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Abstract

Introducing interpretability and reasoning into Multiple
Instance Learning (MIL) methods for Whole Slide Image
(WSI) analysis is challenging, given the complexity of gi-
gapixel slides. Traditionally, MIL interpretability is limited
to identifying salient regions deemed pertinent for down-
stream tasks, offering little insight to the end-user (pathol-
ogist) regarding the rationale behind these selections. To
address this, we propose Self-Interpretable MIL (SI-MIL),
a method intrinsically designed for interpretability from
the very outset. SI-MIL employs a deep MIL framework
to guide an interpretable branch grounded on handcrafted
pathological features, facilitating linear predictions. Be-
yond identifying salient regions, SI-MIL uniquely provides
feature-level interpretations rooted in pathological insights
for WSIs. Notably, SI-MIL, with its linear prediction con-
straints, challenges the prevalent myth of an inevitable
trade-off between model interpretability and performance,
demonstrating competitive results compared to state-of-the-
art methods on WSI-level prediction tasks across three can-
cer types. In addition, we thoroughly benchmark the local-
and global-interpretability of SI-MIL in terms of statistical
analysis, a domain expert study, and desiderata of inter-
pretability, namely, user-friendliness and faithfulness.

1. Introduction
In the last decade, advancements in deep learning tech-
niques, especially Multiple Instance Learning (MIL) algo-
rithms [21, 36, 56], have dramatically revolutionized com-
putational pathology, which has transitioned from analyz-
ing local regions-of-interest [39] to gigapixel whole slide
images (WSIs). A standard MIL workflow takes in fea-
ture representations of patches from a WSI, embedded via a
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Figure 1. Unlike conventional MIL , SI-MIL co-learns from
deep and handcrafted features (referred to as PathExpert features).
While both MILs offer patch-level interpretability, only ours pro-
vides PathExpert feature-level rationale for WSI predictions. The
attention maps in SI-MIL are grounded on geometrically and
physically-interpretable descriptors.

deep neural network, and aggregates them to define a slide-
level representation adept for a downstream task. While
these deep neural network-reliant workflows have resulted
in high performance, they often lack pathologist-friendly in-
terpretability and reasoning in their predictions [52], which
is crucial for building trust in routine clinical workflows and
defining reliability and accountability of AI algorithms [7,
18, 54], particularly in clinical contexts.

In computational pathology, efforts to achieve WSI-level
interpretability have predominantly focused on two direc-
tions: (1) identifying salient regions in a WSI, and (2)
employing post-hoc techniques to elucidate the underlying
patterns in salient regions. The first approach, employed
by traditional MIL, includes techniques such as visualiza-
tion of attention maps [21, 36, 56, 57, 67, 68] and post-
hoc gradient-based saliency [47, 70], which highlight im-
age patches that influence the model prediction. These tech-
niques, though useful, may not offer a complete understand-
ing of the model’s decisions and can result in visualizations
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that are hard for experts to interpret due to a lack of user-
friendly feature grounding [4]. The latter approach involves
extracting interpretable handcrafted features (henceforth re-
ferred to as PathExpert features) from the MIL-identified
salient patches and then conducting statistical analyses to
find correlations between these features and the WSI ground
truths in a post-hoc manner [10, 15, 43]. However, there
is a clear disconnect between the deep features used for
MIL training and the PathExpert features. Using post-hoc
PathExpert features to explain deep models can be sub-
optimal [51]. Furthermore, patches with high attention may
be crucial for deep feature space, but may not be optimal in
PathExpert feature space, thus compromising interpretabil-
ity.

To truly interpret a prediction model, it seems inevitable
to bring interpretable features into training. A natural idea
is to directly train MILs using these features, followed by
statistical analysis of features from highly attended patches.
However, this will not exploit the full potential of deep
learning, as our analysis in Section 4 will reveal. This brings
us to the main question: Can we really achieve inherent in-
terpretability without compromising model performance?

The answer is yes. In this paper, we provide the first
WSI solution with both inherent interpretability and strong
prediction power. Our key observation is that a highly accu-
rate deep model is not unique; there can be many optimal or
close-to-optimal deep models for a dataset/task, due to over-
parameterization [27, 30, 45]. Therefore, we hypothesize
that we can alter the learning procedure and find an alterna-
tive model with desired interpretability and still be powerful
in prediction. In particular, we propose to pair a deep MIL
model with an interpretable model grounded on PathEx-
pert features during training. Through co-learning, the MIL
retains its predictive power. Meanwhile, it is sufficiently
“tamed” by the co-learned interpretable model, which ren-
ders interpretability. As shown in Fig. 1, the tamed deep
MIL model has a different attention map from the standard
MIL. It is attending to patches which can also be discrimi-
nated by the companion interpretable model.

Our method, Self-Interpretable MIL (SI-MIL), is a dual
branch network, consisting of a conventional MIL and a
novel Self-Interpretable (SI) branch. The MIL exploits
deep features’ discriminative power to guide the SI branch.
Grounded on PathExpert features, the SI branch then pro-
vides a linear prediction. A differentiable Top-K operator
for selecting patches, connects the two branches and enables
end-to-end co-learning. To highlight, SI-MIL is inherently
interpretable [5, 51] due to the linear mapping between
the PathExpert features and the output predictions. There-
fore, it can reflect the impact of each feature on the output,
thus providing a feature-level rationale, as shown in Fig. 1.
Also, by leveraging the potential of a deep feature extractor,
state-of-the-art MIL, and geometrically and physically- in-
terpretable PathExpert features, SI-MIL counters the well-

known myth of unavoidable model interpretability and per-
formance trade-off [4, 51]. Notably, SI-MIL is generic
enough to substitute any state-of-the-art MIL method in the
MIL branch. In summary, our main contributions are:
• SI-MIL, the first interpretable-by-design MIL method for

gigapixel WSIs, which provides de novo feature-level in-
terpretations grounded on pathological insights for a WSI.

• A novel co-learning strategy for SI-MIL to mitigate the
model performance-interpretability trade-off associated
with self-interpretable methods. We quantitatively estab-
lish the efficacy of our method for classification tasks on
three cancer types.

