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The data engineering and data science community has embraced the idea
of using Python and R dataframes for regular applications. Driven by the
big data revolution and artificial intelligence, these frameworks are now ever
more important in order to process terabytes of data. They can easily exceed
the capabilities of a single machine but also demand significant developer
time and effort due to their convenience and ability to manipulate data with
high-level abstractions that can be optimized. Therefore it is essential to
design scalable dataframe solutions. There have been multiple efforts to be
integrated into the most efficient fashion to tackle this problem, the most
notable being the dataframe systems developed using distributed computing
environments such as Dask and Ray. Even though Dask and Ray’'s distributed
computing features look very promising, we perceive that the Dask Dataframes
and Ray Datasets still have room for optimization In this paper, we present
CylonFlow, an alternative distributed dataframe execution methodology that
enables state-of-the-art performance and scalability on the same Dask and
Ray infrastructure (supercharging them!). To achieve this, we integrate a high-
performance dataframe system Cylon, which was originally based on an entirely
different execution paradigm, into Dask and Ray. Our experiments show that
on a pipeline of dataframe operators, CylonFlow achieves 30x more distributed
performance than Dask Dataframes. Interestingly, it also enables superior
sequential performance due to leveraging the native C++ execution of Cylon. We
believe the performance of Cylon in conjunction with CylonFlow extends beyond
the data engineering domain and can be used to consolidate high-performance
computing and distributed computing ecosystems.

KEYWORDS

data engineering, data science, high performance computing, distributed computing,
dataframes

1 Introduction

Data engineering has grown rapidly in recent decades, driven by the Big Data
revolution and advances in machine learning (ML) and artificial intelligence (AI). In
today’s information age, data is measured in gigabytes and terabytes, stored in object
repositories rather than megabytes, files, or spreadsheets. Managing this vast amount
of data takes up significant developer time in preprocessing, detracting from the more
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critical task of building data engineering models. Hence, it is
essential to improve the efficiency of data preprocessing to develop
effective data engineering pipelines.

Traditionally, data preprocessing was done using structured
query language (SQL) in database systems. However, Python
and R programming languages have increasingly taken on these
SQL tasks in recent years. The Python library pandas has been
instrumental in this transition, significantly boosting Python’s
popularity for data exploration. This discussion mainly focuses on
the DataFrame (DF) API, a crucial part of the pandas framework.
According to PyPI package index statistics, pandas consistently
surpasses 100 million downloads per month, underscoring its
leading role in the field (PyPI, n.d.). Despite its widespread use,
both Pandas and R DF encounter performance limitations, even
when handling moderately large datasets. (Petersohn et al., 2020;
Widanage et al., 2020; Perera et al., 2022). For example, in an
Intel® Xeon® Platinum 8160 high-end workstation with 240GB
memory, it takes around 700s to join two DFs with 1 billion
rows each for pandas, whereas traversing each dataframe only
takes about 4 s. On the other hand, modern computer hardware
offers significant computing power and substantial memory. On-
demand elastic cloud computing services allow tasks to be executed
on thousands of nodes with a single click. Therefore, we have
abundant resources available to create more efficient distributed
data engineering solutions.

Hadoop YARN, Dask, and Ray are examples of distributed
execution runtimes that can manage thousands of computing
resources. Developed mainly by the distributed and cloud
computing communities, these engines offer application program
interfaces (APIs) that allow users to easily deploy their logic across
numerous nodes. In the data engineering community, we have
seen several frameworks attempting to leverage these distributed
runtimes to develop distributed dataframe (DDF) solutions. Spark
SQL RDDs and Datasets was a breakthrough framework on this
front, significantly improving the traditional map-reduce paradigm
(Zaharia et al., 2012). Dask developed its own take on DDFs, Dask
DDE closely followed by Ray with Ray-Datasets. Modin is the
latest attempt to develop scalable DF systems (Petersohn et al,
2020), which is also built on top of Dask and Ray. However, Ray
Datasets have limitations, as they currently only support unary
operators, and operations like groupby take too long to complete.
Modin DDFs are restricted to broadcast joins and perform poorly
with dataframes of similar sizes. Dask and Spark Datasets struggle
with scalability in some operations, especially groupby, which may
indicate issues with communication implementation. Spark also
shows timing anomalies with 8-32 parallelism, which the Spark
community needs to investigate. Each framework faces challenges
in a pipeline of operators, such as communication overhead, limited
support for certain operations, and scalability issues in specific
scenarios. Users should consider these factors when selecting
a framework based on their specific needs and requirements
(Widanage et al., 2020; Perera et al., 2022).

