


widely used to process data near the data source to reduce

latency and speed up response times.
While DL frameworks like PyTorch [22] and TensorFlow

[23] have made significant progress and offer robust platforms

for developing complex models, they are not inherently opti-

mized for resource efficiency and time management during the

inference phase. To bridge this gap, NVIDIA has developed

TensorRT [24], a specialized DL inference engine optimizer

renowned for its ability to enhance the performance and effi-

ciency of deep learning models through a series of advanced

optimizations. TensorRT is designed and developed to enhance

the overall inference performance, enabling developers to fine-

tune neural network models trained in popular frameworks

such as PyTorch and TensorFlow. This optimization plays a

significant role in deploying these models across a variety of

platforms, including SDVs, embedded systems, and automo-

tive products, ensuring that they run efficiently in real-world

applications where resource management and inference speed

are critical.
In this work, we conducted a comprehensive analysis to

evaluate the optimized performance of TensorRT, specifically

in comparison to the default TensorFlow and PyTorch frame-

works within the context of the perception module (object

detection model) for SDVs. Our approach involved generating

two distinct Road Maps, based on TensorFlow and PyTorch,

respectively. For each of the Road Maps, we have two work-

flows to integrate the TensorRT engines with TensorFlow and

PyTorch-compatible models. The brief schematic of our pro-

posed methods (Road Maps) is shown in Fig. 1. Furthermore,

We explored the precision calibration of TensorRT, which

showcases a bottleneck between inference performance and

accuracy using the mainstream object detection models.
Contribution. Our aim is to optimize the real-time infer-

ence speed of SDVs while upholding accuracy. To achieve this,

we harnessed the vehicle’s camera-captured video streams to

conduct a comparative analysis. This involved generating two

distinct Road Maps using TensorFlow and PyTorch frame-

works, respectively. Subsequently, each Road Map underwent

two workflows utilizing the YOLO object detection model on

the TensorRT platform. Through meticulous evaluation across

various TensorRT precision formats - Full Precision Float-

ing Point 32, Half Precision Floating Point 16, and Integer

Precision (INT8) - we sought to enhance overall inference

performance. Our findings revealed compelling trends: the

Half Precision Floating Point 16 format notably accelerated

inference speed while maintaining acceptable accuracy levels.

However, the INT8 format displayed the fastest inference

speeds, albeit with a marginal compromise on accuracy. Our

analysis delved into comprehensive inference performance

metrics, emphasizing throughput and execution time, shedding

light on the distinct strengths and limitations of each workflow.
Organization. Our research is organized throughout the

paper as follows. Sec. II provides the background of popu-

lar frameworks (TensorFlow, PyTorch, ONNX) that we used

throughout our research including TensorRT. Sec. III describes

the experimental design of our paper which includes Road

Maps, Workflows, Dataset Selection, and Hardware-Software

specifications. In Sec. IV, we describe our workflows in detail.

Experimental Results Analysis and Conclusion are provided in

Sec.V and Sec.VI.

II. BACKGROUND AND RELATED WORK

In this section, we offer a detailed outline of the frameworks

employed in our research, with a particular focus on the es-

sential building blocks. Additionally, we provide an insightful

overview of the latest advancements in TensorRT in time-

critical real-world scenarios.

A. TensorFlow

TensorFlow is an open-source machine learning framework

developed by Google Brain known for its versatility and

robustness [25]. One of its most notable features is the ability

to create large-scale neural networks with multiple layers,

making it suitable for complex tasks in areas of Deep Learning.

TensorFlow operates on the principle of dataflow graphs,

where nodes represent mathematical operations, and edges

represent the multidimensional data arrays (tensors) commu-

nicated between them. This graph-based structure enables

efficient computation and parallel processing, which is es-

sential for handling large datasets and complex algorithms.