• We demonstrate the utility of SI-MIL’s local WSI-level
and global cohort-level explanations thorough quantita-
tive and qualitative benchmarking in terms of statistical
analysis, a domain expert study, and desiderata of inter-
pretability, i.e., fidelity, user-friendliness and faithfulness.

• We provide a comprehensive dataset for →2.2K WSIs,
featuring nuclei maps, PathExpert features, and SI-MIL
derived outputs, with the aim of streamlining the resource
intensive preprocessing towards interpretability studies in
computational pathology.

2. Related work
This section presents an overview of different forms of in-
terpretability, primarily focusing on the domain of compu-
tational pathology.
Post-hoc interpretability methods: These methods fall
into two categories: patch-level and WSI-level. Patch-
level techniques, like GradCAM and Layer-Wise Relevance
Propagation (used in [19, 53]), highlight key pixels in model
predictions. For deeper insight, studies like [22, 23] use
biological entity-based graphs for pathologist-friendly ex-
planations. At the WSI-level, interpretability is primarily
achieved through attention maps that identify salient re-
gions in WSIs. Additionally, few methods, such as those
by [47, 70], use segmentation maps or gradient-based tech-
niques to localize significant areas. However, these meth-
ods, as [51] notes, may suffer from a disconnect from the
model’s computations. In pathology, this is particularly evi-
dent when comparing the deep features used for MIL train-
ing and the handcrafted features used for subsequent anal-
ysis [10, 15, 43], revealing a disparity in the features for
training versus those for feature correlation.
Vision-Language methods: Previous works [20, 32, 37,
48] have explored interpretability using task reasoning
through textual descriptions or vision-language similar-
ity [2, 38, 69]. However these methods [20, 38] either
suffer from post-hoc approximation [51], or are not scal-
able [32, 69] for gigapixel images. Note that in pathology,
most paired image-text data are only at the patch level [20].
This makes it challenging to design WSI-level interpretable
prediction models from only patch-level descriptions. Fur-
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thermore, at WSI-level, unlike natural images, the text de-
scriptions in pathology reports are not holistic; i.e. these re-
ports do not capture the complete landscape and primarily
consist of global summaries of the pathologists’ findings.
Self-interpretability methods: A family of models,
grounded in concepts [14, 29, 46, 64, 65], has become
prominent for natural image interpretation. These models
learn interpretable embeddings by mapping visual repre-
sentations to a concept layer, and linearly aggregate these
for prediction. Challenges such as information leakage and
semantic inaccuracies are noted in [5, 40, 41]. To ad-
dress this, [5] uses concept embeddings [14] to learn syn-
tactic rules and make predictions based on concept truths.
While effective in interpretability, its validation is confined
to Boolean logic tasks. Despite its emergence in the anal-
ysis of natural images, this field has yet to be explored in
the context of gigapixel pathology. Building upon this, our
proposed SI-MIL can handle complex WSI tasks while em-
bedding interpretability directly into the MIL framework.

3. Method
In this section, we present the details of our dual branch SI-
MIL (overview in Fig. 2), consisting of a conventional MIL
branch and a Self-Interpretable (SI) branch, for analyzing
WSIs. We describe the conventional MIL in Sec. 3.1. De-
tailed description of the feature extraction pipelines, i.e., the
process of extracting black-box deep features (g) and inter-
pretable PathExpert features (f ), is provided in Sec. 3.2.
Finally, we present the complete SI-MIL framework in
Sec. 3.3.

3.1. Conventional MIL
In conventional MIL, each WSI is decomposed into patches
(p1, p2, . . .pN ), and their extracted features (g1, g2, . . . gN ),
gi ↑ RD are treated as a bag of instances. In this work, we
leverage an additive version of MIL [24] in the conventional
MIL, which imparts better spatial credit assignment to tis-
sue regions in a WSI. As illustrated in Fig. 2b, conventional
MIL consists of a projector H(·) operating on the input fea-
ture space, followed by a patch attention module A

p(·) to
compute soft attention ω over patches as follows:

g̃i = H(gi); ωi = A
p(g̃i); i ↑ {1, 2, ...N} (1)

where A
p(·) is a parameterized module with softmax acti-

vation. The attention-scaled feature embeddings are input
to the predictor C(·) which estimates the marginal contri-
bution of each patch to the slide-level task. Finally, these
contributions are aggregated and activated with ε to infer
slide-level prediction Ŷg as:

Ŷg = ε

( N∑

i=1

C(ωi · g̃i)
)

(2)

The MIL performs slide-level prediction while comput-
ing the contributions through patch-level attentions. How-

ever, these attentions are too coarse for pathological inter-
pretability as they do not explain the underlying patterns in
pathologist-friendly terminologies.

3.2. WSI patch feature extraction
For each WSI, we extract patches (p1, p2, . . .pN ) and derive
two sets of features for each patch pi, defined as:
1. Deep features: We pretrain a ViT [13] through self-

supervised learning on patches from the WSIs, and use
the ViT as feature extractor to encode a patch pi into a
deep feature vector gi ↑ RD. Note that any other pre-
trained or foundational model [9, 26, 49, 61–63] can be
used for patch encoding.

2. Hand-crafted PathExpert features: We use HoVer-
Net [17], pretrained on PanNuke [16] dataset, to seg-
ment and classify nuclei into 5 classes in each pi. Then,
pathologist-friendly features fi ↑ Rd are extracted
to quantify nuclei morphology and spatial distribution
properties in pi. These features can be grouped as:
Morphometric properties, i.e., intensity, shape, and tex-
ture, are computed for all the nuclei in a patch, and are
aggregated via statistical measures, i.e., mean, standard
deviation, skewness and kurtosis for each nuclei class.
Spatial distribution properties of different communities
of nuclei types in a patch are quantified using graph anal-
ysis and heterogeneity. The former uses nuclei centroids
to construct cell-graph and then extracts social network
analysis [66]-based features for each nucleus, followed
by statistical aggregation. These features capture proper-
ties such as degree of cohesiveness and nuclei clustering.
The latter quantifies the spatial interaction of different
nucleus class communities by using the nuclei centroids
and class labels. Entropy and infiltration based descrip-
tors are leveraged for this computation [42].