In a previous publication, we developed an alternative to the
existing DDFs named Cylon (Widanage et al., 2020), which looks
at the problem from the HPC point of view. Cylon employs bulk
synchronous parallel BSP model for DDF operator execution,
and works on top of MPI runtimes (OpenMPI, MPICH, IBM
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Spectrum MP], etc). Due to superior scalability and HPC descent,
we differentiate Cylon as a high performance DDF (HP-DDF)
implementation. Apart from running on BSP, another notable
feature in HP-DDFs is the use of an optimized communication
library (Perera et al., 2023).

Although Cylon has managed to achieve superior scalability
compared to many well-known DDF systems, it is heavily
dependent on the MPI ecosystem. The way MPI processes are
initiated is closely linked to the specific MPI implementation
being used, such as OpenMPI, which uses PMIx. This reliance
on MPI poses difficulties for integrating with other distributed
computing libraries like Dask and Ray. The strong dependence
of Cylon on MPI for process initiation limits its ability to use
MPI as a standalone communication library on top of these other
libraries. Typically, libraries like Dask and Ray handle the initiation
of their worker processes independently, and there is no simple
method for the MPI runtime to connect with these pre-existing
worker processes.

In this paper, we propose an alternative execution methodology
to resolve this limitation. Our objective is to integrate Cylon with
other execution runtimes without compromising its scalability
and performance. It is a bipartite solution: (1) creating a stateful
pseudo-BSP environment within the execution runtime resources;
(2) using a modularized communicator that enables plugging-
in optimized communication libraries. We named it CylonFlow
because the idea carries parallels to workflow management.
We demonstrate the robustness of this idea by implementing
Cylon HP-DDF runtimes on top of Dask (CylonFlow-on-Dask)
and Ray (CylonFlow-on-Ray) that outperform their own DDF
implementations. We also confirm that the idea gives comparable
or better results than MPI-based Cylon DDF on the same
hardware. With CylonFlow, we have now enabled HP-DDFs
from anywhere to personal laptops or exascale supercomputers.
As depicted in Figure I, it consolidates disparate execution
models and communities under a single application runtime.
To the best of our knowledge, this is the first attempt to
adapt high-performance data engineering constructs to distributed
computing environments. We believe that the methodology behind
CylonFlow extends beyond the data engineering domain, and it
could be used to execute many HPC applications in distributed
computing environments.

2 Distributed computing models and
libraries

In order to understand the design and implementation
of both Cylon and CylonFlow, it is important to discuss the
existing distributed computing models and prevalent libraries that
implement them. A distributed computing model provides an
abstract view of how a particular problem can be decomposed
and executed from the perspective of a machine. It describes
how a distributed application expresses and manages parallelism.
Data parallelism executes the same computation on different parts
(partitions) of data using many compute units. We see this at the
instruction level, single-instruction multiple-data (SIMD), as well
as in program level single-program multiple-data (SPMD). On the
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other hand, task parallelism involves executing multiple tasks in
parallel over many compute units. This is a form of multiple-
program multiple-data (MPMD) at the program level.

2.1 Bulk synchronous parallel (BSP)

BSP or Communicating Sequential Processors (CSP) model
(Fox et al., 1989; Valiant,
that employs SPMD and data parallelism over many compute

1990) is the most common model

nodes. Message Passing Interface (MPI) is a formal specification
of BSP model that has matured over 30+ years. OpenMP],
MPICH, MSMPI, IBM Spectrum MPI, etc. are some notable
implementations of this specification. MPI applications display
static parallelism since most often parallelism needs to be declared
at the initiation of the program. From the point of view of
the data, this would mean that the data partitions are tightly
coupled to the parallelism. At the beginning of the application, data
partitions would be allocated to executors/workers. Executors then
own data partitions until the end of the application and perform
computations on them. When the workers reach a communication
operation in the program, they synchronize with each other
by passing messages. Many high performance computing (HPC)
applications use the BSP model on supercomputing clusters and
have shown admirable scalability. However, only a handful of
data engineering frameworks have adopted this model, including
Twister2 (Kamburugamuve et al., 2020) and Cylon.

