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Abstract— This paper proposes a low-cost interface and re-
fined digital twin for the Raven-II surgical robot. Previous sim-
ulations of the Raven-II, e.g. via the Asynchronous Multibody
Framework (AMBF), presented salient drawbacks, including
control inputs inconsistent with Raven-II software, and lack
of stable, high-fidelity physical contact simulations. This work
bridges both of these gaps, both (1) enabling robust, simulated
contact mechanics for dynamic physical interactions with the
Raven-II, and (2) developing a universal input format for both
simulated and physical platforms. The method furthermore
proposes a low cost, commodity game-controller interface for
controlling both virtual and real realizations of Raven-II, thus
greatly reducing the barrier to access for Raven-II research
and collaboration. Overall, this work aims to eliminate the
inconsistencies between simulated and real representations of
the Raven-II. Such a development can expand the reach of
surgical robotics research. Namely, providing end-to-end trans-
parency between the simulated AMBF and physical Raven-II
platforms enables a software testbed previously unavailable,
e.g. for training real surgeons, for creating digital synthetic
datasets, or for prototyping novel architectures like shared
control strategies. Experiments validate this transparency by
comparing joint trajectories between digital twin and physical
testbed given identical inputs. This work may be extended
and incorporated into recent efforts in developing modular
or common software infrastructures for both simulation and
control of real robotic devices, such as the Collaborative
Robotics Toolkit (CRTK).

Index Terms— Raven-II; AMBF; teleoperation; robot-
assisted MIS; digital twin; human computer interfaces; CRTK.

I. INTRODUCTION

A. Background

1) Surgical Robot Research Platforms: As medical robots
take on more roles in the operating room and clinic, it is
important to provide robust and accessible resources for re-
search institutions to test and develop new tools and features.
One of the most widely used systems is the da Vinci sur-
gical robot, with system cost of 2 million dollars, restricted
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access to software and electronics, and limited distribution
to select or certified medical facilities [1]. While the da
Vinci Research Kit (dVRK) robot offers an alternative with
open-source software and electronics [2], it remains highly
selective regarding access and use. On the other hand, the
Raven-II surgical robot was developed to provide common
software and hardware environments for research innovations
at a more affordable cost of around 250 thousand dollars,
making it a more accessible option for research institutions
and labs [3]. In other efforts to grow the surgical robotics
research community, simulators such as the Asynchronous
Multibody Framework (AMBF) [4] can bridge the gap by
providing simluation capability to various robots in a variety
of realistic physics-enabled environments. Such digital test
beds can be used for rapid prototyping, experimentation and
development of novel research features without requiring a
physical device. These simulators greatly lower the hardware
accessibility barrier and enable more ready involvemment in
medical robotics research [5].

2) Robot Controller and Joysticks: In paired simulated
and physical teleoperated robots, typically the same inter-
faces control both platforms [6]. However, many existing
surgical robot operator interfaces, such as the daVinci surgi-
cal console, Microsurge, and Force Dimension exhibit costly
custom platforms with integrated displays and highly articu-
lated controllers [7], [8]. More affordable options such as the
Phantom Omni can still be cost prohibitive at a price tag of
about 1000 US dollars [9]. CRTK-based keyboard controllers
like [10]–[12], grant manipulation capabilities to Raven-II
with minimal additional expenses, requiring only a computer
and simple software setup. However, they are not without
limitations, sending only per joint or per Cartesian axis
commands, making it cumbersome to maneuver the robot
intuitively. In a continuous effort to promote collaboration
and prevent redundant development, the proposed framework
utilized the keyboard controllers as starter code.

3) Common Software Infrastructures: The Collaborative
Robotics Toolkit (CRTK) is a unified API designed to trans-
port robot commands and feedback, supporting teleoperation
and coordinated control tasks. Its primary objective is to
streamline research and education in cutting-edge human-
robot collaborative fields, including semi-autonomous tele-
operation and medical robotics. CRTK has been integrated
into both the AMBF simulator and Raven-II and dVRK
software, providing physics-enabled simulation support and
compatibility with these platforms [13].



