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Abstract—In the rapidly evolving landscape of vehicle com-
puting, the efficiency and reliability of real-time responses are
paramount. The primary rationale lies in the dynamic and
unpredictable nature of road environments, where swift and
accurate recognition of obstacles, pedestrians, and other vehicles
is essential for safe navigation. Faster inference time ensures
minimal latency in decision-making, allowing for immediate
responses to sudden changes in the driving scenario, such as
unexpected pedestrian movements or the rapid approach of
other vehicles. This rapid processing capability is indispensable
for preventing accidents and enhancing passenger safety. In
response to these challenges, our research presents an experi-
mental investigation aimed at accelerating inference time and
maximizing throughput. We conducted a comparative analysis of
four different workflows using the mainstream object detection
models on TensorRT for Full Precision (FP32), Half Precision
(FP16), and Integer Precision (INTS8). Our results showcase the
inference performance of each workflow and observations with
their respective accuracy levels. This paper provides a detailed
guide for selecting an appropriate workflow based on specific
requirements for inference performance and accuracy, offering
valuable insights for advancements in the domain of software-
defined vehicles and other real-time systems.

I. INTRODUCTION

Vehicles today are increasingly reliant on software, with high-
end models containing up to 150 million lines of code. Leading
automotive companies are advancing towards software-defined
vehicles (SDVs) [1], which offer a suite of intelligent applica-
tions. These include oil life prediction [2], brake pad diagnos-
tics [3], trajectory planning [4], smart remote assistance [5],
dynamic travel time estimation [6], adaptive cruise control [7],
battery failure forecasting [8], real-time object detection [9],
in-vehicle air quality control [10], etc. All these functionalities
are extensively supported by large and over-parameterized
deep learning (DL) models, to attain a high degree of accuracy
in perception and decision-making in real-world scenarios.
This trend is evident in the number of parameters of areas such
as image classification — from 61 million to 2100 million [11];
and in object detection— around 62 million to 138 million
[12].

Particularly, in the domain of SDVs, the task of object
detection stands out as particularly crucial, given its direct
impact on the safety of these vehicles. Presently, the method-
ologies employed for object detection in SDVs can be broadly
categorized into one-stage and two-stage object detection
algorithms [13], [14]. The two-stage object detection networks
are known for their exceptional accuracy. On the other hand,
one-stage object detection networks are designed for faster
speed. This difference between the one-stage and two-stage
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Fig. 1: An overview of the software-defined vehicles (SDVs),
which integrates the mainstream object detection model us-
ing frameworks (PyTorch, TensorFlow, ONNX) and NVIDIA
GPU into TensorRT precision modes, for the optimized DL
inference performance.
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networks in terms of speed and accuracy represents another
key consideration in the development of real-world SDVs [15].

However, as to the real-world applications of DL-based
object detection models, the enhancement in model size and
complexity is accompanied by a decrease in inference effi-
ciency, evident in both throughput and execution time, which
significantly impacts the safety of SDVs. Furthermore, the
operational demands of these larger models necessitate signifi-
cant computational resources. This presents notable challenges
in the context of SDVs, where real-world applications are often
constrained by limited computational capabilities. Therefore,
while the accuracy and precision of large object detection mod-
els are advantageous, their practical deployment in resource-
constrained environments, such as in SDVs, highlights a
critical area for further optimization and development.

The significant computation barrier for deep learning (DL)
model inference reveals a substantial research gap between the
success of DL models and their practical application in SDVs.
To mitigate this research gap, many technologies have been
proposed and developed such as NVIDIA Graphics Processing
Unit (GPU) for parallel processing and CUDA Optimization.
As to the hardware acceleration, Intel’s OpenVINO [16],
model quantization [17], fine-tuning [18], hyper-parameter
optimization [19], and model pruning [20] have been proposed
for better performance under operational constraints. They can
optimize inference pipeline [21] to reduce bottlenecks in data
loading. Besides, edge computing technologies [15] have been



widely used to process data near the data source to reduce
latency and speed up response times.

While DL frameworks like PyTorch [22] and TensorFlow
[23] have made significant progress and offer robust platforms
for developing complex models, they are not inherently opti-
mized for resource efficiency and time management during the
inference phase. To bridge this gap, NVIDIA has developed
TensorRT [24], a specialized DL inference engine optimizer
renowned for its ability to enhance the performance and effi-
ciency of deep learning models through a series of advanced
optimizations. TensorRT is designed and developed to enhance
the overall inference performance, enabling developers to fine-
tune neural network models trained in popular frameworks
such as PyTorch and TensorFlow. This optimization plays a
significant role in deploying these models across a variety of
platforms, including SDVs, embedded systems, and automo-
tive products, ensuring that they run efficiently in real-world
applications where resource management and inference speed
are critical.

In this work, we conducted a comprehensive analysis to
evaluate the optimized performance of TensorRT, specifically
in comparison to the default TensorFlow and PyTorch frame-
works within the context of the perception module (object
detection model) for SDVs. Our approach involved generating
two distinct Road Maps, based on TensorFlow and PyTorch,
respectively. For each of the Road Maps, we have two work-
flows to integrate the TensorRT engines with TensorFlow and
PyTorch-compatible models. The brief schematic of our pro-
posed methods (Road Maps) is shown in Fig. 1. Furthermore,
We explored the precision calibration of TensorRT, which
showcases a bottleneck between inference performance and
accuracy using the mainstream object detection models.

Contribution. Our aim is to optimize the real-time infer-
ence speed of SDVs while upholding accuracy. To achieve this,
we harnessed the vehicle’s camera-captured video streams to
conduct a comparative analysis. This involved generating two
distinct Road Maps using TensorFlow and PyTorch frame-
works, respectively. Subsequently, each Road Map underwent
two workflows utilizing the YOLO object detection model on
the TensorRT platform. Through meticulous evaluation across
various TensorRT precision formats - Full Precision Float-
ing Point 32, Half Precision Floating Point 16, and Integer
Precision (INTS8) - we sought to enhance overall inference
performance. Our findings revealed compelling trends: the
Half Precision Floating Point 16 format notably accelerated
inference speed while maintaining acceptable accuracy levels.
However, the INT8 format displayed the fastest inference
speeds, albeit with a marginal compromise on accuracy. Our
analysis delved into comprehensive inference performance
metrics, emphasizing throughput and execution time, shedding
light on the distinct strengths and limitations of each workflow.

