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Abstract—This paper focuses on addressing computational
constraints and energy limitations prevalent in edge-based ap-
plications through an innovative approach, dynamic in-situ con-
trol for edge-based applications (DICE). DICE capitalizes on
the burgeoning trend in vehicle sensor technologies, such as
camera, Radar, and LiDAR, which are becoming increasingly
powerful and capable of performing pre-processing computa-
tions. DICE introduces a concept of “downstream offloading”,
which distinguishes it from traditional offloading approaches
that typically offload computational tasks from edge devices
to more powerful Edge Servers. In contrast, DICE offloads
part of the computational tasks from the Edge Server to the
sensor itself, thereby optimizing data processing at the source
and reducing the volume of data transmission required.This
approach not only addresses the latency bottleneck frequently
encountered in energy-intensive neural networks but also en-
hances the efficiency of data processing by selectively filtering
out non-critical frames based on event-triggering mechanisms.
DICE leverages the unique strengths of portable devices such
as smartwatches and smartphones, even with their inherent
computational and power limitations. The framework consists
of an adaptive control layer for dynamic task allocation and an
application layer designed to deploy quantized models on System
on Chips (SoCs) like TinyML, thereby improving the efficiency
of AI-driven applications while conservatively utilizing energy.
This system proposes a sustainable, energy-efficient pathway for
future edge-based applications.

Index Terms—smart sensor, dynamic control, edge collabora-
tion

I. INTRODUCTION

The advent of high-bandwidth, low-latency communication

technologies such as 5G and WiFi6 is unlocking potential

for edge-based applications, particularly in mobile scenarios.

Alongside the deployment of novel edge computing products,

these next-generation communication technologies promise to

transform the human-computer interaction experience. Edge

computing offers a practical solution to meet the low latency

requirements of such applications. In this study, we introduce

a task offloading framework based on TinyML, aiming to

accelerate data processing on edge-based devices. However,

in contrast to conventional offloading approaches that offload

computation tasks to a powerful Edge Server, our framework

facilitates “downstream offloading”, shifting part of the com-

putations from the Edge Server to the sensor device itself. This

new approach capitalizes on the computational capabilities of

modern sensors in vehicles, optimizing data processing at the

source, reducing data transmission volume, and thus mitigating

latency.

       

Fig. 1. Smart Sensor.

Connected and Autonomous Vehicle: The combination

of communication technologies, robotics, and edge comput-

ing [37] has catalyzed significant advancements in the field

of autonomous driving. Rigorous research and development

initiatives have expedited the emergence of connected and

autonomous vehicles (CAVs), as evident from high-profile

developments like Tesla’s Autopilot [10], Google’s Waymo

[9], and Baidu’s Apollo [44]. Serving as an optimal edge

computing platform [28], CAVs support various intelligent

applications like real-time remote diagnostics [31] and ad-

vanced driver assistance [21]. These innovations are driven by

extensive vehicle data generated by multiple onboard sensors,

such as cameras, radar, and LiDAR. These integral CAV com-

ponents are projected to generate approximately 40 terabytes

of data for every eight hours of driving—equivalent to the

data output of nearly 3,000 people [38]. It’s estimated that by

2025, about 470 million CAVs will be operating worldwide,

generating an astounding 280 petabytes of data [24]. This

development signifies a notable milestone in the application

of edge computing in the transportation sector, ushering in a

new era of data-driven vehicular innovation.

Computation Intensive Services: While most deep neural

networks (DNNs) are designed with a focus on boosting

accuracy, this often results in substantially increased model

complexity. Current state-of-the-art networks, such as Incep-

tionv4 [40] and ResNet-50 [2], may contain dozens or even

hundreds of layers, each layer requiring millions of matrix



multiplications, to achieve superior accuracy. The computa-

tional intensity of these DNN models presents significant

challenges when deployed on CAVs with limited computation

resources. Despite the increasing computational capabilities of

CAV platforms [5], [6], they struggle to keep up with users’

growing demands for more resource-intensive applications,

such as intersection analysis [22] and driver behavior detection

[25]. Hence, our proposed downstream offloading approach

under DICE framework becomes increasingly important, en-

suring a range of intelligent services (DNN models) can

be deployed and executed effectively and dynamically on a

single resource-constrained CAV computation platform and

CAV fleets.

The DICE framework embraces the concept of a Smart

Sensor, as outlined in Figure 1. This Smart Sensor is a

holistic integration of diverse sensory inputs and computa-

tional units, extending its potential to address a wider array

of tasks. Our particular implementation in DICE employs a

combination of a camera and a Raspberry Pi as a Smart

Sensor, where the Raspberry Pi performs a range of functions

from Data Preprocessing to Object Detection. Such a con-

figuration underlines the flexibility of the DICE framework,

showcasing its potential to adapt to diverse edge computing

scenarios by accommodating various sensor and computing

unit combinations. In our study, we emphasize the ability

of the DICE framework to significantly minimize latency

and energy consumption during neural network computations

on edge devices. To demonstrate this, we implement the

framework on devices of different computational capabilities,

namely a Raspberry Pi and a Google Pixel 4. In typical

scenarios, lightweight algorithms deployed on the Raspberry

Pi prove sufficient for performing tasks such as pedestrian

detection in blind spots and stop sign verification. However,

in more complex scenarios demanding greater computational

prowess, DICE implements a ”downstream offloading” process

where the data is transferred to the more powerful Google

Pixel 4. This process embodies the adaptive nature of DICE,

ensuring optimal performance regardless of the computational

constraints of the edge device.