TensorFlow also excels in scalability, capable of running on a

variety of platforms, from individual computers to large-scale

cloud servers. It supports various languages like Python, C++,

and JavaScript. TensorFlow’s extensive library includes a wide

range of tools and functionalities, such as TensorFlow Lite for

mobile and IoT devices, TensorFlow.js for machine learning in

JavaScript environments, and TensorFlow Extended (TFX) for

end-to-end machine learning pipelines [26]. These tools have

enabled TensorFlow to be applied in real-world scenarios such

as healthcare for patient diagnosis, finance for risk analysis,

and in the automotive industry for self-driving technologies.

B. PyTorch

PyTorch is an open-source machine learning library developed

by the Facebook AI Research lab which is known for its flex-

ibility, ease of use, and dynamic computational graph, which

allows for more intuitive coding of deep learning models [27].

It supports fast tensor operations on both CPUs and GPUs,

significantly boosting computational speed, essential for train-

ing Deep Learning models. Operations on these tensors, like

matrix multiplications, convolutions, and other mathematical

computations, are critical for building and training neural

network models. By leveraging GPU acceleration, PyTorch

can perform these tensor operations much faster compared to

CPU-only processing.

Unlike many other frameworks where the structure of

a neural network must be predefined and used repeatedly,

PyTorch employs reverse-mode auto-differentiation. This tech-

nique permits users to alter the behavior of their network as

needed, without incurring significant overheads. This feature

greatly enhances the flexibility of model design, allowing

for more dynamic and creative approaches to deep learning.

PyTorch is also designed to be memory-efficient compared to

other frameworks, enabling the training of huge deep-learning

models. This efficiency in memory usage and computational

speed positions PyTorch as a highly effective tool for modern

machine-learning challenges.



C. ONNX
ONNX stands for Open Neural Network Exchange, is an

open-source format designed to represent machine learning

models [28]. It was created with a collaborative effort by

Microsoft, Amazon, Facebook, and others to establish an

industry standard for machine learning interoperability. The

primary goal of ONNX is to enable models trained in one

framework, such as PyTorch or TensorFlow, to be transferred

and deployed in another for inference, thus addressing the

common challenge of framework lock-in.
The core advantage of ONNX lies in its ability to decouple

models from the frameworks in which they were trained. This

is achieved through a shared model representation that can

be understood by various software tools, making it easier to

move models between different frameworks or deploy them

across various platforms and devices. ONNX supports a wide

range of established machine learning operations, allowing for

complex models to be represented within its standard.
When it comes to real-world applications, ONNX’s flexi-

bility and framework-agnostic nature make it highly relevant,

especially in the field of Autonomous Vehicles (AV). In AV,

machine learning models must often be transferred between

various simulation environments, testing frameworks, and the

final embedded systems used in vehicles. ONNX facilitates

this by ensuring that models remain consistent and performant

across different software environments.

D. TensorRT
TensorRT is a high-performance deep learning inference op-

timizer and runtime library developed by NVIDIA [29]. It is

specifically designed for production environments, offering a

powerful toolset for optimizing, deploying, and running deep

learning models on NVIDIA GPUs. The primary focus of

TensorRT is to enhance the performance and efficiency of

deep learning applications in real-time scenarios, such as in

autonomous vehicles, healthcare, and robotics.
TensorRT has five types of optimization techniques to

perform to enhance the performance and efficiency of deep

learning models. One key technique is layer fusion, which

combines multiple layers of a neural network into a single,

more efficient layer. This process reduces the overhead of

passing data between layers, thereby lowering latency and

improving throughput. Another technique involves precision

calibration, where TensorRT fine-tunes the model to use mixed

precision computations. By deciding which operations can use

lower-precision arithmetic (such as FP16 or INT8), it strikes a

balance between inference performance and model accuracy.
FP32 (Full Precision Floating Point 32-bit). FP32 is the

highest level of precision offered in TensorRT. In this mode,

each number in the model’s computations is represented using

32 bits. This high level of precision is ideal for maintaining

the accuracy of the model; however, FP32 requires more

computational resources, which can lead to slower inference

speeds compared to lower-precision formats.
FP16 (Half Precision Floating Point 16-bit). FP16 reduces

the numerical precision of the model by representing each

number with 16 bits. This reduction in precision allows

for faster processing and lower memory usage, making it

a suitable option for real-world scenarios where speed is

more critical compared to accuracy. FP16 is often used in

applications where the model is robust enough to tolerate a

slight decrease in precision without significant loss in overall

performance.