Organization. Our research is organized throughout the
paper as follows. Sec. II provides the background of popu-
lar frameworks (TensorFlow, PyTorch, ONNX) that we used
throughout our research including TensorRT. Sec. III describes
the experimental design of our paper which includes Road
Maps, Workflows, Dataset Selection, and Hardware-Software
specifications. In Sec. IV, we describe our workflows in detail.
Experimental Results Analysis and Conclusion are provided in

Sec.V and Sec.VI.

II. BACKGROUND AND RELATED WORK

In this section, we offer a detailed outline of the frameworks
employed in our research, with a particular focus on the es-
sential building blocks. Additionally, we provide an insightful
overview of the latest advancements in TensorRT in time-
critical real-world scenarios.

A. TensorFlow

TensorFlow is an open-source machine learning framework
developed by Google Brain known for its versatility and
robustness [25]. One of its most notable features is the ability
to create large-scale neural networks with multiple layers,
making it suitable for complex tasks in areas of Deep Learning.

TensorFlow operates on the principle of dataflow graphs,
where nodes represent mathematical operations, and edges
represent the multidimensional data arrays (tensors) commu-
nicated between them. This graph-based structure enables
efficient computation and parallel processing, which is es-
sential for handling large datasets and complex algorithms.
TensorFlow also excels in scalability, capable of running on a
variety of platforms, from individual computers to large-scale
cloud servers. It supports various languages like Python, C++,
and JavaScript. TensorFlow’s extensive library includes a wide
range of tools and functionalities, such as TensorFlow Lite for
mobile and IoT devices, TensorFlow.js for machine learning in
JavaScript environments, and TensorFlow Extended (TFX) for
end-to-end machine learning pipelines [26]. These tools have
enabled TensorFlow to be applied in real-world scenarios such
as healthcare for patient diagnosis, finance for risk analysis,
and in the automotive industry for self-driving technologies.

B. PyTorch

PyTorch is an open-source machine learning library developed
by the Facebook AI Research lab which is known for its flex-
ibility, ease of use, and dynamic computational graph, which
allows for more intuitive coding of deep learning models [27].
It supports fast tensor operations on both CPUs and GPUs,
significantly boosting computational speed, essential for train-
ing Deep Learning models. Operations on these tensors, like
matrix multiplications, convolutions, and other mathematical
computations, are critical for building and training neural
network models. By leveraging GPU acceleration, PyTorch
can perform these tensor operations much faster compared to
CPU-only processing.

Unlike many other frameworks where the structure of
a neural network must be predefined and used repeatedly,
PyTorch employs reverse-mode auto-differentiation. This tech-
nique permits users to alter the behavior of their network as
needed, without incurring significant overheads. This feature
greatly enhances the flexibility of model design, allowing
for more dynamic and creative approaches to deep learning.
PyTorch is also designed to be memory-efficient compared to
other frameworks, enabling the training of huge deep-learning
models. This efficiency in memory usage and computational
speed positions PyTorch as a highly effective tool for modern
machine-learning challenges.



C. ONNX

ONNX stands for Open Neural Network Exchange, is an
open-source format designed to represent machine learning
models [28]. It was created with a collaborative effort by
Microsoft, Amazon, Facebook, and others to establish an
industry standard for machine learning interoperability. The
primary goal of ONNX is to enable models trained in one
framework, such as PyTorch or TensorFlow, to be transferred
and deployed in another for inference, thus addressing the
common challenge of framework lock-in.

The core advantage of ONNX lies in its ability to decouple
models from the frameworks in which they were trained. This
is achieved through a shared model representation that can
be understood by various software tools, making it easier to
move models between different frameworks or deploy them
across various platforms and devices. ONNX supports a wide
range of established machine learning operations, allowing for
complex models to be represented within its standard.

When it comes to real-world applications, ONNX’s flexi-
bility and framework-agnostic nature make it highly relevant,
especially in the field of Autonomous Vehicles (AV). In AV,
machine learning models must often be transferred between
various simulation environments, testing frameworks, and the
final embedded systems used in vehicles. ONNX facilitates
this by ensuring that models remain consistent and performant
across different software environments.

D. TensorRT

TensorRT is a high-performance deep learning inference op-
timizer and runtime library developed by NVIDIA [29]. It is
specifically designed for production environments, offering a
powerful toolset for optimizing, deploying, and running deep
learning models on NVIDIA GPUs. The primary focus of
TensorRT is to enhance the performance and efficiency of
deep learning applications in real-time scenarios, such as in
autonomous vehicles, healthcare, and robotics.

TensorRT has five types of optimization techniques to
perform to enhance the performance and efficiency of deep
learning models. One key technique is layer fusion, which
combines multiple layers of a neural network into a single,
more efficient layer. This process reduces the overhead of
passing data between layers, thereby lowering latency and
improving throughput. Another technique involves precision
calibration, where TensorRT fine-tunes the model to use mixed
precision computations. By deciding which operations can use
lower-precision arithmetic (such as FP16 or INT8), it strikes a
balance between inference performance and model accuracy.
FP32 (Full Precision Floating Point 32-bit). FP32 is the
highest level of precision offered in TensorRT. In this mode,
each number in the model’s computations is represented using
32 bits. This high level of precision is ideal for maintaining
the accuracy of the model; however, FP32 requires more
computational resources, which can lead to slower inference
speeds compared to lower-precision formats.

FP16 (Half Precision Floating Point 16-bit). FP16 reduces
the numerical precision of the model by representing each
number with 16 bits. This reduction in precision allows
for faster processing and lower memory usage, making it
a suitable option for real-world scenarios where speed is
more critical compared to accuracy. FP16 is often used in

applications where the model is robust enough to tolerate a
slight decrease in precision without significant loss in overall
performance.

INT8 (Integer 8-bit). The INT8 mode represents numbers
using just 8 bits, which is the lowest level of precision in
TensorRT. This mode significantly speeds up the inference
process and reduces the model’s memory usage almost large
level. The challenge with INT8 is managing the potential loss
in accuracy due to the drastic reduction in precision. TensorRT
addresses this through advanced calibration techniques that
attempt to maintain as much accuracy as possible.

Kernel auto-tuning is another significant optimization. Here,
TensorRT tests various configurations and selects the most
efficient kernels (the core computational functions) for the
specific GPU architecture. Dynamic tensor memory is an-
other technique, which enhances memory reuse by allocating
memory to tensors only for the duration of their usage, thus
reducing overall memory consumption and avoiding alloca-
tion overhead. Moreover, TensorRT introduces multi-stream
execution, allowing the processing of multiple input streams
in parallel, further boosting the model’s throughput.

