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Abstract—When designing feedback controllers to achieve
periodic movements, a reference trajectory generator for oscilla-
tions is an important component. Using autonomous oscillators
to this effect, rather than directly crafting periodic signals,
may allow for systematic coordination in a distributed manner
and storage of multiple motion patterns within the nonlinear
dynamics, with potential extensions to adaptive mode switching
through sensory feedback. This paper proposes a method for de-
signing a distributed network that possesses multiple stable limit
cycles from which various output patterns are generated with
prescribed frequency, amplitude, temporal shapes, and phase
coordination. In particular, we adopt, as the basic dynamical unit,
a simple nonlinear oscillator with a scalar complex state variable,
and derive conditions for their distributed interconnections to
result in a network that embeds desired periodic solutions with
orbital stability. We show that the frequencies and phases of
target oscillations are encoded into the network connectivity
matrix as its eigenvalues and eigenvectors, respectively. Various
design examples will illustrate the proposed method, including
generation of human gaits for walking and running.

Index Terms—Nonlinear oscillator, distributed network, mul-
tistability, limit cycles, gait generation

I. INTRODUCTION
A. Motivation

Periodic or oscillatory motions are essential in various
engineering applications, including repetitive movement tasks
for manipulators [1], periodic aircraft motion during cruising
flight for improved fuel economy [2], [3], periodic trajectories
for persistent monitoring by a single robot [4] or by a set
of mobile agents [5], and oscillating body systems for ocean
wave energy conversion [6]. To achieve periodic movements
for a physical system, one could design a feedback regulator to
track an oscillatory reference command. While such reference
commands can be crafted as fixed time-dependent signals, it
is often advantageous to use oscillators that autonomously
generate periodic commands as stable limit cycles.

An advantage of using oscillators is that complex motion
patterns! can be encoded into a single network. For example,
multiple limit cycles may be embedded in the dynamics to
allow for forced gait’ transition from swimming to walking
in robotic locomotion systems [7], [8]. Another advantage
is the capability to modify the motion pattern autonomously
when a reference oscillator is placed within the feedback loop.
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'An oscillation pattern is a vector-valued periodic signal characterized by
the period, amplitudes, phases, and temporal shapes of the variables.

2A gait is an oscillation pattern expressed by the vector of body shape
variables for the purpose of locomotion.

For instance, it is possible to adjust the periodic movements
through sensory feedback in accordance with the change in
the environmental condition [9]. Such adaptation mechanisms
are found in biology — central pattern generators (CPGs) for
animal locomotion [10]. Yet another advantage of autonomous
oscillators in general is the fact that motion commands at mul-
tiple subsystems can be coordinated through local communica-
tions in a spatially distributed manner. A network of oscillators
can be used as a distributed reference generator for designing
control systems that are potentially robust against local failures
[11]. Thus, a multi-pattern oscillator with distributed network
architecture is of great interest as part of the control design.

More specifically, a general framework for feedback control
design to achieve prescribed oscillations is given by Fig. 1. It
has been proven for linear systems [12] that every controller
that meets oscillatory design specifications for the closed-loop
system must necessarily have the architecture in Fig. 1, where
an autonomous oscillator (labeled as ‘OSC’) is embedded
within the controller as an internal model, and is coupled
with the plant diffusively (i.e., w converges to zero in the
steady state). The oscillator is designed to autonomously (with
w = () generate periodic signals us and y, that are consistent
with the input and output of the plant under the desired
oscillation. Convergence to the desired oscillation pattern
is guaranteed when the dynamical elements F' and G are
designed to stabilize some augmented plant.
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Fig. 1. General control architecture for oscillation

The framework in Fig. 1 may extend to nonlinear systems
and provide a new paradigm for feedback control to achieve
adaptive multi-pattern oscillations in a distributed manner.
Indeed, the nonlinear neural control for locomotion in biology
[10] exhibits a coupled CPG/plant architecture equivalent to
the one in Fig. 1. Such design framework would be relevant
especially for development of robotic locomotion systems
that can adapt gaits with respect to environmental changes
and are robust against electro-mechanical failures due to the
distributed control architecture. The first step toward the new
paradigm would be the design of multi-pattern, distributed,
network oscillators to fill the role of ‘OSC’ in Fig. 1.



B. Current State of the Art

The distributed network of dynamical subsystems has been
extensively studied in the literature. The advances in design
methods for consensus/synchronization of multi-agent systems
offer a solid theoretical foundation using graph theory. Based
on the dynamics of individual agents and the connectivity
across agents, various theories have been developed for spe-
cific models. For example, the agents can be homogeneous
[13]-[15] or heterogeneous [12], [16], [17], and each agent
can be an independent oscillator [18] or a non-oscillatory
subsystem that starts to exhibit a periodic trajectory if coupled
properly with others [19], [20]. The coupling between agents
may be linear [21] or nonlinear [22], and the coupling strength
may be strong [23], [24] or weak [25], [26]. The design of cou-
pled oscillators is similar to the formation control problem in
that coordination of subsystems is achieved when the network
graph is connected in some sense (e.g. containing a spanning
tree [27]) and the coupling is properly designed. Typically,
an internal model of the periodic target trajectory (without
coordination) is already embedded in each local oscillator
dynamics as in the consensus of integrator agents. A major
difference is that coupled oscillator designs require orbital
stability of limit cycles, making the problem challenging.

Effective methods have been established for the design of a
distributed network oscillator with a single stable limit cycle.
There are several representative methods for analyzing the
coupling conditions for coordination of subsystems. One is
the theory of contraction/semi-passivity [23], [24], [28]-[30].
This theory extends the Lyapunov stability criterion for an
equilibrium to a flow-invariant subspace, ensuring global con-
vergence to the synchronized state by strong coupling. While
the method is powerful, it is not suitable for network design
to achieve multiple limit cycles because each orbit must be
stable only locally as global convergence to an orbit would
imply non-convergence to any other orbits. Another method is
the classical harmonic balance [31]. When the system consists
of linear dynamics and static nonlinearities, the latter may be
approximated by describing functions and the resulting quasi-
linear system can be used to estimate stable limit cycles. This
approach establishes the direct correspondence between the
eigenstructure of the network and the oscillation profile [19],
[32]. However, the existence and stability of limit cycles are
not guaranteed due to the nature of harmonic approximation. A
third method is based on linearization around a periodic orbit
and the Floquet analysis [33]. When applied to synchronization
of diffusively coupled homogeneous subsystems, the method
gives a simple criterion for convergence in terms of the
master stability function [34], [35]. The result extends to the
coordination problem when the coupling is weak or the system
exhibits flow invariance [26]. Yet another method is the phase
reduction for weakly coupled oscillators. The Malkin theorem
[36] or averaging techniques [25] allow for a description of
the system in terms of phase variables, leading to the phase-
coupled oscillators (PCOs) for which coordination problems
reduce to stability analysis of equilibrium points [37]-[39].

For the design of an oscillator with multiple limit cycles,
some of the methods mentioned above should be useful, but

have not been fully explored in the literature. The problem has
been well motivated and studied extensively in the context of
gait transition for robotic locomotion systems. Most results
focus on specific body configurations such as bipedal [40],
quadruped [41], hexapod [42], undulatory [43], and hybrid
[7], and design oscillator networks with a topology deduced
from the symmetry considerations [44], [45]. Some of these
provided systematic design methods based on dynamical sys-
tems theories. Strictly speaking, however, most of these results
do not achieve multiple limit cycles with a fixed network
condition, but rather the gait transition is induced through
bifurcation with respect to a “drive” parameter that adjusts
directly or indirectly the frequency and/or phase properties.
Typically, the drive input is applied uniformly to all sub-
systems of the network, requiring a globally broadcasting
command. In some cases, the bifurcation diagrams indicate
coexistence of multiple stable limit cycles, which is considered
to be an essential property of biological systems for switching
between multiple coordination patterns [40], [44]. Multista-
bility may allow fully autonomous mode transitions adapting
to environmental changes through distributed local sensory
feedback without relying on a global drive command [46],
[47]. However, there is no systematic method for designing
distributed network oscillators to achieve multiple limit cycles
with a theoretical guarantee for orbital stability.

C. Contributions

In this paper, we will propose a rigorous design method
to embed multiple limit cycles, with local orbital stability, in
a fixed distributed network of dynamical subsystems, so that
each limit cycle generates coordinated oscillatory outputs with
prescribed frequency, amplitudes, phases, and temporal shapes.
The network may be used in future developments to form the
‘OSC’ block in Fig. 1 as an internal model within a feedback
controller, but our focus here is not on such control design
but on the network oscillator design. Our approach considers
a network of homogeneous basic units, each described by 2 =
jwi(z) where the state variable z(t) € C is a complex scalar
and ¢(z) is a static nonlinear function. The dynamical unit
is a generalization of the Andronov-Hopf oscillator, and has
a stable limit cycle with a circular orbit 2(t) = ve/** on the
complex plane. This choice of the unit oscillator is motivated
by the fact that a periodic output of an arbitrary temporal shape
can be generated approximately as a polynomial function of
z using a finite Fourier series.

The general network of the unit oscillators is described
by 2 = Muy(z), where z(t) € C" is the complex state
vector and M € C™*™ is the network connectivity matrix.
The problem is to determine the structured matrix M and
output function h so that desired periodic oscillations of
arbitrary temporal shapes are generated in the output y = h(z)
from harmonic oscillations of z, embedded in the network as
stable limit cycles. We will show how the output y can be
defined as a function of z in a distributed manner, which is
nontrivial because a single output function ~ must generate
different prescribed shapes, depending on different harmonic
limit cycles. Once this is done, the rest of the paper will focus
on the network design for harmonic oscillations.



To lay a foundation for solving the multistability problem,
we first consider the unstructured network design to embed
a single limit cycle. We will take the linearization/Floquet
approach to the orbital stability analysis. The coordination
problem to set an arbitrary phase relationship between state
variables is shown to be equivalent to the synchronization
problem to set a common phase to all variables due to the flow-
invariance of the unit oscillator. The necessary and sufficient
condition for orbital stability of the synchronized oscillation
is characterized in terms of the eigenvalues of a linear time-
invariant system obtained through a time-varying Lyapunov
transformation and linearization around the target orbit. Simple
sufficient conditions are then obtained for three special cases
of weak coupling, weak nonlinearity, and decoupled eigen-
subsystems, in terms of the associated Laplacian matrix.

We then extend the development to the multiple (2 > 2)
limit cycle case. We start by examining the three conditions
obtained for the single limit cycle case, and determine that
the weak nonlinearity condition is most viable, providing a
transparent condition in terms of the original connectivity
matrix M. The same linearization technique is applied with
respect to each of the ¢ limit cycles without transforming
the problem to synchronization. Exploiting an eigenvalue
perturbation result under sufficiently weak nonlinearity, we
will show that every linearized system satisfies the condition
for orbital stability if M has all the eigenvalues in the open
left half plane except for i eigenvalues jw® on the imaginary
axis, where w’ is the frequency of the i*® limit cycle and the
corresponding eigenvector specifies the target phases.

