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Abstract: New families of direct serendipity and direct mixed finite elements on general planar,
strictly convex polygons were recently defined by the authors. The finite elements of index r are
H' and H(div) conforming, respectively, and approximate optimally to order r + 1 while using
the minimal number of degrees of freedom. The shape function space consists of the full set of
polynomials defined directly on the element and augmented with a space of supplemental functions.
The supplemental functions were constructed as rational functions, which can be difficult to integrate
accurately using numerical quadrature rules when the index is high. This can result in a loss of
accuracy in certain cases. In this work, we propose alternative ways to construct the supplemental
functions on the element as continuous piecewise polynomials. One approach results in supplemental
functions that are in H” for any p > 1. We prove the optimal approximation property for these
new finite elements. We also perform numerical tests on them, comparing results for the original
supplemental functions and the various alternatives. The new piecewise polynomial supplements
can be integrated accurately, and therefore show better robustness with respect to the underlying
meshes used.

Keywords: serendipity finite elements; direct finite elements; optimal approximation; polygonal
meshes; finite element exterior calculus
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1. Introduction

There has been strong interest in using polygonal and polyhedral meshes when solving
certain types of problems via the finite element method. For just a few examples, we note
problems in solid mechanics [1,2], elasticity [3,4], fracture mechanics [5-7], thin plates [8],
shells [9], porous media [10], topology optimization [11-13], and finding eigenvalues [14].
In fact, polygonal meshes are an important motivation for the development and use of
methods beyond the classic finite element method, which include, for example, the discon-
tinuous Galerkin methods (including weak Galerkin [15] and ultra-weak methods [16-18]),
mimetic methods [19-21], and virtual element methods [22-25].

Classic conforming finite element methods have also been developed for use on
polygonal meshes, and especially for quadrilateral meshes. Approaches taken include the
use of maps from reference finite elements [26-28], restriction to low order elements [29-32],
the use of macro-elements [33], basis function enrichment [34-36], and construction using
barycentric coordinates [9,37-39]. Ideally, we would have families of conforming finite
elements defined for any order of accuracy. These would possess a minimal number of
degrees of freedom (DoFs) subject to conformity and accuracy constraints. Finite elements
based on the use of non-affine maps from reference finite elements display degraded
accuracy. Accuracy is restricted if only low order elements are defined. Macro-elements,
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basis function enrichment, and the use of barycentric coordinates in higher order cases
results in finite elements with an excess number of DoFs.

Families of conforming finite elements defined on polygons that maintain both accu-
racy and a minimal number of DoFs have appeared recently [40-43] (as well as some finite
elements in three dimensions [44—46]). The approach taken is to begin with the space of
polynomials P, (E) of degree up to r defined directly on the physical element E to achieve
accuracy of order r 4 1. To achieve conformity, one then adds in a space of supplemental
functions. A basis for the supplemental functions must have certain properties on JE, but
they must be defined over all of E by filling in the interior. The “supplemental function
space” is sometimes called the “filling space”.

In this paper, we discuss the construction of the supplemental functions, in the context
of the finite elements developed by the current authors in [43], which are called direct finite
elements. Let the element E = Ey C R? be a closed, nondegenerate, convex polygon with
N > 3 edges. The direct serendipity finite elements of index r > 1 are H!-conforming and
take the form

DS,(Ex) = Py(Ex) ® SPS(Ey), (1)

where SPS(Ey) is the space of supplemental functions. The direct mixed finite elements
are H(div)-conforming and take two forms,

V) (En) =P}(Ey) ® xPr(En) @ SY(En),

VIl (Ey) = P2(Ex) © SV (Ex), @

for full (r > 0) and reduced (r > 1) H(div)-approximation, respectively, where PV(E N) are
the homogeneous polynomials of (exact) degree r. These two finite elements are related to
each other by the finite element exterior calculus [47] through the de Rham complex

R H' —2 H(div) —2 12 — 0, 3)

resulting in, fors =r — 1,7 (s > 0),

curl div

R «— DS, 11(En) —— Vi(En) —— Ps(Ex) — 0. @
The consequence is that

VI(En) = curl DS, (EN) © xPy,

5
VI () = curl DS, (Ex) @ xP 1, ®

and, therefore,
SY(En) = curl SES (En). (6)

The original construction of supplemental functions made use of rational functions
(see (21)), which are difficult to numerically integrate accurately. As a consequence, when
solving a partial differential equation using direct finite elements, the quadrature error may
be significant, leading to poor overall approximation of the solution. This was observed
in [43], although in that paper, the degradation in the approximation was attributed to poor
mesh quality. While mesh quality remains an important ingredient in finite element analysis,
quadrature approximation is also a critical component, especially for high order methods.

In this work, we introduce two constructions of the supplemental functions SP° (Ey)
which involve using continuous piecewise polynomials. Such constructions are motivated
by the work of Kuznetsov and Repin [33], and suggested by the work of Cockburn and
Fu [41]. These new supplemental functions can then be accurately integrated by quadra-
ture rules. (A similar, but more complex, construction in three dimensions for cuboidal
hexahedra is discussed in [46]).
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In the next two sections we present some basic notation and review the general
definition of the original direct serendipity and direct mixed finite elements, which have
supplemental functions that are C*°-smooth. Our new families of direct finite elements
based on piecewise continuous supplemental functions are given in Section 4. We give two
constructions of the supplemental functions, so that one set lies in H! and the other in H?
for any integer p > 1. The approximation properties of these new direct finite elements are
given in Section 5. The results are optimal, up to the bounding constant. The proof follows
that given in [43], and we concentrate on the modifications that are required to handle the
new supplements. In Section 6, we present numerical tests that compare the errors and
convergence rates of the new and original direct finite elements. We conclude the paper in
Section 7.