These five types of optimizations collectively make Ten-
sorRT a powerful tool for deploying deep learning models, es-
pecially in scenarios requiring high-speed, efficient processing.
By streamlining models for better performance on NVIDIA
GPUs, TensorRT plays a significant role in various real-time
and high-performance computing applications, especially in
the field of SDVs. Several approaches using TensorRT have
been made to make inference faster for real-world scenarios -
Zhou et al. improved real-time inference performance for DL
model using TensorRT [11], Jocher et al. explored TensorFlow,
OpenVINO and TensorRT on Ultralytics models [30]—[32]
Shafi et al. uses TensorRT to characterize NN inference for
Edge Devices [33], Hong et al. optimized overall performance
of Multi-object tracking with TensorrRT [34], In the same year,
Wang et al. deployed their model with TensorRT on real-time
to increase inference on edge devices [35], Jiang et al. visits
semantic segmentation for real-world Autonomous Driving
using TensorRT TF16 mode [36], Huang et al. uses parallel
execution mode using CUDA context for better inference
throughput in real-world [37]. Although they were able to
make the inference performance better in real-world scenarios,
there was a significant drop in accuracy.

E. The Gap in Previous Work

Shin and Kim introduced a performance inference approach on
the Nvidia Jetson AGX Xavier, integrating the Jetson moni-
toring tool with TensorFlow and TRT, and analyzed various
performance metrics of the deep learning framework [38].
Jeong et al. developed a method using TensorRT that leverages
both GPU and NPUs, enhancing a single DNN application’s
throughput significantly [39]. Ulker et al. assessed the infer-
ence efficacy of deep learning tools on multiple platforms
using CNNs, focusing on latency and throughput, and found
that TensorRT provides the lowest average execution time and
highest throughput for compatible network models [40]. Zhou
et al. presented an evaluation of the inference performance
integrated with popular DL frameworks and TensorRT [11].
In the domain of SDVs, the current state-of-the-art demon-



strates impressive achievements in accelerating inference per-
formance using TensorRT. However, it is noteworthy that
existing research lacks a comprehensive exploration of all
TensorRT precision modes. While several studies have em-
ployed a singular precision mode within TensorRT to boost
inference performance, our approach is distinctively more in-
depth. We are advancing our methodologies by thoroughly in-
vestigating the effects of multiple precision modes, specifically
FP32, FP16, and INTS, across several workflows incorporated
with various frameworks. Our complete examination aims
to optimize inference performance more effectively, thereby
contributing to a more nuanced understanding of the field in
software-defined vehicles.

III. EXPERIMENTAL SYSTEM DESIGN

A. Basic Deep Neural Network Models of SDV

Plenty of deep neural network (DNN) models are deployed in
the computing system of SDV for sensing, perception, local-
ization, prediction, control, and entertainment. Object detec-
tion is a fundamental deep learning application for SDVs [1].
In this work, we choose the fundamental application, object
detection, as the case study. As to the deep learning-based
object detection approaches, the state-of-the-art methods in-
clude the Regions with CNN features (RCNN) series [41]-
[44], Single Shot MultiBox Detector (SSD) series [45], [46],
and You Only Look Once (YOLO) series [?], [47], [48]. In
this paper, we focus on the TensorRT inference of two latest
DNN models: YOLOv4 [49] and YOLOv5s [50]. YOLOv4
emphasizes performance optimization on NVIDIA hardware,
while YOLOvSs, a variant of YOLOVS, is recognized for
its implementation and performance enhancements within the
PyTorch framework, diverging from the original Darknet-
based YOLO models.

B. Road Maps and Workflows

To implement the inference in an already trained model, mul-
tiple mainstream machine learning frameworks can be used.
The typical examples are TensorFlow and PyTorch. In this
work, we introduce two comprehensive Road Maps designed
to enhance the inference performance of all possible workflows
for SDV based on TensorFlow and PyTorch, respectively
(tagged by RM7 and RMp).

For RM7, we compare the conventional, default workflow
in TensorFlow that does not involve TensorRT at all (denoted
as W) with two workflows that integrate TensorRT (denoted
as W; and Ws, respectively) on three open-source automotive
datasets. Besides, for each workflow, we consider all three pre-
cision levels, including Full Precision (FP32), Half Precision
(FP16), and Integer Precision (INTS). As to RMp, we also have
the similar design, considering Wy, W1, and W5 with FP32,
FP16, and INTS. Throughout these workflows, we consistently
maintained an image size of 416 x 416 and varied the batch
size between 1 to 8. These workflows that we evaluate are
summarized below. Detailed information on workflows will
be discussed in Section IV.

RM7/RMp-Wy: TensorFlow/ PyTorch Default: By default for
both PyTorch and TensorFlow framework, we loaded our
already trained model and ensures that the model’s inference
executes on GPU. Then, we run the inference of the model

through TensorFlow and PyTorch using Python API.

RMp-W7: TensorFlow-TensorRT: In this workflow of Tensor-
Flow, we accelerate inference performance using TensorFlow-
TensorRT Graph Converter. At a high level, there are three
steps in this workflow, including ) Conversion of the Ten-
sorFlow Model to Frozen (.pb) Format, ¢¢) Conversion of the
Frozen Model to the TensorRT-compatible version, and #:z)
deploying model for inference.

RMp-Ws: TensorFlow-ONNX-TensorRT: This workflow is
systematically divided into four key stages. Each stage plays a
vital role in transforming the model from its original state into
an optimized format ready for deployment and inference. The
stages are as follows: ¢) Conversion of TensorFlow to Frozen
Model, the same way as W; does. i) Frozen model to ONNX
Conversion, 77¢) TensorRT Engine Building, and iv) Deploy
for Inference.

RM p-W: Torch-TensorRT: In this workflow of PyTorch, we
employed the model using Torch-TensorRT (a collaborative
effort combining PyTorch with NVIDIA’s TensorRT). The
Torch-TensorRT workflow has three unique phases: ¢) Sim-
plifying TorchScript module, i) Transformation, and iiz)
Execution of optimized graph.

RM p-Ws: Torch-ONNX-TensorRT: In this workflow, the tasks
were methodically divided into three discrete components: ¢)
the exportation of the PyTorch model to an ONNX file format,
11) the Building of the TensorRT engine, 7i7) the deployment
phase focused on enhancing inference performance.

