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Abstract

Most models of visual attention aim at predicting ei-
ther top-down or bottom-up control, as studied using dif-
ferent visual search and free-viewing tasks. In this pa-
per we propose the Human Attention Transformer (HAT),
a single model that predicts both forms of attention con-
trol. HAT uses a novel transformer-based architecture
and a simplified foveated retina that collectively create
a spatio-temporal awareness akin to the dynamic visual
working memory of humans. HAT not only establishes
a new state-of-the-art in predicting the scanpath of fixa-
tions made during target-present and target-absent visual
search and “taskless” free viewing, but also makes human
gaze behavior interpretable. Unlike previous methods that
rely on a coarse grid of fixation cells and experience in-
formation loss due to fixation discretization, HAT features
a sequential dense prediction architecture and outputs a
dense heatmap for each fixation, thus avoiding discretiz-
ing fixations. HAT sets a new standard in computational
attention, which emphasizes effectiveness, generality, and
interpretability. HAT’s demonstrated scope and applica-
bility will likely inspire the development of new attention
models that can better predict human behavior in vari-
ous attention-demanding scenarios. Code is available at
https://github.com/cvlab-stonybrook/HAT.

1. Introduction

Attention, a cognitive process that allows humans to selec-
tively allocate their limited cognitive resources to specific
regions of the visual world, plays a crucial role in human
perception system. Understanding and predicting human
(visual) attention will enable numerous applications such as
assistive technologies that can anticipate a person’s needs
and intents, perceptions system that can prioritize process-
ing regions of human interest and enhancing the accuracy
and speed of various visual tasks (e.g., object detection),
and image/video compression that allocates more resources
to encoding and transmitting high-attention regions, opti-
mizing the use of bandwidth.
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Figure 1. Given an image, the proposed HAT is able to predict
scanpaths under three settings target-present search for TV; target-
absent scanpath for sink; and free viewing. Importantly, HAT
outperforms previous state-of-the-art scanpath prediction methods
on multiple datasets across three settings: target-present, target-
absent visual search and free viewing, that were studied separately.

Human attention control can take two broad forms. One
is bottom-up, meaning that attention saliency signals are
computed from the visual input and used to prioritize shifts
of attention. The same visual input should therefore lead to
the same shifts of bottom-up attention. The second type of
attention is top-down, meaning that a task or goal is used
to control attention. Given a kitchen scene, very differ-
ent fixations are observed depending on whether a person
is searching for a clock or a microwave oven [67]. These
two types of attention control spawned two separate liter-
atures on gaze fixation prediction (the accepted measure
of attention), one where studies use a free-viewing task to
study questions of bottom-up attention and the other using
a goal-directed task (typically, visual search) to study top-
down attention control. Consequently, most models have
been designed to address either bottom-up or top-down at-
tention, not both. Can a single model architecture predict
both bottom-up and top-down attention control?

Our answer to this question is HAT, a Human Atten-
tion Transformer that generally predicts scanpaths of fix-
ations, meaning that it can be applied to both top-down vi-
sual search and bottom-up free viewing tasks (Figure 1).
Devising a unified model architecture capable of predicting
both bottom-up and top-down attention control is nontrivial:
1) predicting human fixation scanpaths requires the model
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to have a spatio-temporal understanding of the fixated im-
age contents and their relationship to the external goals; and
2) predicting top-down and bottom-up attention requies the
model to capture both low-level features and high-level se-
mantics of the input image. HAT addresses these issues
by using a novel transformer-based design and a simplified
foveated retina. Together, these components forge a novel
paradigm, constituting a form of dynamically-updating vi-
sual working memory. Traditional approaches have leaned
on recurrent neural networks (RNNs) to uphold a dynami-
cally updated hidden vector conveying information across
fixations [1, 10, 51, 66]. Alternatively, simulations of a
foveated retina have combined multi-resolution information
at pixel [66], feature [63], or semantic levels [62]. How-
ever, these methods present drawbacks: RNNs sacrifice in-
terpretability, while multi-resolution simulations fall short
in capturing crucial temporal and spatial information inte-
gral for scanpath prediction.