2. Notation

We choose to identify the edges and vertices of Ey adjacently in the counterclockwise
direction, as depicted in Figure 1 (throughout the paper, we interpret indices modulo N).
Let the edges of Ey be denoted ¢;, i = 1,2,..., N, and the vertices be x,,; = ¢; Ne; ;1. Let
v; denote the unit outer normal to edge ¢;, and let 7; denote the unit tangent vector of ¢;
oriented in the counterclockwise direction, fori =1,2,..., N.

Figure 1. A pentagon E5, with edges e;, outer unit normals v;, tangents 7;, and vertices x;, ;.

For any two distinct points y; and y», let L]y, y2] be the line passing through y; and
y2, and take v]yy, y2] to be the unit vector normal to this line interpreted as going from y;
to y, and then spinning 90 degrees in the clockwise direction (i.e., pointing to the right).
Then we define a linear polynomial giving the signed distance of x to L[y, y2] as

My y2l(x) = —(x = y2) - v[y1, y2l- ()

To simplify the notation for linear functions that will be used throughout the paper, let
L; = L[xyi_1,%,] be the line containing edge ¢; and let A;(x) give the distance of x € R?
to edge ¢; opposite the normal direction, i.e.,

Ai(x) = AlXpio1,Xpi](x) = —(X —Xp;) - v, i=12,...,N. (8)
These functions are strictly positive in the interior of Ey, and A; vanishes on the edge ¢;.

3. Direct Serendipity and Mixed Finite Elements

The general development of direct serendipity and mixed finite elements is given
in [43]. The definition of the supplemental space Sbs (En) in (1) is key to the construction.
For completeness, we review the definitions of these direct finite elements here.

When N = 3 (triangles), the direct serendipity supplemental space SP° (E3) is empty.
When N > 4and 1 < r < N — 2, the direct serendipity spaces DS, (Ey) are defined as
subspaces of DSy_»(Ey) by the rule

DS, (En) = {¢ € DSN_2(EN) : ¢|e € P;(e) for all edges e of Ey }. )

Therefore, we only need to understand SPS (Ey) forr > N —2and N > 4.
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To define the supplemental basis functions, two series of choices must be made for
eachi,jsuchthat]l] <i<j< Nand2<j—i<N-2(.e,¢ and ej are nonadjacent edges).
First, as shown in Figure 2, one must choose two distinct points x} j € L; and x% j € E]- that
avoid the intersection point x; ; = £; N L, if it exists. Then let

1 .2 2 1 2
Al-,]-(x) = /\[xi,j, xl-’]-] (x) = —(x— xi,j) Vij, Vij = v[xi,]-, xi,j]/ (10)
be the linear function associated to the line ﬁi,j = £[xi1 i xlz j]‘ Second, Rl-,j must be chosen
to satisfy

Rij(x)]e; = =1, Rij(x)]¢; =1. (11)
The supplemental space for r > N —2 > 2 is of the form
SPS(En) = span{gy;j: 1<i<j<N,2<j-i<N-2}, (12)
9o = ( TT M) M7V 2Ry,: (13)
k#i,j

Ly

[’2 Es . X2
X4 o
AZ 4=0 X%A €y e l ..... '4:4A.X2,4 ’
1/2,4 ~~~~~~
€2 H €4
Figure 2. Illustration on Es of the zero line £54 of Ap4(x) = —(x — x% 1) - 124 and the intersection

point xp 4 = L5 N Ly, if it exists.

3.1. Direct Serendipity Finite Elements

Every shape function of the direct serendipity finite element DS, (Ey) is a sum of a
polynomial and a linear combination of the supplemental functions, as in (1). To implement
them, one must define the DoFs. For example, for ¢ € DS,(Ey ), one can take

P(Xy,i), Vi=1,2,...,N, (14)

/ Ypdo, VpeP,y(e),i=12,...,N, (15)

/E pqgdx, VqeP,_n(En), (16)
N

where do is the one dimensional surface measure. Alternatively, one can use nodal DoFs
(i.e., evaluation at a node point) in place of (15) and/or (16). For the former, on each edge
e;, its corresponding edge nodes are v — 1 points such that they, along with the two vertices,
are equally distributed on e;. For the latter, the interior cell nodes can be set to be the
Lagrange nodes of order ¥ — N of a triangle that lies strictly inside Ey.

The basis of DS, (Eyn) corresponding to the DoFs can be constructed. Given a com-
putational mesh of convex polygons 7;, over a domain (), the basis can be simply pieced
together to form a global H'-conforming basis of the space DS,(Q) C H'(Q).

3.2. Direct Mixed Finite Elements

As discussed in the introduction, full, VI(Ey), and reduced, V.~1(Ey), H(div)-
approximating mixed finite element spaces follow from a de Rham complex (3), where
the direct serendipity finite elements serve as the precursor (4). The supplemental space is

related to SPS (Ey) by the simple Formula (6).
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The DoFs for these spaces (withs =r > 0 ors = r —1 > 0) can be taken to be

/v~1/l-pd0, vpeP(e), i=1,2,...,N, (17)
€
/ v-Vqgdx, Vq € Ps(Ey), g not constant, (18)
JEN
/ v-pdx, VpeBY(Ey), ifr>N-1, (19)
En

where the H!(Ey) and H(div; Ey) bubble functions, for r > N — 1, are
B, 11(EN) = MA2.. . ANP, ny1(En) and BY(En) = curl B,y (En).  (20)

Given the mesh 7}, over (), one constructs the basis and the H(div)-conforming global
space V3(Q) C H(div) (see [43] for details). As an alternative, when solving partial
differential equations, one can use the hybrid form of the method [48], which does not
require the construction of global basis functions.