C. Dataset Selection

Among all publicly available datasets, we selected COCO and
KITTI & BDDI100K for testing the inference performance.
These datasets are widely used in the evaluation of computer
vision models, particularly for object detection tasks like
those performed by the YOLO model. Here’s an elaborate
description of each dataset and why they are well-suited for
testing YOLO’s performance, especially in real-world object
detection scenarios:

Fig. 2: An example of two public datasets: a) BDD100K video
dataset; and b) KITTI dataset.

COCO. The COCO dataset contains over 200,000 labeled
images with more than 1.5 million object instances across
80 different object categories. It includes various types of
annotations, such as object segmentation, keypoint detection,
and captioning, which are useful for a range of computer
vision tasks. COCQ’s diverse and complex scenes make it an
excellent benchmark for testing the robustness and accuracy
of YOLO in real-world conditions.

KITTI. The KITTI dataset is specialized for autonomous
driving scenarios. It includes various images collected from
vehicle-mounted cameras and annotations for tasks like 2D
and 3D object detection, object tracking, and optical flow. The



dataset offers real-world driving scenes with various environ-
mental conditions, providing valuable insights into the model’s
performance in outdoor, dynamic conditions. Testing YOLO
on KITTI allows for the evaluation of its effectiveness in real-
time, dynamic environments, which is critical for applications
like autonomous driving.

BDD100K. The BDDI100OK dataset contains over 100,000
video sequences, each lasting 40 seconds featuring diverse
driving conditions including various times of the day, weather,
and urban/rural settings. The dataset is richly annotated with
labels for objects like cars, pedestrians, and traffic signs,
necessary for training detection models. These annotations are
essential for training and validating object detection models.
The dataset includes different types of annotations like image-
level tags, object bounding boxes, drivable areas, lane mark-
ings, and full-frame instance segmentation.

D. Hardware Setup

Our hardware setup includes an NVIDIA GPU Workstation,
made for high-demand tasks, for which we have listed detailed
information in the following Fig. 3. It has an Intel Xeon
CPU, which is great for handling complex tasks efficiently.
This CPU is good at processing multiple tasks at once. The
workstation is also equipped with an impressive memory,
which helps in doing several things at once and managing big
datasets. This is important for data analysis, machine learning,
and running many programs or simulations together. A key
part of this setup is its four NVIDIA GeForce RTX 2080
Ti graphics cards, each with 11 GB of memory. This setup
offers a formidable parallel processing capability, crucial for
demanding tasks like deep learning, rendering, and advanced
graphical computations. The RTX 2080 Ti is renowned for its
exceptional performance in professional applications, particu-
larly in AI and machine learning workloads.

| | NVIDIA GPU Workstation

CPU Intel Xeon E5-2690 v4
GPU 4 x 11 GB GeForce RTX 2080 Ti
Frequency 2.6 GHZ
Core 14
Memory 64 GB
oS Ubuntu 18.04 LTS

Fig. 3: The configuration of NVIDIA GPU workstation.

E. Software Description

Our project involved the establishment of two distinct soft-
ware environments, meticulously designed to support specific
Road Maps. The initial environment, Designed for RMr, is
created using a robust Python virtual environment framework.
This foundational environment integrates several critical com-
ponents, including TensorFlow, TensorRT, CUDA, CuDNN,
ONNX, and tf2onnx, ensuring a balanced and efficient work-
flow. Subsequently, we developed a second work environment,
specifically architectured for RMp. This environment is built
within a Docker image, named Torch-TensorRT, which offers
a streamlined and isolated setup. Utilizing this Docker image,
we created a Docker container, within which we configured
ONNX and an array of essential Python libraries. The follow-

ing two tables show the software specifications for setting up
these two environments respectively.

TABLE I: Software configuration for RMy.
CUDA  TensorFlow CuDNN TensorRT ONNX
12.1 2.11 8.9 8.6.5 1.15.0

TABLE II: Software configuration for RMp.
CUDA PyTorch ONNX TensorRT Torch-TensorRT
12.1 2.2.0 1.15.0 8.6.5 2.2.0

IV. DETAILED DESCRIPTION OF WORKFLOWS

In this section, we provide a more detailed description of
workflows that we evaluate in this work. Figure 4 effectively
illustrates the procedural workflows for RM7, which integrate
the TensorRT engines with TensorFlow-compatible models.
Figure 5 adeptly details the strategies for RMp that integrate
the TensorRT engines with PyTorch-compatible models.

A. RMp-Wy: TensorFlow-TensorRT

Optimizing object detection models (e.g., YOLOv4) for en-
hanced performance necessitates a systematic approach, par-
ticularly when utilizing TensorFlow-TensorRT. This process
bound several pivotal steps designed to align the model with
the intended precision modes, including FP32, FP16, and
INT8. As shown in Figure 4, the initial step involves training
YOLOv4 using TensorFlow. After the training process, the
model undergoes conversion into the frozen protocol buffer
(PB) format, a critical step for model deployment. The fol-
lowing delineates this multi-stage optimization framework:

1) Transformation of TensorFlow Model to Frozen (.pb)
Format: Figure 4 illustrates the beginning of our process
with a YOLO model, which is trained via TensorFlow.
This model is then converted into a ’frozen’ version,
stored in a .pb file. This initial conversion is a sim-
ple yet essential step, setting the foundation for future
enhancements with TensorRT. This step is crucial as it
lays the groundwork for more complex upgrades and
optimizations of the model.

2) Frozen Model to TensorRT Conversion: After get-
ting the frozen model, the focus shifts to exploiting
TensorRT’s capabilities for boosting model performance.
This phase entails transitioning the TensorFlow model
into a TensorRT-compatible operational format.

o Conversion Parameters Setup: We set the maximum
workspace size to 4GB for TensorRT optimizations and
specified the precision mode for conversion.

o Conversion Process: For each precision mode (FP32,
FP16, or INTS), we adjust the use_calibration param-
eter accordingly. Here, Calibration is crucial for INT8
conversion for accuracy retention. Then, we initialize
a TensorRT graph converter with the specified input
model directory and conversion parameters. In scenar-
ios employing INTS precision, the use_calibration pa-
rameter becomes essential. When enabling it to (True),
it instigates the creation of a calibration graph, which
is instrumental in establishing the quantization range.
This stage necessitates a calibration dataset to facili-
tate an accurate conversion of the TensorFlow model
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Fig. 4: An overview of Road Maps 1, RMp-W; and RM7-W5 as well as the software tools used in each stage.

into the TensorRT framework. Conversely, setting this
parameter to False signals the expectation of existing
quantization nodes for each tensor (excluding those
subjected to fusion). A lack of requisite range in this
context is likely to result in errors.

e Model Conversion: Finally, we execute the conver-
sion process using TrtGraphConverterV2. For INTS, it
utilizes the calibration_input function to calibrate the
model. The converted model is saved in a specified di-
rectory, indicating the YOLO type, TensorRT precision
mode, and input size.

