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AbstractÐVision dimensionality during minimally invasive
surgery is a critical contributor to patient success. Traditional
visualizations of the surgical scene are 2D camera streams that
obfuscate depth perception inside the abdominal cavity. A lack
of depth in surgical views cause surgeons to miss tissue targets,
induce blood loss, and incorrectly assess deformation. 3D
sensors, while offering key depth information, are expensive
and often incompatible with current sterilization techniques.
Furthermore, methods inferring a 3D space from stereoscopic
video struggle with the inherent lack of unique features in the
biological domain. We present an application of deep learning
models that can assess simple binary occupancy from a single
camera perspective to recreate the surgical scene in high-
fidelity. Our quantitative results (IoU=0.82, log loss=0.346)
indicate a strong representational capability for structure in
surgical scenes, enabling surgeons to reduce patient injury
during minimally invasive surgery.

I. INTRODUCTION

Robotic minimally invasive surgeries have provided sur-

geons with fine motor control in laparoscopic environments

while reducing physical damage in patients [1]. Surgical

robots create smaller incision sites and result in faster

patient recovery times compared to standard procedures

[2], [3]. Despite the benefits of robotic surgery, observation

of the surgical cavity is often restricted to 2D interfaces.

For surgeons, 2D views lose critical depth information

necessary for navigating the field-of-view, warranting a

time-intensive training process for interpreting flat surgical

scenes [4]. Studies of minimally invasive surgery report op-

tical fatigue when viewing 2D laparoscopic video streams

for extended periods of time [5]. To provide greater depth-

encoded visibility, 3D reconstruction of the surgical cavity

is required. 3D camera systems that capture RGB color

and an additional depth channel are proven to help reduce

fatigue and increase surgeon performance [6]. However,

operating a 3D camera in surgery can be cumbersome due

to the extra physical implement and requires additional

hardware expense for medical institutions [7]. Infrared-

based 3D cameras also struggle with specular reflectance

and dark spots in the surgical view. While 3D capture

systems are improving for a variety of general scene tasks,
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their use in a surgical environment is dependent on stringent

sterilization standards and biocompatibility.

An alternative approach to observing surgical environ-

ments is through camera-based 3D reconstruction. Tradi-

tional 3D reconstruction algorithms mathematically build

structure from either motion (SFM) or texture (SFT) [8]±

[10]. These methods work well for reconstructing surfaces

with informative features. The surgical environment by con-

trast contains dynamic, low-texture tissue and frequently

deforming surfaces caused by organ palpitations, thus prov-

ing SFM difficult to conduct [11], [12]. Another approach,

simultaneously locating and mapping (SLAM), calls for

tracking camera pose and building a 3D environment at

the same time [13], [14]. SLAM is scalable for video

reconstruction, but decreases in accuracy when unable to

extract distinctive features from frames [15]±[19]. Both

SLAM and SFM require prior feature extraction to model

3D spaces and sometimes face difficulties in handling

occlusion when presented with inconsistent feature sets.

For general object reconstruction outside this domain,

deep learning has brought substantial improvements in

accuracy and efficiency. These advtanges are most apparent

in reconstruction of high contrast, feature dense objects in

light-filled spaces [20], [21]. Object representations have

also become more diverse, with models capable of gen-

erating voxels, point clouds, meshes, and hybrid mediums

from singular images [22], [23]. One recent advancement

addresses several long standing problems with object rep-

resentations: occupancy networks, deep neural networks

trained to classify 3D points as either occupied or vacant

[24]±[26]. The surface of an object is thus implicitly

represented between occupied and vacant points. In the

context of surgical environment reconstruction, occupancy

networks can be trained to dynamically handle transitions

from feature-dense to feature-sparse scenes without the

need for complex, manual feature extraction. We propose

an deep learning network that can identify occupancy flow

from sequences of single view laparoscopic images. This

approach can increase the depth resolution of reconstructed

surfaces by forgoing the explicit point cloud generation,

which inherently discretizes textural resolution; we predict

occupancy directly from images and sampled points which

can be adapted to downstream representations such as the20
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Fig. 1. High-level system architecture. Quantitative results are in the form of binary cross-entropy (log loss) and intersection over union. Qualitative
results are visualized using extracted meshes.

mesh or voxel grid.

In summary, our contributions are as follows:

• We develop a deep learning model that learns the

decision boundary for 3D surfaces in surgical envi-

ronments.