Finally, we show how a distributed architecture can be
imposed on the network. Such requirement is enforced by
a constraint on the structure of the connectivity matrix M.
Given an arbitrary network topology with the associated graph
containing a spanning tree, it is easy to design a distributed
network to embed a single limit cycle of desired oscillation
profile [26], [30]. It turns out, however, that a direct extension
to the multistability case is extremely difficult when the
topological constraint is imposed on the connections between
individual unit oscillators. We will show that the difficulty
can be overcome by imposing the topological constraint on
the connections between subsystems, each of which comprises
(at least) ¢ unit oscillators. The overall design method will be
illustrated by a comprehensive example to reproduce kinematic
data from human walking and running as two stable limit
cycles of a chain of oscillators distributed over ankle, knee,
and hip joints of left and right legs. We will illustrate potential
for gait transition as well as robustness against local failures.

In a preliminary version of this paper [48], with linear
coupling of the unit oscillators, multiple limit cycles are em-
bedded in an unstructured network. This method encodes the
frequencies in the unit oscillator and phases in the network. As
a result, undesired limit cycles with unintended combinations
of the frequency and phase are stabilized in addition to desired
ones. The present paper circumvents this adverse effect by
encoding both frequencies and phases in the network through
nonlinear coupling. Also, the temporal shaping of the output is
new, and design examples are added to illustrate convergence
properties, domain of attraction, gait transition, and robustness.

D. Notation

We use the following notation. The set of complex numbers
with negative real parts is C~. Define I, := {1,2,--- ,n} for
a positive integer n, and () denotes the empty set. For matrices
Vie, k € I, let V := col(V4,...,V,,) be the vertical concate-
nation of the arguments in a column, and diag(V7,...,V,,) be
the block diagonal matrix with the arguments on the diagonal,
which may be abbreviated as diag(V) when V}, are scalars.
For a complex matrix M € C™*P, notations M, M", M*,
MT, R(M), (M), and eig(M) mean the complex conjugate,
transpose, complex conjugate transpose, the Moore-Penrose
inverse, real part, imaginary part, and the set of eigenvalues
(when m = p), respectively. The real form of M is defined by
M= 200 300 |. The imaginary number is j := V-1
The Kronecker product is denoted by ®. Any scalar functions
such as sin, cos,exp,| - | are performed elementwise. For
instance, e’ for 8 € R” is a vector with entries /%, where
0, is the k*" entry of #. Given a vector z and a scalar v,
the operation z = x + y is defined as the addition of y to
each entry of x, namely z; = xj + y. For vectors x,y € C”,
x -y means the elementwise multiplication. For vector  and
scalar [, the power 2! is taken elementwise. The vector with
all entries equal to one is denoted by 1.

II. DESIGN FRAMEWORK FOR COUPLED OSCILLATORS
A. Basic Oscillator Unit

We will adopt, as a primitive computing unit, a nonlinear
harmonic oscillator with a complex scalar variable as follows.

Lemma 1. Let a function ¢ : R — C and real positive
parameters vy and w be given. Suppose ¢(«) is continuously
differentiable in the neighborhood of o = ~y. Consider

2 =jwip(z), ¥(2):=¢(z])z, =2(t)eC. (1)

Then z(t) = ((t) := ~el“! is a solution if and only if ¢(y) =
1. Suppose further that ¢(vy) = 1 and (&' (7)) > 0 hold,
where ¢’ is the derivative of ¢. Then, z(t) converges to ((t+7)
for some T € R depending on z(0) € C whenever |z(0)| is
sufficiently close to 7.

Proof. The result follows from Theorem 1 in [48] by redefin-
ing ¢ in the reference as jw¢ here. |

The essential part of oscillator (1) was introduced in [48]
as a generalization of the Andronov-Hopf oscillator which has
been used as a basis for expressing an arbitrary temporal shape
using a Fourier series [49]. The following example illustrates
how the unit oscillator (1) can be used to generate periodic
signals with arbitrary shapes.

Example 1. Consider the system in (1) with
¢la) =1+jua® =), v=1, p>0, 2

which is an Andronov-Hopf oscillator. Clearly, we have
¢(y) = 1 and X(¢'(y)) = 2wy > 0, and hence the local
convergence of z(t) to ((t+ 7) is guaranteed as in Lemma 1.
We set ;1 = 0.2. Suppose a target periodic signal is given by

n(t) = 3cos(wt) + cos(2wt) — sin(dwt), w = 5.



Then 7 can be expressed as

n = h(¢),

Hence, defining the output y := h(z), we can achieve
convergence of y(t) to n(t + 7) for some 7 € R depending
on the initial condition z(0). The system is simulated with
the initial condition z(0) = /10, which gives 7 = 0. The
result is shown in Fig. 2. The real and imaginary parts of
z(t) converge to sinusoids, and output y converges to the non-
sinusoidal signal of the specified shape.

h(z) := R(3z + 22 + jz4).

State z

o F

Output y
=N O N
%

10
Time

Fig. 2. Complex oscillator with non-sinusoidal temporal shape.

The example demonstrates potential of the simple oscillator
(1) for various applications, including feedback control of
periodic movements. We will use (1) as the basic unit for
the network of oscillators studied in this paper. Based on
Lemma 1, we introduce the following assumption which
guarantees local convergence property z(t) — ((¢t + 7) for
the oscillator in (1).

Assumption 1. The function ¢ : R — C is continuously
differentiable in the neighborhood of v € R and satisfies

o(v) =1, ¢'(v) =je/v A3)

for some € > 0. The function ¢ : C — C is defined by
¥(2) = ¢(|z])2.

For the rest of the paper, we make this a standing assump-
tion imposed on every results. The assumption implicitly states
that the real part of the derivative ¢'(+) is zero. This condition
is not required for the local convergence but is imposed for
simplicity.

B. Network of Oscillators with Nonlinear Coupling

Moving forward, we consider a coordination problem for a
network of basic oscillators described in (1). In this network,
each oscillator is a dynamical unit constituting a node. Without
any communication between the units, the trajectory of an
individual oscillator would locally converge to an oscillation
of the prescribed frequency and amplitude, but the phase
relationship between units is undetermined. We aim to achieve
a phase coordination between units by properly designing the
weights (coupling strengths and signs) of the network.

A general network of basic oscillators (1) is described by

& = jwrt(zk) + > gub(z), z(t) €C, kel,, @)

=1

where n is the number of units, and gg; € C is the coupling
parameter from the I*" unit to the k" unit. The parameter
wi, € R is the intrinsic frequency of the k' basic oscillator,
but this value is irrelevant since we allow a nonzero value for
gk Thus a more compact description of the coupled basic
oscillators is

Z= My(z),

where M € C™*™ is the coupling matrix consisting of g;
and wy. It should be noted that the couplings in (4) are non-
linear, unlike the linearly coupled Andronov-Hopf oscillators®
considered in the literature [26], [30], [50]. It turns out that
the nonlinearity of the couplings is important for encoding
the oscillation frequency into the network, rather than into the
individual oscillator unit. The use of the common nonlinearity
1 for the coupling and oscillator dynamics allows for the
compact description in (5), which will facilitate the theoretical
development.

Within this framework, we consider the set of & local
subsystems of network oscillators

ék - Fk'll)(zk)a Zk(t) € (ana

that are coupled to each other in accordance with the network
topology specified by the neighbor index sets N, C I as

2(t) e C™, 5)

k€ I, (6)

4= Fup(z) — Y uGrtp(z1), k€1, (7
1eNy
where Fj, € C"*™ gpecifies the local coupling between

units in the same subsystem, Gj; € C" %™ gpecifies the
connections from the {*" subsystem to the k*" subsystem, and
Ng:=N xU{k}. The redundant parameter ¢;; and the negative
sign are introduced to facilitate orbital stability analyses later.
The network of subsystems in (7) can be written as (5) with
a structured matrix M defined by Fj and (x; Gy, where*
z) € C",  z, € C™F|

z = col(z1,..., ke lg. (8)

Here, the state vector z of the entire network is partitioned
into 2y, which are vectors in general. Each subsystem can be
deemed a cluster with states zj. In the special case where an
individual oscillator unit constitutes a subsystem (n; = 1), we
have & = n, and z; is the k' scalar component of vector z.

C. Problem Formulation and Road Map

We are interested in oscillatory behaviors of the network
system (5). Let us recall some basic concepts associated
with oscillations that are needed for describing our objective
precisely. Here we adopt the notion of orbital stability defined
in e.g. [51].

Definition 1 (Orbital stability). Let z(¢t) = ((t) € C" be a
periodic solution to an autonomous system Z = f(z). The
orbit of ((t) in the state space is the closed curve

O:={¢(t)eC":t e R}.

3The linearly coupled Andronov-Hopf oscillators are given by (4) with
1(z;) in the summation replaced by z;.
“The partition of (-) associated with the k*® subsystem is denoted by (-).



Define the distance between vector z € C" and orbit O by
dist(z,0) := inf ||z — o|.
o€

Then the solution ( is said to be orbitally stable if (a) for each
€ > 0, there exists § > 0 such that dist(z(0), ) < ¢ implies
dist(z(¢),0) < ¢ for all ¢ > 0, and (b) there exist positive
scalars ¢, ¢, and cg such that dist(z(0), Q) < ¢ implies

dist(z(t),0) < cre” 2, vVt > 0.

Note that we use the term orbital stability to mean local
exponential convergence to the orbit. An orbitally stable
solution, or its orbit, is referred to as a stable limit cycle. It
is well known (e.g. Theorem 11.1, [52]) that orbital stability
means convergence of z(t), not to ((t), but to {(¢ + 7) for
some constant 7 € R.

The general goal is to design a distributed oscillator network
containing multiple stable limit cycles in the state space. More
specifically, we will solve the following:

Problem 1. Consider the dynamical network described by (5)
where M € C™*™ is a constant matrix, and n > 2. Let desired
oscillations be given by

Cit) == el @) cCn G ey, 9)

where ¢ > 1 is the number of the target oscillations, 7, wteR
are positive constants specifying the amplitude and frequen-
cies, respectively, and #* € R™ are vectors specifying the
phases.’ Find the network interconnection matrix M such that
z = Ci, i € [; are stable limit cycles of system (5), and the
network architecture is constrained to have the form (7), where
K subsystems are interconnected with the network topology
specified by neighbor sets Ny C Iz for k € ;.