2.2 Asynchronous many-tasks

Asynchronous many-tasks (AMT) model relaxes the limitations
of BSP by decomposing applications into independent transferable
(data
AMT runtimes usually manage a distributed

sub-programs (many tasks) with associated inputs
dependencies).
queue that accepts these tasks (Manager/Scheduler). A separate

group of executors/workers would execute tasks from this queue,
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thus following MPMD and task parallelism. Dependencies
between tasks are handled by the scheduling order. This allows
the application to set parallelism on-the-fly, and the workers are
allowed to scale up or down, leading to dynamic parallelism. AMT
also enables better resource utilization in multi-tenant/multi-
application environments by allowing free workers to pick
independent tasks, thereby improving the overall throughput of
the system. Furthermore, task parallelism enables task-level fault
tolerance where failed tasks can be rerun conveniently. These
benefits may have prompted many distributed dataframe runtimes,
including Dask DDF and Ray Datasets, to choose AMT as the
preferred execution model.

2.3 Actors

Actor model was popularized by Erlang (Armstrong, 2010). An
actor is a primitive computation which can receive messages from
other actors, upon which they can execute a computation, create
more actors, send more messages, and determine how to respond
to the next message received. Compared to executors and tasks in
AMT, actors manage/maintain their own state, and the state may
change based on the computation/communication. Messages are
sent asynchronously and placed in a mailbox until the designated
actor consumes them. Akka is a popular actor framework that was
used as the foundation for the Apache Spark project. Interestingly,
Dask and Ray projects also provide an actor abstraction on top
of their distributed execution runtimes mainly aimed at reducing
expensive state initializations.

3 Distributed data dataframes

With the exponential growth in dataset sizes, it is fair to
conclude that data engineering applications have already exceeded
the capabilities of a single workstation node. Modern hardware
offers many CPU cores/threads for computation, and the latest
cloud infrastructure enables users to spin many such nodes
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instantaneously. As a result, there is abundant computing power
available at users’ disposal, and it is essential that data engineering
software make use of it. Furthermore, every AI/ML application
requires a pre-processed dataset, and it is no secret that data
pre-processing takes significant developer time and effort. Several
AI/ML surveys suggest that it could even be more than 60% of total
developer time (Anaconda, 2021). For these reasons, using scalable
distributed dataframe (DDF) runtime could potentially improve the
efficiency of data engineering pipelines immensely. Based on our
experiments with some widely used DDF systems (Section 5), we
believe that the idea of a high performance scalable DDF runtime is
still a work in progress.

3.1 Dataframes

Let us first define a dataframe. We borrow definitions from
the relations terminology proposed by Abiteboul et al. (1995).
Similar to SQL tables, DFs contain heterogeneously typed data.
These elements originate from a known set of domains, Dom =
{domy,domy, ...}. For a DF, these domains represent all the data
types it supports. A Schema of a DF Sy is a tuple (D, Cum),
where D) is a vector of M domains and Cy; is a vector of M
corresponding column labels. Column labels usually belong to
String/Object domain. A Dataframe (DF) is a tuple (Syr, ANy, RN)s
where Sy is the Schema with M domains, Anyy is a 2-D array of
entries where actual data is stored, and Ry is a vector of N row
labels belonging to some domain. Length of the dataframe is N, i.e.
the number of rows.

Heterogeneously typed schema clearly distinguishes DFs from
multidimensional arrays or tensors. However data along a
column is still homogeneous, so many frameworks have adopted
a columnar data format that enables vectorized computations
on columns. A collection of numpy NDArrays would be
the simplest form of DF representation. Alternatively, Apache
Arrow columnar format (Apache Software Foundation, n.d.)
is commonly used by many DF runtimes. Arrow arrays are
composed of multiple buffers such as data, validity and offsets
for variable-length types (e.g. string). As identified in previous
literature, many commonly used DF operators are defined over
the vertical axis (row-wise) (Petersohn et al., 2020; Perera et al,,
2022). Even though columnar representation allows contiguous
access along a column, it makes indexing or slicing rows
non-trivial. Furthermore, many DF operators are defined on a
set of key columns, while the rest (i.e. value columns) move
along with the keys. As a consequence, traditional BLAS (basic
linear algebra subprograms) routines cannot be directly used for
DF operators.