B. Motivation

This research ultimately aims to create a robust simulation
framework of the Raven-II robotic platform in AMBF that:
(a) enables intuitive manipulation of the robot end-effector
with little controller budget and usage barrier; (b) minimizes
configuration and performance discrepancies between the
simulated and physical platforms; and (c) is easy to translate
a simulated teleoperation sequence to the physical Raven-II
hardware for testing. The authors believe the proposed frame-
work would greatly broaden the Raven-II surgical robotics
research community, create potential surgical robotics cur-
riculum design, and open the door to numerous outreach
opportunities for under-resourced or K-12 institutions.

C. Contributions

Figure 1 shows an overview of the proposed sim-to-real
control framework for Raven-II. To the best of the authors’
knowledge, we are the first to simultaneously achieve:

• Design of two gamepad controller mapping schemes for
Raven-II: two-arm partial mapping (M2) and one-arm
full mapping (M1).

• Refactorization of the Raven-II kinematics to achieve a
specialized Cartesian control with wrist locking (CW ).

• Motion interpolation to achieve smooth trajectories with
a maximum velocity threshold (CV ) when the rate of raw
controller setpoints is unreliable or infeasible.

• Easy motion replication and simultaneous dual plat-
form operation between the AMBF-simulated (RS )
and physical (RP ) Raven-II through recorded gamepad
controller inputs.

• Evaluation of trajectory consistency on two experimen-
tal datasets: Peg Transfer (DI) and Wide Range (DII).

• Open source [14] for the AMBF and Raven-II research
community. (A demo video included.)

II. METHODS

A. Dual Platform Controller: Software Architecture

To facilitate the intuitive sim-to-real transfer, the controller
is able to relay ROS commands to either Raven proxies (RS
or RP ) with a change of a platform flag upon startup. As
shown in Table I, there are five operation modes, which
demonstrate varying levels of interactiveness. These range
from hard-coded motion (O1, O5), trajectory replay from
recorded CSV files (O3, O4), to live teleoperation via a
gamepad controller (O2).

1) Runtime Optimization: One essential component of
real-time control is to ensure quick responsiveness of the
robot to user inputs. To this end, the controller is designed to
conduct three main tasks in parallel through multi threading:
one to collect operation mode choices from the keyboard,
one to process gamepad controller inputs using the Python
Inputs Library, and one controller main thread to publish
ROS topics to the robot proxy (RS or RP ) at a constant rate.
This allows the the keyboard and gamepad control inputs to
reach the controller at a constant update rate of 500 Hz with
Ubuntu 20.04 LTS running on an AMD Ryzen 5800x.

Inputs:
XBox Controller
XBox State CSV

Joint Position CSV

Dual-PlatformController

AMBF Raven-II 
Module

Physical Raven-II 
Module OR

AMBF Raven-II RSPhysical Raven-II RP

ROS MSGROS MSG

Fig. 1. The Sim-to-Real Control Framework for Raven-II.

2) The CSV Recorder (mode: O2, O3): The CSV recorder
is a versatile tool that captures the time-stamped statuses
of Raven-II and the gamepad controller and saving in CSV
format. It can be initiated and stopped at any time during
O2 or at the beginning of O3. When recording on the
physical robot (RP ), the CSV contains all data from the
ravenstate ROS topic. For AMBF (RS ), the CSV structure
remains identical. However, due to the innate differences in
dynamics calculation between the two platforms, only the
time, joint position, joint velocity, and end effector Cartesian
pose columns are populated – all others are designated NaN
as placeholders. The time column reflects the elapse time
since the start of recording. During recording, each command
is added as a new row in the CSV at approximately every
70ms until recording is stopped, unless the velocity cap CV
is reached and the interpolator extends the time required to
complete the command (more in Section II-B.4).