The variables and parameters are summarized as follows:

n total number of units in the network
ng number of units in the k'™ subsystem
kel indices for £ subsystems
1€l indices for ¢ target limit cycles
Nj C I; | index set for neighbors of k™" subsystem
z(t) € C™ | state vector of the network
CH(t) € C™ | target limit cycles C*(t) = el (W 409

yeR, W eR, § € R”

We will address Problem 1 through a sequence of subprob-
lems in the order of increasing complexity with a preceding
design forming a basis for the next design. The first subprob-
lem, solved in Section III, is the design of all-to-all network
(5) with a single limit cycle:

Problem 2. Solve Problem 1 with a single limit cycle (i = 1)
without the network architecture constraint.

With the phase-shifted coordinates r := diag(e‘_j‘gl)z, the
problem reduces to synchronization 7(t) — 1e/“'t, and an
orbital stability condition will be given in terms of the network
Laplacian matrix L (Theorem 1). This provides three possible
design schemes and identifies the one suitable for extension

SWe use (-)? to denote quantities related to the 3*P target oscillation. To
avoid confusion with power, we write (-)2 to mean (-)* with i = 2.

to the second subproblem solved in Section IV, which is the
design of (5) with multiple limit cycles:

Problem 3. Solve Problem 1 with possibly multiple limit
cycles (¢ > 1) without the network architecture constraint.

Using the rotating frame b’ := e~/%'?2, the target limit cycles
z = (' become constants b* = ~ve?", and orbital stability is
guaranteed by an eigenstructure property of M (Theorem 2).
Finally, the network architecture constraint is imposed and
Problem 1 is solved in Section V. Each subsystem F}, is
designed by Theorem 1, and the inter-subsystem connections
LG will be specified so that M satisfies the eigenstructure
condition in Theorem 2 and the distributed structure constraint
via the Laplacian matrix (Theorem 3).

D. Temporal Shaping with Harmonics

Before proceeding to the design problems, this section
describes how desired oscillations of arbitrary temporal shapes
can be generated in a properly defined output y(t) € C™ of the
network oscillator (5). Given a set of (possibly anharmonic)
periodic signals n’(t) € R™ for i € I;, we will show
how the harmonic target limit cycles (?(¢#) € C™ and output
function y = h(z) can be chosen such that ¢ = h(¢?) holds
approximately. The result will motivate the design of nonlinear
oscillators with harmonic orbits, and elucidate the value of the
network oscillator design in the sections that follow.

Each of the i target oscillations n(t) € R™, i € I;, can
be described in terms of frequency w’ € R, phase o' € R™,
and temporal shape characterized by a 2mw-periodic diagonal
function s’ : R™ =+ R™ as follows:

n'(t) =s' (W't +0"), i€l (10)
For example, 5¢(y) := 7%siny makes 1’(t) sinusoidal with
amplitude v*. The phase variable ¢° can be absorbed into the
shape function s°, but we keep this redundant description for
design flexibility. When the temporal shape s¢ is piecewise
continuous, it can be approximated by a finite Fourier series

[1
s') =Y R(q ), GeCm, icl (11)
=0

with arbitrary accuracy by taking a sufficiently large number
of harmonics £°.

If the network (5) is designed to have 7 limit cycles z =
¢? that are harmonic with frequencies w?, then the desired
output y = n* may be generated by shaping z appropriately.
When there is a single desired oscillation (¢ = 1), the task is
rather simple; one can use the Fourier series as illustrated in
Example 1. However, the task is nontrivial when ¢ > 1 since
we need a single function A such that h(¢?) ~ n® for all i € ;.
This requires a careful design of the output function h, which
can be accomplished as follows.

Lemma 2. Consider the i signals n'(t) € R™ in (10) where
the shape functions s' are exactly given by the right hand side



of (11). Let n > i and 0 € R™ for i € I; be given such that
vectors €19 € C™ are linearly independent. Define

i g
h(z) =Y f(H'2), f(n):=> R ),
=1 =0

where H* € C™*™ are matrices such that

Hiel? =¢elo He” =0, Vii,

and v, := || if | = 0 and vy; := v otherwise. Then

Ci(t) i= 0,

h(¢) =1, (12)

holds for all i € T;.

Proof. The result follows by directly calculating A ("), noting

that Hi¢? = e7(@'t+¢") and H'¢? = 0 for all 7 # 4. To see that

matrix H* € C™*™ exists, note that it is constrained by
HE =D E:=| % 00"

)

D= | eict eio' |,
where D’ is the matrix obtained from D by retaining the 7*!
column and replacing all the other columns by zeros. Since
e7? € C™ for i € I; are linearly independent, E has a full

column rank. Hence, existence of such H* is guaranteed. W

When ¢ = 1, there are two representative schemes for the
choice of H'. One is the minimum-norm solution H* = D'ET.
With n = 1, H? is a vector and the desired shapes can be
generated for all output channels from a single scalar variable
z(t) € C. The other more distributed scheme would be to
choose n = m, 6" = o', and H* = I. In this case, the k"
output g, is created by shaping the k' variable z.

When ¢ > 1, a combination of the above two schemes would
provide a reasonable choice of H*. In particular, we partition
the output into y = col(yy, ..., yz) with yp € R™k k € T,
and consider & subsystems with states z;(¢t) € C™ where
ny > i. Partition the phase vectors 6° and o' into 6] € R"™*
and o} € R™*, accordingly. Here, 6, are chosen so that ¢7%
for i € I; are linearly independent. Then H'® can be chosen as
H = diag(DiE},..., DLEL) where Di and Ej, are defined
in terms of o), and ¢}, in a manner similar to D* and E. This
choice of H* gives diagonal h that defines y, = hy(zx), and
reduces to the first scheme of the ¢ = 1 case if £ =1, and to
the second scheme if ny = my =1 and 6}, = o.

With Lemma 2, the output signal y = h(z) satisfies
y(t) — n'(t + 7) for some 7 € R approximately when
2(t) converges to the orbit of ?(t). Therefore, the rest of the
paper will focus on the design of an oscillator network with
complex state variables z(t) € C™ to embed multiple harmonic
oscillations ¢* of the form (12) as stable limit cycles. The
shaping scheme in this section will be illustrated by a design
example in Section VI.

III. SINGLE LIMIT CYCLE DESIGN

A. Approach

We consider the design of the nonlinear dynamical network
(5) to embed a single limit cycle, i.e., Problem 2. We will omit
superscript ¢ since ¢ = 1, and denote the target oscillation by

C(t) := yed @0 ¢ . (13)
Our approach to solving Problem 2 is the following. First,
we will reformulate the problem as synchronization of cou-
pled oscillators via a coordinate transformation. This allows
for a proper characterization of the network connectivity in
terms of a Laplacian matrix representing a diffusive coupling.
Conditions for synchronization will then be obtained on the
Laplacian matrix through linearization and the Floquet analy-
sis, justified by a classical result on orbital stability [33].

B. An Equivalent Synchronization Problem

All entries of the target oscillation vector ¢(¢) € C™ in (13)
share the same amplitude v € R and frequency w € R, and
differ only by the phases § € R™. This motivates us to consider
the following coordinate transformation

ri=0%, ©O:=diag(e!), r(t)ecC (14)
The system (5) is then described as
7= jw(r) — Ly(r), L :=jwl —0"MO, (15)

with the target limit cycle » = p where
p(t) == y1ed¥t € C™.

The first term in (15) is a collection of the unit oscillators
7 = jwi(rg), each admitting a harmonic solution with
specified amplitude v and frequency w, but an arbitrary phase
when isolated. The second term specifies the coupling between
oscillators, imposing a phase relationship across units. Note
that all the variables ry(t) € R with k£ € I,, are required
to converge to each other. Thus, Problem 2 is equivalent to
synchronization of the unit oscillators 7, = jwi(ry) through
the couplings specified by matrix L. Since there is a one-to-
one correspondence between L and M, the coupling matrix L
can be considered to be the design parameter.

The synchronization necessitates that L is a Laplacian
matrix with the row sum equal to zero. That is, r = p is
a solution if and only if L1 = 0 holds, which can be verified
by direct substitution. In this case, the system is described as

P = jod(re) + ) (w(m - wm)), k€I,
=1

where {j; is the (k,l) entry of L, and we noted that the
sum of ¢y, over [ € 1, is zero for each k € 1I,. It is
now clearly seen that the couplings are diffusive, i.e., each
term in the summation becomes zero when the oscillators are
synchronized.



C. Exact Condition for Orbital Stability

This section presents a necessary and sufficient condition
for the network system (15) to have » = p as a stable limit
cycle. The condition is given on the Laplacian matrix L, which
in turn provides a condition on the original connectivity matrix
M, thereby solving Problem 2. The result is stated as follows.

Lemma 3. Consider Problem 2. Define matrix L by (15) with
O in (14). The periodic signal ((t) in (13) is a solution of (5)
if and only if L1 = 0 holds. In this case, it is orbitally stable
if and only if the eigenvalues of the following matrix are in
the open left half plane except for one at the origin:

. LR 7L] - o.)IfL[ 0
S A R Pl

where Lr := R(L), Ly := (L), and ¢ defined by (3) dictates
the local strength of the nonlinearity in the system (5).

(16)

Proof. With a coordinate transformation r := ©*z, the system
(5) is described by (15), and hence the problem reduces to the
orbital stability analysis of r = p := ©*(. By construction,
z = ( in (13) is a solution of (5) if and only if r = p
is a solution of (15), which holds when L1 = 0. From a
fundamental result (Theorem 1.1 in [51]), the solution r» = p
is an orbitally stable limit cycle of (15) if and only if the
Floquet multipliers of its linearization around r = p are all
strictly inside the unit circle except for one at 1.

To analyze the dynamics in the neighborhood of r = p, let
p :=1r — p and consider the linear approximations

Ire] = |pi + pi| = [pee ™%t + 7| &~ v + R(ppe™41),

¢(Irkl) = ¢(7) + &' (v)R(pre ") = 1+ j(/7)R(pee™*"),

U(re) = pr + (o) + 3 (/1) R(pre™") pr,

where we used Assumption 1, and the second and higher order
terms of p are ignored (here, the subscript k& denotes the k"
entry of a vector). The linearization of (15) is then given by
the periodically time-varying system

pi=r—p, p=(wl—L)(p+jeRlpe 7)), (17)

For a tractable characterization of the Floquet multipliers,
we introduce a state coordinate transformation ¢ = pe /%%,
motivated by the fact that this transformation on r makes the
target a constant solution p(t)e=7*! = ~41. This leads to the
linear time-invariant system
§ = —Lg+ je(jwl — L)R(q).

q = pe ¥, (18)

Expressing this system in terms of the real state variable,

q := col(R(q), 3(q)),

is obtained, where A €
Lemma 5 in the appendix.
Since the state variables p and g are related by a Lyapunov
transformation p = qe’“?, the Floquet multipliers of (17)
coincide with those of (19), which are equal to the eigenvalues
of AT where T := 27 /w. Thus the Floquet multipliers are
given by e’ with A\ being the eigenvalues of A. Hence,
the orbital stability condition is given by R(\) < 0 for all
eigenvalues of A except for a simple eigenvalue at A =0. W

q=Aq 19)

R27%27 jg defined in (16), using

Recall that the orbital stability means convergence of z(t)
to ((t + 7) for some 7 € R. The time shift 7 depends on the
initial state, which is reflected by the condition that one of
the eigenvalues of A is at the origin. When the nonlinearity
is absent, i.e., ¢(a) = 1 for all & € R, the derivative ¢'()
is zero and € = 0. In this case, the eigenvalue of A at the
origin is repeated at least twice since L1 = 0 holds and the
eigenvalues of A are those of L and their complex conjugates
due to Lemma 5. Thus, the second term in (16) resulting from
the local nonlinearity at o = -y is essential for orbital stability.

