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Abstract— This paper proposes a modified method for train-
ing tool segmentation networks for endoscopic images by pars-
ing training images into two disjoint sets: one for rectangular
representations of endoscopic images and one for polar. Previ-
ous work [1], [2] demonstrated that certain endoscopic images
may be better segmented by a U-Net network trained on the
original rectangular representation of images alone, and others
performed better with polar representations. This work extends
that observation to the training images and seeks to intelligently
decompose the aggregate training data into disjoint image sets
— one ideal for training a network to segment original, rect-
angular endoscopic images and the other for training a polar
segmentation network. The training set decomposition consists
of three stages: (1) initial data split and models, (2) image
reallocation and transition mechanisms with retraining, and (3)
evaluation. In (2), two separate frameworks for parsing polar
vs. rectangular training images were investigated, with three
switching metrics utilized in both. Experiments comparatively
evaluated the segmentation performance (via Sgrenson Dice
coefficient) of the in-group and out-of-group images between
the set-decomposed models. Results are encouraging, showing
improved aggregate in-group Dice scores as well as image sets
trending towards convergence.

Index Terms—tool segmentation; endoscopy; image process-
ing; robot-assisted minimally invasive surgery; U-Net

I. INTRODUCTION

Laparoscopic keyhole surgery presents many important
benefits over open surgery, including but not limited to de-
creased patient pain and healing time. With the incorporation
of a teleoperated, highly-articulated surigcal robot, additional
benefits can be realized. These include potential for remote
operations, improved surgeon control (e.g. scaling of sur-
geon motions), and intelligent augmentations such as jitter
reduction to name a few. However, perception and situational
awareness can be compromised due to constrained fields of
view, the dynamic surgical scene, combined with lack of
realistic force feedback. It is envisioned that computer vision
may be able to help remedy several of these drawbacks,
including providing haptic feedback. The first step towards
that end is separation of background tissue pixels from tool
pixels, i.e. semantic image/tool segmentation [3].
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A. Related Work

1) Tool Segmentation: Tool segmentation serves a fun-
damental role in RMIS [4]. It provides basic informa-
tion to support robot automation and scene recognition in
surgery [5]. Surgical instrument tracking and segmentation,
which could inform precise navigation, are essential steps
in computer-assisted surgical systems [6], and potentially
inform haptic feedback, which may optimally guide surgeons
in minimally invasive surgery [7], [8]. Previous studies on
surgical telemanipulators conclude that the lack of haptic
(especially tactile) feedback is one of the major limitations
of computer-assisted surgical systems [9]. Accurate isolation
of tools and correct positioning stands to greatly improve
performance in robot-assisted operating rooms. Traditional
approaches first transform input images into a more complex
feature space that considers both color and texture, then
apply feature extraction and selection to segment surgical
instruments from surrounding tissue [10]. Robot kinematics
can also provide a useful prior for segmentation approaches
[11], [12]. A widely adopted segmentation network used in
the biomedical imaging field is the U-Net [13]-[15].

Original Cartesian Image Transformed Polar Image

N

Fig. 1. A side-by-side comparison of a sample endoscopic image (left)
and its polar approximation (right) about the image center (green dot). The
white outline shows the ground truth border of the surgical tool. Note that
the target shape post transformation more closely resembles a rectangle.

2) Morphological Transform for Tool Segmentation: The
authors’ previous work investigated spatially rearranged en-
doscopic image data via a polar transform approximation
[1]. This approach is based on the observation that rigid and
straight laparoscopic tools, which appear as wedges under
perspective projection, typically end near the image center
where tool-tissue interaction is most likely to occur. (see
Fig. 1), and that image segmentation kernels are rectangular
in shape. Other biomedical segmentation methods have also
utilized a polar transformation, for example, for isolating the
optic disk from retinal imaging [16], [17].
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Fig. 2. An overview of the overall workflow of the experiment including the initial group allocation, checkpoint-based training, strategic score generation,

switch tendency selection, and migration framework selection.

