

1 Escaping the benthos with Coral Reef Arks: 2 Effects on coral translocation and fish 3 biomass

4 **Jessica Carilli¹, Jason Baer², Jenna Marie Aquino², Mark Little³, Bart
5 Chadwick⁴, Forest Rohwer², Gunther Rosen¹, Anneke van der Geer²,
6 Andrés Sánchez-Quinto², Ashton Ballard², and Aaron C Hartmann³**

7 **¹Naval Information Warfare Center Pacific, 53560 Hull Street San Diego, CA 92152**

8 **²San Diego State University, 5500 Campanile Dr, San Diego, CA 92182**

9 **³Harvard University, 26 Oxford Street, Cambridge, MA 02138**

10 **⁴Coastal Monitoring Associates, 4741 Orchard Avenue, San Diego, CA 92107**

11 ***co-first authors**

12 Corresponding author:

13 Jessica Carilli¹

14 Email address: jessica.c.carilli.civ@us.navy.mil

15 ABSTRACT

16 Anthropogenic stressors like overfishing, land based runoff, and increasing temperatures cause the
17 degradation of coral reefs, leading to the loss of corals and other calcifiers, increases in competitive fleshy
18 algae, and increases in microbial pathogen abundance and hypoxia. To test the hypothesis that corals
19 would be healthier by moving them off the benthos, a common garden experiment was conducted in
20 which corals were translocated to midwater geodesic spheres (hereafter called Coral Reef Arks or Arks).
21 Coral fragments translocated to the Arks survived significantly longer than equivalent coral fragments
22 translocated to Control sites (i.e., benthos at the same depth). Over time, average living coral surface
23 area and volume were higher on the Arks than the Control sites. The abundance and biomass of fish was
24 also generally higher on the Arks compared to the Control sites, with more piscivorous fish on the Arks.
25 Addition of Autonomous Reef Monitoring Structures (ARMS), which served as habitat for sessile and
26 motile reef-associated organisms, also generally significantly increased fish associated with the Arks.
27 Overall, the Arks increased translocated coral survivorship and growth, and exhibited knock-on effects
28 such as higher fish abundance.

29 INTRODUCTION

30 Coral reef ecosystems are declining globally due to local and global stressors including overfishing,
31 pollution, and climate change (Eddy et al., 2021). Most reef mitigation and restoration efforts have
32 focused on protecting and rebuilding coral communities, due to the role of corals as ecosystem engineers.
33 Such projects often rely on some form of coral translocation; for example, corals are moved off of piers to
34 natural reef sites to mitigate damage (Dickenson et al., 2002). Corals are often fragmented and grown
35 in nurseries, then outplanted to natural or artificial reef sites for restoration (Bayraktarov et al., 2020).
36 These projects have varying success (Boström-Einarsson et al., 2020; Hein et al., 2020), in part because
37 transplanting corals to sites with poor environmental conditions is likely to fail unless the source of the
38 poor conditions are addressed (Ferse et al., 2021).

39 Given that many environmental stressors causing coral reef decline are large-scale and unlikely to be
40 remediated in the near future (e.g., ocean warming), the Coral Reef Arks approach was designed to provide
41 an interim solution to enhance the survival of corals, study the successional patterns of reef communities,
42 and determine whether Arks may help surrounding areas recover ecosystem functions (Baer et al., 2023).
43 The midwater Arks create suitable habitat in a location with better abiotic conditions, including higher
44 light availability, flow speeds, dissolved oxygen, and lower microbial biomass and abundance (Baer et al.,
45 2023) than the ocean bottom (hereafter referred to as the benthos, to include the non-living ocean floor and

46 associated biota) (Webb et al., 2021), and provide corals translocated to this habitat with reef-associated
47 biota to support ecosystem services necessary to promote coral and reef survival. These services include
48 grazing to reduce competition with algae, nutrient remineralization, water filtering, and defense against
49 corallivores (Stella et al., 2011; Nelson et al., 2023). Reef-associated species are translocated to the Arks
50 using Autonomous Reef Monitoring Structures (ARMS) units, which provide habitat and passively collect
51 a significant fraction of reef diversity from natural reef sites (e.g., Ransome et al., 2016; Rohwer and
52 Hartmann, 2020) before being transferred to the Arks.

53 During the nursery stage for coral gardening projects, corals are often elevated off the benthos with
54 tables or ropes and nets suspended by buoys, providing corals with improved water quality and resulting in
55 improved survival and growth rates compared to benthic nurseries (e.g., Shafir et al., 2006; Nedimyer et al.,
56 2011). These nurseries are intended as a temporary holding site for corals prior to affixing them to the
57 benthos, often require significant maintenance, and do not create a complex reef system to support coral
58 growth in the long term, which is the ultimate goal of restoration. In contrast to growing corals in isolation
59 for short periods, Arks are intended to provide the same or more beneficial water quality conditions as
60 nurseries, while creating an artificial reef for corals to permanently reside. To do this, the Arks are placed
61 shallow enough to meet the light requirements of corals and other photosynthetic organisms, off the
62 benthos, and far enough from shore to reduce exposure to runoff and other local impacts. Furthermore,
63 Arks are seeded with cryptic biodiversity to support coral health and replace human maintenance (e.g.,
64 algae and corallivore removal) with nature-based solutions (e.g., herbivores and predators). As such,
65 Arks are designed to meet the Coral Restoration Consortium priorities to “Support a holistic approach to
66 coral reef ecosystem restoration” and to “Increase restoration efficiency,” by outplanting a range of coral
67 species and genotypes as well as non-coral species (Vardi et al., 2021). Depending on site conditions and
68 requirements and logistical support, Arks could theoretically be maintained in the midwater indefinitely
69 or relocated to the seafloor on a suitable anchoring structure after an initial midwater period; however
70 these longer term outcomes are yet to be tested.

71 Here, we describe two Arks structures deployed in Vieques, Puerto Rico. Stony corals were translo-
72 cated to the Arks in two stages six months apart, first without, and then with an accompanying transfer
73 of seeded ARMS units. Corals were also translocated to two benthic Control sites akin to traditional
74 coral outplanting approaches during each stage. Biotic and abiotic metrics were subsequently tracked
75 at multiple monitoring timepoints. This paper presents results from the first five monitoring timepoints,
76 spanning approximately 19 months on the Arks and Control sites to address three related hypotheses: 1)
77 Corals translocated to the Arks will survive longer and have greater tissue growth than corals translocated
78 to the benthic Control sites, 2) turf and macroalgae cover around corals on the Arks will be lower than at
79 the benthic Control sites, and 3) fish abundance and biomass associated with the Arks will be greater than
80 fish associated with the benthic Control sites.

81 We present macroorganismal data to test these hypotheses here. We previously showed that the Arks
82 and Control sites differ in abiotic and microbial conditions, and thus differ in their theoretical suitability
83 for coral survival, as intended in our experimental design (Baer et al., 2023). Arks have higher water
84 flow rates, higher light levels likely due at least in part to reduced sedimentation, lower diel variation in
85 dissolved oxygen, lower concentrations of dissolved organic carbon (DOC), more viruses relative to their
86 microbial prey, and smaller microbial cell sizes (Baer et al., 2023). The Arks conditions are similar to
87 those found on coral-dominated reefs throughout the world, while those on the Control sites are more
88 closely aligned with low coral cover, degraded, and “microbialized” reefs (Haas et al., 2016; Silveira
89 et al., 2023).