3) Inference Performance: For performing the inference
we load the TRT saved model from the directory to
evaluate the inference. To be noted, for each of the
precision modes we selected specific files to evaluate the
overall performance.

Among three conversions, FP32 is the Highest among the

three and uses 32-bit floating-point numbers. It offers a

balance between accuracy and performance but may not

provide significant speedup compared to native Tensor-

Flow models. Precision-FP16, offers faster computation

and reduced model size, with a slight compromise in ac-

curacy, compared to FP32. INTS8 (8-bit Integer) provides
the highest speedup and efficiency, significantly reducing
model size and computational overhead.

B. RM7-Ws: TensorFlow-ONNX-TensorRT

In this workflow, once the training phase is completed, two key
parameters are established and locked in the batch size, which
dictates the number of samples processed together and the
precision level, which can be FP32, FP16, or INTS. Following
this, the trained model undergoes optimization through the
TensorRT optimizer. This process results in the creation of
an optimized runtime environment, commonly referred to as a
plan. The plan is encapsulated in a .plan file, which represents
a serialized format of the TensorRT engine, essentially a
compact, efficient representation of the model optimized for
deployment. To utilize this model for inference tasks, the plan

file must be deserialized, into a format that the TensorRT
runtime can execute. This deserialization is a crucial step
for the model to be operational and perform inference using
the capabilities of TensorRT. The comprehensive overview
of Figure 4, which details the TensorFlow-ONNX-TensorRT
pipeline, is presented now in detail.

1) Transformation of TensorFlow Model to Frozen(.pb)
Format: As presented in Figure 4, the process begins
with the Yolo model that has already been trained using
TensorFlow. This model is then turned into a ’frozen’
version, which is saved in a .pb file format. This first
change is a basic step that prepares the model for further
upgrades using TensorRT.

2) File (.pb) to ONNX conversion: The next step in the
process is the conversion of the .pb model into the ONNX
format, which requires the initial installation of tf2onnx.
Once tf2onnx is set up, the model conversion from .pb
to ONNX can be achieved in two distinct ways. The
first approach is to utilize the command line - a more
direct and script-based method. Alternatively, the second
approach involves using the Python API, which offers a
more programmable and flexible interface for this task.
In our case, we opted for the Python API method to
carry out this conversion to ONNX format. Upon the
successful generation of the ONNX file, we conducted a
thorough verification of our(.onnx) file before creating the
TensorRT engine using it. This verification process serves
as a preliminary assurance, confirming that the model is
adequately prepared and suitable for the subsequent phase
of engine building.

3) TensorRT Engine Creation: To create the TRT engine
from the onnx file we followed NVIDIA’s document thor-
oughly. We start the engine-building process by instantiat-
ing A TRT_LOGGER which is significant for monitoring
the behavior of TensorRT operations and debugging.
Then, we create a trt_runtime object using the logger,
which is necessary for creating and running the TensorRT



engine. Sequentially, we create a function to build the
engine; where, the function initializes a TensorRT builder,
network, and configuration, along with an ONNX parser,
and sets the maximum workspace size for the builder.
This phase also involved configuring the network’s input
shape and meticulously parsing the ONNX file, with a
robust error-reporting mechanism for any parsing failures.
The culmination of this process was the conversion of the
optimized model into a serialized (.plan) format, signify-
ing the successful creation of the TensorRT engine. We
diligently saved the engine across various configurations,
such as FP32, FP16, and INTS, with a special focus on
implementing a calibration process for the INTS8 engine
to preserve accuracy.

4) Deploy for Inference: Before inference, we deserialized
the .plan file to load the optimized model into the
TensorRT runtime. Then we use the deserialized model to
run inference on new data. This step is significantly faster
and more efficient, especially on NVIDIA GPUs. After
successfully creating the TRT engine for FP32, FP16,
and INT8 we run inference to observe the performance.
For each of the precision modes, we then deserialize the
.plan file to load the optimized model into the TensorRT
runtime. To run inference, from our saved TRT engine, we
follow some important steps, including 7) The inference
process starts with pre-processing images from datasets.
it) Then, we allocate Input and output buffers on the
GPU. 4i7) After allocating I/O buffers, we transfer them
from the host to these input buffers on the GPU. iv)
Promptly, the GPU performs the inference process. v)
Finally, inference results are then transferred back from
the GPU to the host, and results are reshaped as required.

C. RMp-W7: Torch-TensorRT

In RMp, we enhanced the inference of the object detection
model (YOLO) by employing Torch-TensorRT, which is a
collaborative effort of Meta Al combining PyTorch with
NVIDIA’s TensorRT [51]. Torch-TensorRT is designed to
optimize and run compatible network segments while allowing
PyTorch to manage the execution of the rest of the network
graph. Figure 5 presents this workflow’s detailed work.

1) Model loading & Dataset Selection: We start the RM p-
W, by loading a pre-trained YOLOvS small model, from
Ultralytics using the torchhub.load function. This function
is a part of PyTorch’s hub module, designed to facilitate
the easy loading and use of pre-trained models. The
selection of the YOLOvVS small model is likely driven
by its balance of speed and accuracy, making it an ideal
choice for various real-time object detection applications.
At this stage, we also specify the dataset with specific
transformations (resizing images to 416x416 and con-
verting them to tensors).

2) Model Tracing: Upon resizing the images to the spec-
ified dimensions, we proceed to transform our model
into TorchScript modules utilizing PyTorch’s Just-In-
Time (JIT) compiler. This crucial step converts the Py-
Torch model into a TorchScript format, a prerequisite for
subsequent optimization using TensorRT. Consequently,
the TorchScript model is stored in the traced_model

(referenced in Figure 5) and is preserved on the disk.
For optimization with 32-bit floating point precision, we
compiled the traced_model using TensorRT and specified
the FP32 precision. This process entails defining both
the input shape and the data type as torch.float32. In
a parallel approach, we also developed an alternative
version of the model employing FP16 precision. This
was achieved by altering the data type to forch.half.
While Torch-TensorRT does not directly provide INTS
precision mode without adjusting the model compilation
to use INTS precision we limit our exploration for Torch-
TensorRT’s precision modes within full-precision FP32
and half precision FP16.