In addressing these challenges, we leverage a computa-
tional attention mechanism [54] to dynamically assimilate
spatial, temporal, and visual information acquired at each
fixation into working memory [45, 46]. This empowers
HAT to discern a set of task-specific attention weights for
amalgamating information from working memory and fore-
casting human attention control. This innovative mecha-
nism sheds light on the intricate relationship between hu-
man attention and working memory [17, 20], rendering
HAT not only cognitively plausible but also ensuring the
interpretability of its predictions. Furthermore, in contrast
to prior methods [10, 62, 63], HAT treats scanpath predic-
tion as a sequence of dense prediction tasks with per-pixel
supervision, successfully avoiding the need for discretizing
fixations. This enhances the method’s efficacy, particularly
in scenarios involving high-resolution imagery.

To demonstrate HAT’s generality, we predict scanpaths
under three settings, target-present (TP) and target-absent
(TA) visual search, and free-viewing (FV), covering both
top-down and bottom-up attention. In previous work pre-
dicting search scanpaths [10, 62, 63], separate models were
trained for the TP and TA settings. HAT is a single model
establishing new SOTA in both TP and TA search-scanpath
prediction. When trained with FV scanpaths, HAT also
achieves top performance relative to baselines. HAT ad-
vances SOTA in cNSS by 95%, 94% and 104% under the
TP, TA and FV settings on the COCO-Search18 dataset [11]
and the COCO-FreeView dataset [12], respectively.

Our contributions can be summarized as follows:

1. We propose HAT, a novel transformer architecture inte-
grating visual information at two different eccentricities
(approximating a foveated retina) to predict the spatial
and temporal allocation of human attention.

2. We formulate scanpath prediction as a sequential dense
prediction task without fixation discretization, making

HAT applicable to high-resolution input.

3. The HAT architecture can be broadly applied to different
attention control tasks, evidenced by the SOTA scanpath
predictions in both visual search and free-viewing tasks.

4. HAT’s attention predictions offer high interpretability,
making it useful for studying gaze behavior.

2. Related Work

Saliency prediction. Predicting and understanding human
gaze control has been a topic of interest for decades in psy-
chology [19, 59, 64, 65], but it has only recently attracted
the researcher’s attention in computer vision. In particular,
Itti’s seminal work [23] on the saliency model has triggered
a lot of interest on human attention modeling in computer
vision community and facilitated many other studies iden-
tifying and modeling the salient visual features of an image
(i.e., saliency prediction) [3, 5,7, 16,22, 24,25, 28, 30, 31,
41, 55, 56]. However, the scope of these work is often nar-
rowly focused on predicting human natural eye-movements
without a specific visual task (i.e., free-viewing), ignoring
another important form of attention control, goal-directed
attention. Moreover, saliency models only model the spa-
tial distribution of fixations and do not predict the tempo-
ral order between fixations. Scanpath prediction is more
challenging problem because it requires predicting not only
where a fixation will be, but also when it will be there.

Scanpath prediction. Many existing scanpath prediction
deep neural networks (DNN) focus on predicting the free-
viewing scanpaths [1, 2, 32, 51], primarily due to their close
connection to saliency modeling. However, these mod-
els are inherently constrained in their ability to capture the
full spectrum of human attention control, particularly goal-
directed attention—a fundamental cognitive process that
underlies various everyday visual tasks such as navigation
and motor control. Although goal-directed human attention
has been studied for decades [33, 58, 64] in cognitive sci-
ence (mainly in the context of visual search [43, 52, 65]),
the development of DNNs for goal-directed scanpath pre-
diction lags behind those designed for free-viewing tasks,
partly due to the lack of data. To tackle this problem, Chen
et al. [11] created the first large-scale goal-directed gaze
dataset with 18 search targets, COCO-Search18. In [62], an
inverse reinforcement learning model showed superior per-
formance on COCO-Search18 in predicting TP scanpaths.
Later, Chen et al. [10] showed that a reinforcement learning
model directly optimized on the scanpath similarity metric
can predict VQA scanpaths, as well as on TP search scan-
paths. Rashidi et al. [50], Yang et al. [63] also proposed
a more generalized scanpath prediction model that can
be applied to both target-present and target-absent visual
search scanpaths. Most recently, a transformer-based scan-
path prediction model, Gazeformer [42], further advanced
the TP search scanpath prediction performance on COCO-
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Figure 2. HAT overview. We use encoder-decoder CNNs to extract two sets of feature maps P; and Py of different spatial resolutions.
A working memory with a capacity of A tokens is constructed by combining all feature vectors from P; with the feature vectors of P
at previously fixated locations, representing information extracted from the periphery and central fovea. A transformer encoder is used to
dynamically update the working memory at every new fixation. Then, HAT produces IV per-task queries of dimension C (e.g., clock search
and mouse search), with each learning to aggregates task-specific information from the shared working memory for predicting the fixations
for its own task. Finally, the updated queries are convolved with Py to yield the fixation heatmaps after a MLP layer, and projected to the
termination probabilities in parallel. Note, although this figure depicts visual search, the framework also applies for free viewing.

