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ARTICLE INFO ABSTRACT

MSC: Accurate instrument segmentation in the endoscopic vision of minimally invasive surgery is challenging due
68T45 to complex instruments and environments. Deep learning techniques have shown competitive performance
68T40 in recent years. However, deep learning usually requires a large amount of labeled data to achieve accurate
68U10 prediction, which poses a significant workload. To alleviate this workload, we propose an active learning-
Keywords: based framework to generate synthetic images for efficient neural network training. In each active learning
Robot instrument segmentation iteration, a small number of informative unlabeled images are first queried by active learning and manually
Medical image synthesis

labeled. Next, synthetic images are generated based on these selected images. The instruments and backgrounds
are cropped out and randomly combined with blending and fusion near the boundary. The proposed method
leverages the advantage of both active learning and synthetic images. The effectiveness of the proposed method
is validated on two sinus surgery datasets and one intraabdominal surgery dataset. The results indicate a
considerable performance improvement, especially when the size of the annotated dataset is small. All the
code is open-sourced at: https://github.com/HaonanPeng/active_syn_generator.

Active deep learning

1. Introduction generative adversarial networks (GANs) (Tobin et al., 2017; Kouw and
Loog, 2019), can alleviate the domain gap and artifact of synthetic

Minimally invasive surgery (MIS) has seen rapid development in
recent years in applications such as intra-abdominal surgery and oto-
laryngology, and can improve surgical outcomes while reducing sur-
gical morbidity (Sayari et al., 2019; Peters et al., 2018). In MIS,
endoscopes are commonly used to provide visualization of the sur-
gical site in real time. Segmentation of instruments is critical to the
interpretation of endoscopic surgical images, and deep learning has

images. However, for endoscopic sinus surgery, because of reflections
on metallic instruments, as well as blur and liquids on the tissue—
instrument boundary, GAN-based methods may generate inaccurate
synthetic images while the ground truth segmentation masks remain
the same, which may confuse the training (Lin et al., 2020).

Besides GAN-based methods, the method of generating synthetic

been applied to this task (Maier-Hein et al., 2017; Shvets et al., 2018;
Qin et al., 2020; Islam et al., 2019; Kalinin et al., 2020). In medical
practice, labeled data is costly, and typically only trained experts can
accurately annotate the images (Cheplygina et al., 2019; Yang et al.,
2017). Consequently, small training sets are a frequent challenge to
surgical instrument segmentation (Bodenstedt et al., 2021).

Recent efforts use synthetic data to alleviate the workload of an-
notating (Wang et al., 2021; Rajotte et al., 2021; Fujita et al., 2020).
Synthetic images generated from simulation have accurate labels with-
out manual work, but Su et al. (2021) suggest that the domain gap
between synthetic and real datasets reduces the performance of a model
trained by synthetic images. Domain adaptation techniques, such as
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images by copying and pasting real object images onto real background
images generalizes to many segmentation tasks (Ghiasi et al., 2021;
Remez et al.,, 2018) and efficiently generates synthetic images with
reduced concern for domain gap and inaccurate ground truth (Dwibedi
et al., 2017), thereby enhancing the reliability and effectiveness of seg-
mentation models. Furthermore, when background images are difficult
to acquire, image inpainting methods such as patch-based image syn-
thesis (Lee et al., 2016) can generate vivid backgrounds from cropped
images.

When the resources for annotating real images are limited, the
effectiveness of blending synthetic images through the copying and
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Fig. 1. Overview of the proposed method — iterative active learning with the
generation of image syntheses. During the iterations, informative images are chosen
from an unlabeled set by active learning. Synthetic images are generated from these
selected images. Both real labeled and synthetic labeled images are used to train the
segmentation model again to start a new iteration.

pasting method depends on the strategic selection of real labeled im-
ages. Active learning (AL) enhances this process by selecting the most
uncertain or informative samples from an unlabeled dataset for manual
annotation (Gorriz et al., 2017), thus efficiently reducing the reliance
on extensive real labeled data (Budd et al., 2021; Angluin, 1988).
When AL is combined with deep learning techniques, it facilitates faster
convergence and achieves superior performance with less labeled data.

In this work, we develop a feasible method that combines AL with
copy-and-paste image syntheses (Fig. 1), overcome the difficulty in
the generation of synthetic images for endoscopic sinus surgeries (Su
et al., 2021; Lin et al., 2020), and further improve the performance
of instrument segmentation. We utilize active learning to choose in-
formative unlabeled images to annotate, and a copy-and-paste method
to generate synthetic images that have instruments and tissue back-
grounds inherited from original real images, which can improve the
utilization of the selected real images. We aim to test the hypothesis
that the segmentation model trained with the synthetic images and a
smaller number of selected real images has competitive performance
compared to models trained on fully labeled real datasets. We also
aim to measure the relative effectiveness of different types of synthetic
images, external backgrounds, and realism on instrument segmentation
accuracy. We also investigate the effects of fusion near the boundary
of the instrument and multi-blending on the visible boundary artifact
on the performance of segmentation near the boundary. Three open-
source datasets are used in the experiments — the UW-Sinus-Surgery
Cadaver Dataset, Live Dataset (Qin et al., 2020), and the EndoVis 2017
Dataset (Allan et al., 2019).

2. Related works
2.1. Generation of synthetic images

Using synthetic images is an intuitive approach to reducing the
annotation workload. Dwibedi et al. (2017) proposed a similar ‘cut’ and
‘paste’ method to generate synthetic data for kitchen object detection.
Their result showed that simply copying and pasting could result in
artifacts such as aliasing of boundaries, which decreased learning per-
formance. By improving the blending between sprite and background,
their approach reached competitive performance combined with 10%
real data. However, Ghiasi et al. (2021) showed that pasting without
any blending had a similar performance to blending.