While it is easy to check orbital stability by calculating the
eigenvalues of A, it is not clear how the result in Lemma 3
for the single limit cycle case can be extended to enable the
coupled oscillator design for multiple limit cycles. To gain
further insights and allow for such extension, we will derive
simple sufficient conditions for orbital stability in terms of the
Laplacian matrix L in the next section.

D. Sufficient Conditions for Orbital Stability

Our approach to simplify the orbital stability condition is to
consider small perturbations of some characteristic parameters.
Let us introduce a parameter § € R by replacing L by
0L in (15), so that the original connectivity matrix M is
parametrized as

M = jwl — §0LO". (20)

In this case, A in (16) is modified by replacing Lr and L; by
0Lr and 0L;, and thus depends on ¢ and ¢ in addition to L.
The parameter § represents the strength of coupling between
basic oscillators, while € represents the strength of nonlinearity
1 in the neighborhood of the target orbit.

We seek sufficient conditions on L such that A satisfies the
eigenvalue property for orbital stability described in Lemma 3
when one of the parameters § and ¢ is sufficiently small, using
an eigenvalue sensitivity result (Lemma 6 in the appendix). We
also obtain a stronger condition on L when € and § are not
necessarily small. The result is given as follows.

Theorem 1. Consider Problem 2 with the dynamical network
(5), where the connectivity matrix M is parametrized as (20)
in terms of real positive scalar § and complex matrix L. The
periodic signal C in (13) is a stable limit cycle of (5) if one
of the following conditions hold:

(i) Weak nonlinearity: L € L and ¢ is sufficiently small,

(ii) Weak coupling: R(L) € L and § is sufficiently small,
(iii) Decoupling: R(L) € L and (L) =0,
where 1L is the set of complex square matrices L such that
L1 = 0 and all its eigenvalues have positive real parts except
for a simple eigenvalue at the origin.

Proof. Let Q € R™*(™=1) be a matrix such that 17Q = 0 and
Q'Q = I. Tt can be shown, with constraint L1 = 0, that

AW =WQ,
where A is defined in (16) and

10 @ 0 —ew 0 *
W= [O 10 Q] Q=0 0 x|,
D= (Q")AQ" 0 0 D



Thus two eigenvalues of A are —ew and 0, and due to
Lemma 3, the solution ( is orbitally stable if and only if D is
Hurwitz. Note that

o r wl — (SDI 0
D=-6D" —¢ { 5Dp 0} 201
where Dgr, Dy and D are defined by
D:=Q"'LQ, Dg:=%R(D), Dj:=S(D).

We prove the orbital stability exploiting the structure of D.
Consider condition (i). When L € L., we have

1"/n 0 =
e er=[n 5]
and hence —D is Hurwitz due to similarity between L and the
right hand side. By Lemma 5 in the appendix, —D" is also
Hurwitz. It then follows from continuity of eigenvalues that

D is Hurwitz when ¢ is sufficiently small.
Next consider (ii). Rewrite D as

(22)

D:.DA‘F(SDB7

where

 [—ewI 0 . Dr 0
b= [50  ma o[,

Clearly, eigenvalues of D4 are —ew and 0, and the left and
right eigenvectors associated with the latter are given by the
columns of Y; and X, respectively, where X; = Y; =
col(0,) € R**", From Lemma 6, the n eigenvalues at the
origin move to the open left half plane with sufficiently small
0 > 0 if Y*DpX; = —Dpg is Hurwitz, which is the case
when R(L) € L due to (22) where R(D) = Dp.

Finally, consider (iii). Since L is real, we have L; = 0 and
L = L. Tt follows that D; = 0 holds and D then becomes

p_ | ~9Dr—ewl 0
o *€5DR 7§DR ’

Since D is block triangular, its eigenvalues are those of —6Dp
and —0 D —ewl. Both of these matrices are Hurwitz if —Dp
is Hurwitz, which is the case when L € L. |

Weakly coupled oscillators have been extensively studied in
the literature but the vast majority has focused on the analysis
(rather than design) of Kuramoto-type phase coupled oscilla-
tors [37]-[39]. Our result (statement (ii) in Theorem 1) is one
of the few that provide design conditions for synchronization
of limit cycle oscillators. The result is new, but similar methods
for proving orbital stability had been used in the literature to
obtain results in different settings [21], [26].

Condition (iii) in Theorem 1 is labeled as “Decoupling”
since the condition can also be derived from decoupling of
the network system (15) into individual subsystems, with the
coupling effect captured by the eigenvalues of the Laplacian
matrix L. This decoupling approach is called the master
stability analysis [34], to which our result relates as follows.
Let a permutation of q in (19) be defined by

R(qr) } .

q = C01<q1a"'7qn)7 é]k = |: %(qk)

With L being real, the system (19) is then described as
Gg=-A4, A=IQE+(Lo)(I®F),
s[5 8] e[

Let L = VAV~ be the spectral decomposition of L where

A = diag(\1,...,An). Then, by the coordinate transforma-
tion § = (V®I)x, the system is block-diagonalized to become

(23)

X = 7(E+ )\kF)Xk, Xk(t) € RQ, ke l,.

Note that the eigenvalues of 2 + A F are A\; and \p — cw,
and the collection of these for k£ € I, gives the eigenvalues
of A. Hence, condition (iii) implies that the real parts are all
negative except for one derived from A\, = 0, leading to the
orbital stability condition in Lemma 3.

In Theorem 1, the condition on L is the strongest for (iii),
implying those for (i) and (ii), which makes sense since (iii)
requires no additional property on € or J. These conditions
have different implications on the Floquet exponents, i.e.,
the eigenvalues of A in (16), which dictate the rate of local
convergence to the target orbit. We see from the proof that,
for each case, two of the Floquet exponents are exactly at 0
and —cw, and the remaining 2n — 2 are at

O Y (approximately with small ¢)
(i) —ew, O, (approximately with small §)
(i) —Ag, —ew — Ak, (exactly),

where Ay for k € I[,,_; are the nonzero eigenvalues of dL,
and each of —cw and 0 in (ii) is repeated n — 1 times.

When L is real as in condition (iii), all of the 2n—1 nonzero
Floquet exponents can be placed away from the imaginary axis
for faster local convergence by proper choices of the design
parameters L and €. When the nonlinearity is weak (small ¢)
as in (i), all nonzero Floquet exponents are approximately set
by the network connectivity L except for one at —ew. The
state variable associated with the mode —ew is the average
of the entries of R(q), which is essentially the deviation of
the average amplitude from <. Hence, the convergence to
the synchronized state can be fast if L is chosen so that its
nonzero eigenvalues are far away from the imaginary axis, but
the amplitude convergence can be slow if ¢ is close to zero.
When the coupling is weak (small ) as in (ii), n — 1 Floquet
exponents are close to the origin. These modes slow down
convergence of Q"I(q), which relates to synchronization of
the phases, provided the n modes at —ew associated with
the amplitudes are fast. The following example illustrates the
discussion in this paragraph and shows how the parameters
(6,¢) affect the convergence behavior.

Example 2. Consider a network of three (n = 3) oscillators
described by (5) with M given by (20). The target orbit is
specified as (13) with w = 27, v =1, and 6 = col(0, 0, 7/2).
For this study, the network connections are specified by

L=Lp+jLs,
1 0 -1 2 0 -2
Lp=|-1 2 -1|, L;=|1 3 -4,
0 -1 1 -1 -7 8



where L € L and R(L) € L. From Lemma 3, the target
solution ( is orbitally stable when the maximum real part of
the eigenvalues of A in (16), excluding the one at the origin,
is strictly negative. Some contours of this value are plotted on
the (J,¢) plane in Fig. 3(f), where the stability region is the
area under the red curve. We chose several values of (J,¢) as
indicated by the stars and simulated the resulting network with
the initial condition z(0) = col(1, —1,0)/10. The real parts of
the state variables 2, zo, and z3 are plotted in Fig. 3(a)—(e).

In case (a), € is small and L € L, satisfying condition (i)
for orbital stability in Theorem 1. The amplitude convergence
is slow due to small ¢. In case (b),  is small and ®(L) € L,
satisfying condition (ii). The phase convergence is slow due
to small §. The convergence of both amplitude and phase can
be made faster by choosing larger values of (d,¢) as in case
(c). We note from (f) that the maximum real part for (c) is no
more negative than those for (a) and (b), and thus the local
convergence rate deduced from the linearized system is not
always indicative of the actual settling time. If (4, ) are made
too large and placed above the red boundary in (f), the orbital
stability is lost as shown in case (d). However, for the same
large values of (4,¢), the orbital stability is recovered when
the imaginary part of L is set to zero as seen in case (e) due
to satisfaction of condition (iii) in Theorem 1.

R(z)

R(z)

Fig. 3. Simulated responses the oscillator network with a single limit cycle. (a)
(6,€) = (1,0.2), (b) (d,&) = (0.2,1). (¢c) (d,&) = (0.8,0.9). (d) (,¢) =
(1.2,1.2). (e) (6,¢) = (1.2,1.2), with real L. (f) Contours of the maximum
real part of the nonzero eigenvalues of A. The orbital stability is achieved in
the region under the red curve. The stars indicate the four cases of (4, €).

IV. MULTIPLE LIMIT CYCLE DESIGN
A. Approach

We now consider the design of the network (5) to embed
multiple limit cycles, i.e., Problem 3. A natural approach to
solving this problem would be to use Lemma 3 as a basis for
establishing orbital stability of each target oscillation ¢*. While
it is easy to write down the condition for orbital stability, a
difficulty stems from the fact that L in (15) depends on the
particular orbit ¢? through 6%, and so does A in (16). Hence, it
is not clear how to construct a single matrix M satisfying the

multiple stability conditions. We will overcome this difficulty
by turning our attention to the sufficient conditions for orbital
stability in Theorem 1.