Search18. However, none of these work have demonstrated
the generalizability to all three settings (i.e., TP, TA and
FV). In this work, we design a generic scanpath model that
generalizes to both free-viewing and visual search tasks.
Scanpath Transformers.  The transformative game-
changing impact of Transformers [54] has been widely
recognized in natural language processing and beyond.
In computer vision, Transformers have demonstrated out-
standing capabilities across a wide range of computer vision
tasks, such as image recognition [18, 38, 53], object detec-
tion [9, 69] and image segmentation [14, 49, 60]. Mon-
dal et al. [42] introduced Gazeformer, a Transformer-based
model specifically designed for zero-shot visual search
scanpath prediction. In contrast, our proposed model is
generic, capable of predicting both visual search and free-
viewing scanpaths. Additionally, our model diverges from
other Transformer-based architectures by drawing inspira-
tion from the human vision system. It incorporates a novel
foveation module simulating a simplified foveated retina,
thereby establishing a dynamic visual working memory for
enhanced scanpath prediction.

3. Human Attention Transformer

In this section, we first formulate scanpath prediction as a
sequence of dense prediction tasks using behavior cloning.

We then introduce our proposed transformer-based model,
HAT, for scanpath prediction. Finally, we describe how we
train HAT and use it for fast inference.

3.1. Preliminaries

To avoid the precision loss caused by grid discretization
present in prior fixation prediction methods [10, 62, 63, 66],
we formulate scanpath prediction as a sequential prediction
of pixel coordinates. Given a H x W image and an optional
initial fixation fy (often set as the center of an image), a
scanpath prediction model predicts a sequence of human-
like fixation locations fi, - - - , f,,, with each fixation f; be-
ing a pixel location in the image. Note that n is variable that
may be different for each scanpath due to the different ter-
mination criteria of different human subjects. To model the
uncertainty in human attention allocation, existing methods
[10, 62, 63, 66] often predict a probability distribution over
a coarse grid of fixation locations at each step. HAT fol-
lows the same spirit but outputs a dense fixation heatmap.
Specifically, HAT outputs a heatmap Y; € [0, 1]7*W with
each pixel value indicating the chance of the pixel being
fixated in the next fixation. In addition, HAT also outputs a
termination probability 7; € [0, 1] indicating how likely the
model is to terminate the scanpath at the current step ¢. To
sample a fixation, we apply L;-normalization on Y;. In the
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Figure 3. Working memory construction. We construct the
working memory by starting with the visual embeddings (‘“what”)
flattened from P; over the spatial axes and selected from P at pre-
vious fixation locations. A scale embedding is introduced to cap-
ture scale information. Spatial embeddings and temporal embed-
dings are further added to the tokens to enhance the “where” and
“when” signals. At every new fixation (marked in red), we simply
add a new foveal token while keeping other tokens unchanged.

following, we omit the subscript ¢ for brevity.

3.2. Network Architecture

HAT is a novel transformer-based model for scanpath pre-
diction. At each fixation, HAT outputs a set of prediction
pairs {(Y;, ;) }1_, where t indicates a task, which could be
a visual search task (e.g., clock search and mouse search)
or a free-viewing task. Figure 2 shows an overview of
the proposed model. HAT consists of four modules: 1) a
feature extraction module that extracts a feature pyramid
with multi-resolutional feature maps corresponding to
information extracted at different eccentricities [50, 63]; 2)
a foveation module which maintains a dynamical working
memory representing the information acquired through fix-
ations; 3) an aggregation module that selectively aggregates
the information in the working memory using attention
mechanism for each task; 4) a fixation prediction module
that predicts the fixation heatmap Y; and termination
probability 7; for each task .