In further related studies, Remez et al. (2018) described object in-
stance segmentation with weakly-supervised cut-and-paste adversarial
learning: a discriminator was used to distinguish between real and
synthetic images. GANs (Goodfellow et al., 2020) have been also imple-
mented to generate synthetic medical images (Singh and Raza, 2021;
Yoo et al., 2020) based on a similar discriminator. Recent implemen-
tations include image-to-image translation from simulated images to
real images for cataract surgery (Luengo et al., 2018) and laparoscopic
surgery (Colleoni and Stoyanov, 2021), as well as from cadaver images
to live images (Lin et al., 2020) for sinus surgery.
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2.2. Active learning

Active learning is dedicated to selecting and labeling the most
informative training images that can reach near-optimal performance
with the fewest annotations (human effort) (Tajbakhsh et al., 2020;
Kim et al.,, 2020). Typically, in active learning, unlabeled images
are selected by criteria such as maximum entropy and least confi-
dence (Holub et al., 2008; Roels and Saeys, 2019; Schein and Ungar,
2007). In some cases, however, these criteria do not outperform ran-
dom selection (Yang et al., 2017; Belharbi et al., 2021). Thus, more
advanced criteria such as Bayesian active learning by disagreement
(BALD) are proposed (Houlsby et al., 2011). The BALD criterion com-
bines a high overall uncertainty with a term that increases the weight
of disagreement among the population. Gal et al. (2017) presented a
study on semantic segmentation of prostate medical images with active
learning, and the BALD criterion outperformed maximum entropy,
especially when the budget for annotation was small. Tran et al. (2019)
proposed a Bayesian generative active deep learning, which combined
active learning and GAN data augmentation. The evaluation of image
classification tasks suggested that the combined method outperformed
each single method. Bodenstedt et al. (2019) developed an active
learning approach based on Deep Bayesian Networks for instrument
presence detection and surgical phase segmentation. The experiments
suggested that with the same amount of training data, active learn-
ing outperformed random selection in training the surgical workflow
analysis model.

2.3. Unsupervised & semi-supervised learning

With plenty of unlabeled data but expensive annotation, unsu-
pervised and semi-supervised learning are also preferred in medical
imaging (Barragan-Montero et al., 2021; Raza and Singh, 2021). Liu
et al. (2020) proposed an unsupervised learning method for surgical
instrument segmentation that used generated anchors as pseudo labels
with ambiguity resolved by temporal coherence. Instead of using pixel-
level annotations, Fuentes-Hurtado et al. (2019) developed an approach
utilizing weak annotations provided as stripes over the different objects
in the image. Recent efforts also include utilizing the local center of
mass (Aganj et al., 2018), 2D points of interest (Lejeune et al., 2018),
and existing annotations from other datasets (Sestini et al., 2023).
With minimized usage of annotation, unsupervised and semi-supervised
learning can achieve comparable performance to fully supervised learn-
ing. Momentum Contrast (MoCo) (He et al., 2020) for unsupervised
visual representation learning also suggested close performance to su-
pervised representation learning on medical imaging datasets (Ramesh
et al., 2023; Hirsch et al., 2023). Besides the current frame, external
information such as robot pose (Qin et al., 2019; Sestini et al., 2021)
and coherent frames (Funke et al., 2018; Lin et al., 2021) can also be
utilized to improve the performance of segmentation in supervised and
self-supervised learning models.

Among approaches for the generation of accurate, labeled synthetic
images in endoscopic surgery, we leverage active learning to minimize
the workload of manual segmentation, then copy surgical instruments
and paste them into a surgical background image at random positions
and orientations. The background image can be a video frame where
a human confirms that no instrument is present, or it can be created
from a segmented image by infill from adjacent backgrounds at the
instrument location. This image synthesis method is relatively easy
to implement and adjust. In comparison, while unsupervised learning
eliminates the need for annotating training data, it may incur effort
and cost to acquire pseudo labels or labeled data from other datasets
and simulations. In contrast, our proposed method, requiring a small
amount of labeled data, demands no additional human effort. By adjust-
ing several parameters, this method can be adapted to different datasets
(Fig. 5).
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Fig. 2. Workflow of the system. The segmentation model is first trained by labeled images. Uncertainty estimation is performed on the unlabeled real images to select the most
informative ones, which are then manually labeled. Next, synthetic images are generated from the labeled images. There are 2 types of synthetic images. Type-1 syntheses have
the same instrument as the original real image while Type-2 syntheses have the same background.

3. Methods
3.1. System workflow

Fig. 2 shows the workflow of the entire system. During training,
the proposed system uses active learning to choose the most infor-
mative samples from the unlabeled pool of the database and asks for
annotation (Section 3.4). Then, synthetic images are generated and
added to the labeled pool with the real images to ‘make the best use
of’ the selected real images (Section 3.2). The goal is to train a seg-
mentation model on fewer hand-labeled real images while maintaining
competitive performance.

The dataset (Section 4.1) consists of a labeled pool and an unlabeled
pool of images. Because endoscopes are widely used in robot-assisted
surgeries, it is not difficult to obtain unlabeled videos and images. Some
of the datasets contain background images in which surgical tools are
not present, which can form a background pool.

