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BIG DATA: AT-SCALE METHODS AND APPLICATIONS

Homophily and Community Structure at Scale: An Application to
a Large Professional Network"

By JUAN NELSON MARTINEZ DAHBURA, SHOTA KOMATSU, TAKANORI NISHIDA, AND
ANGELO MELE*

Professional and business networks are an
important determinant of labor market outcomes
and efficiency. We study the emergence of such
networks, using anonymized data on over 30,000
users of Eight, a contact and career management
app with over three million users in Japan.

Our empirical analysis is guided by a struc-
tural model of network formation with observed
and unobserved individual heterogeneity. In our
model, users are first randomly assigned to one
of a finite number of unobservable types. The
network is then formed sequentially, as users
randomly meet and establish business connec-
tions based on their benefits and costs of form-
ing, maintaining, and deleting a link.

The Eight data offer a unique view into
the mechanisms behind the formation of
face-to-face professional networks at scale,
since the exchange of business cards is a tradi-
tional business practice in Japan. Eight’s users
have access to a mobile app to scan and manage
the business cards they receive and to become
contacts within the Eight professional network.
We use these links and (some) individual covari-
ates as our network data.

We overcome several computational chal-
lenges that plague these structural models by
using a highly scalable two-step estimation
method. The first step makes efficient use of
the sparsity of the network and information
on observable characteristics to recover the
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unobserved types, through computationally
convenient approximations of the likelihood
function. In the second step, a pseudolikelihood
estimator recovers the structural parameters of
the utility functions, given the estimated unob-
served heterogeneity.

Our results bring light into the role of
homophily and shared professional contacts on
the emergence of business networks.

I. Model

We model the Eight users’ decisions to form,
maintain, and delete links. Individuals are char-
acterized by a vector of observables x; and unob-
servables z;, both with finite support. Each user
belongs to one of K types, soz; = (1, --- »Zik)
and user i belongs to type k if z; = 1. The net-
work is described by the (symmetric) adjacency
matrix g, with entries g; = 1 if users i and j
are linked and g;; = 0 otherwise. The utility for
user i from network g is given by

Ul(g) - X;gU(uUJ'_ Z.gjrgrivijr),
j=

riy

where w; = ull == o, + 221 B, Lo, =x,)
if Zi= Zj and I/tl] = MZ =y + Zﬁzlﬁhpl(xipzxm)
if z; # zj, and where v, = vif z; = z; = z,
and vy, = 0 otherwise. In this formulation, u;;
is the net utility of forming a direct link between
i and j, including both costs and benefits of each
link, and v;;, is the payoff that i receives because
of the common connections with j. In our spec-
ification, we allow u; to depend on observables
and unobservables, and v;;, is normalized to 0
when considering users of different unobserved
types.

The types z;’s are randomly assigned at time
t = 0 and do not change over time. Links
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are formed sequentially, and in each period
t = 1,2,..., we have the following:

(i) Users i and j meet with probability

(ii) Users i and j observe a logistic matching
shock ¢, iid among players and time.

(iii) Users i and j decide whether to form or
delete the link g; by maximizing their
joint surplus.

Mele (2022) and Dahbura et al. (2021) show that
under mild assumptions and conditioning on the
unobserved types z, this network formation pro-
cess leads to a long-run equilibrium distribution
of networks ﬂ(g,x,z; 9),

O i
1) n(gx.z0) = 1[4 € ,
(1) (g ) i1 Ckk [Z>k i1+ el

b
where Ai' = Zikzﬂg,-ju,-j,

Qkk - Zzzlkzjkglj<ulj + ? Z Z)kg/rgrt>’

i=1j r#iyj

and ¢y = ),egexp(Q). This shows that
the likelihood of observing a network g can be
decomposed in within- and between-type like-
lihood contributions. The between-type likeli-
hood consists of independent links because the
externality Vijr is normalized to zero, while the
within-type likelihood consists of K indepen-
dent exponential random graphs.

II. Scalable Two-Step Estimation

We take a random effects approach and
assume that z;’s are independent from observ-
ables and the network,

(2) ‘IKJ’ pr]( )

Let L(g,x,z,@,n) ::p,](z)w(g,x,z;G), SO com-
plete log-likelihood is

(3) E(g,x;@,n) = logEIZL(g,x,z,H,n).

z€
Estimation of this model is challenging for
two reasons. First, the likelihood w(g,x,z;@)
is proportional to a normalizing constant that is
impractical or infeasible to compute. Second, the

Multinomial(l;m, e 77,().
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complete likelihood involves integrating over all
possible unobservable block structures z, which
is also impractical.