3) Inference Performance: Afterward, we rerun the bench-
mark function for both the FP32 and FP16 optimized
models to measure and compare their performance
against the original model. We start the benchmarking
procedure by synchronizing the CUDA device to ensure
it starts from a consistent state. For each image, we
record the start time using forch.cuda.Event and execute
model to evaluate the performance of inference on each
image from the dataset. After that, we again record the
end time and synchronize the CUDA device to ensure
accurate timing measurement. To ensure comprehensive
evaluation, we repeat the benchmark function twice:
once for the original model and subsequently for each
FP32 and FP16 optimized model. This rigorous approach
allows us to methodically measure and compare their
performance metrics against the baseline model.
Precision. FP32 uses 32-bit floating-point numbers, of-
fering higher precision. FP16 uses 16-bit, which is less
precise but requires less memory and computational re-
sources.

Performance. FP16 often allows for faster computation
than FP32 because it uses smaller data types. This can
be particularly beneficial in environments in edge devices
where memory bandwidth is a bottleneck.

Memory Usage. FP16 models generally use less mem-
ory compared to FP32, which can be advantageous for
deploying models on memory-constrained devices.

D. RMp-Wsy: Torch-ONNX-TensorRT

In this workflow, the journey also begins by loading a pre-
trained YOLOvVS5 small model, from Ultralytics using the
torchhub.load function, as delineated in our previous workflow
RMp-W,. Figure 5 provides a schematic representation of
RMp, which is dedicated to enhancing the inference perfor-
mance of the Yolo model. We now delve into a detailed
illustration of W, as illustrated in the comprehensive overview
of Figure 5.

1) ONNX Conversion: After loading our model the subse-
quent step involves the transformation of the YOLOvS5s
model into the ONNX format. This conversion is essential
for ensuring the model’s compatibility with a broader
range of platforms and optimizing frameworks. The
torch.onnx.export function is employed for this purpose,
effectively translating the PyTorch model into an ONNX
model while preserving its architecture and learned
weights. Following the conversion, the model undergoes a
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Fig. 5: An overview of Road Maps 2, RMp-W; and RMp-Ws as well as the software tools used in each stage.

thorough verification process using ONNX’s checker tool,
invoked via onnx.checker.check_model. Once the model
has passed the verification stage, the final step involves
saving the now-validated yolo.onnx model and ready-to-
use in the environments that support the ONNX format.
TensorRT Engine Building: To build the engine for
specific precision mode (e.g., FP32, FP16, or INTS).
First, we import the necessary libraries and set up the
TensorRT logger. The Engine Building procedure is listed
below. We divide the procedure into two parts: ¢) Generic
Engine building and ¢¢) what we did differently to build
the engine for each specific Precision Mode.

Generic Engine building. We successfully optimize
our object detection model by executing a series of
strategic steps. Initially, we establish the groundwork
by initializing the TensorRT builder and configuring its
settings. Following this, we optimize our computational
resource allocation by setting the maximum workspace
size. Our efforts then focus on defining the network,
where we utilize the explicit batch flag to enhance batch
processing capabilities. Further, we advance to parse the
ONNX model, during which we meticulously identify and
mark the crucial output layer, ensuring the precision of
our model’s outputs. Finally, we achieved a significant
milestone in building a serialized network. This is accom-
plished through the integration of the TensorRT builder,
our defined network, and the builder configuration, cul-
minating in an optimized and efficient model ready for
deployment. We define a function to serialize the engine
and save it to a file. In the main execution block where
the ONNX model path and engine path are defined, the
engine is built and then deserialized for later use.
Specific Differences for Each Precision Mode. FP32
(default precision): The FP32 code block is the de-
fault setting and doesn’t explicitly set a precision
flag. On the other hand, FP16 (Half Precision) is en-
abled by setting the FP16 flag in the builder con-
figuration: builder_config.set_flag(trt. BuilderFlag.FP16).
To be noted, the FP16 mode offers a balance
between performance and accuracy. INT8 (Integer
Precision) is enabled by setting the INT8 flag:

3)

builder_config.set_flag(trt. BuilderFlag.INTS). We did an
additional calibration process using the dataset to main-
tain accuracy, with the ImageBatchStream and Calibrator
classes. It offers the highest performance, especially in
terms of throughput and latency, but it requires careful
calibration to maintain the model’s accuracy.

Deployment of the Inference Performance: We mea-
sured the inference performance of both inference
throughput and inference execution time by creating
three benchmark functions. The first benchmark function
(benchmark_trt_FP32 (engine, dummy_input) we imple-
mented to get the inference of engine for floating point
32. In this benchmark function, we passed the engine
instead of the model and changed the benchmark func-
tion accordingly. ¢) The implementation of the first step
involves creating an execution context using NVIDIA’s
CUDA for running TensorRT inference. This context
is essential for managing resources and controlling the
inference pipeline. i¢) Then, A dummy input tensor,
which is the input image, assumed to be a PyTorch
tensor, is converted to a NumPy array (dummy_input_np),
and its shape is used to determine the input and output
sizes for memory allocation. The input (input_shape) and
expected output (output_shape) dimensions are defined,
with an output shape of (1, 25200, 85). ¢i7) We allocate
Memory space on the GPU for both the input (d_input)
and output (d_output) using CUDA’s mem_alloc function.
The sizes of these allocations are computed based on
the product of the respective shapes and the size of a
float32 data type. iv) Later, A CUDA stream is initialized
to manage the sequence of operations asynchronously,
allowing for concurrent execution of operations and data
transfers. v) The input data (h_input) is flattened to
np.float32. A warm-up loop executes to ensure the GPU
is ready for benchmarking. The actual benchmarking
involves repeatedly transferring the input data to the GPU,
executing the model inference, and transferring the output
data back to the CPU. This process is timed for each
run within a loop of n_runs iterations. vi) After each
inference run, we record the time. These times we use
to calculate the average inference time and frames per



second (FPS), which are crucial metrics for understand-
ing the model’s performance. vii) Finally, the CUDA
stream was synchronized to ensure all operations were
completed. The active optimization profile was set to 0,
likely to switch back to a default or specific configuration.
Similarly, we implemented benchmark functions (bench-
mark_trt_FP16) and (benchmark_trt_INTS), which are
designed to evaluate the performance of a deep learning
model using NVIDIA’s TensorRT with FP16 and INTS8
precision. The key steps to implement these functions
are pretty similar. In (benchmark_trt_FP16), the primary
difference is the precision mode used for inference. This
function benchmarks the model in FP16, which can offer
faster performance and reduced memory usage compared
to FP32, especially on GPUs with Tensor Cores opti-
mized for FP16 calculations. In (benchmark_trt_INTS),
this function benchmarks the engine in INT8 mode, which
is faster and more memory-efficient than FP32 and FP16,
especially on GPUs optimized for INTS8 calculations.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present our inference performance results
in three subsections, discussing the computation metrics for
the inference performance, experimental results, and analysis
for RMp (Wl'WQ) and RMp (Wl-WQ).