First, we exclude the decoupling condition (iii) from our
consideration because the requirement (L) = 0 is too
restrictive. For each target orbit, n? scalar constraints will be
imposed on M due to (L) = 0 with L in (15), in addition to
L € L. Therefore, the design freedom captured by the 2n?2
real scalars in M € C"*™ may not be enough to satisfy
the constraints when there are multiple target orbits. Next,
we also exclude the weak coupling condition (ii) from our
consideration. This is because weak coupling allows for phase
coordination among oscillators, but the intrinsic frequency
and amplitude of the individual, isolated oscillators will be
preserved (or slightly perturbed) under weak coupling [25].
Hence, weakly coupled oscillators are not suitable for the
design of a network with multiple limit cycles with various
frequencies. Thus we will pursue remaining condition (i).

To gain insights, let us express condition (i) in Theorem 1
equivalently in terms of the original connectivity matrix M.

Corollary 1. Consider Problem 2 with the dynamical network
(5). The periodic signal ¢ in (13) is a stable limit cycle if
v:i=e? eC

Mo = juv, eig(M)\{jw} C C",

holds, and € defined in (3) is sufficiently small.

Proof. The orbital stability condition follows from Theorem 1
as it is equivalent to its statement (i). From (20), we have

§OL = (jwl — M)O.

Multiplying 1 from right and noting that v = ©1, we see that
L1 = 0 is equivalent to jwv = Mwv. Also, (20) gives

5L = ©*(jwl — M)©

and hence eig(dL) = jw — eig(M) by the similarity transfor-
mation. Thus L € L holds if and only if the eigenvalues of
M have negative real parts except for the one at jw. ]

A direct application of Corollary 1 to each target oscillation
is not useful for solving Problem 3 with ¢ > 2 since the
condition would require M to have eigenvalues at jw® for
1 € I; while all eigenvalues except for one have to be in C—,
which is always infeasible. However, since Corollary 1 gives a
sufficient condition, it may be possible to relax the condition
and still maintain sufficiency for orbital stability. Conditions

Mv' = jw't, v=e% eC”, iel; (24)
are necessary for the target orbits (* to be solutions of (5),
and cannot be relaxed. Hence, the most reasonable relaxation
would be to require the n — ¢ eigenvalues of M, other than
jw' with 4 € I;, to be in the open left half plane. We will
show that the relaxed condition is indeed sufficient for orbital
stability of the multiple limit cycles.



B. Conditions for Orbital Stability

Since converting to a synchronization problem would not
help to solve the multiple limit cycle problem, we step back
to the original coordinate, and derive the orbital stability
condition in terms of the connectivity matrix M rather than
the Laplacian matrix L. The result is as follows.

Lemma 4. Consider Problem 3. The periodic signals ('(t) in
(9) are solution of (5) for all i € I; if and only if (24) holds.

In this case, the solutions are orbitally stable if and only if

AL =M — W'+ eJMGY, el (25)

has all the eigenvalues in the open left half plane except for
one at the origin, where

M= M, J:=(I),
i_C i i C? := diag(cos 0?),
Gi= { S } [t 5], St .= diag(sin 6°).

Proof. The signal ¢’ in (9) is a solution of (5) when
= MY(CT) = y(jw'l = M)e?® &'t =0

holds for all ¢t € R, where we noted (z) = z when |z| =~
due to Assumption 1. This condition holds for all ¢ € I; if
and only if (24) is satisfied. With a Lyapunov transformation
bi := ze~ 7%t the system (5) is described as

= My () — ju'l,

and the target oscillation z = (' is transformed to b* = B’
where ' := ~ve??" . Following a procedure similar to the proof
of Lemma 3, we obtain the linearization around b* = 3* as

w' =0 -, ' = (M —jw' Hw' +jeMO'R((0)*w"),

where ©° := diag(e’?"). Defining the real state vector w' :=

col(R(w i),%(wi)) and using Lemma 5, the system can be
described as W! = A*w?, where we note that ©¢ = C? + jS°.
Hence, by Theorem 1.1 in [51], the solution z = Cl is orbitally
stable if and only if all the eigenvalues of A, except for one
at the origin, have negative real parts. ]

The condition in Lemma 4 is useful for stability analysis
of the multiple limit cycles (' when system (5) is given.
However, it does not give a constructive method for designing
M satistying the condition. Hence, we build on this result and
proceed to obtain a sufficient condition directly useful for the
design. Based on the observations in the previous section, we
consider the case where ¢ is small, i.e., the nonlinearity in the
basic oscillator is weak. The problem then boils down to the
perturbation analysis of the eigenvalues of A?, which can be
addressed by Lemma 6, and the result is as follows.

Theorem 2. Consider Problem 3 with the dynamical network
(5). Suppose w' for i € I; are distinct, € in (3) is sufficiently
small, and the following conditions hold:

vt =l e Cn,

el cC.

Mv® = jw'd,
M)\ {jo

Then each of the periodic signals (' in (9) is a stable limit
cycle of the network system (5).

iGH{,

eig(

Proof. From Lemma 4, we need to prove that each A% in (25)
has all its eigenvalues in the open left half plane except for
one at the origin. Without loss of generality, we prove this for
an arbitrarily fixed value of ¢ € I;, denoted by ¢ = o. The
matrix A2 constrains two terms, M — w?] and eJMG¢2. The
latter term can be regarded as a perturbation on the former.
Since M — w?] is the real form of M — jw?I, it has all the
eigenvalues in the open left half plane except for those at
+j(w' — w?), i € I; due to Lemma 5. Due to continuity of
the eigenvalues, those in the open left half plane will remain
there when ¢ is sufficiently small. Hence, it suffices to show
that all the eigenvalues on the imaginary axis, except for one
at the origin, will be perturbed and moved towards left by the
effect of eJMG2.

Let ¢ € I;. Notice that v* is the (right) eigenvector of
M associated with the eigenvalue at jw’. Denote by u’ the
corresponding left eigenvector with a normalization, that is,

() M = jwi(ul), (ui)*v
We then have
K%' = j(w' — w2,
(u') K = j(w' — w?)(u')",
It can be verified from Lemma 5 that the real form of K<,
denoted by K2, satisfies

K%vi = j(w! — _wg)vi, ‘
(U)K = jw' —w?)(u')",

for all ¢ € T;, where

Vo= v’ W= 1 u'
= e =9 i

First, we consider the case ¢ # o, where j(w' — w?) is
a simple nonzero eigenvalue of K2 since w’ for i € I; are
distinct. In light of Lemma 6, this eigenvalue of A% :=
K2 + eJMG2 at € = 0 is perturbed into the open left half
plane with a small ¢ > 0 if R((W)*JMG2) < 0. A
straightforward calculation shows that this is indeed the case
since (U)* MGV = —w'/2.

Next, we consider the case ¢ = o, where K2 has an
eigenvalue at the origin, repeated twice, which can be seen
from K¢ = K2v¢ = 0 since K2 is real. The eigenvalue
is semisimple with two linearly independent eigenvectors v<
and V¢ because the linear dependence implies v = 0 which
cannot be the case due to the supposition. To examine how
this eigenvalue is perturbed, let us calculate

ue " JMG2 [ ve vo]:_w[1 1}7

=1,

K2:= M — juel.

K = M — w?]

] ;o (Ui =1

V::[u2 5 |1 1

where we noted that
02 =C2+ ;52 (99)21—19 = 2.

Since the eigenvalues of V are —w? and 0, Lemma 6 implies
that one of the zero eigenvalues of A2 := K2 4 cJMG2 at
e = 0 is perturbed into the open left half plane for small
€ > 0. The direction of the perturbation for the other zero
eigenvalue depends on the higher order derivatives and cannot
be determined by Lemma 6. However, one can confirm that it

stays at the origin because A2 (v2) =0 holds for alle. W

= diag(e’”"),



The result in Theorem 2 makes intuitive sense. When ¢ is
sufficiently small, the nonlinear element ¢ is approximately
constant, ¢(|z|) ~ 1, in the neighborhood of each orbit
(|z| = 7). Hence the nonlinear system (5) behaves like a
linear system Z = Mz in the neighborhood of each orbit.
When the conditions in Theorem 2 are satisfied, the linear
system Z = Mz has % oscillatory modes z = ¢?, and every
state trajectory converges to a linear combination of these
modes, where the coefficients depend on the initial condition.
Theorem 2 shows that the system (5) retains the multiple
oscillatory modes, and the nonlinear dynamics in 2 = M(z)
stabilize every orbit of (* with guaranteed local convergence.

Based on Theorem 2, the network connection matrix M can
be calculated by specifying its eigenvalues and eigenvectors in
accordance with the desired oscillations. In particular, 2 limit
cycles specified by (w?,6?) € R xR™, i € I; can be embedded
in a network with n (> %) units by

M =VAV~
Ve[V V%], Vi=|e” e | (26)
A = diag(A1, Ag), A;:=diag(jwl, ..., jw?),

where V5 is an arbitrary matrix such that V' is square invertible
and A, is an arbitrary Hurwitz matrix. Note that the condition
requires that the number of units n must be greater than or
equal to the number of target limit cycles 2.

The following simple example illustrates how multiple limit
cycles can be embedded in the state space and provides some
idea about the size of the domain of attraction for each orbit.

Example 3. Consider a simple network with two oscillator
units, i.e., n = 2. Let the target limit cycles be (9) with

o-[2] o (3]

If we assume wt # w2 to satisfy the supposition in Theorem 2,
it necessitates that e/ # 78, The connectivity matrix M such
that Me??" = jw'el?" is then uniquely determined as

wleiB _ ,2eic W2 — Wl

Mo [ | . |
eif —eia | (wl—w?)el@th) (268 _ yleio
When the target oscillations share the same frequency w!l =
w2, then M becomes diagonal, and the two oscillators are
disconnected, resulting in loss of coordination and orbital
stability. When the target frequencies are distinct wl # w2,
orbital stability is guaranteed as in Theorem 2 for each (*.

The system (5) is simulated for the case

vy=1, wt=1, w¥=2, a=n/2, B=-7/8,

and ¢ in (2) with © = 0.1. The trajectories resulting from
several initial states are plotted in a 3-dimensional cross
section of the 4-dimensional state space in Fig. 4 (left). We
see that, depending on the initial condition (marked by “star”),
each trajectory converges to (L (red) or (% (blue), clearly
indicating co-existence of two stable limit cycles. In these
coordinates, the blue and red trajectories are mingled and it is
difficult to visualize the domain of attraction. Let us introduce
new coordinates (71, 72,d,b) defined by

b=d)/2 o o ei(bHd)/2.

21 =r1ed(

lz9 — Lz [deg]

R(=)

Fig. 4. Two-oscillator network with two limit cycles. Sample trajectories
illustrate convergence to different orbits depending on the initial state (left).
Numerically estimated domains of attraction and some example trajectories
with the initial state just above and below the green surface (right).