INT8 (Integer 8-bit). The INT8 mode represents numbers

using just 8 bits, which is the lowest level of precision in

TensorRT. This mode significantly speeds up the inference

process and reduces the model’s memory usage almost large

level. The challenge with INT8 is managing the potential loss

in accuracy due to the drastic reduction in precision. TensorRT

addresses this through advanced calibration techniques that

attempt to maintain as much accuracy as possible.

Kernel auto-tuning is another significant optimization. Here,

TensorRT tests various configurations and selects the most

efficient kernels (the core computational functions) for the

specific GPU architecture. Dynamic tensor memory is an-

other technique, which enhances memory reuse by allocating

memory to tensors only for the duration of their usage, thus

reducing overall memory consumption and avoiding alloca-

tion overhead. Moreover, TensorRT introduces multi-stream

execution, allowing the processing of multiple input streams

in parallel, further boosting the model’s throughput.

These five types of optimizations collectively make Ten-

sorRT a powerful tool for deploying deep learning models, es-

pecially in scenarios requiring high-speed, efficient processing.

By streamlining models for better performance on NVIDIA

GPUs, TensorRT plays a significant role in various real-time

and high-performance computing applications, especially in

the field of SDVs. Several approaches using TensorRT have

been made to make inference faster for real-world scenarios -

Zhou et al. improved real-time inference performance for DL

model using TensorRT [11], Jocher et al. explored TensorFlow,

OpenVINO and TensorRT on Ultralytics models [30]–[32]

Shafi et al. uses TensorRT to characterize NN inference for

Edge Devices [33], Hong et al. optimized overall performance

of Multi-object tracking with TensorrRT [34], In the same year,

Wang et al. deployed their model with TensorRT on real-time

to increase inference on edge devices [35], Jiang et al. visits

semantic segmentation for real-world Autonomous Driving

using TensorRT TF16 mode [36], Huang et al. uses parallel

execution mode using CUDA context for better inference

throughput in real-world [37]. Although they were able to

make the inference performance better in real-world scenarios,

there was a significant drop in accuracy.

E. The Gap in Previous Work

Shin and Kim introduced a performance inference approach on

the Nvidia Jetson AGX Xavier, integrating the Jetson moni-

toring tool with TensorFlow and TRT, and analyzed various

performance metrics of the deep learning framework [38].

Jeong et al. developed a method using TensorRT that leverages

both GPU and NPUs, enhancing a single DNN application’s

throughput significantly [39]. Ulker et al. assessed the infer-

ence efficacy of deep learning tools on multiple platforms

using CNNs, focusing on latency and throughput, and found

that TensorRT provides the lowest average execution time and

highest throughput for compatible network models [40]. Zhou

et al. presented an evaluation of the inference performance

integrated with popular DL frameworks and TensorRT [11].

In the domain of SDVs, the current state-of-the-art demon-









engine. Sequentially, we create a function to build the

engine; where, the function initializes a TensorRT builder,

network, and configuration, along with an ONNX parser,

and sets the maximum workspace size for the builder.

This phase also involved configuring the network’s input

shape and meticulously parsing the ONNX file, with a

robust error-reporting mechanism for any parsing failures.

The culmination of this process was the conversion of the

optimized model into a serialized (.plan) format, signify-

ing the successful creation of the TensorRT engine. We

diligently saved the engine across various configurations,

such as FP32, FP16, and INT8, with a special focus on

implementing a calibration process for the INT8 engine

to preserve accuracy.

