
Multi-Accelerator Neural Network Inference via

TensorRT in Heterogeneous Embedded Systems

Yuxiao Zhou
Texas State University

y z37@txstate.edu

Zhishan Guo
North Carolina State University

zguo32@ncsu.edu

Zheng Dong
Wayne State University

dong@wayne.edu

Kecheng Yang
Texas State University

yangk@txstate.edu

Abstract—Neural Network Inference (NNI) has become a crit-
ical element in mobile and autonomous systems, particularly for
time-sensitive operations like obstacle detection and avoidance.
Alongside execution time, energy consumption holds significant
importance in such workloads, given that power is a limited
resource in these systems. Modern System-on-Chips (SoCs) in
mobile and autonomous devices are equipped with a diverse
range of accelerators, each characterized by distinct power and
performance features. Adapting to dynamically changing physical
conditions, the execution flow of these crucial workloads can be
optimized to utilize multiple accelerators, allowing for a flexible
trade-off between performance and energy consumption.

In this study, we leverage multiple accelerators within an
SoC to execute NNI using NVIDIA TensorRT. Our primary
goal is to enable an energy-performance trade-off by intelligently
distributing layers of a neural network between accelerators that
prioritize performance and those that emphasize power efficiency.
Initially, we analyze the execution time and energy characteristics
of neural network layer execution on various accelerators. Subse-
quently, we examine various factors influencing layer execution.
Finally, we propose two algorithms to determine the mapping
of layers to accelerators, minimizing energy consumption while
adhering to a predetermined target NN inference execution time.

We evaluate our approaches on the NVIDIA AGX Orin
SoC using the commonly used ResNet50 model. According to
the experiment results, we suggest adopting a coarse-grained
layer grouping strategy. For applications with stringent real-
time requirements, it is recommended to utilize the proposed
LTN approach to better achieve the target execution time.
Alternatively, in other scenarios, the Knapsack approach may
be chosen for potential improvements in energy consumption.

Index Terms—deep neural networks, heterogeneous systems,
neural networks inference, autonomous systems, SoC, TensorRT,
PyTorch, DLA, edge device.

I. INTRODUCTION

Over the last decade, there has been a widespread growth

of autonomous systems, driven by tremendous advancements

made in high-performance computing (HPC), machine learn-

ing (ML), and robotics. These advancements have supplied the

necessary technical capabilities for achieving full autonomy.

When it comes to safety-critical tasks on autonomous systems,

there is a crucial need for high-performance computing to

meet stringent deadlines for safe execution. However, the

escalating computational requirements lead to increased en-

ergy consumption, effectively equating the power needed for

computation with that required for mechanical operations in a

cyber-physical system (CPS). Therefore, it is crucial to achieve

This work is supported in part by NSF grants CNS-2104181, CMMI-
2246671, CNS-2103604, CNS-2140346, and CNS-2113817.

a balance between energy efficiency and performance aligning

with the capabilities of the underlying platform.

Despite the remarkable accuracy and precision achieved

by large, and perhaps enormous, deep neural networks, their

training and inference runtime can be prolonged and sluggish.

Moreover, such extensive model architectures may consume

significant computing resources, even for inference alone.

However, many applications and systems, especially those

embedded, require real-time inference while utilizing limited

hardware resources due to size, weight, power, and cost

(SWaP-C) constraints. For example, autonomous vehicles must

promptly process data from diverse sensors, including cameras

and lidars, to make proper control decisions on a SoC. Simi-

larly, a video surveillance system must analyze video footage

in real-time to detect abnormal activities and trigger timely

warnings. On the other hand, due to privacy and reliability

concerns, much of such computation must be performed on

embedded platforms with limited computing resources.

Contemporary mobile and embedded SoCs, such as Qual-

comm’s Snapdragon [21], Xilinx Zynq Ultrascale+ MP-

SoC [7], and NVIDIA’s Jetson platforms [18], incorporate a

diverse array of specialized accelerators designed for specific

domains. These accelerators are instrumental in performing

critical tasks with minimal latency and power consumption.

For instance, NVIDIA’s Orin SoC is equipped with two dedi-

cated programmable accelerators: an NVIDIA Deep Learning

Accelerator (DLA) and a Programmable Vision Accelerator

(PVA), in addition to a graphical processing unit (GPU) [13].

In some scenarios, certain compute-intensive deep learning

operations, such as convolution, can be performed using

various types of accelerators, including DLA, GPU, or PVA,

on platforms like NVIDIA Jetson. Each of these accelera-

tors exhibits distinct performance and power characteristics.

