Multi-Accelerator Neural Network Inference via
TensorRT 1n Heterogeneous Embedded Systems

Yuxiao Zhou Zhishan Guo

Texas State University

y_z37 @txstate.edu zguo32@ncsu.edu

Abstract—Neural Network Inference (NNI) has become a crit-
ical element in mobile and autonomous systems, particularly for
time-sensitive operations like obstacle detection and avoidance.
Alongside execution time, energy consumption holds significant
importance in such workloads, given that power is a limited
resource in these systems. Modern System-on-Chips (SoCs) in
mobile and autonomous devices are equipped with a diverse
range of accelerators, each characterized by distinct power and
performance features. Adapting to dynamically changing physical
conditions, the execution flow of these crucial workloads can be
optimized to utilize multiple accelerators, allowing for a flexible
trade-off between performance and energy consumption.

In this study, we leverage multiple accelerators within an
SoC to execute NNI using NVIDIA TensorRT. Our primary
goal is to enable an energy-performance trade-off by intelligently
distributing layers of a neural network between accelerators that
prioritize performance and those that emphasize power efficiency.
Initially, we analyze the execution time and energy characteristics
of neural network layer execution on various accelerators. Subse-
quently, we examine various factors influencing layer execution.
Finally, we propose two algorithms to determine the mapping
of layers to accelerators, minimizing energy consumption while
adhering to a predetermined target NN inference execution time.

We evaluate our approaches on the NVIDIA AGX Orin
SoC using the commonly used ResNet50 model. According to
the experiment results, we suggest adopting a coarse-grained
layer grouping strategy. For applications with stringent real-
time requirements, it is recommended to utilize the proposed
LTN approach to better achieve the target execution time.
Alternatively, in other scenarios, the Knapsack approach may
be chosen for potential improvements in energy consumption.

Index Terms—deep neural networks, heterogeneous systems,
neural networks inference, autonomous systems, SoC, TensorRT,
PyTorch, DLA, edge device.

I. INTRODUCTION

Over the last decade, there has been a widespread growth
of autonomous systems, driven by tremendous advancements
made in high-performance computing (HPC), machine learn-
ing (ML), and robotics. These advancements have supplied the
necessary technical capabilities for achieving full autonomy.
When it comes to safety-critical tasks on autonomous systems,
there is a crucial need for high-performance computing to
meet stringent deadlines for safe execution. However, the
escalating computational requirements lead to increased en-
ergy consumption, effectively equating the power needed for
computation with that required for mechanical operations in a
cyber-physical system (CPS). Therefore, it is crucial to achieve

This work is supported in part by NSF grants CNS-2104181, CMMI-
2246671, CNS-2103604, CNS-2140346, and CNS-2113817.

North Carolina State University

Zheng Dong
Wayne State University
dong@wayne.edu

Kecheng Yang
Texas State University
yangk @txstate.edu

a balance between energy efficiency and performance aligning
with the capabilities of the underlying platform.

Despite the remarkable accuracy and precision achieved
by large, and perhaps enormous, deep neural networks, their
training and inference runtime can be prolonged and sluggish.
Moreover, such extensive model architectures may consume
significant computing resources, even for inference alone.
However, many applications and systems, especially those
embedded, require real-time inference while utilizing limited
hardware resources due to size, weight, power, and cost
(SWaP-C) constraints. For example, autonomous vehicles must
promptly process data from diverse sensors, including cameras
and lidars, to make proper control decisions on a SoC. Simi-
larly, a video surveillance system must analyze video footage
in real-time to detect abnormal activities and trigger timely
warnings. On the other hand, due to privacy and reliability
concerns, much of such computation must be performed on
embedded platforms with limited computing resources.

Contemporary mobile and embedded SoCs, such as Qual-
comm’s Snapdragon [21], Xilinx Zynq Ultrascale+ MP-
SoC [7], and NVIDIA’s Jetson platforms [18], incorporate a
diverse array of specialized accelerators designed for specific
domains. These accelerators are instrumental in performing
critical tasks with minimal latency and power consumption.
For instance, NVIDIA’s Orin SoC is equipped with two dedi-
cated programmable accelerators: an NVIDIA Deep Learning
Accelerator (DLA) and a Programmable Vision Accelerator
(PVA), in addition to a graphical processing unit (GPU) [13].

In some scenarios, certain compute-intensive deep learning
operations, such as convolution, can be performed using
various types of accelerators, including DLA, GPU, or PVA,
on platforms like NVIDIA Jetson. Each of these accelera-
tors exhibits distinct performance and power characteristics.
When faced with such a situation, it may be advantageous
to collaboratively distribute the workload across different
processing units to optimize resource efficiency and utilization.
For example, while the GPU on Orin often provides the best
average execution times, the DLA offers 3-5x more power
efficiency compared to the GPU. Under a certain energy
budget, a practical approach could involve finding a balance
between assigning layers to the GPU for lower execution time
and assigning other layers to the DLA for energy efficiency.
Such a hybrid approach and trade-offs could be particularly
useful for systems where executing all layers on the GPU
would lead to excessive power consumption while executing

all layers on the DLA would result in unacceptable end-to-end
latency.

In mobile and autonomous systems, performance objectives
are not static; rather, they are dynamically influenced by their
environments. Moreover, these systems typically operate with
limited system resources, such as constrained battery capacity.
While the conventional practice involves adjusting processors’
power and frequency using techniques like Dynamic Voltage
and Frequency Scaling (DVES), the recent availability of
alternative accelerators on heterogeneous platforms presents
a new execution paradigm: collaborative Multi-Accelerator
Execution (MAE). The goal of collaborative MAE is to ex-
plore various options, aligning computing resource usage with
the practical physical requirements of the system. However,
this approach has received limited attention in the realm of
research [5].