90 METHODS

91 Experimental design

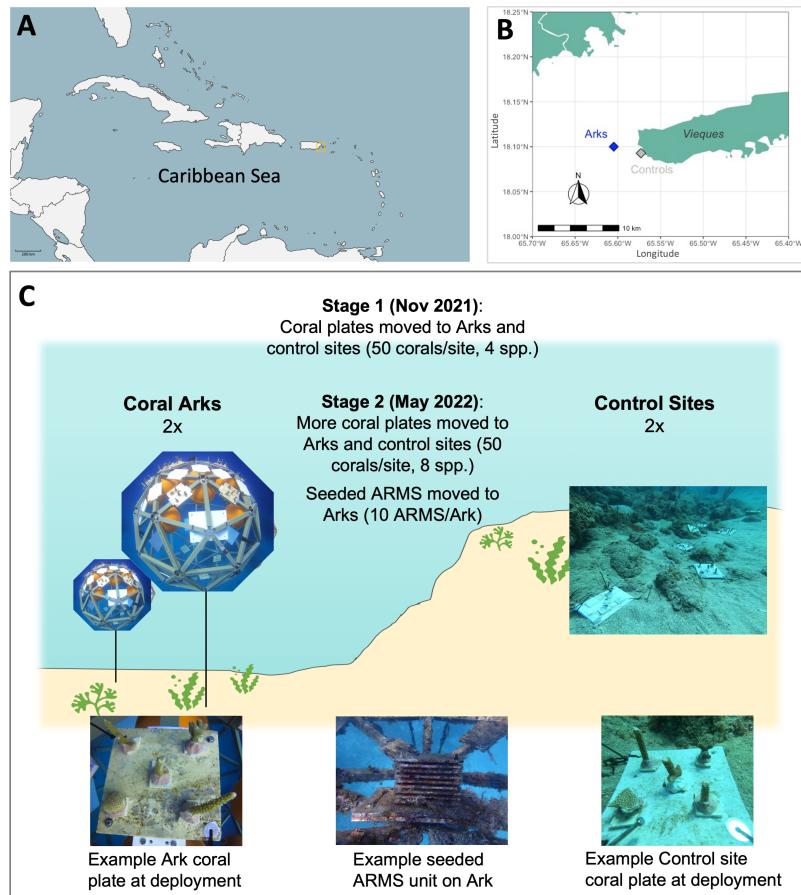
92 *Site design: Coral Reef Arks*

93 Arks are midwater, positively buoyant, 2.4 m (8 ft) diameter geodesic spheres tethered to the seafloor.
94 Regulatory approvals to conduct this demonstration were obtained in conjunction with the Vieques
95 Restoration Project, particularly the National Marine Fisheries Service Programmatic Biological Opinion
96 (OPR-2017-00026). In November 2021, two Arks were deployed offshore approximately 2 miles to
97 the west of Vieques Island, Puerto Rico (Fig. 1A-B), within part of the Navy’s unexploded ordnance
98 remediation site 16 (UXO16). The seafloor in this area is 16.7 m (55 feet) deep and consists of sand
99 with patches of rubble and macroalgae such as *Padina spp.* and *Halimeda spp.* in the immediate area. A

100 mapping survey of Vieques underwater habitat classified the Arks deployment area as sand, with coral
101 reef and hardbottom/pavement habitat located approximately 100 m south of the Arks site (Bauer and
102 Kendall, 2010). Arks were installed using a set of three helical sand anchors and a multipoint bridle
103 system described in Baer et al. (2023), following specific guidelines for work within a UXO site. Once
104 installed, the top of Ark1 and Ark2 was located at approximately 7.6 m (25 ft) and 7.3 m (24 ft) below
105 the water surface, respectively. The two Arks were separated by approximately 50 m. Additional details
106 regarding building and deploying Arks can be found in Baer et al. (2023).

107 **Site design: Control sites**

108 Two Control sites were established at similar depths as the tops of the Arks (7.6 m/25 ft and 6.4 m/21
109 ft water depth, respectively), to compare the Arks approach to the traditional approach of translocating
110 corals to the benthos at appropriate depths, which only occur relatively close to shore (compared to
111 the offshore locations of the Coral Arks). While this experimental design did not allow the separation
112 of distance-from-bottom from distance-to-shore factors, the overall experiment intended to holistically
113 compare the Arks approach, which allows placement of corals in optimized conditions away from coastal
114 runoff, to traditional coral outplanting, which is constrained by available hardbottom at appropriate depths
115 occurring along coastlines. The two Control sites were also located off the west coast of Vieques Island
116 within another portion of UXO16 (Fig. 1B). The two Control sites were separated by approximately 25 m.
117 The habitat in this area was classified as reef hardbottom characterized by colonized pavement, linear
118 reef, and aggregated patch reef habitats (Bauer and Kendall, 2010). Qualitatively, the sites are dominated
119 primarily by carbonate rock colonized by turf and macroalgae, stony corals (mainly in the genera *Orbicella*,
120 *Siderastrea*, *Porites*, and *Diploria*), gorgonians, fire corals, and other sessile invertebrates, with scattered
121 patches of sand and seagrass found at the deeper fringes of the sites.


122 **Site design: ARMS seeding**

123 ARMS units are three-dimensional structures made of PVC plates and stainless-steel hardware that create
124 a standardized area of substrate to passively collect reef communities via natural recruitment and growth
125 (www.oceanARMS.org). Thirty ARMS were placed on the benthos in the vicinity of the Control sites off
126 the west coast of Vieques, located between about 8 to 14 ft depth and close to living coral assemblages.
127 ARMS were secured to the benthos in sets of five using rebar stakes and cable ties to link the ARMS and
128 concrete bags as weighted anchors (Baer et al., 2023). ARMS were left to accumulate coral reef cryptic
129 biodiversity for a one-year “seeding” period before they were moved to the Arks. No ARMS units were
130 moved to the control sites, as these sites were established adjacent to natural reef communities already
131 replete with the biota the ARMS units accumulated.

132 **Coral sourcing and translocation**

133 Corals of opportunity were used for this experiment, with approval from Puerto Rico’s Department
134 of Natural and Environmental Resources (DNER), permit number O-VS-PVS15-SJ-01233-20092021.
135 Corals were translocated to the Arks and Control sites in two cohorts six months apart (November 2021
136 and May 2022; Supplementary Table 1). Approximately half of the corals were sourced from a NOAA
137 coral nursery called Palominos, off the east coast of the main island of Puerto Rico during both time
138 periods (*Acropora cervicornis*, *Porites porites* for both cohorts and *Orbicella spp.* in May 2022), and
139 from metal debris (a barge and pipes) in Bahía de Jobos, Puerto Rico, slated for removal by DNER in
140 November 2021 (*Porites porites* and *Siderastrea radians*). Additional corals of opportunity were obtained
141 from rubble fields and a spalling concrete boat ramp on the south side of Mosquito Pier, Vieques, in May
142 2022 (*Porites furcata*, *Porites astreoides*, *Siderastrea siderea*, and *Agaricia sp.*). After collection, all
143 corals were held in plastic bins with seawater (refreshed intermittently) or placed in plastic milkcrates
144 suspended underwater beneath a small boat dock at Mosquito Pier. Corals were then fragmented and
145 attached to numbered, unfinished limestone tiles (termed “coral plates”) with a mixture of epoxy (*Aquastik*
146 *Coralline Red*, *Two Little Fishies*) and superglue (*Seachem*). This attachment method was selected based
147 on literature review and lab-based trials of different attachment methods.

148 Coral fragments were distributed such that individual nubbins of the same species or fragments from
149 the same parent colony were placed on different coral plates and would be deployed to both the Arks
150 and Control sites, providing an even balance of coral species and genets between the two treatments.
151 The following data were recorded for each coral fragment on each coral plate: species, source site,
152 date collected, approximate depth collected, date attached to coral plate, height, maximum horizontal

Figure 1. Maps of (A) regional setting and (B) treatment sites for Arks and Control sites, and (C) schematic representation of experimental design.

153 dimension, horizontal dimension 90 degrees to maximum, number of branches if applicable (including
 154 number of branches with intact apical tips for *Acropora cervicornis* corals), and general health of the
 155 fragment (healthy, pale, bleached). Fewer than five collected corals had lesions consistent with Stony
 156 Coral Tissue Loss Disease (SCTLD). Though SCTLD infection was not confirmed, these corals were not
 157 used on coral plates out of an abundance of caution.