The feature extraction module consists of a pixel encoder
(e.g., ResNet [21], a Swin transformer [38]), and a pixel
decoder (e.g., FPN [36] and deformable attention [69]).
Taking a H xW image as input, the pixel encoder encodes
the input image into a high-semantic but low-resolution
feature map. The pixel decoder up-samples the feature
map several times, each time by a scale factor of two,
to construct a pyramid of four multi-scale feature maps

denoted as P = {Py,--- , P4}, where P, € RC*3%33,
P, € REX Tx %, and C'is the channel dimension.

The foveation module constructs a dynamic working
memory using the feature maps P, and P, to represent
the information a person acquires from the peripheral and
foveal vision, respectively. We discard medium-grained
feature maps P, and Ps; in computing the peripheral
representation for computational efficiency. Finally, we
apply a Transformer encoder [54] to dynamically update
the working memory with the information acquired at a
new fixation. Figure 3 illustrates the construction of the
working memory. The working memory consists of two
parts: peripheral tokens and foveal tokens. We first flatten
the low-resolution feature map P; over the spatial axes to
obtain the peripheral visual embeddings VP € Rz 32)%C
Feature vectors in Py at each fixation location are selected
as the foveal visual embeddings VI e R¥*C where k is
number of previous fixations. For simplicity, we round
the fixation to its nearest position in P;. Then we add a
learnable scale embedding to each token to discern the
scale/resolution of the visual embeddings. As the spatial
information is shown to be important in predicting human
scanpath (e.g., center bias and inhibition of return [57]),
we enrich the peripheral and foveal tokens with their 2D
spatial information in the image. Specifically, we create
a lookup table of 2D sinusoidal position embeddings [35]
G € RHEXWXC by concatenating the 1D sinusoidal posi-
tional encoding of the horizontal and vertical coordinates
of each pixel location. For a visual embedding at position
(i,4) of a given feature map of stride S (S = 32 for P,
and S = 4 for Py), its position encoding is defined by the
element at position (¢;,¢;) in G where t; = |7 - S] and
t; = |j - S|. Furthermore, we add to each foveal token
the temporal embedding, a learnable vector, according
to its fixation index to capture the temporal order among
previous fixations.

The aggregation module is a transformer decoder [54]
that selectively aggregates information from the working
memory using a set of learnable, task-specific queries
Q € RV*C where N is the number of tasks (e.g., N = 18
for COCO-Searchl8 [11] and N = 1 for free-viewing
datasets). The transformer decoder has L layers, with each
layer consisting of a cross-attention layer, a self-attention
layer and a feed-forward network (FFN). Different from
the standard transformer decoder [54], we follow [14]
and switch the order of cross-attention and self-attention
module. Firstly, each task query selectively gathers the
information in working memory acquired through previous
fixations using cross-attention. Then, the self-attention
layer followed by a FFN is applied to exchange information
in different queries which could boost the contextual cues
[15] in each query. When generating a scanpath, HAT
maintains its state across fixations only in the working
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memory, the input (@ is the same at each fixation prediction.
The fixation prediction module yields the final
prediction—a fixation heatmap Y, and a termination
probability 7; for each task ¢. For the termination pre-
diction, a linear layer followed by a sigmoid activation is
applied on top of each updated query ¢; € Q:

7 = sigmoid(W ¢l + b), (1)

where W and b are the parameters of the linear layer. For
the fixation heatmap prediction, a Multi-Layer Perceptron
(MLP) with two hidden layers first transforms ¢; into a
task embedding, which is then convolved with the high-
resolution feature map P, to get the fixation heatmap Y,
after a sigmoid layer:

¥, = sigmoid(P; ® MLP(q,)), )

where © denotes the pixel-wise dot product operation. Fi-
nally, we upsample Y; to the image resolution. Note that
the predictions for all tasks, i.e., ¥ € RN*HXW apq
7 € RV*1 are yielded in parallel.