4) Deploy for Inference: Before inference, we deserialized

the .plan file to load the optimized model into the

TensorRT runtime. Then we use the deserialized model to

run inference on new data. This step is significantly faster

and more efficient, especially on NVIDIA GPUs. After

successfully creating the TRT engine for FP32, FP16,

and INT8 we run inference to observe the performance.

For each of the precision modes, we then deserialize the

.plan file to load the optimized model into the TensorRT

runtime. To run inference, from our saved TRT engine, we

follow some important steps, including i) The inference

process starts with pre-processing images from datasets.

ii) Then, we allocate Input and output buffers on the

GPU. iii) After allocating I/O buffers, we transfer them

from the host to these input buffers on the GPU. iv)

Promptly, the GPU performs the inference process. v)

Finally, inference results are then transferred back from

the GPU to the host, and results are reshaped as required.

C. RMP -W1: Torch-TensorRT

In RMP , we enhanced the inference of the object detection

model (YOLO) by employing Torch-TensorRT, which is a

collaborative effort of Meta AI combining PyTorch with

NVIDIA’s TensorRT [51]. Torch-TensorRT is designed to

optimize and run compatible network segments while allowing

PyTorch to manage the execution of the rest of the network

graph. Figure 5 presents this workflow’s detailed work.

1) Model loading & Dataset Selection: We start the RMP -

W1 by loading a pre-trained YOLOv5 small model, from

Ultralytics using the torchhub.load function. This function

is a part of PyTorch’s hub module, designed to facilitate

the easy loading and use of pre-trained models. The

selection of the YOLOv5 small model is likely driven

by its balance of speed and accuracy, making it an ideal

choice for various real-time object detection applications.

At this stage, we also specify the dataset with specific

transformations (resizing images to 416×416 and con-

verting them to tensors).

2) Model Tracing: Upon resizing the images to the spec-

ified dimensions, we proceed to transform our model

into TorchScript modules utilizing PyTorch’s Just-In-

Time (JIT) compiler. This crucial step converts the Py-

Torch model into a TorchScript format, a prerequisite for

subsequent optimization using TensorRT. Consequently,

the TorchScript model is stored in the traced model

(referenced in Figure 5) and is preserved on the disk.

For optimization with 32-bit floating point precision, we

compiled the traced model using TensorRT and specified

the FP32 precision. This process entails defining both

the input shape and the data type as torch.float32. In

a parallel approach, we also developed an alternative

version of the model employing FP16 precision. This

was achieved by altering the data type to torch.half.

While Torch-TensorRT does not directly provide INT8

precision mode without adjusting the model compilation

to use INT8 precision we limit our exploration for Torch-

TensorRT’s precision modes within full-precision FP32

and half precision FP16.

3) Inference Performance: Afterward, we rerun the bench-

mark function for both the FP32 and FP16 optimized

models to measure and compare their performance

against the original model. We start the benchmarking

procedure by synchronizing the CUDA device to ensure

it starts from a consistent state. For each image, we

record the start time using torch.cuda.Event and execute

model to evaluate the performance of inference on each

image from the dataset. After that, we again record the

end time and synchronize the CUDA device to ensure

accurate timing measurement. To ensure comprehensive

evaluation, we repeat the benchmark function twice:

once for the original model and subsequently for each

FP32 and FP16 optimized model. This rigorous approach

allows us to methodically measure and compare their

performance metrics against the baseline model.

Precision. FP32 uses 32-bit floating-point numbers, of-

fering higher precision. FP16 uses 16-bit, which is less

precise but requires less memory and computational re-

sources.

Performance. FP16 often allows for faster computation

than FP32 because it uses smaller data types. This can

be particularly beneficial in environments in edge devices

where memory bandwidth is a bottleneck.

Memory Usage. FP16 models generally use less mem-

ory compared to FP32, which can be advantageous for

deploying models on memory-constrained devices.