158 Coral plates were attached with cable ties at a temporary holding site established in a rubble field on
 159 the south side of Mosquito Pier comprised of upside down plastic milkcrates, weights, and cinderblocks
 160 until plates were deployed to either an Ark or Control site. Corals remained on coral plates in the
 161 temporary holding location off Mosquito pier for variable time periods ranging from 0-9 days. While at
 162 the temporary holding location, corals were visually checked daily, and any accumulated fine sediment on
 163 the plates was fanned off. Attachment panels for coral plates were built into the Arks design and structure.
 164 At the Control sites, locations for coral plates were selected by a certified scientific diver to cluster coral
 165 plates relatively closely, as on the Arks structures, while avoiding areas that would impact living corals,
 166 native seagrass beds, or critical habitat for corals, and avoiding deep sand that might smother or scour the
 167 corals on the tiles. Divers then installed 2-4 stainless steel anchor points (camping spikes or lag bolts)
 168 into the benthos to which the coral plates were later attached.

169 Coral plates were deployed to either an Ark or a Control site by transferring them to the deployment
 170 site in bins of seawater on the shaded deck of a dive boat, and to the deployment site in milk crates.
 171 Coral plates were secured to either one of the Arks or to the benthos at one of the Control sites using
 172 stainless steel hardware and/or cable ties (Fig. 1C). The site, date, angle of deployment from horizontal,
 173 and condition of corals on the plates were recorded for each coral plate deployed.

174 **ARMS translocation**

175 The Arks were monitored for the six months following coral translocation (stage 1), without the presence
176 of seeded ARMS. In May 2022, ARMS units were transferred to Arks (10 to each Ark) to seed the Arks
177 with reef biodiversity (stage 2). ARMS were covered in a fine mesh to retain motile organisms, removed
178 from the benthos, and brought to the surface. Each ARMS was individually placed in seawater-filled
179 bins on the boat and kept in the shade during transit from the ARMS seeding site to the Arks (Baer et al.,
180 2023). At the Arks, each ARMS was hand-carried from the boat to the Arks on SCUBA and attached to a
181 pre-installed attachment plate built into the Arks. The ARMS were secured to the Arks with stainless
182 steel hardware and zip ties, then the mesh bag was removed (Fig. 1C).

183 **Monitoring**

184 **Coral survival and growth**

185 Data were collected at the Arks and Control sites at preplanned monitoring timepoints, immediately
186 following the installation of the Arks (time 0), then approximately every 3 months for the first year,
187 then another 7 months to span a total of about 19 months. At each monitoring timepoint, the following
188 data were recorded *in situ* for each coral fragment: height, maximum horizontal dimension, horizontal
189 dimension 90 degrees to maximum, number of branches if applicable, and general health (percent of
190 living tissue that appeared healthy, pale, bleached, or diseased). If applicable, the percent of the entire
191 fragment that had suffered partial mortality was also recorded. This data collection approach follows
192 guidance from the NOAA Coral Reef Restoration Monitoring Guide (Goergen et al., 2020), with the
193 addition of three-dimensional measurements to allow estimates of both living coral volume and surface
194 area.

195 **Fish abundance, biomass, and diversity**

196 Fish associated with the Arks and Control sites were observed and recorded from GoPro video footage
197 and/or direct observations in the field (Table 1). In both cases, observations were based on approximately
198 10-15 minutes of video or direct observations at each site. All fish captured in a given video were identified
199 to species, binned into various estimated size classes, and the number of fish in each estimated size class
200 were counted. For *in situ* observations, stationary size estimates and counts were made to capture larger
201 pelagic-associated fish, followed by closer-up mobile observations to record smaller and/or cryptic fish.
202 The video approach proved more time intensive to accurately identify fish species, so this approach was
203 replaced entirely with direct observations starting in August 2022. However, qualitatively, the methods
204 produced comparable results, so the data collected at all timepoints are included here and considered
205 representative of the site fish conditions at the monitoring timepoints. The focus of this effort was to
206 capture the abundance and biomass of fish that were ecologically associated with either the Arks or
207 the Control sites; therefore, although some large schools (100-300 individuals) of forage fish (such as
208 sardines) were observed passing near the Arks, these were not enumerated. Similarly, nurse sharks that
209 were observed around the Arks anchoring system were also not enumerated.

210 The trophic role of each species of fish observed was categorized based on literature references, in
211 particular Sandin and Williams (2010). Fish biomass was estimated using length-weight relationships
212 published in Fishbase (Froese and Pauly, 2023), using the formula $W = a * L^b$, where W is weight in
213 grams, L is length in cm (calculated as the midpoint of bins used for size estimates), and a and b are
214 coefficients describing the relationship between length and weight for different fish species. Coefficients
215 were mostly obtained using the R package *rfishbase* or were manually retrieved from Fishbase if they
216 were not included in the Fishbase length-weight table, but were estimated using Bayesian analysis of all
217 length-weight measurements for fishes with similar body shapes (Froese et al., 2014).

Table 1. Summary of fish surveys completed [method and (number) of surveys]¹

Treat.	#	Nov 2021	Feb 2022	May 2022	Aug 2022	Dec 2022	Jun 2023
Ark	1	GoPro (1)	GoPro (1)	<i>In Situ</i> (1)	<i>In Situ</i> (2)	<i>In Situ</i> (1)	<i>In Situ</i> (2)
	2	GoPro (1)	GoPro (1)	<i>In Situ</i> (1)	<i>In Situ</i> (2)	<i>In Situ</i> (1)	<i>In Situ</i> (2)
Control	1	–	–	–	<i>In Situ</i> (1)	<i>In Situ</i> (1)	<i>In Situ</i> (2)
	2	GoPro (1)	GoPro (1)	GoPro (1)	<i>In Situ</i> (2)	<i>In Situ</i> (1)	<i>In Situ</i> (1)

218 **Turf and macroalgae on coral plates**

219 At each monitoring timepoint, top-down photographs were collected of each coral plate. These images
220 were used to visually estimate percent cover of turf algae and/or macroalgae for the portion of the coral
221 plates not occupied by living corals. In cases where algae cover on the Control site plates accumulated
222 sediment, this turf-consolidated sediment was also counted as turf/macroalgal cover. This metric was the
223 strongest predictor of overall coral reef ecological function in a large-scale meta-analysis by Silveira et al.
224 (2023).

225 **Data analysis**

226 All data analysis was conducted using R (Version 4.3.1) and RStudio statistical software (Version
227 2023.06.1+524; R Core Team (2023)). Because coral plates were deployed in two stages, time-since-
228 deployment was used for coral analyses instead of calendar-time. To allow comparisons between stage 1
229 and stage 2 corals, time-since-deployment was approximated as 3 months (stage 1: November 2021 to
230 February 2022, stage 2: May 2022 to August 2022), 6 months (stage 1: November 2021 to May 2022,
231 stage 2: May 2022 to December 2022), 9 months (stage 1: November 2021 to August 2022), 12 months
232 (stage 1: November 2021 to December 2022, stage 2: May 2022 to June 2023), and 19 months (stage 1:
233 November 2021 to June 2023).