For instance, the research [20] focuses on optimizing task
distribution among diverse accelerators to improve resource
utilization while adhering to specified constraints. Houssam-
Eddine et al. [11] introduced a real-time application model for
implementing different software component for different pro-
cessing engines on heterogeneous hardware, with an emphasis
on latency-sensitive task scheduling. Dagli et al. [5] propose a
metric in order to measure the energy or performance benefits
of MAE of a given workload. The team’s other work [6]
provided an empirical modeling methodology to characterize
execution and inter-layer transition times and find an optimal
layers-to-accelerator mapping by representing the trade-off as
a linear programming optimization constraint. Odema et al.
[19] proposes a GNN architectural design space along with
potential mapping options on a heterogeneous SoC, aiming to
identify model architectures that optimize on-device resource
efficiency. Another research [1] from the same team proposes
a framework to identify an optimal partitioning scheme of the
NN along its ‘width’ dimension, which facilitates deployment
of concurrent NN blocks onto different hardware computing
units. To the best of our knowledge, none of the existing
studies are able to address the following challenges for MAE:
finding layer-to-accelerator mapping that minimizes energy
consumption with predetermined target NNI execution time.
Contribution. In this research, we focus on diversely het-
erogeneous systems, aiming to distribute the execution of
NNI across different types of accelerators. Our objective is
to investigate and understand the trade-off between execution
time and energy consumption. We achieve this by exploring
the execution of various NNI workloads on a heterogeneous
system through strategic partitioning of layers among multiple
accelerators. Each layer is allocated to a specific accelerator
based on its capabilities to enhance performance for a target
execution completion time.

This paper contributes in the following ways: We demon-
strate the existence of a trade-off between performance and
energy consumption. This trade-off can be effectively managed
by distributing and executing layers across diverse acceler-
ators. We examine various factors affecting the mapping of
layers to accelerators, such as the layer grouping granularity,

the overhead of MAE transition, and the input batch size.
These factors have not been previously investigated. We in-
troduce two multi-accelerator execution schemes for diversely
heterogeneous SoCs, which identify schedules with near-
optimal energy consumption for a given execution completion
time. We evaluate two proposed algorithms on the NVIDIA
AGX Orin by using its embedded GPU and DLA. We discuss
the pros and cons of both algorithms.

Organization. The rest of this paper is organized as fol-
lows: Sec. II gives a background overview of TensorRT and
NVIDIA DLA. Sec. III presents the motivation, challenges,
and considerations of our research. Sec. IV describes a case
study, including experiment setup, proposed algorithms, and
evaluation of algorithms. Sec. VI provides more related works,
while Sec. VII concludes our work.

II. BACKGROUND AND RELATED FRAMEWORKS

NVIDIA Orin SoCs consist of various programmable ac-
celerators, including a GPU, a PVA, and two DLAs, comple-
mented by robust tools for performance and energy measure-
ment [13]. In this research, we focus on MAE for NNI on the
DLA and GPU of the Orin platform.

TensorRT. TensorRT is a comprehensive framework compris-
ing an NNI optimizer and runtime, aimed at achieving excep-
tional performance across a range of platforms. The TensorRT
engine builder is a critical component that implements pre-
runtime optimizations, including layer fusing, precision fine-
tuning, and reduction of memory requirements. [4].
NVIDIA Deep Learning Accelerator (DLA). NVIDIA DLA
is a specialized hardware accelerator designed to accelerate
NNI tasks. It incorporates a dedicated pipeline with layer-
specific engines optimized for convolution, activation, pooling,
and reshaping operations, all of which are essential in neural
network computations. In the NVIDIA Orin SOC, DLA of-
fers significant performance capabilities, achieving 52.5 Tera
Operations Per Second (TOPS) with int8 precision at MAXN
power mode[3].

In NVIDIA Orin SoC, the DLA plays a crucial role in the
overall deep learning performance, contributing between 38%
and 74% of the total DL performance, depending on the power
mode. Despite its high performance, the power consumption
of DLA is considerably lower than that of the GPU, resulting
in an impressive performance-per-watt ratio. On average, the
DLA offers 3—5 times better performance per watt compared
to the GPU, depending on the power mode and workload [3].
Offloading inference tasks to the DLA allows the main GPU
to focus on other computations or remain in a low-power state,
contributing significantly to overall energy efficiency.

III. MULTI-ACCELERATOR EXECUTION

A. Motivation

Heterogeneous SoCs integrate diverse cores with different
performance and energy tradeoffs [2]. In heterogeneous SoCs,
an operation within an application may be accelerated through
distinct accelerators, each possessing varying performance,

— Execution Time

0.35

0.30

Energy (J)

]

Execution Time (ms)

0.20

N

0.10 10
0 10 20 30 40 50
Number of Layers on DLA

Fig. 1. Tradeoff between energy consumption and execution time.

power efficiency, and execution time characteristics[5]. Op-
timizing the optimal execution time and energy efficiency for
such an operation requires considering both the capabilities of
the accelerator and the properties of this operation. To address
various system requirements and runtime parameters of the
operation, it becomes essential to have the capability to map
different operations to diverse accelerators throughout the ap-
plication’s execution. Conversely, the collaborative execution
of workloads like NNI on multiple accelerators represents a
relatively novel and unexplored approach that holds the po-
tential for delivering unique advantages in budgeted execution
scenarios.

To illustrate the viability of such executions, we present
preliminary findings from an experiment outlined in Fig. 1.
Our results demonstrate that distributing the layer of an NNI
across a GPU and a DLA in a collaborative manner could
allow for a customizable balance between power consumption
and performance on NVIDIA’s Orin system. Specifically, by
executing more layers of the network on the DLA while
running the remainder on the GPU, we can notably enhance
power efficiency at the cost of slightly increased execution
time and vice versa[5].