Idx Operation Mode Description
O1 Homing Mode Returns the robot to its specified home position
O2 Manual Control Cartesian control of the end effector using a gamepad controller
O3 File Controller Inputs Cartesian control of the end effector using a CSV of recorded XBOX controller states
O4 File JPos Joint level control using a CSV of recorded joint positions
O5 Sine Dance Moves all joints according to the sine function (currently only enabled for the AMBF Raven-II)

TABLE I
DUAL-PLATFORM CONTROLLER MODES



View and Menu Button: M2View Button: 
Left M1
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Right M1
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Fig. 2. A: Raven-II base frame {B} and grasper G of each arm. B: The proposed gamepad control mapping schemes: the one arm full mapping scheme
M1 and the two arm partial mapping scheme M2. The continuous control inputs are tinted in gray, whereas binary ones are not.

3) Trajectory Replay (mode: O3, O4): Both RP and RS
can replicate CSV pre-recorded trajectories by following
either the measured joint positions (O4) or recorded gamepad
controller commands (O3). Therefore, sim-to-real cross plat-
form trajectory replication can be achieved if one runs the
CSV recorder in O2 mode on RS , and then conducts O3

with the recorded file on RP .
B. The Gamepad Controller: Teleoperation

1) Controller Mapping Schemes (M1 and M2): While
a gamepad controller is affordable and ubiquitous, utilizing
one to control a high degree of freedom manipulator such as
Raven-II presents challenges. A gamepad controller typically
has two sticks and two triggers, totaling 6 continuous control
DOFs, whereas just the end effector configuration of each of
the Raven-II arms are described by 6DOFs - describing both
end effectors requires 12 DOFs.

In order to address this, modifiers that combine control
inputs can enable mapping of gamepad inputs to higher
dimensional devices. To work within the aforementioned
limitations, two controller mapping schemes - M2 and M1

- are designed and depicted in Fig.2.

2) Handling Controller Stick Drift: The precision of
gamepad controller joysticks can vary, and the joystick
positions rarely return to exactly (0,0), or true center. This
causes a subtle, yet consistent drifting motion when the
controller is untouched. To accommodate for the undesirable
drift during teleoperation, a deadzone is incorporated into
the controller to ignore any perceived joystick readings with
magnitude,

√
J2
h + J2

v , less than a heuristically determined
threshold of 0.15, where Jh, Jv are the raw joystick readings
in the horizontal and vertical axes ranging from -1 to 1.

3) Wrist Locking Kinematics (CW ): shown in Fig.3, were
developed to resolve insufficient number of independent
continuous control inputs of the gamepad controller.

• In M2: for each arm, the position of the joint 5 frame is
controlled by 3 gamepad DOFs. The revolute DOFs of
by joints 4, 5, and 6 are locked at their home positions.
The gripper, (GL, GR), is controlled separately.

• In M1: More complex manipulations are enabled with
fine-grained direct control of joints 4,5, and 7 imple-
mented – only the wrist joint 6 remained locked.
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Fig. 3. A: Standard Kinematics (CS ) B: Wrist Locking Kinematics (CW ) under the two arm mapping scheme (M2) with wrist locking for joints 5, 6,
& 7; and the one arm mapping scheme (M1) with direct joint level control of joints 5 & 6.



4) Motion Interpolation with Joint Velocity Cap (CV ): To
ensure teleoperation safety and motion consistency between
RS and RP , linear interpolation was applied to maintain all
commands within experimentally determined joint velocity
limits CV . Inspired by the concept of “interpolate” in CRTK
[13], large motion commands that exceed CV are decomposed
into smaller ones, while extending the time required to
complete the commanded distance (Fig.5). In this study, CV
is set as 0.087 (rad/s) for joints 1,2; 0.262 (rad/s) for joints
4-7; and 0.02 (m/s) for joint 3.

Fig. 5. Demonstration of joint 1 transitioning from 0.96 to 0.52 radians
in approximately 2 ms without caps and in 27.7 ms with velocity caps.

C. Closing the Performance Gap: RS v.s. RP

1) Collision Mesh Simplification for RS : Previously, the
simulated Raven-II could only operate in open space. When-
ever a collision with an external object occurred, the AMBF
physics engine update frequency would drop from the target
200 Hz to around 40 Hz (Fig.4-F). This was caused by
the default collision mesh being directly calculated from
the original Raven-II 3D model (Fig.4-A), which contains
204,746 vertices. To reduce collision calculation overhead,
each robot link is coarsely approximated by a minimum
bounding cube or cylinder. Meanwhile, the grasper collisions
were simplified in blender using a combination of manual
modifications and the decimate modifier. This resulted in

a salient reduction of the simplified mesh to 384 vertices
(Fig.4-B), and enabled interactions between RS with both
soft or rigid objects (Fig.4-D and E) while maintaining a
realtime dynamic loop frequency of 150-200 Hz (Fig.4-F).