4. Piecewise Continuous Supplements
In [43], Ri,j satisfying (11) on Ey, for1 <i <j < N,2 <j—i < N — 2, was taken to
be the simple rational function

er'?-tional(x) _ Ai(x) — Aj (x) ) 1)
' Ai(x) +Aj(x)

These rational functions are smooth over the element. We now give new direct serendipity
and mixed finite elements by providing an alternate construction of R;; as a piecewise
continuous polynomial defined over a sub-partition of Ey. We present two strategies, the
first of which is convenient for the construction of continuous supplemental functions in
H!(Ey), and the second for constructing smoother supplemental functions in H? (Ey) for
integer p > 1.

4.1. Supplemental Functions in H'(Ey)

Our first strategy for constructing R; ; requires a sub-triangulation of the element Ey,
and we present two natural choices. The first sub-triangulation is depicted in Figure 3 and
denoted as 7" (Ey ). One picks a vertex x,,, and divides Ey into N — 2 sub-triangles. The
sub-triangles are T}, with vertices Xy, Xo,m, and Xy, +1, wherem =n+1,...,n+ N — 2.
For the second sub-triangulation, depicted in Figure 4 and denoted as 7*(Ey ), one picks
a point x, in the interior of Ex and divides it into N sub-triangles. Now the sub-triangles
are T, with vertices X., Xy, and Xpm+1, where m =1,2,..., N. We use the centroid of the
element for x..

X,5 X4

Xo,1

Xv,2

Figure 3. A sub-triangulation based on a common fixed vertex. Shown is 7°(Es) using the fixed
vertex Xy 5.



Mathematics 2023, 11, 4663

6 of 18

Xo,5

Xp,4
TI
X,3
Xo,1
Xp,2

Figure 4. Sub-triangulation based on a center point. Shown is 7> (Es) using the centroid x..

Let the piecewise polynomial function space of degree s corresponding to each sub-
triangulation be

Ps(T"(EN)) ={f € CUE) | flmp € Ps(Tp), m=n+1,...,n+N -2}, (22)
Ps(T(En)) = {f € CUE) | flpe € Ps(T}), m=1,2,...,N}. (23)

We construct R;; in P1(7"(En)) or P1(7*(Ey)), depending on which of the two sub-
triangulations is used, such that

¢=-1 R

Rj; ijle =1, Rijlo, =0, Vk#i—1,i,j—1,]j. (24)
by using interpolation at the vertices of the sub-triangles. If the sub-triangulation is chosen
to be T"(Ey), the restrictions (24) uniquely specify all the vertex values. However, if the
triangulation is 7*<(Ey), the center value is not determined, so we assign R; ;(x) = 0.
Our construction has R;; being —1 on ¢; and 1 on ¢; as required by (11). Moreover,
Rij € H L(EN). After constructing the supplemental functions in (13) with this R;;, each

¢s,i,j is in Ppy1 (T"(En)) or Pry1(T*(En)), and therefore also in H' (Ey).

4.2. Supplemental Functions in HP (Ey)

We now present the second of our two strategies for constructing R; ; for two nonadja-
cent edges ¢; and ¢;. Recall that Ax(x) is the linear polynomial giving the (signed) distance
to the line £y extending edge e,. When ¢; and ¢; are parallel, we simply define R; ; as the
linear polynomial

Ai— A

R =
v /\i(xv,j)

. (25)

When ¢; and e; are not parallel, we first define a sub-partition of Ey by adding a single
extra line £/ through a point x/ as depicted in Figure 5. The point x/ is chosen so that it is
closer to £; than the endpoints of ¢;, i.e.,

A (X)) < min{ A (%o i-1), Aj(%0) }- (26)

The line ¢/ passes through x*/ and is parallel to ej. This line divides Ey into E;{}"l near ¢;

” _
and E;\} near ¢;, i.e.,

EX = En N {x] Aj(x) > A;(x)}, (27)
EJY = En 0 {x | Aj(x) < A;(x)}. (28)
Let v/ = —v;j be the unit normal vector of " pointing into E;{}"l, and let T/ = T; be a unit

tangent vector.
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Figure 5. A sub-division of E4 using the line ¢/.

We next construct the function p/, which is 1 on edge e; and 0 on edge ej. It is defined
piecewise on the sub-partition of Ex as

B 1, x € E1,
plx) =14 o Ax) 0 (29)
1-(1 /\j(xi'f)) + XEEN

where p > 1is an integer. The function is continuous, since A;(x) = A; (x1) on £ implies
that o' | ¢ij = 1 in either case of the definition. Moreover, in the tangential direction,

op'
acii lor ~ 0
and, in the normal direction,
ijl
api’j 0, X € EN ,
07 ) =) 2 (1= T g G
xean) T RGeS

which is continuous for p > 1, so p”/ € C!(Ey). By iterating the argument, we have that
p"l € CP~1(Ey) and so also in HP(Ey) for p > 1. If p = 1, o'/ is continuous, so it is in
H'(En).