B. Challenges

In neural network inference, achieving the desired trade-
off necessitates a meticulous allocation of workloads across
accelerators. Nevertheless, employing multiple accelerators to
optimize the system’s utilization while adhering to resource
constraints, presents a set of challenges.

Lack of flexibility in layer-to-accelerator assignment. The
lack of flexibility in assigning layers to accelerators poses a
significant challenge. Each accelerator has specific limitations
regarding the types of operations it can effectively handle.
Currently, the DLA in Jetson Orin SoC can only be accessed
through the TensorRT library, with some generic and layer-
wise limitations. For instance, some less common layers like
LeakyReLLU and GlobalAveragePool are not supported by
TensorRT for DLA execution. Additionally, NVIDIA’s DLA
imposes restrictions on layer parameters and batch sizes; for
instance, it does not support dynamic dimensions, and the
maximum allowed batch size is 4096 [17]. While TensorRT
treats activation functions as distinct layers within its layer set,

it doesn’t allow the separate assignment of activation layers
and other layers across different accelerators. Furthermore,
transitioning from DLA to GPU after specific layers is not
allowed in TensorRT [6]. These constraints lead to certain
layers fall back to the GPU, even if the intention was for
them to execute on the DLA. This situation may require
flushing all transient data from the previous layer back to the
system memory. As a result, the potential transition points
between accelerators are inflexible and depend on both the
neural network’s architecture and the characteristics of the
accelerators.

Profiling. Certain highly specialized accelerators, including
DLA, process consecutively assigned layers as a unified entity
and do not permit internal profiling of execution times and
energy consumption on a layer-by-layer basis. This constraint
poses a significant challenge for mapping layers to accelera-
tors, as it hinders detailed performance characterization at a
layer level.

C. Our Considerations

Developing a comprehensive schema for multi-accelerator

neural network inference on diversely heterogeneous SoCs ex-
ecution requires careful consideration of the following aspects.
Characterizing execution time and power consumption.
Processing units such as CPU, GPU, and DLA have distinct ar-
chitectural designs and constraints, influencing the workloads
they can handle To enable heterogeneity-aware assignment of
layers, it is crucial to measure or predict characteristic features
of layers. Recent performance analysis on neural networks
in embedded environments demonstrates computation com-
plexity and memory communication dependent on numerous
parameters. These parameters can be challenging to detect
and optimize during compile time. Key factors such as kernel
size, operation type, input matrix dimensions, activation size,
and activation function significantly impact the execution time
and power consumption of operations in neural networks.
Understanding and considering these parameters are critical
for effective workload distribution and optimization across
different accelerators [5].
Load balancing to maximize system efficiency. Achieving
maximum efficiency in the system requires careful considera-
tion of load balance, particularly because PUs possess varying
computing power capabilities, and tasks consist of multiple
subtasks with differing complexities. Different types of PUs
exhibit diverse capabilities in running kernels based on the
operation type and data size. To optimize performance utilizing
the available PUs, it is essential to distribute the workload
among PUs, considering estimated or expected execution time
and energy consumption. Load distribution is a well-studied
mapping problem, known to be NP-complete [23]. Existing
solutions, often utilize heuristics or dynamic scheduling tech-
niques to effectively manage load distribution across PUs.
Failing to achieve a balanced distribution of workloads across
PUs may lead to an overall slowdown of the system, under-
scoring the importance of effective load-balancing strategies
for maximizing system efficiency [5].

IV. METHODOLOGY

In this section, we provide an in-depth explanation of our
methodology, focusing on the selection of MAE transition
points (MTPs) and the establishment of layer mappings in col-
laborative MAE, using a case study as a framework. Initially,
we examine various factors impacting MTP selection including
layer grouping granularity, characterization of layer groups
across different accelerators, overhead of MAE transition, and
input batch size. Following this, we introduce two algorithms
specifically designed to identify near-optimal locations for the
MTPs.

A. Setup

In this research, we utilized NVIDIA’s Jetson AGX Orin
SoCs. This system is chosen for its incorporation of one
high-performance GPU and two DLAs. Our experimentation
was restricted to utilizing a single DLA due to TensorRT’s
limitation in simultaneously employing multiple DLAs for
executing a given neural network. NVIDIA provides a com-
prehensive solution, JetPack, for hardware-accelerated Al-at-
the-edge development on Nvidia Jetson modules. The most up-
to-date JetPack version facilitated the necessary configuration
for our experiment. This setup encompassed TensorRT 8.5.2,
cuDNN 8.6.0 and CUDA 11.4.19 [15].

We leveraged the TensorRT engine to optimize pre-
trained PyTorch models from the PyTorch TorchVision library
repository. Specifically, we conducted experiments using the
ResNet50 [10], a classic neural network used as a backbone
for many computer vision tasks. The other reason we focus
on ResNet50 is that all layers in ResNet50 can be scheduled
on both the GPU and the DLA. This allows us to flexibly
explore all possible layer-to-accelerator assignments, without
the TensorRT engine falling back to GPUs.

For transitioning a specific layer from the GPU to DLA,
manual programming is necessary. We first check whether a
layer can run on DLA by using canRunOnDLA TensorRT
API calls, and then set the device that this layer must execute
on through the setDeviceType TensorRT API call. Conversely,
transitioning back to GPU from DLA occurred when a planned
DLA execution fell back to GPU or setDeviceType was not
specified for a particular layer. Additionally, all layers within
a network could be globally configured to execute on DLA by
setting the useDLACore parameter for the TensorRT runtime
executable, trtexec [17].

