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Abstract—This paper focuses on addressing computational
constraints and energy limitations prevalent in edge-based ap-
plications through an innovative approach, dynamic in-situ con-
trol for edge-based applications (DICE). DICE capitalizes on
the burgeoning trend in vehicle sensor technologies, such as
camera, Radar, and LiDAR, which are becoming increasingly
powerful and capable of performing pre-processing computa-
tions. DICE introduces a concept of “downstream offloading”,
which distinguishes it from traditional offloading approaches
that typically offload computational tasks from edge devices
to more powerful Edge Servers. In contrast, DICE offloads
part of the computational tasks from the Edge Server to the
sensor itself, thereby optimizing data processing at the source
and reducing the volume of data transmission required.This
approach not only addresses the latency bottleneck frequently
encountered in energy-intensive neural networks but also en-
hances the efficiency of data processing by selectively filtering
out non-critical frames based on event-triggering mechanisms.
DICE leverages the unique strengths of portable devices such
as smartwatches and smartphones, even with their inherent
computational and power limitations. The framework consists
of an adaptive control layer for dynamic task allocation and an
application layer designed to deploy quantized models on System
on Chips (SoCs) like TinyML, thereby improving the efficiency
of Al-driven applications while conservatively utilizing energy.
This system proposes a sustainable, energy-efficient pathway for
future edge-based applications.

Index Terms—smart sensor, dynamic control, edge collabora-
tion

[. INTRODUCTION

The advent of high-bandwidth, low-latency communication
technologies such as 5G and WiFi6 is unlocking potential
for edge-based applications, particularly in mobile scenarios.
Alongside the deployment of novel edge computing products,
these next-generation communication technologies promise to
transform the human-computer interaction experience. Edge
computing offers a practical solution to meet the low latency
requirements of such applications. In this study, we introduce
a task offloading framework based on TinyML, aiming to
accelerate data processing on edge-based devices. However,
in contrast to conventional offloading approaches that offload
computation tasks to a powerful Edge Server, our framework
facilitates “downstream offloading”, shifting part of the com-
putations from the Edge Server to the sensor device itself. This
new approach capitalizes on the computational capabilities of
modern sensors in vehicles, optimizing data processing at the

source, reducing data transmission volume, and thus mitigating
latency.
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Fig. 1. Smart Sensor.

Connected and Autonomous Vehicle: The combination
of communication technologies, robotics, and edge comput-
ing [37] has catalyzed significant advancements in the field
of autonomous driving. Rigorous research and development
initiatives have expedited the emergence of connected and
autonomous vehicles (CAVs), as evident from high-profile
developments like Tesla’s Autopilot [10], Google’s Waymo
[9], and Baidu’s Apollo [44]. Serving as an optimal edge
computing platform [28], CAVs support various intelligent
applications like real-time remote diagnostics [31] and ad-
vanced driver assistance [21]. These innovations are driven by
extensive vehicle data generated by multiple onboard sensors,
such as cameras, radar, and LiDAR. These integral CAV com-
ponents are projected to generate approximately 40 terabytes
of data for every eight hours of driving—equivalent to the
data output of nearly 3,000 people [38]. It’s estimated that by
2025, about 470 million CAVs will be operating worldwide,
generating an astounding 280 petabytes of data [24]. This
development signifies a notable milestone in the application
of edge computing in the transportation sector, ushering in a
new era of data-driven vehicular innovation.

Computation Intensive Services: While most deep neural
networks (DNNs) are designed with a focus on boosting
accuracy, this often results in substantially increased model
complexity. Current state-of-the-art networks, such as Incep-
tionv4 [40] and ResNet-50 [2], may contain dozens or even
hundreds of layers, each layer requiring millions of matrix



multiplications, to achieve superior accuracy. The computa-
tional intensity of these DNN models presents significant
challenges when deployed on CAVs with limited computation
resources. Despite the increasing computational capabilities of
CAV platforms [5], [6], they struggle to keep up with users’
growing demands for more resource-intensive applications,
such as intersection analysis [22] and driver behavior detection
[25]. Hence, our proposed downstream offloading approach
under DICE framework becomes increasingly important, en-
suring a range of intelligent services (DNN models) can
be deployed and executed effectively and dynamically on a
single resource-constrained CAV computation platform and
CAV fleets.

The DICE framework embraces the concept of a Smart
Sensor, as outlined in Figure 1. This Smart Sensor is a
holistic integration of diverse sensory inputs and computa-
tional units, extending its potential to address a wider array
of tasks. Our particular implementation in DICE employs a
combination of a camera and a Raspberry Pi as a Smart
Sensor, where the Raspberry Pi performs a range of functions
from Data Preprocessing to Object Detection. Such a con-
figuration underlines the flexibility of the DICE framework,
showcasing its potential to adapt to diverse edge computing
scenarios by accommodating various sensor and computing
unit combinations. In our study, we emphasize the ability
of the DICE framework to significantly minimize latency
and energy consumption during neural network computations
on edge devices. To demonstrate this, we implement the
framework on devices of different computational capabilities,
namely a Raspberry Pi and a Google Pixel 4. In typical
scenarios, lightweight algorithms deployed on the Raspberry
Pi prove sufficient for performing tasks such as pedestrian
detection in blind spots and stop sign verification. However,
in more complex scenarios demanding greater computational
prowess, DICE implements a "downstream offloading” process
where the data is transferred to the more powerful Google
Pixel 4. This process embodies the adaptive nature of DICE,
ensuring optimal performance regardless of the computational
constraints of the edge device.

This research makes several important contributions to the
field:

o Downstream offloading with tiny ML: We implement deep
learning algorithms with Tiny ML on embedded devices,
using Raspberry Pi and a cell phone as an EdgeServer
to enhance detection model accuracy, with the novelty of
offloading part of computations from the EdgeServer to
the Raspberry Pi.

o Edge computing-assisted driving: We enhance pedes-
trian and road sign detection in challenging scenarios,
using deep learning algorithm and distance estimation
algorithms, thereby facilitating edge computing-assisted
driving with the help of our “downstream offloading”
concept.

o Estimation of pedestrian and traffic sign distances: We
apply distance estimation algorithms to determine pedes-
trian and traffic sign locations and distances, aiding in

safer driving.

o Collaboration for edge devices: We utilize Raspberry Pi
and cell phone to deploy and execute detection models,
with the cell phone acting as an edge server to run
high-accuracy models when necessary, highlighting the
model’s portability and versatility in our “downstream
offloading” setting.