Finally, after constructing both p/ and p/#, we define

R;j = pl —p", (32)

which is —1 on ¢;, 1 on ¢;. Moreover, R;; € H(Ey). The supplemental functions in (13)
constructed with this R; ; lie in HP (Ey).

We end this section with two specific examples, using the sub-partitions shown in
Figure 6, which divide Ey by N lines. The first example has a sub-partition based on the
midpoints xle\ﬁ- of theedgese;, i =1,2,..., N, and gives rise to the spaces denoted DSIrVI (ENn)

and VM*(Ey ). We compute the minimal distance of the midpoints to the edges, i.e.,

hy = Ai(x0%)- (33)

min
1<i<Nk=itl
Then for any two non parallel and nonadjacent edges e; and ¢;, simply take the partition
line £/ to be the line parallel to ¢j that is the fixed distance hy > 0 away and intersects Ey.
The second specific example uses a sub-partition based on trisecting each edge, re-
sulting in the points, for edge ¢;, being denoted counterclockwise as x,; for k = 1,2,
i =1,2,...,N. In this case, we simply take xI to be the closest of these points to ﬁj,

omitting x,;1 and x,j>. We denote the resulting spaces DS} (Ey) and \"A (EN)-
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Figure 6. The two sub-partitions of E5 used for constructing specific H” supplemental functions. The
left one is used for DSM and VMS where hy = /\5(x2’i). The right one is used for DS} and v,
where the closest trisection points are marked in red.

5. Approximation Properties

We discuss now the global approximation properties for our direct finite element
spaces. The results of [43] do not directly apply here because there it was assumed that
the functions R; ; are smooth on the element. Consider a collection of meshes 7} of convex
polygons partitioning a domain (), where & > 0 is the maximal element diameter.

We need to make the usual assumption that our collection of meshes is uniformly
shape regular [49] (pp. 104-105). For any Ey € Ty, let kg, be its diameter. Denote by T;,
i=1,2,...,N(N—1)(N —2)/6, the sub-triangle of Ex with vertices being three of the N
vertices of Ep, and define

=2 min diameter of the largest circle inscribed in T;}. 34
PEN 1§i§N(N—1)(N—2)/6{ g i} (34)

The shape reqularity parameter of the single mesh 7, is

o7, = min ——. (35)

Assumption 1. The collection of meshes { T}, } ~ is uniformly shape regular. That is, the shape
regularity parameters are bounded below by a positive constant: there exists o > 0, independent of
Ty and h > 0, such that the ratio

Zﬂza*>0 forall Ex € Ty, 1t > 0. (36)
En

We also require some mild restrictions on the construction of SPS (Ey).

Assumption 2. For every Ey € Ty, assume that the functions of SPS (En) are constructed using
Ajj such that the zero set L; j intersects e; and ej. Moreover, suppose that R; ; € HP (EN) for some
p > 1 and that the sub-partitions introduced in Section 4 for their construction depend continuously
on the vertices of Ey.

The continuous dependence requirement of the sub-partitions is met if we system-
atically choose the points x. in Section 4.1 (say as the centroid) and x"/ satisfying (26)
in Section 4.2 (say be taking x"/ as the closer endpoint of e; to £;, or so that A;(x"/) =
3 min{A;(xp,i-1),Aj(Xpi) })-

We state first the approximation result for DS, (Q2).

Theorem 1. Letr > 1,1 < p < oo,and £ > 1/p (or £ > 1if p = 1). If Assumptions 1 and 2
hold (so the basis functions are in HP on each element), then there exists a constant C > 0, such
that for all functions v € WP (QQ),

inf V—0 m, <Ch£*m v 4 ’ 0<t(<r 1, m:(),l 37
v,,ele%,(Q)H nllwmr () < [ollwery 0<E€<r+ (37)
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Proof. The methodology of the proof follows [42,43]. The key difference is that we must
relax the smoothness requirement made on the supplemental functions. We highlight the
differences, and leave the reader to consult [42,43] for some of the details.

Given a mesh 7, we construct an interpolation operator Z; : WL(Q) — DS, as a
generalization of that defined in [50]. To do so, we use a nodal set of DoFs for the finite
elements, and identify global nodal points a;,i = 1,2,...,dim DS,. These nodal points
must be chosen systematically with respect to the vertices of the mesh, so they depend
continuously on them. The global nodal basis function for 4; is denoted ¢;.

A geometry object K; is associated to each a;. If 4, lies in the interior of some element,
we choose the element to be K;. Otherwise, we choose an edge containing a; to be K;, where
we additionally ask that K; C 9Q) if a; € 0Q2. We use these to define the dual basis ¢;
with respect to L2(K;), i = 1,2,...,dim DS,. The corresponding interpolation operator
7; - W;,(Q) — DS, is then

d1m DS,

ro(x) ([ #:)o0)dy) @it (38)

There are two essential steps towards showing the approximation property. First, the
nodal basis functions are bounded,

max max < C, 39
1<i<dim DS, (Q) E€T, illweE) < (39)

and, second, the dual basis functions are bounded up to a scaling factor,

||l o (i) < Chyg ™.

(40)
We show the necessary boundedness by mapping the elements and using a continuity and
compactness argument.

As depicted in Figure 7, to each element E, we associate a regular polygon (equilateral
and equiangular) Ey. We can then define a map Fg,, : Ey — Ey as a composition of a
map that changes the geometry but not the size to Ey, and then a scaling map (see [43] for
precise details).