B. Factors Affecting the Selection of MAE Transition Point

We examine the trade-off related to MAE by exploring the
selection of the MTPs, shown in Fig. 2, which determines the
transition of execution flow between accelerators. We make
three assumptions: (1) execution starts in either the GPU or
DLA, (2) there exists multiple MTPs during the execution of
an NNI, and (3) the DLA and GPU are mutually exclusive
and not utilized simultaneously.

Layer grouping granularity. In convolutional neural net-
works (CNNs), fundamental layers like Convolution layers
are commonly succeeded by specific operations like ReLU

— —> > —> —> > —> — —>
One transition and two MTPs
— —> > —> —> > =¥ —> —>
DLA
Two transitions and four MTPs
O eru
— —3 > = — > X — —
MTP
Three transitions and six MTPs
Fig. 2. Diagram to illustrate various numbers of MTPs.

Vertical

Fusion CBR

Vertical

Fusion CBR

Text

Conv2D

Vertical : |
Fusion H CER

BatchNorm = >:

Fig. 3. Layer grouping based on bottleneck.

and Pooling. These sequences of layers are often consoli-
dated into larger layer groups to reduce memory transfers,
decrease computation overhead, and enhance overall infer-
ence speed. This optimization, called fusion, is carried out
automatically during the TensorRT engine building phase.
Fusions are normally handled by creating a new layer with
a name containing the names of both of the layers that were
fused. For example, in ResNet50, a Convolution layer named
/convl/Conv is fused with a ReLU Activation layer named
relu/Relu; to create a new layer named /convl/Conv
+ relu/Relu [17]. We refer to these layer groups based on
TensorRT fusion as fine-grained groups.

In the ResNet50, the bottleneck Residual Block is proposed,

as a combination of a sequence of three convolution layers
utilizing filters with sizes of 1 x 1, 3 x 3, and 1 x 1 respec-
tively. These bottleneck blocks are often replicated multiple
times, allowing for variations in matrix and convolutional
filter sizes [25]. To optimize memory usage and reduce access
overheads between layers within the bottleneck, we group 53
fused layers into 17 groups for group-to-accelerator mapping.
We refer to these bottleneck-based layer groups as coarse-
grained groups. Both grouping strategies are employed in this
research to analyze how the granularity of layer grouping
affects the overall network performance.
Characterization of layer groups. Once we establish the
granularity for layer grouping, we proceed to analyze ac-
celerator performance during distinct group executions. We
assess how each accelerator performs when handling these
grouped layers and measure the neural network’s resource
utilization on a group-by-group basis. This evaluation allows
us to understand how efficiently the resources are utilized
within each group.

0.14

0.12

0.10

0.08

0.06

0.04

Execution Time (ms)

ANCA
0020 /\\/x /\/\,,\f\/—f /\/ALA,/\/\,/\./ A

0.00
0 10 20 30 10 50

Layer Index
Fie. 4. Execution time of fine-grained Groun on DLA and GPU.

0.200 DLA J\
. — GPU \
5

o / \
0.150 f L T
/
0.125 \ f

= [
— \ f
== /

0.100

0.075
AN
0.050 /,//\J\\\ J\,, ’/’/ \"\'~
/ L .

0.025

Execution Time (ms)

/

0.000
4 6 8 10 12 14 16

Layer Index

Fig. 5. Execution time of coarse-grained Group on DLA and GPU.

(1) Execution time on DLA and GPU. In the experimentation
process, we initially allocate all layers to the GPU and
profile the inference time of each layer on the GPU using
trtexec. Subsequently, we iterate through the experiment
by transitioning from GPU to DLA for each layer group,
measuring the execution time of these layers on DLA.

The results are illustrated in Fig. 4 and Fig. 5, demonstrating
the impact of transitioning each layer group on execution time.
It’s observed that depending on the data size, operations within
fine-grained groups on the GPU exhibit a speed advantage
ranging from approximately 3.13x to 7.03x over the DLA. On
the other hand, within coarse-grained groups, the GPU’s speed
advantage over DLA fluctuates between 1.84x to 6.78x. The
DLA demonstrates improved performance when processing
layers towards the earlier stages of ResNet50. This is attributed
to the usage of smaller kernel sizes in those layers. Smaller
kernels require less computation and are more efficient to
execute. The GPU excels at leveraging greater data parallelism
when using larger kernels, while the compact buffers in the
DLA prove highly effective with smaller matrix sizes.

(2) Energy consumption on DLA and GPU. We obtain the
energy consumption by integrating the PU-specific power con-
sumption values reported by tegrastats, a utility that provides
information on memory usage and processor usage for Tegra-
based devices. The reported power consumption values are for
three power rails: VDD_GPU_SOC (GPU and SOC Combined
power rail), VDD_CPU_CV (CPU and CV Combined power
rail) and VIN_SYS_5V0 (System 5V power rail) [16]. From
these values, we estimate the GPU and DLA power consump-
tion. The energy consumption is then computed by multiplying
the estimated average power consumption by the execution
time. We show the comparison of energy consumption of each
layer group on GPU and DLA in Fig. 6 and Fig. 7. For energy

0.40

0.30

J)

y (m]

£50.20

Ener

A\ AN A A /
\S\J\SVANNAANAN~

0.10
0.05

0.00
0 10 20 30 40 50

Layer Index

Fig. 6. Energy consumption of fine-grained group on DLA and GPU.

1.2
—— DIA A

GPU I\
Lo = f

4 6 8 10 12 14 16
Layer Index

Fig. 7. Energy consumption of coarse-grained group on DLA and GPU.

consumption, operations in fine-grained groups on the GPU
utilize 1.34x to 3.01x more energy compared to the DLA.
In the coarse-grained group, the GPU’s energy consumption
exceeds that of the DLA by a factor ranging from 1.06x to
3.92x.

