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Abstract—Vision dimensionality during minimally invasive
surgery is a critical contributor to patient success. Traditional
visualizations of the surgical scene are 2D camera streams that
obfuscate depth perception inside the abdominal cavity. A lack
of depth in surgical views cause surgeons to miss tissue targets,
induce blood loss, and incorrectly assess deformation. 3D
sensors, while offering key depth information, are expensive
and often incompatible with current sterilization techniques.
Furthermore, methods inferring a 3D space from stereoscopic
video struggle with the inherent lack of unique features in the
biological domain. We present an application of deep learning
models that can assess simple binary occupancy from a single
camera perspective to recreate the surgical scene in high-
fidelity. Our quantitative results (IoU=0.82, log loss=0.346)
indicate a strong representational capability for structure in
surgical scenes, enabling surgeons to reduce patient injury
during minimally invasive surgery.

I. INTRODUCTION

Robotic minimally invasive surgeries have provided sur-
geons with fine motor control in laparoscopic environments
while reducing physical damage in patients [1]. Surgical
robots create smaller incision sites and result in faster
patient recovery times compared to standard procedures
[2], [3]. Despite the benefits of robotic surgery, observation
of the surgical cavity is often restricted to 2D interfaces.
For surgeons, 2D views lose critical depth information
necessary for navigating the field-of-view, warranting a
time-intensive training process for interpreting flat surgical
scenes [4]. Studies of minimally invasive surgery report op-
tical fatigue when viewing 2D laparoscopic video streams
for extended periods of time [5]. To provide greater depth-
encoded visibility, 3D reconstruction of the surgical cavity
is required. 3D camera systems that capture RGB color
and an additional depth channel are proven to help reduce
fatigue and increase surgeon performance [6]. However,
operating a 3D camera in surgery can be cumbersome due
to the extra physical implement and requires additional
hardware expense for medical institutions [7]. Infrared-
based 3D cameras also struggle with specular reflectance
and dark spots in the surgical view. While 3D capture
systems are improving for a variety of general scene tasks,
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their use in a surgical environment is dependent on stringent
sterilization standards and biocompatibility.

An alternative approach to observing surgical environ-
ments is through camera-based 3D reconstruction. Tradi-
tional 3D reconstruction algorithms mathematically build
structure from either motion (SFM) or texture (SFT) [8]-
[10]. These methods work well for reconstructing surfaces
with informative features. The surgical environment by con-
trast contains dynamic, low-texture tissue and frequently
deforming surfaces caused by organ palpitations, thus prov-
ing SFM difficult to conduct [11], [12]. Another approach,
simultaneously locating and mapping (SLAM), calls for
tracking camera pose and building a 3D environment at
the same time [13], [14]. SLAM is scalable for video
reconstruction, but decreases in accuracy when unable to
extract distinctive features from frames [15]-[19]. Both
SLAM and SFM require prior feature extraction to model
3D spaces and sometimes face difficulties in handling
occlusion when presented with inconsistent feature sets.

For general object reconstruction outside this domain,
deep learning has brought substantial improvements in
accuracy and efficiency. These advtanges are most apparent
in reconstruction of high contrast, feature dense objects in
light-filled spaces [20], [21]. Object representations have
also become more diverse, with models capable of gen-
erating voxels, point clouds, meshes, and hybrid mediums
from singular images [22], [23]. One recent advancement
addresses several long standing problems with object rep-
resentations: occupancy networks, deep neural networks
trained to classify 3D points as either occupied or vacant
[24]-[26]. The surface of an object is thus implicitly
represented between occupied and vacant points. In the
context of surgical environment reconstruction, occupancy
networks can be trained to dynamically handle transitions
from feature-dense to feature-sparse scenes without the
need for complex, manual feature extraction. We propose
an deep learning network that can identify occupancy flow
from sequences of single view laparoscopic images. This
approach can increase the depth resolution of reconstructed
surfaces by forgoing the explicit point cloud generation,
which inherently discretizes textural resolution; we predict
occupancy directly from images and sampled points which
can be adapted to downstream representations such as the
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Fig. 1. High-level system architecture. Quantitative results are in the form of binary cross-entropy (log loss) and intersection over union. Qualitative

results are visualized using extracted meshes.

mesh or voxel grid.
In summary, our contributions are as follows:

e« We develop a deep learning model that learns the
decision boundary for 3D surfaces in surgical envi-
ronments.

o We demonstrate a representation that can be utilized
for occupancy flow in dynamic, deforming scenes.

