seen also in
q. (30), and it characterizes our limit-state function 𝑔(𝜽), with the
ailure domain being inside of the curves and 𝑃𝐹 ∼ 2.77 × 10−7 in
his case. Fig. 2(a) illustrates the bivariate normal distribution 𝜋𝛩(𝜽)

hich defines the (𝜃1, 𝜃2) space. The limit state function here provides
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Fig. 2. Demonstrating the concept of constructing a target distribution (Eq. (9) or (10)) as a product of a 1-D likelihood function and a multi-dimensional variable space. From
left to right plot, 𝜋𝛩(𝜽) represents the variable space, 𝓁𝑔𝜽 is the likelihood function, ℎ̃(𝜽) is the non-normalized target distribution computed without the proper value of 𝑔𝑐 , and
ℎ̃(𝜽) is the correct non-normalized target distribution, respectively.
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𝑔(𝟎) > 7, so the scaling constant 𝑔𝑐 can be defined as 𝑔(𝟎) ∕ 4, following
Eq. (11). Fig. 2(b) portrays our prescribed 1-D likelihood function 𝓁𝑔𝜽 ,
escribed by a logistic cumulative distribution function, as shown in
q. (8). Fig. 2(c) shows the non-normalized target PDF ℎ̃(𝜽) determined
s a product of 𝜋𝛩(𝜽) and 𝓁𝑔𝜽 , without considering however the scaling
onstant 𝑔𝑐 here. Fig. 2(d) instead represents the non-normalized target
PDF ℎ̃(𝜽) constructed with the suggested value of 𝑔𝑐 . These two figures
can thus clearly explain the role of the scaling constant 𝑔𝑐 in attracting
samples to the regions of interest.

5.1.1. Impact of mean (𝜇𝑔) and dispersion factor (𝜎)
The use of 𝜎 in this work, largely follows ideas presented in [24],

albeit at a completely different context. The value of 𝜎 also has an
important effect on the convergence and the computational efficiency
of our HMCMC sampling methods. In Fig. 3 the effect of 𝜎 on the
target distribution is displayed based on two 2D examples on the Θ

space, with a small failure probability (∼10−6) and a unimodal failure
region. A higher value of 𝜎 can reduce the number of model calls
as the constructed target becomes more dispersed compared to the
case of lower 𝜎 values, thus being comparatively easier to be located
and sampled, but an insufficient number of samples may then reach
inside the failure regions. In contrast, reducing 𝜎 concentrates the
target distribution within the regions of interest, making it, however,
a more challenging sampling target, often requiring a higher number
of model calls to be located and sampled. Choosing the value of the
likelihood dispersion factor, 𝜎, is therefore a trade-off. The suggested
value of 𝜎 for our methodology is in the range [0.1 0.8]. Fine tuning
higher decimal values of 𝜎 in that range is not usually necessary. It
is generally recommended to use higher 𝜎 values (0.5 − 0.8) in multi-
modal cases, enabling longer state jumps, even between modes, and
lower values, (0.1–0.6), for cases with very small failure probability,
e.g., around 𝑃𝐹 ≤ 10−6 and lower, and/or high-dimensional problems,
in order to attract more samples into the failure domain.

For the mean parameter, 𝜇𝑔 , we are interested in generally locating
it into the failure region, 𝑔(𝜽) < 0, to enhance the sampling efficiency.
As such, we are describing 𝜇𝑔 through a percentile, 𝑝, of the logistic
CDF and its quantile function, 𝛶𝑔 :

𝛶𝑔(𝑝;𝜇𝑔 , 𝜎) = 𝜇𝑔 + (

√

3
𝜋

𝜎) ln
(

𝑝
1 − 𝑝

)

(12)

Placing a chosen percentile 𝑝 of the logistic CDF on the limit-state sur-
ace 𝑔(𝜽) = 0 results in 𝛶𝑔(𝑝;𝜇𝑔 , 𝜎) = 0 and the 𝜇𝑔 can be then given as:

𝑔 = −(

√

3
𝜎) ln

(

𝑝
)

(13)
6

𝜋 1 − 𝑝
Therefore, as also shown in Fig. 4, by reducing 𝑝, the 𝜇𝑔 of the likeli-
hood function further moves into the failure domain and consequently
more samples can infiltrate into this region and can contribute to the
failure probability estimation. In Fig. 4, 𝑝50, for example, denotes the
50th percentile (𝑝 = 0.5). In all examples presented in this paper, the
𝑝10 percentile, 𝑝 = 0.1, is used to define the value 𝜇𝑔 , which is found
o yield good efficiency. Eq. (13) and parameter 𝜎 can now be used in
q. (10) to fully define the non-normalized target distribution ℎ̃(𝜽).
Fig. 5 displays the effect of 𝜎 on sampling the approximate target

distribution, showcasing how smaller values of 𝜎 push the samples
further inside the failure regions. It also compares the E[𝑃𝐹 ] and
Coefficient of Variation (C.o.V), computed according to Eqs. (16) and
(26), based on 500 independent simulations with a number of model
alls ∼900 in all cases. Smaller values of 𝜎 result in a more accurate
stimate of E[𝑃𝐹 ] and a lower C.o.V, due to having the presence of
ore samples in the failure region.

.2. Inverse importance sampling

An original post-sampling step is devised at this stage, termed in-
erse importance sampling (IIS), that can successfully employ the already
cquired samples and the normalized target distribution ℎ(𝜽) as the
mportance sampling density function. Hence, the probability of failure
an be now computed as follows:

𝐹 = ∫𝜽
𝐼𝐹 (𝜽)𝜋𝛩(𝜽)𝑑𝜽 = ∫𝜽

𝐼𝐹 (𝜽)
𝜋𝛩(𝜽)
ℎ(𝜽)

ℎ(𝜽)𝑑𝜽 (14)

where ℎ(𝜽) = ℎ̃(𝜽)
𝐶ℎ

, ℎ̃(𝜽) = 𝓁𝑔𝜽 (𝜽)𝜋𝛩(𝜽), (15)

𝜋𝛩(𝜽) is the original distribution, ℎ̃(𝜽) denotes the non-normalized
sampling target distribution, and 𝐶ℎ is its normalizing constant. After
some simplifications we get:

𝑃𝐹 = 𝐶ℎ ∫𝜽
𝐼𝐹 (𝜽)

1
𝓁𝑔𝜽 (𝜽)