Overheads of MAE transition. Transferring a layer from one
accelerator to another involves relocating the input/output data
of the layer across the memory subsystems of both units. In
Jetson Orin, particularly within the DLA, there is a local buffer
for efficiency and reduced DRAM width. When executing a
group of layers in the DLA, if the execution needs to transition
to the GPU, this switch preserves the state of the local buffer
in the DLA by transferring it to the shared memory of the
SoC.

Once the last DLA layer’s output becomes visible to other
PUs within the SoCs, the GPU proceeds with executing the
remaining layers using the CuDNN kernel call integrated by
the TensorRT engine. Additionally, after the transition, the
initial memory instructions executed by the GPU lead to cold
cache misses. Consequently, this triggers a warm-up phase,
resulting in a slowdown in layer execution for an unspecified
duration. The duration of this slowdown depends on factors
such as cache size, the number of ports, and the available
memory bandwidth [6].

We estimate the overhead of MAE transition by calculating
the difference between the inference time of the combined
layer and the cumulative execution time of separate layers. The
calculated transition overhead is illustrated in both Fig. 8 and
Fig. 9 for both groups. Fig. 8 suggests that there is a relatively
higher MAE transition overhead between each bottleneck in
ResNet50.

Impact of batch size. It is noteworthy the preceding exper-

Overhead of MAE Transition (ms)

Layer Index

Fig. 8. Overhead of MAE transition on fine-grained Group.

0 2 i E B 10 12 A 6

Layer Index

Overhead of MAE Transition (ms)

Fig. 9. Overhead of MAE transition on coarse-grained Group.

iments were conducted with a batch size set to one. This
specific configuration provides a baseline understanding of the
system’s performance under minimal processing load. Given
that increasing the batch size often improves total throughput,
we want to further investigate how variations in batch size
can impact overall execution time and energy consumption on
both DLA and GPU.

Illustrated in Fig. 10 through Fig. 13 are the relative
energy and power consumption ratios of DLA, with GPU
values serving as the baseline, for both fine-grained group and
coarse-grained group. The trend in the result underscores that
DLA exhibits optimal performance-to-energy efficiency when
operating with lower batch values.

C. MAE Transition Point Selection

Having examined the factors influencing the choice of
the MTP, we propose two distinct approaches targeted at
selecting the MTP while adhering to specified execution time
constraints. The core idea underlying these approaches is
to minimize energy consumption while imposing an upper
limit on the execution time of NNI. By integrating execution
time constraints into the selection process for the MTP, we
aim to ensure that the system operates within defined time
boundaries while striving to achieve the most energy-efficient
configuration.

Given that DLA demonstrates optimal performance and
energy efficiency at lower batch sizes, our experiments are
carried out within the batch size range of 1 to 4.

Limited Number of Transitions Approach. The Limited
Number of Transition (LNT) approach involves exploring the

—— batch size: 1
—— batch size: 2

§)

batch size: 4
batch size: 8
batch size: 16

5

Ratio of Execution Time on DLA over GPU

20 30 40 50
Layer Index

Fig. 10. Impact of batch size on execution Time of fine-grained group on
DLA and GPU.

batch size: 1
batch size: 2
batch size: 4
batch size: 8
batch size: 16

0.8

0.6

0.4

0.2

0.0

Ratio of Energy Consumption on DLA over GPU

Layer Index

Fig. 11. Impact of batch size on energy consumption of fine-grained group
on DLA and GPU.

optimal set of a restricted number of MTPs, all aimed at
minimizing energy consumption.

Initially, the method generates combinations of n MTPs
from the entire set while satisfying predefined execution time
constraints. Consistent with previous studies, as noted in [6],
we impose a limitation on the value of n, restricting it to six.
Subsequently, the algorithm identifies the near-optimal combi-
nation that not only satisfies the execution time constraints but
also achieves the maximum reduction in energy consumption.
This iterative process ensures a thorough search for the most
energy-efficient configuration considering both execution time
requirements and the need for energy resource conservation.
Knapsack Approach. In this approach, the MTP selection is
modeled as a Knapsack problem. The objective is to navigate
a set of CNN layer groups, each linked with an energy
gain (profit) and an execution time (weight). The challenge
is to identify a subset of these layer groups that yield the
maximum total energy gain while adhering to an execution
time requirement that should not exceed the given capacity,
similar to a container (knapsack).

The energy gain is calculated as the relative energy con-
sumption ratios of GPU, with DLA values serving as the
baseline. This approach utilizes the knapsack to solve the
problem of MTP selection, ensuring a trade-off between
energy consumption and execution time constraints.

V. EXPERIMENT RESULTS AND EVALUATION

In our experiment evaluating the the feasibility of proposed
algorithms, we provide the profiling results of the layer group

\

—— batch size: 1
batch size: 2
batch size: 4
batch size: 8
batch size: 16

/
/

MTP Selection Approach

LNT: I Transition

LNT: 2 Transitions

LNT: 3 Transitions

Knapsack

Batch Size = 1

)

3

3

2

Batch Size = 2

P

3

3

3

Batch Size = 4

T

T

T

3

ANAa=a—/

4 7\\;—:’%;:: -

Ratio of Execution Time on DLA over GPU

4 6 8 10 12 14 16
Layer Index

Fig. 12. Impact of batch Size on execution Time of coarse-grained group on
DLA and GPU.