234 **Coral survival and growth**

235 Coral survival was tracked and assessed using survival analysis methods to compare the length of time
236 corals survived between treatments (Arks vs. Control sites). Here, loss of corals via death was considered
237 the main event of interest and was scored categorically at each timepoint, with each coral nubbin assigned
238 a 0 if at least part of the coral colony was alive (death had not occurred), or a 1 if the coral was completely
239 dead. A separate categorical variable was used for missing corals that had broken off the plates between
240 monitoring timepoints and for which the status (live or dead) at that timepoint was unknown. A coral
241 could have been missing due to the epoxy failing or due to physical contact with the fragment which
242 caused it to break off. Coral survival (in weeks since deployment) was visualized using a Kaplan-Meier
243 survival plot, where missing corals and those that were still alive at the last monitoring timepoint are
244 ‘censored’, indicating that the event (death) did not occur for the time period the subject was tracked, but
245 it is unknown after that time whether or not the event occurred. In addition, a competing risks analysis
246 was conducted, in which survival was coded as 0, and the events “death” and “missingness” were coded
247 as 1 and 2, respectively, allowing assessment of the relative cumulative risk to coral survival based on the
248 likelihood of dying or falling off coral plates. Differences in survival outcomes between treatments were
249 statistically compared using log-rank tests and Gray’s tests conducted in R software using the *survival*
250 package.

251 To quantify the living volume and surface area of massive and encrusting corals, formulas for the
252 volume and surface area of a dome were used, while for branching corals, the volume of an ellipse (Kiel
253 et al., 2012) and the surface area of a cylinder with a top with an adjustment factor from Naumann et al.
254 (2009) was used (Table 2). These calculated values were then multiplied by the proportion of coral tissue
255 recorded as “living” to account for partial mortality. This approach is conceptually similar to the methods
256 suggested by Goergen et al. (2020) for coral restoration monitoring.

Table 2. Equations used to estimate living surface area and volume of corals

Coral Morphology	Volume Formula	Surface Area Formula
Massive and encrusting	Dome: $\frac{1}{6}\pi h(3r^2 + h^2)$	Dome: $\pi(h^2 + r^2)$
Branching	Ellipse: $\frac{4}{3}\pi \left(\frac{h}{2} \times \frac{x}{2} \times \frac{y}{2}\right)$ [Kiel et al. 2012]	Cylinder with top: $2\pi rh + \pi r^2$ (Multiplied by adjustment factor of 0.44) [Naumann et al. 2009]

257 To assess overall coral growth and survival related to treatment, the total living coral surface area and
258 volume were summed on each coral plate for each monitoring timepoint to provide sufficient statistical
259 replicates. For each approximate time-since-deployment period (3, 6, 9, 12, and 19 months), the average

¹Treat. indicates experimental treatment

260 living coral surface area and volume per coral plate was compared between treatments using t-tests if the
261 data were normal or non-parametric Wilcox tests for non-normal distributions.

262 ***Fish abundance, biomass, and diversity***

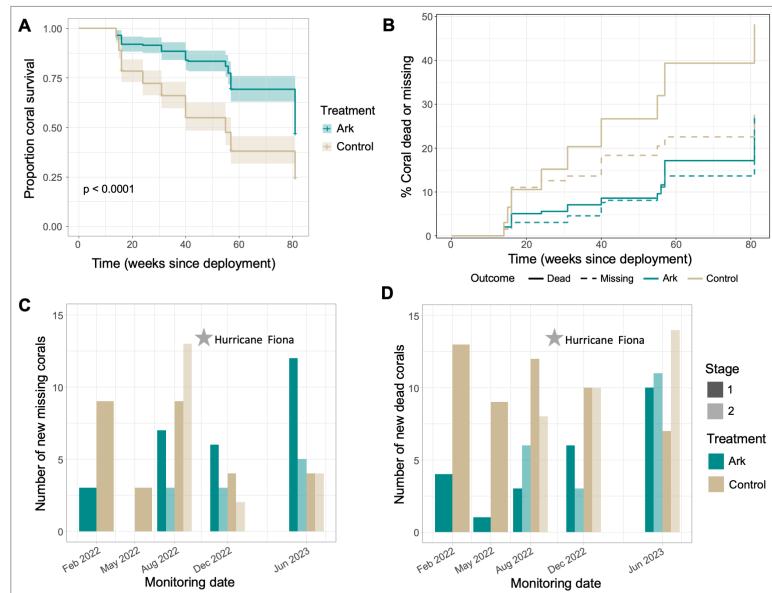
263 Statistical tests to assess change in fish communities were applied following methods in Aburto-Oropeza
264 et al. (2011), which evaluated changes in fish communities after establishment of a marine protected
265 area. Changes in fish biomass, abundance, species richness, and species evenness over time (for each
266 survey conducted at each timepoint and/or treatment replicate) were assessed at the Arks and Control
267 sites, separately, using ANOVA. For two monitoring timepoints (August 2022, June 2023), at least three
268 surveys were conducted for each treatment (Ark vs. Control), therefore providing the minimum sample
269 size required to statistically compare differences in total biomass as well as biomass of each trophic guild
270 between treatments using t-tests if the data were normal or Wilcox tests for non-normal distributions.
271 Other timepoints had fewer surveys, precluding statistical comparison between treatments.

272 ***Turf and macroalgae growth on coral plates***

273 The initial deployment timepoint was excluded from statistical analysis, as the coral plates were comprised
274 of bare limestone with no growth other than translocated corals. Turf and macroalgae coverage on coral
275 plates at other timepoints were compared using non-parametric Wilcox tests to assess whether the
276 coverage was significantly different based on treatment (Ark vs. Control for all plates deployed for
277 the same approximate lengths of time). To test whether ARMS units affected the amount of turf and macroalgae
278 coverage after 3 and 6 months of deployment, respectively, between coral plates that were deployed with
279 (stage 2) or without ARMS (stage 1).

281 **RESULTS**

282 ***Coral survival and growth***


283 After about 19 months, average survival on the Arks was about 47% compared to 24% at the Control sites,
284 with approximately 48% of corals at the Control sites dead and 28% of corals having fallen off plates;
285 in contrast, 28% of corals had died and 26% had fallen off plates on the Arks (Fig. 2A-B). Corals were
286 significantly more likely to survive to a given timepoint on the Arks relative to the Control sites (Fig. 2A;
287 Chi-squared = 40.3, p=2e-10). When death vs. falling off was considered, corals were significantly more
288 likely to die at a Control site compared to an Ark after a given amount of time (Fig. 2A-B; Gray's test =
289 23.4, p<0.001), but there was no difference in the likelihood of falling off of coral plates over time between
290 the Arks and Control sites (Fig. 2A-B; Gray's test = 2.7, p=0.10).

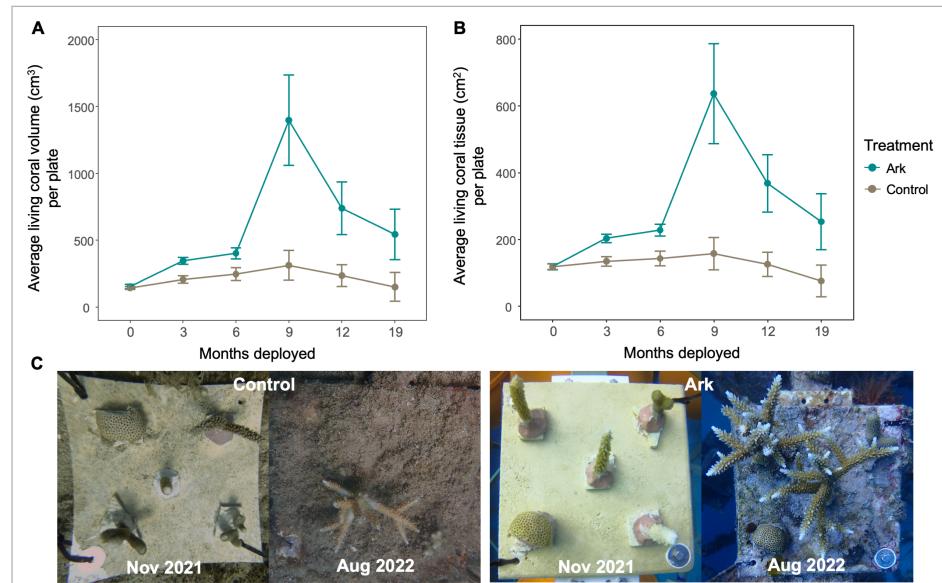
291 For corals deployed at the same time, fewer corals died on the Arks compared to the Control sites at all
292 monitoring timepoints (except in June 2023, where 10 of the stage 1 corals initially deployed November
293 2021 died on the Arks and 7 died on the Control sites; Fig. 2D). Corals at the Control sites tended to fall
294 off plates early after deployment, while corals tended to fall off of the Arks after longer periods of time
295 (Fig. 2C). There was no obvious impact on loss or death of corals related to the passage of Hurricane
296 Fiona in September 2022 (Fig. 2C-D). Considering both coral survival and tissue growth, the average
297 living volume and surface area of coral on each coral plate was significantly higher on Arks compared
298 to Control sites at all timepoints (Fig. 3A-B; p<0.01 for all comparisons). The largest amount of coral
299 growth was observed after addition of ARMS to the Arks (Fig. 3A-B).