ℎ(𝜽) 𝑑𝜽 =
(

1
𝑁

𝑁
∑

𝑖=1

𝐼𝐹 (𝜽𝑖)
𝓁𝑔𝜽 (𝜽𝑖)

)

𝐶ℎ (16)

with 𝑁 the number of already acquired samples. To now calculate
the normalizing constant 𝐶ℎ, once again we resort to an importance
sampling scheme in the following manner:

𝐶ℎ = ∫𝜽
ℎ̃(𝜽)𝑑𝜽 = ∫𝜽

ℎ̃(𝜽)
𝑄(𝜽)

𝑄(𝜽)𝑑𝜽 = 1
𝑀

𝑀
∑

𝑖=1

ℎ̃(𝜽′𝑖)
𝑄(𝜽′𝑖)

(17)

where 𝑄(.) can be a computed Gaussian Mixture Model (GMM), based
again on the already available samples and the generic Expectation–
Maximization (EM) algorithm [73], as indicatively seen in the right plot
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Fig. 3. Effect of the likelihood dispersion factor, 𝜎, on the target distribution for two different unimodal limit-state functions, for the 𝑝50 percentile parameter of 𝜇𝑔 .

Fig. 4. Effect of 𝜇𝑔 of the likelihood function on the target distribution, expressed through its percentile parameter 𝑝, for two different unimodal limit-state functions, and for
𝜎 = 0.4.
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Fig. 5. Effect of the prescribed 𝜎 on sampling from the target distribution; 𝜇𝑔 is calculated based on 𝑝10; (Ref. 𝑃𝐹 ∼ 4.73E−6).
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f Fig. 1. A typical GMM expression can then be given by:

(𝜽) =
𝐾
∑

𝑘=1
𝑤𝑘𝜙(𝜽 ; 𝝁𝑘,𝚺𝑘) (18)

here 𝜙(.) is the PDF, 𝑤𝑘 is the weight, 𝝁𝑘 is the mean vector and
𝑘 is the covariance matrix of the 𝑘𝑡ℎ Gaussian component, that can
ll be estimated, for all components, by the EM algorithm [73] based
n the samples. When a GMM can be accurately fitted, the original
MCMC samples can be used directly to compute the normalizing
onstant 𝐶ℎ, i.e., 𝜽′𝑖 ≡ 𝜽𝑖, and 𝑀 = 𝑁 in Eqs. (16) and (17). A
recisely fitted GMM, with a sufficiently large number of components,
dequately acts as a representative distribution for the original samples.
owever, given that the accuracy of GMMs may often deteriorate,
articularly in high-dimensional and challenging multi-modal cases,
ue to the large number of parameters that need to be identified [29],
imilar to many other mixture models, additional 𝑀 samples from the
omputed 𝑄(.) can be required, just in order to accurately evaluate
he normalizing constant 𝐶ℎ. In this latter, more general case, even
very approximately fitted GMM with diagonal covariance matrices,
articularly appropriate for high-dimensional cases, works effectively,
ince it is solely used for computing the constant 𝐶ℎ, while the already
btained HMCMC samples are instead used in Eq. (16). Drawing each
f the i.i.d. 𝑄(.) samples requires only one model call and is called IIS
ample in the following sections for the sake of clarity and simplicity.
s a general guide, using IIS samples around 20% of the total number
f samples results in a good estimate for 𝐶ℎ and eventually Eq. (16).

5.3. Adaptation during the burn-in phase

A burn-in sampling phase is required in the ASTPA framework,
regardless of the used MCMC sampling scheme. For the presented HM-
CMC methods in this work, the burn-in samples are usually adequate
8

to be around 5%–10% of the total number of samples. To improve
the overall sampling efficiency, we are taking advantage of this burn-
in phase, that guides the chain to the appropriate target distribution,
by also performing a series of adaptations and relevant parameter
tuning steps. In particular, the stepsize 𝜀 and the trajectory length 𝜏 are
established in this burn-in stage, as explained in Section 3.2, and then
sed throughout the rest of the analysis, while the precondtioned mass
atrix 𝐌, used in our QNp-HMCMC algorithm, is also computed in the
urn-in phase and then utilized for the remainder of the sampling, as
iscussed in Section 4.
In addition to these sampling related parameters, we are also adjust-

ing the target distribution in this sampling stage, through the parame-
ters 𝜇𝑔 and 𝜎. Following the discussion in Section 5.1.1, these two pa-
rameters are automatically evolving toward their constant values in this
adaptive phase, to assist in guiding the samples to the final target distri-
bution. The likelihood dispersion factor initiates with 𝜎0 = 1 and then
follows an exponential decay until its prescribed constant value 𝜎, as:

𝜎𝑖𝑡𝑒𝑟 = 𝑎1𝑒
(
−𝑖𝑡𝑒𝑟
𝑎2

)
, where 𝑎2 =

(𝑁𝐵𝐼 − 1)

ln(
𝜎0
𝜎
)

, 𝑎1 =
𝜎0

𝑒
(
−1
𝑎2

)

(19)

where 𝑁𝐵𝐼 is the assigned number of total burn-in samples and 𝑖𝑡𝑒𝑟 >=
denotes the iteration counter based on a fully completed leapfrog step.
similar exponential growth scheme is also used for 𝜇𝑔 , starting based
n 𝑝50 in Eq. (13), i.e. 𝜇𝑝50 = 0 = 𝑔(𝜽), and reaching the constant value

𝜇𝑔 = 𝜇𝑝10 given by the prescribed 𝑝10 percentile in Eq. (13), as:

𝜇𝑖𝑡𝑒𝑟 = 𝑏1𝑒

(−𝑖𝑡𝑒𝑟
𝑏2

)

+ 𝜇𝑝50, where 𝑏2 =
(𝑁𝐵𝐼 − 1)

ln( 0.0001
𝜇𝑡

)
,

𝑏1 =
0.0001

(
−1

)

, 𝜇𝑡 = 𝜇𝑝10 + 𝜇𝑝50

(20)
𝑒 𝑏2
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Table 1
Summary of ASTPA parameters and generic values beyond tuning/optimization.
Dispersion factor (𝜎) 𝜇𝑔(𝜽) Trajectory length (𝜏) Step size (𝜀) Total model calls Burn-in IIS samples