It can be shown that (5) is then described as
Z=f(3), b=g(2), %:=(r1,r2,d)

for some functions f and g. Thus, the phase bias b does not
affect the other variables, and the convergence of Z to the
target orbits (or equilibria in these coordinates) (L = (7,7, a)
and (2 = (7,7, 8) can be examined in the 3-dimensional
state space 2 € R3. Some heuristic calculations (gridding
the parameter space of Z(0) and bisection searches for the
boundaries) yielded estimates of the domain of attraction in
the (r1,72,d) space as shown in Fig. 4 (right).

The numerical result suggests the following. When Z(0)
is in the region between the green and yellow surfaces, the
trajectory converges to (1,1,7/2) except when 2(0) is close
to the surfaces or the planes r; = 0 and 7o = 0. In these
exceptional cases, the trajectory converges to (1,1, 7/2+2nm)
for some nonzero integer n. Similarly, the region between the
green and blue surfaces is the estimated domain of attraction
for 2= (1,1, —7n/8 + 2nm). Thus, the domain of attraction is
fairly large for each target orbit although the theory guarantees
local convergence only, and the actual convergence of z to the
orbit of ¢L (resp. ¢2) occurs when the initial phase difference
d(0) is close to « (resp. f3), as expected.

When the oscillator is used as part of a feedback controller
as in Fig. 1, plant disturbances and sensor/communication
noises would perturb the state trajectory away from the tar-
geted limit cycle orbits. The ability to return to the orbit
depends on the size and shape of the domain of attraction.
Example 3 shows an encouraging result for a simple oscillator
where the domains of attraction divide the state space almost
equally for the targeted orbits, indicating some robustness
against amplitude perturbations. In addition, it suggests strong
regulation of the phase for maintaining an orbit, or intentional
phase perturbation for switching from one orbit to another.

V. DISTRIBUTED OSCILLATOR NETWORK DESIGN
A. Approach

The oscillator network design in the previous section im-
poses no constraints on the interconnections of the oscillators,
and direct communications are allowed between any pair of
oscillators, i.e., the connectivity matrix M in (5) can be fully
populated with nonzero entries. This section addresses the



issue of the communication constraint and solves Problem 1
to enforce a distributed network architecture as in (7).

Our approach is the following. Partition the target phase
as 0 = col(#i,...,0.) where 0 € R"* corresponds to the
phases for the &*® subsystem. Decompose it into 6}, = 9% +o?,
where i € R™ specifies the relative phases within the
subsystem, and o} € R specifies the global phase of the
subsystem. The idea is to first design the subsystems F},
with phases 9%, and then design the coupling £;;G; between
subsystems to achieve coordination with phases of. The first
step can be executed using Theorem 2 with M = Fj, and
0" = V. In this case, ny > i is required, i.e., the dimension
of each subsystem must be larger than or equal to the number
of limit cycles. For the second step, we will gain insights from
the single limit cycle case ¢ = 1, and generalize the result to
the multiple limit cycle case ¢ > 1 in the sections that follow.

B. Network Design with Single Limit Cycle

Let us first consider the simple case where there is a single
target oscillation (¢ = 1) described by (13), each subsystem is
given by Fj, = jw with ng = 1, and the number of subsystems
is & = n. In this case, the target phases are set such that 9% = 0
without loss of generality, and J,i = 6 where 0 € R is the
Eth entry of § € R™. From Theorem 1, condition (iii), the
network system described by scalars z(t) € C satisfying

Go=jwip(z) = Y e (=), kel, (@27
=1

has stable limit cycle z;(t) = ~e/@t+%%) if [ is real and
L € L, where L is the matrix with (k,l) entry being fj;.
Comparing this system with (7), the coupling parameter G,
can be chosen as Gj; = €@ ~9) To choose L € L with
a distributed structure, let us introduce the set of real square
matrices L such that L1 = 0, the off-diagonal entries of L
are nonpositive, and L is the Laplacian matrix of a directed
graph containing a spanning tree. We denote this set by L.
It is well known (Lemma 3.3, [27]) that I, C IL holds, which
allows us to choose a structured L € IL. Thus a solution to
Problem 1 for the single limit cycle case (¢ = 1) with ny =1
is given by (7) with

Fy =jw, Gp= 6j(0k701), L eLs,.

Note that L € L, can be constructed by selecting arbitrary
negative numbers ¢;; € R for [ € Ng, and setting

Ekkzzwm, e =0, €N,

LENg

(28)

provided the neighbor sets Ny, for £ € [ define a directed
graph containing a spanning tree. The following example
illustrates this design method.

Example 4. Consider the network of four-unit oscillators with
the connectivity specified by the Laplacian matrix

-1 0 1 0
L:

The network is illustrated in Fig. 5. The edges highlighted
in red form a spanning tree with vertex 1 being the root.
The nonzero off-diagonal entries are negative, and each row
sums up to zero. Thus L € L;. We consider the target limit
cycle with phase 8 = col(0,7/3, 27 /3, 7), frequency w = 2,
and amplitude v = 1. The simulation result in Fig. 5 shows
convergence to the target as theoretically guaranteed.

Fig. 5. Network structure and simulated response of z := R(z).

C. Network Design with Multiple Limit Cycles

We now extend the result of the previous section to the case
where there are multiple target oscillations. The insight from
the single target case is that the network specified by L should
have a spanning tree with positive weights, and the coupling
parameter Gy; should be chosen to satisfy Gyi¢f = ¢}, so that
the coupling is diffusive. This idea naturally extends to the
following result.

Theorem 3. Consider Problem 1. Partition the target phase
as 0° = col(0i,...,0L) with 0i, € R™, and decompose it into
0i = Vi + of with 9i, € R™ and ot € R. Let the set of
k local subsystems described by (6) be given. Suppose, for
each k € 1, the k™ subsystem satisfies the orbital stability
condition in Theorem 2 with M = Fy, and 6" = 9%, and has
1 stable limit cycle(s)

zi(t) = fyej(‘*’i“rﬁ}?‘) eC™, iel;.

Let a network Laplacian matrix L € R*** be defined so that
its (k,l) entries for k € I and | € Ny are Uy, and the other
entries are zero. Then, the network system (7) has i orbitally
stable limit cycles z = (' as specified in (9) if

Lel,, GuVi="W, (29)

hold for all | € Ny, and k € 15, where

Vi = [ v% vi ] e CreXt, vl = G
Proof. Since the subsystem Z;, = Fj1)(zy) satisfies the orbital
stability condition in Theorem 2, we have

F,Vi = ViA, A = diag(jw?, ..., jw').

Note that V}, has a full column rank because its columns are the
eigenvectors of Fj, associated with distinct eigenvalues jw’.
We will prove the case ny > 7; the case ny = ¢ can be shown
similarly. Let Uy be a matrix such that

Uk][vk Ul =1



We then have
VT
() w -]

Since each subsystem satisfies the condition in Theorem 2, €0
is Hurwitz. The coupled oscillators can be described by

2=Miy(z), z:=col(z,...,2:),
M:=F -G, F:=diag(fy,...,F),

A %

0 Qk :| s Qk = UkaUg

(30)

where G is a matrix with its (k,[) block given by £5;G;. It
can readily be verified that

FV=VA, GV =VL, V:=dag(Vi,...,Vz),
UF=QU, UG=0, U :=diag(Uy,...,Us),
A=I®A L:=L&I, Q:=dag(Q,...,0),

from which we obtain

MV =VA, V:i=col(Vy,..., V),
A—L x :|

v

U 0 Q
where G'V = 0 follows from L1 = 0. From Lemma 6 in [12],
due to L € L, the set of eigenvalues of A — £ contains the
eigenvalues of A, and all the remaining eigenvalues have neg-
ative real parts. Thus the coupled oscillator network satisfies
MV = jw™V* for each i € I; where V* is the i*" column of V,
and all the eigenvalues of M except for those of A are in the

open left half plane. Therefore, by Theorem 2, z(t) = yvied«'t
for 7 € [; are orbitally stable limit cycles of the network. W

]M[V UT]:{

From Theorem 2, the network design boils down to the
search for the coupling matrix M such that it has a set of
eigenvalues and eigenvectors specifying the target oscillations,
and the rest of eigenvalues in the open left half plane. When
the network is required to have a distributed architecture,
a structural constraint is placed on M. Thus the essential
problem is to find a structured matrix M with a prescribed
eigenstructure. Theorem 3 provides a solution in terms of
diffusively coupled subsystems. Condition G;;V; = Vj, implies
Gr(¢)) = ¥(¢}) and thus the second term in (7) vanishes
on the target orbit due to L1 = 0.

The distributed design of M in Theorem 3 results in lower
computational complexity than the design of networks with
all-to-all interactions as in Theorem 2. The latter involves
an inversion of an n X n matrix as in (26) for an n-unit
network, requiring O(n?) arithmetic operations. In contrast,
the former requires calculations of intra-subsystem coupling
matrices Fj, € C™*"™ for k € I and inter-subsystem
coupling matrices Gy; € C™*™ gatisfying (29) for all
connected edges {(k,1) : k € I, | € N;}. The computational
complexity for these is O(n3/k?) assuming ny = n/# for all
k € T (same dimension for all subsystems) and |N| = O(1)
(the number of neighbors for each subsystem is fixed). Thus,
clustering into < subsystems with local interactions reduces
the computational complexity by the factor of 1/42.

Coupling of the subsystems through aggregated signals
would reduce the dimension of the signals transmitted between
subsystems, thereby reducing the load on the communication
channels. In our formulation, the inter-subsystem coupling can

be aggregated through a factorization of Gy;. Specifically, a
solution Gi; to (29) always exists because V; has a full column
rank, and Gy; = VleT is a solution. In this case, it suffices
to “broadcast” the aggregate signal h; := VlTv,ZJ(zl) from the
I*™® subsystem to its neighbors. The signal £,;G¢(2;) needed
for the coupling as in (7) can then be constructed at the k"
subsystem as £i; Vi h;. The dimension of A; is 7, the number of
limit cycles to be embedded in the network. Note in particular
that, if ¢ = 1 and the synchronization is targeted (V}, = 1 for
all k € 1), then the transmission signal would be the average
(h = 1")(z;)/ny) and the same input i hy; is applied to all
ny units in the k'™ subsystem, which is a commonly used
“cluster-control” protocol for synchronization (e.g. [53]).

VI. A COMPREHENSIVE DESIGN EXAMPLE

This section provides a design example of an oscillator
network with a constraint on the communication topology,
possessing two limit cycle orbits from which periodic outputs
of arbitrary temporal shapes are generated. We use human
motion data from [54], which contains time history of the hip,
knee, and ankle joints during a period of human locomotion.
Here we pick two sets of gait data, one for running at 2.6 m/s,
another for walking at 1.6 m/s. We will design a distributed
network of oscillators to produce the two gaits.