This research capitalizes on the synergy between Tiny ML
and edge computing, specifically within embedded devices, to
optimize resource allocation and enhance model accuracy for
real-world applications. Our work employs dynamic control
mechanisms to determine when and how devices are used for
specific computational tasks, emphasizing adaptability and ef-
ficiency in handling edge computing tasks. We hope this paper
provides a roadmap for applying Tiny ML and edge computing
in autonomous driving and other complex scenarios, thereby
contributing to the expanding body of knowledge in this field.

The paper is organized as follows: Section II provides
a literature review, presenting related work in the fields of
Tiny ML, edge computing, and autonomous vehicles, and
highlighting relevant methodologies and their implications.
Section III outlines the algorithms and techniques used in this
research, detailing the application of Tiny ML and the concept
of “downstream offloading” in edge computing. Section IV
presents the experimental setup, the execution of the mod-
els, and the results obtained, providing empirical validation
of our research. Section V offers an in-depth analysis and
interpretation of the results, drawing from both theoretical and
practical perspectives to understand their implications. Finally,
Section VI concludes the paper, summarizing our findings and
suggesting potential avenues for future research in the field.

II. RELATED WORK

Algorithms in computing systems play a vital role in
sensing, perception, localization, prediction, and control. This
section outlines the latest progress in critical algorithmic fields:
object detection, Augmented Reality and distance estimation,
and task offloading.

1) Object detection: Object detection, especially under
challenging conditions, is critical to the real-world application
of deep learning for autonomous vehicles (AVs) [29]. Object
detection algorithms’ development generally goes through two
phases: the conventional object detection phase, and the deep
learning-supported object detection phase [46]. Traditional
methods like Viola Jones Detectors [42], Histogram of Ori-
ented Gradients (HOG) [4], and Deformable Part-based Model
(DPM) [7] provided valuable insights. Contemporary deep
learning-based methods, such as RCNN series [11], [12],
[17], [35], Single Shot MultiBox Detector (SSD) series [8],
[26], and You Only Look Once (YOLO) series [20], [33],
[34], further evolved detection methods, balancing speed and
accuracy [23], [26].

2) Augmented reality: Augmented Reality (AR) on mobile
platforms enables the real-time integration of virtual objects,
or holographic content, within 3D real-world environments.
This technology necessitates an image recognition system that



can accurately identify objects in the camera view with low
latency, a challenge heightened by image distortion issues [27].
Liu et al. responded to this challenge by proposing CollabAR,
a framework for edge-assisted, collaborative image recogni-
tion. The CollabAR system, comprising a distortion-tolerant
image recognizer, a correlated image finder, and a multi-
view ensembler, is deployed on the edge server to manage
the tradeoff between recognition accuracy and system latency.
Complementing the server, the client runs an anchor-based
pose estimation module for tracking mobile device positioning.
Implemented on a variety of commercial devices and evaluated
on two multi-view image datasets, CollabAR achieved over
96% accuracy in recognizing severely distorted images, while
reducing system latency to 17.8ms. In AR, holograms placed
by the user are expected to remain stationary relative to real-
world objects, but inaccuracies in environment mapping and
device positioning often lead to positional errors. Han et
al. addressed this issue by proposing Scenelt, a mobile AR
visual environment rating system based on hologram position
error prediction [16]. Utilizing custom scene characterization
metrics and considering complex scene attribute interactions,
Scenelt was shown to predict positional error severity ac-
curately and efficiently, enhancing mobile AR applications.
Further, in an edge-assisted network scenario, Scargill et al.
proposed Intelli-AR, a set of intelligent preloading algorithms
to optimize transmission efficiency [36]. Using a Markov
decision process to model device motion trajectories, Intelli-
AR adaptively learns optimal preloading policies, dramatically
improving successful preloads. Multi-user AR, which allows
multiple users to view common virtual objects in a shared loca-
tion, also necessitates network communication to synchronize
virtual object positioning across displays. Ran et al. sought
to fill the knowledge gap in this area with SPAR, a system
that correlates communication data with latency and object
positioning in AR displays [32]. Their findings underscored
the importance of effective communication strategies, new
metrics for updating virtual objects and scene observation,
and tools for automatic quantification of inadvertent spatial-
temporal changes in virtual object positioning. Deployed on an
Android smartphone running open source AR, SPAR reduced
latency and spatial inconsistencies by up to 55% and 60%,
respectively.

3) Distance estimation: The concept of distance estima-
tion is an integral component of effective object detection,
as outlined in the Dist-YOLO architecture [41]. This novel
system extends the prediction vectors generated by the orig-
inal You Only Look Once (YOLO) model by incorporating
distance information, thereby creating a more precise object
detection model. Furthermore, Dist-YOLO is paired with a
fitting distance loss function to optimize the performance of
the system. The research showcases the superior accuracy of
Dist-YOLO in identifying bounding boxes compared to the
original YOLO model, without any additional demand on the
backbone’s capacity. Moreover, it proves the efficacy of using
a monocular camera integrated with Dist-YOLO in precisely
estimating the distance of an object.

4) Task offloading: DICE significantly differs from tradi-
tional task offloading approaches in its dynamic and adaptive
nature. Traditional task offloading methods typically follow a
rigid pattern of assigning tasks to available resources without
any sophisticated decision-making process [13], [18], [43].
This approach can lead to inefficient resource utilization
and suboptimal performance, particularly in scenarios where
the task demands or environmental conditions are variable.
In contrast, DICE applies a more intelligent approach that
considers the "When” and "How” to control a computational
task. It uses real-time data and context awareness to make
dynamic decisions about which tasks to execute and where
to execute them within the network, thus optimizing both
the performance and resource utilization. Instead of a static
offloading strategy, DICE offers a dynamic control mechanism
for edge computing, which makes it more flexible and efficient
in handling a variety of application scenarios.

ITI1. DICE FRAMEWORK

A. Edge Device and Edge Server

Edge devices and edge servers represent the two primary
components in the DICE Framework, each serving specific
roles and maintaining a symbiotic relationship that promotes
efficient processing and overall system performance.

Edge Device: In the context of the DICE framework, an
edge device is typically an augmented reality (AR) device with
limited computational resources. The edge device captures
data from its surroundings using various sensors, executes
lightweight models deployed on it, and performs functions
necessary for real-time operations such as object recognition,
pedestrian detection, and road sign detection. Given the re-
source constraints, the edge device aims to achieve the lowest
possible energy consumption without compromising its real-
time performance and response capabilities.