This research makes several important contributions to the

field:

• Downstream offloading with tiny ML: We implement deep

learning algorithms with Tiny ML on embedded devices,

using Raspberry Pi and a cell phone as an EdgeServer

to enhance detection model accuracy, with the novelty of

offloading part of computations from the EdgeServer to

the Raspberry Pi.

• Edge computing-assisted driving: We enhance pedes-

trian and road sign detection in challenging scenarios,

using deep learning algorithm and distance estimation

algorithms, thereby facilitating edge computing-assisted

driving with the help of our “downstream offloading”

concept.

• Estimation of pedestrian and traffic sign distances: We

apply distance estimation algorithms to determine pedes-

trian and traffic sign locations and distances, aiding in

safer driving.

• Collaboration for edge devices: We utilize Raspberry Pi

and cell phone to deploy and execute detection models,

with the cell phone acting as an edge server to run

high-accuracy models when necessary, highlighting the

model’s portability and versatility in our “downstream

offloading” setting.

This research capitalizes on the synergy between Tiny ML

and edge computing, specifically within embedded devices, to

optimize resource allocation and enhance model accuracy for

real-world applications. Our work employs dynamic control

mechanisms to determine when and how devices are used for

specific computational tasks, emphasizing adaptability and ef-

ficiency in handling edge computing tasks. We hope this paper

provides a roadmap for applying Tiny ML and edge computing

in autonomous driving and other complex scenarios, thereby

contributing to the expanding body of knowledge in this field.

The paper is organized as follows: Section II provides

a literature review, presenting related work in the fields of

Tiny ML, edge computing, and autonomous vehicles, and

highlighting relevant methodologies and their implications.

Section III outlines the algorithms and techniques used in this

research, detailing the application of Tiny ML and the concept

of “downstream offloading” in edge computing. Section IV

presents the experimental setup, the execution of the mod-

els, and the results obtained, providing empirical validation

of our research. Section V offers an in-depth analysis and

interpretation of the results, drawing from both theoretical and

practical perspectives to understand their implications. Finally,

Section VI concludes the paper, summarizing our findings and

suggesting potential avenues for future research in the field.

II. RELATED WORK

Algorithms in computing systems play a vital role in

sensing, perception, localization, prediction, and control. This

section outlines the latest progress in critical algorithmic fields:

object detection, Augmented Reality and distance estimation,

and task offloading.

1) Object detection: Object detection, especially under

challenging conditions, is critical to the real-world application

of deep learning for autonomous vehicles (AVs) [29]. Object

detection algorithms’ development generally goes through two

phases: the conventional object detection phase, and the deep

learning-supported object detection phase [46]. Traditional

methods like Viola Jones Detectors [42], Histogram of Ori-

ented Gradients (HOG) [4], and Deformable Part-based Model

(DPM) [7] provided valuable insights. Contemporary deep

learning-based methods, such as RCNN series [11], [12],

[17], [35], Single Shot MultiBox Detector (SSD) series [8],

[26], and You Only Look Once (YOLO) series [20], [33],

[34], further evolved detection methods, balancing speed and

accuracy [23], [26].

2) Augmented reality: Augmented Reality (AR) on mobile

platforms enables the real-time integration of virtual objects,

or holographic content, within 3D real-world environments.

This technology necessitates an image recognition system that



can accurately identify objects in the camera view with low

latency, a challenge heightened by image distortion issues [27].

Liu et al. responded to this challenge by proposing CollabAR,

a framework for edge-assisted, collaborative image recogni-

tion. The CollabAR system, comprising a distortion-tolerant

image recognizer, a correlated image finder, and a multi-

view ensembler, is deployed on the edge server to manage

the tradeoff between recognition accuracy and system latency.

Complementing the server, the client runs an anchor-based

pose estimation module for tracking mobile device positioning.

Implemented on a variety of commercial devices and evaluated

on two multi-view image datasets, CollabAR achieved over

96% accuracy in recognizing severely distorted images, while

reducing system latency to 17.8ms. In AR, holograms placed

by the user are expected to remain stationary relative to real-

world objects, but inaccuracies in environment mapping and

device positioning often lead to positional errors. Han et

al. addressed this issue by proposing SceneIt, a mobile AR

visual environment rating system based on hologram position

error prediction [16]. Utilizing custom scene characterization

metrics and considering complex scene attribute interactions,

SceneIt was shown to predict positional error severity ac-

curately and efficiently, enhancing mobile AR applications.

Further, in an edge-assisted network scenario, Scargill et al.

proposed Intelli-AR, a set of intelligent preloading algorithms

to optimize transmission efficiency [36]. Using a Markov

decision process to model device motion trajectories, Intelli-

AR adaptively learns optimal preloading policies, dramatically

improving successful preloads. Multi-user AR, which allows

multiple users to view common virtual objects in a shared loca-

tion, also necessitates network communication to synchronize

virtual object positioning across displays. Ran et al. sought

to fill the knowledge gap in this area with SPAR, a system

that correlates communication data with latency and object

positioning in AR displays [32]. Their findings underscored

the importance of effective communication strategies, new

metrics for updating virtual objects and scene observation,

and tools for automatic quantification of inadvertent spatial-

temporal changes in virtual object positioning. Deployed on an

Android smartphone running open source AR, SPAR reduced

latency and spatial inconsistencies by up to 55% and 60%,

respectively.