• We demonstrate a representation that can be utilized

for occupancy flow in dynamic, deforming scenes.

II. RELATED WORK

A. Simultaneous Localization and Mapping

Approaches studying concurrent location and environ-

mental tracking in surgical scenes focus on matching

features between frames to comprehend unexplored areas.

SLAM outputs successive point clouds for observed re-

gions. Due to a heavy emphasis on feature extraction, point

cloud densities are highly reliant on the quality of fea-

tures in the scene [27]. Continual advancements in SLAM

methodology led to the creation of the parallel tracking and

mapping (PTAM) design paradigm: two separate threads

were dedicated to the problems of agent tracking and

mapping respectively [28]. A significant feature of SLAM

and PTAM is their use of multiple camera angles for point

cloud construction. However, this design is not always

supported by surgical equipment ± many operating rooms

utilize a sole camera for minimally invasive surgery.

B. Deep Learning Approaches

Efforts to reconstruct the surgical environment using

deep learning are sparse. One study attempts to translate

SLAM to a deep learning model by employing neural

networks to predict pixel-wise depth [29]. A truncated

signed distance function applied to the predicted depth

maps builds a volumetric reconstruction. However, this

approach inherits the depth maps’ difficulty predicting on

occluded regions. Due to model output being restricted to

a 2D depth image, the constructed volume will simply not

be exposed to the existence of features behind occlusions.

Similar approaches apply models to rectified stereo image

pairs for depth prediction and volumetric tasks [30], [31].

The minimal number of studies for deep learning-based

3D reconstruction specifically for surgical scenes may be

attributed to lack of large-scale surgical video datasets with

an associated ground truth [11]. Studies that do employ

deep learning often employ some variation of a self-

supervised model to circumvent the present data void [29].

In the broader field of reconstructing objects using deep

learning, models approach the problem through distinct

representations. Early work introduced recurrent neural

networks as a solution to creating intermittent 3D pre-

dictions when more rooted methods such as SFM and

SLAM failed [20]. Voxels were also proposed as an early

iteration of raw model output due to their standardized

shape. To improve on memory-heavy voxel representations,

new neural networks predicted point clouds [22]. However,

extracting usable meshes requires intensive post-processing

steps that can nullify the inference time reductions for point

clouds. More recent increases in model complexity allow

for direct prediction of meshes from image input [23]. This

approach, like the voxel prediction network, is bound to a

set prediction dimension (eg. 643) and often leads to self-

intersecting meshes.

III. METHOD

We define occupancy in a 3D surgical space as points

occupied by tissue and other biological matter, with va-

cancy referring to the lack thereof. The problem of iden-

tifying occupancy membership can thus be simplified to

binary classification on neural networks, as demonstrated

by previous work on occupancy networks in static spaces

[24]. Sampled points in the 3D space are queried on the

model and a 3D surface is formed from the network’s

decision boundary. We provide spatial understanding to the

model through visual information from a monocular camera

navigating the surgical space. An encoder-decoder network

derives numerical feature vector for each point and converts

the resulting low level features into a multi-resolution voxel

grid.

A. Dataset

A video dataset with ground truth depth is procured

from a previous surgical scene depth mapping study [29],

[32]. This study manually generated depth maps from

stereo vision and associated intrinsic and extrinsic camera
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Fig. 2. Occupancy network decoder with image and point input. Five ResNet blocks consecutively decode the concatenated input into a single T × 1

occupancy prediction.

information. Across multiple frames in the provided videos,

surfaces are in motion and occasionally deform due to

periodic biological functions. The dataset contains a total of

21 rectified videos. To compensate for the time constraints

of this study, we utilize a single video with 1057 frames.

Each frame’s corresponding depth image has a saturation

of 300mm represented by grayscale. To extract 3D points,

we first build point clouds from the depth images. Each

point cloud relies on a pinhole camera intrinsic to lift the

2D grayscale points into a 3D space. We perform voxel

downsampling on the point cloud with a voxel size of 0.005
to represent the 3D view while minimizing downstream

system load. A smooth, surface mesh is then derived using

poisson surface reconstruction. The poisson reconstruction

traverses an octree with a depth of 8, which bounds the

resolution of the underlying grid to a maximum of 28.