[0.1 0.8] 𝑝10 0.7 Dual averaging [61] 5,000–10,000 10% 20%
c
t
d
p
a
S
a
C
i
t
𝑛

t
a
n
i
t
f
m
5
e
a
o
u
r
r
a
o
p

6

c
a

𝑔

s
p
o
Q
m
s
f

5.4. Statistical properties of the estimator 𝑃𝐹

Based on Eq. (16) and given samples [𝜽1,… ,𝜽𝑁 ], the sample esti-
ator 𝑃𝐹 is expressed:

̂𝐹 =
(

1
𝑁

𝑁
∑

𝑖=1

𝐼𝐹 (𝜽𝑖)
𝓁𝑔𝜽 (𝜽𝑖)

)(

1
𝑀

𝑀
∑

𝑗=1

ℎ̃(𝜽′𝑗 )

𝑄(𝜽′𝑗 )

)

= 𝑃𝐹 𝐶̂ℎ (21)

here

̃𝐹 =
(

1
𝑁

𝑁
∑

𝑖=1

𝐼𝐹 (𝜽𝑖)
𝓁𝑔𝜽 (𝜽𝑖)

)

and 𝐶̂ℎ =
(

1
𝑀

𝑀
∑

𝑗=1

ℎ̃(𝜽′𝑗 )

𝑄(𝜽′𝑗 )

)

(22)

with variances:

𝜎2(𝑃𝐹 ) =
1

𝑁𝑠(𝑁𝑠 − 1)

𝑁𝑠
∑

𝑖=1

(

𝐼𝐹 (𝜽𝑖)
𝓁𝑔𝜽 (𝜽𝑖)

− 𝑃𝐹

)2

(23)

2(𝐶̂ℎ) =
1

𝑀(𝑀 − 1)

𝑀
∑

𝑗=1

(

ℎ̃(𝜽′𝑗 )

𝑄(𝜽′𝑗 )
− 𝐶̂ℎ

)2

(24)

where 𝑁𝑠 denotes the used Markov chain samples, taking into ac-
count the fact that the samples are not independent and identically
distributed (i.i.d) in this case.

Assuming 𝑃𝐹 and 𝐶̂ℎ are independent random variables, the vari-
ance of 𝑃𝐹 can be given as:

𝜎2(𝑃𝐹 ) = 𝜎2(𝑃𝐹 ) 𝜎2(𝐶̂ℎ) + 𝜎2(𝑃𝐹 ) 𝐶̂2
ℎ + 𝑃 2

𝐹 𝜎2(𝐶̂ℎ) (25)

The Coefficient of Variation (C.o.V) can then be provided as:

.o.V ≈
𝜎(𝑃𝐹 )
𝑃𝐹

(26)

HMCMC samplers typically showcase low autocorrelation and thus
hinning the sample size from 𝑁 to 𝑁𝑠 in Eq. (23), to enhance indepen-
dence, is often not required. In any case, 𝑁𝑠 can be easily determined
by examining the sample autocorrelation and choosing an appropriate
thinning lag, if needed. In this work, for the C.o.V calculation and 𝑁𝑠 in
q. (23), we used every 3rd sample for all examples. The same thinning
rocess can also be used for 𝑃𝐹 in Eq. (22), if wanted, although we have
ot done this in this work and all acquired 𝑁 samples have been used
or the probability of failure estimation.

.5. Summary of the ASTPA parameters

The required input parameters for the presented methodology are
ummarized in Table 1, together with some suggested generic values
or reliability estimation problems. The constant likelihood dispersion
actor 𝜎 follows the suggestions in Section 5.1.1 and can generally be
n the range of [0.1 0.8]. The mean, 𝜇𝑔 , is chosen to be provided by
he 𝑝10 percentile in Eq. (13), and the trajectory length 𝜏 can be based
n the ESJD metric, as explained in Section 3.2, with a generic value
eing 0.7. The dual averaging algorithm of [61] is adopted here to
utomatically provide the used constant step size 𝜀 in the non-adaptive
ampling phase, and the required minimum number of model calls for
he QNp-HMCMC method is roughly suggested to be 5,000–10,000 for
igh-dimensional problems and target probabilities lower than 10−4.
aturally, the required number of model calls and samples is case
ependent and convergence of the estimator can be checked through
qs. (16), (23), and/or (24). For the burn-in phase less than 10% of
he total number of samples are often required, so a 10% value can be
enerally suggested. Finally, to compute the normalizing constant 𝐶 of
9

ℎ s
the approximate target, we can generally use IIS samples around 20%
of the total number of samples.

6. Numerical results

Several numerical examples are studied in this section to examine
the performance and efficiency of the proposed methods. In all exam-
ples, input parameters follow the provided guidelines in Section 5.5. To
ompute the normalizing constant 𝐶ℎ, IIS samples around 20% of the
otal number of samples have been drawn from a computed GMM with
iagonal covariance matrices and, generally, 10 and 1 Gaussian com-
onents for low and high dimensional problems, respectively. Results
re compared with the Component-Wise Metropolis–Hastings based
ubset Simulation (CWMH-SuS) [21], with two proposal distributions,
uniform one of width 2 and a standard normal one. The adaptive
onditional Sampling (aCS) SuS variant introduced in [16] is also used
n all examples, implemented based on the online provided code by
he authors [74]. In all examples, the SuS parameters are chosen as
𝑠 = 1,000 and 2,000 for low- and high-dimensional problems, when
needed, respectively, with 𝑛𝑠 the number of samples in each subset
level, and 𝑝0 = 0.1, where 𝑝0 is the samples percentile for determining
he appropriate subsets. Comparisons are provided in terms of accuracy
nd computational cost, reporting the PF estimation and the mean
umber of limit-state function calls. Analytical gradients are provided
n all examples, hence one limit-state/model call can provide both
he relevant function values and gradients. The number of limit-state
unction evaluations for the HMCMC-based methods has been deter-
ined based on reported C.o.V values ∈ [0.1, 0.35], as estimated by
00 independent simulations. C.o.V values estimated by the analytical
xpression in Eq. (26) are also reported in parenthesis, for both HMCMC
nd QNp-HMCMC methods. The reference failure probabilities are
btained based on the mean estimation of 100 independent simulations
sing 108 crude Monte Carlo samples, where applicable for higher
eference probabilities, and SuS method with 𝑛𝑠 = 100,000 for smaller
eference probabilities. The problem dimensions are denoted by 𝑑 and
ll ASTPA parameters are carefully chosen for all examples but are not
ptimized for any one. Comparative and perhaps improved alternate
erformance might thus be achieved with a different set of parameters.

