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A B S T R A C T

Structural Health Monitoring (SHM) describes a process for inferring quantifiable metrics of structural
condition, which can serve as input to support decisions on the operation and maintenance of infrastructure
assets. Given the long lifespan of critical structures, this problem can be cast as a sequential decision making
problem over prescribed horizons. Partially Observable Markov Decision Processes (POMDPs) offer a formal
framework to solve the underlying optimal planning task. However, two issues can undermine the POMDP
solutions. Firstly, the need for a model that can adequately describe the evolution of the structural condition
under deterioration or corrective actions and, secondly, the non-trivial task of recovery of the observation
process parameters from available monitoring data. Despite these potential challenges, the adopted POMDP
models do not typically account for uncertainty on model parameters, leading to solutions which can be
unrealistically confident. In this work, we address both key issues. We present a framework to estimate POMDP
transition and observation model parameters directly from available data, via Markov Chain Monte Carlo
(MCMC) sampling of a Hidden Markov Model (HMM) conditioned on actions. The MCMC inference estimates
distributions of the involved model parameters. We then form and solve the POMDP problem by exploiting
the inferred distributions, to derive solutions that are robust to model uncertainty. We successfully apply our
approach on maintenance planning for railway track assets on the basis of a ‘‘fractal value’’ indicator, which
is computed from actual railway monitoring data.
1. Introduction

Engineering infrastructures are subject to deterioration processes,
which undermine a safe utilization and incur economic and envi-
ronmental costs. Maintenance policies aim to extend the operating
life-cycle, by seeking a trade-off between compromise in structural
condition and the costs associated to repair and intervention actions.
Structural Health Monitoring (SHM) contributes toward this goal by
delivering data-driven indicators of structural condition, and/or by al-
lowing to update and refine predictive models of operating engineered
systems [1]. The extracted information can support maintenance plan-
ning to achieve the long-term objectives of cost and risk minimization
throughout the structural life-cycle. To this end, a probabilistic risk-
based decision framework for SHM is outlined in [2]. Linked to SHM is
the concept of Value of Information (VoI) or Value of Structural Health
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Monitoring [3–6], which quantifies the cost benefits associated with
adoption of monitoring tools.

Cost efficient maintenance is crucial for effective management of
extended infrastructure networks, as represented for instance in the
case of railway systems. As a characteristic example, Switzerland’s
railway network usage and load have increased by roughly 40% and
70%, respectively, in the last 30 years, while the amount of traffic
per km of track is the highest worldwide [7]. This increased backlog
demand has led to higher life-cycle costs and an increase in disruptive
events. However, infrastructure asset management has to obey bud-
getary, availability, and further constraints. As a result, new, efficient
approaches for maintenance scheduling are needed to address modern
challenges. In formalizing the approach to maintenance planning, it
is possible to cast this as a sequential decision-making problem with
a long horizon cost minimization objective [8]. Current decisions will
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bear an impact on the system’s future condition, which – in absence of
intervention – tends to stochastically evolve according to a degradation
process. There is, however, significant uncertainty associated to the
estimate of a system’s condition, both at present and in the future. SHM
offers a tool for more reliably tracking the system’s state (condition),
thus reducing the associated uncertainty. However, monitoring mea-
surements come in the form of noise-corrupt information, which only
approximate the actual structural state. This problem admits represen-
tation in the form of a Partially Observable Markov Decision Process
(POMDP). The POMDP framework utilizes the uncertain available in-
formation along with a (transition) model of the stochastic evolution of
the system, to derive solutions with mathematically sound optimality
properties [9]. POMDPs have already been successfully implemented
for solving optimal maintenance planning problems of corroding re-
inforced concrete structures [10], interstate highway pavements [11],
wind turbines [12], deteriorating bridges [13], regenerative air heater
in power plants [14], or oil and gas pipelines [15]. While POMDP
solutions have long been limited to small-scale problems, it has recently
been shown that the framework can be efficiently extended to more
complex problems [10].

Nevertheless, there is currently scarce adoption and available liter-
ature of POMDP solutions for real-world applications. The framework
requires knowledge of the stochastic transition dynamics of the struc-
ture as well as of the observation generating process. Such models
are rarely available in the framework of infrastructure maintenance
planning, but could be estimated from available data. However, the
recovery of the involved transition dynamics and the associated ob-
servation model can be quite complex, while only scarce literature is
available on best practices, as stated in [10]. As one of few examples,
Papakonstantinou et al. [10] exploit a physical model, described in
detail in [16], in order to recover the state transition probability matrix
for the deterioration process (i.e., action do-nothing, as explained in
Section 4). However, the transition matrices for the repair actions, as
well as the observation model, have not been derived from actual data.
The authors themselves stress the need for further studies on recovering
observation models and transition models for maintenance actions.
Song et al. [17] infer the time-dependent deterioration transition ma-
trices by assuming different models, whose parameters estimate via a
maximum likelihood approach. However, the methods assume knowl-
edge of the hidden states to then compute the transitions. In addition,
in their work the transition matrices for maintenance actions are not
inferred, while the inference of the observation function is restricted
to the discrete case. Wari et al. [15] infer the deterioration transition
matrix from actual data by first computing transition intensities, then
forming the matrix by means of a Markov pure birth process. Such
an approach does not offer a quantification of the uncertainty over
the inferred parameters. Here as well, the inference of the transition
matrices for repair actions is not similarly considered. Guo et al. [18]
propose the use of the Baum–Welch algorithm for the POMDP model
parameter estimation, subsequently exploited to optimize the timing
of the inspections. However, the proposed methods do not involve
any form of model uncertainty quantification. In general, the majority
of applications of POMDPs on infrastructure maintenance planning
concern illustrative examples, often of simplified nature. Albeit these
works are valuable, this reflects a lack of applications on real-world
data, which would often necessitate inferring the transition dynamics
relative to the deterioration process and maintenance actions, along
with the associated observation model, entirely from data. This creates
a gap between development of effective solution algorithms and their
actual deployment to real-world applications.

A main contribution of this work is to cover the aforementioned gap
by formulating a framework that estimates directly and entirely from
real-world data both the POMDP transition and observation models, via
MCMC sampling from a Hidden Markov Model (HMM) conditioned on
actions. We demonstrate the implementation of our approach based on
2

a real-world problem of optimal maintenance planning for a railway w
network. Our inference technique can recover the full distributions of
parameters, which represent all plausible values the model can assume
under the available data. To this end, we exploit the ‘‘fractal values’’
indicator, collected across Switzerland’s railway network and described
in detail in Section 3. While we focus on this specific application, the
resented methods are general and applicable across a broader suite of
roblems. To the best of our knowledge, no other works demonstrate
nference of the complete POMDP model entirely from real-world data.
A further critical point that prevents broad adoption in real-world

pplications, which is however only secondary to the inference of
he complete POMDP model, is that POMDP solutions do not usually
ccount for epistemic uncertainty [19]. Indeed, POMDP solutions are
lobally optimal for an assumed a-priori model structure, but this is
nlikely to coincide with the actual environment (ground truth). As a
esult, POMDP solutions can be insufficiently robust against model un-
ertainty, often causing concerns when deployed on real-world applica-
ions. The work in [20] casts POMDPs into a fully Bayesian framework,
ut there is scarce literature on considering epistemic uncertainty in
OMDP applications, with [12,21,22] comprising few exceptions. Here,
e build on these prior works to further bridge POMDPs and Bayesian
ecision making by considering model parameter distributions that
re inferred by MCMC sampling. As a result, the computed POMDP
olutions are not optimized for specific parameters but for all plausible
alues and are thus robust over model uncertainty.
The remainder of this paper is organized as follows. The next sec-

ion provides the POMDP theoretical background. Section 3 describes
he ‘‘fractal values’’ indicator, namely the data used in this paper to
ecover transition and observation models, while Section 4 explains
ow the problem of railway maintenance planning can be cast into the
OMDP framework. Section 5 illustrates the inference of the underlying
ransition and observation models, Section 6 presents the algorithms
mployed to derive policies that are robust to epistemic uncertainty
nd summarizes the results, and finally, Section 7 concludes this work.

. Background and fundamentals

.1. Markov decision process

A Markov Decision Process (MDP) provides the mathematical frame-
ork for modeling a sequential decision making problem within a
tochastic control setting. A MDP is defined by the tuple ⟨𝑆,𝐴,𝑅, 𝑇 ,𝐻,
⟩, where:

• 𝑆 is the finite set of states that the environment can assume.
• 𝐴 is the finite set of actions that the decision maker (or agent)
can pick.