Reconstruction artifacts such as disconnected and self in-

tersecting triangles are filtered out. We finally use the mesh

to extract strictly surface point samples and translate them

into a 3D space with the (x, y, z) bounds determined by

point cloud bounds across the entire dataset: (100, 100, 50).
Points with a smaller z than the initial surface samples

are labeled as occupied while points with a greater z are

labelled as vacant. Through this process, we sample a total

of 32, 000 points.

Fig. 3. ResNet-18 encoder for monocular camera input. The embedding c is concatenated to the sampled points before the decoder.
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Fig. 4. Occupancy predictions visualized: (far left) input image; (left mesh) ground truth; (middle mesh) prediction, (right mesh) normalized distance
error between meshes

B. Modeling

We build the deep learning network on the basis of

individual point occupancy classification. This allows for

fixed resolution during training and scalable resolution

during inference. We encode the image input x of the

surgical scene using ResNet-18, an industry-standard model

that prevents vanishing gradients, pretrained on ImageNet

(images are standardized channel-wise by ImageNet mean

and standard deviation) [33]. The model’s final 512 di-

mension vector is then converted into a 128 dimension

vector. This relatively smaller dimension contributes to an

overall smaller number of model parameters, accelerating

the training process. The set of sampled 3D points T are

first projected into a T × 128 dimensional space prior to a

concatenation with the image encoding. The concatenation

result is passed through five basic ResNet blocks with

each layer consisting of 128 nodes. Furthermore, each

block contains a skip connection that concatenates the input

vector to the output vector. The final output is transformed

to a T × 1 dimensional occupancy classification. We train

the model with a Adam optimizer that minimize a binary

cross entropy loss objective (trained on A100 GPU running

CUDA). The learning rate was experimentally chosen from

{0.1, 0.01, 0.001} as 0.01 (no learning rate scheduling

utilized) and manually chose the number of epochs as 3
before validation loss began increasing. The training dataset

was split into mini-batches with a size of 2.

LBCE = −(y log(p) + (1− y) log(1− p)) (1)

Model performance is measured by adapting the common

Intersection over Union (IoU) metric to the occupancy

space. Prior to calculation, the occupancy predictions are

rounded to the nearest integer (either 0 or 1) to determine

strict binary occupancy. Then, the IoU is derived from the

resulting intersection and union.

IoU =
|Mpreds ∩MGT|

|Mpreds ∪MGT|
(2)

C. Inference

For inferring the model on novel samples, we adopt

more freedom in point sampling and object representation.

Through training, the model implicitly builds a three-

dimensional understanding of the sampling space and a

sense of varying depth ranges across frames. We can

iteratively build higher resolution 3D reconstructions by

sampling additional points as needed. A 3D Reconstruction

is initialized on 2048 points within (100, 100, 40) and

subsequently converted into a mesh representation. Meshes

allow occupancy to inherit the tissue characteristics such

as continuity and texture. We extract topological meshes

by sampling the highest (on the z-axis) predicted points

that are occupied.

IV. RESULTS

A. Representative Capacity

The current state of representation in surgical spaces is

confined to either 2D views or expensive 3D measurements.

We therefore expect a deep learning approach to effectively

translate the spatial attributes of surgical video streams into

3D structures. Our model predicts volumetric occupancy in

the operative field and from this, we extract a topological

mesh that represents the biological surface. Quantitatively,

the model achieved an IoU score of 0.82 and a binary cross-

entropy loss of 0.332 on the test set. Furthermore, we tested
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Fig. 5. Normalized distance error versus z (height): (left) plot for top row image in Figure 4; (right) plot for bottom row image in Figure 4

the trained occupancy network on a video with a completely

different surgical environment featuring organ palpitation.

On this hidden environment, the network achieved an IoU

of 0.677 and a binary cross-entropy loss of 0.373.

TABLE I
METRICS BY DATASET

Dataset Samples IoU Log Loss (BCE)

Training 739 0.823 0.346
Validation 211 0.785 0.432
Testing 106 0.821 0.332
Hidden Environment 252 0.677 0.373

B. Qualitative Performance

The model clearly captures underlying depth information

across the spatial field, as seen in Figure 4. At a low level,

varying depths are represented throughout each mesh, while

continuity clearly delineates the 3D gradient. Minor tissue

details with extreme local changes in depth were not found

in some reconstruction samples. The source of the model

smoothing over these depth changes is likely the use of a

single video from which frames were fed into the model.