Parameter (m) RP RS

DH value: d4 −0.47 0.0
Home pos: Joint 1 π/6 7π/36
Home pos: Joint 3 0.4 −0.07
Limits: Joint 3 0.23 ≤ x ≤ 0.56 −0.23 ≤ x ≤ 0.1

TABLE II
A SUMMARY OF THE PARAMETER DISCREPANCIES (RP AND RS )

2) Kinematic Parameter Discrepancies: In this study,
robot kinematics and Denavit-Hartenberg parameters were
initially adopted from Su’s C++ controller [11]; the home
joint positions and joint limits were obtained from the Raven-
II code [15]. However, even though RS shares a structurally
identical and to-scale appearance as RP , it is not actuated in
a cable-driven fashion – joint level coordinate frames differed
between the two kinematic models. Table II summarizes
additional modifications necessary in order to remove the
performance discrepancies between RS and RP .

3) Graphical Disparity Analysis Tool: A comprehensive
data analysis tool that visualizes the robot trajectory CSV
files, highlighting performance disparities between RS and
RP . By providing insights into joint errors and various corre-
lating factors, developers can effectively fine-tune parameters
(including setup configurations and command rates) to mini-
mize the performance gap based on their specific computing
environments. Therefore, this tool not only facilitates the
authors’ research in the development phase, but also serves
as a valuable resource for future users seeking to refine
their codes. Currently under development, the authors aim
to finalize it, making it a valuable addition to the proposed
research toolkit in the near future.

Fig. 4. Collision mesh simplification for AMBF simulated Raven-II RS . A: Original mesh with 204,746 vertices, B: Simplified mesh with 384 vertices
that demonstrates a closer collision approximation around the ROI (tool tip), C: Simplified collision mesh overlayed on RS . D,E: RS successfully interacts
with objects after collision mesh simplification. F: A comparison of the AMBF Dynamic Loop Frequency before and after collision mesh simplification in
a soft body interaction experiment conducted on virtualized Ubuntu 20.04 LTS running in Parallels on Apple M1 max, with a target frequency of 200Hz.



Fig. 6. The time stamped jP (left) and jJ (right) trajectories for TSS and TPP in task DII . The revolute (top) and prismatic (bottom) joints are
separately displayed and color coded. The area between the maximum and minimum joint values across the three trials are filled.

III. EXPERIMENTS AND RESULTS

A. Experimental Design

The gamepad control framework and cross platform con-
sistency were assessed through trajectory replication from
two tasks: peg transfer DI and wide range motion DII .

1) Original Trajectories: All original trajectories were
commanded using O2. The DI task involved a single peg
transfer from one post to another, and original trajecto-
ries were recorded using three different gamepad mapping
schemes: (1) M2, (2) M1 of the left arm, and (3) M1 of the
right arm. The DII wide range motion task used gamepad
mapping M2, and both arms were moved along a rectangular
path on an XY plane.

2) Playback Trajectories: The four aforementioned trajec-
tories were recorded using the method described in II-A.2.
For each original trajectory, O3 is used three times to execute
the recorded trajectory on both RP and RS . This results in
a total of 24 playback trajectories.

B. Data Analysis

For simplicity of notation, TSS , TPP , TPS are respectively
used to denote consistency analysis among the RS trials, the
RP trials, and between the RP and RS trials. The velocity
and position of joint i are represented as jV i and jP i.

1) Single Platform Repeatability (DII ): Figure 6 reveals
jP and jV trajectories for TSS and TPP on task DII . Overall,
jP presents more consistent results than jV ; RS presents
more consistent results than RP . Additional findings include:

• jP1−3 show similar consistency between TSS and TPP ,
but jP4−7 are significantly less consistent for TPP .