(v3,v4) Xo,4
(vs,6)
(v1,02) Xo5

F- . Xv,3
Es5 scaling
—> ‘—>

(0,0) p. (1,0 (0,0) g (1,0) Xol g %2

Figure 7. An element E5 € 7}, is shown on the right-hand side in its translated and rotated local
coordinates. It is the image of a regular reference polygon E5 on the left-hand side. The map is
decomposed into one that changes the geometry but not the size F, : Es — Es, and a scaling map
X — HX.

Define the nodal basis functions q)fN on Ey. It is enough to show the boundedness of
their W' norms. Although they are no longer smooth functions, compared to [42,43], they
are continuous on Ey, and smooth on all the subregions generated by the sub-partition.
Moreover, by assumption the sub-partition is required to depend continuously on the
vertices of Ey. Therefore, qofN will still depend continuously on X = Fﬁ_Nl (x) and the

vertices of Ey, which vary in a compact set. We conclude that the nodal basis functions
are bounded in W' norm. The boundedness of ¥; in the L* norm can be shown in a
similar way. O
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For the mixed finite elements, we have the following result, wherein we see projection
operators 7w : H(div; Q) N (L>7€(Q))?> — V5, s = r — 1,7, where € > 0, and Py, the
L?-orthogonal projection operator onto Ws = V - V5.

Theorem 2. Letr =s > 0orr > 1,s =r — 1. If Assumptions 1-2 hold, then there is a constant
C > 0, such that

v —=7vl2q) < ClIVIigk) 1k, k=1,...,r+1, (41)
lp = Pw,pllr2i0) < ClIpll oy B k=0,1,...,s+1, (42)
IV - (v =79) 1200y S CIV -Vl #, k=0,1,...,5+1, (43)

wheres = r—1 > 0and s = r > 1 for reduced and full H(div)-approximation, respectively.
Moreover, the discrete inf-sup condition

wy,V v
sup (Hhh> > yllwnll2),  Ywn € W, (44)
v,EVS Vh”H(div)

holds for some v > 0 independent of h > 0.

For the proof, we define the projection operator 7 by piecing together local operators
rtg that are defined in terms of the DoFs (17)—(19). The approximation properties given
in [42,43] hold with a similar proof, using now that the subregions generated by the
sub-partition depend continuously on the vertices of the element.

6. Numerical Results

We present numerical experiments for our new finite elements as applied to Poisson’s
equation

-V (Vp)=f inQ, (45)
p=0 ondQ), (46)

where f € L2(Q). The corresponding weak form finds p € H}(Q) such that
(Vp,Va) = (f,9), ¥q € Hy(Q), (47)
where (-, -) is the L?(Q) inner product. Setting
u=—-Vp, (48)
we have the mixed weak form, which finds u € H(div; Q) and p € L?(Q) such that

(w,v)—(p,V-v)=0, Vv € H(div; Q), (49)
(V-u,w) = (f,w), Yw e L*(Q). (50)

These weak forms naturally give rise to finite element approximations. According to
Theorems 1 and 2, the following convergence analysis holds by a standard argument [27,51].

Theorem 3. If Assumptions 1 and 2 hold, then there exists a constant C > 0, independent of T,
and h > 0, such that forr > 1,

ma < CHF ™|, £=01,...,r, m=0,1, (51)

lp = pul
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where p, € DS, (Q) N H(Q) approximates (47). Moreover, withr =s > 0orr >1,s =r—1,

lu—wuyllon < Cllullxak, k=1,...,r+1, (52)
Ip = pulloa < Cllullxah, k=1,...,5+1, (53)
IV (u—w)lloa <CIV-uliaht, k=01,...,s+1, (54)

where (uy, py) € V3 x Ws approximates (49)—(50).

We perform our tests on a unit square domain Q = [0, 1]?, and take the source term
f(x) = 2% sin(7txy ) sin(7rx2), so the exact solution is u(x1, x2) = sin(7x1) sin(7rx). We
consider five types of supplemental spaces. The original direct serendipity and mixed finite
element spaces will be denoted DSX and VRS respectively. These use supplements based
on the rational functions (21).

For the H! supplemental functions introduced in Section 4.1, there are two varieties.
Denote the space using supplemental functions that are constructed based on the vertex
sub-triangulation as DS, and its corresponding mixed spaces as VY, and those based on
the center point sub-triangulation as DSS and A% respectively. The spaces based on the
H? supplements were described in Section 4.2 and denoted DSM, VS and DST, v}~

6.1. The Meshes Used

Approximate solutions are computed on a sequence of Voronoi meshes 7, generated
by the package PolyMesher [52]. Each mesh has n? elements, which are generated with 72
random initial seeds and up to 10* smoothing iterations to improve the shape regularity.

For comparison to the results appearing in [43], we use the same mesh sequence 7>
with n = 6, 10, 14, 18, and 22. We show the meshes for n = 6 and n = 18 in Figure 8. The
shape regularity parameters are given in Table 1. Note that the n = 10 and n = 18 meshes
are the least regular.

n==~6

Figure 8. Meshes with 6 x 6 and 18 x 18 elements.