In a follow-up study by the authors, a novel transformation
was proposed that allowed the polar transform center to
deviate from the image center [2], and automated tool-tip
and vanishing point detection methods were used to generate
suitable transform centers. Previous research found that some
images were better recognized by models trained on polar-
arranged images, despite both polar and rectangular models
being trained on the same datasets. It is hypothesized that
if certain testing images are more suited to one model
type, training images should also be similarly categorized.
Decomposing the aggregate training dataset into two disjoint
sets for training polar and rectangular models is a major
modification of the authors’ previous methods and is the core
motivation for the research presented here.

B. Contributions

This paper presents and evaluates a novel method for
decomposing endoscopic image datasets into two categories
for the purposes of training tool segmentation networks.
As shown in Fig. 2, the separation aims to enhance the
segmentation performance by training two separate networks:
(1) using polar-approximation and (2) original rectangular
image spatial representations. To the best of the authors’
knowledge, this work is the first to present simultaneously:

1) a method for iteratively decomposing training images
into two distinct sets for polar and rectangular image
segmentation networks;

two distinct image migration frameworks - (1) Dynamic
Flow Mp, and (2) Probability-Based Flow Mp - for
transferring or parsing images between iterations;

a comparative evaluation between the various models
trained with the aforementioned decomposed data sets.

ii)

iif)

II. METHODS
A. System Hardware

All training and evaluation of segmentation networks were
implemented on a machine equipped with an Intel Core
19 24-core processor with 64GB DDR4 RAM, NVIDIA
GeForce RTX 4090 graphics card, and running Ubuntu

20.04.3, 64-bit operating system. Both training and test-
ing were executed using hardware acceleration with GPU-
runtime as specified by the system hardware to improve
training speed.

B. Dataset

The data used in this work were obtained from the Univer-
sity of Washington Sinus Surgery Cadaver/Live Data set [18],
[19]. Images were obtained using the Karl Storz Hopkins
4mm 0°endoscope and Stryker 1088 high definition camera
at 30 frames per second. Images were captured from real
surgeries (live and cadaveric) with smoke, blood, occlusions,
reflections, motion blur, and other features of real endoscopic
imaging. Furthermore, the dataset is labeled, with binary
masks of tool pixels manually annotated by an expert. Images
are 256 x 256 pixels with 8-bit depth in three color channels,
i.e., full color. A total of 7404 images comprise the datatset.

C. Polar and Cartesian/Rectangular Models

All the training data were split randomly into two groups
to initialize the process. These groups will be denoted:

1) Gpp,, the set of images for training the model to
segment polar formatted images in iteration ¢;

2) Gcp,, the images for training the model to segment
rectangular/Cartesian formatted images in iteration .

The size of the initial split is 3702, which is half of the
size of the entire training set. Thus, to start

|GPD0| = |GCD0‘ = 3702

As iterations progress, the set cardinalities may begin to vary
with images potentially switching training groups.

1) Group Based K-Folds: Polar models are trained on
images and labels in polar representations, as described
in [2]; Cartesian models are trained on images and labels
in the original rectangular format. After each round of
training (elaborated in Sec.II-C.3), the input groups Gpp
and G¢p are reassessed based on the implemented migration
framework (Sec.II-E).

To quantify the performance of images in their own
category (Gpp, or Gcp,) while reducing bias, a 5-fold
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cross-validation method was implemented. The five folds
were assigned randomly. Therefore, the polar (Gpp) and
Cartesian (G¢p) image-label pairs were each used to train
five models. Together, 10 independent models per iteration
were trained. Each image appears as part of the training set
in four out of five models within its own category (in-group.

2) U-Net and Hyperparameters: The U-Net image seg-
mentation networks implemented in this experiment were
trained using the dice coefficient loss function, Dy. Sup-
pose Y7 and Yp are the tool pixel counts in ground truth
and segmentation prediction images respectively. The dice
coefficient loss is computed as:

Q[YT N Yp] + S

Dp=1-
k Yr+Yp+ S

ey
, where S is a smoothing component = 1 to prevent dividing
by zero [2]. The learning rate was set to 1 x 10, and an
Adam optimizer was used.

The models with the same input type were trained using
the same hyperparameters and evaluated against the same
labels. Different augmentation parameters were used in the
Keras API depending on the model group type (Gpp or
Gcp). For models Gpp type models,occasional horizontal
and vertical flips are allowed; whereas G p models enabled
an additional random rotation up to 360 degrees.