3.3. Training and Inference

Training loss. We follow [66] and use behavior cloning
to train HAT. The problem of scanpath prediction is bro-
ken down into learning a mapping from the input triplet of
an image, a sequence of previous fixations, and a task to the
output pair of a fixation heatmap and a termination probabil-
ity. Given the predicted fixation heatmaps ¥ € RN *HxW
and termination probabilities 7 € RN the training loss is
only calculated for its ground-truth task ¢:

L= Lﬁx(f/ty Y) + [flerm(%tz 7-)’ 3)

where Y € [0,1]7*W and 7 € {0, 1} are the ground-truth
fixation heatmap and termination label for task ¢, respec-
tively. We compute Y by smoothing the ground-truth fixa-
tion map with a Gaussian kernel with the kernel size being
one degree of visual angle. Lgy denotes the fixation loss and
is computed using pixel-wise focal loss [34, 37]:

) (1-Y;)*log(Yy) if Vi =1,
L= —— BV (4)
HW i (1-¥) (AY” ) otherwise,
’ log(l — Y;J)

where Y;; represents the value of Y at location (¢, j) and
we set « = 2 and 8 = 4 following [34, 63]. Liem is the
termination loss and is computed by applying a binary cross
entropy (negative log-likelihood) loss, i.e.,

Ligm = —w - Tlog(7) — (1 —7)log(1 —7), (5)

where w is a weight to balance the loss of positive and neg-
ative training examples since there are many more negative

labels than positive labels for training a termination pre-
diction, especially for target-absent visual search and free-
viewing tasks where scanpath are long. We set w to be
the ratio of the number of negative training instances to the
number of positive ones.

Inference. Similarly to [10, 62, 63], HAT also generates
scanpaths autoregressively, but in an efficient way. Given
an image, HAT only computes the image pyramid P and
peripheral tokens once. For a new fixation, a foveal token
is constructed and appended to the working memory after
which the aggregation module and fixation prediction mod-
ule yield the fixation heatmaps and termination predictions
for all tasks in parallel.

4. Experiments

Datasets. We train and evaluate HAT using four datasets:
COCO-Search18 [11], COCO-FreeView [12], MIT1003
[26] and OSIE [61]. COCO-Searchl8 is a large-scale vi-
sual search dataset containing human scanpaths in search-
ing for 18 different object target and it has two parts: target-
present and target-absent. In total, there are 3101 target-
present images and 3101 target-absent images in COCO-
Search18, each viewed by 10 subjects. Following [63],
we treat the target-present part and target-absent part of
COCO-Search18 as two separate datasets and train mod-
els on them independently. COCO-FreeView is a “sibling”
dataset of COCO-Searchl18 but with free-viewing scan-
paths. COCO-FreeView contains the same images with
COCO-Search18, each viewed by 10 subjects in a free-
viewing setting. MIT1003 is a widely-used free-viewing
dataset containing 1003 natural images. OSIE is a free-
viewing gaze dataset with rich semantic-level annotations,
containing 700 natural indoor and outdoor images. Each
image in MIT1003 and OSIE is viewed by 15 subjects.

Evaluation metrics. To measure the performance, we
mainly analyze the scanpath prediction models from two
aspects: 1) how similar the predicted scanpaths are to the
human scanpaths; and 2) how accurate a model predicts
the next fixation given all previous fixations. To measure
the scanpath similarity, we use a commonly adopted met-
ric, sequence score (SS) [6] and its variant semantic se-
quence score (SemSS) [63]. SS transforms the scanpaths
into sequences of fixation cluster IDs and then compares
them using a string matching algorithm [44]. Different from
SS, SemSS transforms a scanpath into a string of semantic
labels of the fixated pixels. For next fixation prediction,
we follow [29, 32, 63] and report the conditional saliency
metrics, cIG, cNSS and cAUC, which measure how well
a predicted fixation probability map of a model predicts
the ground-truth (next) fixation when the model is provided
with the fixation history of the scanpath in consideration,
using the widely used saliency metrics, IG, NSS and AUC
[8]. For fair comparison, we follow [63] and predict one
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scanpath for each testing image, step by step selecting the
most probable fixation location as the next fixation.
Baselines. We first compare our model against several
heuristic baselines. Following prior works [10, 32, 62, 63,
66], the human consistency, an oracle where we use one
viewer’s scanpath to predict the scanpath of another, is re-
ported as a gold-standard model. Second, we compare to a
fixation heuristic method—a ConvNet trained to predict hu-
man fixation density maps, from which we select fixations
sequentially with inhibition of return. For visual search
scanpaths, we further include a detector baseline, which
is similar to the fixation heuristic, but trained on target-
present images of COCO-Searchl8 to predict a target de-
tection probability map. For both fixation heuristic and de-
tector baselines, we use the winner-take-all strategy to gen-
erate scanpaths. Furthermore, we compare HAT to the pre-
vious state-of-the-art models of scanpath prediction: IVSN
[68], PathGAN [1], IRL [62], Chen et al. [10], DeepGaze
III [32], FEMs [63] and GazeFormer [42]. Note that [IVSN
only applies for visual search tasks, and unlike other meth-
ods, IVSN is designed for zero-shot search scanpath predic-
tion, hence is not trained with any gaze data. DeepGaze III
only applies for free-viewing scanpaths and is trained with
the SALICON dataset [25] and MIT1003 [26].
Implementation details. We use ResNet-50 [21] as the
pixel encoder and MSDeformAttn [69] as the pixel decoder.
For the foveation module, the transformer encoder has three
layers. The transformer decoder in the aggregation module
has six layers (i.e,. L = 6). All transformer encoder and de-
coder layers in HAT have 4 attention heads. The MLP in the
fixation prediction module has two linear layers with 512
hidden dimensions and a ReLU activation function. We use
the AdamW [39] with the learning rate of 0.0001 and train
HAT for 30 epochs with a batch size of 128. All images
are resized to 320x 512 for computational efficiency during
training and inference. Following [62], we set the maxi-
mum length of each predicted scanpath to 6 and 10 (exclud-
ing the initial fixation) for target-present and target-absent
search scanpath prediction, respectively. For free viewing,
the maximum scanpath length is set to 20. For more imple-
mentation details, please refer to the supplement.

