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BIG DATA: AT-SCALE METHODS AND APPLICATIONS

Homophily and Community Structure at Scale: An Application to 
a Large Professional Network† 

By Juan Nelson Martí nez Dahbura, Shota Komatsu, Takanori Nishida, and 
Angelo Mele*

Professional and business networks are an 
important determinant of labor market outcomes 
and ef3ciency. We study the emergence of such 
networks, using anonymized data on over 30,000 
users of Eight, a contact and career management 
app with over three million users in Japan.

Our empirical analysis is guided by a struc-
tural model of network formation with observed 
and unobserved individual heterogeneity. In our 
model, users are 3rst randomly assigned to one 
of a 3nite number of unobservable types. The 
network is then formed sequentially, as users 
randomly meet and establish business connec-
tions based on their bene3ts and costs of form-
ing, maintaining, and deleting a link.

The Eight data offer a unique view into 
the mechanisms behind the formation of 
 face-to-face professional networks at scale, 
since the exchange of business cards is a tradi-
tional business practice in Japan. Eight’s users 
have access to a mobile app to scan and manage 
the business cards they receive and to become 
contacts within the Eight professional network. 
We use these links and (some) individual covari-
ates as our network data.

We overcome several computational chal-
lenges that plague these structural models by 
using a highly scalable  two-step estimation 
method. The 3rst step makes ef3cient use of 
the sparsity of the network and information 
on observable characteristics to recover the 

 unobserved types, through computationally 
convenient approximations of the likelihood 
function. In the second step, a pseudolikelihood 
estimator recovers the structural parameters of 
the utility functions, given the estimated unob-
served heterogeneity.

Our results bring light into the role of 
homophily and shared professional contacts on 
the emergence of business networks.

I. Model

We model the Eight users’ decisions to form, 
maintain, and delete links. Individuals are char-
acterized by a vector of observables   x i    and unob-
servables   z i   , both with 3nite support. Each user 
belongs to one of  K  types, so   z i   =  ( z i1  ,  …  ,  z iK  )   
and user  i  belongs to type  k  if   z ik   = 1 . The net-
work is described by the (symmetric) adjacency 
matrix  g , with entries   g ij   = 1  if users  i  and  j  
are linked and   g ij   = 0  otherwise. The utility for 
user  i  from network  g  is given by

   U i   (g)  =   ∑ 
j=1

  
n

    g ij   ( u ij   +   ∑ 
r≠i,j

    g jr    g ri    v ijr  )  ,

where    u ij   =  u  ij  
w  :=  α w   +  ∑ p=1  P    β wp    !  ( x ip  = x jp  )      

if   z i   =  z j    and   u ij   =  u  ij  
b   :=  α b   +  ∑ p=1  P    β bp    !  ( x ip  = x jp  )      

if   z i   ≠  z j   , and where   v ijr   = γ  if   z i   =  z j   =  z r    
and   v ijr   = 0  otherwise. In this formulation,   u ij    
is the net utility of forming a direct link between  
i  and  j , including both costs and bene3ts of each 
link, and   v ijr    is the payoff that  i  receives because 
of the common connections with  j . In our spec-
i3cation, we allow   u ij    to depend on observables 
and unobservables, and   v ijr    is normalized to  0  
when considering users of different unobserved 
types.

The types   z i   ’s are randomly assigned at time  
t = 0  and do not change over time. Links 
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are formed sequentially, and in each period  
t = 1, 2, … , we have the following:

 (i) Users  i  and  j  meet with probability   ρ ij   > 0 .

 (ii) Users  i  and  j  observe a logistic matching 
shock   ε ij   , iid among players and time.

 (iii) Users  i  and  j  decide whether to form or 
delete the link   g ij    by maximizing their 
joint surplus.

Mele (2022) and Dahbura et al. (2021) show that 
under mild assumptions and conditioning on the 
unobserved types  z , this network formation pro-
cess leads to a  long-run equilibrium distribution 
of networks  π (g, x, z; θ)  ,

(1)  π (g, x, z; θ)  =   ∏ 
k=1

  
K
     e    Q kk    _  c kk     [  ∏ 

l>k
  

K
   ∏ 

ij
      e    ∆ ij    _ 
1 +  e    ∆ ij   

    ]   ,

where   ∆ ij   =  z ik    z jl    g ij    u  ij  
b   ,

  Q kk   =   ∑ 
i=1

  
n

      ∑ 
j=1

  
n

     z ik    z jk    g ij   ( u  ij  
w  +   

2γ _ 3      ∑ 
r≠i,j

  
 

     z rk    g jr    g ri  )  ,

and   c kk   =  ∑ ω∈  
 
    exp ( Q kk  )  . This shows that 

the likelihood of observing a network  g  can be 
decomposed in within- and  between-type like-
lihood contributions. The  between-type likeli-
hood consists of independent links because the 
externality   v ijr    is normalized to zero, while the 
 within-type likelihood consists of  K  indepen-
dent exponential random graphs.