3) Distance estimation: The concept of distance estima-

tion is an integral component of effective object detection,

as outlined in the Dist-YOLO architecture [41]. This novel

system extends the prediction vectors generated by the orig-

inal You Only Look Once (YOLO) model by incorporating

distance information, thereby creating a more precise object

detection model. Furthermore, Dist-YOLO is paired with a

fitting distance loss function to optimize the performance of

the system. The research showcases the superior accuracy of

Dist-YOLO in identifying bounding boxes compared to the

original YOLO model, without any additional demand on the

backbone’s capacity. Moreover, it proves the efficacy of using

a monocular camera integrated with Dist-YOLO in precisely

estimating the distance of an object.

4) Task offloading: DICE significantly differs from tradi-

tional task offloading approaches in its dynamic and adaptive

nature. Traditional task offloading methods typically follow a

rigid pattern of assigning tasks to available resources without

any sophisticated decision-making process [13], [18], [43].

This approach can lead to inefficient resource utilization

and suboptimal performance, particularly in scenarios where

the task demands or environmental conditions are variable.

In contrast, DICE applies a more intelligent approach that

considers the ”When” and ”How” to control a computational

task. It uses real-time data and context awareness to make

dynamic decisions about which tasks to execute and where

to execute them within the network, thus optimizing both

the performance and resource utilization. Instead of a static

offloading strategy, DICE offers a dynamic control mechanism

for edge computing, which makes it more flexible and efficient

in handling a variety of application scenarios.

III. DICE FRAMEWORK

A. Edge Device and Edge Server

Edge devices and edge servers represent the two primary

components in the DICE Framework, each serving specific

roles and maintaining a symbiotic relationship that promotes

efficient processing and overall system performance.

Edge Device: In the context of the DICE framework, an

edge device is typically an augmented reality (AR) device with

limited computational resources. The edge device captures

data from its surroundings using various sensors, executes

lightweight models deployed on it, and performs functions

necessary for real-time operations such as object recognition,

pedestrian detection, and road sign detection. Given the re-

source constraints, the edge device aims to achieve the lowest

possible energy consumption without compromising its real-

time performance and response capabilities.

Edge Server: The edge server possesses more robust com-

putational resources and serves to complement the edge de-

vice’s capabilities. It assists in the execution of more complex

tasks that might be beyond the processing capacity of the

edge device. To achieve this, the edge server accommodates

more resource-hungry models, and takes over processing tasks

from the edge device when necessary, under the guidance of

the adaptive control layer. By doing so, the edge server aids

in achieving higher system throughput and ensuring service

quality.

The relationship between the edge device and the edge

server is a crucial aspect of the DICE Framework. It’s

a dynamically orchestrated collaboration, regulated by the

adaptive control layer, which determines how and when the

edge server should assist the edge device based on current

workload, network conditions, and available resources. The

interaction between the edge device and the edge server allows

the DICE Framework to optimise energy consumption and

computational efficiency, ensuring that the system can handle

both simple and complex tasks effectively.



B. Adaptive Control Layer

The Adaptive Control Layer (ACL) is a critical part of the

DICE Framework as it regulates the dynamic allocation of

computing tasks between the edge device and the edge server.

The aim is to optimize energy consumption and ensure system

performance in real-time by considering the current workload,

available resources, and network conditions.

The ACL implements a decision-making algorithm that

estimates the energy consumption and performance if a task

were to be processed on the edge device or offloaded to

the edge server. This estimation is performed using a cost

function that combines the potential energy usage and latency

associated with both options.

Suppose Elocal and Eoffload denote the estimated energy

consumption of executing the task locally on the edge device

and offloading it to the edge server, respectively. Similarly,

Llocal and Loffload represent the expected latencies. The cost

function Clocal for local execution and Coffload for offloading

can be calculated as:

Clocal = αElocal + βLlocal

Coffload = αEoffload + βLoffload

(1)

where α and β are weighting coefficients that reflect the

importance of energy consumption and latency, respectively.

The decision to execute locally or offload is then determined

by:

execute locally = Clocal < Coffload (2)

This decision-making process is repeated in real-time, ad-

justing to dynamic changes in workload, network conditions,

and available resources. The workings of the ACL can be

outlined as follows:

Algorithm 1 Adaptive Control

1: while True do

2: current workload = get current workload()

3: available resources = get available resources()

4: network conditions = get network conditions()

5:

6: E local = estimate local energy()

7: L local = estimate local latency()

8: E offload = estimate offload energy()

9: L offload = estimate offload latency()

10:

11: C local = alpha*E local + beta*L local

12: C offload = alpha*E offload + beta*L offload

13:

14: if C local < C offload then

15: execute task locally()

16: else

17: execute task on edge server()

18: end if

19: end while

The Adaptive Control Layer, as presented, provides a

dynamic, real-time strategy for balancing energy consump-

tion and latency in the DICE Framework. It maximizes the

computational capabilities of both the edge device and the

edge server, enhancing the overall system’s efficiency and

performance.

1) Estimation of Local Energy and Latency: The energy

consumption and latency of running the application locally

on the edge device are estimated in the Adaptive Control

Layer (ACL) of the DICE framework. The aim is to deter-

mine whether running the application locally is more energy-

efficient and less time-consuming than offloading it to the edge

server.

The local energy consumption is dependent on several

factors, including the computational complexity of the applica-

tion, the power profile of the device, and the current state of the

device’s resources. Thus, the local energy can be approximated

as follows:

Elocal = Pcomp × Tlocal (3)

where Elocal is the local energy, Pcomp is the computational

power consumed by the device (which is specific to the device

and can be obtained from device specifications or profiling),

and Tlocal is the local latency or the time taken to run the

application locally.