The comprehensive list detailing the different groups of fea-
tures, along with illustrative sample images are provided in
supplementary.

3.3. Self-Interpretable MIL (SI-MIL)
As shown in Fig. 2a, along with the aforementioned con-
ventional MIL as a branch, SI-MIL consists of a Patch
Attention-Guided Top-K (PAG Top-K) module and a SI
branch. The PAG Top-K module aims for a differentiable
selection of top K patches identified in the MIL branch;
thus enabling the co-learning with the SI branch. This
branch operates on these top K patches, by leveraging a
feature attention module to linearly scale the corresponding
relevant PathExpert features. The patch-wise PathExpert
features and feature attention scores are subsequently aggre-
gated by a linear predictor for slide-level task. SI-MIL de-
notes the dual branch co-learning framework that discrim-
inates complex WSIs using a linear equation, advancing
interpretability by introducing feature-level insights while
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Figure 2. Overview of SI-MIL: Conventional MIL branch guides the Patch Attention-Guided Top-K (PAG Top-K) patch selection module
to select the PathExpert features of key regions from WSI, followed by linear scaling in the Self-Interpretable branch, and linear prediction.

maintaining high performance and complementing existing
MILs. The details of the individual components are de-
scribed in the following sections.

PAG Top-K patch selection module: This module
leverages the patch attention scores ω from the conventional
MIL branch to select the K most salient patches in a WSI.
As the naive Top-K operation is non-differentiable, we use
the differentiable perturbed Top-K operation from [11, 58].
This perturbed Top-K operation is imperative to enable the
co-learning of both the branches: conventional MIL and
SI branch. Following patch selection, only the PathEx-
pert features of the salient patches are utilized in the sub-
sequent steps. Therefore, the use of deep features in the
MIL branch does not hinder the interpretability of SI-MIL;
rather it guides the selection of informative patches, which
is denoted as:

SK = TopK(ω,K) (3)
where SK denotes the indices of the selected top K patches.

Feature Attention module: The A
f (·) module consists

of a patch feature mixing network and gated attention net-
work. Their synergistic integration forms a learnable fea-
ture selector without interfering with the interpretability of
SI-MIL. First, the PathExpert feature matrix M ↑ RK→d,
corresponding to the SK patches, is transposed and fed to
a patch feature mixing network PF-Mixer, PF (·). It con-
textualizes each value in M

T with the top K patches and d

features. In practice, PF (·) is implemented via MLP lay-
ers [59], with separate layers dedicated to mixing spatial
patch information and per-patch feature information. Sub-
sequently, gated attention network G(·) processes each row
of the matrix M

T ↑ Rd→K independently to determine the
attention score ϑj for each feature dj , computed as:

ϑj = G(PF (MT )); j ↑ {1, 2, ...d} (4)

To enforce the model to be dependent on most salient fea-
tures, we scale the feature attention scores ϑ as follows: ϑ
values are first scaled using percentile Prω (where ϖ is the
ϖ
th precentile) and standard deviation (std), and then sig-

moid activated with a hyper-parameter, temperature (t) as

shown in Eqn. 5. This operation enforces the ϑ values above
Prω towards 1 and remaining towards 0, thereby imposing
sparsity in feature selection. Note that for brevity, we de-
note the scaled values of ϑ with same notation in Eqn. 5.

ϑj =
ϑj ↓ Prω(ϑ)

std(ϑ)
; ϑj =

1

1 + e↑εj→t
(5)

These feature attention values are used to linearly scale the
PathExpert feature matrix M such that the salient features
are emphasized while attenuating others:

M
→

ij = ϑj ↔Mij ; i ↑ {1, 2, ...K}; j ↑ {1, 2, ...d} (6)

Note that even though A
f (·) includes non-linear operations

to compute ϑ, the original feature space M ↑ RK→d is just
linearly scaled with ϑ. Af (·) paves the way for linear pre-
diction in the next stage, while preserving interpretability.

Linear Predictor and Aggregation: Following the at-
tention scaling of the PathExpert features corresponding to
the SK patches, the features are fed to a linear predictor
L(·) characterized by weights w(·) and bias b as:

M
→→

i =
d∑

j=1

wjM
→

ij + b; i ↑ {1, 2, ...K} (7)

Finally, for slide-level prediction, the contributions M
→→

i of
the selected patches undergo an aggregation and an activa-
tion ε as:

Ŷf = ε

( K∑

i=1

M
→→

i

)
(8)

It can be observed that the WSI-level prediction in the SI
branch can be decomposed into a linear combination of
feature attention scores ϑ, classifier weights w(·), and the
PathExpert feature matrix M ↑ RK→d of the top K patches
(SK), given as:

Ŷf = ε

( K∑

i=1

d∑

j=1

wjϑjMij + b

)
(9)

Optimization: Given the true label Y for a WSI, the pre-
dictions Ŷg from the MIL branch and Ŷf from the SI branch,
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SI-MIL is optimized using slide-level cross entropy losses
LCE for both the predictions with respect to the true label.
This joint optimization tames the patch attention module to
select the patches collaboratively in the deep feature and
PathExpert feature space. To enhance the performance of
the SI branch, a knowledge distillation loss LKD is opti-
mized based on the mean squared error between Ŷf and Ŷg .
LKD enforces alignment in performance between the two
branches. The overall loss is computed as:

L = LCE(Y, Ŷg) + LCE(Y, Ŷf ) + ϱLKD(Ŷg, Ŷf ) (10)

where ϱ is used as a weight to align the scale of LKD

with the LCE losses of deep feature and self-interpretable
branch. Note that during inference, prediction from any
branch can be used. However to enforce interpretability,
the WSI-level prediction is obtained from the SI branch,
i.e., Ŷf is considered for slide-level prediction and the non-
interpretable branch’s output Ŷg is discarded.

4. Experiments: Prediction Performance
Here, we first describe the datasets and implementation de-
tails, common to both performance and interpretability as-
sessment. Then, we benchmark SI-MIL on multiple WSI
classification tasks. We conclude with ablation studies and
showcasing adaptability of SI-MIL to various MIL models.