300 ***Fish abundance, biomass, and diversity***

301 At the initial timepoint, no fish had yet discovered the Arks structures, and at the second monitoring
302 timepoint (Feb 2022), only a few small fish had begun to associate with the Arks (mostly wrasses and
303 juvenile blue tangs). Total fish numbers and biomass both significantly increased over time at the Arks
304 (p=0.003 and p=0.02, Fig. 4A), while at the Control sites, neither fish biomass nor abundance changed
305 significantly with time (p>0.18; Fig. 4B-C). Differences in fish biomass and abundance between treatments
306 could only be statistically compared in August 2022 and June 2023; biomass was not significantly different
307 between treatments, but there were significantly higher numbers of fish associated with the Arks compared
308 with the Control site in August 2022 (p=2.119e-05; Fig. 4C).

309 Fish communities associated with the Arks had lower species richness than the Control sites at all
310 timepoints, but species richness increased over time at the Arks (p=0.04), with no significant temporal

Figure 2. (Top) Coral survival with time shown as (A) Kaplan-Meier survival curves based on treatment and (B) cumulative risk of either death or falling off coral plates with time based on treatment. (Bottom) Number of new (C) missing and (D) dead corals observed at each monitoring period, colored by Treatment and shaded by deployment stage (stage 1 corals deployed November 2021, stage 2 deployed May 2022).


311 change at the Control sites ($p=0.5$; Fig. 4D). Fish species evenness did not change significantly with
 312 time at the Control sites ($p=0.6$), and decreased over time at the Arks (excluding timepoint 0, $p=0.003$;
 313 Fig. 4E), as the fish community became heavily dominated by piscivores (Fig. 5).

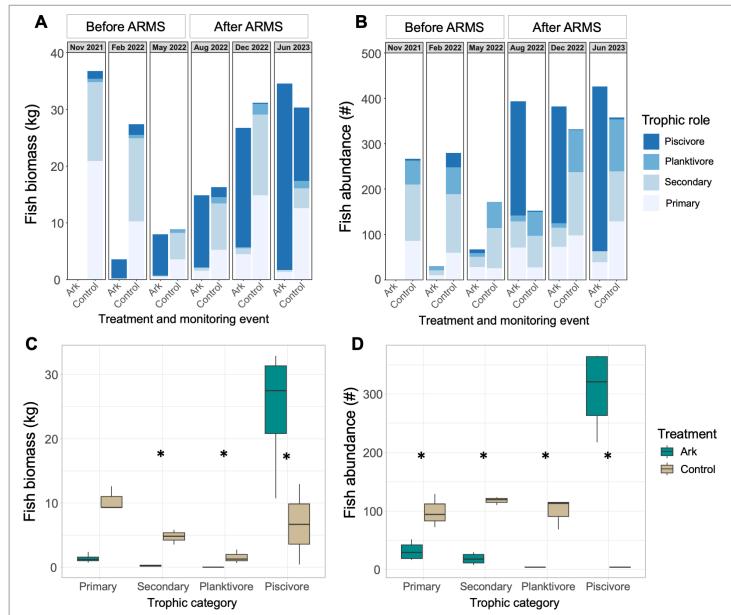
314 The trophic roles of fish associated with the Arks and Control sites changed through time and differed
 315 between treatments (Fig. 5A-B). In August 2022, 9 months after the Arks were deployed, there was
 316 significantly higher biomass and numbers of piscivores at the Arks ($p<0.04$ for both), and higher numbers
 317 and biomass of planktivores at the Control sites ($p=0.001$ and $p=0.01$, respectively), with no significant
 318 differences in other trophic guilds (Fig. 5A-B). In June 2023, about 19 months after the Arks were
 319 deployed, there was significantly higher biomass (mean 24.6 at the Arks, 4.5 at the Controls; Wilcox
 320 test $p=0.028$) and numbers of piscivores (mean approximately 306 at the Arks, 3 at the Control sites)
 321 and significantly less biomass and fewer planktivores at the Arks compared to the Control sites (Wilcox
 322 tests $p=0.04$ for both). In addition, there were significantly fewer primary and secondary consumers at
 323 the Arks compared to the Control sites (t -tests $p<0.001$ and $p=0.036$, respectively), and lower biomass of
 324 secondary consumers at the Arks compared to the Control sites (t -test $p=0.02$; Fig. 5C-D). As shown by
 325 these results, as well as reduced species diversity and evenness values, the fish community at the Arks
 326 is heavily skewed towards piscivorous fishes, with high abundances of bar jacks (*Caranx ruber*)
 327 and almaco jacks (*Seriola rivoliana*) observed associating with the Arks. The number and biomass of
 328 piscivores associating with the Arks was significantly enhanced after ARMS units were added in May
 329 2022, compared to before the addition of ARMS units (t -tests $p=0.005$ and $p=0.0002$, respectively; Fig. 5).
 330 In contrast, there were no significant differences in biomass or numbers of piscivores associated with the
 331 Control sites between these time periods.

332 **Turf and macroalgae on coral plates**

333 Combined turf and macroalgae cover was significantly higher on coral plates at the Control site compared
 334 to the Arks at all timepoints after time 0 ($p<4.723e-08$ for all comparisons; Fig. 6A). After initial increases
 335 3-6 months after deployment, turf and macroalgae cover significantly decreased over time on the Arks
 336 (F-statistic: 6.392 on 1 and 158 DF, p -value: 0.01245), with no significant change over time on Control
 337 site plates (F-statistic: 2.557 on 1 and 152 DF, p -value: 0.1119; Fig. 6A).

338 Some turf and macroalgae cover were likely removed from Control site plates by sand scouring, while

Figure 3. Average living coral volume (A) and surface area (B) per coral plate, based on the Treatment and number of months each plate had been deployed. After month 0, all differences between treatments are significant. (C) Representative photos from a coral plate at a Control site (left) and an Ark (right) at the start of the experiment in Nov 2021 and 9 months later in Aug 2022.


339 at the Arks, it may have been grazed down and/or overgrown or outcompeted by other organisms such as
 340 sponges, fire coral, crustose coralline algae, and bryozoans. These other competing organisms were also
 341 observed to overgrow some living corals on coral plates on the Arks (Fig. 6C).

342 Turf and macroalgae coverage on the Arks coral plates was not significantly different for those plates
 343 deployed with or without ARMS after about 3 months of deployment (means of 37% and 38% cover,
 344 respectively), but was significantly higher for coral plates deployed without ARMS units (mean of 58%
 345 cover) than with ARMS units (mean of 30% cover) after about 6 months of deployment (Wilcox test, $p =$
 346 0.001; Figure 6B). These results may be influenced by seasonal changes, as the 6-month timepoint for
 347 coral plates deployed without ARMS was May 2022 and with ARMS was December 2022. However, at
 348 the Control sites, coral plates deployed at the same times as on the Arks displayed the opposite pattern,
 349 with slightly but significantly lower turf and macroalgae cover 6 months after deployment for those plates
 350 deployed in stage 1 (mean of 89% cover in May 2022) vs. stage 2 (mean of 95% cover in December
 351 2022; Wilcox test $p=0.02$), suggesting the differences in turf and macroalgae cover on coral plates after 6
 352 months on the Arks was associated with the addition of ARMS (Fig. 6B).