II. Scalable  Two-Step Estimation

We take a random effects approach and 
assume that   z i   ’s are independent from observ-
ables and the network,

(2)   z i     ∼   iid     p η   (z)  = Multinomial (1;  η 1  , … ,  η K  ) . 

Let  L (g, x, z, θ, η)  :=  p η   (z) π (g, x, z; θ)  , so com-
plete  log-likelihood is

(3)   (g, x; θ, η)  = log   ∑ 
z∈

  
 

    L (g, x, z, θ, η)  .

Estimation of this model is challenging for 
two reasons. First, the likelihood  π (g, x, z; θ)   
is proportional to a normalizing constant that is 
impractical or infeasible to compute. Second, the 

complete likelihood involves integrating over all 
possible unobservable block structures  z , which 
is also impractical.

We therefore perform approximate infer-
ence based on an approximation of the like-
lihood (3). We exploit the fact that our model 
corresponds to a stochastic block model when  γ = 0 . Indeed, most of the links are across 
blocks, while the contribution to the likelihood 
of the  within-type links is small. Therefore, 
we estimate the types assignments using the 
approximate stochastic block model likelihood, 
setting  γ = 0  for the community discovery step (Babkin et al. 2020). Let   L 0   (g, x, z, α, β, η)  := 
 p η   (z) π (g, x, z; α, β, γ = 0)  , so we have 
 L (g, x, z, θ, η)  ≈  L 0   (g, x, z, α, β, η)  . To estimate 
the stochastic block model, we use a variational 
 mean-3eld approximation approach (Bickel 
et al. 2013; Babkin et al. 2020). This amounts 
to 3nding the approximate multinomial distri-
bution   q ξ   (z)  =  ∏ i=1  

n    q  ξ i     ( z i  )    that minimizes 
the  Kullback-Leibler divergence from the 
true likelihood; we thus obtain a lower bound 
  ℓ B   (g, x, α, β, η; ξ)   to the  log-likelihood

  (g, x; θ, η)  ≈ log   ∑ 
z∈

     L 0   (g, x, z, α, β, η)  

 ≥  ℓ B   (g, x, α, β, η; ξ)  

 =  ∑ 
i<j

  
n

      ∑ 
k=1

  
K

      ∑ 
l=1

  
K

     ξ ik    ξ jl   log  π ij,kl   (x)  

 +    ∑ 
i=1

  
n

      ∑ 
k=1

  
K

     ξ ik   (log  η k   − log  ξ ik  )  ,

where   π ij,kl   (x)   is the probability that  i  and  j  of 
type  k  and  l  are connected. Maximizing the 
lower bound   ℓ B   (g, x, α, β, η; ξ)   is still computa-
tionally intensive for a large network; thus, we 
resort to a minorization approach 3rst proposed 
in Vu, Hunter, and Schweinberger (2013). At 
iteration  s + 1  of the algorithm, we 3nd the  ξ  
that maximizes the minorizer  M (ξ,  ξ    (s)  )   of the 
lower bound

 M (ξ,  ξ    (s)  )  :=  ∑ 
i<j

  
n

      ∑ 
k=1

  
K

      ∑ 
l=1

  
K

    ( ξ  ik  
2     

 ξ  jl  
 (s)  
 _ 

2  ξ  ik  
 (s)  

   +  ξ  jl  
2     

 ξ  ik  
 (s)  
 _ 

2  ξ  jl  
 (s)  

  ) 

 × log  π  ij;kl  
 (s)    (x)  

 +    ∑ 
i=1

  
n

      ∑ 
k=1

  
K

    ξ ik   (log  η  k  
 (s)   − log  ξ  ik  

 (s)   −   
 ξ ik   _ 
 ξ  ik  

 (s)  
   + 1) . 
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The maximization of  M(ξ,  ξ(s))   amounts to the 
solution of  n  independent maximization prob-
lems, amenable to massive parallelization. The 
update rules for  ξ ,  η , and   πij;kl(x)   follow

ξ(s+1)  :=  arg max 
ξ

M(ξ,  ξ(s)) , 

ηk
(s+1)  := 1_

n ∑
i=1

n ξik
(s+1) , 

πij;kl
(s+1)(x)  := ∑i=1

n     ∑j≠i     ξik
(s+1)   ξjl

(s+1) !{gij  ,  χij}__________________________
∑i=1

n     ∑j≠i     ξik
(s+1)   ξjl

(s+1) !{χij}
  , 

for  k, l = 1, … , K , where   χij = {χ1,ij  , … ,  χP,ij}
and   χp,ij = !{xip = xjp}  . Once this variational 
expectation-maximization (EM) algorithm has 
converged, we assign    ̂z   according to the modal 
type of each node. Given the estimated types    ̂z  , 
we then estimate the structural parameters  θ =
(α, β, γ)   using a pseudolikelihood estimator. 
Let   pij

w   and   pij
b   be the conditional probabilities of 

links within- and  between-type, respectively:

pij
w = Λ(uij

w + uji
w + 4γ∑

r≠i,j
Iijr gjr gir)

pij
b = Λ(uij

b + uji
b)  ,

where  Λ(u) = eu/(1 + eu)   is the logistic 
function and   Iijr = 1  if   zi = zj = zr   . The 
pseudolikelihood estimator solves