II. RELATED WORK
A. Simultaneous Localization and Mapping

Approaches studying concurrent location and environ-
mental tracking in surgical scenes focus on matching
features between frames to comprehend unexplored areas.
SLAM outputs successive point clouds for observed re-
gions. Due to a heavy emphasis on feature extraction, point
cloud densities are highly reliant on the quality of fea-
tures in the scene [27]. Continual advancements in SLAM
methodology led to the creation of the parallel tracking and
mapping (PTAM) design paradigm: two separate threads
were dedicated to the problems of agent tracking and
mapping respectively [28]. A significant feature of SLAM
and PTAM is their use of multiple camera angles for point
cloud construction. However, this design is not always
supported by surgical equipment — many operating rooms
utilize a sole camera for minimally invasive surgery.

B. Deep Learning Approaches

Efforts to reconstruct the surgical environment using
deep learning are sparse. One study attempts to translate
SLAM to a deep learning model by employing neural
networks to predict pixel-wise depth [29]. A truncated
signed distance function applied to the predicted depth
maps builds a volumetric reconstruction. However, this
approach inherits the depth maps’ difficulty predicting on
occluded regions. Due to model output being restricted to
a 2D depth image, the constructed volume will simply not
be exposed to the existence of features behind occlusions.
Similar approaches apply models to rectified stereo image
pairs for depth prediction and volumetric tasks [30], [31].
The minimal number of studies for deep learning-based
3D reconstruction specifically for surgical scenes may be

attributed to lack of large-scale surgical video datasets with
an associated ground truth [11]. Studies that do employ
deep learning often employ some variation of a self-
supervised model to circumvent the present data void [29].

In the broader field of reconstructing objects using deep
learning, models approach the problem through distinct
representations. Early work introduced recurrent neural
networks as a solution to creating intermittent 3D pre-
dictions when more rooted methods such as SFM and
SLAM failed [20]. Voxels were also proposed as an early
iteration of raw model output due to their standardized
shape. To improve on memory-heavy voxel representations,
new neural networks predicted point clouds [22]. However,
extracting usable meshes requires intensive post-processing
steps that can nullify the inference time reductions for point
clouds. More recent increases in model complexity allow
for direct prediction of meshes from image input [23]. This
approach, like the voxel prediction network, is bound to a
set prediction dimension (eg. 64%) and often leads to self-
intersecting meshes.

III. METHOD

We define occupancy in a 3D surgical space as points
occupied by tissue and other biological matter, with va-
cancy referring to the lack thereof. The problem of iden-
tifying occupancy membership can thus be simplified to
binary classification on neural networks, as demonstrated
by previous work on occupancy networks in static spaces
[24]. Sampled points in the 3D space are queried on the
model and a 3D surface is formed from the network’s
decision boundary. We provide spatial understanding to the
model through visual information from a monocular camera
navigating the surgical space. An encoder-decoder network
derives numerical feature vector for each point and converts
the resulting low level features into a multi-resolution voxel
grid.

A. Dataset

A video dataset with ground truth depth is procured
from a previous surgical scene depth mapping study [29],
[32]. This study manually generated depth maps from
stereo vision and associated intrinsic and extrinsic camera
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Fig. 2. Occupancy network decoder with image and point input. Five ResNet blocks consecutively decode the concatenated input into a single 7" X 1

occupancy prediction.

information. Across multiple frames in the provided videos,
surfaces are in motion and occasionally deform due to
periodic biological functions. The dataset contains a total of
21 rectified videos. To compensate for the time constraints
of this study, we utilize a single video with 1057 frames.
Each frame’s corresponding depth image has a saturation
of 300mm represented by grayscale. To extract 3D points,
we first build point clouds from the depth images. Each
point cloud relies on a pinhole camera intrinsic to lift the
2D grayscale points into a 3D space. We perform voxel
downsampling on the point cloud with a voxel size of 0.005
to represent the 3D view while minimizing downstream
system load. A smooth, surface mesh is then derived using

poisson surface reconstruction. The poisson reconstruction
traverses an octree with a depth of 8, which bounds the
resolution of the underlying grid to a maximum of 28.
Reconstruction artifacts such as disconnected and self in-
tersecting triangles are filtered out. We finally use the mesh
to extract strictly surface point samples and translate them
into a 3D space with the (x,y, z) bounds determined by
point cloud bounds across the entire dataset: (100, 100, 50).
Points with a smaller z than the initial surface samples
are labeled as occupied while points with a greater z are
labelled as vacant. Through this process, we sample a total
of 32,000 points.
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Fig. 3. ResNet-18 encoder for monocular camera input. The embedding c is concatenated to the sampled points before the decoder.
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error between meshes