4.1. Datasets and Implementation details
Datasets: We evaluate SI-MIL on three WSI datasets:

TCGA-BRCA [33], TCGA-Lung [3, 28], and TCGA-
CRC [44]. TCGA-BRCA contains 910 diagnostic slides
of two breast cancer subtypes: invasive ductal carcinoma
(IDC) and invasive lobular carcinoma (ILC). TCGA-Lung
contains 936 slides of two non-small cell lung cancer sub-
types: lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC). TCGA-CRC: includes 320 slides
of colorectal cancer with low- or high-mutation density for
hypermutation. Additional details about train-test splits are
provided in the Supp. Sec. 8.

Patch and feature extraction: Patches of size 224↔224
at 5↔ magnification and corresponding 1792↔1792 at 40↔
are extracted for each dataset. For deep features extraction,
we pretrain ViT-S [13] with DINO [8] on the 5↔ patches
from the training splits of individual datasets mentioned
above. PathExpert features are extracted on corresponding
patches at 40↔.

MIL setting: Additive ABMIL [24] is adopted as the
conventional MIL in this study. A

p(·) and A
f (·) are

deep neural network based gated attention modules adopted
from [36]. For all the MIL experiments, the batch size is set
to 1 to handle WSIs of variable bag sizes. For robustness, 5-
fold cross-validation is performed on the train split and the
mean performance on the held-out test split is reported. By
default, #PF-Mixer layers =4, ϱ = 20, K = 20, ϖ = 0.75,

and t = 3. More implementation details are provided in
the Supp. Sec. 9. Note that SI-MIL is evaluated with only
DINO ViT-S features. Experimentation with other deep fea-
tures is left for future exploration.

4.2. Slide-level classification performance
In this section, we benchmark the WSI classification perfor-
mance of SI-MIL in terms of accuracy and area under the
curve (AUC), which are the commonly employed metrics
to quantify the fidelity of interpretability algorithms [18].
Table 1 presents the classification performance of SI-MIL
and the competing baselines. In absence of WSI-level self-
interpretable methods, we construct interpretable baselines
by perturbing SI-MIL under various settings. The baselines
can be grouped in terms of the types of employed features
as follows:

Baselines using deep features: These baselines denote
training Additive ABMIL with features from different pre-
trained deep feature extractors, i.e., ImageNet [12] super-
vised ViT-S (IN ViT-S), RetCCL [63], CTransPath [62], and
our pretrained DINO ViT-S. Although these baselines can
render patch-level contributions in terms of attention maps,
one cannot entirely deduce the reasoning behind these patch
attentions, and cannot obtain feature-level understanding
due to their inherently non-interpretable characteristics.

Baselines using PathExpert features: These baselines
denote training Additive ABMIL with PathExpert features.
To induce interpretability, we train MIL with PathExpert
features, referred as PathFeat. However, this framework is
non-interpretable as the projector H(·) maps the PathExpert
features into a non-interpretable deep feature space. There-
fore, we include a true interpretable baseline by training the
MIL without H(·).

2-stage training using PathExpert features: Here, we
first train the Additive ABMIL and extract top-K attended
patches for each WSI. Then, a self-interpretable linear clas-
sifier using the PathExpert features from the patches is
trained. Specifically, we train the SI branch independent
of the MIL branch, i.e., without PAG Top-K. This is analo-
gous to the post-hoc analytical methods in [10, 15].

Results: As observed in Table 1, conventional MIL us-
ing PathExpert features, and particularly the one without
projector, performs considerably worse than the methods
using deep features. This accuracy-interpretability trade-off
often undermines the benefits of using interpretable frame-
works/features. SI-MIL aims to close this performance gap
by utilizing deep feature-based guidance. We find that SI-
MIL, despite imposing a linear constraint (Eq. 9) on predic-
tions, elevates the performance of PathExpert features to be
on par with deep feature-based baselines.

Note that the results for RetCCL and CTransPath are po-
tentially inflated as the feature extractors were pretrained
on the entire TCGA cohort, including test splits used in our
study. Thus, the DINO ViT-S and IN ViT-S baselines, unaf-
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Table 1. Results indicate the mean of 5-fold cross-validation on
test set. All methods are trained with Additive ABMIL as base
MIL. Int. denotes self-interpretability of a method.

Lung BRCA CRC
Int. Acc. AUC Acc. AUC Acc. AUC

IN ViT-S ✁ 0.859 0.919 0.929 0.967 0.891 0.898
RetCCL ✁ 0.860 0.935 0.929 0.976 0.889 0.891

CTransPath ✁ 0.904 0.967 0.920 0.974 0.906 0.897
DINO ViT-S ✁ 0.896 0.957 0.937 0.974 0.904 0.897

PathFeat ✁ 0.830 0.888 0.885 0.950 0.886 0.818
PathFeat w/o H(·) ✂ 0.767 0.837 0.889 0.914 0.853 0.720

2-stage training ✂ 0.865 0.932 0.908 0.924 0.876 0.862
SI-MIL (ours) ✂ 0.884 0.941 0.944 0.968 0.884 0.910

Ablation study of SI-MIL components
w/o PAG Top-K ✂ 0.859 0.936 0.915 0.922 0.876 0.869

w/o KD ✂ 0.853 0.915 0.932 0.951 0.878 0.830
w/o PAG Top-K & KD ✂ 0.857 0.924 0.915 0.899 0.879 0.858

Table 2. Mean of 5-fold cross-validation for adapting SI-MIL with
other MIL frameworks (additive versions [24]) on TCGA-BRCA.

DINO ViT-S SI-MIL
MIL Acc. AUC Acc. AUC

ABMIL 0.937 0.974 0.944 0.968
CLAM 0.937 0.972 0.925 0.957

TransMIL 0.934 0.936 0.929 0.933

fected by the test split, provide a more accurate comparison.

Ablation studies: In Table 1, we mainly showcase the
significance of the meticulously designed components of
SI-MIL. We show the implication of the PAG Top-K mod-
ule by omitting the perturbed Top-K selection and block-
ing gradient flow from the SI branch to the MIL branch.
In Table 1, we observe that a non-differentiable approach
degrades the performance. This indicates that the most dis-
criminative region identified by the MIL is potentially less
effective in the PathExpert feature space, thus highlighting
the need to find regions discriminative in both feature spaces
for enhancing the predictive power of SI branch. It can also
be observed that in both settings, with or without perturbed
Top-K, knowledge distillation is instrumental in enhanc-
ing the performance. LKD acts as a regularizer for the SI
branch, pushing it to stay as close as to the high-performing
MIL branch. Additional ablations demonstrating the effect
of varying K in the PAG Top-K module, the number of PF-
Mixer layers, and the percentile and temperature for scaling
ϑ are presented in the Supp. Sec. 11.