Initially, some real images are randomly chosen and moved from
the unlabeled pool to the labeled pool by human annotation. Synthetic
images are first generated using the images in the labeled pool and are
then added back to the labeled pool. Next, a segmentation model is
trained using the labeled pool. Then, uncertainty estimation is applied
to the unlabeled pool, and the most informative images are queried
by the BALD active learning criterion, asking for annotation. Synthetic
images are generated based on the newly labeled images. For each
real image, there are two types of synthetic images. Type-1 synthetic
images have the same surgical tool as the original real image, and
the background is randomly selected from the background pool. Type-
2 synthetic images have the same background as the original real
image (background inpainting is applied to the original real image to
remove the original tool), and the surgical tool is randomly selected
from the labeled pool. If the dataset has no or few background images,
background inpainting of instrument pixels in the selected labeled real
images is performed and the generated backgrounds are added to the
background pool (Section 3.3).

After the generation, the newly labeled real images and the syn-
thetic images are added to the labeled pool and then the segmentation
model is trained again to start a new iteration. This is repeated until
the labeling budget or the desired performance is reached. Budget in
this paper is defined as the fraction of real training images which are
manually annotated, compared to the total number of real training
images.

3.2. Generation of synthetic images

The generation of each synthetic image begins with one selected real
labeled image. To generate Type-1 synthetic images, the selected image
is used as the instrument image, and a background image is randomly
chosen from the background pool. To generate Type-2 synthetic images,
the selected image is used as the background image with inpainting
applied to remove the instrument, and an instrument image is randomly
selected from the labeled pool. The tool from the instrument image is
copied and pasted on the background image, with resizing, movement,
and fusion. Fig. 3 shows the workflow of the generation of synthetic
images.

The procedure starts with x’ - a labeled real image that includes an
instrument, and x® - a pure background. The instrument image x' also
has a mask ), a binary matrix with the same size as x' in which the
instrument pixels are 1 while other pixels are 0. Resizing, movement,
and rotation are first applied to the instrument and the mask:

xl = R(x',c,w,h,0) €Y}

¥, =R(/,c,w, h,0) 2

where R(-) is the operator, ¢, w, h, and 6 are the factors of resizing,
movement in width and height, and rotation angle, respectively. These
operations are applied sequentially. A binary dilation (Dougherty,
1992) is applied on the new mask y, so that in the dilated mask Y the
region of the instrument is larger than the true mask of the instrument
¥

va=U, @)

beB

where B is a d X d matrix and d is the dilation kernel size, yi , is the
translation of y/ by b. After dilation, the fusion mask y/ is generated by
applying average blur or Gaussian blur (Young and Van Vliet, 1995) to
the mask v

¥ = B, k) @

¥ = Bg(y;. k,0) 5

where B,(-) and Bg(-) are the operators of average blur and Gaussian
blur, respectively. k is the kernel size and ¢ is the standard deviation.
According to Dwibedi et al. (2017), the artifacts from the copy-and-
paste operation may result in decreased performance if the model is
trained on synthetic images. Multi-blending, using the same synthetic
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Fig. 3. Generation of a synthetic image. Note that ) is only for visualization, where the solid green line indicates the outline of the instrument, the yellow area is from the

background image x*

Average Fusion Gaussian Fusion

Fig. 4. Multi-blending: images on the left and right are similar because they have the
same size and position of the instrument and background, however, the instruments
are blended on the background by different blending methods and parameters (average
fusion on the left and Gaussian fusion on the right). According to Dwibedi et al. (2017),
when training deep learning models, using multi-blended synthetic images can prevent
the negative effect of blending artifacts.

images but different blending methods in the training set, can prevent
the model from learning blending artifacts and improve the perfor-
mance on real images (Fig. 4). Color and brightness adjustment is
applied to narrow the gap between the color style of the instrument
and the background, for each channel of the adjusted image:

b
i 2 xb xchn i i
x' =p=—a—x , +(1—-a)X 6)
\ch ch ch
c,chn Zx; Zx;’c}”’ r.chn r.chn
where « is the factor of color adjustment, g is the factor of brightness
adjustment, x’c’hn and xi o are the same channel of the background
image and the instrument image, respectively. After the adjustment of
color and brightness, the instrument is blended onto the background

by:
=y ox+T-yHox @)

where © indicates element-wise multiplication, .J is a matrix of ones
with the same size as y/. A weak Gaussian blur is applied and the bor-
der is trimmed to restore the outline, and thus finalize the generation of
the synthetic image x*”" and the corresponding mask y*»". Fig. 5 shows
examples of Type-1 and Type-2 synthetic images.

and the blue area is from the instrument image x/. The transition area can be found around the boundary of the instrument on the synthetic image.

Real Image
Original

Type-1 Synthesis
Different Background

Type-2 Synthesis
Different Tool

Fig. 5. Original real images (left), Type-1 synthetic images (center) and Type-2 syn-
thetic images (right). Compared with the real images, Type-1 has different backgrounds
and Type-2 has different instruments.

3.3. Inpainting of backgrounds

As introduced in 3.2, a synthetic image is generated from a labeled
instrument image and a background image. However, it is not always
feasible to find background images in every dataset. Thus, for those
datasets without background images, image inpainting is performed to
generate backgrounds from labeled instrument images.

Fig. 6 shows the procedure of background inpainting. It is similar
to the generation of synthetic images. The difference is that for the
inpainting of backgrounds, an area of background is blended over
the instrument pixels, instead of blending an instrument over a back-
ground. There are 2 types of inpainting, self-inpainting and external
inpainting. First, self-inpainting can be performed by self-flipping or
rotation of the original image (8), if the flipped or rotated mask does
not overlap with the original mask (9):

xt=yrox+@T-yHox ®

yayl =0 9

where x' is the image including instrument, xf.’ is the inpainting back-
ground with instrument removed, y/ is the fusion mask generated by
the method mentioned in 3.2, x/ and yf are the flipped or rotated image
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Fig. 6. Generation of inpainting backgrounds (right). The instruments on the original
images (middle) are removed by self-rotation/flipping or existing backgrounds (left).

x' and mask y/. Flipping can be applied vertically or horizontally, and
rotation can be applied for degrees of 90, 180, and 270.