D. RMP -W2: Torch-ONNX-TensorRT

In this workflow, the journey also begins by loading a pre-

trained YOLOv5 small model, from Ultralytics using the

torchhub.load function, as delineated in our previous workflow

RMP -W1. Figure 5 provides a schematic representation of

RMP , which is dedicated to enhancing the inference perfor-

mance of the Yolo model. We now delve into a detailed

illustration of W2, as illustrated in the comprehensive overview

of Figure 5.

1) ONNX Conversion: After loading our model the subse-

quent step involves the transformation of the YOLOv5s

model into the ONNX format. This conversion is essential

for ensuring the model’s compatibility with a broader

range of platforms and optimizing frameworks. The

torch.onnx.export function is employed for this purpose,

effectively translating the PyTorch model into an ONNX

model while preserving its architecture and learned

weights. Following the conversion, the model undergoes a





second (FPS), which are crucial metrics for understand-

ing the model’s performance. vii) Finally, the CUDA

stream was synchronized to ensure all operations were

completed. The active optimization profile was set to 0,

likely to switch back to a default or specific configuration.

Similarly, we implemented benchmark functions (bench-

mark trt FP16) and (benchmark trt INT8), which are

designed to evaluate the performance of a deep learning

model using NVIDIA’s TensorRT with FP16 and INT8

precision. The key steps to implement these functions

are pretty similar. In (benchmark trt FP16), the primary

difference is the precision mode used for inference. This

function benchmarks the model in FP16, which can offer

faster performance and reduced memory usage compared

to FP32, especially on GPUs with Tensor Cores opti-

mized for FP16 calculations. In (benchmark trt INT8),

this function benchmarks the engine in INT8 mode, which

is faster and more memory-efficient than FP32 and FP16,

especially on GPUs optimized for INT8 calculations.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present our inference performance results

in three subsections, discussing the computation metrics for

the inference performance, experimental results, and analysis

for RMT (W1-W2) and RMP (W1-W2).

A. Computation Metrics for Inference Performance

In this subsection, we present how we computed the inference

performance (Execution Time and Throughput) of the model

and TensorRT Engines. For YOLO and similar real-time object

detection systems, both these metrics are critical: A lower

inference execution time ensures that each frame is processed

quickly, which is vital for making immediate decisions based

on the latest available data. A higher inference throughput

means the system can handle more data at any given time,

which is crucial for maintaining real-time performance even

under heavy data loads. Therefore, balancing these two metrics

is a key aspect of designing and tuning real-time object

detection systems.

Inference Execution Time. It refers to the amount of time it

takes for the object detection system to process an input (like

a frame from a video) and produce an output (in this case,

the detection of objects within the frame). A shorter inference

execution time means the system can analyze and respond to

its environment more rapidly. This metric is usually measured

in milliseconds (ms). In our experiments, we measured the

end-to-end execution time of our model’s forward inference

cycle, explicitly focusing on the time taken for the model to

process input and produce output. This measurement deliber-

ately excluded time spent on data retrieval, model initializa-

tion, and input pre-processing to accurately measure the raw

inference performance of the model and engines. For RMT ,

the TensorFlow model (YOLOv4) first subjects to a series of

’warm-up’ runs, a critical step in ensuring that the TensorFlow

execution graph is fully optimized and any JIT (Just-In-Time)

compilation or GPU initialization processes are completed.

This approach mirrors the methodology applied in the PyTorch

analysis, aiming to neutralize any start-up anomalies that might

skew the performance data. Following this, the model was

run for a set number of iterations, with the execution time

for each iteration being precisely captured using the time

module. These recorded times, marking the period from the

initiation to the completion of the inference process, provided

the raw data needed to calculate the average inference time

and FPS. For the PyTorch model (RMP ), we underwent a

similar evaluation. The experiment commenced with a ’warm-

up’ phase, a common practice in deep learning benchmarks to

stabilize performance metrics. Here, we executed the model

inference repetitively for a predefined number of times (50 in

this case) before proceeding to the actual measurements. This

warm-up procedure ensures that any initial latency associated

with model loading or CUDA operations is mitigated, thus

providing a more consistent and reliable measurement during

the benchmarking phase. Following this, we conducted 100

inference runs. In each run, precise time measurements were

captured using Python’s time function, marking the start and

end of the model’s inference process. For every iteration, we

recorded the time immediately before initiating the model

inference (start time) and immediately after its completion

(end time), ensuring synchronization with the GPU using

torch.cuda.synchronize() to obtain accurate timing. The dif-

ference between these two timestamps provided the duration

of each inference, which we added to our timings list.