353 DISCUSSION

354 Stony corals had better survival and growth on the midwater Arks systems relative to the seafloor
 355 at the same depth, demonstrating that environmental conditions on Arks were better for stony corals
 356 than conditions on the benthos near Vieques. More broadly, the Arks system outperformed benthic
 357 transplantation approaches typically used in coral mitigation and coral outplanting, analogous to the
 358 improved performance of corals grown in nurseries on structures off the benthos (Shafir et al., 2006). Yet,
 359 unlike coral nurseries and compared to the Control sites, the Arks also had more predatory fish, lower
 360 levels of turf and macroalgae overgrowth, and qualitatively higher biodiversity. Higher levels of coral
 361 survival may be related to favorable environmental conditions such as higher dissolved oxygen, fewer
 362 bacteria and more viruses, higher water flow speeds, higher light intensity (Baer et al., 2023), and/or
 363 improved ecological function at the Arks sites. These characteristics indicate that the Arks developed a
 364 self-sustained reef ecosystem, favor coral over macroalgae, and generate enhanced ecosystem services
 365 compared to the natural reefs from which they were seeded.

366 A meta-analysis of coral restoration projects worldwide found an average survival rate of 66% for

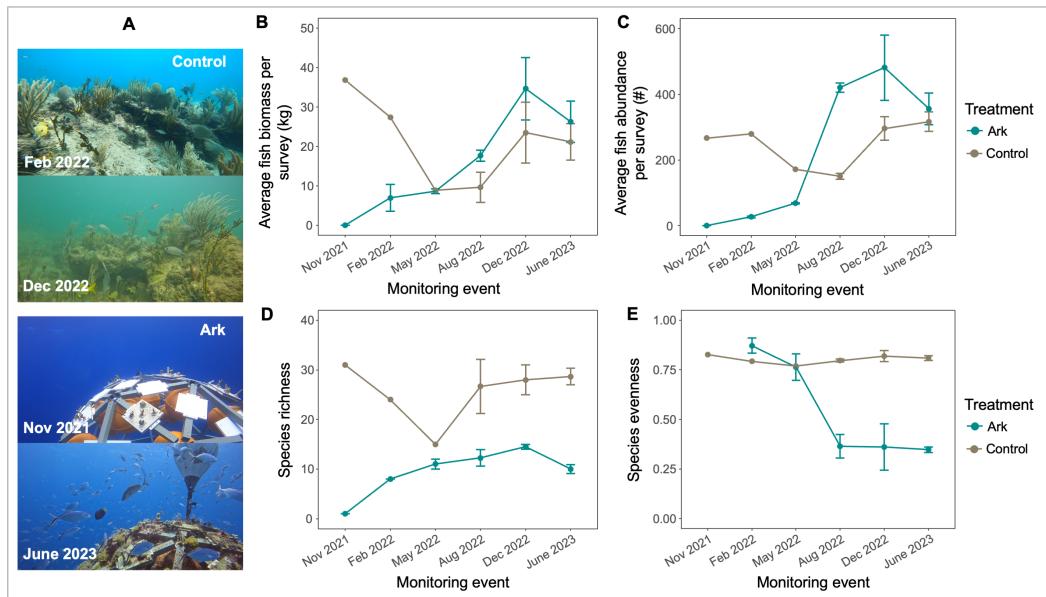
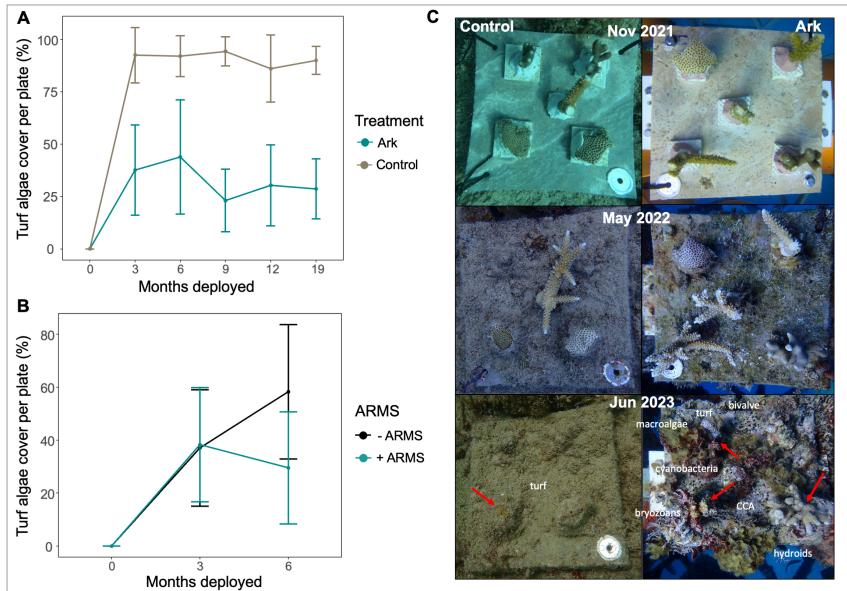


Figure 4. Fish communities at the Arks and Control sites, with (A) representative photos at two time points. Fish (B) biomass and (C) abundance associated with each treatment at each monitoring timepoint. Fish (D) species richness and (E) evenness associated with each treatment at each monitoring timepoint.

translocated corals, though this rate does not take into account differing lengths of time that various projects were monitored (Boström-Einarsson et al., 2020). At the Control sites, 66% of corals survived for about 8 months (31 weeks; Fig. 2), but after that time, survival continued to decline, with just 24% of corals still alive after about 19 months (Fig. 2). On the Arks, about 69% of corals were still alive after more than a year (57 weeks), indicating about 50% longer survival compared to the Control sites, and 47% of corals were still alive after about 19 months (about twice as many remaining live corals as at the Control sites; Fig. 2). These data show that assessments of coral transplantation projects should establish a “local background” survival rate for translocated corals, as in the Control sites used here, to fully assess the efficacy of a given approach. Survival of corals on the Arks was lower than survival in a 2007-2009 study in Vieques which also translocated corals to artificial reef structures (73% survival to 19 months; DCA (2013)). That study used larger colonies rather than fragments (i.e., more robust stock) and took place more than 15 years ago, during which time there have been multiple mass coral bleaching events and the emergence of new coral diseases in the Caribbean.

Coral translocation creates the potential for coral loss through detachment (epoxy attachment and entire fragment falls off) or breakage (portion of coral fragment breaks off) as well as coral loss due to mortality. The rate of detachment was not statistically different between the Arks and Controls and was similar to rates of detachment reported elsewhere (i.e. Dizon et al. (2008)). Incidental grazing disturbance by herbivorous fishes can cause detachment of experimental coral nubbins (Quimpo et al., 2020), and this effect may explain the larger loss of corals from Control site plates within the first 3 months of deployment, given that very few fish were observed at the Arks during this time period. Interestingly, relatively few corals (9) fell off the Arks during the time period that Hurricane Fiona passed almost directly over the Arks (September 2022), suggesting coral loss was not strongly tied to storm events. The rate of corals falling off of the Arks generally increased over time, possibly because as corals grew larger, they became more top-heavy and detached more easily, or their increased size created stronger horizontal drag forces that allowed currents to dislodge the corals (Madin and Connolly, 2006). However, breakage of corals off of Arks structures is not necessarily problematic; breakage can facilitate reef substrate accumulation and carbon sequestration on the benthos below an Ark in deep water and/or aid in asexual reproduction of corals from Arks in water shallow enough for coral survival.