.1. Example 1: Nonlinear convex limit-state function

The first example consists of a nonlinear convex limit-state function
haracterized by two independent standard normal random variables
nd a low failure probability (𝑃𝐹 ∼ 4.73E−6):

(𝜽) = 4 − 1
√

2
(𝜃1 + 𝜃2) + 2.5 (𝜃1 − 𝜃2)2 (27)

Table 2 compares the number of model calls, C.o.V and E[𝑃𝐹 ]
obtained by SuS and the two HMCMC algorithms. For the HMCMC
algorithms, the trajectory length 𝜏 is chosen equal to the default value
of 0.7 and the likelihood dispersion factor, 𝜎, is 0.4. The burn-in
ample size is set to 150 samples. As shown, the suggested approaches
erform noticeably better than SuS, and aCS-SuS results outperform the
riginal SuS approach with two different proposal distributions. The
Np-HMCMC method exhibits an excellent performance with only 844
odel calls in this problem, on average. The simulated QNp-HMCMC
amples and the analytical target distribution based on the limit-state
unction of Eq. (27) can be seen in the two figures on the right hand
ide in Fig. 5.
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Table 2
Performance of various methods for the nonlinear convex limit-state function in Example 1 (𝑑 = 2).

500 independent simulations CWMH-SuS aCS-SuS HMCMC QNp-HMCMC

𝑈 (−1, 1) 𝑁(0, 1)

𝜎 = 0.4
𝜏 = 0.7

Number of total model calls 5,462 5,552 5,453 1,873 836
C.o.V 1.06 1.55 0.94 0.14(0.15) 0.15(0.15)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 4.73E−6) 4.88E−6 5.11E−8 4.52E−6 4.73E−6 4.72E−6
Table 3
Performance of various methods for the parabolic/concave limit-state function in Example 2 (𝑑 = 2).

500 independent simulations CWMH-SuS aCS-SuS HMCMC QNp-HMCMC

𝑈 (−1, 1) 𝑁(0, 1)

𝜎 = 0.7
𝜏 = 1

Number of total model calls 4,559 4,565 4,562 3,306 3,306
C.o.V 0.62 0.65 0.63 0.09(0.06) 0.09(0.06)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 3.95E−5) 4.19E−5 4.14E−5 4.09E−5 3.93E−5 3.88E−5
Fig. 6. Example 2: (a) Simulated samples from the target distribution. (b) Analytical target distribution.
.2. Example 2: Parabolic/concave limit-state function

This example is based on the following limit state function with two
tandard normal random variables [75]:

(𝜽) = 𝑟 − 𝜃2 − 𝜅 (𝜃1 − 𝑒)2 (28)

where 𝑟, 𝜅 and 𝑒 are deterministic parameters chosen as 𝑟 = 6, 𝜅 = 0.3
and 𝑒 = 0.1. The probability of failure is 3.95E−5 and the limit-state
function describes two main failure modes, as also seen in Fig. 6. For
the HMCMC-based algorithms, the likelihood dispersion factor, 𝜎, is
0.7, the burn-in sample size is 200 samples, and the trajectory length
is set to 𝜏 = 1.

Table 3 compares the number of model calls, the C.o.V and the
E[𝑃𝐹 ] obtained by all methods. The HMCMC-based approaches provide
significantly smaller C.o.V values than SuS, with fewer model calls,
and the HMCMC in particular outperforms all other methods in this
two dimensional problem. The QNp-HMCMC samples are also shown in
Fig. 6 and can accurately represent the two important failure regions.
The circular dash lines in Fig. 6(a) represent the probability contour of
the standard normal spaceΘ, for probability levels of 10−2, 10−4, 10−6
and 10−10, similarly provided for Figs. 7 and 8 as well.

6.3. Example 3: Quartic bimodal limit-state function

The third example is a quartic bimodal limit-state function with very
low probability of failure (𝑃𝐹 ∼ 5.90E−8), defined by the following
limit-state function in the standard normal space:

𝑔(𝜽) = 6.5 − 1
√

(𝜃1 + 𝜃2) − 2.5 (𝜃1 − 𝜃2)2 + (𝜃1 − 𝜃2)4 (29)
10

2

Table 4 compares the performance of the HMCMC methods with
the ones by SuS. The trajectory length is chosen 𝜏 = 0.7, and the
likelihood dispersion factor, 𝜎, is 0.5. The burn-in sample size is set to
200 samples. HMCMC-based methods, particularly QNp-HMCMC, once
more provide significantly lower C.o.V values with fewer model calls
than SuS approaches, that perform rather poorly in this example, with
aCS-SuS performing the best among them. Fig. 7 displays related target
distribution based on the limit-state function of Eq. (29), as well as the
samples generated by the QNp-HMCMC method.

6.4. Example 4: The Himmelblau function

In nonlinear optimization, a commonly used fourth order polyno-
mial test function is the so-called Himmelblau [76] function. Here we
adopt and modify this function, as:

𝑔(𝜃1, 𝜃2) =
( (0.75𝜃1 − 0.5)2

1.81
+

(0.75𝜃2 − 0.5)
1.81

− 11
)2

+
( (0.75𝜃1 − 1)

1.81
+

(0.75𝜃2 − 0.5)2

1.81
− 7

)2 − 𝛽
(30)

which is particularly suitable for reliability examples with multiple
separated failure domains. 𝜃1 and 𝜃2 are assumed to be independent
standard normal random variables and the constant 𝛽 is used to define
different levels of the failure probability. Table 5 compares the number
of model calls, coefficient of variation and E[𝑃𝐹 ] obtained by SuS and
the family of HMCMC algorithms. For the HMCMC algorithms, the
trajectory length is chosen as 𝜏 = 1 and the burn-in is set to 200
samples. The 𝑔(𝟎) is beyond the upper bound, 𝑔(𝟎) > 7, and as discussed

in Section 5, we perform the scaling with 𝑔𝑐 = 𝑔(𝟎)∕4. The likelihood
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Table 4
Performance of various methods for the quartic bimodal limit-state function in Example 3 (𝑑 = 2).

500 independent simulations CWMH-SuS aCS-SuS HMCMC QNp-HMCMC

𝑈 (−1, 1) 𝑁(0, 1)

𝜎 = 0.5
𝜏 = 0.7

Number of total model calls 7,327 7,536 7,380 6,277 2,696
C.o.V 1.64 2.45 1.59 0.28(0.27) 0.27(0.27)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 5.90E−8) 6.13E−8 5.86E−8 6.12E−8 5.90E−8 5.89E−8
Table 5
Performance of various methods for the Himmelblau limit-state function in Example 4 (𝑑 = 2).