Adaptability of SI-MIL to other MILs: On the TCGA-
BRCA dataset, we evaluate the generalizability of SI-MIL
by adapting to state-of-the-art MIL frameworks, i.e., AB-
MIL [21], CLAM [36], and TransMIL [56], in the MIL
branch. Results in Table 2 establish that our SI-MIL ex-
tensions remain competitive with the corresponding MIL
methods using standalone DINO ViT-S features.

5. Experiments and Results: Interpretability
In this section, we evaluate our SI-MIL model across vari-
ous statistical criteria, i.e., univariate and multivariate class-
separability, and desiderata of interpretability [18], i.e.,
user-friendliness and faithfulness, focusing on both local
slide-level and global cohort-level interpretations. The
user-friendliness metric evaluates how easily end-users,
i.e. pathologists, can understand and trust the model pre-
dictions, and the faithfulness metric gauges the extent to
which model’s explanations align with the expert’s reason-
ing. The paper includes detailed analyses on TCGA-BRCA
test WSIs. Further analyses on TCGA-Lung and TCGA-
CRC are presented in the Supp. Sec. 14.

5.1. Local Interpretation: Slide-level
SI-MIL can explain model predictions at WSI-level with-
out relying on post-hoc methods [4]. Contrary to existing
MIL [24, 36, 56], SI-MIL can produce both patch- and
feature-level explanations, due to the linear mapping be-
tween the PathExpert features and output predictions. Fig. 3
presents aggregated patch-feature importance reports gen-
erated by SI-MIL for two TCGA-BRCA WSIs, elucidat-
ing the rationale behind the predictions. Below, we explain
the setup for generating such reports and then quantify their
quality in terms of user-friendliness and faithfulness.
WSI-level patch-feature importance report setup: Input
WSIs with overlaid patch-attention saliency maps, gener-
ated by the MIL branch are shown in Fig. 3a. Up next,
Fig. 3b shows the informative top K patches and their nu-
clei predictions (K =2 for simplicity). The nuclear map
identifies the nuclei types and highlights their spatial orga-
nization in the tissue. Next, the feature contributions across
the top K patches are detailed in Fig. 3c. Recall that in
Eqn. 9, wjϑjMij denotes the contribution of the i-th patch
and its j-th feature, where

∑K
i=1 wjϑjMij infers the ag-

gregated contribution of the j-th feature towards WSI pre-
diction. We present the mean contributions and 95% confi-
dence intervals across K patches, shown only for the three
most contributing features for simplicity. The negative and
positive contributions are indicative of class 0 (IDC) and
class 1 (ILC), respectively, as activated by sigmoid in Eq. 8.
The feature distribution shows the range of the correspond-
ing normalized features across K patches. The distribution
inclining towards left or right indicates low/negative values
or high/positive values of the feature, respectively. Look-
ing at the distribution and contribution together, if we have
a positively inclining distribution and negative contribution,
then it means increasing the feature pushes the prediction
towards class 0. Fig. 3d illustrates a few features identified
in Fig. 3c, with the representative patches having low and
high value of corresponding features.
User-friendliness: We qualitatively evaluate the utility of
the patch-feature reports by an expert pathologist. First, we
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Figure 3. Qualitative Patch-Feature importance report: In (a) and (b), we present WSIs with overlaid attention heatmaps and the top
two patches, along with their nuclei maps. In (c), we demonstrate the mean contribution magnitude of select representative features across
the top K patches employed in the Self-Interpretable branch. Additionally, we display a feature density plot that quantifies the distribution
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we illustrate, the description and visualization of representative features in (c) with varying value.

presented top K (= 20) patches and corresponding nuclear
maps for the WSIs in Fig. 3a to the expert. The selected
IDC and ILC patches demonstrated good agreement with
class-specific prior knowledge. The IDC patches contained
coherent cancer cells forming malignant glands, nests, or
sheets with commentary about nuclear size, shape, color,
and chromatin texture; and the ILC patches showed infil-
trating small round cells in single file configurations. Af-
terwards, the top 10 contributing PathExpert features and
associated feature distributions, as identified by SI-MIL in
Fig. 3c, were evaluated by the expert to assess their correla-
tion with domain knowledge in classifying IDC and ILC.
90% and 80% of these features for IDC and ILC WSIs
in Fig. 3a were found relevant, respectively, due to their
strong association with cell cohesiveness, nuclear hyper-
chromaticity, and morphology of cancerous nuclei prop-
erties. These analyses helped the pathologist in reasoning
with the model’s rationale and developing trust in model’s
predictions. Interestingly, the pathologist commented on
the utility of such feature-level relevance report in down-
stream correlations with genomic and laboratory data.
Faithfulness: We evaluated the faithfulness of our reports
by quantifying the alignment of the top identified PathEx-
pert features with pathologist’s assessments. The evaluation
involved the pathologist assigning relevance scores to the
top features. Specifically, we selected 10 WSIs each from
IDC and ILC, and generated patch-feature reports includ-
ing top 10 contributing PathExpert features. Then, the re-
ports were analyzed and the features were categorized into
high-, moderate-, or non-relevant categories by the expert.
The mean and standard deviation of the number of features
in each category are reported separately in Table 3. Also,

an aggregated percentage of the number of features in each
category is reported. The analysis shows that the major-
ity of the identified features are either highly or moderately
relevant towards correct classification and interpretability.
Among the non-relevant features, a few are interesting to
be analyzed on larger cohorts to potentially discover new
diagnostic biomarkers. The selection of some of the non-
relevant features may also be due to certain misclassifica-
tions by HoVer-Net. This is left for future exploration.

Table 3. Pathologist evaluation at slide-level for top contribut-
ing features’ relevancy for IDC and ILC classes in TCGA-BRCA.
Agg. denotes aggregated percentages of features belonging to
three relevancy groups.