3) Checkpoint-based Training: The authors implemented
a dynamic training method in response to challenges achiev-
ing consistent convergence using traditional methods with a
fixed number of epochs. This method involves training for
five epochs per round (each with 100 steps) and monitoring
the loss to save the best-performing epoch as a checkpoint.
If a checkpoint is saved, training continues; otherwise, the
last checkpoint’s weights are used. Training restarts with new
weights if there is no improvement after three rounds and 50
attempts. The process ends after 20 rounds.

D. Evaluation

Each image was used to train four out of 10 models,
making it a valid test image for the remaining six models.
Consequently, each image generates six dice scores when
evaluated against these models. For instance, an image from
Gcp will be tested against the single in-group model not
trained with that image, and the five out-of-group models
from G pp. This results in six separate predictions per image:
one in-group and five out-of-group. As illustrated in Fig.3,
the in-group score is denoted D;,, and the five out-of-group
scores are lumped into the variable D,,;.

Unlike during training, G pp predictions in the evaluation
phase are transformed back to rectangular-representation
space [2] (this process is not lossless) to compare against
the Cartesian ground truth. Furthermore, since endoscopic
images have circular shaped image content, the black
border pixels of the rectangular images are not considered.
Therefore, a modified dice score Dpsoq is generated only
taking into account the relevant pixels:
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Dwroa = 2)
, where Prp = 14616 is the number of irrelevant pixels.
The final dice score is calculated as the average dice score
of foreground and background.

E. Migration Frameworks

After each training round, the goal is to determine which,
if any images should switch from Gpp to Gep, or vice-
versa, for the next training round. First, a switching score St
will be calculated for each image based on the six evaluation
dice scores for that image. Three algorithmic variations of
St were explored:

STMax maX(Dout) — Dy, (€))]
ST]Wea mean(Dout) — Dy, 4)
ST]\/Ied = media‘n(Dout) —Dip 5)

The intention is that an image is more likely to switch groups
if St is high.

To achieve this, two migration frameworks were investi-
gated, each imposing a slightly different constraint on the
image transfers between Gpp and G¢p. Note that for both
frameworks, each of the three St variations (Eq.3-5) were
tested.

1) Dynamic Flow (Mp): A heuristically tuned threshold
Tiwiten € [0, 1] is applied to St for each image. Since there
is no constraint on the number of candidate images pending
migration from Gpp to Gep or vice versa, |Gpp| and
|Gepl| can vary.
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2) Probability Based Flow (Mp): In this framework, each
image has a migration probability P;, where ¢ denotes the
round index, and Py = 0.5. After each training round, P; is
updated to P;y; based on equation (6).

Pi+1 :Pz X (1+ST) (6)

At the end of the i training round, the image has a P;
probability of migrating groups. Note that as opposed to M p,
which utilizes a hard threshold for switching groups, Mp
simply updates the transition probability of each image. This
highlights the stochastic nature of this framework.

III. RESULTS AND DISCUSSIONS
A. Aggregate Performance

The overall performance of the training can be summa-
rized by the Area Under the Curve (AUC) of D;, over the
12 training rounds examining the plots of Dice Score vs.
Image Index, as shown in Fig. 4. The in-group analysis of
maximum normalized AUC is shown in Table I, where the
AUC is calculated by summing all 7404 in-group scores and
dividing by the total area 7404, as shown in (7). These scores
correspond to the D;,, plots shown in Fig. 4.

AUC:N><1

)

TABLE I
OVERALL PERFORMANCE

Maximum AUC of in-group scores

St STatan SThseq STared
~
§ E Mp | 0.851630460 0.816038652  0.844494048
5| 48
g é) Mp | 0.817996301 0.812301844  0.813608189
sy

Table I shows that Mp using switching score St,,, .
generates the best overall grouping performance after 12
roundsm while and the Mp using switching score St,,.,

results in the worst AUC. Within the same migration frame-
work, Sr,,., overall produced the least favorable Dice
scores, with this observation being most noticeable in frame-
work M p.