Edge Server: The edge server possesses more robust com-
putational resources and serves to complement the edge de-
vice’s capabilities. It assists in the execution of more complex
tasks that might be beyond the processing capacity of the
edge device. To achieve this, the edge server accommodates
more resource-hungry models, and takes over processing tasks
from the edge device when necessary, under the guidance of
the adaptive control layer. By doing so, the edge server aids
in achieving higher system throughput and ensuring service
quality.

The relationship between the edge device and the edge
server is a crucial aspect of the DICE Framework. It’s
a dynamically orchestrated collaboration, regulated by the
adaptive control layer, which determines how and when the
edge server should assist the edge device based on current
workload, network conditions, and available resources. The
interaction between the edge device and the edge server allows
the DICE Framework to optimise energy consumption and
computational efficiency, ensuring that the system can handle
both simple and complex tasks effectively.



B. Adaptive Control Layer

The Adaptive Control Layer (ACL) is a critical part of the
DICE Framework as it regulates the dynamic allocation of
computing tasks between the edge device and the edge server.
The aim is to optimize energy consumption and ensure system
performance in real-time by considering the current workload,
available resources, and network conditions.

The ACL implements a decision-making algorithm that
estimates the energy consumption and performance if a task
were to be processed on the edge device or offloaded to
the edge server. This estimation is performed using a cost
function that combines the potential energy usage and latency
associated with both options.

Suppose Ejocqr and Eyffi0qq denote the estimated energy
consumption of executing the task locally on the edge device
and offloading it to the edge server, respectively. Similarly,
Liocat and Loy f10qq represent the expected latencies. The cost
function Cjocqr for local execution and Cy s f0qq for offloading
can be calculated as:

Cvlocal = CV-Elocal + 5L10cal
Cofﬂoad = anfﬂoad + BLofﬂoad
where a and  are weighting coefficients that reflect the
importance of energy consumption and latency, respectively.

The decision to execute locally or offload is then determined
by:

(D

execute_locally = Clocal < Coffioad 2)

This decision-making process is repeated in real-time, ad-
justing to dynamic changes in workload, network conditions,
and available resources. The workings of the ACL can be
outlined as follows:

Algorithm 1 Adaptive Control
1: while True do
2:  current_workload = get_current_workload()
available_resources = get_available_resources()
network_conditions = get_network_conditions()

3

4

5

6: E_local = estimate_local_energy()

7 L_local = estimate_local_latency()

8 E_offload = estimate_offload_energy()

9 L_offload = estimate_offload_latency()

11:  C_local = alpha*E_local + beta*L_local

122 C_offload = alpha*E_offload + beta*L_offload

14:  if C_local < C_offload then

15: execute_task_locally()

16:  else

17: execute_task_on_edge_server()
18:  end if

19: end while

The Adaptive Control Layer, as presented, provides a
dynamic, real-time strategy for balancing energy consump-
tion and latency in the DICE Framework. It maximizes the

computational capabilities of both the edge device and the
edge server, enhancing the overall system’s efficiency and
performance.

1) Estimation of Local Energy and Latency: The energy
consumption and latency of running the application locally
on the edge device are estimated in the Adaptive Control
Layer (ACL) of the DICE framework. The aim is to deter-
mine whether running the application locally is more energy-
efficient and less time-consuming than offloading it to the edge
server.

The local energy consumption is dependent on several
factors, including the computational complexity of the applica-
tion, the power profile of the device, and the current state of the
device’s resources. Thus, the local energy can be approximated
as follows:

Eioca = Pcomp X Tiocal 3)

where Ejocq; is the local energy, Peomp is the computational
power consumed by the device (which is specific to the device
and can be obtained from device specifications or profiling),
and Tj,cq; is the local latency or the time taken to run the
application locally.

The local latency Tj,.q; can be estimated based on the
computational complexity of the application and the current
load on the device’s processor. It can be expressed as:

Capp

7jlncal =
Rdevice

“)
where C),, is the computational complexity of the application
(measured in FLOPs or another suitable metric), and Rgeyice
is the current computational resource available on the device
(measured in FLOPs/sec or another corresponding metric).

2) Estimation of Offload Energy and Latency:: The energy
and latency of offloading the application to the edge server
are also estimated in the ACL. The aim here is to determine
whether offloading the application to the edge server is more
energy-efficient and less time-consuming than running it lo-
cally on the edge device.

The energy consumption for offloading the application com-
prises the energy required to transmit the data to the edge
server and the energy to receive the processed data from the
edge server. The offload energy can be approximated as:

Eofﬂoad = Etrans + Erecv (5)

where Ey.qns and E,..., represent the energy consumption
for data transmission and reception, respectively. These can
be calculated based on the size of the data to be transferred,
the transmission/reception power of the device, and the trans-
mission/reception rates.

The offload latency comprises the time to transmit the data
to the edge server, the time for the server to process the data,
and the time to receive the processed data from the server. It
can be approximated as:

Tofﬂoad = Ttrans + newer + Trecv (6)



where Tirans, Lserver, and T.c., represent the latency for data
transmission, server processing, and data reception, respec-
tively. These can be calculated based on the size of the data to
be transferred, the transmission/reception rates, and the server
processing speed. More details for the energy and latency
estimation can be found in Appendix A. This pseudocode first
computes the local and offload latency and energy by calling
relevant functions. It then makes the decision whether to run
the application locally or offload it to the server based on
the estimated values. The decision process can be made more
complex by incorporating other factors, such as current device
load, network conditions, and user preferences.

3) Execute Task on Edge Server: The underlying principle
revolves around decision-making on whether to process tasks
locally or offload them to the edge server, based on the current
workload, energy, latency estimates, and the network state. The
function takes into account these factors, then determines and
initiates the task offloading if deemed beneficial.

The communication between the local edge device and
the edge server can be implemented using a client-server
model over a high-speed network protocol such as 5G or Wi-
Fi 6, which can significantly reduce communication latency
and provide high data rates. When the offloading decision is
made, the edge device encapsulates the relevant input data
into packets and sends them to the edge server through the
established high-speed connection. The edge server, upon
receiving the data, unpacks it, processes the received task,
and sends the results back to the edge device. To ensure high
communication efficiency, several techniques can be applied:

e Data compression technique: it’s used before sending
data to the edge server, reducing the amount of data to
be transferred and thus, saving bandwidth and reducing
transmission latency.

e Concurrent data transmission: Multiple data streams are
transmitted concurrently to fully utilize the network ca-
pacity.

e Error control mechanisms: Mechanisms such as Auto-
matic Repeat reQuest (ARQ) are used to handle possible
transmission errors and ensure data integrity.