Highly Relevant Moderately Relevant Non Relevant

IDC 5.40 ± 1.43 2.10 ± 0.94 2.50 ± 1.28
ILC 3.25 ± 0.97 3.75 ± 0.83 3.00 ± 1.12

Agg. 44.5% 28.3% 27.2%

5.2. Global Interpretation: Cohort-level
In this section, we holistically analyze how SI-MIL in-
terprets at a global cohort-level and benefits over conven-
tional MIL. Specifically, we perform univariate and multi-
variate statistical analysis to measure class-separability in
the PathExpert feature space, inline with [10, 15, 43].
Univariate and Multivariate class-separability: Through
global cohort-level analysis, we demonstrate that SI-MIL,
which includes the co-learning of MIL and SI branches, op-
timizes the selection of more informative patches than con-
ventional MIL. During inference for both the models, we
separately collect the top K attended patches across WSIs
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corresponding to the two classes in TCGA-BRCA. Subse-
quently, we use the pre-extracted d PathExpert features for
the selected patches, as described in Sec. 3.2. Formally,
given N1 and N2 number of WSIs in the two classes, we
construct PathExpert feature matrices F1 ↑ R(N1→K)→d

and F2 ↑ R(N2→K)→d for both the models.
Multivariate analysis employs t-SNE [60] to project F1

and F2 into a 2D embedding space, as shown in Fig. 4a. Af-
terwards, we measure the class-separability in terms of two
metrics: (1) JSdiv@i, which entails fitting a 2D Gaussian
mixture model with i components to each class and calcu-
lates the Jansen-Shannon (JS) divergence between the two
distributions; and (2) Silhouette score [50], an unsupervised
metric to evaluate the quality of class-wise created clusters.
Both the measures are distance-based metrics that aim to
highlight how separable the patches from the two classes
are, in the projected embedding space. To account for mod-
eling variability, we report the mean and standard deviation
of the metrics across 5-fold cross-validation, as presented in
Sec. 4.1. It can be observed in the table in Fig. 4a that SI-
MIL consistently provides higher class-separability scores
than conventional MIL method. This can be attributed to
the co-learning technique in SI-MIL, which results in se-
lecting more informative patches for individual classes that
are better separable in the PathExpert feature space.

Univariate analysis examines the class-separability of
patches for individual PathExpert features. For a given fea-
ture, i.e., a column in F1 and F2, we create class-wise den-
sity distributions and measure the JS divergence. For vi-
sual simplicity, we show the univariate analysis for the two
PathExpert features for both SI-MIL and the conventional
MIL in Fig. 4b. We can observe that the class-wise density
distributions in SI-MIL are significantly better separated
than the MIL. This further supports our argument of better
patch selection in SI-MIL from multivariate analysis. For an
aggregated univariate analysis, we rank the features by the
decreasing order of JS divergence, and plot the median JS
divergence against the increasing number of features. Sim-

ilar to multivariate analysis, we state the mean and std of
the medians across 5-fold cross-validation (Fig. 4b). We
can observe that SI-MIL provides significantly better me-
dian class-separability for a good number of features, which
strongly supports the enhanced quality of selected patches
while preserving pathological understanding.

5.3. Dataset contribution
We contribute a comprehensive dataset aimed at enhancing
interpretability and reproducibility in MIL research. It com-
prises of nuclei maps, PathExpert features, and SI-MIL-
generated patch-feature importance reports for 2.2K WSIs.
WSI processing and feature extraction involved significant
computing resources (details in Supp. Sec. 13). The com-
plete list of PathExpert features, including cell shape and
texture properties, spatial configurations, and interactions
among different cell types, is detailed in the supplementary
material. We provide the key elements to enable researchers
to further expand on the already comprehensive set.

6. Conclusion
We present Self-Interpretable MIL, which not only aug-
ments model interpretability by identifying salient regions
and providing feature-level contributions within these re-
gions but also achieves high performance on gigapixel WSI
tasks. SI-MIL bridges the gap between AI-driven analy-
sis and pathologist-friendly reasoning, a first of its kind in
histopathology. From an evolutionary perspective, differ-
ent cancers may share fundamentally similar characteris-
tics; the PathExpert features in SI-MIL can capture these
properties, possibly lending itself well to rare/unseen can-
cers. Future work will also involve integration of LLM-
driven pathological concepts in model training.
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[19] Miriam Hägele, Philipp Seegerer, Sebastian Lapuschkin,
Michael Bockmayr, Wojciech Samek, Frederick Klauschen,
Klaus-Robert Müller, and Alexander Binder. Resolving chal-
lenges in deep learning-based analyses of histopathological
images using explanation methods. Scientific reports, 10(1):
6423, 2020. 2

[20] Zhi Huang, Federico Bianchi, Mert Yuksekgonul, Thomas J
Montine, and James Zou. A visual–language foundation
model for pathology image analysis using medical twitter.
Nature medicine, pages 1–10, 2023. 2

[21] Maximilian Ilse, Jakub Tomczak, and Max Welling.
Attention-based deep multiple instance learning. In Inter-
national conference on machine learning, pages 2127–2136.
PMLR, 2018. 1, 6

11234

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga


[22] Guillaume Jaume, Pushpak Pati, Antonio Foncubierta-
Rodriguez, Florinda Feroce, Giosue Scognamiglio,
Anna Maria Anniciello, Jean-Philippe Thiran, Orcun
Goksel, and Maria Gabrani. Towards explainable graph
representations in digital pathology. arXiv preprint
arXiv:2007.00311, 2020. 2

[23] Guillaume Jaume, Pushpak Pati, Behzad Bozorgtabar, An-
tonio Foncubierta, Anna Maria Anniciello, Florinda Fe-
roce, Tilman Rau, Jean-Philippe Thiran, Maria Gabrani,
and Orcun Goksel. Quantifying explainers of graph neu-
ral networks in computational pathology. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8106–8116, 2021. 2

[24] Syed Ashar Javed, Dinkar Juyal, Harshith Padigela, Amaro
Taylor-Weiner, Limin Yu, and Aaditya Prakash. Additive
mil: intrinsically interpretable multiple instance learning for
pathology. Advances in Neural Information Processing Sys-
tems, 35:20689–20702, 2022. 3, 5, 6