Table 1. Shape regularity parameters for each mesh 7;12.

n==ao n=10 n=14 n=18 n=22
o7, 0.180 0.115 0.161 0.127 0.150

In [43] it was observed numerically that the n = 18 mesh performed well for the
original direct finite elements (using rational supplemental functions) when r = 2,3, 4, but
had a degraded convergence rate when r = 5. The problem was resolved by removing
short edges from the n = 18 mesh. However, as we will see in this section, the problem is
actually due to inaccurate numerical quadrature of the rational supplemental functions,
which only showed up in those tests for the more refined mesh (i.e., not n = 10) and higher
values of 7.
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6.2. Results for Direct Serendipity Spaces

We present and compare the results of the numerical tests performed for DSX, DS},
DS ,C, DS 3/[, and DS rT, where r = 2,3,4,5. We take p = 1 in Section 4.2 for the construction
of DSM and DS], because it gives better results than a larger p in most cases. According to
Theorem 3, we expect all those spaces to have the convergence rates r + 1 for L? errors and r
for H!-seminorm errors. As Tables 2 and 3 suggests, the convergence rates at n = 10,14, 22
for DSX are all slightly better than optimal in this test. However, we can observe a slower
convergence rate at 1 = 18 for DSX. (We interject that convergence rates are computed as
improvement from the previous mesh in our sequence.)

Table 2. L2 errors and convergence rates for DSX and DSC.

DSK DSS DSK DSS
n error rate error rate error rate error rate
10 2160 x 107% 345 2144 x 100* 350 8859 x 107® 434 1.031 x 107> 435
14 7329 x 107> 316 7.165 x 107° 321 2175 x 107® 411 2518 x 107® 413
18 3452 x 107> 295 3409 x 107° 292 7927 x 1077 396 8964 x 1077  4.05
22 1863 x 1075 347 1.841 x 107> 346 3555 x 1077 451  4.045 x 1077 448
DSK DS§ DSR DSS
n error rate error rate error rate error rate
10 3467 x 1077 569 3972 x 1077 611 1133 x 1078 697 1730 x 108  6.61
14 5644 x 1078 531 6622 x 1008 524 1202 x 1072 657 1964 x 102 637
18 1530 x 1078 512 1.823 x 1078 506 4376 x 10710 397 4134 x 10710  6.12
22 5314 x 1072 595 6239 x 1072  6.03 8905 x 10711 895 1243 x 10719 6.76

Table 3. H'-seminorm errors and convergence rates for DSX and DSE.

DSK DSS DS DSS
n error rate error rate error rate error rate
10 3561 x 1073 232 3552 x 1003 236 1933 x 1074 313 2390 x 107* 3.1
14 1683 x 1073 219 1660 x 1073 223 6724 x 1005 3.09 8343 x 1075 3.08
18 1.018 x 1073 197 1.013 x 1003 194 3.144 x 1005 298 3783 x 107° 3.10
2 6712 x 107% 234 6.69 x 107* 233 1730 x 107° 336 2114 x 107° 327
DSR DS§ DSE DSS
n error rate error rate error rate error rate

1076 455 1.027 x 1075 491 3103 x 1077 573 4394 x 1077 557

10 8.530 x X X X

14 1973 x 107° 429 2439 x 107® 421 4625 x 1008 557 7.098 x 1078 534
18 6952 x 1077 409 8785 x 1077 4.01 2646 x 1078 219 1981 x 1078 501
22 2969 x 1077 478 3.689 x 1077 488 5973 x 1077 837 7233 x 1077 5.6

In Table 4, we compare the results for the n = 18 mesh of DSX, DS), DS¢, DSM,
and DS;. On the one hand, the results suggest that the new spaces are all approximately
optimal for 7 = 5, which is an obvious improvement compared to DSY. On the other hand,
the errors for r = 2,3,4 of the new spaces are slightly worse than those of DSY, and among
all the new spaces, DSS has the best performance in error. We conclude that DSS shows
the best overall performance among all the spaces considered.

We suggest that the reason for such an observation is that the dominant errors for
r = 5 are from the numerical quadrature applied to the integration of rational functions,
especially on the elements that are less shape regular. However, for r = 2,3,4, the new
supplements, as piecewise polynomials, cannot approximate the shape of a smooth function
as well as the original rational supplements, especially those from DSM and DS}, of which
R;; for e; b's ¢j are flat in the middle and oscillate near the boundary. In contrast, the
supplements from DSy and DS¢ are more reasonably shaped, and those from DS¢ are
better since its partition has sub-triangles that are more shape regular (as was shown in
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Figures 3 and 4). This argument is also supported by the observation that the results are
usually worse if we take larger p for DSM and DS}, where the shape of the supplements
are even worse.

Table 4. Errors and convergence rates at n = 18 computed from the previous step n = 14, for the
direct serendipity spaces DS R DSY, DSE, DSM, and DST.

r=2 r=3 r==4 r=>5
Error Rate Error Rate Error Rate Error Rate

L? errors and convergence rates

1075 295 7927 x 1077 396 1530 x 1078 5.12 4376 x 10710 397

DS} 3452 x X

DSY 3554 x 1075 289 1.073 x 10°® 387 2108 x 1078 483 4637 x 10710 592
DSC 3409 x 1075 292 8964 x 1077 405 1.823 x 10°® 506 413 x 10710 612
DSM 6820 x 107> 288 1.697 x 10°© 3.85 3.095 x 1078 480 611 x 10710 6,02
DST 7072 x 1075 292 1.866 x 1076 4.04 3367 x 1078 491 583 x 10710 6,07