B. Segmentation Performance Progression

Figure 4 shows the D, (left two columns) and D,
(right two columns) of all images sorted in ascending order.
The iteration rounds R1-R12 are color-coded from purple to
yellow. Meanwhile, D;,, improvements of Gpp and Gop
images between the start and end of the checkpoint-based
training process are illustrated in Fig.5. Lastly, as shown in
Fig.7, D,,, and the spread/median of D,,; is compared for
each of the two migration frameworks.

1) Evolution of Dy, and D,,;: Proper sorting of image
groups, G pp, Geop, is hypothesized to result in increased in-
group score D;,, and simultaneously decreased out-of-group
performance, D,,:. This is generally observed in Fig. 4,
with the stark exception of framework Mp using switching
score St,,.,. Framework Mp and score St,,,. exhibited this
behavior the most. Generally, framework M demonstrated
the desired D,,, and D, evolution more than Mp. Finally,
as illustrated in the inset graphs of Fig. 4, the best performed
combinations, Mp 4z /med> sShow the widest spread across
training rounds at which the D,,; performance jumps occur.

2) Group-Specific D;, Improvements: Figure 5 shows
both initial (data points) as well as 12 round (trace)
dice scores, and this delta is shown with grey bars. From
this, it is observed that Gpp images showed general in-
group improvement over time, as shown by the length and
density of vertical lines. This contrasts with the sparseness
of grey bars in the G¢op plots, Meanwhile, both Gpp and
Gcp exhibit tremendous in-group improvement in the best
12" round performing images. Interestingly, framework M p
using switching score St,,,, showed sparser D, improve-
ments compared to its Gpp counterparts.

3) Out-of-Group Score Variation: Figure 7 shows the
variation of D, in the 12" and final round. Framework
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the Gpp and G p images are respectively shown as red and blue.

Mp using switching scores St,,.. and St,,., showed the
least variation of D,,; in the last round. These conditions
also yielded both the least overall D,,,; score, yet the greatest
difference between in-group and out-of-group performance.

C. Image Group Migration Dynamics
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Fig. 7. Comparisons of the sorted (ascending) D, the sorted median of
Dout, and its spread for each migration algorithm.
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The group image count and D;, performances of each
group (G pp and G¢p) are visualized as a heatmap in Fig.6.
Furthermore, a Sankey diagram, as shown in Fig.8, illustrates
inter-group image transfers.

1) Group Heatmaps: Examining Fig. 6, for all algorithms
except framework Mp using St,,.,, a decreasing trend in
|Gcp| and complementary increase in |G pp| was observed.
Among them, Mp with Sz, . and St,, , show a prodigious
migration of images between rounds. In contrast, M p with
Sty.. barely exhibits group size variation.

2) Image Migration: Considering the Sankey diagram,
framework Mp with St,, . shows the least image transfer
across all methods. The stochastic nature of Mp could
account for the more prevalent image flow between groups
as compared to Mp. With that said, Mp exhibits a general
decrease in image transfer as rounds progress (most obvious
in St,,,. and St,, ), suggesting eventual convergence.
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Fig. 6.

Grouped D;,, heatmaps across the 12 training rounds.
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IV. CONCLUSION

This paper proposes a novel method for decomposing
endoscopic image datasets for tool segmentation to create
specialized training sets for polar and rectangular image rep-
resentations. It explores two migration frameworks, M p (Dy-
namic Flow) and Mp (Probability-Based Flow), along with
three variations of switching scores to determine the ideal
method for transferring images between training groups.

Findings indicate that the combination of Mp with either
the maximum, St,,,., or median, St,,, ,, switching score
calculation method delivers superior performance. These
configurations exhibited:

« increased aggregate performances in-group scores;

« substantial images migration between Gpp and Gop
groups, along with distinct differences between in-group
and out-of-group scores;

« decreasing rates of image transfer over rounds, suggest-
ing potential convergence.

In contrast, switching score St,, ., performed least fa-
vorably, particularly when combined with Mp. This work
highlights the potential of tailoring training sets to the
distinct spatial representations within endoscopic images,
and could enable improved segmentation performance for
robotic-assisted endoscopic procedures.
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