A. Computation Metrics for Inference Performance

In this subsection, we present how we computed the inference
performance (Execution Time and Throughput) of the model
and TensorRT Engines. For YOLO and similar real-time object
detection systems, both these metrics are critical: A lower
inference execution time ensures that each frame is processed
quickly, which is vital for making immediate decisions based
on the latest available data. A higher inference throughput
means the system can handle more data at any given time,
which is crucial for maintaining real-time performance even
under heavy data loads. Therefore, balancing these two metrics
is a key aspect of designing and tuning real-time object
detection systems.

Inference Execution Time. It refers to the amount of time it
takes for the object detection system to process an input (like
a frame from a video) and produce an output (in this case,
the detection of objects within the frame). A shorter inference
execution time means the system can analyze and respond to
its environment more rapidly. This metric is usually measured
in milliseconds (ms). In our experiments, we measured the
end-to-end execution time of our model’s forward inference
cycle, explicitly focusing on the time taken for the model to
process input and produce output. This measurement deliber-
ately excluded time spent on data retrieval, model initializa-
tion, and input pre-processing to accurately measure the raw
inference performance of the model and engines. For RMr,
the TensorFlow model (YOLOV4) first subjects to a series of
’warm-up’ runs, a critical step in ensuring that the TensorFlow
execution graph is fully optimized and any JIT (Just-In-Time)
compilation or GPU initialization processes are completed.
This approach mirrors the methodology applied in the PyTorch
analysis, aiming to neutralize any start-up anomalies that might
skew the performance data. Following this, the model was

run for a set number of iterations, with the execution time
for each iteration being precisely captured using the time
module. These recorded times, marking the period from the
initiation to the completion of the inference process, provided
the raw data needed to calculate the average inference time
and FPS. For the PyTorch model (RMp), we underwent a
similar evaluation. The experiment commenced with a *warm-
up’ phase, a common practice in deep learning benchmarks to
stabilize performance metrics. Here, we executed the model
inference repetitively for a predefined number of times (50 in
this case) before proceeding to the actual measurements. This
warm-up procedure ensures that any initial latency associated
with model loading or CUDA operations is mitigated, thus
providing a more consistent and reliable measurement during
the benchmarking phase. Following this, we conducted 100
inference runs. In each run, precise time measurements were
captured using Python’s time function, marking the start and
end of the model’s inference process. For every iteration, we
recorded the time immediately before initiating the model
inference (start_time) and immediately after its completion
(end_time), ensuring synchronization with the GPU using
torch.cuda.synchronize() to obtain accurate timing. The dif-
ference between these two timestamps provided the duration
of each inference, which we added to our timings list.

Inference Throughput. This refers to the number of inputs
(e.g., video frames) the object detection system can process
in a given amount of time. It’s a measure of the overall
processing capacity of the system. Throughput is often mea-
sured in frames per second (FPS). For both TensorFlow and
PyTorch models, the inference throughput was evaluated by
processing multiple data inputs in batches. This methodology
closely resembles real-world scenarios where models often
handle several inputs simultaneously, making it a pertinent
measure of performance. We initialized the model in an
inference mode and prepared a batch of inputs, calibrated
to the model’s input specifications. The experiment ran these
batches through the model repeatedly, ensuring the system’s
computational resources were maximally utilized. The total
number of inferences (the number of batches multiplied by the
batch size) processed in a given time frame was then recorded.
By dividing this number by the total time taken to process
these inferences, we arrived at the throughput rate, measured
in inferences per second. This rate provided a quantifiable
measure of the model’s capacity to process data under load.

B. Experimental Results of RMp (W1-Ws)

In this subsection, we present the results for both of the
workflows and our observations based on the results.

Time-critical systems, such as autonomous vehicles, having
a minimum execution time is often more important than
achieving high throughput due to the urgent nature and
immediacy. For such scenarios, for real-time applications, a
minimum batch size is often used to minimize latency. During
inference, batch size determines how many images the model
processes at once. Larger batch size can increase throughput
(number of images processed per second) but also increase
execution time (time to process each individual image). In
our Experiment, we varied the size of the batch between 1
to 8 and the image size of 416 x 416. In Fig. 6 (a), we
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(a) The inference execution time of RM.

(b) The inference execution time of RMp.

Fig. 6: The inference execution time for RM7 and RMp.

analyze and compare the inference performance of two distinct
configurations: W;-TensorFlow with TensorRT integration and
Ws-TensorFlow with ONNX-TensorRT conversion. We also
compare them with the default workflow without TensorRT
on three datasets, i.e., COCO, KITTI, and BDD10OK. In
our first workflow W;, which involves TensorFlow integrated
directly with TensorRT, we observed a substantial reduction in
execution time, ranging between 3.5 to 7 times faster than the
baseline. Concurrently, from Fig. 7 (a), there was an apprecia-
ble increase in throughput, achieving an improvement in the
range of 2 to 3.5 times compared to Wj. This underscores the
efficiency gains that can be achieved by directly integrating
TensorFlow with TensorRT. The second workflow, RMp-Wsy
(TensorFlow-ONNX-TensorRT), employs a different approach
by incorporating an ONNX intermediary between TensorFlow
and TensorRT. This method yielded even more pronounced
improvements. We recorded a decrease in execution time by
approximately 5 to 9 times faster than the default workflow
Wo(shown in Fig. 6 (a)). As shown in Fig. 7 (a), the throughput
experienced an uplift, ranging from 2.5 to 4 times. These
findings highlight the effectiveness of the RMp-W, workflow
in optimizing both the speed and processing capacity of the
models. Our results demonstrate that both configurations offer
significant advantages in terms of execution time efficiency
and throughput enhancement. However, RMp-W, stands out
as an effective approach for improving model performance,
underscoring the potential of this method in enhancing com-
putational efficiency in real-world model inference tasks.
Observation 1. In our comprehensive analysis, it becomes
evident that the workflow RMp-W;, TensorFlow-TensorRT
emerges as the fine choice for executing inference on YOLO
models. This workflow perfectly balances execution speed and
efficiency, outperforming others regarding inference execution.
However, it’s important to note that while the throughput
in RMp-Wy, shows a marginal improvement, it does not
match the significant enhancements observed in inference
execution times. This distinction is particularly crucial in time-
sensitive environments, such as real-world applications, where
expedited execution time holds more value than through-
put efficiency. Therefore, in evaluating the overall inference
performance, we conclude that the results are satisfactory.
An intriguing observation is made with the INT8 precision.
While it significantly reduces the inference time and increases
throughput, we notice a discernible decline in the accuracy of
the object detection model.