\ —— batch size: 1
\ —— batch size: 2 —
\ batch size: 4 '

\ \ batch size: 8 /
batch size: 16

©

Ratio of Execution Time on DLA over GPU

0.0 !
Layer Index

Fig. 13. Impact of batch size on energy consumption of coarse-grained group
on DLA and GPU.

including execution time, and energy, as inputs to the algo-
rithms. The algorithms then compute near-optimal transition
points as output based on the provided data. Subsequently,
we use these transition points to generate TensorRT engines,
enabling efficient optimization of the NNI for MAE. It’s
noteworthy that valid MTPs cannot be found under certain
execution time constraints in some cases.

We present our results on execution time from both ap-
proaches in Fig. 14 and Fig. 15. The X-axis represents the
target execution completion time. The Y-axis illustrates the ac-
tual measured execution times, corresponding to each specific
upper limit on execution time. In Table I and Table II, we list
the number of executions completed within time constraints
on both groups.

In summary, our experiment results indicate engines ac-
quired via both approaches can complete the majority of
inferences within predefined time constraints on fine-grained
groups. However, the measured times fall significantly below
the specified limits for the LNT approach with one transition.
These differences imply that some layers still remain on the
GPU, potentially leading to additional energy consumption.
The cause might be that the layer execution time reported by
the TensorRT profiler may include the transition overhead, and
having only one transition point may not result in significant
overhead.

In coarse-grained groups, it is worth noting engines obtained
through the Knapsack approach incur less execution time than
all engines from the LNT approach when the input batch size
is set to one. However, with an increased input batch size of
four, the Knapsack approach can only finish one inference out
of four within the specified time limits.

TABLE 1

NUMBER OF EXECUTIONS COMPLETED IN TARGET TIMES ON
FINE-GRAINED GROUPS.

MTP Selection Approach

LNT: I Transition

LNT: 2 Transitions

LNT: 3 Transitions

Knapsack

Batch Size = 1

7

3

3

Batch Size =2

7

3

2

2

Batch Size = 4 4 3 2 1

TABLE 1T
NUMBER OF EXECUTIONS COMPLETED IN TARGET TIMES ON
COARSE-GRAINED GROUPS.

From Fig. 16 to Fig. 17, we present an extensive comparison
of the energy consumption for the TensorRT engines derived
from both the LTN and the Knapsack Approach.

Based on the comparison results, the advantage of a coarse-
grained layer grouping strategy over a fine-grained one is ob-
vious. For the fine-grained groups, engines produced through
both approaches might have a higher energy consumption
compared to an engine where all layers are allocated to
the GPU especially when the target time is limited. This
phenomenon is not observed when employing coarse-grained
grouping.

It is noted that engines created using the Knapsack approach
demonstrate lower energy consumption than those generated
by the LTN Approach within the coarse-grained group when
the input batch size exceeds one. However, this comes at the
expense of a bit higher execution time costs, surpassing the
target time.

While increasing the number of transitions in the LTN
approach doesn’t significantly impact energy consumption,
there is a consistent rise in execution time with an increased
number of transitions.

Based on prior observations, we recommend using a coarse-
grained layer grouping strategy for layer mapping on acceler-
ators. For applications with strict real-time requirements, we
suggest adopting the LTN approach and setting the number of
transitions to one. Conversely, in scenarios where this is not
the case, we recommend utilizing the Knapsack approach.

VI. RELATED WORK

Yang et al. [24] proposed a hierarchical DL tasks distribu-
tion framework, where the unmanned aerial vehicles (UAV) are
embedded with lower layers of the pre-trained CNN model,
while the mobile edge computing (MEC) server with rich
computing resources will handle the higher layers of the CNN
model. This research work mainly focuses on the trade-off
between the weighted-sum cost and inference error rate in the
proposed framework.

There are also research works focusing on the knowledge
of the energy consumption behaviors of different CNNs and
training frameworks. For example. Li et al. [14] performed
an extensive assessment of the energy efficiency of training
frameworks for deep CNN. Martin et al. [9] offers an overview

""" Reference Line
e LNT: 1 Tansition

1.20 e LNT: 2 Tansitions
LNT: 3 Tansitions
+ Knapsack
1.15
z 1.10
=
o
7 1.05 *
o
]
g 1.00 3 3
.
0.95
.
g :
0.90 3
0-85 0.9286 1.0126 1.0966 1.1806
Time Targeted(ms)
(a) batch size = 1
1.8 Reference Line
' s 1 Tansition
» 2 Tansitions
3 Tansitions
17 + Knapsack
1.6
@
E
K
51.5
@
8 .
)
2
E14
& .
.
~ . ? .
1.3 ¢
. .
} .
12 %
.
1.2057 1.4057 1.6057 1.8057
Time Targeted(ms)
(b) batch size = 2
Reference Line
3.0 e 1 Tansition
s 2 Tansitions
3 Tansitions
* Knapsack
2.8
2.6
g
=1
g
824
< .
=
p .
g . .
S22
.
H
. .
2.0
.
.
1.8
L}
1.868 2.268 2.668 3.068

Time Targeted(ms)
(c) batch size = 4

Fig. 14. Times measured vs target times on fine-grained groups.

of various methods for estimating energy consumption in both
general computational contexts and, more specifically, within
machine learning applications. They also introduce software
tools that provide energy estimation metrics. However, all

1.20

-
N
=)

Time Measured(ms)
=)
&

1.00

0.95

0.90

o =

Time Measured(ms)
-

IS

1.3

3.25

3.00

2.75

2.50

Time Measured(ms)

2.00

1.50

""" Reference Line
e LNT: 1 Tansition
e LNT: 2 Tansitions
LNT: 3 Tansitions

* Knapsack
.
. .
.
.
. .
s .
0.9286 1.0126 1.0966 1.1806

Time Targeted(ms)

(a) batch size = 1

Reference Line
e LNT: 1 Tansition
e LNT: 2 Tansitions
LNT: 3 Tansitions

« Knapsack e
.
.
.
.
. .
.
.
.
3
1.2057 1.4057 1.6057 1.8057

Time Targeted(ms)

(b) batch size = 2

Reference Line
e LNT: 1 Tansition
e LNT: 2 Tansitions
LNT: 3 Tansitions
¢ Knapsack

.o

1.868 2.268 2.668

Time Targeted(ms)

(c) batch size = 4

3.068

Fig. 15. Times measured vs target times on coarse-grained groups.

these studies do not consider account the trade-off between
time and energy as a metric in multi-accelerator systems.