The local latency Tlocal can be estimated based on the

computational complexity of the application and the current

load on the device’s processor. It can be expressed as:

Tlocal =
Capp

Rdevice

(4)

where Capp is the computational complexity of the application

(measured in FLOPs or another suitable metric), and Rdevice

is the current computational resource available on the device

(measured in FLOPs/sec or another corresponding metric).

2) Estimation of Offload Energy and Latency:: The energy

and latency of offloading the application to the edge server

are also estimated in the ACL. The aim here is to determine

whether offloading the application to the edge server is more

energy-efficient and less time-consuming than running it lo-

cally on the edge device.

The energy consumption for offloading the application com-

prises the energy required to transmit the data to the edge

server and the energy to receive the processed data from the

edge server. The offload energy can be approximated as:

Eoffload = Etrans + Erecv (5)

where Etrans and Erecv represent the energy consumption

for data transmission and reception, respectively. These can

be calculated based on the size of the data to be transferred,

the transmission/reception power of the device, and the trans-

mission/reception rates.

The offload latency comprises the time to transmit the data

to the edge server, the time for the server to process the data,

and the time to receive the processed data from the server. It

can be approximated as:

Toffload = Ttrans + Tserver + Trecv (6)



where Ttrans, Tserver, and Trecv represent the latency for data

transmission, server processing, and data reception, respec-

tively. These can be calculated based on the size of the data to

be transferred, the transmission/reception rates, and the server

processing speed. More details for the energy and latency

estimation can be found in Appendix A. This pseudocode first

computes the local and offload latency and energy by calling

relevant functions. It then makes the decision whether to run

the application locally or offload it to the server based on

the estimated values. The decision process can be made more

complex by incorporating other factors, such as current device

load, network conditions, and user preferences.

3) Execute Task on Edge Server: The underlying principle

revolves around decision-making on whether to process tasks

locally or offload them to the edge server, based on the current

workload, energy, latency estimates, and the network state. The

function takes into account these factors, then determines and

initiates the task offloading if deemed beneficial.

The communication between the local edge device and

the edge server can be implemented using a client-server

model over a high-speed network protocol such as 5G or Wi-

Fi 6, which can significantly reduce communication latency

and provide high data rates. When the offloading decision is

made, the edge device encapsulates the relevant input data

into packets and sends them to the edge server through the

established high-speed connection. The edge server, upon

receiving the data, unpacks it, processes the received task,

and sends the results back to the edge device. To ensure high

communication efficiency, several techniques can be applied:

• Data compression technique: it’s used before sending

data to the edge server, reducing the amount of data to

be transferred and thus, saving bandwidth and reducing

transmission latency.

• Concurrent data transmission: Multiple data streams are

transmitted concurrently to fully utilize the network ca-

pacity.

• Error control mechanisms: Mechanisms such as Auto-

matic Repeat reQuest (ARQ) are used to handle possible

transmission errors and ensure data integrity.

While these methods can enhance the efficiency of commu-

nication, it’s vital to evaluate the associated overheads. The

decision to offload tasks should not only consider the compu-

tation latency but also take into account the communication

overhead incurred by the task offloading.

C. Application Layer

The Application Layer (AL) is the second primary compo-

nent of the DICE Framework. This layer focuses on optimizing

AI-based applications for AR devices and their deployments

on edge devices. It adopts quantized tiny models, which are

lightweight deep learning models with reduced computational

complexity and energy consumption. The Application Layer

also supports event-driven triggers, thus ensuring applications

remain responsive while minimizing energy usage.

Quantized tiny Models: Tiny models are pruned and

quantized versions of full-scale deep learning models. Pruning

Algorithm 2 Adaptive Control

1: # Define the original model

2: M = get original model()

3:

4: # Prune the original model to create the tiny model

5: P = prune(M)

6:

7: # Quantize the pruned model for further optimization

8: Q = quantize(P)

9:

10: # Deploy the tiny model on the edge device

11: deploy model(Q)

12:

13: while True do

14: event = check for event()

15: if event then

16: # Execute the tiny model

17: output = execute model(Q)

18: handle output(output)

19: end if

20: end while

involves reducing the size of the model by removing less

critical connections or parameters, while quantization means

reducing the precision of the model’s numerical parameters.

The tiny models in the Application Layer of the DICE frame-

work are deployed on edge devices, striking a balance between

model accuracy and computational efficiency.

Model pruning and quantization are pivotal techniques in

optimizing deep learning models for deployment on resource-

constrained edge devices. Pruning eliminates unnecessary pa-

rameters in a trained model that contribute minimally to the

final prediction, thus reducing model size and computational

requirements, making it more efficient [15]. Quantization,

on the other hand, decreases the numerical precision of the

model’s weights and activations, resulting in significantly

lower storage and computational needs without significant loss

in accuracy [14]. Together, these techniques allow for the

creation of compact, efficient models that maintain a balance

between computational requirements and accuracy, suitable for

deployment on edge devices. The pruning and quantization

processes can be expressed with the following equations. If

M represents the original model and P represents the pruned

model, the pruning operation is defined as:

P = prune(M) (7)

where the prune operation reduces the size of M while

maintaining a similar level of accuracy. The quantized model

Q is obtained from the pruned model as:

Q = quantize(P) (8)

where the quantize operation reduces the precision of P ’s nu-

merical parameters, leading to a model that is computationally

less complex.