500 independent simulations CWMH-SuS aCS-SuS HMCMC QNp-HMCMC

𝑈 (−1, 1) 𝑁(0, 1)

𝛽 = 95
𝜎 = 0.5
𝜏 = 1

Number of total model calls 3,833 3,833 3,821 3,100 3,100
C.o.V 0.42 0.50 0.35 0.10(0.06) 0.13(0.06)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 1.65E−4 ) 1.69E−4 1.78E−4 1.68E−4 1.64E−4 1.62E−4

𝛽 = 50
𝜎 = 0.4
𝜏 = 1

Number of total model calls 6,471 6,528 6,463 3,600 3,600
C.o.V 0.87 1.67 0.54 0.16(0.10) 0.16(0.10)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 2.77E−7) 3.14E−7 3.33E−7 2.89E−7 2.77E−7 2.77E−7
Fig. 7. Example 3: (a) Simulated samples from the target distribution. (b) Analytical target distribution.
b

𝑔

ispersion factor, 𝜎, used in this example is mentioned in Table 5,
nd has been chosen according to the guidelines in Section 5.1.1,
considering both multimodality and the different levels of the failure
probabilities. The Subset Simulation results are based on 𝑛𝑠 =1,000.

It is again shown here that the HMCMC approach gives significantly
smaller C.o.V than SuS and also outperforms it in terms of the E[𝑃𝐹 ] es-
timation. Fig. 8 also demonstrates that the HMCMC samples accurately
describe all the three important failure regions.

6.5. Example 5: Cantilever beam

In this last two-dimensional example, a cantilever beam problem
is studied [77]. The beam is illustrated in Fig. 9, with cross-section
idth 𝑤, height 𝑡, beam length 𝐿, and transverse loads 𝑃𝑥 and 𝑃𝑦. The
eam failure mode in this case is the maximum deflection exceeding
he allowable value, 𝑌0, given by the limit-state function:

(𝑃𝑥, 𝑃𝑦) = 𝑌0 −
4𝐿3

𝐸𝑤𝑡

√

(
𝑃𝑦

𝑡2
)2 + (

𝑃𝑥

𝑤2
)2 (31)

where 𝑌0 = 4.2 𝑖𝑛 and 4.5 𝑖𝑛, 𝐸 = 30 × 106 𝑝𝑠𝑖 is the elastic modulus,
𝐿 = 100 𝑖𝑛, 𝑤 = 2 𝑖𝑛 and 𝑡 = 4 𝑖𝑛. 𝑃𝑥 and 𝑃𝑦 follow independent normal
istributions 𝑃𝑥 ∼ 𝑁(500, 100)𝑙𝑏 and 𝑃𝑦 ∼ 𝑁(1000, 100)𝑙𝑏.
The normally distributed variables 𝑃𝑥 and 𝑃𝑦 are transformed into
11

he standard normal space and the limit-state function in the Θ space
ecomes:

(𝜃𝑥, 𝜃𝑦) = 𝑌0 −
4𝐿3

𝐸𝑤𝑡

√

(
𝜇𝑦 + 𝜃𝑦𝜎𝑦

𝑡2
)2 + (

𝜇𝑥 + 𝜃𝑥𝜎𝑥
𝑤2

)2 (32)

For the HMCMC-based algorithms, the trajectory length is chosen
𝜏 = 0.7 and the likelihood dispersion factor, 𝜎, is 0.2. The burn-
in sample size is set to 200 samples. Table 6 compares the number
of model calls, C.o.V and E[𝑃𝐹 ] for two different failure probability
levels obtained by SuS and the HMCMC-based methods. As shown,
the HMCMC-based approaches noticeably again outperform the SuS
methods.

6.6. Example 6: High-dimensional reliability example with linear limit-state
function

In this first high-dimensional example, a linear limit-state function
of independent standard normal random variables is considered:

𝑔(𝜽) = 𝛽 − 1
√

𝑑

𝑑
∑

𝑖=1
𝜃𝑖 (33)

where 𝑑 denotes again the related problem dimensions, and the per-
tinent probability of failure is equal to 𝛷(−𝛽), independent of 𝑑, with
𝛷(.) the cumulative distribution function of the standard normal distri-

bution. To investigate the effect of different failure probability levels,
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Fig. 8. Example 4: (a) Simulated samples from the target distribution. (b) Analytical target distribution.
Table 6
Performance of various methods for the cantilever beam in Example 5 (𝑑 = 2).

500 independent simulations CWMH-SuS aCS-SuS HMCMC QNp-HMCMC

𝑈 (−1, 1) 𝑁(0, 1)

𝜎 = 0.2
𝑌0 = 4.2
𝜏 = 0.7

Number of total model calls 6,056 6,069 6,062 1,900 1,900
C.o.V 0.80 0.93 0.50 0.15(0.17) 0.14(0.17)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 1.01E−6 ) 1.07E−6 1.08E−6 1.05E−6 1.01E−6 1.01E−6

𝜎 = 0.2
𝑌0 = 4.5
𝜏 = 0.7

Number of total model calls 7,561 7,586 7,569 3,200 3,200
C.o.V 1.11 1.41 0.60 0.19(0.24) 0.19(0.24)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 1.97E−8) 2.14E−8 2.22E−8 2.03E−8 1.97E−8 1.98E−8
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Fig. 9. A cantilever beam case study.

n relation to the HMCMC-based methods and SuS performance, a
equence of 𝛽 values for 𝑑 = 100 and 500 are studied. Table 7
summarizes the comparative results through the mean number of model
calls, mean E[𝑃𝐹 ] and C.o.V of the estimated probabilities. For both
HMCMC-based methods, the likelihood dispersion factor, 𝜎, is equal to
.3, the burn-in sample size is 300, and the trajectory length, 𝜏, for all
failure probability levels is chosen equal to 0.7, the default value. SuS
results are again based on 𝑛𝑠 =1,000.