While frames were shuffled prior to training, originally

consecutive frames likely encoded to similar vectors and led

the model to find a more generalized occupancy prediction

for similar frames. Comparing errors for each vertex in

the predicted mesh to the ground truth mesh in Figure 5,

we can see that the model does not discriminate across a

range of z-values. Higher z-values are often predicted with

a higher accuracy than lower z-values due to proximity to

the camera in 2D depth models. Our model is able to predict

topology with similar error even in areas that are further

away from the camera and more susceptible to the loss of

depth perception effect.

V. DISCUSSION

A. Accuracy and Scalable Resolution

The model performs well on frames from the same

video that the model was trained on. Performance on

the hidden environment indicates that the model was able

to identify definitive features for prediction outside the

training space, but not enough to reconstruct the scene as

accurately. This is likely due to a lack of feature diversity

± w.r.t. color, lighting, and tissue type ± in the training

frames that may have proved useful for extra-set prediction.

Compared to previous 3D inference models designed for

the surgical space, we present a system that can expand to

any arbitrary resolution regardless of image resolution and

memory requirements of the prediction. We demonstrate

that resolution can be applied as needed in areas with

higher densities of biological features. From the surgical

perspective, resolution can be independently tuned to create

highly detailed representations of tissue or organs as needed

by the type of operation. This can enable surgeons to make

real-time decisions based on the conditions inside the sur-

gical cavity, resulting in lower blood loss, smaller operative

times, and overall more successful patient outcomes.

B. Occupancy Flow

Reconstructing occupancy from each frame from video

streams allows for depth flow to be represented tempo-

rally. In our work, we build singular mesh representations

that capture frame-dependent structural features such as

tissue and organs. While this study did not have access

to hardware capable of occupancy inference, prior work

demonstrates occupancy can be reevaluated well within the
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time between consecutive video frames [25]. Within this

temporal flow, dynamic tissue movement and deformation

can be monitored as a proxy for human interaction within

the surgical space. We believe that time series occupancy

representations are fundamental to solving adjacent prob-

lems in the field of minimally invasive surgery. Due to the

robotic interface between the surgeon and patient, important

force information is lost. Occupancy deformation around

regions of interest containing the tool tip may provide

insight into surgeon applied force which can subsequently

be delivered back to the surgeon via haptic devices. Force

estimation is one of many various obstacles remaining in

robot-assisted minimally invasive surgery that our occu-

pancy predictions can help solve.

VI. FUTURE WORK

A. Tool Tracking

3D reconstruction in surgical scenes is first and foremost

a lens through which surgeons examine patients for a

variety of separate tasks. Tasks such as exploration and

tool use in traditional open surgery center around the

surgeon’s field of view. In our study, we maintain the field

of view of the camera as a constant. However in practical

applications, fields of view are dynamic and often take

a third person perspective of the tool in order to view

the interactions between tool and biological matter. Older

surgical reconstruction methods such as SLAM integrate

tool tracking with building structure concurrently. While

SLAM does not produce ideal reconstructions, the premise

of the algorithm can be pursued in deep learning. A

future model would optimize both 3D predictions and tool

position in the surgical space to provide greater relevance

to medical professionals.

B. Viewpoint Generalization

Previous approaches to 3D reconstruction replicate hu-

man stereopsis by utilizing stereo camera systems. While

artificial stereoscopic vision falls short of true depth per-

ception due to the Vergence-accommodation conflict, large

portions of depth can still be inferred [34]. In the context

of a deep learning network, stereoscopic view is identi-

cal to simply two independent views. Therefore, we can

incorporate multiple camera angles, irrespective of stereo

pairing, into the model input to provide more feature points.

This generalized approach to collecting visual data on the

surgical scene is a logical next step for future work.

VII. CONCLUSION

Our work approaches the problem of 3D reconstruction

in surgical scenes with binary representation. We demon-

strate a model that robustly evaluates frame by frame

occupancy ± capturing both features local to frames in

temporally consistent bounds. Quantitative results indicates

that the model is capable of not only reconstructing surgical

scenes as outlined in this study, but impacting downstream

problems in RMIS such as real-time tissue segmenta-

tion, tool tracking, and force sensing. Binary occupancy

prediction proves a novel, but effective, representational

foundation in surgical fields and can further elicit human-

robot compatibility in surgery.
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