[25] Jayashree Kalpathy-Cramer, Andrew Beers, Artem Ma-
monov, Erik Ziegler, Rob Lewis, Andre Botelho Almeida,
Gordon Harris, Steve Pieper, David Clunie, Ashish Sharma,
et al. Crowds cure cancer: Data collected at the rsna 2017
annual meeting. The Cancer Imaging Archive. DOI, 10:K9.
4

[26] Saarthak Kapse, Srijan Das, Jingwei Zhang, Rajarsi R
Gupta, Joel Saltz, Dimitris Samaras, and Prateek Prasanna.
Attention de-sparsification matters: Inducing diversity in
digital pathology representation learning. arXiv preprint
arXiv:2309.06439, 2023. 3

[27] Kenji Kawaguchi. Deep learning without poor local min-
ima. Advances in neural information processing systems, 29,
2016. 2

[28] S Kirk, Y Lee, P Kumar, J Filippini, B Albertina, M Wat-
son, and J Lemmerman. Radiology data from the cancer
genome atlas lung squamous cell carcinoma [tcga-lusc] col-
lection. The Cancer Imaging Archive, 2016. 5

[29] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen
Mussmann, Emma Pierson, Been Kim, and Percy Liang.
Concept bottleneck models. In International conference on
machine learning, pages 5338–5348. PMLR, 2020. 3

[30] Thomas Laurent and James Brecht. Deep linear networks
with arbitrary loss: All local minima are global. In Inter-
national conference on machine learning, pages 2902–2907.
PMLR, 2018. 2

[31] Bin Li, Yin Li, and Kevin W Eliceiri. Dual-stream multiple
instance learning network for whole slide image classifica-
tion with self-supervised contrastive learning. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 14318–14328, 2021. 1

[32] Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama,
Haotian Liu, Jianwei Yang, Tristan Naumann, Hoifung Poon,
and Jianfeng Gao. Llava-med: Training a large language-
and-vision assistant for biomedicine in one day. arXiv
preprint arXiv:2306.00890, 2023. 2

[33] W Lingle, BJ Erickson, ML Zuley, R Jarosz, E Bonaccio,
J Filippini, and N Gruszauskas. Radiology data from the
cancer genome atlas breast invasive carcinoma [tcga-brca]
collection. The Cancer Imaging Archive, 10:K9, 2016. 5

[34] Yang Liu, Nilay S Sethi, Toshinori Hinoue, Barbara G
Schneider, Andrew D Cherniack, Francisco Sanchez-Vega,
Jose A Seoane, Farshad Farshidfar, Reanne Bowlby, Mirazul
Islam, et al. Comparative molecular analysis of gastrointesti-
nal adenocarcinomas. Cancer cell, 33(4):721–735, 2018. 1

[35] Cheng Lu, Can Koyuncu, German Corredor, Prateek
Prasanna, Patrick Leo, XiangXue Wang, Andrew
Janowczyk, Kaustav Bera, James Lewis Jr, Vamsidhar
Velcheti, et al. Feature-driven local cell graph (flock): new
computational pathology-based descriptors for prognosis
of lung cancer and hpv status of oropharyngeal cancers.
Medical image analysis, 68:101903, 2021. 4

[36] Ming Y Lu, Drew FK Williamson, Tiffany Y Chen, Richard J
Chen, Matteo Barbieri, and Faisal Mahmood. Data-efficient
and weakly supervised computational pathology on whole-
slide images. Nature biomedical engineering, 5(6):555–570,
2021. 1, 5, 6

[37] Ming Y Lu, Bowen Chen, Drew FK Williamson, Richard J
Chen, Ivy Liang, Tong Ding, Guillaume Jaume, Igor
Odintsov, Andrew Zhang, Long Phi Le, et al. Towards a
visual-language foundation model for computational pathol-
ogy. arXiv preprint arXiv:2307.12914, 2023. 2

[38] Ming Y Lu, Bowen Chen, Andrew Zhang, Drew FK
Williamson, Richard J Chen, Tong Ding, Long Phi Le, Yung-
Sung Chuang, and Faisal Mahmood. Visual language pre-
trained multiple instance zero-shot transfer for histopathol-
ogy images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 19764–
19775, 2023. 2

[39] Anant Madabhushi and George Lee. Image analysis and ma-
chine learning in digital pathology: Challenges and opportu-
nities. Medical image analysis, 33:170–175, 2016. 1

[40] Anita Mahinpei, Justin Clark, Isaac Lage, Finale Doshi-
Velez, and Weiwei Pan. Promises and pitfalls of black-box
concept learning models. arXiv preprint arXiv:2106.13314,
2021. 3

[41] Andrei Margeloiu, Matthew Ashman, Umang Bhatt, Yanzhi
Chen, Mateja Jamnik, and Adrian Weller. Do concept
bottleneck models learn as intended? arXiv preprint
arXiv:2105.04289, 2021. 3

[42] Adriano Luca Martinelli and Maria Anna Rapsomaniki.
Athena: analysis of tumor heterogeneity from spatial omics
measurements. Bioinformatics, 38(11):3151–3153, 2022. 3,
4, 7

[43] Andrew T McKenzie, Gabriel A Marx, Daniel Koenigs-
berg, Mary Sawyer, Megan A Iida, Jamie M Walker, Tim-
othy E Richardson, Gabriele Campanella, Johannes Attems,
Ann C McKee, et al. Interpretable deep learning of myelin
histopathology in age-related cognitive impairment. Acta
Neuropathologica Communications, 10(1):131, 2022. 2, 7

[44] Cancer Genome Atlas Network et al. Comprehensive molec-
ular characterization of human colon and rectal cancer. Na-
ture, 487(7407):330, 2012. 5

[45] Quynh Nguyen and Matthias Hein. The loss surface of deep
and wide neural networks. In International conference on
machine learning, pages 2603–2612. PMLR, 2017. 2

[46] Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-

11235



Wei Weng. Label-free concept bottleneck models. arXiv
preprint arXiv:2304.06129, 2023. 3