However, sometimes the masks y/ and y/ always overlap regard-
less of flipping and rotation. In this case, external inpainting can
be performed by randomly selecting another background from the
background pool as a source for the pixels covering the instrument:

=y ox+J-y)ox (10

where x%? is the background (original or inpainting) from the back-
ground pool and the other variables are the same as self-inpainting.
To prevent the rare situation that self-inpainting is not applicable for
all active selected real images in the first active learning iteration,
1 external background should be added to the background pool at
the beginning of active learning. As active learning and generation of
synthetic images proceeds, inpainting backgrounds will be added to the
background pool.

3.4. Active learning

Active learning effectively reduces the annotation burden while
ensuring that the model retains competitive performance with lim-
ited labeled data. The proposed system uses a pool-based AL method
(Fig. 2). The iteration of the active learning is introduced in Section 3.1
and BALD is used as the criterion to query unlabeled images.

The BALD criterion chooses the images which are expected to maxi-
mize the mutual information between predictions and model posterior:

Iy, w|x, D, pin]l = Hly|x, D,y pinl — Ep(wmmm) [H[y|x, w]] 1)

where x is the input image and y is the output label, H[y|x, D,,,;,] and
H[y|x, w] are the entropy (Shannon, 1948) of the prediction P(w|D,,;,)
and distribution P(y|x,®), respectively. D, is the labeled training
data, and @ are model weights. The first term seeks the images which
have high average entropy in the sampled models. The second term
imposes a penalty such that the images on which the models disagree
are kept while overall unconfident images are dropped.

To perform BALD, Monte-Carlo (MC) dropout is performed during
training and inference. The implementation of the BALD criterion on
image semantic segmentation is:

1 1 1
Iy, @|x, Dyygin] & — Z(; Zpi)lo,g(; Zp’c) + Zpi log p, a2)
c t t tc
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Fig. 7. The distribution of BALD acquisition values on unlabeled images (left) and
examples of queried images with the softmax probability masks (right) in early, middle,
and late AL iterations. 395 real annotated images were used in the training and
generation of synthetic images. The segmentation model was retrained for 70 epochs
after each active learning iteration.

where ¢ is the number of classes, T is the number of committee
members (models trained and inferred with MC dropout), and pﬁ is the
softmax probability of the pixel. Examples of BALD distribution and
queried unlabeled images are shown in Fig. 7.

4. Experiments and results
4.1. Datasets

All the images in the 3 datasets below were manually labeled by
experts (attending surgeons and surgical residents). However, ground
truth masks were hidden by default and were provided only when the
images were in the test set or were marked as ‘labeled’.

UW-Sinus-Surgery-C/L Dataset (Qin et al., 2020) contains two
parts: the live dataset (Sinus-Live) and the cadaver dataset (Sinus-
Cadaver). For the Sinus-Live dataset, 3955 labeled images from the first
two videos were used as the training set. And the third video contains
701 labeled images that were used as the test set. 696 background
images were manually selected from the first two videos and pro-
vided to the system when external backgrounds are required. Manually
choosing backgrounds was not as costly as annotating the segmentation
of images. Three non-medical laypersons were asked to select 700
backgrounds out of 20000 images, which took 25 min, 17 min, and
31 min, respectively. All the images were resized and center-cropped
to 240 x 240.

The images in the test set and training set were from different
videos of different surgical procedures. Because there were very few
real images used in some experiments, non-informative images, such
as pure black or white images caused by over-exposure or blocking,
were manually removed from the training set. However, no image was
removed from the test set to ensure that the performance was fairly
evaluated.
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Fig. 8. Example images from Sinus-Live (top) and Sinus-Cadaver (bottom) datasets.

The Sinus-Cadaver dataset was built similarly, collected from 10
surgery videos on 5 cadaver specimens. The training set, test set, and
background set have 2908, 1437, and 597 images, respectively. Due to
the different conditions of each cadaver specimen, the overall appear-
ance of the images can be different. However, none of the recorded
videos show considerable similarity to real surgeries. Humans have
no difficulty visually distinguishing cadaver videos and live videos.
Examples from Sinus-Live and Sinus-Cadaver can be found in Fig. 8.

EndoVis 2017 Robotic Instrument Segmentation Dataset is from
one of the sub-challenges of MICCAI 2017 (Allan et al., 2019). The
images were derived from 10 sequences of abdominal porcine proce-
dures recorded using da Vinci Xi robotic endoscopic surgery systems.
The instruments used include Large Needle Driver, Prograsp Forceps,
Monopolar Curved Scissors, Cadiere Forceps, Bipolar Forceps, Vessel
Sealer, and an ultrasound probe. The selected frames were labeled by
a segmentation team at Intuitive Surgical. Although the videos were
recorded by stereo cameras, only left-eye images were labeled. We used
900 images (225 for each video) with labels, from videos 1-4, as the
training set. 900 images and labels from videos 5-8 were used as the
test set. Due to the long training time of the active learning, the images
were resized to 427 x 240 to reduce computational time.