• 𝑅 ∶ 𝑆 × 𝐴 → R is the reward function that assigns the reward
𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡) for assuming an action 𝑎𝑡 at state 𝑠𝑡.

• 𝑇 ∶ 𝑆 × 𝑆 × 𝐴 → [0, 1] is the transition dynamics model that
consists of the probability 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡).

• 𝐻 is the considered planning horizon of the problem.
• 𝛾 is the discount factor.

he objective of the MDP is to determine the optimal policy 𝜋∗ ∶ 𝑆 →

, which maps states to actions such that the expected sum of rewards
s maximized:

(𝜋∗) = max
𝜋

E

[ 𝐻
∑

𝑡=0
𝛾 𝑡𝑟𝑡

]

(1)

here 𝑟𝑡 = 𝑅(𝑠𝑡, 𝜋(𝑠𝑡)) and E [⋅] is the expectation operator.
An MDP can be represented as a special case of influence dia-

rams [23,24]; which form a class of probabilistic graphical models.
ig. 1 illustrates the graphical model for a general MDP. Circles,
ectangles and diamonds correspond to random, decision and utility
ariables, respectively [25]. Shaded shapes denote observed variables,

hile edges indicate dependencies among variables.
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Fig. 1. Probabilistic graphical model of a MDP.

An MDP is assumed to satisfy the Markov property [26], i.e.,
𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡,… , 𝑠0, 𝑎0) = 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡). If a process does not satisfy the
Markov property, the problem may still be modeled as an MDP by state
augmentation [9]. In such an approach, the state vector 𝑠𝑡 is augmented
to further include previous information so that the Markov property is
satisfied. Likewise, time can be encoded in the state, allowing to model
non-stationary problems and to transform finite horizon problems into
infinite ones.

The MDP problem can be solved via Dynamic Programming tech-
niques [27] and the introduction of the value function 𝑉 𝜋 ∶ 𝑆 → R,
which represents the expected sum of rewards of policy 𝜋 from a
certain state. The optimal policy 𝜋∗ can be computed through Bellman’s
optimality equation:

𝑉 𝜋∗
𝑛 (𝑠𝑡) = max

𝑎𝑡∈𝐴

[

𝑅(𝑠𝑡, 𝑎𝑡) + 𝛾
∑

𝑠𝑡+1∈𝑆
𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝑉 𝜋∗

𝑛−1(𝑠𝑡+1)

]

(2)

Eq. (2) can be solved with the value iteration algorithm [28]. For the
finite horizon problem, 𝑛 is the number of remaining steps to reach
horizon 𝐻 , i.e., the algorithm operates backwards, initiating at the
last time step and identifying the optimal actions for all preceding
steps. For the infinite horizon case, 𝑛 represents the iteration step
of the algorithm. If the transition probabilities in Eq. (2) are not
known, state-values (and, hence, an optimal policy) can be learned with
reinforcement learning via temporal difference methods [29].

Bellman’s equation can alternatively be written in terms of the
Q-value function [30]:

𝑄𝜋∗
𝑛 (𝑠𝑡, 𝑎𝑡) = 𝑅(𝑠𝑡, 𝑎𝑡) + 𝛾

∑

𝑠𝑡+1∈𝑆
𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝑉 𝜋∗

𝑛−1(𝑠𝑡+1) (3)

which outputs the state-value for taking action 𝑎𝑡 at state 𝑠𝑡 and then
following the optimal policy 𝜋∗. The state-value function can then be
obtained by choosing the action that maximizes the Q-value function:

𝑉 𝜋∗
𝑛 (𝑠𝑡) = max

𝑎𝑡∈𝐴

[

𝑄𝜋∗
𝑛 (𝑠𝑡, 𝑎𝑡)

]

(4)

2.2. Partially observable Markov decision process

A POMDP extends the MDP framework by incorporating uncertainty
into the observations. The states are now hidden variables, which
generate observations that provide partial and/or noisy information
about the actual state of the system. A POMDP is thus defined by the
tuple ⟨𝑆,𝐴,𝑍,𝑅, 𝑇 , 𝑂, 𝑏0,𝐻, 𝛾⟩, where the newly introduced variables
are:

• 𝑍 is the set of possible observations.
• 𝑂 ∶ 𝑆 × 𝐴 × 𝑍 → R is the observation generating process that
defines the emission probability 𝑝(𝑧𝑡|𝑠𝑡, 𝑎𝑡−1).

• 𝑏0 is the initial belief on the state of the system 𝑠0, with the belief
variable defined in what follows.

Given the partial information that the observations provide, the
agent should take actions based on the full observation history, which
3

u

Fig. 2. Probabilistic graphical model of a POMDP.

would violate the Markov property. As such, a new variable is in-
troduced in the POMDP setting: the belief state 𝑏. The belief is a
probability distribution over 𝑆, which maps the discrete finite set of
states into a continuous |𝑆| − 1 dimensional simplex [9]. The belief
over the state of the system is updated every time the agent receives a
new observation according to Bayes’ rule:

𝑏(𝑠𝑡+1) =
𝑝(𝑧𝑡+1|𝑠𝑡+1, 𝑎𝑡)
𝑝(𝑧𝑡+1|𝐛, 𝑎𝑡)

∑

𝑠𝑡∈𝑆
𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝑏(𝑠𝑡) (5)

here the denominator is the usual normalizing factor:

(𝑧𝑡+1|𝐛, 𝑎𝑡) =
∑

𝑠𝑡+1∈𝑆
𝑝(𝑧𝑡+1|𝑠𝑡+1, 𝑎𝑡)

∑

𝑠𝑡∈𝑆
𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝑏(𝑠𝑡) (6)

he belief over the state of the system at time 𝑡 offers sufficient
tatistics of the full history of actions and observations, namely it
rovides the decision maker with the same amount of information. The
ecision maker can then follow a policy 𝜋(𝐛), which depends on the
omputed belief, and the POMDP framework thus satisfies the Markov
roperty. The probabilistic graphical model of the POMDP is provided
n Fig. 2, whereby state variables are no longer observed, but are
idden variables.
The previously defined Bellman equation changes accordingly to:

𝜋∗
𝑛 (𝐛) = max

𝑎𝑡∈𝐴

[

∑

𝑠𝑡∈𝑆
𝑏(𝑠𝑡)𝑅(𝑠𝑡, 𝑎𝑡) + 𝛾

∑

𝑧𝑡+1∈𝑍
𝑝(𝑧𝑡+1|𝐛, 𝑎𝑡)𝑉 𝜋∗

𝑛−1(𝐛
′)

]

(7)

here 𝐛′ is the updated belief, which is computed according to Eq. (5).
Solving a POMDP is thus equivalent to solving a continuous state
DP defined over the belief space. While it is still possible to provide
ptimality convergence properties of the value iteration algorithm
hanks to the piecewise linear convex property [9], the exact solution
s generally intractable except for very low-dimensional problems. As
uch, in the literature POMDP solution methods have been relying on
pproximations. The advent of point-based value iteration algorithms
llowed to efficiently solve large scale POMDP problems with good
pproximation, although they generally require 𝑆, 𝐴, and 𝑍 to be finite.
n introduction to these methods is provided in [31,32].

.3. Bayesian decision making

In the previous sections, we introduced the transition dynamics
and the observation generating process 𝑂. These models generally
epend on some parameters 𝜃. In existing literature, these are typically
reated as fixed. However, in many applications these parameters can
e subject to uncertainty, often due to the limited amount of data
sed for learning, leading to epistemic uncertainty. To tackle this,
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Fig. 3. Structure of the railway track.

number of works [12,19,20] cast the sequential decision-making
roblem of a POMDP into a fully Bayesian framework. Indeed, while
he POMDP framework is inherently Bayesian, due to the update of
he belief variable through Bayes theorem, the scheme is not generally
reated as a fully Bayesian framework, since POMDP parameters are not
onsidered as random variables 𝑝(𝜃), thus failing to incorporate model
ncertainty into the solution.
In Bayesian decision theory [33] the concept of utility function

(𝜃, 𝑎) is introduced, which maps possible outcomes to their utility
iven the parameters 𝜃 and some decision 𝑎. The Bayesian optimal
ction is the one which maximizes the expected utility:
∗ = argmax

𝑎∈𝐴
E𝜃∼𝑝(𝜃) [𝑈 (𝜃, 𝑎)] (8)

In the MDP framework, the concept of utility is associated with the
-values. We denote 𝑄𝜋

𝜃 (𝑠, 𝑎) as the Q-value for action 𝑎when the model
arameters are 𝜃 ∼ 𝑝(𝜃). In this fully Bayesian context, the optimal
ction thus maximizes the expected Q-value function over the model
arameter distribution [12]:
∗ = argmax

𝑎∈𝐴
E𝜃∼𝑝(𝜃)

[

𝑄𝜋∗
𝜃 (𝑠, 𝑎)

]

(9)

n this setting, the optimal policy may be sub-optimal for a specific
alue 𝜃, while maximizing the expected value with respect to the entire
odel parameter distribution. As a result, the policy is robust over
pistemic uncertainty.