To increase neural network performance, some researchers
emphasize data parallelism, effectively splitting the data be-

14 GPU Only
LNT: 1 Tansition
12 LNT: 2 Tansitions
LNT: 3 Tansitions
Knapsack
E 10
|
S
B
£ 8 —
=
2
=
3
5. 6
2
o
=]
[=3)

>~

0.9286 1.0126 1.0966 1.1806
Time Targeted(ms)

(a) batch size = 1

1
. === GPU Only s
I LNT: 1 Tansition
17.5 . LNT: 2 Tansitions
Bmm LNT: 3 Tansitions
Knapsack
QIS.O
g
=
2125 L
=3
g
=
£10.0- ——
o
o
=)
275 —
=
[=5)
5.0 —
2.5
0.0 ; ; ’
1.2057 1.4057 1.6057 1.8057

Time Targeted(ms)

(b) batch size = 2

35 GPU Only
LNT: 1 Tansition
LNT: 2 Tansitions
LNT: 3 Tansitions
Knapsack
5
0

1.868 2.268 2.668 3.068
Time Targeted(ms)

w
o

N
3

%)
=]

Energy Consumption(m])
—
w

—-
o

(c) batch size = 4

Fig. 16. Energy consumption on fine-grained groups.

tween available devices. Collaboratively utilizing multiple
accelerators can outperform a single PU. Achieving a well-
distributed workload between them, depending on the data
size, can lead to a higher speed-up. In this research [§], a
framework is introduced that seamlessly integrates FPGAs, en-

Energy Consumption(m])

mmm GPU Only
12 Bm LNT: 1 Tansition
mm LNT: 2 Tansitions
mmm LNT: 3 Tansitions
10 Knapsack
8-
6 |
4
2 |
0

0.9286 1.0126 1.0966 1.1806
Time Targeted(ms)

(a) batch size = 1

20.0 t
mmm GPU Only
B LNT: 1 Tansition
17.5 W LNT: 2 Tansitions
mmm LNT: 3 Tansitions
15.0 Knapsack
=
&
5125
B
g
£10.0
o
)
B 75 =
o
]
[=5)
5.0
2.5- —
0.0 . p
1.2057 1.4057 1.6057 1.8057

Time Targeted(ms)

(b) batch size = 2

I
== GPU Only
Bm LNT: 1 Tansition
mmm LNT: 2 Tansitions
Bmm LNT: 3 Tansitions
Knapsack L
2.268 2.668

3.068

-) [¥)
3 =] 3]

Energy Consumption(m])

—
o

30

5-
0 1.868 .
Time Targeted(ms)

(c) batch size = 4

Fig. 17. Energy consumption on coarse-grained groups.

abling effective cooperation between CPU, GPU, and FPGA.
Song et al. [22] propose a solution named HYPAR to deter-
mine layer-wise parallelism for deep neural network training
with an array of DNN accelerators. They use a hierarchical
layer-wise dynamic programming method to search for the

partition for each layer. However, these studies do not consider
energy as a metric when distributing workloads among PUs.

The improvement of neural network effectiveness, consid-
ering latency per energy, is typically achieved by automating
hardware allocation for Deep Neural Networks (DNNs). Kao
et al. propose a specialized genetic algorithm-based technique
called GAMMA, outlined in their work [12]. GAMMA is
tailored to address the per-layer DL accelerator mapping
problem. Their approach involves constructing a flexible map-
ping space and demonstrates GAMMA'’s ability to efficiently
navigate this space and determine an optimized mapping
with a high degree of sample efficiency. The optimization
objective of GAMMA encompasses both latency and energy
minimization. It’s important to note that GAMMA primarily
focuses on optimizing the tiling strategy, computation order,
and parallelization strategy, distinguishing its scope from the
objectives of our work.

VII. CONCLUSION

This study investigates the trade-off between energy con-
sumption and execution time within deep neural network
models on SoCs with diverse heterogeneity. The research
highlights how different accelerators within the system could
benefit specific layers within a neural network differently
in terms of execution time and energy consumption. We
discuss the motivation, challenges, and consideration of MAE,
exploring factors affecting the selection of MTPs in MAE. We
proposed two algorithms, the LTN approach and the Knapsack
approach, for MAE transition point selection which minimize
the energy consumption while achieving target neural net-
work inference execution times. We evaluate our methodology
using ResNet50 on NVIDIA Jetson Orin SoCs. Based on
the experiment results, we recommend using a coarse-grained
layer grouping strategy. For applications with strict real-time
requirements, consider employing the LTN approach, while in
other scenarios, opt for the Knapsack approach for potentially
better energy consumption.

REFERENCES

[1] Halima Bouzidi, Mohanad Odema, Hamza Ouarnoughi, Smail Niar, and
Mohammad Abdullah Al Faruque. Map-and-conquer: Energy-efficient
mapping of dynamic neural nets onto heterogeneous mpsocs. In 2023
60th ACM/IEEE Design Automation Conference (DAC), pages 1-6.
IEEE, 2023.