While these methods can enhance the efficiency of commu-
nication, it’s vital to evaluate the associated overheads. The
decision to offload tasks should not only consider the compu-
tation latency but also take into account the communication
overhead incurred by the task offloading.

C. Application Layer

The Application Layer (AL) is the second primary compo-
nent of the DICE Framework. This layer focuses on optimizing
Al-based applications for AR devices and their deployments
on edge devices. It adopts quantized tiny models, which are
lightweight deep learning models with reduced computational
complexity and energy consumption. The Application Layer
also supports event-driven triggers, thus ensuring applications
remain responsive while minimizing energy usage.

Quantized tiny Models: Tiny models are pruned and
quantized versions of full-scale deep learning models. Pruning

Algorithm 2 Adaptive Control
: # Define the original model
: M = get_original_model()

1
2
3
4: # Prune the original model to create the tiny model
5: P = prune(M)
6
7
8
9

: # Quantize the pruned model for further optimization
: Q = quantize(P)

10: # Deploy the tiny model on the edge device
11: deploy_model(Q)

12:

13: while True do

14:  event = check_for_event()

15:  if event then

16: # Execute the tiny model
17: output = execute_model(Q)
18: handle_output(output)

19:  end if

20: end while

involves reducing the size of the model by removing less
critical connections or parameters, while quantization means
reducing the precision of the model’s numerical parameters.
The tiny models in the Application Layer of the DICE frame-
work are deployed on edge devices, striking a balance between
model accuracy and computational efficiency.

Model pruning and quantization are pivotal techniques in
optimizing deep learning models for deployment on resource-
constrained edge devices. Pruning eliminates unnecessary pa-
rameters in a trained model that contribute minimally to the
final prediction, thus reducing model size and computational
requirements, making it more efficient [15]. Quantization,
on the other hand, decreases the numerical precision of the
model’s weights and activations, resulting in significantly
lower storage and computational needs without significant loss
in accuracy [14]. Together, these techniques allow for the
creation of compact, efficient models that maintain a balance
between computational requirements and accuracy, suitable for
deployment on edge devices. The pruning and quantization
processes can be expressed with the following equations. If
M represents the original model and P represents the pruned
model, the pruning operation is defined as:

P = prune(M) (7N

where the prune operation reduces the size of M while
maintaining a similar level of accuracy. The quantized model
@ is obtained from the pruned model as:

Q = quantize(P) (8)

where the quantize operation reduces the precision of P’s nu-
merical parameters, leading to a model that is computationally
less complex.

DeepC is an open-source compiler and inference framework
aimed at bringing the power of deep learning to resource-



constrained hardware devices. It provides a platform for
running deep learning models on microcontrollers and edge
devices, enabling edge computing applications to leverage the
power of artificial intelligence. DeepC supports an array of
deep learning models and provides functionalities for model
optimization, such as quantization and layer fusion. These
optimizations are critical for deploying deep learning models
on edge devices with limited computational resources and
memory. The compiler converts high-level language represen-
tation of a model into efficient machine code, which can be
directly executed on edge devices. DeepC offers a seamless
way to deploy and run optimized deep learning models on edge
devices, facilitating the development of efficient edge comput-
ing applications. In our DICE framework, we use DeepC for
model optimization in the Application Layer, ensuring that the
Al-driven applications run efficiently on edge devices.

Event-driven triggers:

Central to the DICE framework is an event-driven mecha-
nism that informs the selection of key frames for downstream
offloading. Within this process, the Raspberry Pi conducts
an initial preprocessing of the video stream, utilizing a Tiny
ML model deployed on the device to classify each frame.
Frames that include a target object—whether a pedestrian or
a traffic sign—are identified as key frames and subsequently
transmitted to the Edge Server for further analysis. Conversely,
non-key frames, which do not contain identified targets, are not
selected for transmission, optimizing bandwidth and compu-
tation resources.

This event-driven approach enables the DICE framework to
focus computational resources on frames that are most likely
to provide valuable information. By narrowing the scope of
analysis in this way, the system can perform more in-depth
processing without overwhelming the computational capabil-
ities of the edge device or overloading the communication
link between the device and the Edge Server. Additionally,
the flexibility of the DICE framework allows for the definition
of a broader set of events that could trigger the downstream
offloading of data for additional processing. For instance,
potential events could include instances when the camera is
obstructed by a small insect or when the camera malfunctions.
By training the Tiny ML model on the Raspberry Pi to recog-
nize such events, the system can respond more effectively to
a wider array of scenarios, enhancing its overall performance
and utility.

The event-driven mechanism embedded within the DICE
framework thus represents a versatile and efficient approach
to managing the computational and communication demands
of edge computing applications. By intelligently directing
resources based on the event-driven detection of key frames,
the DICE framework can maximize system performance,
providing a robust platform for the real-time processing and
analysis of data in edge-based applications.

The pseudocode of the Application Layer is presented in
Algorithm 2. The Application Layer, as described, enables
the DICE Framework to deploy optimized deep learning
models on edge devices and execute them based on event-

driven triggers. This design enhances application responsive-
ness and efficiency, facilitating a smooth user experience even
in resource-constrained settings.

IV. EXPERIMENTAL DESIGN AND
METHODOLOGY

In this study, we introduce a system that synergistically
integrates edge computing and AR technology to facilitate
automated driving. This system is devised to detect pedestrians
and stop signs, estimate their distance, and deliver timely
alerts to the driver, thereby helping to prevent traffic acci-
dents and violations. This section elucidates the experimental
design behind our proposed system, which encompasses three
main components: an edge computing module, an AR display
module, and a pedestrian and stop sign detection module.

The edge computing module is entrusted with processing
the raw sensor data extracted from the vehicle’s cameras.
The AR display module takes charge of superimposing virtual
information onto the real-world scene. The pedestrian and stop
sign detection module is tasked with detecting pedestrians
and stop signs and estimating their distance. To assess our
system’s performance, we devised a series of experiments
encompassing various driving scenarios. Specifically, we con-
structed three distinct scenarios to emulate different traffic
conditions: urban, suburban, and rural. Each scenario includes
a combination of different road conditions, traffic densities,
and weather conditions.