4.2. Parameters of generation of synthetic images

The workflow of the generation of image syntheses is shown in
Fig. 3. The parameters of the generation of synthetic images were
empirically chosen and applied to all the experiments unless stated
otherwise. (Type-1, Type-2) syntheses per selected real image were set
to (2, 0) without multi-blending for the Sinus-Live and Sinus-Cadaver
datasets, and (0, 1) with multi-blending for the EndoVis 2017 dataset.
External backgrounds were only provided to the Sinus-Live and Sinus-
Cadaver datasets, while background inpainting was only applied to the
EndoVis 2017 dataset. The factor of tool resizing ¢ was set to range
[0.9, 1.2] for all datasets. The movement width w and height 4 were
set to up to 24 pixels, with rotation 6 up to 30 degrees. When blending
instruments on backgrounds, the dilation kernel d was set to 15 pixels
for all datasets, while the fusion blur kernel k was set to range [10, 15]
pixels for Sinus-Live and EndoVis 2017, and range [5, 10] for Sinus-
Cadaver. The factor of color adjustment a was set to range [0.4, 1.0].
A larger « results in a stronger adjustment and 0 means no adjustment.
The range of brightness adjustment g was [0.9, 1.3]. The larger g, the
brighter the adjusted image is, and 1.0 means no adjustment.

4.3. Training details

The segmentation model used in this paper has the same struc-
ture as Qin et al. (2020), unless stated otherwise. This is a modified
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DeepLabv3+ (Chen et al., 2018) encoder-decoder model with Mo-
bileNet (Howard et al., 2017) as the feature extractor. To fit in the
active learning iterations, the learning rate was increased, and the
training iterations were decreased significantly to accelerate the train-
ing, though the accuracy was slightly compromised. Adam (Kingma
and Ba, 2014) was used as the optimizer, and the exponential decay
rates of the 1st and 2nd order moment estimates were 0.9 and 0.999,
respectively. The batch size was set as 16. Because we used different
budgets of the hand-labeled training set in the experiments, for all
the experiments in this paper, the training iterations were 20 basic
epochs plus a compensation of 5/budget(percentage) epochs to ensure
convergence when a small budget is used. For example, epochs were
25 (20 + 5) for 100% real images budget, and 30 (20 + 10) for
50% budget. The segmentation model was retrained for the epochs
after each active learning iteration. The initial learning rate was set
to 0.001 and exponential decay strategy was applied. The backbone
lightweight MobileNet was pretrained on ImageNet (Russakovsky et al.,
2015). Image augmentation was also applied to the training data for
better generalization ability, which includes hue, brightness, saturation,
contrast, flipping, rotation, zooming, and zero-padding.

In the beginning, all the images in the dataset were in the unlabeled
pool and the labels were hidden. For example, if the real-image budget
was 394 images (10% of the Live dataset), then 197 (half) real images
were randomly chosen first, and the rest 197 images were chosen by the
BALD criterion in 3 iterations. Once chosen from the unlabeled pool,
the real images were moved to the labeled pool and their labels were
revealed. Synthetic images were generated with labels naturally.

4.4. Evaluation metrics

Two main evaluation metrics were used in this paper, Dice simi-
larity coefficient (DSC) and intersection over union (IoU) (Taha and
Hanbury, 2015), which are defined as
2|S NG| _1SnG|
IS|+1G17 R
where S is the foreground pixels of prediction, G is the corresponding
ground truth, and | | is the counting operation. To study the effect
of blending and fusion on the performance of segmentation near the
boundary, IoU near boundary (IoUyp) was used as an additional metric,

|ISNG|NnB

|ISUG|NB

where B denotes the near-boundary binary mask with width of 20
pixels band region near the instruments’ boundary. The mean values
of these three metrics are calculated over each test, denoted as mDSC,
mIOU, and mlIoUyg.

DSC =

ToUpp =

4.5. Usage of real images

The performance of the proposed method was evaluated when dif-
ferent annotation budgets were used. Budgets were set as proportions
of the total real images in the training set as introduced in Section 4.1,
from 1% to 100%. For each budget, 4 tests were performed - (1)
randomly chosen training images without synthetic images, (2) BALD
implemented - half chosen by BALD and the other half chosen ran-
domly, without synthetic images, (3) randomly chosen real images with
generated synthetic images, (4) BALD implemented with generated
synthetic images. We also compared the proposed method with baseline
results, which were obtained when the training budget was 100% with
no synthetic images.

The evaluation results of segmentation performance are shown in
Table 1 and method ablation on more budgets is shown in Fig. 9. Each
entry is the average of 5 repetitive tests with different global random
seeds to reduce the influence of randomness, which applies to all the
experiments in this paper. From Fig. 9, it can be seen that by generating
synthetic images with active learning, the performance of segmentation
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Table 1
Segmentation performance with different budgets.
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Budget Proposed Performance (%)
BALD Syn Sinus-Live Sinus-Cadaver EndoVis 2017
mDSC mloU mloUyg mDSC mloU mloUyg mDSC mloU mloUyg

5% X X 69.31 61.83 54.00 68.97 60.57 53.04 76.89 64.50 62.44
v v 72.41 65.86 56.96 75.96 69.12 59.09 81.56 71.09 71.28
20% X X 74.05 66.59 58.19 73.45 65.70 55.58 80.90 70.10 71.16
’ v v 76.78 70.43 61.82 76.58 70.27 60.73 83.05 73.25 73.20
50% X X 77.93 71.26 62.83 75.36 68.31 58.18 81.70 71.04 71.40
’ v v 80.66 74.87 66.30 78.64 72.49 62.49 83.01 73.32 73.45
100% X X 81.35 75.14 66.34 79.42 72.50 62.61 82.50 72.52 74.28
’ X 4 83.64 78.18 70.86 80.28 73.83 62.84 84.04 74.66 74.21