Consider two gaits n’(t) € R® for walking (i = 1) and
running (i = 2), where the six entries of 7’ are ordered as
LA, LK, LH, RH, RK, RA with L and R indicating left and
right, and A, K, H indicating ankle, knee, and hip. The data
for the left leg is shown by the solid curves in Fig. 6, while
the data for the right leg is assumed 180° out of phase with
respect to the left leg. Take the Fourier series approximations

p
n'(8) m (1) = Y Rige’™], i=1,2
=0

where 7! € CS are the Fourier coefficients for the i'!

fundamental frequencies are

gait, the

wl =553 radls, w? = 8.93 radss,

and we choose ¢! = 3 for i = 1,2, which give reasonable
approximations, as indicated by the dashed curves in Fig. 6.
Let us use the phase of the fundamental harmonic component,
o' := /(A1) € RY, as the reference phase of the basis function
for temporal shaping, and express the target output as

3
i'(t) = Z?R(cﬁ : e"(“itﬂ%)l), i=1,2
=0

where ¢} := 7j} - e7Ile".

We design a network consisting of six (£ = 6) subsystems,
each of which produces scalar output y(t) € R, k € I, so
that the collective output y(t) € R converges to the orbit of
71 or 72. The network is described by (7) with output signals
Yyr = hi(zr). We use the static nonlinearity ¢ specified in
(1) with (2). The parameters Fy, Gy, {x; and functions hy
should be determined for k,l € I; so that the network has
two (i = 2) stable limit cycles on which y;, = 7% holds for
i1€l; and k € 1.
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Fig. 6. Two gaits of locomotion: (a) walking at 1.6 m/s, (b) running at 2.6
m/s. The solid curves are kinematic variables of human motion data [54]. The
dashed curves are Fourier series approximations.

The network topology follows that of human legs as shown
in Fig. 7. Each subsystem is coupled with its nearest neighbors,
and the topology is captured by the Laplacian matrix L €
R6%6 specified by L1 = 0 and its (k,[) entries

0o =4 L (|k =1 =1),
kit 0, (|k—1>2).

For each leg joint, a subsystem with two-unit oscillators is used
(nx = 2) to meet the requirement ny > ¢ for local subsystem
design (Theorem 2) and for output shaping (Lemma 2). We
consider identical subsystems, each given by Fj = M with
M in Example 3 where o« = 7/2 and 8 = 7. Thus we use

19,16{2}, ﬁi{g}, kel

as the internal phases for each subsystem, and the relative
phases ol € R between subsystems are set from the k*" entry
of the gait data o} := p}. The target limit cycles for the
network oscillator design are given by (9) with v = 1, §* =
col(6i,...,0%), and 6% := Vi + & € R™. From Theorem 3,
Vi, in (29) are 2 x 2 invertible matrices, and we have Gy; =
Vi Vl_l. The structured network connection matrix M can then
be constructed as in (30). The eigenvalues of M are given by
—a + jw for the 12 combinations of w = w!,w? and a =
0,1,2,3, tan(7/12), tan(57/12).

The output from each subsystem can be defined from
Lemma 2 and the discussion that followed. In particular, with
0, = o € R and 0} := ¥} 4+ o} € R™*, we have

3
v o= SR (chy [Hiznl + 3 el ().

i=1 =1
-1
|

} -1
where ci, € C is the k*® entry of ¢! € C°.

The distributed network thus designed was simulated for
various initial conditions to confirm that the two limit cycles
corresponding to the two gaits are embedded in the system
with orbital stability. Example responses are shown in Fig. 8
where output y(t) € RS converges to different gaits 7°. The
initial conditions z(0) are set to zero except for the hip joints
that are made anti-phase: 23 = —z4 = col(a,0). The output
is found to converge to the walking gait when a is large (e.g.
a = 5), and to the running gait when a is small (e.g. a = 1/5).

Hp=[1 0][ e o’

HE=[0 1][ e o

Right Left
Hip Hip
Right Left
Knee Knee
Right Left
Ankle Ankle

Fig. 7. Oscillator network for gait generation
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Fig. 8. Convergence to two gaits in simulated network. Time courses of
y(t) € RS for walking (a) and running (b).

The transition between two gaits can be achieved by steering
the state z at some point in time. This is demonstrated in
Fig. 9, where, for brevity, the result is shown only for the left
leg. The initial state is specified in the same way as case (b)
in Fig. 8, leading to the running gait within several seconds.
The dynamics of the network is modified to 2 = 6(2; — 2)
during 6 < t < 6.2 to move the state into the domain of
attraction for the walking gait, where %, € C? for k € I; are
specified as zero except for 23 = —24 = col(5, 0). This results
in the transition to the walking gait. Also shown in Fig. 9 are
the time courses of the first entries of z; for the left leg. The
network has been designed so that these variables are phase-
synchronized with the gait output, which can be observed in
the figure. Thus, transitions between limit cycles are possible
through proper steering of the state.

Joint Angles [deg]

Time [s]

Fig. 9. Gait transition from running to walking. (a) outputs yy, for k = 1,2, 3,
converging to the target orbits for the left leg. (b) real parts of states zj; for
k = 1,2,3 which are the first entries of 2 (t) € C2.

Next, we illustrate robustness of the gait generation against
communication failures. The network oscillator is initiated
as before and the trajectory converged to the steady running
before ¢ = 6 as shown in Fig. 9. The network communication



between the left ankle subsystem and all the other subsystems
is cut off at ¢t = 6 to emulate a possible failure. It is
observed as in Fig. 10(a) that the network continued to
generate the running gait with a reduced amplitude but correct
frequency/phase/shape. For comparison, a network oscillator
with all-to-all coupling is designed from Theorem 2 using (26)
with i = 2, Ay = —I1g, and V5 € C'2%10 being a matrix such
that V*V = diag(*, [10), where I is the 10 x 10 identity
matrix, and 0) = 9% + of. When simulated under the same
condition, the trajectory initially converges to the running gait
with the transient almost identical to that of the distributed
network, but the running gait cannot be maintained after the
ankle failure as shown in Fig. 10(b). Thus, the distributed
architecture of the oscillator network can be beneficial for
robustly maintaining gait generation.

> § |
3 R AW W ) VNG C
5 E h ATATIAPA A A 7
2 2 50t | ‘ \/ \/
< < ||
£.- 5100t |
3 3

4 6 8 10 12 4 6 8 10 12

Time [s] Time [s]

Fig. 10. Communication failure during steady running: (a) distributed

network, (b) centralized network. The communications to/from the left ankle
failed for the network oscillator during t > 6.

VII. CONCLUSION

We have proposed a systematic method for designing a
distributed network that embeds multiple limit cycles with
guaranteed orbital stability. It is also shown how output signals
can be defined as fixed functions of the state variables so that
periodic signals with desired temporal shapes can be generated
approximately with an arbitrarily high accuracy. Adopting a
weakly nonlinear harmonic oscillator as the basic unit, the
condition for multistability of limit cycles is characterized
by eigenstructure of the network connectivity matrix. The
nonlinearity of the coupling is essential for encoding the
frequency into the network rather than the oscillator unit.

The network has a hierarchical architecture of coupled sub-
systems, each of which is a subnetwork of the unit oscillators.
This architecture was the key factor for enabling simultaneous
satisfaction of multistability and communication constraints.
Initially, we attempted to solve Problem 1 without the sub-
network architecture (i.e., ny = 1), and found it difficult to
achieve multiple limit cycles ¢ > 1. The result presented here
revealed that subsystems with dimension nj > i allowed for
satisfaction of the internal model principle to embed ¢ limit
cycles within each subsystem, making Problem 1 tractable.

Our result will be a foundation for distributed feedback
control design to achieve multiple limit cycles for the closed-
loop system, where the network oscillator is embedded within
the feedback loop (e.g. Fig. 1), possibly with network updates
through learning [55], [56]. In this case, the communication
noise may be added to the signal %; transmitted from the [*"
subsystem to its neighbors (see Section V-C) in addition to the
commonly considered plant disturbances and sensor noises. A
full development of such design theory may lead to a new

paradigm for distributed control of oscillations. Our ongoing
research is directed toward such a goal.

APPENDIX
Lemma 5. Let complex matrices A, B, and C be given. Then

AB=C & A'B'=(", 31)

eig(A) Ueig(A) = eig(A")
hold, provided the matrix dimensions are compatible.
Proof. See Lemma 3 in [48]. |

Lemma 6. Let A, B € R"*™ be given. Assume that A has
a semisimple eigenvalue \, = jw, w € R with multiplicity r,
i.e., there are nonsingular matrices

X = [Xl XQ] S (Cnxn, Y = [Yl YQ] ccrxn
with X1,Y1 € C"*" such that

Y*AX = P%IT 2] L Y'X =1, A\, ecig(A),

where I, is the v X r identity matrix. Let Ai(g),- -, \-(¢)
be continuous functions R — C parametrizing r eigenvalues
of A+ eB such that \;(0) = X, for all i € 1. Then the
derivatives of \i(e), i € I, at € = 0 are given by the
eigenvalues of

V =Y"BX;.
Consequently, there exists a real scalar € > 0 such that

R(Ni(e)) <0, i€l

holds for all € € R such that 0 < € < € if V is Hurwitz.
Proof. See Lemma 3.1 of [57]. |

ACKNOWLEDGMENTS

The authors would like to thank Dr. Zhiyong Chen and Dr.
Minyue Fu for helpful discussions, and Dr. Martin Grimmer
for providing them with numerical data of human locomotion.
This work is supported by NSF 2113528.

REFERENCES

[1] N. Sadegh, R. Horowitz, W. Kao, and M. Tomizuka, “A unified ap-
proach to the design of adaptive and repetitive controllers for robotic
manipulators,” Trans. ASME, vol. 112, 1990.

[2] E. Gilbert, “Vehicle cruise: Improved fuel economy by periodic control,”
Automatica, vol. 12, pp. 159-166, 1976.

[3] J. Speyer, “Periodic optimal flight,” J. Guid. Contr. Dyn., vol. 19, no. 4,
pp. 745-755, 1996.

[4] X. Lan and M. Schwager, “Planning periodic persistent monitoring
trajectories for sensing robots in Gaussian random fields,” Int. Conf.
Robotics and Automation, pp. 2415-2420, 2013.

[5] S. Pinto, S. Andersson, J. Hendrickx, and C. Cassandras, “Optimal
periodic multi-agent persistent monitoring of a finite set of targets with
uncertain states,” Proc. American Contr. Conf., pp. 5207-5212, 2020.

[6] T. Aderinto and H. Li, “Review on power performance and efficiency
of wave energy converters,” Energies, vol. 12, no. 4329, 2019.

[71 A. Ijspeert, A. Crespi, D. Ryczko, and J. Cabelguen, “From swimming
to walking with a salamander robot driven by a spinal cord model,”
Science, vol. 315, no. 5817, pp. 1416-1420, 2007.

[8] A.Ijspeert, “Central pattern generators for locomotion control in animals
and robots: A review,” Neural Networks, vol. 21, pp. 642—-653, 2008.