H'-seminorm errors and convergence rates

DSR 1018 x 1073 197 3144 x 107° 298 6952 x 1077 409 2646 x 1078 219
DSY 1059 x 1073 1.89 4199 x 1075 293 9959 x 1077 3.85 2184 x 1078 4.0
DSE 1013 x 107 194 3783 x 1075 310 8785 x 1077 401 1981 x 1078 5,01
DSM 1976 x 1073 1.88 6.334 x 1075 301 159 x 107¢ 395 3.076 x 1078  4.83
DST 2059 x 1073 194 689 x 107> 316 1710 x 107® 4.04 3.008 x 1078 487

6.3. Results for Direct Mixed Spaces

We perform numerical tests for VR vy, vEs vMs VIS for the full H(div)-
approximation spaces where r = s = 0,1,2,3, and the reduced H(div)-approximation
spaces where r = 1,2,3, and s = r — 1. Since those mixed spaces are constructed from
corresponding direct serendipity spaces DS, 1, it is natural that we find the comparison
of the results similar to the small » cases discussed in Section 6.2. For all the spaces, we
can observe the convergence rates approximately optimal in general but the errors are
slightly worse for n = 18, especially when r = s = 3, as shown in Tables 5 and 6. All spaces
perform similarly well, although VX* usually performs best in these tests. Among the new
spaces, VrC’S performs a bit better, and it gives results close to those of VE’S . For reference,
we provide the numerical results for VS in Tables 7 and 8.

Table 5. Errors and convergence rates at n = 18 computed from the previous step n = 14, for the
reduced H(div)-approximation spaces V&' =1, vy =1 y&r=1 yMr=1 5nq vIr-1,

llp — pall llu — up | IV - (u—up)l
Error Rate Error Rate Error Rate

r =1, reduced H(div)-approximation

A 7.039 x 1072 1.01 5428 x 1073 1.98 6.988 x 1072 0.99
A2 7.039 x 1072 1.01 5429 x 1073 1.98 6.988 x 1072 0.99
A% 7.039 x 1072 1.01 5443 x 1073 1.98 6.988 x 1072 0.99
A 7.039 x 1072 1.01 5366 x 1073 1.98 6.988 x 1072 0.99
\ 7.039 x 1072 1.01 5362 x 1073 1.98 6.988 x 1072 0.99
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Table 5. Cont.
llp = pall llw = w | V- (0 —wup)l

Error Rate Error Rate Error Rate

r = 2, reduced H(div)-approximation
vyl 2,614 x 1073 1.96 8.492 x 107° 2.92 2,614 x 1073 1.96
V! 2,614 x 1073 1.96 8.876 x 107° 2.89 2,614 x 1073 1.96
v 2614 x 1073 1.96 8.850 x 107° 2.87 2614 x 1073 1.96
vyl 2614 x 1073 1.96 8.895 x 1075 2.85 2614 x 1073 1.96
\ 2,614 x 1073 1.96 8.973 x 107° 2.85 2,614 x 1073 1.96

r = 3, reduced H(div)-approximation
V32 6.515 x 1075 2.96 1.887 x 107° 3.90 6515 x 1075 2.96
vy? 6.515 x 1075 2.96 1.931 x 107° 3.89 6515 x 1075 2.96
\%% 6515 x 107° 2.96 1911 x 107°¢ 3.89 6.515 x 107° 2.96
vit? 6515 x 107° 2.96 2,007 x 107° 3.81 6.515 x 107° 2.96
\is 6515 x 107° 2.96 2.105 x 107° 3.83 6.515 x 107° 2.96

Table 6. Errors and convergence rates at n = 18 computed from the previous step n = 14, for the full

H(div)-approximation spaces VR, VY, V&7, VM7 and v,

llp = pall llw = w | V- (0 —wup)l
n Error Rate Error Rate Error Rate
r =0, full H(div)-approximation
A 7.030 x 1072 1.01 2.701 x 1072 1.10 6.988 x 1072 0.99
26 7.027 x 1072 1.01 3.095 x 1072 1.03 6.988 x 1072 0.99
A\ 7.028 x 1072 1.01 2951 x 1072 1.03 6.988 x 1072 0.9
o 7.027 x 1072 1.01 3.065 x 1072 0.93 6.988 x 1072 0.99
\ 7.026 x 1072 1.01 3.163 x 1072 0.92 6.988 x 1072 0.99
r =1, full H(div)-approximation
vt 2614 x 1073 1.96 4.895 x 1074 2.19 2614 x 1073 1.96
vy! 2,614 x 1073 1.96 5542 x 107* 2.13 2,614 x 1073 1.96
Vit 2,614 x 1073 1.96 5226 x 107* 2.17 2,614 x 1073 1.96
vt 2614 x 1073 1.96 7.505 x 1074 2.08 2614 x 1072 1.96
vt 2614 x 1073 1.96 7917 x 1074 2.15 2614 x 1073 1.96
r = 2, full H(div)-approximation
\%a 6.515 x 107° 2.96 8.818 x 107° 3.10 6.515 x 107° 2.96
vy 6.515 x 107° 2.96 1.887 x 1075 2.92 6.515 x 107° 2.96
V5?2 6.515 x 1075 2.96 1.526 x 1075 3.03 6515 x 1075 2.96
vyi? 6515 x 107° 2.96 2.801 x 107° 2.49 6.515 x 107° 2.96
\s 6515 x 107° 2.96 3.010 x 107° 2.67 6.515 x 107° 2.96
r = 3, full H(div)-approximation
o 1.182 x 1076 3.99 2144 x 1077 3.65 1182 x 1076 3.99
vy? 1182 x 107° 3.99 3324 x 1077 3.43 1182 x 107° 3.99
A\ 1182 x 107° 3.99 2.933 x 1077 3.50 1182 x 107° 3.99
vit? 1183 x 107 3.99 1254 x 1076 3.10 1182 x 1076 3.99
A 1183 x 107 3.99 1547 x 1076 3.61 1182 x 1076 3.99
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Table 7. Errors and convergence rates in L? for ver-1