(i) The bold font indicates the best performance in each budget. (ii) BALD active learning is not applicable when the budget is 100%.
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Fig. 9. Evaluation of the model trained by different budgets of real images, with and without active learning (BALD) and synthetic images (SYN). The solid lines indicate the
average over 5 repetitive tests and the shades indicate the standard deviation. The horizontal axes are nonlinear for better visualization. The training on the EndoVis 2017 dataset
did not converge on the 1% or 2% budget because of too few images. Thus, the evaluation of this dataset started at 5%. The baseline result is obtained by training the model on

100% real images (no synthetic images), regardless of budget.

was significantly improved when the budget was small. Compared with
randomly chosen real images and no synthetic images, the average
improvement of the proposed method in mDSC with less than 10%
budgets was 5.31%, 8.15% and 3.41% in Sinus-Live, Sinus-Cadaver
and EndoVis 2017 datasets, respectively. Specifically, the improvement
on the Sinus-Live and Sinus-Cadaver dataset with only 1% budget was
6.67% and 12.20%. Overall, as the budget increased, the improvement
became smaller. However, a considerable improvement could still be
achieved when the budget was 100% of the training set (BALD was
not applicable). The improvement in EndoVis 2017 dataset was not as
significant, but the proposed method began to outperform the baseline
result at only 10% usage of the training set.

Similar trends can be seen in mIoU and mloU near the boundary.
The average improvement of the proposed method with small bud-
gets (less than 10%) was significant in mIoU — 7.11%, 10.02%, and

4.93% in the three datasets, as well as mloUyg — 5.22%, 7.42% and
6.39%. Considerable improvements in mloU could still be seen when
the budget is 100% of the training set — 3.04%, 1.33% and 2.14%.
However, for mIoUyg, only the result of the Sinus-Live dataset showed
improvement (4.52%), while the results of the other two datasets were
similar to the baseline results.

4.6. Number and type of synthetic images and multi-blending

As introduced in Section 3.2, there are 2 types of synthetic images.
For each chosen and labeled real image, Type-1 synthetic images have
the same instrument and Type-2 synthetic images have the same back-
ground as the real image. Multi-blending is also reported in Dwibedi
et al. (2017) to avoid decreased performance caused by the artifact
near the boundary in synthetic images. Thus, this experiment was
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Table 2
Segmentation performance with different types of synthetic images and multi-blending.

Group Syn per real image Performance (%)
Type-1 Type-2 M-blend Sinus-Live Sinus-Cadaver EndoVis
mDSC mloU mloUyg mDSC mloU mloUyy mDSC mloU mloUyg
No synthetic image 71.70 64.19 55.47 69.35 61.81 52.76 79.55 68.06 67.88
1 1 1 74.74 68.24 59.34 73.32 66.89 56.15 81.94 71.77 71.76
0.5 0.5 2 74.64 68.09 60.54 74.30 67.80 58.31 81.47 71.19 71.14
1 2 0 1 76.97 70.47 61.65 76.59 69.93 59.22 81.37 71.14 72.62
1 0 2 74.75 68.50 60.16 75.29 68.45 59.24 81.34 71.35 74.24
0 2 1 75.07 68.67 60.63 71.90 65.77 55.69 82.25 72.03 71.60
0 1 2 76.80 70.38 63.23 72.85 66.44 56.34 82.43 72.46 73.31
9 4 4 1 78.03 72.23 62.96 70.86 65.33 54.84 80.90 70.48 68.50
2 2 2 77.57 71.89 62.91 76.09 70.32 59.67 80.96 70.39 68.57
3 6 6 1 77.42 71.73 61.95 69.90 64.46 54.21 80.43 69.77 66.96
3 3 2 77.91 72.15 62.79 74.90 69.45 58.91 80.95 70.29 67.61

The bold font indicates the best performance in each group. Under Syn per Real Image, the parameters of Type-1 and Type-2 indicate that for each labeled real image selected
by the active learning mechanism, how many Type-1 and Type-2 synthetic images were generated, respectively. A value of 0.5 means that there is a 50% chance to generate a
synthetic image. M-blend value of 1 means that each synthetic image is single and multi-blending is not applied. And M-blend value of 2 means that for each synthetic image

blended by average fusion (4), there is another similar synthetic image blended by Gaussian fusion (5).

performed to study the effectiveness of the 2 types of synthetic images
and multi-blending. To better compare the results, the experiments
were separated into 3 groups. Each group tested the same number of
generated images per real image. For example, in Table 2, tests in
Group 2 featured 8 synthetic images for each queried real image —
Q2[Type — 11 + 2[Type — 2]) X 2[Multi — blending]. Consequently, tests
in each group had the same number of training iterations to ensure
that the model was trained for the same fixed number of steps. To
ensure convergence, instead of keeping training iterations, the training
epochs of Group 2 and 3 were the same as Group 1 so that the training
iterations of Group 2 and 3 were 4 and 6 times larger compared to
Group 1, respectively. The annotation budget was fixed at 10% of the
training set.

The results are shown in Table 2. In Group 1, for the 2 sinus surgery
datasets, the best performance on mDSC and mloU was achieved by 2
Type-1 synthetic images, while the best performance on mIoUyg was
achieved by 1 Type-2 image with multi-blending on the Sinus-Live
dataset, and by 1 Type-1 image with multi-blending on Sinus-Cadaver
dataset. For the EndoVis 2017 dataset, 1 Type-2 image with multi-
blending gave the best result on mDSC and mloU, and 1 Type-1
image with multi-blending gave the best result on mIoUyg. In Group
2, although the training steps were increased significantly compared
to group 1, a decrease in performance could be seen in the Sinus-
Cadaver and EndoVis 2017 datasets. Within the group, there was little
difference in results with and without multi-blending on the Sinus-
Live and EndoVis 2017 datasets. However, multi-blending increased the
performance significantly in the Sinus-Cadaver dataset. A similar trend
was observed in Group 3. Although no considerable difference was seen
on mDSC and mloU in Sinus-Live and EndoVis 2017 dataset by applying
multi-blending, an improvement was observed on mIoUys.