3.2 DDF system design

The
engineering challenges in designing distributed DF systems.

composition of a DF introduces  several

Similar to any distributed/parallel system design, let

us first examine the computation and communication

aspects broadly.
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3.2.1 Computation

Petersohn et al. (2020) recognize that many Pandas operators
can potentially be implemented by a set of core operators,
thereby reducing the burden of implementing a massive DDF
API. Correspondingly, in a recent publication, we observed
that DF operators follow several generic distribution execution
patterns (Perera et al., 2022). The pattern governs how these sub-
operators are arranged in a directed acyclic graph (DAG). We
also identified that a DDF operator consists of three major sub-
operators: (1) core local operator; (2) auxiliary local operators;
and (3) communication operators. Figure 2 depicts a distributed
join operation composition, and Figure 3 shows the relationship
between the concepts of Cylon and Modin. A framework may
choose to create tasks (i.e. the definition for a unit of work) for each
of these sub-operators. A typical application would be a pipeline of
multiple DDF operators.

When using the AMT model, these tasks would be further
expanded for each data partition (parallelism). Every task would
produce input data for subsequent tasks. This dataflow governs
the dependencies between tasks. When there are several operators
in a DAG, it is common to see multiple local tasks grouped
together. An execution plan optimizer may identify such tasks
and coalesce them together into a single local task. We see
these optimizations in the Apache Spark SQL Tungsten optimizer
(Apache Spark’s, 2020). Previously mentioned in Section 1, data
parallelism is natively supported by the BSP model. Since the
executors own data partitions until the end of an application,
they have the ability to perform all local compute tasks until they
reach a communication boundary. As such, coalescing subsequent
local tasks are inherently supported by the model itself compared
to AMT.

3.2.2 Communication

Implementing DDF operators requires point-to-point (P2P)
communication, as well as complex message passing between
worker processes. We have identified several such collective
communication routines, such as shuffle (all-to-all), scatter,
(all)gather, broadcast, (all)reduce, etc, that are essential for DDF
operators (Perera et al., 2022). Typically, communication routines
are performed on data buffers (ex: MPI, TCP), but the DF
composition dictates that these routines be extended on data
structures such as DFs, arrays, and scalars. Such data structures may
be composed of multiple buffers (Section 1) which could further
complicate the implementation. For example, join requires a
DF to be shuffled, and to do this we must A11ToAll the
buffer sizes of all columns (counts). We then shuffle column data
based on these counts. In most DF applications, communication
operations may take up significant wall time, creating critical
bottlenecks. This is evident from Section 5.1, where we evaluate the
distribution of communication and computation time over several
DF operator patterns. Moreover, developer documentation of
Spark SQL, Dask DDF, Ray Datasets, etc, provide special guidelines
to reduce shuffle routine overheads (Shuffling Performance,
n.d.; Welcome to the Ray, n.d.).

While these communication routines can be implemented
ingenuously using point-to-point message passing, implementation
of specialized algorithms has shown significant performance
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improvements (Bruck et al., 1997; Thakur et al., 2005; Traff et al.,
2014). For instance, OpenMPI implements several such algorithms
for its collective communications, which can be chosen based
on the application. Typically in AMT run-times, communications
between tasks are initiated with the help of a Scheduler. Another
approach is to use a distributed object store or a network file system
to share data rather than sending/receiving data explicitly, although
this could lead to severe communication overhead.

3.3 DDF systems examined

Let us examine several of the most commonly used DDF
systems to understand their distributed execution models and
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broad design choices. We will then compare these systems with our
novel approach described in Section 4.

3.3.1 Dask DDF

Dask DDF is a distributed DF composed of many Pandas
DFs partitioned along the vertical axis. Operators on Dask
DDFs are decomposed into tasks which are then arranged in
a DAG (Figure4 depicts a Join operation). Dask-Distributed
Scheduler then executes these tasks on Dask-Workers. This DDF
execution is a good example of AMT model. Core local operators
are offloaded to Pandas. Communication operators (mainly
shuffle) support point-to-point TCP message passing using
Partd disk-backed distributed object store.

3.3.2 Ray datasets

Ray Datasets is a DDF-like API composed of Apache Arrow
tables or Python objects stored in the distributed object store.
Similar to Dask, distributed operators (Transforms) follow the
AMT model. Interestingly, they support a task strategy as well
as an actor strategy. The latter is recommended for expensive
state initialization (e.g. for GPU-based tasks) to be cached. As per
communication, a map-reduce style shuf f1le is used which maps
tasks to partition blocks by value and then reduces tasks to merge
co-partitioned blocks together. Essentially, Ray communication
operators are backed by the object store. For larger data, the
documentation suggests using a push-based shuffle.