For data collection, we outfitted a test vehicle with multiple
cameras. The data, which included RGB and depth informa-
tion, was captured at a rate of 10 frames per second. The
gathered data underwent pre-processing to eliminate noise or
outliers before being divided into training and testing sets.

Our pedestrian and stop sign detection module employed
a deep learning-based approach, where two separate models
were trained for pedestrian detection and stop sign detection,
respectively. The training data was generated by manually la-
beling the pedestrians and stop signs in the collected data. We
evaluated the detection module’s performance using standard
metrics such as precision, recall, and F1 score.

To appraise the entire system’s performance, we quantified
the accuracy and latency of the pedestrian and stop sign
detection and AR display modules. Furthermore, we assessed
the system’s capability to deliver timely alerts to drivers and
its effectiveness in reducing traffic accidents or violations.

Our work introduces a Raspberry Pi-based pedestrian and
stop sign detection system, where the lightweight model can
be executed on the Raspberry Pi to detect pedestrians and stop
signs in blind areas during driving. Under typical conditions,
the system doesn’t detect pedestrians or stop signs in 80% of
the scenarios. However, when the system suspects the presence
of pedestrians or stop signs, it triggers data offloading to a
smartphone for detection. The smartphone, acting as the Edge
Server, hosts a more powerful model, thereby enabling more
accurate detection. The experiments employed YOLOv3 and
SSD models for training and evaluated the models’ perfor-
mance in lab and real-world scenarios. We also assessed the



models’ detection accuracy, resource utilization, and overall
performance to confirm their feasibility. The experimental
results demonstrated that the system could accurately detect
pedestrians and stop signs in diverse scenarios while main-
taining excellent performance. The system’s application is
anticipated to offer drivers a safer and more convenient driving
experience.

A. Experimental Platform Description

In our experimental setup, we link the Raspberry Pi with
a High Definition (HD) Web Camera. We conceptualize the
Raspberry Pi as the computational module of the Web Camera.
This approach aims to simulate the functions of novel camera
technologies, furnishing capabilities such as data preprocess-
ing and filtering. By employing this configuration, we attempt
to demonstrate the potential of advanced camera systems
in offloading computational tasks, underscoring the role of
downstream offloading in optimizing the operation of sensor-
driven systems.

Samsung Galaxy Watch 4

Raspberry Pi Google Pixel 4

Fig. 2. Experiment Platform.

The Unzano HD800 video camera was utilized as the pri-
mary data acquisition device in our edge-based experimental
setup due to its range of features that met our research
requirements. The camera’s USB connectivity facilitated easy
integration with our Raspberry Pi platform, while its CMOS
photo sensor technology provided high-resolution, clear imag-
ing data essential for accurate detection and classification
tasks. The camera’s compact design, H.264 support, digital-
camera, and hd-movie capabilities also made it an efficient
choice for our setup. Its lightweight and portable design,
black color, indoor and outdoor usage specifications, and
audio recording capabilities added to the robustness of our
experimental platform.

We utilized a Raspberry Pi 4 Model B as the Edge device.
The device incorporates a Broadcom BCM2711B0 quad-core
A72 (ARMV8-A) 64-bit 1.5GHz processor and a Broadcom
VideoCore VI GPU. With its dual 2.4 GHz and 5 GHz
802.11b/g/n/ac wireless LAN and Gigabit Ethernet connectiv-
ity, it boasts 4 GB of LPDDR4 SDRAM and microSD storage.
It also includes Bluetooth 5.0 and Bluetooth Low Energy
(BLE) capabilities. With its compact size and considerable

computing power, this device exhibits high scalability for
executing detection models. We also paired the device with
a 4000mAh battery pack to ensure extended usage time.

The EdgeServer in our experiment is the Google Pixel 4,
which is powered by a Qualcomm Snapdragon 855 processor
and an Adreno 640 GPU. This device possesses 6GB RAM
and 128GB storage. Owing to its high computing power
and portability, this device can effectively serve as a potent
EdgeServer for running high-precision inspection models. To
prolong detection periods, the device is fitted with a 2800mAh
battery.

For the AR device, we deployed the Samsung Galaxy Watch
4, an advanced smartwatch model announced in August 2021.
Its dimensions are 44.4 x 43.3 x 9.8 mm, and the weight
varies between 30.3 g (for the 44mm model) and 25.9 g (for
the 40mm model). The watch incorporates a super AMOLED
display of 1.4 inches with a resolution of 450 x 450 pixels.
It runs on Android Wear OS with One UI Watch 3 and
has an Exynos W920 (5 nm) chipset. Furthermore, it boasts
16GB internal storage with 1.5GB RAM. The smartwatch also
features several sensors, including accelerometer, gyro, heart
rate, and barometer, thereby offering an ideal platform for AR
applications. The smartwatch is powered by a Li-Ion 361 mAh
battery, ensuring prolonged usage.

B. Dataset Selection

DARK FACE: DARK FACE dataset provides 6,000 real-
world low light images captured during the nighttime, at
teaching buildings, streets, bridges, overpasses, parks etc.,
all labeled with bounding boxes for of human face, as the
main training and/or validation sets. We also provide 9,000
unlabeled low-light images collected from the same setting.
Additionally, we provided a unique set of 789 paired low-
light/normal-light images captured in controllable real lighting
conditions (but unnecessarily containing faces), which can
be used as parts of the training data at the participants’
discretization. There will be a hold-out testing set of 4,000
low-light images, with human face bounding boxes annotated.

Nighttime Vehicle Detection Dataset: This dataset is col-
lected for vehicle classification in darkness collected and
labeled in the Autonomous Robots Lab at the University of
Nevada, Reno. This dataset contains 10913 gray-scale images
of night-time images of roads. The images all have dimensions
of 1280 x 1024 pixels (width x height). Not all images in the
dataset contain vehicles, though the majority ( 90%) do. The
data was collected using a PointGrey Chameleon 3 Grayscale
camera (CM3-U3-13S2C-CS-BD).

NightOwls Dataset: Pedestrian detection at night from a RGB
camera is an under-represented yet very important problem,
where current state-of-the-art vision algorithms fail. Computer
vision methods for detection at night have not received much
attention, despite the fact they are a critical building block
of many systems such as safe and robust autonomous cars.
The NightOwls Dataset focuses on pedestrian detection at
night. It consists of 279,000 fully-annotated images in 40 video



sequences recorded at night, captured by an industry-standard
camera.