llp — paull [lw — upl| IV (u—up)l
n Error Rate Error Rate Error Rate

r =1, reduced H(div)-approximation

10 1.290 x 1071 1.24 1.775 x 102 2.29 1.260 x 1071 1.15
14 9.109 x 1072 1.02 9.024 x 1073 1.98 9.001 x 1072 0.98
18 7.039 x 1072 1.01 5443 x 1073 1.98 6.988 x 1072 0.99
22 5736 x 102 1.15 3.630 x 1073 2.28 5708 x 102 1.14
r = 2, reduced H(div)-approximation
10 8.635 x 1073 2.23 5210 x 1074 3.28 8.634 x 1073 2.23
14 4308 x 1073 2.04 1.841 x 1074 3.04 4308 x 1073 2.03
18 2.614 x 1073 1.96 8.850 x 10~° 2.87 2614 x 1073 1.96
22 1.715 x 1073 2.37 4772 x 1075 347 1.715 x 1073 2.37
r = 3, reduced H(div)-approximation
10 3.881 x 1074 3.38 2.021 x 1075 439 3.881 x 1074 3.38
14 1384 x 107* 3.02 5151 x 107° 4.00 1.384 x 10~* 3.02
18 6.515 x 1075 2.96 1.911 x 10°° 3.89 6.515 x 1075 2.96
22 3507 x 1075 3.48 8432 x 1077 4.60 3507 x 1073 3.48
Table 8. Errors and convergence rates in L2 for V,C’r.
llp — paull [lu —uy| IV - (u—up)
n Error Rate Error Rate Error Rate
r = 0, full H(div)-approximation
10 1.281 x 1071 1.20 6.389 x 1072 1.54 1.260 x 107! 1.15
14 9.086 x 1072 1.01 3.832 x 1072 1.50 9.001 x 102 0.98
18 7.028 x 1072 1.01 2951 x 1072 1.03 6.988 x 1072 0.99
22 5731 x 1072 1.15 2.145 x 102 1.79 5708 x 102 1.14
r =1, full H(div)-approximation
10 8.635 x 1073 2.23 2.003 x 1073 2.65 8.634 x 1073 223
14 4308 x 1073 2.04 9.076 x 10~% 2.32 4308 x 1073 2.03
18 2614 x 1073 1.96 5226 x 1074 2.17 2614 x 1073 1.96
22 1.715 x 1073 2.37 3320 x 1074 2.55 1.715 x 1073 2.37
r = 2, full H(div)-approximation
10 3.881 x 104 3.38 1.007 x 10~* 347 3.881 x 1074 3.38
14 1384 x 107* 3.02 3303 x 107° 3.26 1.384 x 10~* 3.02
18 6.515 x 1075 2.96 1.526 x 1075 3.03 6.515 x 107> 2.96
22 3507 x 10~° 3.48 7.889 x 10~° 3.71 3,507 x 10~° 348
r = 3, full H(div)-approximation
10 1.294 x 107° 4.60 3537 x 1076 4.84 1.294 x 107° 4.60
14 3270 x 107° 4.03 7.157 x 1077 4.68 3270 x 107° 4.03
18 1.182 x 10°° 3.99 2933 x 1077 3.50 1.182 x 107 3.99
22 5219 x 1077 4.60 1.301 x 1077 457 5219 x 107 4.60

7. Conclusions

We reviewed the construction of direct serendipity and mixed finite elements on non-
degenerate, planar convex polygons. The direct serendipity finite element spaces are of
the form

DS,(En) = P;(En) ®SP° (En). (55)
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The full and reduced H(div)-approximation mixed finite element spaces are obtained from
a de Rham complex, where the direct serendipity finite elements serve as a precursor. The
mixed spaces are of the form

VI(Ey) = P2(En) @ xB(En) @ SY (En),

Vi Y(En) =PZ(En) @ SY (En), %0

where
SY(En) = curl SES (E). (57)

We presented two approaches to construct the supplemental functions in SP (Ey)
as piecewise polynomials. The first approach divides a polygonal element Ey into sub-
triangles, and constructs the supplements as continuous piecewise polynomials that lie in
H'(Ey). The second approach has a more complicated subdivision of Ex that needs to be
treated carefully. However, it provides a framework for constructing supplements that lie
in H?(Ey) for any p > 1.

The approximation properties of the new finite elements were proved under the regu-
larity assumption of the mesh sequences and some mild restrictions on the construction.

We performed numerical tests on a randomly generated mesh sequence and compared
results for five different ways of constructing the supplemental functions, including the
original construction using smooth but rational functions. The comparison suggested that
it is better to use the piecewise polynomial supplements rather than the rational supple-
ments for higher order r. Although the rational supplements are smooth and so tend to
approximate better, noticeable errors could be seen due to inaccurate numerical integration,
especially on meshes with short edges. Among the new spaces, it was found that the spaces
with supplements based on the center point sub-triangulation (23) performed best.
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