4.7. External backgrounds

For the proposed method, backgrounds can be generated by in-
painting from labeled instrument images or be provided from exter-
nal backgrounds. This experiment studied whether providing external
backgrounds can help with the segmentation result. The tests were
separated into 4 groups according to the budget of real images. In
each group, there are 4 sub-tests. One test only used real images to
train the segmentation model without synthetic images. The remaining
3 sub-tests were all supplemented with synthetic images (BALD imple-
mented). The only difference was how the backgrounds were provided.
Because no external backgrounds (frames without instruments) could
be found in the EndoVis 2017 dataset, all synthetic images for this
dataset had to be generated from inpainted backgrounds. Thus, only
the two sinus datasets were used in this experiment.

Sinus — Live Sinus — Cadaver

65 —— External + Inpaint
--- External
------ Inpaint
—-= No Syn
Baseline

60

55 55
39 (1%) 395 (10%) 1977 (50%) 3955 (100%) 29 (1%)
Budget

290 (10%) 1454 (50%) 2908 (100%)
Budget

Fig. 10. Segmentation result (mDSC) with different backgrounds. The baseline result
is obtained by training the model on 100% real images (no synthetic images).

The result in Fig. 10 (mDSC) shows that including external back-
grounds improved the performance significantly when few real images
were used (1% of the training set). For the Sinus-Live dataset, compared
with no external backgrounds, the improvement was 2.77%, 2.89%
and 1.93% in mDSC, mIOU and mloUyg, respectively. For the Sinus-
Cadaver dataset, the improvement was 4.02% (mDSC), 4.86% (mIOU)
and 1.74% (mlIoUyg). However, when a greater proportion of real
images were used, the improvement was less considerable. For the
Sinus-Live dataset, when 100% of the labeled real-image training set
was used, the improvement was 0.52%(mDSC), 0.70%(mIOU) and
0.60%(mIoUyg). But for the Sinus-Cadaver dataset, although improve-
ment could still be seen in mDSC and mIOU with external backgrounds,
a decrease in performance was found in mIoUyg(—0.99%).

4.8. Comparison with state-of-the-art

Fig. 11 presents a performance comparison of our proposed method
with state-of-the-art techniques. On the Sinus-Live dataset, the pro-
posed method outperformed GAN-based approaches (Su et al., 2021;
Lin et al., 2020) with less annotated data used. The proposed method
also achieved close performance with fully-supervised learning (Lin
et al., 2021).

ResNet50 (He et al., 2016) and MobileNet (Howard et al., 2017)
were used as the backbone model to evaluate the performance of
the proposed method on the EndoVis 2017 dataset. With ResNet50
backbone, a small training set of 45 labeled images, and no other
additional human efforts such as acquiring pseudo labels, our approach
achieved competitive performance among the state-of-the-art unsu-
pervised and semi-supervised learning approaches (Liu et al., 2020;
Sestini et al., 2023; Ross et al., 2018), as well as the generation of
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Fig. 11. Comparison of segmentation performance with state-of-the-art approaches.
Sinus-Live dataset: CycleGAN (Su et al., 2021), LC-GAN (Lin et al., 2020), and fully
supervised MFFA (Lin et al., 2021). EndoVis 2017 dataset: AGSD (Liu et al., 2020),
FUN-SIS (Sestini et al., 2023), PAT-Ext (Ross et al., 2018), Multi-blending and Mix-
blending (Dwibedi et al., 2017; Garcia-Peraza-Herrera et al., 2021). Evaluation metrics
(mDSC or mloU) are chosen based on the commonly used ones in the compared
methods. Note that LC-GAN used annotated images from the cadaver dataset and FUN-
SIS used annotated images from other existing datasets. Multi-blend and Mix-blend
methods used 14 180 auto-labeled instrument foregrounds to generate synthetic images.
For the Sinus-Cadaver dataset, to the best of the authors’ knowledge, no unsupervised,
semi-supervised, or GAN-based learning methods were reported at present.

Ground Truth
Syn

Real

Syn Real
Score

Fig. 12. Confusion matrix of the image review result from 3 expert surgeons. 200
synthetic and 100 real images were reviewed. For each image, experts were asked to
choose whether the image was more likely to be ‘real’ or ‘synthetic’.

synthetic images (Garcia-Peraza-Herrera et al., 2021). Compared to the
accuracy of 50% supervised learning using 900 labeled images reported
in AGSD (Liu et al., 2020), our method achieved better accuracy using
450 labeled images, and had a close performance as the fully supervised
training in AGSD. When using MobileNet as the backbone model, our
proposed method did not achieve the best accuracy of segmentation.
However, compared to ResNet50, this lightweight model had faster
training and inference speed and could be suitable if efficiency is a
priority or computational resources are limited.

4.9. Realism of synthetic images

The proposed method generates synthetic images by placing in-
strument sprites according to multiple parameters including scaling,
translation, rotation, blending, and color adjusting. To generate various
synthetic images, these parameters are randomly chosen in relatively
wide ranges. Some of the parameters (particularly edge blending) can
affect the level of image realism apparent to humans.

To study how human-perceived realism impacts learning perfor-
mance, the realism of the synthetic images needed to be evaluated.
Three expert sinus surgeons participated in this experiment and per-
formed a review of images. 100 real and 200 synthetic images were
randomly chosen and generated from the UW Sinus-Live dataset. These
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Table 3
Segmentation performance with different syntheses realism.