B. Modeling

We build the deep learning network on the basis of
individual point occupancy classification. This allows for
fixed resolution during training and scalable resolution
during inference. We encode the image input = of the
surgical scene using ResNet-18, an industry-standard model
that prevents vanishing gradients, pretrained on ImageNet
(images are standardized channel-wise by ImageNet mean
and standard deviation) [33]. The model’s final 512 di-
mension vector is then converted into a 128 dimension
vector. This relatively smaller dimension contributes to an
overall smaller number of model parameters, accelerating
the training process. The set of sampled 3D points 7' are
first projected into a 7' x 128 dimensional space prior to a
concatenation with the image encoding. The concatenation
result is passed through five basic ResNet blocks with
each layer consisting of 128 nodes. Furthermore, each
block contains a skip connection that concatenates the input
vector to the output vector. The final output is transformed
to a T' x 1 dimensional occupancy classification. We train
the model with a Adam optimizer that minimize a binary
cross entropy loss objective (trained on A100 GPU running
CUDA). The learning rate was experimentally chosen from
{0.1,0.01,0.001} as 0.01 (no learning rate scheduling
utilized) and manually chose the number of epochs as 3
before validation loss began increasing. The training dataset
was split into mini-batches with a size of 2.

Lpce = —(ylog(p) + (1 — y)log(1 —p)) (1)

Model performance is measured by adapting the common
Intersection over Union (IoU) metric to the occupancy
space. Prior to calculation, the occupancy predictions are

rounded to the nearest integer (either 0 or 1) to determine
strict binary occupancy. Then, the IoU is derived from the
resulting intersection and union.

|Mpreds N MGT|

IoU =
|Mpreds U MGT|

(@)

C. Inference

For inferring the model on novel samples, we adopt
more freedom in point sampling and object representation.
Through training, the model implicitly builds a three-
dimensional understanding of the sampling space and a
sense of varying depth ranges across frames. We can
iteratively build higher resolution 3D reconstructions by
sampling additional points as needed. A 3D Reconstruction
is initialized on 2048 points within (100, 100, 40) and
subsequently converted into a mesh representation. Meshes
allow occupancy to inherit the tissue characteristics such
as continuity and texture. We extract topological meshes
by sampling the highest (on the z-axis) predicted points
that are occupied.

IV. RESULTS
A. Representative Capacity

The current state of representation in surgical spaces is
confined to either 2D views or expensive 3D measurements.
We therefore expect a deep learning approach to effectively
translate the spatial attributes of surgical video streams into
3D structures. Our model predicts volumetric occupancy in
the operative field and from this, we extract a topological
mesh that represents the biological surface. Quantitatively,
the model achieved an IoU score of 0.82 and a binary cross-
entropy loss of 0.332 on the test set. Furthermore, we tested
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the trained occupancy network on a video with a completely
different surgical environment featuring organ palpitation.
On this hidden environment, the network achieved an IoU
of 0.677 and a binary cross-entropy loss of 0.373.

TABLE I
METRICS BY DATASET

Dataset Samples  IoU Log Loss (BCE)
Training 739 0.823  0.346
Validation 211 0.785 0.432
Testing 106 0.821  0.332
Hidden Environment 252 0.677 0.373

B. Qualitative Performance

The model clearly captures underlying depth information
across the spatial field, as seen in Figure 4. At a low level,
varying depths are represented throughout each mesh, while
continuity clearly delineates the 3D gradient. Minor tissue
details with extreme local changes in depth were not found
in some reconstruction samples. The source of the model
smoothing over these depth changes is likely the use of a
single video from which frames were fed into the model.
While frames were shuffled prior to training, originally
consecutive frames likely encoded to similar vectors and led
the model to find a more generalized occupancy prediction
for similar frames. Comparing errors for each vertex in
the predicted mesh to the ground truth mesh in Figure 5,
we can see that the model does not discriminate across a
range of z-values. Higher z-values are often predicted with
a higher accuracy than lower z-values due to proximity to
the camera in 2D depth models. Our model is able to predict
topology with similar error even in areas that are further

away from the camera and more susceptible to the loss of
depth perception effect.