Inference Throughput. This refers to the number of inputs

(e.g., video frames) the object detection system can process

in a given amount of time. It’s a measure of the overall

processing capacity of the system. Throughput is often mea-

sured in frames per second (FPS). For both TensorFlow and

PyTorch models, the inference throughput was evaluated by

processing multiple data inputs in batches. This methodology

closely resembles real-world scenarios where models often

handle several inputs simultaneously, making it a pertinent

measure of performance. We initialized the model in an

inference mode and prepared a batch of inputs, calibrated

to the model’s input specifications. The experiment ran these

batches through the model repeatedly, ensuring the system’s

computational resources were maximally utilized. The total

number of inferences (the number of batches multiplied by the

batch size) processed in a given time frame was then recorded.

By dividing this number by the total time taken to process

these inferences, we arrived at the throughput rate, measured

in inferences per second. This rate provided a quantifiable

measure of the model’s capacity to process data under load.

B. Experimental Results of RMT (W1-W2)

In this subsection, we present the results for both of the

workflows and our observations based on the results.

Time-critical systems, such as autonomous vehicles, having

a minimum execution time is often more important than

achieving high throughput due to the urgent nature and

immediacy. For such scenarios, for real-time applications, a

minimum batch size is often used to minimize latency. During

inference, batch size determines how many images the model

processes at once. Larger batch size can increase throughput

(number of images processed per second) but also increase

execution time (time to process each individual image). In

our Experiment, we varied the size of the batch between 1

to 8 and the image size of 416 × 416. In Fig. 6 (a), we







ACKNOWLEDGEMENT

This work is supported in part by the National Science

Foundation (NSF) grant, CNS-2103604, CNS-2140346, CNS-

2231523, and CNS-2348151, as well as Commonwealth Cyber

Initiative grant HC-3Q24-048.

REFERENCES

[1] S. Lu and W. Shi, “Vehicle computing: Vision and challenges,” Journal
of Information and Intelligence, vol. 1, no. 1, pp. 23–35, 2023.

[2] H. Raposo, J. T. Farinha, I. Fonseca, and L. A. Ferreira, “Condition
monitoring with prediction based on diesel engine oil analysis: A case
study for urban buses,” in Actuators, vol. 8, no. 1. MDPI, 2019, p. 14.

[3] S. C. Subramanian, S. Darbha, and K. Rajagopal, “A diagnostic system
for air brakes in commercial vehicles,” IEEE transactions on intelligent
transportation systems, vol. 7, no. 3, pp. 360–376, 2006.

[4] I. A. Ntousakis, I. K. Nikolos, and M. Papageorgiou, “Optimal vehicle
trajectory planning in the context of cooperative merging on highways,”
Transportation research part C: emerging technologies, vol. 71, pp. 464–
488, 2016.

[5] S. Lu, R. Zhong, and W. Shi, “Teleoperation technologies for enhancing
connected and autonomous vehicles,” in 2022 IEEE 19th International
Conference on Mobile Ad Hoc and Smart Systems (MASS). IEEE, 2022,
pp. 435–443.

[6] Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path
using sparse trajectories,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 25–34.

[7] I. Karafyllis, D. Theodosis, and M. Papageorgiou, “Nonlinear adaptive
cruise control of vehicular platoons,” International Journal of Control,
vol. 96, no. 1, pp. 147–169, 2023.

[8] S. Lu, Y. Yao, and W. Shi, “CLONE: Collaborative learning on the
edges,” IEEE Internet of Things Journal, vol. 8, no. 13, pp. 10 222–
10 236, 2020.