θ ˆPL =  arg max θ ∑
i=1

n ∑
j>i

n

[gij   log  pij

+ (1 − gij) log (1 − pij)]
with   pij = pij

w   if   zi = zj    and   pij = pij
b   other-

wise. Asymptotic theory for this estimator is 
contained in Boucher and Mouri3 e (2017).

III. Data and Results

We use anonymized data on business card 
exchanges among users of Eight who have 
agreed to the terms of usage of the service. 
Users upload their own business card when cre-
ating their pro3 le, which allows us to observe 
information about them as well as their business 
connections with other users. We employ infor-
mation on the user’s geocoded location based 
on the address in their business card. We map 

the coordinates to an index of the H3 indexing 
system,1 which represents a tile of roughly 5.17 
squared kilometers. We also employ data on 
their occupation type and the industrial classi3 -
cation of the company they work for. The rest of 
the analysis is performed on a  subnetwork con-
taining only users located in Tokyo. We employ 
 k-core decomposition to extract the connected 
component that exhibits a minimum degree of 
10. The resulting graph is formed by 30,323 
nodes and 321,188 edges. Most users in the data 
are employed in companies in the technology (22 percent) and consulting (14 percent) indus-
tries. The most common occupational categories 
are  sales-related positions (17 percent) followed 
by company directors (15 percent). We also 
observe a large degree of geographic concentra-
tion: about 84 percent of the nodes are located in 

 1 https://eng.uber.com/h3/

Figure 1. The Eight Mobile App

Notes: The Eight mobile app allows users to scan phys-
ical business cards employing the smartphone’s camera. 
High-quality digitization is achieved through the usage of 
advanced optical character recognition algorithms and the 
help of human operators.

https://pubs.aeaweb.org/action/showImage?doi=10.1257/pandp.20231094&iName=master.img-000.jpg&w=140&h=268
https://pubs.aeaweb.org/action/showImage?doi=10.1257/pandp.20231094&iName=master.img-000.jpg&w=140&h=268
https://pubs.aeaweb.org/action/showImage?doi=10.1257/pandp.20231094&iName=master.img-000.jpg&w=140&h=268
https://pubs.aeaweb.org/action/showImage?doi=10.1257/pandp.20231094&iName=master.img-000.jpg&w=140&h=268
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just 3ve districts of Tokyo. The network is quite 
sparse, with a density of  0.0007 . The median 
degree is 16 and the maximum degree is 343, 
re6ecting the highly skewed degree distribution 
of the network.

Our implementation of the variational EM 
algorithm is an improved version of the hierar-
chical exponential-family random graph model (hergm) R package (Schweinberger and Luna 
2018). The “lighthergm” package makes it pos-
sible to perform the block recovery step on net-
works with hundreds of thousands of nodes with 
model speci3cations including discrete covari-
ates. Scalability is achieved through the usage 
of sparse matrices and by favoring matrix alge-
bra over nested loops, which allows us to mas-
sively parallelize most computations. The code 
is publicly available on GitHub.2 Further imple-
mentation details can be found in Dahbura et al. (2021). We estimate the model with  K = 100  
types. We initialize the types af3liations with the 
Infomap algorithm by Rosvall, Axelsson, and 
Bergstrom (2009). We run 20,000 iterations of 
the variational EM algorithm without employing 
the information on node covariates to achieve a 
better starting partition at a relatively low com-
putational cost. Finally, we apply 100 EM iter-
ations starting from the partition obtained in 
the previous step, using the version of the algo-
rithm that uses the full speci3cation with node 
covariates. This is the most complex version of 
the algorithm in terms of memory consumption 
and computation. For our network, one iteration 
takes roughly 1.3 minutes, and the whole compu-
tation can be performed with under 20 gigabytes 
of memory. This is a considerable improvement 
in terms of processing time and memory usage 
over previous implementations in Schweinberger 
and Luna (2018), which did not allow for node 
covariates. Figure 2, panel A shows the level of 
the lower bound at each iteration when applying 
the EM algorithm with covariates.