Dataset Images Performance (%)

Real Syn mDSC mloU mloUyg
Baseline 100 0 62.51 55.89 48.35
More Realistic 100 107 68.04 61.15 55.22
Less Realistic 100 107 70.28 63.35 57.69
All 100 200 68.60 62.30 57.08

images were shown to the participants and they chose whether the
image appeared ‘real’ or ‘synthetic’. Thus, the realism of a synthetic
image could be evaluated by how many times it was considered ‘real’
by an expert (Fig. 12). Examples of the synthetic images that were
unanimously rated real (3 of 3) and not real (0 of 3) are shown in
Fig. 13.

In the review results, 10, 31, 66, 93 synthetic images received 3, 2,
1, and O realism scores, respectively (Fig. 14). To study the effectiveness
of different levels of realism in synthetic images, 4 training datasets
were formed: (1) Baseline: only the 100 real images; (2) More realistic:
100 real images and 107 synthetic images with at least 1 ‘real’ rating;
(3) Less realistic: 100 real images and 107 synthetic images (93 with 0
‘real’ rating, and 14 with 1 ‘real’ rating, randomly chosen to compensate
the size and thus the training iterations were the same); (4) All images:
all 100 real image and 200 synthetic images.

The performance of models trained by these 4 training sets ( Ta-
ble 3) suggested that training with more realistic synthetic images
or less realistic images had similar performance. The less realistic
dataset slightly outperformed the more realistic dataset by 2.24%,
2.2%, and 2.47% in mDSC, mIoU, and mlIoUyg, respectively. Including
all synthetic images achieved medium performance.

To further explore the impact of human-perceived realism on train-
ing effectiveness, feature extraction based on DINO (Caron et al., 2021)
was performed on real images in the training and test set, as well
as more and less realistic synthetic images. Augmentation was also
applied, the same as the training of the segmentation models in this
paper (details in Section 4.3). Then a principle component analysis
(PCA) was followed to reduce the extracted features to 2D for easier
visualization, presented in Fig. 15. In this PCA subspace, less realistic
images displayed a marginally greater variety than their more realistic
counterparts. In Fig. 15, the average distance of each image in the
test set to the closest image in the more realistic training set was
3.217, while the distance of the less realistic training set was 3.211.
In comparison, this average distance for the training set with only
real images was 3.353. Thus, this experiment suggested that although
the proposed copy-and-paste method could generate human-perceived
unrealistic images, these images could still contribute to the training
and enhance the variety of the training data.

5. Discussion

In this paper, we studied the use of image syntheses directed by
active learning to improve the performance of surgical instrument
segmentation. The results of the study on real image usage indicated
that the proposed method improved the performance of segmentation
significantly, especially when few real labeled images were used. With
10% real images budget combined with actively generated synthetic
images, the performance of segmentation was comparable to using 50%
of real images without synthetic images, cutting manual labeling effort
by 80%. The performance of the proposed method was comparable with
the baseline result (using 100% of the hand-labeled training set) when
using only 50%, 75%, and 10% of hand-labeled data when evaluated on
the Sinus-Live, Sinus-Cadaver and EndoVis 2017 datasets, respectively.

For the sinus surgery datasets, Type-1 synthetic images (the same
instrument as the real image but with a different background) slightly
outperformed Type-2 synthetic images (different instruments but with
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Fig. 13. Examples of the most realistic synthetic images that received 3 out of 3 realism ratings (top), and less realistic synthetic images received 0 out of 3 realism ratings
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Fig. 14. Realism ratings from the image review. Synthetic images with 1 or more
realism ratings are considered ‘more realistic’, and otherwise ‘less realistic’, as the
yellow line indicates.
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Fig. 15. Principle component analysis on extracted features of real images in the
training and test set, more realistic synthetic images, and less realistic synthetic images,
corresponding to Table 3. Despite that less realistic synthetic images expand the
training set slightly better than more realistic synthetic images, the distributions of
the two image sets are close. This is notable considering their significant differences
in human-perceived realism, as depicted in Fig. 13.

10

the same background). Although multi-blending made no major im-
provement in overall performance, it improved the segmentation near
the boundary. In addition, too many synthetic images were observed to
decrease the performance (Group 3 of Table 2).

We varied the method of generating background images between
inpainting the space occupied by instruments, and using original video
frames that contained no instruments (external backgrounds). The use
of external backgrounds improved the performance significantly when
the annotating budget was extremely small, without adding much
workload. Because manually selecting background-only frames from
surgical videos requires no expertise and is not as time-consuming
as labeling the instruments, especially when different parts of the
instruments have different labels, adding external backgrounds is an
efficient way to improve the segmentation with small numbers of
labeled images.

6. Conclusion

Motivated by alleviating the experts’ workload of annotating for
instrument segmentation in endoscopic images, we propose the use
of actively generated synthetic images to reduce the need for labeled
real images while having comparable performance. When training seg-
mentation models, the proposed method selects the most informative
unlabeled images, then annotates these images and generates synthetic
images based on the selected real images. Thus, a more diverse training
set is formed by labeled real images and synthetic images, which results
in considerable improvement in performance compared with using real
images only, especially when the budget for annotating “new” images
is small. The proposed method utilizes and combines active learning
and generation of synthetic images to reduce the usage of real labeled
images, and can be flexibly applied to different segmentation models
and datasets, with different active learning criteria.

The current framework is limited to binary segmentation. In the
future, we plan to generalize the proposed method to semantic segmen-
tation among different instruments and parts. We also plan to further
explore the relationship between realism to humans and effectiveness
to artificial intelligence. There are many factors affecting the realism of
synthetic images, and the influence of these factors on machine learning
performance remains to be discovered.
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