3.3.3 Apache spark dataset

It is fair to say that Apache Spark is the most popular actor-
based data engineering framework available today, and it has
attracted a large developer community since its initial publication,
Resilient Distributed Datasets (RDDs) (Zaharia et al., 2012). PySpark
Dataset is a DDF-like API, and recently a Pandas-like DDF
named Pandas on Spark was also released. Similar to AMT,
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Spark decomposes operators into a collection of map-reduce tasks,
after which a manager process schedules these tasks in executors
allocated to the application. It uses Akka-Actors to manage the
driver (i.e. the process that submits applications), the manager,
and executors. Essentially, Spark implements AMT using the actor
model for map-reduce tasks. All these processes run on a Java
Virtual Machine (JVM), and could face significant (de)serialization
overheads when transferring data to and from Python. As an
optimization, the latest versions of PySpark enable Apache Arrow
columnar data format.

3.3.4 Modin DDF

Modin (Petersohn et al., 2020) is the latest addition to the
DDF domain. It introduces the concept of DF algebra (Figure 3),
where a DDF operator can be implemented as a combination of
core operators. It executes on Dask and Ray backends, which also
provide the communication means for DDF. Modin distinguishes
itself by attempting to mirror the Pandas API and follow
eager execution.

4 Cylon and CylonFlow: high
performance DDFs in Dask and Ray

Through our research, we have encountered several
performance limitations while using the aforementioned DDF
systems for large datasets. As discussed in Section 5, many of these
DDFs show limited scalability, and we believe the limitations of
the AMT model could be a major contributor to that. A centralized
scheduler might create a scheduling bottleneck. Additionally, the

lack of a dedicated optimized communication mechanism further
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compounds the issues. It is fair to assume that the optimization
of communication routines is orthogonal to designing distributed
computing libraries such as Dask/Ray, and re-purposing generic
distributed data-sharing mechanisms for complex communication
routines may lead to suboptimal performance when used in
DDF implementations.

In a recent publication we proposed an alternative approach
for DDFs that uses BSP execution model, which we named
Cylon (Widanage et al, 2020). It is built on top of MPI
and uses MPI collective communication routines for DDF
operator implementations. MPI libraries (OpenMPI, MPICH,
IBM-Spectrum) have matured over the past few decades to
employ various optimized distributed communication algorithms,
and Cylon benefits heavily from these improvements. It also
profits from data parallelism and implicit coalescing of local tasks
by employing the BSP model. Experiments show commendable
scalability with Cylon, fittingly differentiating it as a high
performance DDF (HP-DDF). Even though high performance
DDFs seem encouraging, having to depend on an MPI environment
introduces several constraints. MPI process bootstrapping is tightly
coupled to the underlying MPI implementation, e.g. OpenMPI
employs PMIx. As a result, it is not possible to use MPI as a separate
communication library on top of distributed computing libraries
such as Dask/Ray. Usually these libraries would bootstrap their
worker processes by themselves. There is no straightforward way
for the MPI runtime to bind to these workers.

We strongly believe it is worthwhile to expand on the HP-DDF
concept beyond MPI-like environments. Current advancements in
technology and the high demand for efficient data engineering
solutions encourage this position. Our main motivation for
this paper is to develop an execution environment where we
could strike a balance between the scalability of BSP and the
flexibility of AMT. Dask and Ray have proven track records
as distributed computing libraries. So rather than building a
new system from scratch, we focused on bridging the gap
between BSP and these libraries. We propose a two-pronged
solution to this problem. First, creating a stateful pseudo-
BSP execution environment using the computing resources of
the execution runtime. This lays the foundation for HP-DDF
execution. The second step is using a modularized communicator
abstraction (i.e. interface that defines communication routines)
that enables pluging-in optimized communication libraries. We
named this project CylonFlow, as it embraces the idea of managing
a workflow.

4.1 Stateful pseudo-BSP execution
environment

Within this pseudo-BSP environment, executors initialize an
optimized communication library and attach it to the state of
the executor. The state would keep this communication context
alive for the duration of an CylonFlow application. This allows
CylonFlow runtime to reuse the communication context without
having to reinitialize it, which could be an expensive exercise
for larger parallelisms. Once the environment is set up, the
executors implicitly coalesce and carry out local operations until a
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communication boundary is met. The state can also be used to share
data between CylonFlow applications as discussed in Section 4.3.

This proposition of creating stateful objects matches perfectly
with the actor model. Thus we leveraged the actor APIs available in
Dask and Ray to implement CylonFlow-on-Dask and CylonFlow-
on-Ray (Figure5). An actor is a reference to a designated
object (CylonActor class) residing in a remote worker. The
driver/user code would call methods on this remote object, and
during the execution of this call, CylonFlow runtime passes the
communication context as an argument. Inside these methods,
users can now express their data engineering applications using
Cylon DDFs.