The superior performance of corals translocated to the Arks relative to the Control sites was likely the result of direct effects of algal competition and indirect effects of fish communities and microbial


Figure 5. Fish (A) biomass and (B) abundance from a representative survey from each Treatment for each monitoring timepoint, separated by trophic role. (C) Biomass and (D) number of fish recorded in each trophic category within each treatment, from June 2023 monitoring data. Significant differences between treatments indicated with an asterisk.

397 processes. Previous benthic artificial reefs built in Vieques found, over a similar period of time, that
 398 the reef became covered in turf algae that surrounded the corals (DCA, 2013). A similar successional
 399 trajectory was observed here: Control site coral plates became fouled almost exclusively by turf and
 400 macroalgae (as well as sediment bound to these substrates) that surrounded the coral fragments and
 401 remained this way throughout the study. In contrast, fouling communities surrounding coral fragments on
 402 Arks plates were more diverse, with higher proportions of other invertebrates and lower coverage of turf
 403 and macroalgae (Fig. 6). Competition is high on coral reef benthos and turf and macroalgae are some of
 404 the strongest competitors of corals, explaining why coral nurseries routinely manually remove algae to
 405 support coral growth (Shafir et al., 2006). No algal removal was completed on the Arks, though, allowing
 406 the system to develop relatively naturally into a complex midwater reef system instead of a maintained
 407 nursery. Instead, higher diversity reef communities formed, enhanced by the addition of ARMS, which
 408 was associated with decreases in turf algal cover and increases in species diversity with time.

409 The Arks developed a piscivore-dominated fish community with numbers and biomass of fish asso-
 410 ciated with the Arks similar to or greater than the Control sites (Fig. 4), particularly for fishery target
 411 species such as jacks. Top-heavy, piscivore-dominated coral reef food webs, as observed on the Arks,
 412 are typically associated with low standing stock of algae and herbivores, as trophic efficiency is high
 413 (Sandin et al., 2008). Higher cover of turf and macroalgae are strong predictors of poor reef health and
 414 “microbialization” (Haas et al. (2016), Silveira et al. (2023)), likely due to algae releasing dissolved
 415 organic matter that bacteria feed upon and draw down dissolved oxygen (Mueller et al. (2022)). The
 416 Control sites had lower dissolved oxygen, more bacteria and fewer viruses, lower water flow speeds, and
 417 lower light intensity despite similar depths than the Arks (Baer et al. (2023)), demonstrating an additional
 418 indirect effect pushing the Arks system towards corals winning over algae.

419 CONCLUSIONS

420 While small in size, Arks provide numerous ecological benefits and ecosystem services. Arks increased
 421 survival and growth of translocated corals, suggesting these systems could be used for mitigation and
 422 to enhance restoration projects. Specifically, higher coral survival and the presence of multiple coral
 423 recruits on the Arks suggests they could act as a source of larvae to nearby reefs (Amar and Rinkevich
 424 (2007)). Top-heavy fish communities, particularly after addition of seeded ARMS units, highlight that

Figure 6. (A) Average turf and macroalgae coverage on coral plates at each monitoring timepoint, separated by treatment. After month 0, all differences between treatments are significant. (B) Average turf and macroalgae cover per coral plate after the initial 3 and 6 months of deployment for coral plates deployed in the first project stage without ARMS units (- ARMS) and in the second project stage with ARMS units (+ ARMS). (C) Side-by-side comparison of the biofouling communities developed over 19 months on a representative (left) Control site coral plate and (right) Ark coral plate. In the bottom (June 2023) panels, remaining living corals are indicated with red arrows. Labels are also included on the Ark coral plate (bottom right), indicating some of the non-coral organisms visible on the coral plate.

425 Arks can enhance fisheries productivity. The addition of seeded ARMS 426 was associated with lower turf 427 abundance. While not quantified during limited monitoring events for this 428 project, many juvenile fishery 429 target invertebrates including scallops, lobster, and crabs were also observed 430 on the Arks. Arks can 431 therefore act as in-situ mesocosms for scientific studies (Baer et al. (2023)), 432 “house reefs” for divers, 433 snorkelers, and education, and can contribute to coral reef mitigation and 434 restoration.

435 Arks create the opportunity for ecosystem-scale tests of coral reef 436 restoration strategies and can be 437 used to measure the response of these complex ecosystems to perturbations 438 in situ. The replicability of 439 Arks can increase statistical power and inference. The geodesic Ark design 440 could be further developed to 441 suit a variety of questions and needs. For example, the surface area of the 442 structure could be increased by 443 placing panels or baffles on the struts to provide more space for settlement and 444 growth of organisms or to 445 purposefully direct or retain water within the structure. Some studies may 446 benefit from a scaled down or 447 smaller Ark design to ease deployment, enhance replicability, and allow for 448 greater manipulation of the 449 system, including test involving moving Arks between locations. Systems to 450 manipulate the distance of 451 Arks from the benthos (e.g. winches) may be included to, for example, draw 452 corals to lower temperature 453 and light at depth during warming events and protect them from bleaching. 454 Lastly, better understanding 455 of systems-level dynamics could be further enhanced by adding more 456 numerous sensors throughout 457 the structure (e.g., oxygen, flow, etc.) for higher-resolution understanding of 458 ecosystem behavior.

459 ACKNOWLEDGMENTS

460 We are grateful for the support received from Dan Waddill, Kevin Cloe, Daniel Hood, Maria Danois, 461 P.F. Wang, Adam Candy, John Martin, Lora Pride, Brett Doerr, Ronny Fields, Kristin McClelland, Nilda 462 Jimenez Marrero, Michael Nemeth, Tali Vardi, Sarah Elise Field, Pedro Rodriguez, Pete Seufert, Tania 463 Puell, Megumi Kirby, and many others, particularly from Jacobs Engineering and Vieques too numerous to 464 name. Corals of opportunity were collected under Puerto Rico Department of Natural and Environmental 465 Resources permit number O-VS-PVS15-SJ-01233-20092021.

449 REFERENCES

450 Aburto-Oropeza, O., Erisman, B., Galland, G. R., Mascareñas-Osorio, I., Sala, E., and Ezcurra, E. (2011).
451 Large recovery of fish biomass in a no-take marine reserve. *PLoS ONE*, 6(8):e23601.

452 Amar, K. O. and Rinkevich, B. (2007). A floating mid-water coral nursery as larval dispersion hub: testing
453 an idea. *Marine Biology*, 151(2):713–718.

454 Baer, J. L., Carilli, J., Chadwick, B., Hatay, M., Van Der Geer, A., Scholten, Y., Barnes, W., Aquino, J.,
455 Ballard, A., Little, M., Brzentski, J., Liu, X., Rosen, G., Wang, P.-F., Castillo, J., Haas, A. F., Hartmann,
456 A. C., and Rohwer, F. (2023). Coral Reef Arks: An in situ mesocosm and toolkit for assembling reef
457 communities. *Journal of Visualized Experiments*, 191:64778.

458 Bauer, L. J. and Kendall, M. S. (2010). An ecological characterization of the marine resources of Vieques,
459 Puerto Rico Part ii: Field studies of habitats, nutrients, contaminants, fish, and benthic communities.
460 *NOAA Technical Memorandum NOS NCCOS*, 110:9–46.

461 Bayraktarov, E., Banaszak, A. T., Montoya Maya, P., Kleypas, J., Arias-González, J. E., Blanco, M., Calle-
462 Triviño, J., Charuvi, N., Cortés-Useche, C., Galván, V., García Salgado, M. A., Gnecco, M., Guendulain-
463 García, S. D., Hernández Delgado, E. A., Marín Moraga, J. A., Maya, M. F., Mendoza Quiroz, S.,
464 Mercado Cervantes, S., Morikawa, M., Nava, G., Pizarro, V., Sellares-Blasco, R. I., Suleimán Ramos,
465 S. E., Villalobos Cubero, T., Villalpando, M. F., and Frías-Torres, S. (2020). Coral reef restoration
466 efforts in Latin American countries and territories. *PLOS ONE*, 15(8):e0228477.