DeepC is an open-source compiler and inference framework

aimed at bringing the power of deep learning to resource-



constrained hardware devices. It provides a platform for

running deep learning models on microcontrollers and edge

devices, enabling edge computing applications to leverage the

power of artificial intelligence. DeepC supports an array of

deep learning models and provides functionalities for model

optimization, such as quantization and layer fusion. These

optimizations are critical for deploying deep learning models

on edge devices with limited computational resources and

memory. The compiler converts high-level language represen-

tation of a model into efficient machine code, which can be

directly executed on edge devices. DeepC offers a seamless

way to deploy and run optimized deep learning models on edge

devices, facilitating the development of efficient edge comput-

ing applications. In our DICE framework, we use DeepC for

model optimization in the Application Layer, ensuring that the

AI-driven applications run efficiently on edge devices.

Event-driven triggers:

Central to the DICE framework is an event-driven mecha-

nism that informs the selection of key frames for downstream

offloading. Within this process, the Raspberry Pi conducts

an initial preprocessing of the video stream, utilizing a Tiny

ML model deployed on the device to classify each frame.

Frames that include a target object—whether a pedestrian or

a traffic sign—are identified as key frames and subsequently

transmitted to the Edge Server for further analysis. Conversely,

non-key frames, which do not contain identified targets, are not

selected for transmission, optimizing bandwidth and compu-

tation resources.

This event-driven approach enables the DICE framework to

focus computational resources on frames that are most likely

to provide valuable information. By narrowing the scope of

analysis in this way, the system can perform more in-depth

processing without overwhelming the computational capabil-

ities of the edge device or overloading the communication

link between the device and the Edge Server. Additionally,

the flexibility of the DICE framework allows for the definition

of a broader set of events that could trigger the downstream

offloading of data for additional processing. For instance,

potential events could include instances when the camera is

obstructed by a small insect or when the camera malfunctions.

By training the Tiny ML model on the Raspberry Pi to recog-

nize such events, the system can respond more effectively to

a wider array of scenarios, enhancing its overall performance

and utility.

The event-driven mechanism embedded within the DICE

framework thus represents a versatile and efficient approach

to managing the computational and communication demands

of edge computing applications. By intelligently directing

resources based on the event-driven detection of key frames,

the DICE framework can maximize system performance,

providing a robust platform for the real-time processing and

analysis of data in edge-based applications.

The pseudocode of the Application Layer is presented in

Algorithm 2. The Application Layer, as described, enables

the DICE Framework to deploy optimized deep learning

models on edge devices and execute them based on event-

driven triggers. This design enhances application responsive-

ness and efficiency, facilitating a smooth user experience even

in resource-constrained settings.

IV. EXPERIMENTAL DESIGN AND

METHODOLOGY

In this study, we introduce a system that synergistically

integrates edge computing and AR technology to facilitate

automated driving. This system is devised to detect pedestrians

and stop signs, estimate their distance, and deliver timely

alerts to the driver, thereby helping to prevent traffic acci-

dents and violations. This section elucidates the experimental

design behind our proposed system, which encompasses three

main components: an edge computing module, an AR display

module, and a pedestrian and stop sign detection module.

The edge computing module is entrusted with processing

the raw sensor data extracted from the vehicle’s cameras.

The AR display module takes charge of superimposing virtual

information onto the real-world scene. The pedestrian and stop

sign detection module is tasked with detecting pedestrians

and stop signs and estimating their distance. To assess our

system’s performance, we devised a series of experiments

encompassing various driving scenarios. Specifically, we con-

structed three distinct scenarios to emulate different traffic

conditions: urban, suburban, and rural. Each scenario includes

a combination of different road conditions, traffic densities,

and weather conditions.

For data collection, we outfitted a test vehicle with multiple

cameras. The data, which included RGB and depth informa-

tion, was captured at a rate of 10 frames per second. The

gathered data underwent pre-processing to eliminate noise or

outliers before being divided into training and testing sets.

Our pedestrian and stop sign detection module employed

a deep learning-based approach, where two separate models

were trained for pedestrian detection and stop sign detection,

respectively. The training data was generated by manually la-

beling the pedestrians and stop signs in the collected data. We

evaluated the detection module’s performance using standard

metrics such as precision, recall, and F1 score.

To appraise the entire system’s performance, we quantified

the accuracy and latency of the pedestrian and stop sign

detection and AR display modules. Furthermore, we assessed

the system’s capability to deliver timely alerts to drivers and

its effectiveness in reducing traffic accidents or violations.

Our work introduces a Raspberry Pi-based pedestrian and

stop sign detection system, where the lightweight model can

be executed on the Raspberry Pi to detect pedestrians and stop

signs in blind areas during driving. Under typical conditions,

the system doesn’t detect pedestrians or stop signs in 80% of

the scenarios. However, when the system suspects the presence

of pedestrians or stop signs, it triggers data offloading to a

smartphone for detection. The smartphone, acting as the Edge

Server, hosts a more powerful model, thereby enabling more

accurate detection. The experiments employed YOLOv3 and

SSD models for training and evaluated the models’ perfor-

mance in lab and real-world scenarios. We also assessed the



models’ detection accuracy, resource utilization, and overall

performance to confirm their feasibility. The experimental

results demonstrated that the system could accurately detect

pedestrians and stop signs in diverse scenarios while main-

taining excellent performance. The system’s application is

anticipated to offer drivers a safer and more convenient driving

experience.

A. Experimental Platform Description

In our experimental setup, we link the Raspberry Pi with

a High Definition (HD) Web Camera. We conceptualize the

Raspberry Pi as the computational module of the Web Camera.