When faced with such a situation, it may be advantageous

to collaboratively distribute the workload across different

processing units to optimize resource efficiency and utilization.

For example, while the GPU on Orin often provides the best

average execution times, the DLA offers 3-5x more power

efficiency compared to the GPU. Under a certain energy

budget, a practical approach could involve finding a balance

between assigning layers to the GPU for lower execution time

and assigning other layers to the DLA for energy efficiency.

Such a hybrid approach and trade-offs could be particularly

useful for systems where executing all layers on the GPU

would lead to excessive power consumption while executing



all layers on the DLA would result in unacceptable end-to-end

latency.

In mobile and autonomous systems, performance objectives

are not static; rather, they are dynamically influenced by their

environments. Moreover, these systems typically operate with

limited system resources, such as constrained battery capacity.

While the conventional practice involves adjusting processors’

power and frequency using techniques like Dynamic Voltage

and Frequency Scaling (DVFS), the recent availability of

alternative accelerators on heterogeneous platforms presents

a new execution paradigm: collaborative Multi-Accelerator

Execution (MAE). The goal of collaborative MAE is to ex-

plore various options, aligning computing resource usage with

the practical physical requirements of the system. However,

this approach has received limited attention in the realm of

research [5].

For instance, the research [20] focuses on optimizing task

distribution among diverse accelerators to improve resource

utilization while adhering to specified constraints. Houssam-

Eddine et al. [11] introduced a real-time application model for

implementing different software component for different pro-

cessing engines on heterogeneous hardware, with an emphasis

on latency-sensitive task scheduling. Dagli et al. [5] propose a

metric in order to measure the energy or performance benefits

of MAE of a given workload. The team’s other work [6]

provided an empirical modeling methodology to characterize

execution and inter-layer transition times and find an optimal

layers-to-accelerator mapping by representing the trade-off as

a linear programming optimization constraint. Odema et al.

[19] proposes a GNN architectural design space along with

potential mapping options on a heterogeneous SoC, aiming to

identify model architectures that optimize on-device resource

efficiency. Another research [1] from the same team proposes

a framework to identify an optimal partitioning scheme of the

NN along its ‘width’ dimension, which facilitates deployment

of concurrent NN blocks onto different hardware computing

units. To the best of our knowledge, none of the existing

studies are able to address the following challenges for MAE:

finding layer-to-accelerator mapping that minimizes energy

consumption with predetermined target NNI execution time.

Contribution. In this research, we focus on diversely het-

erogeneous systems, aiming to distribute the execution of

NNI across different types of accelerators. Our objective is

to investigate and understand the trade-off between execution

time and energy consumption. We achieve this by exploring

the execution of various NNI workloads on a heterogeneous

system through strategic partitioning of layers among multiple

accelerators. Each layer is allocated to a specific accelerator

based on its capabilities to enhance performance for a target

execution completion time.

This paper contributes in the following ways: We demon-

strate the existence of a trade-off between performance and

energy consumption. This trade-off can be effectively managed

by distributing and executing layers across diverse acceler-

ators. We examine various factors affecting the mapping of

layers to accelerators, such as the layer grouping granularity,

the overhead of MAE transition, and the input batch size.

These factors have not been previously investigated. We in-

troduce two multi-accelerator execution schemes for diversely

heterogeneous SoCs, which identify schedules with near-

optimal energy consumption for a given execution completion

time. We evaluate two proposed algorithms on the NVIDIA

AGX Orin by using its embedded GPU and DLA. We discuss

the pros and cons of both algorithms.

Organization. The rest of this paper is organized as fol-

lows: Sec. II gives a background overview of TensorRT and

NVIDIA DLA. Sec. III presents the motivation, challenges,

and considerations of our research. Sec. IV describes a case

study, including experiment setup, proposed algorithms, and

evaluation of algorithms. Sec. VI provides more related works,

while Sec. VII concludes our work.

II. BACKGROUND AND RELATED FRAMEWORKS

NVIDIA Orin SoCs consist of various programmable ac-

celerators, including a GPU, a PVA, and two DLAs, comple-

mented by robust tools for performance and energy measure-

ment [13]. In this research, we focus on MAE for NNI on the

DLA and GPU of the Orin platform.

TensorRT. TensorRT is a comprehensive framework compris-

ing an NNI optimizer and runtime, aimed at achieving excep-

tional performance across a range of platforms. The TensorRT

engine builder is a critical component that implements pre-

runtime optimizations, including layer fusing, precision fine-

tuning, and reduction of memory requirements. [4].