[9] D. Du, Y. Qi, H. Yu, Y. Yang, K. Duan, G. Li, W. Zhang, Q. Huang,
and Q. Tian, “The unmanned aerial vehicle benchmark: Object detection
and tracking,” in Proceedings of the European conference on computer
vision (ECCV), 2018, pp. 370–386.

[10] K. V. T. Agullo, J. P. A. Sasis, and J. T. Sese, “Air purification system
for air quality monitoring in-vehicle,” in 2022 International Electronics
Symposium (Ies). IEEE, 2022, pp. 136–141.

[11] Y. Zhou and K. Yang, “Exploring tensorrt to improve real-time in-
ference for deep learning,” in 2022 IEEE 24th Int Conf on High
Performance Computing & Communications; 8th Int Conf on Data
Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on
Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys). IEEE, 2022, pp. 2011–2018.

[12] G. Cheng, X. Yuan, X. Yao, K. Yan, Q. Zeng, X. Xie, and J. Han,
“Towards large-scale small object detection: Survey and benchmarks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

[13] J. Zhou, K. Feng, W. Li, J. Han, and F. Pan, “TS4Net: Two-stage sample
selective strategy for rotating object detection,” Neurocomputing, vol.
501, pp. 753–764, 2022.

[14] S. Lu, X. Yuan, and W. Shi, “Edge compression: An integrated frame-
work for compressive imaging processing on cavs,” in 2020 IEEE/ACM
Symposium on Edge Computing (SEC). IEEE, 2020, pp. 125–138.

[15] S. Liang, H. Wu, L. Zhen, Q. Hua, S. Garg, G. Kaddoum, M. M.
Hassan, and K. Yu, “Edge yolo: Real-time intelligent object detection
system based on edge-cloud cooperation in autonomous vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp.
25 345–25 360, 2022.

[16] A. Kozlov and D. Osokin, “Development of real-time adas object
detector for deployment on cpu,” in Intelligent Systems and Applications:
Proceedings of the 2019 Intelligent Systems Conference (IntelliSys)
Volume 1. Springer, 2020, pp. 740–750.

[17] C. Ding, S. Wang, N. Liu, K. Xu, Y. Wang, and Y. Liang, “Req-yolo: A
resource-aware, efficient quantization framework for object detection on
fpgas,” in proceedings of the 2019 ACM/SIGDA international symposium
on field-programmable gate arrays, 2019, pp. 33–42.

[18] M. Subramanian, K. Shanmugavadivel, and P. Nandhini, “On fine-tuning
deep learning models using transfer learning and hyper-parameters opti-
mization for disease identification in maize leaves,” Neural Computing
and Applications, vol. 34, no. 16, pp. 13 951–13 968, 2022.

[19] L. Xu, W. Yan, and J. Ji, “The research of a novel wog-yolo algorithm
forautonomous driving object detection,” 2022.

[20] J. Zhang, P. Wang, Z. Zhao, and F. Su, “Pruned-yolo: Learning efficient
object detector using model pruning,” in International Conference on
Artificial Neural Networks. Springer, 2021, pp. 34–45.

[21] S. Dulepet, P. Maji, M. Harsh, and K. Washabaugh, “Deploying a
scalable object detection inference pipeline part, 2020. erişim tarihi: 21
ralık 2020.”

[22] S. Imambi, K. B. Prakash, and G. Kanagachidambaresan, “PyTorch,”
Programming with TensorFlow: Solution for Edge Computing Applica-
tions, pp. 87–104, 2021.

[23] B. Pang, E. Nijkamp, and Y. N. Wu, “Deep learning with TensorFlow:
A review,” Journal of Educational and Behavioral Statistics, vol. 45,
no. 2, pp. 227–248, 2020.

[24] X. Xia, J. Li, J. Wu, X. Wang, X. Xiao, M. Zheng, and R. Wang,
“TRT-ViT: TensorRT-oriented vision transformer,” arXiv preprint
arXiv:2205.09579, 2022.