Figure  2, panel B shows the distribution of 
block size. The distribution is skewed, with a 
median size of 230 nodes and a maximum size 
of 1,155 nodes, although the largest block only 
accounts for roughly 3.8 percent of the total 
number of nodes. The resulting partition is an 
improvement over the initial value obtained 

2 https://github.com/sansan-inc/lighthergm

from Infomap, which groups roughly half of the 
nodes in the four largest blocks.

The parameters of the utility function are 
obtained by maximum  pseudolikelihood estima-
tion (MPLE), conditioning on the estimated node 
partition. The corresponding estimates are shown 
in Table 1. We observe evidence of homophily 
in professional networking. Business persons 
in our data exhibit a signi3cant preference for 
connections with other users who are similar in 
terms of geospatial location, occupational cat-
egory, and industrial classi3cation, especially 
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Figure 2. Results of the Block Recovery Step

Notes: The clustering step is 3rst initialized with the result-
ing partition after applying 20,000 iterations of the EM algo-
rithm without employing covariates. The values shown are 
obtained by employing for clustering the information on 
node location (H3 index tile), large industrial category, and 
occupation type.

https://github.com/sansan-inc/lighthergm
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for connections across the communities recov-
ered by our model. This is  consistent with other 
studies on industrial and spatial agglomeration (although geographic homophily within types 
is not signi3cant). We also observe that pairs of 
users with contacts in common are signi3cantly 
more likely to form new connections. Finding 
evidence of externalities even after controlling 
for homophily is an important result for such a 
sparse network. It may suggest that the network 
as a whole can bene3t from lower costs to tri-
adic closure. This can potentially be achieved 
through improvements in the way that users con-
nect with each other through the web app and in 
the information they observe in their feed.

IV. Conclusion

In this work, we study the decision process 
behind the formation of a large professional net-
work, guided by an empirical network forma-
tion model with unobserved types. We use data 
of mostly  face-to-face encounters from a pop-
ular professional networking service in Japan, 
and make use of a variational EM algorithm to 
recover unobservable types after controlling for 
node covariates. Our implementation is scal-
able and can be employed to analyze networks 
with hundreds of thousands of nodes at a low 
computational cost. A scalable block recovery 

 algorithm can be useful for other downstream 
tasks such as node classi3cation, link predic-
tion, and the improvement of search engines 
by employing information on the similarity of 
nodes on the unobserved types recovered by our 
model. Although our  two-steps method signi3-
cantly enhances researchers’ ability to estimate 
models with large scale networks, additional 
improvements are possible, especially in the 
handling of a large number of covariates as well 
as in model selection. We leave these develop-
ments to future research.

REFERENCES

Babkin, Sergeii, Jonathan Stewart, Xiaochen 
Long, and Michael Schweinberger. 2020. 
“Large-Scale Estimation of Random Graph 
Models with Local Dependence.” arXiv: 
1703.09301.

Bickel, Peter, David Choi, Xiangyu Chang, and Hai 
Zhang. 2013. “Asymptotic Normality of Max-
imum Likelihood and Its Variational Approxi-
mation for Stochastic Blockmodels.” Annals of 
Statistics 41 (4): 1922–43.

Boucher, Vincent, and Ismael Mouri!e. 2017. 
“My Friend Far, Far Away: A Random Field 
Approach to Exponential Random Graph Mod-
els.” Econometrics Journal 20 (3): S14–46.

Dahbura, Juan Nelson Martínez, Shota Komatsu, 
Takanori Nishida, and Angelo Mele. 2021. “A 
Structural Model of Business Cards Exchange 
Networks.” arXiv: 2105.12704.

Mele, Angelo. 2022. “A Structural Model of 
Homophily and Clustering in Social Net-
works.” Journal of Business and Economic 
Statistics 40 (3): 1377–89.

Rosvall, M., D. Axelsson, and C.T. Bergstrom. 
2009. “The Map Equation.” European Physi-
cal Journal Special Topics 178: 13–23.

Schweinberger, Michael, and Pamela Luna. 2018. 
“hergm: Hierarchical Exponential-Family 
Random Graph Models.” Journal of Statistical 
Software 85 (1): 1–39.

Vu, Duy Q., David R. Hunter, and Michael Sch-
weinberger. 2013. “Model-Based Clustering of 
Large Networks.” Annals of Applied Statistics 
7 (2): 1010–39.

Table 1—hergm Parameter Estimates

Between Within
(1) (2)

Intercept   (α)   − 7.709  − 4.754(0.002) (0.005)
Shared contacts   (γ)  0.736

(0.004)
Same location   ( β 1  )   (H3 tile) 0.333 0.006

(0.007) (0.012)
Same industry   ( β 2  )  0.694 0.034

(0.005) (0.009)
Same occupation   ( β 3  )  0.409 0.041

(0.006) (0.010)
Bayesian inf. crit. 4,171,768 808,597

Note: Coef3cient estimates are obtained by the method of 
MPLE.
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