As reported in Table 7, the HMCMC-based approaches exhibit for
all probability levels accurate and stable results in terms of C.o.V.,
outperforming all SuS results. Defining the ‘‘unit C.o.V’’ eff as C.o.V
= eff ∕

√

𝑁𝑚𝑐 , with 𝑁𝑚𝑐 the total number of model calls, an index can
ow be used that appropriately considers both accuracy and computa-
ional effort [78], with a lower eff value exhibiting higher efficiency.
ig. 10a displays the eff variation in relation to the reliability index
or 𝑑 = 100, confirming the HMCMC approaches efficiency for various
ailure probability levels. SuS-U and SuS-N in the figure stand for the
uS results with uniform and standard normal proposals, respectively.
ig. 10b showcases the mean estimate for 𝛽 = 5 and 𝑑 = 100, based on
the number of model calls. As shown, the HMCMC methods provide a
consistent unbiased estimator after a certain, relatively small, number
of model evaluations. Finally, in Fig. 10c a similar plot is provided
for the C.o.V results, with the proposed HMCMC-based framework
exhibiting again excellent overall performance. The C.o.V-Anal curve
in the figure represents the QNp-HMCMC C.o.V estimation based on

).
12

the analytical expression in Eq. (26
6.7. Example 7: High-dimensional problem with quadratic nonlinearity

This example involves a quadratic limit-state function expressed in
the standard normal space, as:

𝑔(𝜽) = 𝜆 − 1
√

𝑑

𝑑
∑

𝑖=1
𝜃𝑖 + 2.5

(

𝜃1 −
𝛾
∑

𝑗=2
𝜃𝑗

)2
(34)

where 𝑑 is the problem dimension, 𝜆 defines the level of the failure
probability, and 𝛾 affects the level of nonlinearity. To investigate the
effect of dimensionality and nonlinearity, in relation to the HMCMC-
based methods and SuS performance, different 𝛾 values for 𝑑 = 100
nd 200 are studied. Table 8 presents the mean number of limit-state
unction evaluations, sample mean estimator, and C.o.V of the failure
robabilities for various methods. For the HMCMC-based methods, the
ikelihood dispersion factor, 𝜎, and the trajectory length, 𝜏, are shown
n Table 8, and the burn-in sample size is set to 500 samples. The Subset
imulation results for all approaches are based on 𝑛𝑠 =2,000.
As seen in Table 8, the QNp-HMCMC approach significantly outper-

orms all other methods, in all considered metrics, confirming its supe-
iority, robustness, applicability and suitability in challenging, nonlin-
ar, high-dimensional problems. By increasing the level of nonlinearity,
hrough the parameter 𝛾, HMCMC requires an excessive number of
odel calls in order to adequately explore the domain, while the
Np-HMCMC approach exhibits a largely invariant performance.
In Fig. 11a, the computed eff values with respect to 𝛾 for 𝑑 = 100

re reported, based on Table 8 results, confirming the QNp-HMCMC
fficiency and robust behavior in all considered cases of nonlinearity.
ig. 11b and Fig. 11c study the effect of the number of model calls
(𝑁𝑚𝑐) on the mean estimate and C.o.V values for the case of 𝑑 = 100
and 𝛾 = 100. The QNp-HMCMC method exhibits the best results and sig-
nificantly outperforms all other approaches, while its results also con-
sistently improve with increased sample sizes. HMCMC results are not
reported in these two figures because the needed number of model calls

in order to get meaningful results is quite high for this high-dimensional



Probabilistic Engineering Mechanics 74 (2023) 103485K.G. Papakonstantinou et al.

t

Table 7
Performance of various methods for the high dimensional problem with linear limit-state function in Example 6.

𝑑 500 independent simulations CWMH-SuS aCS-SuS HMCMC QNp-HMCMC

𝑈 (−1, 1) 𝑁(0, 1)

𝛽 = 5
𝜎 = 0.3
𝜏 = 0.7

100
Number of total model calls 6,418 6,443 6,409 2,225 2,225

C.o.V 0.62 0.69 0.45 0.12(0.12) 0.12(0.11)
E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 2.87E−7) 2.97E−7 2.94E−7 2.86E−7 2.86E−7 2.87E−7

𝛽 = 6
𝜎 = 0.3
𝜏 = 0.7

100
Number of total model calls 8,711 8,798 9,279 2,226 2,228

C.o.V 0.62 0.95 0.58 0.14(0.13) 0.14(0.13)
E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 0.99E−9) 1.05E−9 1.01E−9 1.03E−9 0.98E−9 0.99E−9

𝛽 = 7
𝜎 = 0.3
𝜏 = 0.7

100
Number of total model calls 11,458 11,473 11,922 2,736 2,735

C.o.V 0.89 1.94 0.77 0.17(0.16) 0.17(0.16)
E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 1.28E−12) 1.36E−12 1.32E−12 1.31E−12 1.28E−12 1.28E−12

𝛽 = 6
𝜎 = 0.3
𝜏 = 0.7

500
Number of total model calls 8,760 8,808 9,271 5,439 5,532

C.o.V 0.67 1.05 0.60 0.25(0.19) 0.24(0.19)
E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 0.99E−9) 1.01E−9 1.01E−9 1.04E−9 1.00E−9 0.99E−9

𝛽 = 7
𝜎 = 0.3
𝜏 = 0.7

500
Number of total model calls 11,334 11,870 11,908 5,634 5,583

C.o.V 0.92 2.25 0.82 0.27(0.25) 0.30(0.24)
E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 1.28E−12) 1.45E−12 1.15E−12 1.39E−12 1.16E−12 1.16E−12
Fig. 10. Example 6: (a) eff versus different 𝛽 values based on the results presented in Table 7 for 𝑑 = 100; a low eff value indicates high efficiency. (b) Failure probability estimate
against the number of model calls (𝑁𝑚𝑐 ) for 𝛽 = 5 and 𝑑 = 100 (dash line is the reference failure probability). (c) Coefficient of variation of the probability estimates plotted against
he number of model calls for 𝛽 = 5 and 𝑑 = 100.
Table 8
Performance of various methods for the high dimensional problem with nonlinear limit-state function in Example 7.