We therefore perform approximate infer-
ence based on an approximation of the like-
lihood (3). We exploit the fact that our model
corresponds to a stochastic block model when
v = 0. Indeed, most of the links are across
blocks, while the contribution to the likelihood
of the within-type links is small. Therefore,
we estimate the types assignments using the
approximate stochastic block model likelihood,
setting v = 0 for the community discovery step
(Babkin et al. 2020). Let Lo(g,x,z,a,ﬁ, 77) =
py(z)m(g.x.z20.3,7y=0), so we have
L(g,x,z, 6,7)) ~ Lo(g,x,z,a,ﬁ,n). To estimate
the stochastic block model, we use a variational
mean-field approximation approach (Bickel
etal. 2013; Babkin et al. 2020). This amounts
to finding the approximate multinomial distri-
bution g¢(z) = []it14¢(z;) that minimizes
the Kullback-Leibler divergence from the
true likelihood; we thus obtain a lower bound
ly ( g.x,a,3,m€ ) to the log-likelihood

L(g.x:0.n) ~ logz;LO(g,x,z,a,ﬂ,n)
ze
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where 7 (x) is the probability that i and j of
type k and [ are connected. Maximizing the
lower bound £p(g,x, v, 3,1; f) is still computa-
tionally intensive for a large network; thus, we
resort to a minorization approach first proposed
in Vu, Hunter, and Schweinberger (2013). A
iteration s 4+ 1 of the algorlthm we ﬁnd the §
that maximizes the minorizer M (f 'S ) of the
lower bound
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The maximization of M (5,5 (‘*)) amounts to the
solution of n independent maximization prob-
lems, amenable to massive parallelization. The
update rules for &, 7, and 7 (x) follow

g0t —argmaxM(§§ )

nft!) = 126 ),

(S-H)( ) L :l:] Zj;ﬁigl(s-'—l
Tkl Zn

s+] l{gU’Xz]}
Hé[é-lﬁLl é—thl I{XU}

for k,1=1,....K, where x;= {X1jjs---sXpij}
and x,; = l{x = Xj,}- Once this variational
expectation-maximization (EM) algorithm has
converged, we assign Z according to the modal
type of each node. Given the estimated types 2,
we then estimate the structural parameters 0 =
(a, 3, 7) using a pseudolikelihood estimator.
Let pjj and p7 % be the conditional probabilities of
links w1thm and between-type, respectively:

pz] - A(“l} =+ u]z + 4ryzll]rg]rgzr>
riy

ph = Aluf+uf),

where A(u) = e"/(1 +e") is the logistic
function and [, = 1 if z; = z; = z,. The
pseudolikelihood estimator solves

Op; = argmaxZZ[ ilogp;

i=1j>i
+ (1= gg)log(1 — py)]

with p; = pji if z; = z; and p; = pg» other-
wise. Asymptotic theory for this estimator is
contained in Boucher and Mourifie (2017).

III. Data and Results

We use anonymized data on business card
exchanges among users of Eight who have
agreed to the terms of usage of the service.
Users upload their own business card when cre-
ating their profile, which allows us to observe
information about them as well as their business
connections with other users. We employ infor-
mation on the user’s geocoded location based
on the address in their business card. We map
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FIGURE 1. THE EIGHT MOBILE APP

Notes: The Eight mobile app allows users to scan phys-
ical business cards employing the smartphone’s camera.
High-quality digitization is achieved through the usage of
advanced optical character recognition algorithms and the
help of human operators.

the coordinates to an index of the H3 indexing
system,! which represents a tile of roughly 5.17
squared kilometers. We also employ data on
their occupation type and the industrial classifi-
cation of the company they work for. The rest of
the analysis is performed on a subnetwork con-
taining only users located in Tokyo. We employ
k-core decomposition to extract the connected
component that exhibits a minimum degree of
10. The resulting graph is formed by 30,323
nodes and 321,188 edges. Most users in the data
are employed in companies in the technology
(22 percent) and consulting (14 percent) indus-
tries. The most common occupational categories
are sales-related positions (17 percent) followed
by company directors (15 percent). We also
observe a large degree of geographic concentra-
tion: about 84 percent of the nodes are located in

Uhttps://eng.uber.com/h3/
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just five districts of Tokyo. The network is quite
sparse, with a density of 0.0007. The median
degree is 16 and the maximum degree is 343,
reflecting the highly skewed degree distribution
of the network.