C. Testbed Setup

This study proposes a system that leverages the synergies of
edge computing and AR technologies for automated driving
assistance, specifically for detecting pedestrians and traffic
signs, and consequently providing timely warnings to drivers.
The proposed system has been deployed on three main devices
- a Raspberry Pi 4 Model B as the Edge device, a Google
Pixel 4 as the EdgeServer, and a Samsung Galaxy Watch 4
as the AR device. This section outlines the detailed design
and methodology of the experiment conducted to evaluate the
efficacy and performance of the proposed system.

1) System Deployment: A lightweight detection model was
deployed on the Raspberry Pi 4 Model B (Edge device) to
continuously scan the surroundings for potential targets i.e.,
pedestrians or traffic signs. The tiny model was designed for
lower computational complexity, thereby enabling it to run
efficiently on the Raspberry Pi while conserving energy.

Upon the detection of a potential target, the system triggers
a more sophisticated and high-precision model on the Google
Pixel 4 (EdgeServer) for an in-depth classification of the target,
and to estimate its distance from the vehicle. The EdgeServer
device has more computational capabilities and can handle the
higher complexity of the detection model.

The Samsung Galaxy Watch 4 (AR device) is used to notify
the driver of potential hazards, using an intuitive AR interface.
Once the system on the EdgeServer finalizes the classification
and distance estimation, an alert is sent to the AR device,
providing the driver with a timely warning.

2) Experimental Scenarios: The experimental validation of
the proposed system was conducted under various driving sce-
narios, to simulate different traffic situations. These scenarios
were designed to test the system in different environments,
including urban, suburban, and rural areas, with varying traffic
densities and weather conditions.

3) Performance Metrics: The system’s performance was
evaluated using several metrics, focusing on detection accu-
racy, resource utilization, system latency, and power consump-
tion. The detection accuracy of both the lightweight model
and the high-precision model were evaluated. The resource
utilization on both Edge device and EdgeServer were also

measured, taking into account the CPU and memory usage.
The system latency, including the detection time and the
communication latency between the Edge device and the
EdgeServer, was also evaluated. The power consumption of
the Edge device during the whole process was also monitored.

4) Comparative Study: To further validate the performance
of our DICE system, we compare its performance with tradi-
tional cloud-based solutions and other existing edge computing
models. The comparative study would focus on the same
performance metrics as described above.

This experimental design aims to provide a comprehensive
evaluation of the DICE system in various realistic driving
scenarios, thereby highlighting its effectiveness and benefits
in assisting automated driving and enhancing traffic safety.

D. Experiment Methodology

1) Building a traffic signs & pedestrian classifier: In our
DICE experimental setting, we constructed a robust and so-
phisticated Convolutional Neural Network (CNN) model to
classify traffic signs and pedestrians. The model was built
using TensorFlow’s Keras library and was organized in a
sequential manner, implying that each layer of the model is
in sequence and directly connected to the layers adjacent to
it. The architecture of the model is outlined as follows: The
model begins with a convolutional layer having 64 filters, each
with a size of 3x3, an input shape of 32x32x3, and using the
Rectified Linear Unit (ReLU) activation function. This layer
is followed by a max pooling operation with a pool size of
2x2, which reduces the spatial dimensions of the output from
the previous layer. After this, a batch normalization operation
is applied to standardize and stabilize the learning process.
Two additional convolutional blocks with a similar architecture
are included, with the number of filters increased to 128 and
256 respectively, to allow the model to learn more complex
representations. After the convolutional operations, the output
is flattened to transform the 3D output to 1D. Then, the model
goes through five dense layers with 512, 256, 128, 64, and 32
units respectively, all using ReLU activation functions. Each
dense layer is accompanied by a dropout layer with a rate of
0.2, which randomly sets a fraction of the input units to O
during training time, thereby preventing overfitting. Finally, a
dense output layer with five units is included using a softmax
activation function, which gives the output as a probability
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Fig. 3. Traffic signs & pedestrian classifier.



distribution over the five classes (presumably corresponding
to different traffic signs and pedestrian situations). This model
was compiled with the Adam optimizer, which adapts the
learning rate during training, a categorical cross-entropy loss
function, and accuracy as the evaluation metric. The resulting
CNN model is deep, adaptable, and capable of identifying and
distinguishing between different traffic signs and pedestrians
effectively, playing a key role in our DICE experiments.

2) Object detector: We utilize YOLOv3-Tiny [1], a faster,
resource-efficient version of the full YOLOv3 model, suit-
able for real-time object detection. Its streamlined structure
incorporates fewer convolutional layers, optimizing speed and
performance on less powerful devices like Raspberry Pi.
Despite this reduction, YOLOv3-Tiny maintains respectable
accuracy and excels in real-time processing, making it ideal for
initial detection of pedestrians and traffic signs in our system.

Distance
estimation

Object
detection

Fig. 4. Object distance estimation.
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Fig. 5. Object distance estimation.

3) Object distance estimation: We implement a monocular
camera model for object distance estimation [3], capitalizing
on the principle of similar triangles in the pinhole camera
model. This principle dictates a one-to-one relationship be-
tween an object and its image. As shown in Fig. 5, we derive
a relationship involving the known parameters: the camera’s
focal length (f), the height of the object in the image plane
(h), the height of the object in the object plane (H), and an
unknown parameter, the distance from the camera to the object
(D). The formulas we obtain are:

h(pixel)

(
f(pixzel)  D(em)
©))

To establish the focal length, we employed a practical
scenario. A reference object of known height was chosen,
and the height (h) of the reference object’s image on the
image plane was determined post-segmentation. By adjusting
the distance (D) from the camera to the object to a specific

value, we were able to substitute these parameters into the
second equation of Equation 9 to calculate the focal length (f)
in pixels. Subsequently, we were able to estimate the distance
D using the second formula of Equation 9.

V. EVALUATION AND DISCUSSION

We evaluate the performance of the DICE framework in
terms of energy consumption, throughput, and latency. Our
experimental results show that DICE significantly reduces
energy consumption while maintaining high throughput and
low latency for Al-driven applications on Edge devices.