𝑑 500 independent simulations CWMH-SuS aCS-SuS HMCMC QNp-HMCMC

𝑈 (−1, 1) 𝑁(0, 1)

𝜆 = 4.0
𝛾 = 10
𝜎 = 0.5
𝜏 = 0.7

100
Number of total model calls 12,109 12,192 12,093 21,198 4,695

C.o.V 1.43 1.71 2.18 0.16(0.15) 0.16(0.15)
E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 1.15E−6) 1.22E−6 1.31E−6 1.23E−6 1.16E−6 1.16E−6

𝜆 = 3.0
𝛾 = 50
𝜎 = 0.5
𝜏 = 0.7

100
Number of total model calls 13,758 14,200 14,442 53,664 5,924

C.o.V 2.94 4.04 5.78 0.21(0.21) 0.21(0.21)
E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 5.63E−7) 4.29E−7 4.70E−7 5.86E−7 5.69E−7 5.63E−7

𝜆 = 0.7
𝛾 = 100
𝜎 = 0.5
𝜏 = 0.7

100
Number of total model calls 14,697 15,849 14,171 154,440 5,956

C.o.V 7.76 5.19 5.63 0.26(0.26) 0.26(0.26)
E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 2.23E−6) 2.40E−6 1.59E−6 2.83E−6 2.26E−6 2.24E−6

𝜆 = 2.5
𝛾 = 100
𝜎 = 0.6
𝜏 = 0.7

200
Number of total model calls 11,785 12,098 13,872 78,414 6,510

C.o.V 3.57 3.67 3.43 0.25(0.25) 0.25(0.24)
E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 5.06E−6) 5.89E−6 5.33E−6 4.62E−6 5.08E−6 5.05E−6

𝜆 = 0.5
𝛾 = 200
𝜎 = 0.6
𝜏 = 0.7

200
Number of total model calls 17,271 19,370 17,805 297,596 8,575

C.o.V 8.09 11.85 6.64 0.31(0.31) 0.29(0.29)
E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 1.19E−6) 1.36E−6 1.40E−6 1.08E−6 1.18E−6 1.17E−6
13
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Fig. 11. Example 7: (a) eff versus different 𝛾 values based on the results presented in Table 8 for 𝑑 = 100; a low eff value indicates high efficiency. (b) Failure probability estimate
gainst the number of model calls (𝑁𝑚𝑐 ) for 𝑑 = 100 and 𝛾 = 100 (the dash line is the reference failure probability). (c) Coefficient of variation estimates against the number of
odel calls for 𝑑 = 100 and 𝛾 = 100.
Fig. 12. (a) Relative bias of the E[𝑃𝐹 ] estimator for problems with different number of dimensions 𝑑 and the 𝛾 = 𝑑 cases in Example 7, based on the same number of model calls,
approximately 11,000–12,000, for all methods. (b) Coefficient of variation of the estimates with respect to the number of dimensions 𝑑, for the 𝛾 = 𝑑 cases.
nonlinear problem, deeming this approach non-competitive in this case,
and further noting the superior QNp-HMCMC performance and suit-
ability in challenging high-dimensional spaces. The C.o.V-Anal curve in
Fig. 11c again represents the QNp-HMCMC C.o.V estimation based on
the analytical expression in Eq. (26), showcasing excellent agreement
with numerical results.

Finally, Fig. 12 investigates the effect of the number of dimensions
on the relative bias and C.o.V of the estimates, for the 𝛾 = 𝑑 cases. The
threshold 𝜆 is adjusted to have a failure probability of around 10−6.
Again here, HMCMC results are not reported since they require a quite
higher number of limit-state function evaluations, after 𝑑 >= 50 or so,
than all other methods, to achieve meaningful and comparable results.
The same number of model calls is used for all methods shown in
Fig. 12, approximately 11,000–12,000 total model calls, which differs
from Table 8 settings and results for the similar cases that are studied
and reported there, and all results are based on 500 independent
simulations. QNp-HMCMC results are shown to provide an essentially
unbiased estimator and very low C.o.V. values for all analyzed cases, in
contrast to SuS results, reporting very high C.o.V. values. The analytical
C.o.V expression in Eq. (26) is also here in very good agreement with
14

numerical results.
6.8. Example 8: High-dimensional highly nonlinear problem

To further investigate the QNp-HMCMC performance in challenging
high-dimensional nonlinear problems, the limit-state function in this
example is expressed in the standard normal space, as:

𝑔(𝜽) = 𝑌0 −
1

√

𝑑

𝑑
∑

𝑖=1
𝜃𝑖 +2.5

(

𝜃1 −
10
∑

𝑗=2
𝜃𝑗

)2

+
(

𝜃11 −
14
∑

𝑘=12
𝜃𝑘

)4

+
(

𝜃15 −
17
∑

𝑙=16
𝜃𝑙

)8

(35)

where 𝑑 is the problem dimension, equal to 100. The parameters for
the HMCMC approaches are chosen as 𝜎 = 0.6, 𝜏 = 0.7 and 500
burn-in samples. Table 9 summarizes the computed results for various
probability levels, acquired by adjusting the 𝑌0 threshold value, and
as shown the QNp-HMCMC approach once more achieves excellent
results, superior to all other methods. In Fig. 13a the eff metric is
accordingly reported for the three different failure probability levels in
Table 9, with QNp-HMCMC exhibiting the best and stable performance,
with very significant efficiency gains in relation to other methods, and
particularly for decreasing failure probability levels.
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Table 9
Performance of various methods for the limit-state function of Eq. (35) in Example 8 (𝑑 = 100).

500 Independent simulations CWMH-SuS aCS-SuS HMCMC QNp-HMCMC

𝑈 (−1, 1) 𝑁(0, 1)

𝑌0 = 2.5
𝜎 = 0.5
𝜏 = 0.7

Number of total model calls 9,380 9,593 10,593 28,026 7,295
C.o.V 0.86 1.13 0.86 0.22(0.21) 0.23(0.21)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 3.40E−5 ) 3.38E−5 3.26E−5 3.62E−5 3.37E−5 3.41E−5

𝑌0 = 3.5
𝜎 = 0.5
𝜏 = 0.7

Number of total model calls 12,948 13,704 13,965 32,009 7,924
C.o.V 2.60 3.27 2.25 0.23(0.22) 0.22(0.22)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 7.96E−7) 8.26E−7 7.32E−7 7.99E−7 7.97E−7 7.96E−7

𝑌0 = 4.5
𝜎 = 0.5
𝜏 = 0.7

Number of total model calls 17,304 17,793 17,974 31,948 7,889
C.o.V 6.33 5.85 6.91 0.26(0.25) 0.24(0.24)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 6.75E−9) 8.84E−9 4.68E−9 7.32E−9 6.93E−9 6.86E−9
Fig. 13. Computed eff values for various failure probabilities, for (a) Example 8 with 𝑑 = 100, and (b) Example 9 with 𝑑 = 102. A low eff value exhibits high efficiency.
Fig. 14. A thirty four-story structure under static loads.