NVIDIA Deep Learning Accelerator (DLA). NVIDIA DLA

is a specialized hardware accelerator designed to accelerate

NNI tasks. It incorporates a dedicated pipeline with layer-

specific engines optimized for convolution, activation, pooling,

and reshaping operations, all of which are essential in neural

network computations. In the NVIDIA Orin SOC, DLA of-

fers significant performance capabilities, achieving 52.5 Tera

Operations Per Second (TOPS) with int8 precision at MAXN

power mode[3].

In NVIDIA Orin SoC, the DLA plays a crucial role in the

overall deep learning performance, contributing between 38%

and 74% of the total DL performance, depending on the power

mode. Despite its high performance, the power consumption

of DLA is considerably lower than that of the GPU, resulting

in an impressive performance-per-watt ratio. On average, the

DLA offers 3–5 times better performance per watt compared

to the GPU, depending on the power mode and workload [3].

Offloading inference tasks to the DLA allows the main GPU

to focus on other computations or remain in a low-power state,

contributing significantly to overall energy efficiency.

III. MULTI-ACCELERATOR EXECUTION

A. Motivation

Heterogeneous SoCs integrate diverse cores with different

performance and energy tradeoffs [2]. In heterogeneous SoCs,

an operation within an application may be accelerated through

distinct accelerators, each possessing varying performance,

















partition for each layer. However, these studies do not consider

energy as a metric when distributing workloads among PUs.

The improvement of neural network effectiveness, consid-

ering latency per energy, is typically achieved by automating

hardware allocation for Deep Neural Networks (DNNs). Kao

et al. propose a specialized genetic algorithm-based technique

called GAMMA, outlined in their work [12]. GAMMA is

tailored to address the per-layer DL accelerator mapping

problem. Their approach involves constructing a flexible map-

ping space and demonstrates GAMMA’s ability to efficiently

navigate this space and determine an optimized mapping

with a high degree of sample efficiency. The optimization

objective of GAMMA encompasses both latency and energy

minimization. It’s important to note that GAMMA primarily

focuses on optimizing the tiling strategy, computation order,

and parallelization strategy, distinguishing its scope from the

objectives of our work.

VII. CONCLUSION

This study investigates the trade-off between energy con-

sumption and execution time within deep neural network

models on SoCs with diverse heterogeneity. The research

highlights how different accelerators within the system could

benefit specific layers within a neural network differently

in terms of execution time and energy consumption. We

discuss the motivation, challenges, and consideration of MAE,

exploring factors affecting the selection of MTPs in MAE. We

proposed two algorithms, the LTN approach and the Knapsack

approach, for MAE transition point selection which minimize

the energy consumption while achieving target neural net-

work inference execution times. We evaluate our methodology

using ResNet50 on NVIDIA Jetson Orin SoCs. Based on

the experiment results, we recommend using a coarse-grained

layer grouping strategy. For applications with strict real-time

requirements, consider employing the LTN approach, while in

other scenarios, opt for the Knapsack approach for potentially

better energy consumption.

REFERENCES

[1] Halima Bouzidi, Mohanad Odema, Hamza Ouarnoughi, Smail Niar, and
Mohammad Abdullah Al Faruque. Map-and-conquer: Energy-efficient
mapping of dynamic neural nets onto heterogeneous mpsocs. In 2023

60th ACM/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2023.

[2] Xing Chen, Anish Krishnakumar, Umit Ogras, and Chaitali Chakrabarti.
Ped: Probabilistic energy-efficient deadline-aware scheduler for hetero-
geneous socs. Journal of Systems Architecture, 147:103051, 2024.

[3] Ram Cherukuri and Oliver Knieps. Maximizing
deep learning performance on nvidia jetson orin
with dla. Online at https://developer.nvidia.com/blog/
maximizing-deep-learning-performance-on-nvidia-jetson-orin-with-dla/.

[4] NVIDIA Corporation. Nvidia tensorrt. Online at https://developer.nvidia.
com/tensorrt.

[5] Ismet Dagli and Mehmet E Belviranli. Multi-accelerator neural net-
work inference in diversely heterogeneous embedded systems. In
2021 IEEE/ACM Redefining Scalability for Diversely Heterogeneous

Architectures Workshop (RSDHA), pages 1–7. IEEE, 2021.
[6] Ismet Dagli, Alexander Cieslewicz, Jedidiah McClurg, and Mehmet E

Belviranli. Axonn: Energy-aware execution of neural network inference
on multi-accelerator heterogeneous socs. In Proceedings of the 59th

ACM/IEEE Design Automation Conference, pages 1069–1074, 2022.