Our experimental design aims to illustrate the efficacy of
the DICE framework in a simulated real-world scenario: a
Raspberry Pi is utilized as the computational module of a
camera, where it hosts a Tiny model for pedestrian and traffic
sign classification. The mobile phone, acting as the Edge
Server, is responsible for further data analysis, specifically for
object detection tasks. An adaptive control layer determines
the execution location for the distance estimation algorithm.
Finally, a smartwatch is used to receive the final detection
results and issue alerts.

We conduct a performance evaluation of the DICE frame-
work, focusing on energy consumption, throughput, and la-
tency. Our experimental setup is designed to show that DICE
can significantly reduce energy consumption while maintain-
ing high throughput and low latency, which are critical factors
for Al-driven applications on edge devices.

TABLE I
PERFORMANCE ON THE EDGE.
CPU Usage | Mem Usage | Latency
Idle 0.2% 494 MB -
deepC 25% 495.4 MB 0.64s
Non-Tiny model 33.6% 620.9 MB 0.15s

Table I presents the performance characteristics of the edge-
based computation under different operational conditions: Idle,
running deepC (the deep learning model used in our frame-
work), and running a Non-Tiny model for comparison.

In the Idle state, CPU usage is minimal, at 0.2%, with a
memory footprint of 494 MB. As expected, there is no mea-
surable latency, as no computational tasks are being performed.

When running deepC, the CPU usage increases to 25%,
which is a significant but manageable load, demonstrating
the efficiency of the deepC model on the edge device. The
memory usage sees a minor increase to 495.4 MB, illustrating
the model’s low memory footprint. The latency for processing
each frame is measured at 0.64 seconds, which is reasonably
low and suitable for real-time applications. In contrast, when
running the Non-Tiny model, CPU usage rises to 33.6%,
indicating that more computational resources are required.
Correspondingly, the memory usage increases significantly
to 620.9 MB, a clear demonstration of the heavier resource
requirement of the Non-Tiny model. However, it is noteworthy
that the latency for the Non-Tiny model is 0.15 seconds,
lower than that of deepC. This could be due to the Non-Tiny



model’s design being optimized for speed, despite its higher
resource usage. This table illustrates the resource efficiency of
the deepC model compared to a Non-Tiny model, underlining
the benefits of using such compact, lightweight models in
edge-based computations. The latency comparison also opens
up a trade-off discussion between resource usage and latency,
offering insight into the factors that must be considered when
choosing or designing models for deployment on edge devices.
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Fig. 6. Dynamic Control Experiment: Balancing Accuracy and Latency in
the DICE Framework.

The experiment shown in Fig. 6 was conducted to examine
the dynamic control capabilities of the DICE framework. Both
Raspberry Pi and Google Pixel 4 were deployed with object
detection models. However, Raspberry Pi had an optimized
and lighter model while Google Pixel 4 ran a higher-accuracy
model. By adjusting the alpha parameter in line 11 and 12
of Algorithm 1 (with beta set as 1-alpha), we were able to
measure the average accuracy and latency jointly achieved by
both devices under different alpha values.

As alpha increased from 0 to 1, the accuracy decreased
from 0.91 to 0.53. This downward trend in accuracy was
expected due to the higher reliance on the lower-accuracy
model on Raspberry Pi as alpha increased. The results validate
DICE’s capability of offering dynamic control in balancing
performance (accuracy) and computational load (latency). On
the other hand, latency increased from 0.42 to 4.16 as alpha
went up. This was due to the reduced processing power from
the Raspberry Pi, which led to an increase in latency as
alpha increased. Hence, it’s noteworthy that there is a trade-
off between accuracy and latency depending on the alpha
parameter.

These results showcase the efficacy of DICE in managing
task offloading between devices with disparate computing
capabilities. This illustrates the adaptability of DICE in real-
world edge computing scenarios, effectively providing an
adjustable knob to balance between accuracy and latency based
on system requirements.

Table II outlines the performance characteristics of the
DICE framework across different event loads, ranging from
0% to 100%. The table presents measurements of CPU uti-
lization, memory usage, uplink data rate, and latency.

At the lowest level of event detection (0%), the CPU
utilization is 51.42%, and the memory usage is 37.20%, with

TABLE II
DATA FRAME CONSUMPTION EFFICIENCY OF DICE AND PERFORMANCE
ON EDGESERVER.

0% 30% 50% 100%
Idle
events events events events
CPU
v 16.53 5142 77.50 83.36 89.61
Utilization
Memory 25.50% | 37.20% | 45.90% | 49.50% | 61.40%
Uplink
(kBJs) 3.10 3.10 43.39 76.23 177.07
Latency (s) - 0.25 2.48 3.83 4.16

an uplink data rate of 3.10 kB/s and a latency of 0.25s.
These relatively modest resource allocations reflect the light
computational load associated with processing frames that
do not contain a target object. As the percentage of events
increases to 30%, we observe a substantial increase in CPU
utilization, rising to 77.50%, and memory usage, up to 45.90%.
The uplink data rate also increases notably to 43.39 kB/s due
to the increased number of key frames being offloaded for
further analysis. Correspondingly, the system latency increases
to 2.48s due to the added computational and transmission
burdens. The trends of increasing CPU utilization, memory
usage, uplink data rate, and latency continue as the event
load increases to 50% and 100%. This trend is expected,
as higher event loads correspond to a larger number of key
frames, resulting in increased computational demand and data
transmission. At the highest event load (100%), the CPU
utilization reaches 89.61%, memory usage is at 61.40%, uplink
data rate soars to 177.07 kB/s, and the latency increases
to 4.16s. While these resource allocations and latency are
considerable, they reflect the system’s capability to handle
heavy computational loads without crashing or overrunning
memory capacity.

Overall, the DICE framework exhibits a robust performance
and adaptability in response to varying event loads. The results
demonstrate the ability of the DICE framework to allocate sys-
tem resources effectively based on the event-driven detection
of key frames and to maintain operational efficiency despite
increasing computational and communication demands.

DICE’s key frame extraction mechanism exhibits several
advantages over the approaches discussed in the [30] and
[19]. The critical distinction is that DICE uses an event-
driven mechanism to identify key frames, unlike traditional
methods, which rely primarily on temporal or visual features.
This allows DICE to adapt to the changing content of the
video stream more dynamically and reduce the computation
and network load by transmitting only the most significant
frames. Additionally, unlike other approaches that perform
key frame extraction at the edge or cloud server, DICE
performs this operation directly on the device (in our case, the
Raspberry Pi). This means that DICE can reduce the amount
of data that needs to be transmitted over the network, thereby
reducing network bandwidth requirements, latency, and energy
consumption.