4.1. Main Results

Target-present search. We compare HAT with previous
scanpath prediction models under the target-present (TP)
setting using the target-present part of the COCO-Search18
dataset in Tab. 1. HAT consistently outperforms all other
predictive methods in predicting TP human scanpaths in
nearly all metrics. The simple heuristic baselines (i.e., de-
tector and fixation heuristic) perform quite well on TP scan-
path prediction by predicting the location of the target or
fixation density map as in 60% of the TP trials of COCO-
Search18 humans can locate the target within 2 fixations.

‘SemSS SS cIG cNSS cAUC
Human consistency| 0.500 0.500 - - -

Detector 0.523 0.449 0.182 2.346 0.905
Fixation heuristic | 0.506 0.437 1.107 2.186 0.917
IVSN [68] 0.368 0.326 -0.192 1.318 0.901
PathGAN [1] 0.280 0.239 - - -

IRL [62] 0.486 0.422 -9.709 1.977 0.913
Chen et al. [10] 0.518 0.445 -1.273 2.606 0.956
FFMs [63] 0.500 0.451 1.548 2.376 0.932
Gazeformer [42] 0.499 0.489 - - -

HAT (ours) 0.543 0.470 2.399 5.086 0.977

Table 1. Target-present search scanpath prediction compari-
son on the target-present test set of COCO-Search18. We high-
light the best results in bold.

‘SemSS SS  cIG ¢NSS cAUC

Human consistency| 0.372 0.381 - - -

Detector 0.332 0.321 -0.516 0.446 0.783
Fixation heuristic 0.309 0.298 -0.599 0.405 0.798
IVSN [68] 0.279 0.260 -0.219 0.884 0.867
PathGAN [1] 0.315 0250 - - -

IRL [62] 0.329 0.319 0.032 1.202 0.893
Chen et al. [10] 0.340 0.331 -3.278 1.600 0.925
FEMs [63] 0.376 0.372 0.729 1.524 0.916
Gazeformer [42] 0.374 0.357 - - -

HAT (ours) 0.382 0.402 1.686 3.103 0.961

Table 2. Target-absent search scanpath prediction comparison
on the target-absent test set of COCO-Search18. We highlight the
best results in bold.

| SS G ¢NSS cAUC

Human consistency | 0.349 - - -

Fixation heuristic 0.329 0.319 1.621 0.930
PathGAN [1] 0.181 - - -

IRL [62] 0.300 -0.213 1.018 0.888
Chen et al. [10] 0.365 -1.263 1.655 0.922
DeepGaze III [32] | 0.339 0.140 1.418 0.910

FFMs [63] 0.329 0.329 1.432 00918
Gazeformer [42] 0.280 - - -
HAT 0.369 1.485 3.382 0.965

Table 3. Comparing free-viewing scanpath prediction algo-
rithms (rows) using multiple metrics (columns) on the test set of
COCO-FreeView. The best results are highlighted in bold.