. Data description

Although our suggested techniques are generally applicable, the
ocus application in this work is related to maintenance planning for
ailway track infrastructure. The latter forms an assembly of multiple
omponents (rails, sleepers, ballast, switches, etc.), as illustrated in
ig. 3, which are exposed to harsh environments and high loads,
eading to accelerated degradation. The durability of the railway track,
s well as its renewal costs are strongly dependent on the condition of
ertain components, such as the substructure. The substructure plays an
ssential role in the degradation process of the track, as the substructure
aterial sustains cyclic loading from the superstructure, acts as a filter
hat blocks the uprising of fine particles into the ballast, and facilitates
ater drainage. A weakened substructure will typically result in distor-
ions of the track geometry. Tamping, a maintenance action involving
he usage of compacting devices to pack the ballast under the railway
rack, is often applied when the substructure condition is deemed mod-
rately deteriorated. When only the superstructure is degraded (ballast
ouling) the preferred maintenance measures are ballast cleaning or
eplacement. If the substructure is in poor condition (intrusion of clay
r mud, water clogging, etc.), tamping or superstructure maintenance
an only provide a short-term remedy, leaving replacement of the
uperstructure and substructure as the most appropriate long-term
olution. Clearly, the optimization of maintenance decisions for such
ritical infrastructure components would benefit from information that
s additional to scheduled inspection. Such additional information can
e delivered from monitoring data derived by diagnostic vehicles. In
4

his work, we specifically exploit the fractal values, a substructure
ondition indicator derived from diagnostic vehicle measurements to
uide decisions for substructure renewal.
Such diagnostic vehicles form part of modern practice in the man-

gement of infrastructure assets. In the domain of railway infrastructure
redictive or reactive maintenance and renewal decisions are increas-
ngly guided by data-supported decision tools, such as the SwissTamp
latform of the Swiss Federal Railways [7]. Periodic inspection is
arried out by means of diagnostic measurement vehicles that are
quipped with a multitude of sensors (cameras, accelerometers, laser-
istometers, etc.). Amongst the diverse portfolio of collected informa-
ion, the track geometry measurements, in particular, deliver condition
ndicators that are readily exploited for the network-wide estimation of
he ballast and substructure condition [34].
A specific set of such condition indicators are the so-called fractal

alues, which are derived from the longitudinal level measurement. The
ongitudinal level represents the vertical smoothness of the rail and
s measured via a diagnostic vehicle as the deviation of the running
urface of the rail from the smoothed vertical position [35]. Fractal
alues are the outcome of fractal analysis. The fractal dimension cor-
esponds to the ratio between the change in the details in a pattern
ith respect to the change in the measurement scale. For railway
racks the fractal dimension corresponds to the degree of ‘‘roughness’’
t varying wavelength scales. For the interested reader, the detailed
teps of the fractal value computation are reported in Algorithm 3 of the
ppendix, which was devised by Matthias Landgraf [36]. The fractal
alues are now used in practice by the Austrian and Swiss railways
o detect ballast and substructure damage [36]. Mid-wave (3–25 m)
ractal values have been shown to have a higher correlation to ballast
egradation, while long-wave (25–70 m) fractal values are more related
o substructure damages [37].
A visual example is offered in Fig. 4, which displays a highly deteri-

rated portion of a track in 2014. The area shows presence of clay, fine
aterial (fouling), and water intrusion, which represent characteristic
roblems of ballast and substructure damages. The figure also reports
ractal value data that has been collected over the same area from
012 and 2015. As a result of the deterioration of the track, fractal
alues decrease over time. In the damaged area (km 25.5 in figure), the
ractal values have dropped considerably in the examined time-frame,
uggesting the severe degradation confirmed by the inspection.
In this work, we use actual track geometry measurements, carried

ut by the SBB (the Swiss Federal Railways) between 2008 and 2018,
cross Switzerland’s railway network, for tracks whose superstructure
r substructure were subsequently maintained in 2019 [37]. The track
eometry measurements were collected at least twice a year for the
racks under investigation. The fractal values are computed every 2.5 m
rom the measured longitudinal level. The performed maintenance
ctions have been additionally logged for the analyzed tracks. These
ogs contain information on the maintenance, repair, or renewal actions
aken on a section of the network at a specific date. We propose herein
unique POMDP scheme, which relies on diagnostic vehicle measure-
ents of long-wave fractal values to predict an optimal maintenance
olicy.

. POMDP modeling

Within our application of railway maintenance planning, the
OMDP problem is defined by the following variables:

• Hidden states, which represent the health condition of the track.
We assume 4 hidden states: 𝑠0, 𝑠1, 𝑠2, and 𝑠3, which can be seen as
very good, good, bad, and very bad track conditions, respectively.
The choice of the number of hidden states is eventually arbitrary,
since ground truth is not available. However, we adopted a prag-
matic approach for determining the dimension of hidden states,

by assuming this as a hyperparameter and repeating the inference
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Fig. 4. A highly deteriorated track from an inspection in 2014. The upper left image shows an overview of the track at the deteriorated location. The right image shows a severely
egraded portion of the track at km 25.5, with presence of fouling, clay, and water intrusion. The bottom left image shows the associated long-wave fractal values. The decreasing
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of the model presented in the next section for 3, 4 and 5 hidden
states. The model with 4 hidden states yielded improved con-
vergence and better-defined distributions. In addition, 4 discrete
condition states are assumed in similar works [10].

• Actions, represented by the possible maintenance actions. We
focus on 3 possible actions among the ones recorded in our
available data. 𝑎0 represents the do-nothing action, i.e., the agent
chooses not to take any maintenance at this decision step. The
effect of 𝑎0 is governed by the degradation process. 𝑎1 is a low cost
‘‘tamping’’ action, which is often conducted as part of standard
ballasted track maintenance. Tamping vehicles are commonly
used to restore the geometry of ballasted tracks in a nearly
automatic fashion [38]. Finally, 𝑎2 is a more costly repair action,
which involves the renewal of the substructure plus maintenance
similar to 𝑎1. In the offered case study, we demonstrate how the
effects of 𝑎1 and 𝑎2 can be learned on the basis of the efficacy of
these repair actions.

• Observations, defined by the fractal values. The decision maker
forms a belief over the state condition of the track, on the basis
of the fractal values indicator, and makes a decision to follow one
of the aforementioned actions. Fractal values comprise negative,
continuous values which tend to decrease if no maintenance
action is taken. The fractal values observed in our actual data,
over the averaged observation lengths, reflect a clear negative
trend, which motivate an attempt to model these observations
as dependent on the previous value in order to ensure temporal
coherence, introducing an autoregressive property among obser-
vations. Practical examples of the need for this property are given
in the next section.

• (Negative) rewards, representing costs associated with actions and
states. Typically, the costs of actions can be defined by the
infrastructure operator. Quantifying the cost of different states is
a far more difficult task. It should include costs and economic
risks such as the deterioration of service due to imperfect track
5

t

Table 1
Costs of the POMDP model.
State condition 𝑠0 𝑠1 𝑠2 𝑠3
Maintenance action
𝑎0 0 0 0 0
𝑎1 −50 −50 −50 −50
𝑎2 −2, 050 −2, 710 −3, 370 −4, 050
Condition cost −100 −200 −1, 000 −8, 000

conditions, delays, environmental costs, working accidents or
derailing risks. Hence, these costs are hard to quantify but crucial
to justify maintenance expenses. We discussed both classes of
costs with our SBB partners and report them in Table 1 in general
cost units, although only cost ratios matter for the solution of the
problem. The action do-nothing does not have any cost. Action 𝑎1
costs 50 (units) regardless of the condition of the track. The cost
of the renewal part of action 𝑎2 varies from 2000 to 4000 units
depending on the condition of the structure, plus 50 units due to
the tamping action.