Our implementation of the variational EM
algorithm is an improved version of the hierar-
chical exponential-family random graph model
(hergm) R package (Schweinberger and Luna
2018). The “lighthergm” package makes it pos-
sible to perform the block recovery step on net-
works with hundreds of thousands of nodes with
model specifications including discrete covari-
ates. Scalability is achieved through the usage
of sparse matrices and by favoring matrix alge-
bra over nested loops, which allows us to mas-
sively parallelize most computations. The code
is publicly available on GitHub.? Further imple-
mentation details can be found in Dahbura et al.
(2021). We estimate the model with K = 100
types. We initialize the types affiliations with the
Infomap algorithm by Rosvall, Axelsson, and
Bergstrom (2009). We run 20,000 iterations of
the variational EM algorithm without employing
the information on node covariates to achieve a
better starting partition at a relatively low com-
putational cost. Finally, we apply 100 EM iter-
ations starting from the partition obtained in
the previous step, using the version of the algo-
rithm that uses the full specification with node
covariates. This is the most complex version of
the algorithm in terms of memory consumption
and computation. For our network, one iteration
takes roughly 1.3 minutes, and the whole compu-
tation can be performed with under 20 gigabytes
of memory. This is a considerable improvement
in terms of processing time and memory usage
over previous implementations in Schweinberger
and Luna (2018), which did not allow for node
covariates. Figure 2, panel A shows the level of
the lower bound at each iteration when applying
the EM algorithm with covariates.

Figure 2, panel B shows the distribution of
block size. The distribution is skewed, with a
median size of 230 nodes and a maximum size
of 1,155 nodes, although the largest block only
accounts for roughly 3.8 percent of the total
number of nodes. The resulting partition is an
improvement over the initial value obtained

2https://github.com/sansan-inc/lighthergm
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FIGURE 2. RESULTS OF THE BLOCK RECOVERY STEP

Notes: The clustering step is first initialized with the result-
ing partition after applying 20,000 iterations of the EM algo-
rithm without employing covariates. The values shown are
obtained by employing for clustering the information on
node location (H3 index tile), large industrial category, and
occupation type.

from Infomap, which groups roughly half of the
nodes in the four largest blocks.

The parameters of the utility function are
obtained by maximum pseudolikelihood estima-
tion (MPLE), conditioning on the estimated node
partition. The corresponding estimates are shown
in Table 1. We observe evidence of homophily
in professional networking. Business persons
in our data exhibit a significant preference for
connections with other users who are similar in
terms of geospatial location, occupational cat-
egory, and industrial classification, especially
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TABLE 1—HERGM PARAMETER ESTIMATES

Between Within

) 2
Intercept () —7.709 —4.754
(0.002)  (0.005)
Shared contacts () 0.736
(0.004)
Same location () (H3 tile) 0.333 0.006
0.007)  (0.012)
Same industry () 0.694 0.034
(0.005)  (0.009)
Same occupation (;) 0.409 0.041
(0.006)  (0.010)
Bayesian inf. crit. 4,171,768 808,597

Note: Coefficient estimates are obtained by the method of
MPLE.

for connections across the communities recov-
ered by our model. This is consistent with other
studies on industrial and spatial agglomeration
(although geographic homophily within types
is not significant). We also observe that pairs of
users with contacts in common are significantly
more likely to form new connections. Finding
evidence of externalities even after controlling
for homophily is an important result for such a
sparse network. It may suggest that the network
as a whole can benefit from lower costs to tri-
adic closure. This can potentially be achieved
through improvements in the way that users con-
nect with each other through the web app and in
the information they observe in their feed.

IV. Conclusion

In this work, we study the decision process
behind the formation of a large professional net-
work, guided by an empirical network forma-
tion model with unobserved types. We use data
of mostly face-to-face encounters from a pop-
ular professional networking service in Japan,
and make use of a variational EM algorithm to
recover unobservable types after controlling for
node covariates. Our implementation is scal-
able and can be employed to analyze networks
with hundreds of thousands of nodes at a low
computational cost. A scalable block recovery
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algorithm can be useful for other downstream
tasks such as node classification, link predic-
tion, and the improvement of search engines
by employing information on the similarity of
nodes on the unobserved types recovered by our
model. Although our two-steps method signifi-
cantly enhances researchers’ ability to estimate
models with large scale networks, additional
improvements are possible, especially in the
handling of a large number of covariates as well
as in model selection. We leave these develop-
ments to future research.
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