[25] “TensorFlow,” https://www.tensorflow.org/, 2015.
[26] “TensorFlow-Extended,” https://www.tensorflow.org/tfx, 2017.
[27] “Pytorch,” https://pytorch.org/, 2016.
[28] “Onnx,” https://onnx.ai/, 2017.
[29] “NVIDIA TensorRT,” https://developer.nvidia.com/tensorrt, 2016.
[30] V. Zunin, “Intel openvino toolkit for computer vision: Object detection

and semantic segmentation,” in 2021 International Russian Automation
Conference (RusAutoCon). IEEE, 2021, pp. 847–851.

[31] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, Y. Kwon, J. Fang,
K. Michael, D. Montes, J. Nadar, P. Skalski et al., “ultralytics/yolov5:
v6. 1-tensorrt, tensorflow edge tpu and openvino export and inference,”
Zenodo, 2022.

[32] L. Shen, H. Tao, Y. Ni, Y. Wang, and V. Stojanovic, “Improved yolov3
model with feature map cropping for multi-scale road object detection,”
Measurement Science and Technology, vol. 34, no. 4, p. 045406, 2023.

[33] O. Shafi, C. Rai, R. Sen, and G. Ananthanarayanan, “Demystifying
tensorrt: Characterizing neural network inference engine on nvidia
edge devices,” in 2021 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2021, pp. 226–237.

[34] H.-K. Hong and J.-W. Jeon, “An optimized multi-object tracking
with tensorrt,” in 2023 International Technical Conference on Cir-
cuits/Systems, Computers, and Communications (ITC-CSCC). IEEE,
2023, pp. 1–4.

[35] H. Wang, C. Shi, S. Shi, M. Lei, S. Wang, D. He, B. Schiele, and
L. Wang, “Dsvt: Dynamic sparse voxel transformer with rotated sets,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 13 520–13 529.

[36] F. Jiang, C. Tu, G. Zhang, J. Li, H. Huang, J. Lin, D. Feng, and
J. Pu, “Revisiting multi-modal 3d semantic segmentation in real-world
autonomous driving,” arXiv preprint arXiv:2310.08826, 2023.

[37] Y. Huang, Y. Zhang, B. Feng, X. Guo, Y. Zhang, and Y. Ding, “A close
look at multi-tenant parallel cnn inference for autonomous driving,”
in IFIP International Conference on Network and Parallel Computing.
Springer, 2020, pp. 92–104.

[38] D.-J. Shin and J.-J. Kim, “A deep learning framework performance
evaluation to use yolo in nvidia jetson platform,” Applied Sciences,
vol. 12, no. 8, p. 3734, 2022.

[39] E. Jeong, J. Kim, S. Tan, J. Lee, and S. Ha, “Deep learning inference
parallelization on heterogeneous processors with tensorrt,” IEEE Em-
bedded Systems Letters, vol. 14, no. 1, pp. 15–18, 2021.

[40] B. Ulker, S. Stuijk, H. Corporaal, and R. Wijnhoven, “Reviewing
inference performance of state-of-the-art deep learning frameworks,”
in Proceedings of the 23th International Workshop on Software and
Compilers for Embedded Systems, 2020, pp. 48–53.

[41] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[42] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[43] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[44] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[45] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[46] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “DSSD:
deconvolutional single shot detector,” arXiv preprint arXiv:1701.06659,
2017.



[47] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263–7271.

[48] Redmon, Joseph and Farhadi, Ali, “Yolov3: An incremental improve-
ment,” arXiv preprint arXiv:1804.02767, 2018.

[49] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[50] D. Wang and D. He, “Channel pruned YOLO V5s-based deep learning
approach for rapid and accurate apple fruitlet detection before fruit
thinning,” Biosystems Engineering, vol. 210, pp. 271–281, 2021.

[51] “Torch-TensorRT,” https://github.com/pytorch/TensorRT, 2023.