The influence diagram reflecting the graphical representation of
the described railway maintenance problem is shown in Fig. 5. Com-
pared to Fig. 2, this graphical model presents arrows between obser-
vation variables displaying the autoregressive dependency. Autoregres-
sive hidden Markov models (ARHMMs) have been deeply studied in
the literature [39] with application that range from the modeling of
wind time-series [40], to fault detection and prognostics tasks [41].
imilarly to our case, both works exploited ARHMMs to capture the
witching between different internal states, while ensuring temporal
oherence on observations stemming from sensor measurements. This
s crucial in our case given the continuous nature of the derived fractal
alue measurements. This extension emphasizes the high flexibility of
robabilistic graphical models, when incorporated into the POMDP
chema. Moreover, the continuous dimension of the observations (frac-
al values) and the dependency among observations render this problem
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Fig. 5. Probabilistic graphical model of the considered POMDP. The dependency among
observations is displayed with an additional arrow among these variables.

non-trivial to solve by means of common POMDP solution algorithms,
which commonly assume 𝑍 to be discrete.

For the POMDP problem to be fully specified, (i) the transition
dynamics 𝑇 describing the probability 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) and (ii) the obser-
vation model 𝑂 describing the likelihood 𝑝(𝑧𝑡|𝑠𝑡, 𝑎𝑡−1, 𝑧𝑡−1) must still
be defined. We learn both models on the basis of the collected data
of the fractal values indicator. The next section presents the employed
methods and the inference results.

5. Model inference

The inference of the parameters governing the transition dynam-
ics and the observation generating process serves to simulate and
eventually optimize the railway maintenance planning problem. The
recovered posterior distributions 𝑝(𝜃|) are conditioned on data pre-
ented in Section 3, which comprise information on the data-derived
ractal values time-series and the recorded maintenance actions over
he tracks.
The model used for the inference is a HMM conditioned on actions.

he transition model is defined as follows:
𝑇0 ∼ Dirichlet(𝛼0)

𝑠0 ∼ Categorical(𝑇0)

𝑇 ∼ Dirichlet(𝛼𝑇 )

𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1 ∼ Categorical(𝑇 )

(10)

where 𝑇0 represents the initial probability state distributions, while
𝛼0 and 𝛼𝑇 are the prior concentration parameters. 𝑇0 is assigned a
uniform flat prior, whereas 𝑇 is given a strongly informative prior to
regularize the deterioration or the repairing process. In a transition
matrix, the diagonal represents the probability to remain in the same
state, while upper-right and lower-left triangles are associated with the
probabilities of the system to deteriorate and improve its condition,
respectively. As such, the transition matrix related to the action do-
nothing, which describes the deterioration process of the system, is
regularized with higher prior probabilities on the diagonal, lower on
the upper-right triangle and near-zero on the lower-left triangle. In
contrast, the transition matrices associated with maintenance actions
present higher prior probabilities on the left triangle and near-zero on
the right triangle – in order to inform the model that improvements of
the system should follow a repair action – but no assumption on the
magnitude of improvement.

The observation generating process differs on the basis of the as-
sumed previous action, which can be either 𝑎0 (deterioration process)
6

or one of two possible maintenance actions 𝑎1, 𝑎2. The deterioration s
process is reflected in the observation model as a Truncated Student’s t
process as follows:

𝑧𝑡 − 𝑧𝑡−1 ∼ TruncatedStudentT(𝜇𝑑|𝑠𝑡 , 𝜎𝑑|𝑠𝑡 , 𝜈𝑑|𝑠𝑡 , ub = −𝑧𝑡−1) (11)

The Student’s 𝑡 distribution assigns higher probabilities to tail events
than, e.g., the Normal distribution. With a Gaussian likelihood, outliers
would induce large shifts in the learned model, in an attempt to render
tail events more likely. The Student’s 𝑡 distribution is thus here adopted
to enhance robustness of the HMM inference to outliers, which are
expected in real-world measurements. Nevertheless, the inference is
still free to estimate a high value of degrees of freedom 𝜈𝑑|𝑠𝑡 if the
‘‘fat tail’’ hypothesis is not correct. The difference among subsequent
observations depends on the parameters 𝜇𝑑|𝑠𝑡 , 𝜎𝑑|𝑠𝑡 , and 𝜈𝑑|𝑠𝑡 which
are state-dependent. An inferred negative value of 𝜇𝑑|𝑠𝑡 will reflect
the negative trend observed in the actual data, but the deterioration
process is not forced to monotonically decrease, such that measurement
errors are permissible. This implies that an observation can assume
a value that is higher to a previous one even when no maintenance
actions are taken. The distributions are truncated in −𝑧𝑡−1, imposing
the negative property of fractal values. The process in Eq. (11) can
be seen as a random walk with Truncated Student’s 𝑡 steps or as a
particular case of an autoregressive process, where the autoregressive
parameter is not learned [42]. In existing literature, the deterioration
process is also often modeled as a Gamma process [9]. This alternative
approach has been tested herein, but led to common inference issues,
such as divergence and non-identifiability. Consequently, we adopted a
truncated Student’s 𝑡 process, which yielded improved inference results.

The repair process is correspondingly modeled as an autoregressive
process with a truncated Student’s 𝑡 likelihood, so that, once again, only
negative values are permissible:

𝑧𝑡 ∼ TruncatedStudentT(𝑘𝑟|𝑎𝑡−1 ∗ 𝑧𝑡−1 + 𝜇𝑟|𝑠𝑡 , 𝜎𝑟|𝑠𝑡 , 𝜈𝑟|𝑠𝑡 , ub = 0) (12)

Specifically, the average improvement in fractal values of the repair
process is controlled by an autoregressive action-dependent parameter
𝑘𝑟|𝑎𝑡 and a state-dependent parameter 𝜇𝑟|𝑠𝑡 , with standard deviation
𝑟|𝑠𝑡 . It is worth clarifying that if the repair process presents no autore-
ressive property, the model inference will simply assign values close
o 0 to the parameter 𝑘𝑟|𝑎𝑡 .
Since we cannot know whether the first observation stems from a

eterioration or a repair process, similarly to the inference of the first
idden state, we model it separately as follows:

0 ∼ TruncatedStudentT(𝜇𝑠𝑡0 , 𝜎𝑠𝑡0 , 𝜈𝑠𝑡0 , ub = 0) (13)

Finally, the aforementioned parameters that influence the observa-
ion generating process are defined as follows:

𝑑|𝑠𝑡 ∼ Normal(𝜇̄𝜇𝑑|𝑠𝑡 , 𝜎̄𝜇𝑑|𝑠𝑡 )

𝜎𝑑|𝑠𝑡 ∼ TruncatedNormal(𝜇̄𝜎𝑑|𝑠𝑡 , 𝜎̄𝜎𝑑|𝑠𝑡 , lb = 0)

𝜈𝑑|𝑠𝑡 ∼ Gamma(𝛼̄𝜈𝑑|𝑠𝑡 , 𝛽𝜈𝑑|𝑠𝑡 )

𝜇𝑟|𝑠𝑡 ∼ TruncatedNormal(𝜇̄𝜇𝑟|𝑠𝑡 , 𝜎̄𝜇𝑟|𝑠𝑡 , ub = 0)

𝜎𝑟|𝑠𝑡 ∼ TruncatedNormal(𝜇̄𝜎𝑟|𝑠𝑡 , 𝜎̄𝜎𝑟|𝑠𝑡 , lb = 0)

𝜈𝑟|𝑠𝑡 ∼ Gamma(𝛼̄𝜈𝑟|𝑠𝑡 , 𝛽𝜈𝑟|𝑠𝑡 )

𝜇𝑠𝑡0 ∼ TruncatedNormal(𝜇̄𝜇𝑠𝑡0
, 𝜎̄𝜇𝑠𝑡0

, ub = 0)

𝜎𝑠𝑡0 ∼ TruncatedNormal(𝜇̄𝜎𝑠𝑡0
, 𝜎̄𝜎𝑠𝑡0

, lb = 0)

𝜈𝑠𝑡0 ∼ Gamma(𝛼̄𝜈𝑠𝑡0
, 𝛽𝜈𝑠𝑡0

)

𝑘𝑟|𝑎𝑡 ∼ Beta(𝛼̄𝑘𝑟|𝑎𝑡 , 𝛽𝑘𝑟|𝑎𝑡 )

(14)

The entire HMM graphical model is displayed in Fig. 6, where
haded nodes indicate the observed variables provided from inspection
ata. Hidden variables are inferred by means of MCMC sampling ex-
loiting a Hamiltonian Monte Carlo algorithm; namely the No-U-Turn

ampler (NUTS) [43]. First, a sample of initial probability distribution
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Fig. 6. Graphical model of the inferred HMM. For simplicity, we defined 𝜃𝑂 and 𝑝(𝜃𝑂)
as the parameters of the observation model in Eq. (14) and their priors, respectively.
Arrows indicate dependencies, while shaded nodes indicate observed variables.

and transition matrices are generated. Based on these and the observed
trajectory of actions, the complete trajectory of hidden states is jointly
sampled. Conditioned on the inferred hidden states, the observation
model finally computes the likelihood of the observations for the
sampled model, which is used to generate the next sample through the
NUTS algorithm. The latter is considered as a robust MCMC sampling
algorithm and it is the default method in many packages for Bayesian
inference, e.g., PyMC [44].