[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]

[33

[trt

[34]

[35]

[36]
[37]

[38]

A. Wu and T. Iwasaki, “Design of controllers with distributed CPG
architecture for adaptive oscillations,” Int. J. Robust and Nonlin. Contr.,
vol. 31, no. 2, pp. 694-714, 2021.

T. Iwasaki, J. Chen, and W. Friesen, “Biological clockwork underlying
adaptive thythmic movements,” Proc. National Academy of Sciences of
USA, vol. 111, no. 3, pp. 978-983, 2014.

R. Thandiackal, K. Melo, L. Paez, J. Herault, T. Kano, K. Akiyama,
F. Boyer, D. Ryczko, A. Ishiguro, and A. Ijspeert, “Emergence of robust
self-organized undulatory swimming based on local hydrodynamic force
sensing,” Science Robotics, vol. 6, p. eabf6354, 2021.

A. Wu and T. Iwasaki, “Pattern formation via eigenstructure assignment:
General theory and multi-agent applications,” IEEE Trans. Auto. Contr.,
vol. 63, no. 7, pp. 1959-1972, 2018.

R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE. Trans. Auto.
Contr., vol. 49, no. 9, pp. 1520-1533, 2004.

W. Ren, “Synchronization of coupled harmonic oscillators with local
interaction,” Automatica, vol. 44, no. 12, pp. 3195-3200, 2008.

L. Scardovi and R. Sepulchre, “Synchronization in networks of identical
linear systems,” Automatica, vol. 45, pp. 2557-2562, 2009.

P. Wieland, R. Sepulchre, and F. Allgower, “An internal model principle
is necessary and sufficient for linear output synchronization,” Automat-
ica, vol. 47, pp. 1068-1074, 2011.

H. Kim, H. Shim, and J. H. Seo, “Output consensus of heterogeneous
uncertain linear multi-agent systems,” IEEE Trans. Auto. Contr., vol. 56,
no. 1, pp. 200-206, 2010.

J. Buchli, L. Righetti, and A. J. Ijspeert, “Engineering entrainment and
adaptation in limit cycle systems,” Biol. Cyb., vol. 95, no. 6, pp. 645—
664, 2006.

T. Iwasaki, “Multivariable harmonic balance for central pattern genera-
tors,” Automatica, vol. 44, no. 12, pp. 40614069, 2008.

L. Zhu, Z. Chen, and R. H. Middleton, “A general framework for robust
output synchronization of heterogeneous nonlinear networked systems,”
IEEE Trans. Auto. Contr., vol. 61, no. 8, pp. 2092-2107, 2015.

S. Y. Shafi, M. Arcak, M. Jovanovié, and A. K. Packard, “Synchroniza-
tion of diffusively-coupled limit cycle oscillators,” Automatica, vol. 49,
no. 12, pp. 3613-3622, 2013.

A. Pavlov, A. V. Proskurnikov, E. Steur, and N. van de Wouw, “Syn-
chronization of networked oscillators under nonlinear integral coupling,”
IFAC-PapersOnLine, vol. 51, no. 33, pp. 56-61, 2018.

A. Pogromsky, G. Santoboni, and H. Nijmeijer, “Partial synchronization:
from symmetry towards stability,” Physica D, vol. 172, pp. 65-87, 2002.
W. Wang and J. Slotine, “On partial contraction analysis for coupled
nonlinear oscillators,” Biol. Cyb., vol. 92, no. 1, pp. 38-53, 2005.

G. Ermentrout and N. Kopell, “Frequency plateaus in a chain of weakly
coupled oscillators, 1.” STAM J. Math. Anal., vol. 15, no. 2, pp. 215-237,
March 1984.

X. Liu and T. Iwasaki, “Design of coupled harmonic oscillators for
synchronization and coordination,” IEEE Trans. Auto. Contr., vol. 62,
no. 8, pp. 3877-3889, 2017.

W. Ren and R. Beard, “Consensus seeking in multiagent systems under
dynamically changing interaction topologies,” IEEE Trans. Auto. Contr.,
vol. 50, no. 5, pp. 655-661, 2005.

A. Pogromsky and H. Nijmeijer, “Cooperative oscillatory behavior of
mutually coupled dynamical systems,” IEEE Trans. Circ. Sys. — I: Fund.
Theory and Appl., vol. 48, no. 2, pp. 152-162, 2001.

W. Lohmiller and J. Slotine, “On contraction analysis for non-linear
systems,” Automatica, vol. 34, no. 6, pp. 683-696, 1998.

Q. Pham and J. Slotine, “Stable concurrent synchronization in dynamic
system networks,” Neural Networks, vol. 20, pp. 62-77, 2007.

H. Khalil, Nonlinear Systems. Prentice Hall, 1996.

K. Rogov, A. Pogromsky, E. Steur, W. Michiels, and H. Nijmeijer,
“Pattern analysis in networks of diffusively coupled Lur’e systems,” Int.
J. Bifurcation and Chaos, vol. 29, no. 14, p. 1950200, 2019.

H. Amann, Ordinary Differential Equations: An Introduction to Nonlin-
ear Analysis. Walter de Gruyter, 1990.

L. Pecora and T. Carroll, “Master stability functions for synchronized
coupled systems,” Phys. Rev. Lett., vol. 80, no. 10, pp. 2109-2112, 1998.
S. Hara, H. Tanaka, and T. Iwasaki, “Stability analysis of systems with
generalized frequency variables,” IEEE Trans. Auto. Contr., vol. 59,
no. 2, pp. 313-326, 2014.

E. Izhikevich and Y. Kuramoto, “Weakly coupled oscillators,” Encyclo-
pedia of Mathematical Physics, Elsevier, vol. 5, p. 448, 2006.

Y. Kuramoto, “Self-entrainment of a population of coupled non-linear
oscillators,” Int. Sympo. Math. Prob. in Theor. Phys., pp. 420-422, 1975.
F. Dorfler and F. Bullo, “Synchronization in complex networks of phase
oscillators: A survey,” Automatica, vol. 50, pp. 1539-1564, 2014.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

B. Ermentrout, Y. Park, and D. Wilson, “Recent advances in coupled
oscillator theory,” Phil. Trans. R. Soc. A, vol. 377, p. 20190092, 2019.
G. Taga, “Self-organized control of bipedal locomotion by neural
oscillators in unpredictable environment,” Biol. Cybern., vol. 65, no. 3,
pp. 147-159, 1991.

C. P. Santos and V. Matos, “Gait transition and modulation in a
quadruped robot: A brainstem-like modulation approach,” Robotics and
Autonomous Systems, vol. 59, no. 9, pp. 620-634, 2011.

S. Inagaki, H. Yuasa, and T. Arai, “CPG model for autonomous decen-
tralized multi-legged robot system — generation and transition of oscil-
lation patterns and dynamics of oscillators,” Robotics and Autonomous
Systems, vol. 44, no. 3-4, pp. 171-179, 2003.

Z. Bing, L. Cheng, G. Chen, F. Rohrbein, K. Huang, and A. Knoll, “To-
wards autonomous locomotion: CPG-based control of smooth 3d slither-
ing gait transition of a snake-like robot,” Bioinspiration & Biomimetics,
vol. 12, p. 035001, 2017.

G. Schoner, W. Jiang, and J. Kelso, “A synergetic theory of quadrupedal
gaits and gait transitions,” J. Theor. Biol., vol. 142, pp. 359-391, 1990.
M. Golubitsky, I. Stewart, P. Buono, and J. Collins, “Symmetry in
locomotor central pattern generators and animal gaits,” Nature, vol. 401,
no. 6754, pp. 693-695, 1999.

A. Ijspeert, A. Crespi, and J. Cabelguen, “Simulation and robotics
studies of salamander locomotion,” Neuroinformatics, vol. 3, pp. 171-
195, 2005.

S. Suzuki, T. Kano, A. Ijspeert, and A. Ishiguro, “Spontaneous gait
transitions of sprawling quadruped locomotion by sensory-driven body-
limb coordination mechanisms,” Frontiers in Neurorobotics, vol. 15, p.
645731, 2021.

K. Ren and T. Iwasaki, “Design of complex oscillator network with
multiple limit cycles,” Proc. IEEE Conf. Dec. Contr., 2018.

L. Righetti and A. Ijspeert, “Programmable central pattern generators:
an application to biped locomotion control,” IEEE Int. Conf. Robotics
and Automation, pp. 1585-1590, 2006.

S. Kohannim and T. Iwasaki, “Design of coupled Andronov-Hopf
oscillators with desired strange attractors,” Nonlinear Dynamics, vol.
100, no. 2, pp. 1659-1672, 2020.

J. Hauser and C. Chung, “Converse Lyapunov functions for exponen-
tially stable periodic orbits,” Sys. Contr. Lett., vol. 23, pp. 27-34, 1994.
P. Hartman, Ordinary Differential Equations. John Wiley&Sons, 1964.
D. Uzhva and O. Granichin, “Cluster control of complex cyber-physical
systems,” Cybernetics and Physics, vol. 10, no. 3, pp. 191-200, 2021.

M. Grimmer, A. A. Elshamanhory, and P. Beckerle, “Human lower limb
joint biomechanics in daily life activities: a literature based requirement
analysis for anthropomorphic robot design,” Front. in Robo. Al, 2020.

L. Righetti, J. Buchli, and A. Ijspeert, “Dynamic Hebbian learning in
adaptive frequency oscillators,” Physica D: Nonlinear Phenomena, vol.
216, no. 2, pp. 269-281, 2006.

J. Zhao and T. Iwasaki, “CPG control for harmonic motion of assistive
robot with human motor control identification,” IEEE Trans. Contr. Sys.
Tech., vol. 28, no. 4, pp. 1323-1336, 2019.

M. Overton and R. Womersley, “On minimizing the spectral radius
of a nonsymmetric matrix function: Optimality conditions and duality
theory,” SIAM J. Matrix Anal. Appl., vol. 9, no. 4, pp. 473-498, 1988.

Kewei Ren received a B.S. degree in Aerospace
engineering from Beihang University, and a Ph.D.
degree in Aerospace Engineering from the Uni-
versity of California, Los Angeles, in 2015 and
2021, respectively. He currently works at Momenta
as an engineer on motion planning and trajectory
optimization.

Tetsuya Iwasaki (M’90-SM’01-F’09) received his
B.S. and M.S. degrees in Electrical Engineering
from the Tokyo Institute of Technology in 1987
and 1990, and his Ph.D. degree in Aeronautics and
Astronautics from Purdue University in 1993. He
held faculty positions at Tokyo Tech and University
of Virginia before joining the UCLA. His research
interests include control, oscillation, locomotion, and
pattern formation. He has received awards from NSF,
SICE, IEEE, ASME, and others. He has served as
Senior/Associate Editor of several control journals.