This approach aims to simulate the functions of novel camera

technologies, furnishing capabilities such as data preprocess-

ing and filtering. By employing this configuration, we attempt

to demonstrate the potential of advanced camera systems

in offloading computational tasks, underscoring the role of

downstream offloading in optimizing the operation of sensor-

driven systems.
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Fig. 2. Experiment Platform.

The Unzano HD800 video camera was utilized as the pri-

mary data acquisition device in our edge-based experimental

setup due to its range of features that met our research

requirements. The camera’s USB connectivity facilitated easy

integration with our Raspberry Pi platform, while its CMOS

photo sensor technology provided high-resolution, clear imag-

ing data essential for accurate detection and classification

tasks. The camera’s compact design, H.264 support, digital-

camera, and hd-movie capabilities also made it an efficient

choice for our setup. Its lightweight and portable design,

black color, indoor and outdoor usage specifications, and

audio recording capabilities added to the robustness of our

experimental platform.

We utilized a Raspberry Pi 4 Model B as the Edge device.

The device incorporates a Broadcom BCM2711B0 quad-core

A72 (ARMv8-A) 64-bit 1.5GHz processor and a Broadcom

VideoCore VI GPU. With its dual 2.4 GHz and 5 GHz

802.11b/g/n/ac wireless LAN and Gigabit Ethernet connectiv-

ity, it boasts 4 GB of LPDDR4 SDRAM and microSD storage.

It also includes Bluetooth 5.0 and Bluetooth Low Energy

(BLE) capabilities. With its compact size and considerable

computing power, this device exhibits high scalability for

executing detection models. We also paired the device with

a 4000mAh battery pack to ensure extended usage time.

The EdgeServer in our experiment is the Google Pixel 4,

which is powered by a Qualcomm Snapdragon 855 processor

and an Adreno 640 GPU. This device possesses 6GB RAM

and 128GB storage. Owing to its high computing power

and portability, this device can effectively serve as a potent

EdgeServer for running high-precision inspection models. To

prolong detection periods, the device is fitted with a 2800mAh

battery.

For the AR device, we deployed the Samsung Galaxy Watch

4, an advanced smartwatch model announced in August 2021.

Its dimensions are 44.4 x 43.3 x 9.8 mm, and the weight

varies between 30.3 g (for the 44mm model) and 25.9 g (for

the 40mm model). The watch incorporates a super AMOLED

display of 1.4 inches with a resolution of 450 x 450 pixels.

It runs on Android Wear OS with One UI Watch 3 and

has an Exynos W920 (5 nm) chipset. Furthermore, it boasts

16GB internal storage with 1.5GB RAM. The smartwatch also

features several sensors, including accelerometer, gyro, heart

rate, and barometer, thereby offering an ideal platform for AR

applications. The smartwatch is powered by a Li-Ion 361 mAh

battery, ensuring prolonged usage.

B. Dataset Selection

DARK FACE: DARK FACE dataset provides 6,000 real-

world low light images captured during the nighttime, at

teaching buildings, streets, bridges, overpasses, parks etc.,

all labeled with bounding boxes for of human face, as the

main training and/or validation sets. We also provide 9,000

unlabeled low-light images collected from the same setting.

Additionally, we provided a unique set of 789 paired low-

light/normal-light images captured in controllable real lighting

conditions (but unnecessarily containing faces), which can

be used as parts of the training data at the participants’

discretization. There will be a hold-out testing set of 4,000

low-light images, with human face bounding boxes annotated.

Nighttime Vehicle Detection Dataset: This dataset is col-

lected for vehicle classification in darkness collected and

labeled in the Autonomous Robots Lab at the University of

Nevada, Reno. This dataset contains 10913 gray-scale images

of night-time images of roads. The images all have dimensions

of 1280 x 1024 pixels (width x height). Not all images in the

dataset contain vehicles, though the majority ( 90%) do. The

data was collected using a PointGrey Chameleon 3 Grayscale

camera (CM3-U3-13S2C-CS-BD).

NightOwls Dataset: Pedestrian detection at night from a RGB

camera is an under-represented yet very important problem,

where current state-of-the-art vision algorithms fail. Computer

vision methods for detection at night have not received much

attention, despite the fact they are a critical building block

of many systems such as safe and robust autonomous cars.

The NightOwls Dataset focuses on pedestrian detection at

night. It consists of 279,000 fully-annotated images in 40 video







model’s design being optimized for speed, despite its higher

resource usage. This table illustrates the resource efficiency of

the deepC model compared to a Non-Tiny model, underlining

the benefits of using such compact, lightweight models in

edge-based computations. The latency comparison also opens

up a trade-off discussion between resource usage and latency,

offering insight into the factors that must be considered when

choosing or designing models for deployment on edge devices.

Fig. 6. Dynamic Control Experiment: Balancing Accuracy and Latency in
the DICE Framework.

The experiment shown in Fig. 6 was conducted to examine

the dynamic control capabilities of the DICE framework. Both

Raspberry Pi and Google Pixel 4 were deployed with object

detection models. However, Raspberry Pi had an optimized

and lighter model while Google Pixel 4 ran a higher-accuracy

model. By adjusting the alpha parameter in line 11 and 12

of Algorithm 1 (with beta set as 1-alpha), we were able to

measure the average accuracy and latency jointly achieved by

both devices under different alpha values.