The model here presented is fed with the aforementioned fractal
values and the performed actions. As stated in Section 3, we have access
to 10 years of recordings of fractal values and maintenance actions over
several tracks. Fractal values are sampled twice per year every 2.5 m,
but maintenance actions produce effects over a much broader portion
of the track. In addition, fractal values of such a small section are noisy
due to the effect of potential measurement errors that generally affect
real-world measurements. In order to mitigate these effects, we average
fractal values every 150 m. We finally build a dataset of 62 time-series,
each one composed by 20 fractal values and 20 maintenance actions
(action do-nothing included). As a result, one time-step of the POMDP
problem is equal to 6 months. The inference is run with 4 chains and
3,000 samples collected after 4,000 burn-in samples per chain. The
recovered posterior distributions present good post-inference diagnostic
statistics, with no divergences and high homogeneity between and
within chains.

5.1. Inference results

The inferred transition matrix related to the action do-nothing 𝑎0
is reported in Fig. 7. Differently from the transition matrices shown
in [32], for example, each entry is not a single parameter but a distri-
bution of plausible values as a consequence of the robust formulation
here and the MCMC inference. As seen in Fig. 7, consistent with what
is naturally expected in deterioration processes, the highest probability
is assigned to remaining in the same state after one time-step (diagonal
entries). A deterioration to the subsequent condition level is the second
most likely transition, while improvements have near zero probability.
Once the structure has reached the worst possible state, i.e., 𝑠3, it stays
in this condition with a probability that almost equals 1.

Fig. 8 displays the transition matrix associated with the tamping
action 𝑎1, which is a low cost maintenance action with limited effect.
If this action is assumed at state 𝑠0, the environment stays in this
condition with a probability almost equal to one (high certainty). For
deteriorated states, it appears most probable to remain in the same
condition or improve by a maximum of one state, although some
smaller probabilities are assigned for larger improvements from state 𝑠2
and 𝑠3, which reflects the reduced influence of this action. Deterioration
from any given state, upon assumption of such an action, reflects an
7

almost zero probability.
Fig. 9 displays the transition matrix associated with action 𝑎2.
Differently from the previous action, transition to the best possible
state 𝑠0 is consistently assigned the highest probability, regardless of
he starting state. While we provided informative priors to regularize
he deterioration or the repairing process, we stress that the MCMC
nference learned this higher repairing effect of this maintenance action
urely from data. It is worth mentioning that a lower probability of
emaining in the same deteriorated state does exist, albeit substantially
maller than for action 𝑎1, reflecting a ‘‘failure’’ of maintenance actions,
hich was also observed in the training data.
Finally, the observation model parameters are reported in Ap-

endix B in Figs. B.15–B.17. It is worth noting the inferred results for
he autoregressive parameter 𝑘𝑟|𝑎𝑡 . The distribution related to action 𝑎1
omprises significantly higher values than the distribution associated
ith action 𝑎2, highlighting that the fractal values are allowed to
mprove more when the latter is applied. While the two parameters
ere given the same prior, the MCMC inference still learned the
ubstantial different effect of the two maintenance actions. Interest-
ngly, the posterior distributions of the degrees of freedom suggest that
he observations are especially ‘‘far’’ from being normally distributed
uring deterioration.
In order to further validate the goodness of the results, Fig. 10

ompares an indicative time-series from real data with one sampled
rom inferred parameters, where starting values are close and no main-
enance action was taken (pure deterioration process). Despite the
tochasticity of the observations, the two time-series look extremely
imilar. Furthermore, it is possible to observe the slow variation of the
nderlying hidden states, as a result of the inferred transition matrix in
ig. 7, which assigns the highest probability along the diagonal. Condi-
ioning every observation on the previous value in the HMM allowed to
orrectly model the negative trend of the observations even in absence
f changes in the hidden states. As a result, time-series of fractal
alues simulated from inferred parameters highly resemble the real
ata. A simpler purely non-autoregressive HMM would not have been
ble to capture this behavior and would have produced observations
hat would oscillate around some mean values. The inferred hidden
tate of the penultimate observation might be questionable and it is
robably worth explaining. First, it should be noted that the trajectory
f hidden states plotted is computed from the average across MCMC
amples and jointly sampled during inference, i.e., each hidden state
n the trajectory affects each other’s inference. After a high number of
eterioration time-steps, the likelihood of the state remaining invariant
ecomes significantly lower. When this likelihood becomes too low, but
he state transition is not reflected in the observation, the inference
ight still assign the observation to the new state and explain the given
alue as an outlier/measurement error, which are indeed permissible
hanks to the Student’s 𝑡 likelihood. This is exactly what occurred at
he penultimate observation, for which the average MCMC samples
evealed high uncertainty on whether the hidden state was 𝑠0 or 𝑠1.
he inferred state transition is then further strengthened by the clearly
isible fractal value jump, revealing the change to condition state 𝑠1
n the following and final observation. Likewise, Fig. 11 shows real
nd simulated data, where a maintenance action was taken in similar
onditions, in order to examine the goodness of the learned repair
ffect.
While we cannot directly provide the code of the inference pre-

ented in this section to protect railway data provided by SBB, we
rovide a tutorial1 on the inference run on simulated data that resem-
les our recordings. The tutorial shows how to recover transition and
bservation model for MDP and POMDP cases. We hope that such a
ractice will favor the modeling of MDP and POMDP settings based on
ata and will further support their utilization in solutions for real-world
pplications.

1 Code available on GitHub.

https://github.com/giarcieri/Hidden-Markov-Models/blob/1b6cf56d2407c9cc7a7315ae76b1896f23110d00/HMMs%20for%20deterioration%20process%20Truncated%20Normal%20Process.ipynb
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Fig. 7. Transition matrix related to action do-nothing 𝑎0. The distribution at row 𝑖 and column 𝑗 is associated with the probability to transition from state 𝑖 to 𝑗 when action 𝑎0
is taken. Consistent with what is expected in deterioration processes, the highest estimated probabilities are associated with the state remaining invariant (diagonal entries), lower
probabilities exist for deterioration transitions (upper right triangle), and almost zero probability is estimated for improvements of the system (lower left triangle).
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It is worth noting that the modeling choices for the POMDP in-
ference, reported in detail in Section 5, are suited to the specific
characteristics of the observations and deterioration processes consid-
ered in this paper. However, the overall framework presented is a
general one admitting different modeling choices, tailored to the data
and the characteristics of the problem at hand. In this specific case,
the railway condition is indirectly measured via fractal values, i.e., a
continuous and negative-valued indicator, justifying the use of a Trun-
cated Student’s 𝑡 process for the likelihood model. While we thus show
how to deal with the rather complex case of continuous observations,
in the simpler discrete observation case the observation model would
be constituted by a probability matrix |𝑆|× |𝑍|, which can be modeled
via a Dirichlet distribution, similarly to the modeling of the transition
dynamics in Eq. (10). Furthermore, several extensions to the HMM used
are possible. For instance, a Bayesian hierarchical model [45] could be
applied to allow dependencies between components of the system [19,
24,46,47]. In our case, we may model dependencies between closer
racks that may be affected by similar substructure deterioration. More-
ver, one may extend the HMM to time-dependent transition matrices,
f there is evidence that the parameters governing the dynamics change
ver time. Transition matrices would be then enlarged by a further
imension representing time, which would be encoded in the solution.
ignificant amount of additional data would, however, be required in
uch a case in order to adequately estimate the model parameters.