Yang’s work focuses on optimizing the allocation of com-
putational resources to various tasks in an edge computing



COMPARISON OF DICE WITH OTHER WORKS

TABLE III

Generic Framework Optimized Key Resource Allocation Motion-Based Key
Feature/Work for Task Offloading Frame Extraction for Task Offloading Frame Extraction DICE
[30] [19] [45] [39]
Tailored for AR No specific focus on No specific focus on No specific focus on No specific focus on Yes
Devices AR devices AR devices AR devices AR devices )
Event-Dt:lven Absent Absent Absent Absent Yes
Mechanism
Network
Bandwidth, Improved through ;\%ﬁfgggeﬁlﬁzﬂ;
Latency, and Standard Standard optimized resource Standard . -
. selection and on-device
Power allocation rocessin
Efficiency P &
Key Frame .
Extraction Not applicable Performed at the edge Not applicable Performed at the edge Performed dlfectly on
Location or cloud server or cloud server the device

network [45]. While these methods can offer improved per-
formance in general edge computing applications, they don’t
account for the specific demands of AR devices, nor do they
typically consider the unique opportunities provided by on-
device processing. DICE, on the other hand, is specifically
designed for AR applications and takes full advantage of
on-device processing capabilities. Sujatha et al. uses motion
detection or optical flow algorithms to select key frames in
video processing applications [39]. While such methods can
be effective for certain tasks, they generally require significant
computational resources and are typically performed on pow-
erful edge or cloud servers. By contrast, DICE uses a more
lightweight, event-driven approach to key frame selection,
which can be performed directly on the AR device and
provides more efficient use of network and computational
resources.

The DICE framework presents a significant step forward in
edge computing, enabling a more effective use of available
resources while maximizing the accuracy and responsiveness
of applications. By considering the inherent heterogeneity of
edge devices, DICE provides a powerful tool for harnessing
the full potential of edge computing, leading to safer and
more efficient applications. The flexibility and adaptability of
DICE ensure that it can be effectively utilized across a wide
range of edge computing scenarios, highlighting its potential
for widespread adoption.

VI. CONCLUDING REMARKS

In this study, we introduced the Dynamic In-Situ Control
for Edge-based Applications (DICE), a novel framework that
leverages the emerging concept of downstream offloading.
DICE targets vehicular applications and harnesses the increas-
ing computational capabilities of vehicular sensors, such as
cameras, radars, and LiDARs. Unlike traditional offloading
approaches that offload computation from edge devices to
more powerful servers, DICE pushes a part of the computation
downstream to the sensor level. This approach enables sensors
to pre-process and filter data based on event-driven triggers,
reducing unnecessary data transmission and increasing the
efficiency of the overall system. DICE was implemented

using a TinyML-based model on a Raspberry Pi, acting as
a simulated computational module for a high-definition web
camera. The framework was tested in a variety of scenarios,
demonstrating its potential for enhancing the performance of
edge-based devices. By optimally allocating computational
tasks between edge devices and sensors, DICE successfully
reduced latency and conserved energy. DICE represents a
significant step forward in the application of edge computing
in vehicular scenarios, proving the viability and efficiency
of downstream offloading. The implications of this research
extend beyond vehicular applications, offering insights for the
broader development of energy-efficient, edge-based applica-
tions.

VII. FUTURE WORK

There are two primary areas in which we aim to extend
this work. Firstly, our current classification and object de-
tection models sometimes struggle to perform well under
challenging conditions, such as during nighttime or in poorly
lit environments. The tiny models we employ do not deliver
high accuracy under these circumstances. Consequently, we
will consider developing specific training routines for these
types of scenarios to enhance the precision of our models.
This adaptation could prove crucial for a range of real-world
applications that involve non-optimal conditions. Secondly,
our current focus is largely confined to classification and
object detection. In future work, we aim to explore other
use cases such as tracking. For instance, we can design
caching mechanisms within the camera’s computation module
to expedite subsequent tracking tasks. These enhancements
could yield significant improvements in the overall efficiency
and performance of our system, opening up new possibilities
for utilizing downstream offloading in increasingly complex
applications. Our ongoing and future research will continue to
probe these boundaries, contributing to a growing understand-
ing of the intersection between edge computing, Tiny ML, and
real-world, sensor-driven applications.
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APPENDIX

A. The energy and latency estimation

i # Define the computational complexity of the
application and the device resources

> C_app = get_app_complexity ()

3 R_device = get_device_resources ()

4

s # Estimate local latency and energy

o T_local = estimate_local_latency (C_app, R_device)

7 E_local = estimate_local_energy (T_local)

9 # Define the data size, transmission/reception power
and rates , and server processing speed

0 Data_size = get_data_size ()

11 P_trans, P_recv = get_device_power_profile ()
2 Rate_trans , Rate_recv = get_trans_recv_rates ()
13 Server_speed = get_server_speed ()

15 # Estimate offload latency and energy

16 T_trans, T_recv = estimate_trans_recv_latency (
Data_size , Rate_trans , Rate_recv)

7 T_server = estimate_server_latency (Data_size ,
Server_speed)

s T_offload = T_trans + T_server + T_recv

19

20 E_trans, E_recv = estimate_trans_recv_energy (

Data_size , P_trans, P_recv, Rate_trans,
Rate_recv)

21 E_offload = E_trans + E_recv

» # Functions to estimate local and offload latencies
and energies

23 def estimate_local_latency (C_app, R_device):

24 return C_app / R_device

26 def estimate_local_energy (T_local):
27 P_comp = get_device_power_comp ()
28 return P_comp % T_local

0 def estimate_trans_recv_latency (Data_size ,
Rate_trans , Rate_recv):

31 T_trans = Data_size / Rate_trans

kY T_recv = Data_size / Rate_recv

33 return T_trans, T_recv

35 def estimate_server_latency (Data_size, Server_speed)
36 return Data_size / Server_speed

s def estimate_trans_recv_energy (Data_size, P_trans,
P_recv, Rate_trans, Rate_recv):

39 T_trans, T_recv = estimate_trans_recv_latency (
Data_size , Rate_trans, Rate_recv)

40 E_trans = P_trans % T_trans

41 E_recv = P_recv % T_recv

o) return E_trans, E_recv
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