• Between TSS and TPP , the former experienced more
damping in the prismatic joint (jV3), and the latter
presents more jitter in the revolute joints (jV1,2,4−7).

2) Cross Platform Consistency (DI and DII ): The aver-
age jP , jV trajectory error bar charts for TSS , TPP , and TPS
are shown in Fig.7. Results are encouraging, as positioning

errors were under 2 mm and .04 rad for prismatic and
revolute joint respectively. Similarly, velocities deviated by
less than 2 mm/s and 0.11 rad/s. Additional insights include:

• Within-platform consistency shows better prismatic
joint tracking on the physical platform, TPP , and better
revolute joint tracking on the simulated, TSS .

• Cross platform error for revolute joints track TPP .
• Cross platform error magnitude for prismatic joints

track TSS , yet position-velocity error ratios with TPP .
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Fig. 8. A displays the normalized correlation and the optimal LOWESS regression curves of jP , jV with a variety of potential impacting factors for
TPS . B (and C) further presents correlation graphs between jP (and jV ) and its cross platform difference ∆jP (and ∆jV ) with kernel density estimates
(black curves), and marginal distributions. All variables (except time) in A are normalized to 0-1.

3) Correlating Factors that Impact Consistency (DI ):
Figure 8 aims to identify prominent correlating factors for
inconsistencies in jP and jV with TPS . From Fig.8-A:

• jP and ∆jP display no correlation with ∆jV .
• Time is not correlated with ∆jV , but correlated with
∆jP although the correlation pattern is joint dependent.

• ∆jP does not affect ∆jV , ∆jV positively affects ∆jP .
• jV has a subtle impact on ∆jP . although correlations

for j1, j3 don’t appear linear.
Additional conclusions can be drawn from Fig.8-B,C that:

• Strong positive correlations are observed for jP4,5 and
jV4−7 with their respective cross platform differences -
∆jP4,5 and ∆jV4−7.

• The correlation between jV and ∆jV presents no offset,
but it’s not the case for jP and ∆jP .

• jP6,7 has segmented positive correlations with ∆jP6,7.
• ∆jP1,3 presents bimodal distributions.

IV. CONCLUSION

A. Summary

In this study, a low cost control framework was developed
for the Raven-II surgical robot physical, RP , and AMBF
simulated, RS , platforms. Extensive efforts were made to
minimize the performance gap with trajectory following and
replication. Figures 6-8 reveal an overall consistent motion
across TPP , TSS and TPS . Specifically, mean differences for
the revolute jP emerged at 0.03, 0.0018 and 0.03 radians
respectively for the three T categories in DII . The mean
deviations for primsatic joint jP3 were 0.16, 0.12 and 1 mm.

For within-platform consistencies, the revolute and prismatic
joints respectively showcased more consistent results in TSS
and TPP . Inconsistencies in TSS often resulted from inter-
mittent high-intensity oscillations, whereas inconsistencies
in TPP appear as persistent moderate jitters (Fig.6). Lastly,
correlations between cross platform consistencies TPS and
various impacting factors were discussed.

B. Future Directions

Currently, simultaneous control is achieved by running two
separate instances of the controller, one for RP and one for
RS both in O2. As isolated instances, there is no way to
check and maintain synchronization, which is evident in the
relatively larger ∆jV than ∆jP . Further improvements can
be made to enable synchronous control of both RP and RS
using a single controller instance. Additionally, the authors
will further explore the capabilities of AMBF soft body
interactions and to what extent RS can be used to predict
applied forces on RP when interacting with deformable
objects. Even though RS shares a structurally identical and
to-scale appearance as RP , it is not actuated in a cable-
driven fashion. This makes raw joint torque estimations in
RS incomparable with RP . The authors will look into active
learning based sim-to-real approaches to minimize this gap.
Lastly, to broaden the impact of the intuitive sim-to-real
gamepad control framework for Raven-II, the authors will:
(a) conduct human experiments and optimize the mapping
schemes based on user feedback; (b) incorporate this frame-
work in future outreach opportunities; and (c) contribute the
developed source code to the AMBF GitHub page [4].
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