V. DISCUSSION
A. Accuracy and Scalable Resolution

The model performs well on frames from the same
video that the model was trained on. Performance on
the hidden environment indicates that the model was able
to identify definitive features for prediction outside the
training space, but not enough to reconstruct the scene as
accurately. This is likely due to a lack of feature diversity
— w.r.t. color, lighting, and tissue type — in the training
frames that may have proved useful for extra-set prediction.
Compared to previous 3D inference models designed for
the surgical space, we present a system that can expand to
any arbitrary resolution regardless of image resolution and
memory requirements of the prediction. We demonstrate
that resolution can be applied as needed in areas with
higher densities of biological features. From the surgical
perspective, resolution can be independently tuned to create
highly detailed representations of tissue or organs as needed
by the type of operation. This can enable surgeons to make
real-time decisions based on the conditions inside the sur-
gical cavity, resulting in lower blood loss, smaller operative
times, and overall more successful patient outcomes.

B. Occupancy Flow

Reconstructing occupancy from each frame from video
streams allows for depth flow to be represented tempo-
rally. In our work, we build singular mesh representations
that capture frame-dependent structural features such as
tissue and organs. While this study did not have access
to hardware capable of occupancy inference, prior work
demonstrates occupancy can be reevaluated well within the
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time between consecutive video frames [25]. Within this
temporal flow, dynamic tissue movement and deformation
can be monitored as a proxy for human interaction within
the surgical space. We believe that time series occupancy
representations are fundamental to solving adjacent prob-
lems in the field of minimally invasive surgery. Due to the
robotic interface between the surgeon and patient, important
force information is lost. Occupancy deformation around
regions of interest containing the tool tip may provide
insight into surgeon applied force which can subsequently
be delivered back to the surgeon via haptic devices. Force
estimation is one of many various obstacles remaining in
robot-assisted minimally invasive surgery that our occu-
pancy predictions can help solve.

VI. FUTURE WORK
A. Tool Tracking

3D reconstruction in surgical scenes is first and foremost
a lens through which surgeons examine patients for a
variety of separate tasks. Tasks such as exploration and
tool use in traditional open surgery center around the
surgeon’s field of view. In our study, we maintain the field
of view of the camera as a constant. However in practical
applications, fields of view are dynamic and often take
a third person perspective of the tool in order to view
the interactions between tool and biological matter. Older
surgical reconstruction methods such as SLAM integrate
tool tracking with building structure concurrently. While
SLAM does not produce ideal reconstructions, the premise
of the algorithm can be pursued in deep learning. A
future model would optimize both 3D predictions and tool
position in the surgical space to provide greater relevance
to medical professionals.

B. Viewpoint Generalization

Previous approaches to 3D reconstruction replicate hu-
man stereopsis by utilizing stereo camera systems. While
artificial stereoscopic vision falls short of true depth per-
ception due to the Vergence-accommodation conflict, large
portions of depth can still be inferred [34]. In the context
of a deep learning network, stereoscopic view is identi-
cal to simply two independent views. Therefore, we can
incorporate multiple camera angles, irrespective of stereo
pairing, into the model input to provide more feature points.
This generalized approach to collecting visual data on the
surgical scene is a logical next step for future work.

VII. CONCLUSION

Our work approaches the problem of 3D reconstruction
in surgical scenes with binary representation. We demon-
strate a model that robustly evaluates frame by frame
occupancy — capturing both features local to frames in
temporally consistent bounds. Quantitative results indicates
that the model is capable of not only reconstructing surgical
scenes as outlined in this study, but impacting downstream

problems in RMIS such as real-time tissue segmenta-
tion, tool tracking, and force sensing. Binary occupancy
prediction proves a novel, but effective, representational
foundation in surgical fields and can further elicit human-
robot compatibility in surgery.
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