467 Boström-Einarsson, L., Babcock, R. C., Bayraktarov, E., Ceccarelli, D., Cook, N., Ferse, S. C. A.,
468 Hancock, B., Harrison, P., Hein, M., Shaver, E., Smith, A., Suggett, D., Stewart-Sinclair, P. J., Vardi,
469 T., and McLeod, I. M. (2020). Coral restoration – A systematic review of current methods, successes,
470 failures and future directions. *PLOS ONE*, 15(1):e0226631.

471 DCA (2013). Vieques Artificial Reef Research Project Final Report. Technical Report, prepared by Dial
472 Cordy and Associates Inc. for National Oceanic and Atmospheric Administration.

473 Dickenson, N., McNeilly, F., and Marx, D. (2002). Coral mitigation for pier construction at the Atlantic
474 Undersea Test and Evaluation Center. Technical report, Naval Undersea Warfare Center Newport.
475 Available at <https://apps.dtic.mil/sti/pdfs/AD1180372.pdf>.

476 Dizon, R. M., Edwards, A. J., and Gomez, E. D. (2008). Comparison of three types of adhesives in
477 attaching coral transplants to clam shell substrates. *Aquatic Conservation: Marine and Freshwater
478 Ecosystems*, 18(7):1140–1148.

479 Eddy, T. D., Lam, V. W., Reygondeau, G., Cisneros-Montemayor, A. M., Greer, K., Palomares, M. L. D.,
480 Bruno, J. F., Ota, Y., and Cheung, W. W. (2021). Global decline in capacity of coral reefs to provide
481 ecosystem services. *One Earth*, 4(9):1278–1285.

482 Ferse, S. C. A., Hein, M. Y., and Röller, L. (2021). A survey of current trends and suggested future
483 directions in coral transplantation for reef restoration. *PLOS ONE*, 16(5):e0249966.

484 Froese, R. and Pauly, D. (2023). FishBase. www.fishbase.org.

485 Froese, R., Thorson, J. T., and Reyes, R. B. (2014). A Bayesian approach for estimating length-weight
486 relationships in fishes. *Journal of Applied Ichthyology*, 30(1):78–85.

487 Goergen, E., Schopmeyer, S., Moulding, A., Moura, A., Kramer, P., and Viehman, T. (2020). Coral reef
488 restoration monitoring guide: Methods to evaluate restoration success from local to ecosystem scales.
489 *NOAA Technical Memorandum NOS NCCOS*, 279.

490 Haas, A. F., Fairoz, M. F. M., Kelly, L. W., Nelson, C. E., Dinsdale, E. A., Edwards, R. A., Giles, S.,
491 Hatay, M., Hisakawa, N., Knowles, B., Lim, Y. W., Maughan, H., Pantos, O., Roach, T. N. F., Sanchez,
492 S. E., Silveira, C. B., Sandin, S., Smith, J. E., and Rohwer, F. (2016). Global microbialization of coral
493 reefs. *Nature Microbiology*, 1(6):16042.

494 Hein, M. Y., Beeden, R., Birtles, A., Gardiner, N. M., Le Berre, T., Levy, J., Marshall, N., Scott, C. M.,
495 Terry, L., and Willis, B. L. (2020). Coral restoration effectiveness: Multiregional snapshots of the
496 long-term responses of coral assemblages to restoration. *Diversity*, 12(4):153.

497 Kiel, C., Huntington, B., and Miller, M. (2012). Tractable field metrics for restoration and recovery
498 monitoring of staghorn coral *Acropora cervicornis*. *Endangered Species Research*, 19(2):171–176.

499 Madin, J. S. and Connolly, S. R. (2006). Ecological consequences of major hydrodynamic disturbances
500 on coral reefs. *Nature*, 444(7118):477–480.

501 Mueller, B., Brocke, H. J., Rohwer, F. L., Dittmar, T., Huisman, J., Vermeij, M. J. A., and De Goeij, J. M.
502 (2022). Nocturnal dissolved organic matter release by turf algae and its role in the microbialization of
503 reefs. *Functional Ecology*, 36(8):2104–2118.

504 Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C., and Wild, C. (2009). Coral surface area quantifi-
505 cation—evaluation of established techniques by comparison with computer tomography. *Coral Reefs*,
506 28(1):109–117.

507 Nedimyer, K., Gaines, K., and Roach, S. (2011). Coral tree nursery©: An innovative approach to growing
508 corals in an ocean-based field nursery. *AACL Bioflux*, 4:442–446.

509 Nelson, C. E., Wegley Kelly, L., and Haas, A. F. (2023). Microbial interactions with dissolved organic
510 matter are central to coral reef ecosystem function and resilience. *Annual Review of Marine Science*,
511 15(1):431–460.

512 Quimpo, T. J. R., Cabaitan, P. C., and Hoey, A. S. (2020). Detachment of *Porites cylindrica* nubbins by
513 herbivorous fishes. *Restoration Ecology*, 28(2):418–426.

514 R Core Team (2023). R: A Language and Environment for Statistical Computing. <https://www.R-project.org>.

515 Ransome, E., Timmers, M., Hartmann, A., Collins, A., and Meyer, C. (2016). Cryptic coral reef diversity
516 across the Pacific assessed using Autonomous Reef Monitoring Structures and multi-omic methods.
517 *American Geophysical Union*, pages OD34B–2512.

518 Rohwer, F. and Hartmann, A. (2020). Coral Reef Arks white paper. Available at
519 https://coralarks.org/docs/coral_arks_white_paper.pdf.

520 Sandin, S. and Williams, I. (2010). Trophic classifications of reef fishes from the tropical US Pacific
521 (version 1.0). Technical Report, Scripps Institution of Oceanography.

522 Sandin, S. A., Smith, J. E., DeMartini, E. E., Dinsdale, E. A., Donner, S. D., Friedlander, A. M.,
523 Konotchick, T., Malay, M., Maragos, J. E., Obura, D., Pantos, O., Paulay, G., Richie, M., Rohwer,
524 F., Schroeder, R. E., Walsh, S., Jackson, J. B. C., Knowlton, N., and Sala, E. (2008). Baselines and
525 degradation of coral reefs in the Northern Line Islands. *PLoS ONE*, 3(2):e1548.

526 Shafir, S., Van Rijn, J., and Rinkevich, B. (2006). A mid-water coral nursery. *Proceedings of the 10th
527 International Coral Reef Symposium*, 10:1974–1979.

528 Silveira, C. B., Luque, A., Haas, A. F., Roach, T. N. F., George, E. E., Knowles, B., Little, M., Sullivan,
529 C. J., Varona, N. S., Wegley Kelly, L., Brainard, R., Rohwer, F., and Bailey, B. (2023). Viral predation
530 pressure on coral reefs. *BMC Biology*, 21(1):77.

531 Stella, J., Pratchett, M., Hutchings, P., and Jones, G. (2011). Coral-associated invertebrates: diversity,
532 ecology importance and vulnerability to disturbance. *Oceanography and Marine Biology: an annual
533 review*, 49:43–104.

534 Vardi, T., Hoot, W., Levy, J., Shaver, E., Winters, R., Banaszak, A., Baums, I., Chamberland, V., Cook,
535 N., Gulko, D., and Hein, M. (2021). Six priorities to advance the science and practice of coral reef
536 restoration worldwide. *Restoration Ecology*, 29:e13498.

537 Webb, A., de Bakker, D., Soetaert, K., da Costa, T., van Heuven, S., van Duyl, F., Reichart, G., and
538 de Nooijer, L. (2021). Functional consequences of Caribbean coral reef habitat degradation. *Biogeosciences*,
539 18:6501–6516.

540