. Solving the POMDP

After having inferred all model parameters, it is now possible to
olve the optimization problem, namely to find the optimal policy to
e executed given states or observations.
8

.1. Full observability

First, full observability of the problem is assumed, i.e., the optimal
olicy is computed for the case when states are directly and accurately
bserved. This allows to draw an upper bound of the performance
hat the POMDP solution can achieve. We consider an infinite horizon
roblem, with 𝛾 = 0.995, and apply the Q-value iteration algorithm
Eq. (3)) over the entire model distributions, represented by 12,000
samples, that in the MDP case here considered coincides with 𝑝(𝑇 |).
By implementing the algorithm with JAX [48,49], a JIT compiler for
enerating high-performance accelerator code, solving the problem
or the entire inferred distributions takes only a handful of seconds.
s a result, Q-value distributions are computed. Applying Eq. (9), it
is possible to take an expectation and compute the optimal action
for each state. The resulting actions are thus optimal for the entire
range of parameter distributions, i.e., they are robust over epistemic
uncertainty. The optimal actions are reported in Table 2. Interestingly,
if one applies Q-value iteration algorithm to only the mean values of the
inferred transition matrices, i.e., discarding all information contained in
the posterior distributions, a different optimal policy is obtained. The
policy optimized with the mean parameters estimates is also reported
in Table 2.

Moreover, by considering the full transition dynamics distribution,
it is possible to compute the percentage of samples for which a specific
action is optimal. The results are displayed in Fig. 12. This allows
to consider how confident one can be about action optimality, and
highlights that it is very likely to obtain a different optimal policy if one
optimizes for only a single sample of the transition model distribution.

For instance, action 𝑎1 is still optimal in 47% and 43% of samples
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Table 2
Optimal action for every state, optimized for all posterior distributions (top) and only
for the mean values (bottom).
State condition 𝑠0 𝑠1 𝑠2 𝑠3
Robust optimal action 𝑎0 𝑎1 𝑎1 𝑎2
Optimal action with posterior mean 𝑎0 𝑎1 𝑎2 𝑎2

when the system is in state 𝑠0 and 𝑠3, respectively. As a result, a policy
here a tamping action is taken at every decision step is optimal for a
ignificant number of samples of the inferred distributions. Exploiting
he whole distribution parameter space turns out to be crucial for
nhancing robustness of the computed policy.
Finally, we simulate the problem 20,000 times with 50 time-steps

or all transition model samples, for a total of 240 millions possible
rials. The robust optimal policy shown in Table 2 is then applied over
all simulations. As a comparison, we also show results for the policy
optimized only over the mean values and for the policy that always
chooses action 𝑎1. Results are reported in Table 3 in terms of average
costs, Standard Error (SE), and 95% Highest Density Interval (HDI).
The robust optimal policy delivers the best expected result, although
we clarified in Section 2.3 that it does not necessarily have to be the
best one for any specific value of the model parameters.

6.1.1. Finite horizon
Concluding the MDP solution study, we compute and showcase the

optimal policy considering a finite horizon problem of 𝐻 = 50 time-
steps, with terminal value of 0. The Q-value iteration algorithm applied
9

t

Table 3
Expected total life-cycle costs of the robust optimal policy, the policy optimal for the
mean values of transition matrices distributions, and a policy which chooses always
action 𝑎1 over 240 millions simulations.

Average SE HDI 2.5% HDI 97.5%

Robust optimal policy −13,377 0.67 −33,700 −5,000
Optimal action with posterior mean −13,493 0.60 −31,600 −5,000
Policy always 𝑎1 −16,072 0.94 −46,300 −7,500

over all inferred distribution parameters now computes 𝑆 × 𝐴 × 𝐻
distributions. Similarly to the infinite case, the optimal action at each
time-step 𝑡 is computed as follows:

𝑎∗𝑡 = argmax
𝑎∈𝐴

E𝜃∼𝑝(𝜃|)

[

𝑄𝜋∗
𝜃 (𝑠, 𝑎, 𝑡)

]

(15)

The resulting policy is reported in Fig. 13. Consistently with the
nfinite horizon case, solving the Bellman equation for the mean values
f the inferred distributions leads to different results, especially for
tate 𝑠2, further highlighting the importance of incorporating epistemic
ncertainty into the solution.

.2. Partial observability

This section presents now the solution to the POMDP problem.
he states are hidden variables and the agent forms a belief over
tates given the observations received. As pointed out in Section 2.2,
lanning an optimal policy through beliefs is a far more challenging
ask and point-based value iteration algorithms offer approximate solu-

ions. However, solving POMDP problems with continuous observations
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Fig. 9. Transition matrix related to action 𝑎2 (renewal plus tamping). The distribution at row 𝑖 and column 𝑗 is associated with the probability to transition from state 𝑖 to 𝑗 when
action 𝑎2 is taken. Transition to the best possible state 𝑠0 is consistently assigned the highest probability, regardless of the starting state, reflecting the higher repairing effect of
this maintenance action.
Fig. 10. One indicative time series of fractal values sampled from real data (left) and simulated parameters (right). No maintenance action was taken in the two samples. The
ssociated hidden states are reported in red circles.
t
emains an even more challenging task, even for these methods, which
ely on discretization of the observation space. While some recent
dvances have been achieved to extend POMDP solvers to continuous
bservations, e.g. in [50], in this work we rely on a simpler applicable
ethod called 𝑄𝑀𝐷𝑃 [51]:

𝑄𝑀𝐷𝑃
= argmax

𝑎∈𝐴

∑

𝑠∈𝑆
𝑏(𝑠)𝑄𝜋∗ (𝑠, 𝑎) (16)

Namely, the 𝑄𝑀𝐷𝑃 method ignores the observation model and
omputes the Q-values of the underlying MDP given the transition
odel. It then finds the optimal action at each step by only updating
10
he belief 𝑏(𝑠) with Eq. (5). This results in extremely low computational
load when compared to point-based methods, at the expense of reduced
accuracy, in general problems. The belief update is not affected by the
continuous nature of the observation data as it is not computed as a
sum over the observations but only as a sum over the hidden states.
This implies that Eq. (5) operates for both continuous and discrete
observations. The computation of the belief updates is reported in detail
in Algorithm 1, clarifying in practice how they are not affected by the
continuous nature of the observations.
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Fig. 11. One indicative time series of fractal values sampled from real data (left) and simulated parameters (right). A maintenance action 𝑎1 was taken at timestep 12 in both
ases. The associated hidden states are reported in red circles.
Fig. 12. Number of model samples for which each action is optimal at a given state. It allows to consider how optimal each action is with respect to the model distributions.
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Extending this algorithm to all inferred distributions to account for
pistemic uncertainty is then straightforward:

∗ = argmax
𝑎∈𝐴

E𝜃∼𝑝(𝜃|)

[

∑

𝑠∈𝑆
𝑏𝜃(𝑠)𝑄𝜋∗

𝜃 (𝑠, 𝑎)

]

(17)

here both the Q-values and the beliefs depend on 𝜃, which is a sample
f the entire POMDP model from transition and observation parameter
istributions. All computations among different samples are indepen-
ent and thus easily parallelizable, without substantially increasing the
omputational load.
The 𝑄𝑀𝐷𝑃 method assumes that the agent’s observation uncertainty

s removed after one step, in which case the method would provide the
ptimal solution. Thus, the agent always chooses the action associated
11

2

ith the highest long-term reward, for the current level of uncertainty.
ased on this assumption, the main drawback of the method is that
t does not choose information gathering actions. In cases where the
OMDP problem comprises these actions, the transition dynamics are
ast, and/or the observation uncertainty is significant, the method may
esult in poor performance [10], otherwise it might be remarkably
ffective in some settings [51]. The reasons why the 𝑄𝑀𝐷𝑃 method
s especially suited to the studied problem in this work and further
nsights on the quality of the solution are drawn in Section 6.3.