However, they have low scores on saliency metrics (i.e.,
cIG, cNSS and cAUC) as they ignore the inter-dependencies
between fixations. Compared to FFMs [63] and Chen et
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al. [10] which have high saliency scores, HAT further im-
proves the performance significantly for all metrics. Partic-
ularly, HAT is better than Chen et al. [10] (the second best)
in cNSS by 95%. HAT slightly lags behind the most recent
GazeFormer [42] in SS but is significantly better in semSS.
We also demonstrate in the supplement that HAT learns the
entire scanpath distribution from multiple subjects whereas
GazeFormer overfits to the “average person” and fails to
predict scanpaths from different subjects. Moreover, HAT
surpasses the human consistency in semSS, suggesting that
HAT well captures the semantics behind fixations.
Target-absent search. For target-absent (TA) search scan-
path prediction, we compare HAT to different approaches
on the TA test set of COCO-Searchl18 in Tab. 2. Different
from TP search results shown in Tab. 1, we see in Tab. 2
that the gap between heuristic methods to human consis-
tency is much larger for TA search, demonstrating that TA
search scanpath prediction is a more challenging task than
TP scanpath prediction. Indeed, the predominant influence
on human attention in TP search (i.e., the target) is now ab-
sent [12], making other factors such as the spatial cues pro-
vided by the anchor objects [4], the contextual cues from
global scene understanding [52] and object co-occurrence
[40] stand out. The discernment of these factors necessi-
tates a robust semantic understanding of the input image.
Tab. 2 shows that HAT sets a new state-of-the-art at all met-
rics, outperforming the previous state-of-the-art (Chen et al.
[10]) by 94% in cNSS. More importantly, HAT achieves a
sequence score surpassing human consistency for the first
time. These results suggest that comparing to other methods
HAT better captures the semantics of the image and learns
the relation between other objects and targets.
Free-viewing. In addition to visual search, HAT can predict
free-viewing scanpaths by treating free-viewing as a stan-
dalone task. In Tab. 3, we compare HAT with the baselines
using COCO-FreeView. Note that Detector and IVSN are
excluded here as the free-viewing fixations are not tasked to
searching for a target like visual search. HAT outperforms
all other methods in cIG, cNSS and cAUC, especially HAT
is 351% and 104% better than the second best (FFMs and
Chen et al. [10]) in cIG, cNSS, respectively. This reaffirms
the effectiveness of HAT as a generic framework for scan-
path prediction. We further validated the effectiveness of
our proposed HAT using OSIE [61] and MIT1003 [26], and
the generalizability of HAT to new scenes, please refer to
the supplement for detailed results.

4.2. Qualitative Analysis

Scanpath visualization. In this section, we qualitatively
compare the predicted scanpaths of different methods to
each other and to the ground-truth human scanpaths in the
TP, TA and FV settings. As shown in Fig. 4, when search-
ing for bottles in the TP setting, HAT not only correctly

Human HAT (ours) FFMs [63]
. g T e =0

FV

Figure 4. Visualization of the ground-truth human scanpaths
and predicted scanpaths of different methods (columns). Three
different settings (rows) including target-present bottle search,
target-absent stop sign search and free viewing are shown from the
top to bottom. The final fixation of each scanpath is highlighted in
red circle. For methods without termination prediction, i.e., IRL,
detector and fixation heuristic, we visualize the first 6 fixations
for visual search and 15 for free viewing. The rightmost column
shows the predicted scanpaths of the heuristic methods (detector
630 for visual search and fixation heuristic for free-viewing)

predicted the terminal fixation on the heavily-occluded
target, but also predicted fixations on all the distractor
objects that look similar to the target, like humans do.
Other methods either missed the distractor objects or failed
to find the target. Similarly, for the TA stop sign search,
HAT was the only one that looked at both sides of the
road in searching for a stop sign like the human subject
would, showing a use of semantic and context cues to
control attention. In the FV setting, HAT also predicted
the most human-alike scanpaths among all methods in (1)
the fixation locations (where), (2) the semantics (what),
and (3) the order (when) of the fixations. More scanpath
visualizations can be found in the supplement.