[7] Advanced Micro Devices. Zynq™ ultrascale+™ mpsoc.
Online at https://www.xilinx.com/products/silicon-devices/soc/
zynq-ultrascale-mpsoc.html.

[8] Marı́a Angélica Dávila Guzmán, Raúl Nozal, Rubénand Gran Tejero,
Marı́a Villarroya-Gaudó, Darı́o Suárez Gracia, and Jose Luis Bosque.
Cooperative cpu, gpu, and fpga heterogeneous execution with enginecl.
The Journal of Supercomputing, 75:1732–1746, 2019.

[9] Eva Garcı́a-Martı́n, Crefeda Faviola Rodrigues, Graham Riley, and
Håkan Grahn. Estimation of energy consumption in machine learning.
Journal of Parallel and Distributed Computing, 134:75–88, 2019.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 770–778,
2016.

[11] Zahaf Houssam-Eddine, Nicola Capodieci, Roberto Cavicchioli,
Giuseppe Lipari, and Marko Bertogna. The hpc-dag task model for
heterogeneous real-time systems. IEEE Transactions on Computers,
70(10):1747–1761, 2021.

[12] Sheng-Chun Kao and Tushar Krishna. Gamma: Automating the hw
mapping of dnn models on accelerators via genetic algorithm. In
Proceedings of the 39th International Conference on Computer-Aided

Design, pages 1–9, 2020.
[13] Leela S. Karumbunathan. Nvidia jetson agx orin series. Online at

https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/
nvidia-jetson-agx-orin-technical-brief.pdf.

[14] Da Li, Xinbo Chen, Michela Becchi, and Ziliang Zong. Evaluating the
energy efficiency of deep convolutional neural networks on cpus and
gpus. In 2016 IEEE international conferences on big data and cloud

computing (BDCloud), social computing and networking (SocialCom),

sustainable computing and communications (SustainCom)(BDCloud-

SocialCom-SustainCom), pages 477–484. IEEE, 2016.
[15] NVIDIA. Jetpack sdk 5.1. Online at https://developer.nvidia.com/

embedded/jetpack-sdk-51.
[16] NVIDIA. Jetson orin nx series and jetson agx orin

series. Online at https://docs.nvidia.com/jetson/archives/r35.
2.1/DeveloperGuide/text/SD/PlatformPowerAndPerformance/
JetsonOrinNxSeriesAndJetsonAgxOrinSeries.html.

[17] NVIDIA. Nvidia deep learning tensorrt documentation. Online
at https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.
html#dla topic.

[18] NVIDIA. Nvidia jetson. Online at https://www.nvidia.com/en-sg/
autonomous-machines/embedded-systems/.

[19] Mohanad Odema, Halima Bouzidi, Hamza Ouarnoughi, Smail Niar,
and Mohammad Abdullah Al Faruque. Magnas: A mapping-aware
graph neural architecture search framework for heterogeneous mpsoc
deployment. ACM Transactions on Embedded Computing Systems,
22(5s):1–26, 2023.

[20] Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume
Abella, and Francisco J. Cazorla. Generating and Exploiting Deep
Learning Variants to Increase Heterogeneous Resource Utilization in the
NVIDIA Xavier. In 31st Euromicro Conference on Real-Time Systems

(ECRTS 2019), volume 133, pages 23:1–23:23, 2019.
[21] Qualcomm. Deliver next-generation mobile experiences with snapdragon

mobile platforms and processor technologies. Online at https://www.
qualcomm.com/products/technology/processors/mobile-processors.

[22] Linghao Song, Jiachen Mao, Youwei Zhuo, Xuehai Qian, Hai Li, and
Yiran Chen. Hypar: Towards hybrid parallelism for deep learning
accelerator array. In 2019 IEEE International Symposium on High

Performance Computer Architecture (HPCA), pages 56–68, 2019.
[23] Wenhong Tian, GuoZhong Li, Xinyang Wang, Qin Xiong, and Yaqiu

Jiang. Transforming np to p: An approach to solve np complete
problems. arXiv preprint arXiv:1505.00058, 2015.

[24] Bo Yang, Xuelin Cao, Chau Yuen, and Lijun Qian. Offloading opti-
mization in edge computing for deep-learning-enabled target tracking
by internet of uavs. IEEE Internet of Things Journal, 8(12):9878–9893,
2020.

[25] Qi Zhao, Jiahui Liu, Boxue Zhang, Shuchang Lyu, Nauman Raoof,
and Wenquan Feng. Interpretable relative squeezing bottleneck design
for compact convolutional neural networks model. Image and vision

computing, 89:276–288, 2019.