.9. Example 9: A thirty four-story structural example

A thirty four-story structure is analyzed in this modified example
rom [79], as represented in Fig. 14, and is subjected to thirty four
tatic loads 𝐹𝑖, 𝑖 = 1, 2,… , 34. The floor slabs/beams are assumed
o be rigid and all columns have identical length, 𝐻 = 4 m, and
ifferent flexural stiffnesses 𝐸𝐼𝑘, 𝑘 = 1, 2,… , 68. Loads and stiffnesses
are random variables and the total number of random variables is
𝑑 = 102 in this problem. The loads are assumed normally distributed,
15
with a mean value of 2 kN and a C.o.V of 0.4, while stiffnesses are also
normally distributed, with a mean value of 20 MNm2 and a C.o.V of
0.2. Based on linear elastic behavior and excluding gravity effects, the
top story displacement, 𝑢, can be calculated by adding the interstory
relative displacements, 𝑢𝑖, as:

𝑢34 =
𝐹34𝐻3

12(𝐸𝐼67 + 𝐸𝐼68)
, 𝑢33 =

(𝐹33 + 𝐹34)𝐻3

12(𝐸𝐼65 + 𝐸𝐼66)
, … ,

𝑢2 =
(
∑34

𝑖=2 𝐹𝑖)𝐻3

12(𝐸𝐼3 + 𝐸𝐼4)
, 𝑢1 =

(
∑34

𝑖=1 𝐹𝑖)𝐻3

12(𝐸𝐼1 + 𝐸𝐼2)

𝑢 =
34
∑

𝑖=1
𝑢𝑖, 𝑔 = 𝑌0 − 𝑢

(36)

and 𝑔 is the used limit-state function indicating failure when u exceeds a
threshold value 𝑌0, chosen as 0.21, 0.22, 0.23 and 0.235 m. All random
variables are transformed into the standard normal space Θ for the
analysis, and for the HMCMC-based methods the likelihood dispersion
factor, 𝜎, equals 0.3, and the burn-in samples are 400. In this example,
0 < g(0) < 2, and as discussed in Section 5, we perform the scaling with
𝑔𝑐 = 𝑔(𝟎)∕4.

Table 10 summarizes all computed results, that once more validate
the outstanding performance of the proposed HMCMC-based frame-
work, particularly in high-dimensional, very low target probability
problems. In Fig. 13b, these findings are further supported by the
reported eff metric for the four considered failure probability levels in
Table 10, showcasing again important advantages in relation to other
methods.
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Table 10
Performance of various methods for the thirty four-story structure in Example 9 (𝑑 = 102).

500 Independent simulations CWMH-SuS aCS-SuS HMCMC QNp-HMCMC

𝑈 (−1, 1) 𝑁(0, 1)

𝑌0 = 0.21
𝜎 = 0.3
𝜏 = 0.7

Number of total model calls 7,400 7,400 7,400 2,741 2,520
C.o.V 0.22 0.20 0.19 0.13(0.12) 0.11(0.11)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 3.47E−4) 3.56E−4 3.46E−4 3.39E−4 3.45E−4 3.47E−4

𝑌0 = 0.22
𝜎 = 0.3
𝜏 = 0.7

Number of total model calls 9,200 9,200 9,200 2,723 2,519
C.o.V 0.28 0.27 0.24 0.12(0.11) 0.11(0.10)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 2.48E−5) 2.52E−5 2.54E−5 2.42E−5 2.48E−5 2.48E−5

𝑌0 = 0.23
𝜎 = 0.3
𝜏 = 0.7

Number of total model calls 11,468 11,475 11,470 2,819 2,819
C.o.V 0.32 0.35 0.30 0.12(0.11) 0.12(0.10)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 1.26E−6) 1.27E−6 1.30E−6 1.22E−6 1.26E−6 1.26E−6

𝑌0 = 0.235
𝜎 = 0.3
𝜏 = 0.7

Number of total model calls 12,804 12,836 12,815 3,019 3,019
C.o.V 0.36 0.42 0.35 0.13(0.11) 0.13(0.11)

E[𝑃𝐹 ] (Ref. 𝑃𝐹 ∼ 2.56E−7) 2.62E−7 2.53E−7 2.41E−7 2.52E−7 2.50E−7
7. Conclusions

A novel approach for estimation of rare event and failure proba-
bilities, termed Approximate Sampling Target with Post-processing Adjust-
ment (ASTPA), is presented in this paper, suitable for low- and high-
dimensional problems, very small probabilities, and multiple failure
modes. ASTPA can provide an accurate, unbiased probability esti-
mation with an efficient number of limit-state function evaluations.
The basic idea of ASTPA is to construct a relevant target distribution
by weighting the high-dimensional random variable space through a
likelihood model, using the limit-state function. Although this frame-
work is general, to sample from this target distribution we utilize
gradient-based Hamiltonian MCMC schemes in this work, including
our newly developed Quasi-Newton based mass preconditioned HMCMC
algorithm (QNp-HMCMC) that can sample very adeptly, particularly
in difficult cases with high-dimensionality and very small rare event
probabilities. Finally, an original post-sampling step is also devised,
using the introduced inverse importance sampling procedure, based on
the samples. As shown and discussed in the paper, a very approximately
fitted Gaussian Mixture Model (GMM), even with one component and
diagonal covariance matrix, is adequate at this step, thus avoiding
the known scalability issues of GMMs, as also showcased by the high-
dimensional numerical examples, with dimensions up to 500 presented
in this work. Overall, the performance of the proposed methodology is
carefully examined and compared very successfully against Subset Sim-
ulation in a series of low- and high-dimensional problems. As a general
guideline, QNp-HMCMC is recommended to be used for problems with
more than 20 dimensions, where traditional HMCMC schemes may not
perform that well. However, even in lower dimensions QNp-HMCMC
performs extremely well and is still a very competitive algorithm. Since
we are utilizing gradient-based sampling methods in this work, all of
our analyses and results are based on the fact that analytical gradients
can be computed. In cases where numerical schemes are needed for
the gradient evaluations, then HMCMC methods will not be compet-
itive in relation to Subset Simulation. It should also be pointed out
that different feature combinations of the HMCMC and QNp-HMCMC
algorithms can be possible, based on problem-specific characteristics.
Some of the ongoing and future works are directed toward exploring
various ASTPA variants, including non-gradient based sampling ap-
proaches, sampling directly from non-Gaussian spaces [80], without the
need for Gaussian transformations, and estimating high-dimensional
first-passage problems under various settings [81].
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