[2] Xing Chen, Anish Krishnakumar, Umit Ogras, and Chaitali Chakrabarti.
Ped: Probabilistic energy-efficient deadline-aware scheduler for hetero-
geneous socs. Journal of Systems Architecture, 147:103051, 2024.

[3] Ram Cherukuri and Oliver Knieps. Maximizing
deep learning performance on nvidia jetson orin
with dla. Online at https://developer.nvidia.com/blog/

maximizing-deep-learning- performance-on-nvidia-jetson-orin- with-dla/.

[4] NVIDIA Corporation. Nvidia tensorrt. Online at https://developer.nvidia.
com/tensorrt.

Ismet Dagli and Mehmet E Belviranli. Multi-accelerator neural net-
work inference in diversely heterogeneous embedded systems. In
2021 IEEE/ACM Redefining Scalability for Diversely Heterogeneous
Architectures Workshop (RSDHA), pages 1-7. IEEE, 2021.

Ismet Dagli, Alexander Cieslewicz, Jedidiah McClurg, and Mehmet E
Belviranli. Axonn: Energy-aware execution of neural network inference
on multi-accelerator heterogeneous socs. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pages 1069-1074, 2022.

[5

=

[6

=

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Advanced Micro Devices. Zynq™ ultrascale+™ mpsoc.
Online at https://www.xilinx.com/products/silicon-devices/soc/
zynq-ultrascale-mpsoc.html.

Maria Angélica Davila Guzman, Rail Nozal, Rubénand Gran Tejero,
Maria Villarroya-Gaudd, Dario Sudrez Gracia, and Jose Luis Bosque.
Cooperative cpu, gpu, and fpga heterogeneous execution with enginecl.
The Journal of Supercomputing, 75:1732-1746, 2019.

Eva Garcia-Martin, Crefeda Faviola Rodrigues, Graham Riley, and
Hékan Grahn. Estimation of energy consumption in machine learning.
Journal of Parallel and Distributed Computing, 134:75-88, 2019.
Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778,
2016.

Zahaf Houssam-Eddine, Nicola Capodieci, Roberto Cavicchioli,
Giuseppe Lipari, and Marko Bertogna. The hpc-dag task model for
heterogeneous real-time systems. [EEE Transactions on Computers,
70(10):1747-1761, 2021.

Sheng-Chun Kao and Tushar Krishna. Gamma: Automating the hw
mapping of dnn models on accelerators via genetic algorithm. In
Proceedings of the 39th International Conference on Computer-Aided
Design, pages 1-9, 2020.

Leela S. Karumbunathan. Nvidia jetson agx orin series. Online at
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/
nvidia- jetson-agx-orin-technical-brief.pdf.

Da Li, Xinbo Chen, Michela Becchi, and Ziliang Zong. Evaluating the
energy efficiency of deep convolutional neural networks on cpus and
gpus. In 2016 IEEE international conferences on big data and cloud
computing (BDCloud), social computing and networking (SocialCom),
sustainable computing and communications (SustainCom)(BDCloud-
SocialCom-SustainCom), pages 477-484. IEEE, 2016.

NVIDIA. Jetpack sdk 5.1. Online at https://developer.nvidia.com/
embedded/jetpack-sdk-51.

NVIDIA. Jetson orin nx series and jetson agx orin
series. Online at https://docs.nvidia.com/jetson/archives/r35.

2.1/DeveloperGuide/text/SD/PlatformPowerAndPerformance/
JetsonOrinNxSeriesAndJetsonAgxOrinSeries.html.

NVIDIA. Nvidia deep learning tensorrt documentation. Online
at https://docs.nvidia.com/deeplearning/tensorrt/developer- guide/index.
html#dla_topic.

NVIDIA. Nvidia jetson. Online at https://www.nvidia.com/en-sg/
autonomous-machines/embedded- systems/.

Mohanad Odema, Halima Bouzidi, Hamza Ouarnoughi, Smail Niar,
and Mohammad Abdullah Al Faruque. Magnas: A mapping-aware
graph neural architecture search framework for heterogeneous mpsoc
deployment. ACM Transactions on Embedded Computing Systems,
22(5s):1-26, 2023.

Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume
Abella, and Francisco J. Cazorla. Generating and Exploiting Deep
Learning Variants to Increase Heterogeneous Resource Utilization in the
NVIDIA Xavier. In 31st Euromicro Conference on Real-Time Systems
(ECRTS 2019), volume 133, pages 23:1-23:23, 2019.

Qualcomm. Deliver next-generation mobile experiences with snapdragon
mobile platforms and processor technologies. Online at https:/www.
qualcomm.com/products/technology/processors/mobile-processors.
Linghao Song, Jiachen Mao, Youwei Zhuo, Xuehai Qian, Hai Li, and
Yiran Chen. Hypar: Towards hybrid parallelism for deep learning
accelerator array. In 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 56—68, 2019.
Wenhong Tian, GuoZhong Li, Xinyang Wang, Qin Xiong, and Yaqiu
Jiang. Transforming np to p: An approach to solve np complete
problems. arXiv preprint arXiv:1505.00058, 2015.

Bo Yang, Xuelin Cao, Chau Yuen, and Lijun Qian. Offloading opti-
mization in edge computing for deep-learning-enabled target tracking
by internet of uavs. IEEE Internet of Things Journal, 8(12):9878-9893,
2020.

Qi Zhao, Jiahui Liu, Boxue Zhang, Shuchang Lyu, Nauman Raoof,
and Wenquan Feng. Interpretable relative squeezing bottleneck design
for compact convolutional neural networks model. Image and vision
computing, 89:276-288, 2019.