.2.1. Numerical results

The entire POMDP simulation algorithm is reported in Algorithm
. As in Section 6.1, we simulate several trials from the POMDP



Reliability Engineering and System Safety 239 (2023) 109496G. Arcieri et al.

t
P
w
p
t
d
a
p
d
e
b
t
a
a
s
o

Fig. 13. Optimal policy considering all model distribution (above) and only the mean parameters (bottom) for any given state in time for a finite horizon of 50 time-steps.
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Algorithm 1: Computation of the belief updates.
Data: New observation 𝑧𝑡+1, previous observation 𝑧𝑡, action 𝑎𝑡,

belief 𝑏(𝑠𝑡), transition model 𝑇 , and observation model 𝑂
Result: Updated belief 𝑏(𝑠𝑡+1) ∀ 𝑠𝑡+1 ∈ 𝑆
TotProb = 0
forall 𝑠̄𝑡+1 ∈ 𝑆 do

Compute new observation likelihood
𝑝(𝑧𝑡+1|𝑠̄𝑡+1, 𝑎𝑡, 𝑧𝑡) = 𝑂(𝑧𝑡+1, 𝑠̄𝑡+1, 𝑎𝑡, 𝑧𝑡)
TransitionProb = 0
forall 𝑠𝑡 ∈ 𝑆 do

Compute transition probability
𝑝(𝑠̄𝑡+1|𝑠𝑡, 𝑎𝑡) = 𝑇 (𝑠̄𝑡+1, 𝑠𝑡, 𝑎𝑡)
TransitionProb += 𝑝(𝑠̄𝑡+1|𝑠𝑡, 𝑎𝑡)

end
𝑏(𝑠𝑡+1 = 𝑠̄𝑡+1) = 𝑝(𝑧𝑡+1|𝑠̄𝑡+1, 𝑎𝑡, 𝑧𝑡) ∗ TransitionProb
TotProb += 𝑏(𝑠𝑡+1 = 𝑠̄𝑡+1)

end
𝑏(𝑠𝑡+1) ∕= TotProb

parameter distributions to obtain the average performance under nearly
all possible scenarios over a finite horizon of 50 time-steps. At the
beginning of every simulation, a different POMDP configuration is
sampled from the parameter distributions and kept fixed over the 50
time-step horizon. However, the agent does not access the sampled
transition and observation model parameters to compute the optimal
policy, but it exploits all inferred parameter distributions, approxi-
mated through samples, as shown in the computation of 𝑎𝑡 in Algorithm
2. The agent thus solves 12,000 POMDP problems in parallel, i.e., it
computes distributions of solutions, and selects actions that maximize
the expected value with respect to the entire model parameter dis-
tribution, according to Eq. (17). The resulting policy is thus robust
o parameter uncertainty and it does not need to access the actual
OMDP environment parameters. This scheme aims to resemble a real-
orld scenario, where the agent would never access the real-world true
arameters, and it needs to tackle this additional uncertainty. We show
hat, instead of assuming a particular sample of the POMDP parameter
istributions as ground truth, our robust policy represents a natural
nd safer choice against model uncertainty. We compare the robust
olicy with the policy based on the means of the posterior parameter
istributions, as well as five other different agents that assume knowl-
dge of specific POMDP samples. Specifically, we order our samples
ased on their (unnormalized) posterior probability and select the ones
hat correspond to the [0, 25, 50, 75, 100] percentiles. Each of the five
gents computes the optimal policy with respect to the sample of the
ssociated percentile. The resulting policies are then evaluated with the
cheme previously described. Table 4 summarizes the results in terms
f mean performance, SE, and 95% HDI over 100k simulations. The
12
able also reports the results of the policy that always chooses actions
1, already shown in Table 3. It is worth noting that the standard error
of the mean performance of this latter policy is only lower due to the
larger number of evaluated simulations, as reported in Section 6.1.
he robust policy achieves better mean performance than the other
ive benchmarking solutions based on specific samples. In particular,
mong the latter, three benchmarking policies prove not substantially
etter than the policy that always chooses action 𝑎1. Even though the
esults from the policies associated with the percentiles 0 and 50 are
ot very distant from the results of the robust policy, this cannot be
nown a priori. Likewise, it should not be surprising that the policy
ased on the posterior mean parameters even shows slightly better
mpirical results than the robust policy. Indeed, it can be possible to
ind specific samples, among all possible values, that perform similarly
r even slightly better than the robust policy. However, this is strongly
ependent on the shape of the parameter distributions and the assumed
ost matrix, and one cannot know the performance of such samples
ntil they are actually evaluated. As such, in the context of model
ncertainty, the safest choice is represented by the robust policy, which
s optimized over all POMDP parameter samples, namely it is ‘‘robust’’
rom a model uncertainty perspective.
Despite the partial observability, the robust policy in this case also

elivers only slightly worse performance than the full observability
ase. We note that the agent’s belief converges to the actual hidden
tates within a handful of observations in this problem, after which the
ctions taken are nearly always optimal. At initiation of the horizon the
gent exhibits a conservative behavior by mostly choosing action 𝑎1,
hich is indeed the most likely to be optimal when the uncertainty over
he state is high. As a result, the observed disparity in the MDP versus
he POMDP performance is primarily due to early decisions, when the
gent’s belief is not yet accurate.
In all time-steps, the agent persistently selects actions that are

ptimal considering all parameter distributions, i.e., robust to epistemic
ncertainty. Such a policy is agnostic with respect to real environment
ransition dynamics and observation generating processes. As such,
omputed solutions do not overfit a specific POMDP model configura-
ion and are more likely to perform well when deployed to real-world
pplications, where the environment remains uncertain.

.3. On the quality of the 𝑄𝑀𝐷𝑃 solver

While our focus is not shed on the type of solver to adopt for
olution of the POMDP problem, different solution techniques can
ave an important impact on the accuracy of the POMDP results. We
hus further explain here the reasons why the simple 𝑄𝑀𝐷𝑃 solver is
articularly suited to this specific case. This is tied to the following
roblem traits: (i) the permanent monitoring nature of the problem,
amely the agent does not have to take information-gathering actions,
ut informative observations are provided at every time-step, (ii) the
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Algorithm 2: Evaluation algorithm
Data: Posterior POMDP model parameter distributions 𝑝(𝜃|), Reward/cost matrix 𝑅
Result: List of total costs through several simulations ListEpisodeRewards
Compute optimal Q-values 𝑄𝜋∗

𝜃 (𝑠, 𝑎, 𝑡) for all samples 𝜃 via Eq. (3)
Set initial belief to all posterior initial probability samples 𝑏𝜃(𝑠0) ← 𝑝(𝑇0|)
Initialize ListEpisodeRewards ← ∅
forall simulations 𝑖 ∈ [0…𝑁] do // N=100,000

Sample POMDP parameters 𝜃̂ ∼ 𝑝(𝜃|) from posterior distributions
Sample initial hidden state 𝑠0 ∼ 𝑇0𝜃̂
Set EpisodeRewards ← 0
forall timesteps 𝑡 ∈ [0…𝐻] do // H=50

Plan action 𝑎𝑡 = argmax𝑎∈𝐴 E𝜃∼𝑝(𝜃|)
[
∑

𝑠∈𝑆 𝑏𝜃(𝑠𝑡)𝑄𝜋∗
𝜃 (𝑠, 𝑎, 𝑡)

]

Execute action and sample new hidden state and observation 𝑠𝑡+1 ∼ 𝑇𝜃̂(𝑠𝑡, 𝑎𝑡), 𝑧𝑡+1 ∼ 𝑂𝜃̂(𝑠𝑡+1, 𝑎𝑡, 𝑧𝑡)
Compute reward 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡) and collect EpisodeRewards += 𝑟𝑡
Update all belief samples 𝑏𝜃(𝑠𝑡+1) with Algorithm 1

end
ListEpisodeRewards ← ListEpisodeRewards ∪ {(EpisodeRewards)}

end
Fig. 14. A sample from the 𝑄𝑀𝐷𝑃 planner. From bottom to top: the observations (fractal values) that the agent receives; the agent’s beliefs based on the observations; the true
idden states (not accessed by the agent); the planned actions based on the agent’s beliefs. After only one observation, the agent’s belief already detects the true hidden state and
erfectly converges with the second observation. Despite the partial observability, the agent almost always plans the optimal action.
r
𝑄
s
t

q

Table 4
Expected total life-cycle costs associated with the 𝑄𝑀𝐷𝑃 robust policy, the policy based
on posterior mean parameters, and other five benchmarking policies computed from
specific samples of the POMDP parameter distributions, evaluated over a finite horizon
of 50 time-steps and 100k simulations of the POMDP environment.