As alpha increased from 0 to 1, the accuracy decreased

from 0.91 to 0.53. This downward trend in accuracy was

expected due to the higher reliance on the lower-accuracy

model on Raspberry Pi as alpha increased. The results validate

DICE’s capability of offering dynamic control in balancing

performance (accuracy) and computational load (latency). On

the other hand, latency increased from 0.42 to 4.16 as alpha

went up. This was due to the reduced processing power from

the Raspberry Pi, which led to an increase in latency as

alpha increased. Hence, it’s noteworthy that there is a trade-

off between accuracy and latency depending on the alpha

parameter.

These results showcase the efficacy of DICE in managing

task offloading between devices with disparate computing

capabilities. This illustrates the adaptability of DICE in real-

world edge computing scenarios, effectively providing an

adjustable knob to balance between accuracy and latency based

on system requirements.

Table II outlines the performance characteristics of the

DICE framework across different event loads, ranging from

0% to 100%. The table presents measurements of CPU uti-

lization, memory usage, uplink data rate, and latency.

At the lowest level of event detection (0%), the CPU

utilization is 51.42%, and the memory usage is 37.20%, with

TABLE II
DATA FRAME CONSUMPTION EFFICIENCY OF DICE AND PERFORMANCE

ON EDGESERVER.

Idle
0%

events
30%

events
50%

events
100%
events

CPU
Utilization

16.53 51.42 77.50 83.36 89.61

Memory 25.50% 37.20% 45.90% 49.50% 61.40%

Uplink
(kB/s)

3.10 3.10 43.39 76.23 177.07

Latency (s) - 0.25 2.48 3.83 4.16

an uplink data rate of 3.10 kB/s and a latency of 0.25s.

These relatively modest resource allocations reflect the light

computational load associated with processing frames that

do not contain a target object. As the percentage of events

increases to 30%, we observe a substantial increase in CPU

utilization, rising to 77.50%, and memory usage, up to 45.90%.

The uplink data rate also increases notably to 43.39 kB/s due

to the increased number of key frames being offloaded for

further analysis. Correspondingly, the system latency increases

to 2.48s due to the added computational and transmission

burdens. The trends of increasing CPU utilization, memory

usage, uplink data rate, and latency continue as the event

load increases to 50% and 100%. This trend is expected,

as higher event loads correspond to a larger number of key

frames, resulting in increased computational demand and data

transmission. At the highest event load (100%), the CPU

utilization reaches 89.61%, memory usage is at 61.40%, uplink

data rate soars to 177.07 kB/s, and the latency increases

to 4.16s. While these resource allocations and latency are

considerable, they reflect the system’s capability to handle

heavy computational loads without crashing or overrunning

memory capacity.

Overall, the DICE framework exhibits a robust performance

and adaptability in response to varying event loads. The results

demonstrate the ability of the DICE framework to allocate sys-

tem resources effectively based on the event-driven detection

of key frames and to maintain operational efficiency despite

increasing computational and communication demands.

DICE’s key frame extraction mechanism exhibits several

advantages over the approaches discussed in the [30] and

[19]. The critical distinction is that DICE uses an event-

driven mechanism to identify key frames, unlike traditional

methods, which rely primarily on temporal or visual features.

This allows DICE to adapt to the changing content of the

video stream more dynamically and reduce the computation

and network load by transmitting only the most significant

frames. Additionally, unlike other approaches that perform

key frame extraction at the edge or cloud server, DICE

performs this operation directly on the device (in our case, the

Raspberry Pi). This means that DICE can reduce the amount

of data that needs to be transmitted over the network, thereby

reducing network bandwidth requirements, latency, and energy

consumption.

Yang’s work focuses on optimizing the allocation of com-

putational resources to various tasks in an edge computing



TABLE III
COMPARISON OF DICE WITH OTHER WORKS

Feature/Work

Generic Framework

for Task Offloading

[30]

Optimized Key

Frame Extraction

[19]

Resource Allocation

for Task Offloading

[45]

Motion-Based Key

Frame Extraction

[39]

DICE

Tailored for AR

Devices

No specific focus on
AR devices

No specific focus on
AR devices

No specific focus on
AR devices

No specific focus on
AR devices

Yes

Event-Driven

Mechanism
Absent Absent Absent Absent Yes

Network

Bandwidth,

Latency, and

Power

Efficiency

Standard Standard
Improved through
optimized resource

allocation
Standard

Improved through
event-driven frame

selection and on-device
processing

Key Frame

Extraction
Location

Not applicable
Performed at the edge

or cloud server
Not applicable

Performed at the edge
or cloud server

Performed directly on
the device

network [45]. While these methods can offer improved per-

formance in general edge computing applications, they don’t

account for the specific demands of AR devices, nor do they

typically consider the unique opportunities provided by on-

device processing. DICE, on the other hand, is specifically

designed for AR applications and takes full advantage of

on-device processing capabilities. Sujatha et al. uses motion

detection or optical flow algorithms to select key frames in

video processing applications [39]. While such methods can

be effective for certain tasks, they generally require significant

computational resources and are typically performed on pow-

erful edge or cloud servers. By contrast, DICE uses a more

lightweight, event-driven approach to key frame selection,

which can be performed directly on the AR device and

provides more efficient use of network and computational

resources.

The DICE framework presents a significant step forward in

edge computing, enabling a more effective use of available

resources while maximizing the accuracy and responsiveness

of applications. By considering the inherent heterogeneity of

edge devices, DICE provides a powerful tool for harnessing

the full potential of edge computing, leading to safer and

more efficient applications. The flexibility and adaptability of

DICE ensure that it can be effectively utilized across a wide

range of edge computing scenarios, highlighting its potential

for widespread adoption.