Observation 2. Our analysis reveals that RMp-Ws, which
employs the Tensorflow-ONNX-TensorRT pipeline, outper-
forms RM7-W; in terms of both inference execution time

and throughput. This advancement is notable as it achieves
a reduction in latency for FP32 that is comparable to what
was attained for FP16 in RM7-Wj, and this is accomplished
without any significant compromise in accuracy. Furthermore,
RM7-Ws also surpasses the first workflow in throughput
efficacy. However, it is important to mention that a slight
decrease in accuracy was observed for the INT8 precision,
though this reduction is not as pronounced as that seen in
RMp-W7. This observation shows that while RMp-Ws offers
enhanced performance in key areas, the choice of precision
plays a critical role in balancing accuracy with efficiency.

C. Experimental Results of RMp (W1-W5)

As shown in Fig. 6 (b) and Fig. 7 (b), we analyze and compare
the inference performance of Torch-TensorRT integration and
Torch with ONNX-TensorRT conversion.

We find that RMp-W; (Torch-TensorRT) reveals a note-
worthy improvement in the model’s performance following
its compilation with Torch-TensorRT. Initially, the model
exhibited an inference execution time of 4.87 milliseconds
(ms), shown in Fig. 6 (b), and an inference throughput of
202.32 frames per second (FPS) which is shown in Fig. 7
(b). This performance enhances significantly post-compilation.
For W1, in the context of Floating Point 32 (FP32) precision,
there was a doubling increment in the inference throughput,
along with a roughly 50% reduction in inference execution
time. This indicates a marked improvement in processing effi-
ciency. Furthermore, when the model operated under Floating
Point 16 (FP16, torch.half) precision in Wj, the enhance-
ments were even more pronounced. The inference execution
time decreased by approximately 67% relative to the default
model Wy, while the inference throughput saw an increase
of 2.8 times. These improvements highlight the effective-
ness of Torch-TensorRT in optimizing the model’s perfor-
mance, particularly in reducing execution times and increasing
throughput, which are critical factors in real-time applications.
In our comprehensive evaluation of RM p-Ws(Torch-ONNX-
TensorRT), we have documented substantial advancements
in inference performance. This improvement is particularly
pronounced when utilizing FP16 precision, achieved with-
out compromising the model’s accuracy. Our initial default
inference execution time is 4.87 milliseconds in W, Fig. 6
(b) and throughput of 205.35 frames per second (FPS) from
Fig. 7 (b). Upon transitioning to FP32 precision for W,
we observed a marked improvement. the inference execution
time was reduced by 71%, and the inference throughput
increased by 3.5 times compared to our default model Wj.
This enhancement in performance indicates the efficiency
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gains achieved through precision optimization. However, the
most striking improvements were evident when we switched to
FP16 precision for Ws. In this scenario, we recorded an 86%
reduction in execution time alongside a 7 times increase in
throughput. This significant boost in performance underscores
the effectiveness of FP16 precision in enhancing our model’s
speed and efficiency. Further experiments were conducted with
8-bit INT precision calibration in W,. Here, we noted that the
performance outcomes were not substantially different from
those observed with FP16 precision. This finding suggests
that while 8-bit INT precision offers benefits, FP16 remains
the more impactful choice in terms of improving inference
performance. Our analysis conclusively demonstrates that to
optimize the inference performance in the context of RMp-Wo,
FP16 precision emerges as the most effective option. It strikes
an optimal balance between enhancing performance efficiency
and maintaining accuracy, making it a preferred choice for
models prioritizing both aspects.

Observation 3. In examining the inference performance of
RM p-W1, it has been observed that the workflow benefits from
a notable enhancement in efficiency. There is a considerable
reduction in inference latency, exhibiting a promising decrease
of approximately 70 percent. Concurrently, this improvement
is accompanied by a threefold increase in inference through-
put. When evaluating the system across both precision modes
- FP32 and FP16 - a commendable equilibrium between
inference performance and accuracy is evident. This balance is
crucial for optimizing system efficiency without compromising
on the accuracy of outcomes.

Observation 4. It is important to highlight that RM p-Ws, op-
erating in the FP16 precision mode, demonstrates superior per-
formance relative to all other evaluated workflows, particularly
in terms of inference throughput and execution time, when
contrasted with accuracy metrics. This workflow achieves a

sevenfold increase in inference throughput, coupled with an
almost sixfold reduction in execution time. Additionally, when
considering the FP16 precision mode, the observed decrease in
accuracy, as compared to the original model, is very minimal.

VI. CONCLUSION

In this paper, we conduct a thorough comparative analysis
of the inference performance of an object detection model
using TensorFlow and PyTorch-compatible frameworks accel-
erated by TensorRT for resource-limited SDVs. Based on the
outcomes of our evaluation, we observe TensorRT’s precision
mode (e.g., FP32, FP16, and INT8) performance in terms of
latency and throughput after optimization.

Our research includes a detailed examination of each work-
flow’s strengths and weaknesses based on precision modes
to enhance our understanding of time-critical systems. Our
results show that for both our TensorFlow and PyTorch
Framework, the workflow of ONNX to TensorRT conversion
has the best result for improving model inference. Upon
evaluating different precision modes, we observed that The
FP16 precision mode has the best inference performance result
in terms of throughput, and latency. Although the INTS8 preci-
sion mode demonstrated commendable inference results, our
observation indicates that the FP16 mode maintains an optimal
balance between inference performance and accuracy. This
equilibrium is vital in real-world applications of SDVs, where
precision and reliability are supreme concerns. To conclude,
for applications demanding high inference performance with
limited computational resources, we recommend the ONNX to
TensorRT with the FP16 precision mode conversion approach
as an optimal solution.
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