[47] Pushpak Pati, Guillaume Jaume, Zeineb Ayadi, Kevin
Thandiackal, Behzad Bozorgtabar, Maria Gabrani, and Or-
cun Goksel. Weakly supervised joint whole-slide segmen-
tation and classification in prostate cancer. Medical Image
Analysis, 89:102915, 2023. 1, 2

[48] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 2

[49] Abtin Riasatian. Kimianet: Training a deep network for
histopathology using high-cellularity. Master’s thesis, Uni-
versity of Waterloo, 2020. 3

[50] Peter J Rousseeuw. Silhouettes: a graphical aid to the inter-
pretation and validation of cluster analysis. Journal of com-
putational and applied mathematics, 20:53–65, 1987. 8

[51] Cynthia Rudin. Stop explaining black box machine learn-
ing models for high stakes decisions and use interpretable
models instead. Nature machine intelligence, 1(5):206–215,
2019. 2

[52] Dawid Rymarczyk, Adam Pardyl, Jaros!aw Kraus, Aneta
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Protomil: Multiple instance learning with prototypical parts
for whole-slide image classification. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in
Databases, pages 421–436, 2022. 1

[53] Ario Sadafi, Oleksandra Adonkina, Ashkan Khakzar, Peter
Lienemann, Rudolf Matthias Hehr, Daniel Rueckert, Nassir
Navab, and Carsten Marr. Pixel-level explanation of multiple
instance learning models in biomedical single cell images. In
International Conference on Information Processing in Med-
ical Imaging, pages 170–182. Springer, 2023. 2

[54] Zohaib Salahuddin, Henry C Woodruff, Avishek Chatterjee,
and Philippe Lambin. Transparency of deep neural networks
for medical image analysis: A review of interpretability
methods. Computers in biology and medicine, 140:105111,
2022. 1

[55] J Saltz, R Gupta, L Hou, T Kurc, P Singh, V Nguyen, D
Samaras, KR Shroyer, T Zhao, R Batiste, et al. Tumor-
infiltrating lymphocytes maps from tcga h&e whole slide
pathology images [data set]. Cancer Imaging Arch, 2018.
4

[56] Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian
Zhang, Xiangyang Ji, et al. Transmil: Transformer based
correlated multiple instance learning for whole slide image
classification. Advances in neural information processing
systems, 34:2136–2147, 2021. 1, 6

[57] Mookund Sureka, Abhijeet Patil, Deepak Anand, and Amit
Sethi. Visualization for histopathology images using graph
convolutional neural networks. In 2020 IEEE 20th inter-
national conference on bioinformatics and bioengineering
(BIBE), pages 331–335. IEEE, 2020. 1

[58] Kevin Thandiackal, Boqi Chen, Pushpak Pati, Guillaume
Jaume, Drew FK Williamson, Maria Gabrani, and Orcun

Goksel. Differentiable zooming for multiple instance learn-
ing on whole-slide images. In European Conference on Com-
puter Vision, pages 699–715. Springer, 2022. 4

[59] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al.
Mlp-mixer: An all-mlp architecture for vision. Advances
in neural information processing systems, 34:24261–24272,
2021. 4

[60] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9
(11), 2008. 8

[61] Eugene Vorontsov, Alican Bozkurt, Adam Casson, George
Shaikovski, Michal Zelechowski, Siqi Liu, Philippe Math-
ieu, Alexander van Eck, Donghun Lee, Julian Viret, et al.
Virchow: A million-slide digital pathology foundation
model. arXiv preprint arXiv:2309.07778, 2023. 3

[62] Xiyue Wang, Sen Yang, Jun Zhang, Minghui Wang,
Jing Zhang, Wei Yang, Junzhou Huang, and Xiao Han.
Transformer-based unsupervised contrastive learning for
histopathological image classification. Medical image anal-
ysis, 81:102559, 2022. 5, 1

[63] Xiyue Wang, Yuexi Du, Sen Yang, Jun Zhang, Minghui
Wang, Jing Zhang, Wei Yang, Junzhou Huang, and Xiao
Han. Retccl: clustering-guided contrastive learning for
whole-slide image retrieval. Medical image analysis, 83:
102645, 2023. 3, 5, 1

[64] Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel
Jin, Chris Callison-Burch, and Mark Yatskar. Language
in a bottle: Language model guided concept bottlenecks
for interpretable image classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19187–19197, 2023. 3

[65] Mert Yuksekgonul, Maggie Wang, and James Zou.
Post-hoc concept bottleneck models. arXiv preprint
arXiv:2205.15480, 2022. 3

[66] Neda Zamanitajeddin, Mostafa Jahanifar, and Nasir Rajpoot.
Cells are actors: Social network analysis with classical ml for
sota histology image classification. In Medical Image Com-
puting and Computer Assisted Intervention–MICCAI 2021:
24th International Conference, Strasbourg, France, Septem-
ber 27–October 1, 2021, Proceedings, Part VIII 24, pages
288–298. Springer, 2021. 3, 4, 6

[67] Jingwei Zhang, Ke Ma, John Van Arnam, Rajarsi Gupta,
Joel Saltz, Maria Vakalopoulou, and Dimitris Samaras. A
joint spatial and magnification based attention framework for
large scale histopathology classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3776–3784, 2021. 1

[68] Jingwei Zhang, Saarthak Kapse, Ke Ma, Prateek Prasanna,
Joel Saltz, Maria Vakalopoulou, and Dimitris Sama-
ras. Prompt-mil: Boosting multi-instance learning
schemes via task-specific prompt tuning. arXiv preprint
arXiv:2303.12214, 2023. 1

[69] Zizhao Zhang, Yuanpu Xie, Fuyong Xing, Mason McGough,
and Lin Yang. Mdnet: A semantically and visually inter-
pretable medical image diagnosis network. In Proceedings of

11236



the IEEE conference on computer vision and pattern recog-
nition, pages 6428–6436, 2017. 2

[70] Yi Zheng, Rushin H Gindra, Emily J Green, Eric J Burks,
Margrit Betke, Jennifer E Beane, and Vijaya B Kolacha-
lama. A graph-transformer for whole slide image classifica-
tion. IEEE transactions on medical imaging, 41(11):3003–
3015, 2022. 1, 2

11237