VI. CONCLUDING REMARKS

In this study, we introduced the Dynamic In-Situ Control

for Edge-based Applications (DICE), a novel framework that

leverages the emerging concept of downstream offloading.

DICE targets vehicular applications and harnesses the increas-

ing computational capabilities of vehicular sensors, such as

cameras, radars, and LiDARs. Unlike traditional offloading

approaches that offload computation from edge devices to

more powerful servers, DICE pushes a part of the computation

downstream to the sensor level. This approach enables sensors

to pre-process and filter data based on event-driven triggers,

reducing unnecessary data transmission and increasing the

efficiency of the overall system. DICE was implemented

using a TinyML-based model on a Raspberry Pi, acting as

a simulated computational module for a high-definition web

camera. The framework was tested in a variety of scenarios,

demonstrating its potential for enhancing the performance of

edge-based devices. By optimally allocating computational

tasks between edge devices and sensors, DICE successfully

reduced latency and conserved energy. DICE represents a

significant step forward in the application of edge computing

in vehicular scenarios, proving the viability and efficiency

of downstream offloading. The implications of this research

extend beyond vehicular applications, offering insights for the

broader development of energy-efficient, edge-based applica-

tions.

VII. FUTURE WORK

There are two primary areas in which we aim to extend

this work. Firstly, our current classification and object de-

tection models sometimes struggle to perform well under

challenging conditions, such as during nighttime or in poorly

lit environments. The tiny models we employ do not deliver

high accuracy under these circumstances. Consequently, we

will consider developing specific training routines for these

types of scenarios to enhance the precision of our models.

This adaptation could prove crucial for a range of real-world

applications that involve non-optimal conditions. Secondly,

our current focus is largely confined to classification and

object detection. In future work, we aim to explore other

use cases such as tracking. For instance, we can design

caching mechanisms within the camera’s computation module

to expedite subsequent tracking tasks. These enhancements

could yield significant improvements in the overall efficiency

and performance of our system, opening up new possibilities

for utilizing downstream offloading in increasingly complex

applications. Our ongoing and future research will continue to

probe these boundaries, contributing to a growing understand-

ing of the intersection between edge computing, Tiny ML, and

real-world, sensor-driven applications.
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APPENDIX

A. The energy and latency estimation

1 # D e f i n e t h e c o m p u t a t i o n a l c o m p l e x i t y o f t h e
a p p l i c a t i o n and t h e d e v i c e r e s o u r c e s

2 C app = g e t a p p c o m p l e x i t y ( )
3 R device = g e t d e v i c e r e s o u r c e s ( )
4

5 # E s t i m a t e l o c a l l a t e n c y and e n e r g y
6 T l o c a l = e s t i m a t e l o c a l l a t e n c y ( C app , R device )
7 E l o c a l = e s t i m a t e l o c a l e n e r g y ( T l o c a l )
8

9 # D e f i n e t h e d a t a s i z e , t r a n s m i s s i o n / r e c e p t i o n power
and r a t e s , and s e r v e r p r o c e s s i n g speed

10 D a t a s i z e = g e t d a t a s i z e ( )
11 P t r a n s , P recv = g e t d e v i c e p o w e r p r o f i l e ( )
12 R a t e t r a n s , R a t e r e c v = g e t t r a n s r e c v r a t e s ( )
13 S e r v e r s p e e d = g e t s e r v e r s p e e d ( )
14

15 # E s t i m a t e o f f l o a d l a t e n c y and e n e r g y
16 T t r a n s , T recv = e s t i m a t e t r a n s r e c v l a t e n c y (

D a t a s i z e , R a t e t r a n s , R a t e r e c v )
17 T s e r v e r = e s t i m a t e s e r v e r l a t e n c y ( D a t a s i z e ,

S e r v e r s p e e d )
18 T o f f l o a d = T t r a n s + T s e r v e r + T recv
19

20 E t r a n s , E recv = e s t i m a t e t r a n s r e c v e n e r g y (
D a t a s i z e , P t r a n s , P recv , R a t e t r a n s ,
R a t e r e c v )

21 E o f f l o a d = E t r a n s + E recv
22 # F u n c t i o n s t o e s t i m a t e l o c a l and o f f l o a d l a t e n c i e s

and e n e r g i e s
23 d e f e s t i m a t e l o c a l l a t e n c y ( C app , R device ) :
24 r e t u r n C app / R device
25

26 d e f e s t i m a t e l o c a l e n e r g y ( T l o c a l ) :
27 P comp = ge t dev ice power comp ( )
28 r e t u r n P comp * T l o c a l
29

30 d e f e s t i m a t e t r a n s r e c v l a t e n c y ( D a t a s i z e ,
R a t e t r a n s , R a t e r e c v ) :

31 T t r a n s = D a t a s i z e / R a t e t r a n s
32 T recv = D a t a s i z e / R a t e r e c v
33 r e t u r n T t r a n s , T recv
34

35 d e f e s t i m a t e s e r v e r l a t e n c y ( D a t a s i z e , S e r v e r s p e e d )
:

36 r e t u r n D a t a s i z e / S e r v e r s p e e d
37

38 d e f e s t i m a t e t r a n s r e c v e n e r g y ( D a t a s i z e , P t r a n s ,
P recv , R a t e t r a n s , R a t e r e c v ) :

39 T t r a n s , T recv = e s t i m a t e t r a n s r e c v l a t e n c y (
D a t a s i z e , R a t e t r a n s , R a t e r e c v )

40 E t r a n s = P t r a n s * T t r a n s
41 E recv = P recv * T recv
42 r e t u r n E t r a n s , E recv
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