Average SE HDI 2.5% HDI 97.5%

Robust policy −14,526 39.47 −39,750 −5,050
Policy with posterior means −14,478 37.68 −38,250 −5,050
Policy with percentile 0 −14,590 39.66 −40,000 −5,050
Policy with percentile 25 −15,933 45.15 −45,420 −7,400
Policy with percentile 50 −14,912 41.68 −40,350 −5100
Policy with percentile 75 −15,822 48.4 −44,950 −7,200
Policy with percentile 100 −16,497 50.51 −47,010 −7,100
Policy always 𝑎1 −16,072 0.94 −46,300 −7,500
13

t

continuous dimension of the observations, that would negatively im-
pact the performance of more sophisticated algorithms, which would
rely on discretization of the observation space, while this observations
attribute is compatible with and does not affect the performance of the
𝑄𝑀𝐷𝑃 solver, and (iii) the high probabilities on the diagonal of the
transition matrix associated with action 𝑎0 do-nothing (Fig. 7), which
esult in slow variation of the underlying hidden states, allowing the
𝑀𝐷𝑃 solver to accurately detect the true hidden states with a few mea-
urements (often only one). In absence of any of those characteristics,
he 𝑄𝑀𝐷𝑃 solver would not have been equally effective.
In this section, we illustrate some practical findings to prove the

uality of the solver for this POMDP problem, with a finite horizon set-
ing. A key evidence is represented by the comparison of the theoretical
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Fig. B.15. Posterior distributions of observation model parameters (deterioration process).
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value for the initial belief 𝑉𝑄𝑀𝐷𝑃
(𝑏0) with the mean simulated reward

achieved, where:

𝑉𝑄𝑀𝐷𝑃
(𝑏0) = max

𝑎∈𝐴

∑

𝑠∈𝑆
𝑏0(𝑠)𝑄𝜋∗ (𝑠, 𝑎, 𝑡 = 0) (18)

The theoretical value is an optimistic upper bound, while the simulated
value represents a lower bound (it is not the optimal policy). If the
two are sufficiently close, that can be a good indication that the 𝑄𝑀𝐷𝑃
policy is close to the optimal one. In order to only evaluate the quality
of the 𝑄𝑀𝐷𝑃 planner, we fix the POMDP model parameters to their
means. The theoretical value 𝑉𝑄𝑀𝐷𝑃

(𝑏0) expects costs equal to −13,405
upper bound), while 100k simulations of the 𝑄𝑀𝐷𝑃 finite horizon
olicy over 50 time-steps, and optimized over the means of the model
arameters, achieve an average cost of −14,374 (lower bound). Consid-
ring the high variability of the costs depending on the realized states
the simulations achieve −5,050 and −123,800 in the best and worst
ase scenario, respectively), the difference between the two bounds is
uite tight.
As a further example, Fig. 14 displays a sample trial of the 𝑄𝑀𝐷𝑃

lanner. The bottom figure shows the observations, i.e., the fractal
alues that the agent receives over the trial. Based on the observations,
he agent forms beliefs over the states (third subplot), which are
ompared against the true hidden states, shown in the second subplot.
ased on the beliefs, the agent plans the optimal actions, reported in the
op subplot. The belief is initialized according to the initial probability
tate distribution 𝑇0 and is hence not accurate at the beginning. After
nly one observation, the agent’s belief already largely detects the
rue hidden state and perfectly converges with the second observation.
fterwards, it remains extremely accurate. The agent is able to correctly
etect the change to state 𝑠1 at time-step 14 and plan the optimal action

𝑎1 until the state returns to 𝑠0. For other two consecutive times, the
agent accurately and timely detects the deterioration to state 𝑠1. In
oth cases, the state returns to perfect condition 𝑠 after 2 time-steps.
14

0

However, the agent is uncertain about the correct state (whether it is 𝑠0
or still 𝑠1) and prefers to precautionary take a further third maintenance
ction 𝑎1 to be sure of the improvement of the condition. These two
ecisions represent the only two instances, where after the initial warm
p time post-initialization, the agent does not plan the optimal action
nder actual observation of the hidden state; this deficiency is owed to
he uncertainty in the observations.

. Conclusions

In this work, a maintenance planning problem is modeled and
olved by means of a POMDP framework. A main contribution of
his work is the demonstration of the end-to-end inference of the
OMDP model purely from available data. We showcase our method
n a real-world maintenance planning problem for railway track in-
rastructure. We exploit real-world observations (monitoring data) in
he form of computed fractal values and actual maintenance actions
ecorded across Switzerland’s railway network. We apply a hidden
arkov model conditioned on actions, relying on a truncated Stu-
ent’s 𝑡 process which describes the deteriorating system, to infer
the transition dynamics and the observation generating process of the
POMDP problem. Parameter distributions that represent all plausible
values under the available data are inferred through MCMC sampling
of the model, exploiting the NUTS algorithm. The results present high
evidence of convergence, with the simulations highly resembling the
real data.

A further contribution of this work lies in application of the inferred
model parameter distributions for solving the maintenance planning
problem, i.e., computing the optimal sequence of maintenance actions
that minimize costs and economic risks over the structure life-cycle.
By exploiting all model parameter distributions, the computed policy is
not optimal only for specific parameters but accounts for all plausible
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Fig. B.16. Posterior distributions of observation model parameters (repair process).
values that the POMDP environment may assume. The resulting solu-
tion is thus robust to epistemic uncertainty over the model parameters.
Only a few prior works have managed to combine Bayesian decision
making and Dynamic Programming to obtain POMDP solutions that are
robust to model uncertainty. In addition to the novel character of the
formulation presented in this work, to the best of our knowledge this
is also the first time that the two fields are involved with real-world
application data.

To help the reader in understanding of the current implementation
and to facilitate further applications of the POMDP robust planning,
we also provide a tutorial that demonstrates the step-by-step solution
procedure on a simple example, available on GitHub at https://github.
com/giarcieri/Tutorial-on-POMDP-inference-and-robust-planning.

Although our presented framework of POMDP inference and robust
olution is showcased on the specific problem of maintenance planning
or railway assets, its applicability is general. It should be stressed that
he framework is not dependent on the specific modeling configuration
hoices, as for instance the likelihood model or the selection of the

method as the particular solution algorithm, which are here
15

𝑀𝐷𝑃
tailored to the available observations and problem settings. These
configurations can be varied in order to allow the POMDP inference
model to be adapted to different applications and to the data at
hand. The inferred parameter distributions can then be used to derive
robust solutions by employing different solution methods merged with
Bayesian decision making principles.

Therefore, this work opens up paths on both new applications and
the development of methods for decision making under uncertainty.
Possible extensions pertain to the hidden Markov model characteristics,
used to infer the parameters of the POMDP environment, with time-
dependent transition dynamics or hierarchical system dependencies
comprising two possible further paths to explore. In the future, we
further wish to investigate the use of Reinforcement Learning (RL)
techniques for the development of solutions for maintenance planning
that are robust to epistemic uncertainty, without any required prior
knowledge of the problem. Several options can be explored along
this path, such as the use of model-free [52] or model-based [53]
algorithms, while multi-agent RL techniques can be merged with a

hierarchical inferred model [46] and possible maintenance constraints

https://github.com/giarcieri/Tutorial-on-POMDP-inference-and-robust-planning
https://github.com/giarcieri/Tutorial-on-POMDP-inference-and-robust-planning
https://github.com/giarcieri/Tutorial-on-POMDP-inference-and-robust-planning
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Fig. B.17. Posterior distributions of observation model parameters (initial observation).
e.g., budget) can be tackled with solution methods as developed in
ndriotis et al. [54].
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Algorithm 3: Computation of short, mid and long wave fractal
values

Data: Longitudinal level band pass filtered to the range 1m to
70m

Result: Fractal values in short, mid and long wave range
Definition of dividers 𝑖 ∈ [5…580];
forall dividers 𝑖 do

Select 𝑦, 150m measurement window from longitudinal
level signal;
Compute the polynomial length 𝐿 as:
𝐿(𝜆 = 150

𝑖 ) =
∑𝑖

𝑗=1

√

(𝑥𝑗 − 𝑥𝑗−1)2 + (𝑦(𝑥𝑗 ) − 𝑦(𝑥𝑗−1))2 where
𝑥 and 𝑦 are the spacial window coordinates subdivided
into 𝑖 segments;
Divide the Richardson plot into three sections (short, mid,
long wave range) with delimiters:

• Delimiter section 1-2: 𝑙𝑜𝑔(20′000mm∕4) ≃ 3.7
• Delimiter section 2-3: 𝑙𝑜𝑔(3000mm∕4) ≃ 2.9

foreach section 𝑠𝑖 ∈ 𝑖 = 1, 2, 3 do
Run a linear regression for 𝑠𝑖 on: 𝑙𝑜𝑔(𝐿(𝜆)) ∀ 𝑙𝑜𝑔(𝜆) ∈ 𝑠𝑖;
Return slope (corresponding to fractal value in
wavelength bands 𝑖);

end
Repeat the fractal analysis taking a 150m signal window
with a 1m shift;

end

Appendix A. Computation of fractal values

See Algorithm 3.
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Appendix B. Observation model parameters

See Figs. B.15–B.17.
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