Model interpretability. A distinctive attribute of HAT
lies in its interpretability, facilitated by the computational
attention mechanism and the foveation module design.
HAT enables quantitatively measuring the contribution of
both peripheral and foveal tokens to fixation allocation. The
contribution of a token is computed as the attention weight
from the last cross-attention layer of the aggregation mod-
ule in HAT. By computing the normalized contribution of
each peripheral token, we create a peripheral contribution
map, which offers insights for the human gaze behavior.
We further analyze how the peripheral contribution map
evolves across a sequence of fixations. Fig. 5 shows
the predicted scanpath, peripheral contribution maps and
predicted fixation heatmaps of HAT in a TP laptop search
task. We observe that the encoded periphery features not
only align with the location of the next fixation (e.g., when
the occluded laptop is encoded in the left-bottom periphery,
the model makes a fixation to the target and terminates
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Figure 5.

Visualization of the predicted scanpath, periph-
eral contribution map and fixation heatmap (columns) of HAT
for target-present laptop visual search examples at every fixation
(rows). We also include the predicted termination probability 7 for
each step on the left. The model terminates searching if 7 > 0.5.

the search), but also provides the contextual cues where
a target might be located (e.g., near the keyboard and the
monitor where a laptop is usually found). We also observe
a similar pattern for the TA setting (see illustration in
the supplement). In the supplement, we also collectively
analyze the contribution of peripheral and foveal tokens in
predicting human attention control, which has shown that
the peripheral vision plays different roles under different
settings. These all have demonstrated that HAT can make
highly interpretable predictions.

4.3. Ablation studies

We ablate HAT under the TA setting as TA search fixations
exhibit characteristics of both target-present search fixations
and free-viewing fixations [12].

Peripheral and foveal tokens. We verify the effectiveness
of peripheral tokens and foveal tokens by ablating them one
at a time. It is shown in Tab. 4 that ablating any one of
them incur a performance drop over all metrics. This sug-
gests that all of these components contribute to the superior
performance of HAT. In comparison, removing foveal to-
kens incurs a larger performance drop (cIG decreases by
30%). This decline is expected as foveal tokens embody
the knowledge accumulated from prior fixations. Without
them, HAT can be regarded as a static fixation density map
predictor, akin to the fixation heuristic baseline. Conversely,
the removal of peripheral tokens has a relatively minor ef-

‘SemSS SS  cIG cNSS cAUC

baseline (80x128) | 0.382 0.402 1.686 3.103 0.961
— peripheral tokens| 0.375 0.396 1.600 3.003 0.960
— foveal tokens 0.358 0.385 1.179 2.380 0.948
low-res (20x32) | 0.374 0.389 1.534 2.760 0.955

Table 4. Ablation study of HAT. These experiments are done on
the TA set of COCO-Search18. The best results are in bold.

fect, possibly attributed to the adaptive capacity of foveal
tokens (FP,) compensating for information loss in periph-
eral tokens (P;) during training.

Output resolution. HAT has a default output resolution of
80 x 128 due to the convolution with the high-resolution
feature map P, (see Fig. 2). In Tab. 4 (last row), we change
the convolution operant from P, to P> to yield an output
resolution of 20 x 32, same as FFMs [63] and IRL [62]
but smaller than Chen et al. [10] (30 x 40). Despite that
a reduced resolution incurs a noticeable performance drop
in HAT, HAT still outperforms prior state-of-the-art FFMs
with the same output resolution and Chen et al. [10] using
a higher output resolution. This underscores HAT’s effec-
tiveness and design flexibility. Additional ablations can be
found in the supplement.

5. Conclusions

With the rapid development of Augmented Reality (AR)
and Virtual Reality (VR) technologies, there is an increas-
ing demand for predicting and understanding human gaze
behavior [27, 47, 48], with scanpath prediction being a chal-
lenging task. For those AR/VR applications requiring a
high input resolution (360°), discretizing fixations into a
coarse grid incurs a non-negligible loss in accuracy. In this
work we presented HAT, a generic attention scanpath pre-
diction model. Built from a simple dense prediction frame-
work [13], HAT circumvents the drawbacks of discretizing
fixations as in prior state of the arts [10, 62, 63]. Inspired
by the human vision system, HAT uses a novel foveated
working memory which dynamically updates its knowledge
about the scene as it changes its fixation. We show that
HAT achieves new SOTA performance, not only in predict-
ing free-viewing fixation scanpaths, but also scanpaths in
target-present and target-absent search. In demonstrating
this broad scope, our HAT model sets a new bar in the com-
putational attention of attention control.
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