This approach enables partitioning of the cluster resources and
scheduling independent applications. It would be a much more
coarsely grained work separation, but we believe the abundance of
computing units and storage in modern processor hardware, and
their availability through cloud computing, could still sustain it. To
the best of our knowledge, this is the first time actors are being used
together with a dedicated communication library to develop HP-
DDF runtimes. This approach is semantically different from actors
in Apache Spark, where they would still be executing independent
tasks in an AMT manner. Neither should it be confused with other
orthogonal projects like Dask-MPI, which is used to deploy a Dask
cluster easily from within an existing MPI environment.

Upon the initialization of the application, CylonFlow sends
Cylon Actor definition (a class) to a partition of workers in the
cluster based on the required parallelism. Workers then initialize
these as an actor instance (remote object). At the same time,
the actor instances initialize communication channels between
each other, which is the entry point for creating Cylon DDFs
(i.e. Cylon_env). Instantiating an Cylon_env could be an
expensive operation, especially with large parallelism, as it opens
up P2P communication channels between the remote objects.

The Cylon actor class exposes three main endpoints.

Allows
executable class that would be

1) start_executable: users to submit an

instantiated inside the
actor instance.

2) execute_Cylon: Execute functions of the executable that
accepts an Cylon_env object and produces a Future.

3) run_ Cylon: Execute a lambda function that accepts an

Cylon_ env object and produces a Future.

The following is an example code which creates two Cylon DFs
using Parquet files and performs a join (merge) on them.

def foo(env:CylonEnv=None) :
dfl = read parquet(..., env=env)
df2 = read parquet(..., env=env)
write parquet (dfl.merge(df2, ..., env=env), ..., env=env)

init()

wait (CylonExecutor (parallelism=4).run Cylon(foo))

4.1.1 Spawning Dask actors

Dask does not have a separate API endpoint to reserve a set
of workers for an application. Consequentially, CylonFlow uses
the Distributed.Client API to collect a list of all available
workers. It then uses the Client.map API endpoint with a
chosen list of workers (based on the parallelism) to spawn the
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actor remote objects. Dask actor remote objects open up a direct
communication channel to the driver, which they would use to
transfer the results back. This avoids an extra network hop through
the scheduler and achieves lower latency.

4.1.2 Spawning Ray actors

Ray provides a Placement Groups API that enables reserving
groups of resources across multiple nodes (known as gang-
scheduling). CylonFlow creates a placement group with the
required parallelism and submits the Cylon Actor definition to it.
In Ray documentation (Welcome to the Ray, n.d.), communicating
actors such as this are called out-of-band communication.

4.2 Modularized communicator

Once the pseudo-BSP environment is set up, Cylon HP-
DDF communication routines can pass messages amongst the
executors. However, we would still not be able to reuse the MPI
communications due to the limitations we discussed previously.
To address this, we had to look for alternative communication
libraries which could allow us to implement Cylon communication
routines outside of MPI without compromising its scalability
and performance. We achieved this by modularizing Cylon
communicator interface and adding abstract implementations of
DDF communication routines as discussed in Section 3. This
allowed us to conveniently integrate Gloo and UCX/UCC libraries
as alternatives to MPI. Communicator performance experiments in
Section 5.2 demonstrate that these libraries perform as good as if
not better than MPI on the same hardware.

4.2.1 Gloo

Gloo is a collective communications library managed by
Meta Inc. incubator (facebookincubator/gloo, n.d.) predominantly
aimed at machine learning applications. PyTorch uses this for
distributed all-reduce operations. It currently supports TCP, UV,
and ibverbs transports. Gloo communication runtime can be
initialized using an MPI Communicator or an NFS/Redis key-
value store (P2P message passing is not affected). Within MPI
environments Cylon uses the former, but for the purposes of
CylonFlow it uses the latter. As an incubator project, Gloo lacks
a comprehensive algorithm implementation, yet our experiments
confirmed that it scales admirably. We have extended the Gloo
project to suit Cylon communication interface.

4.2.2 Unified communication X (UCX)

UCX (Shamis et al., 2015) is a collection of libraries and
interfaces that provides an efficient and convenient way to
construct widely used HPC protocols on high-speed networks,
including MPI tag matching, Remote Memory Access (RMA)
operations, etc. Unlike MPI runtimes, UCX communication
workers are not bound to a process bootstrapping mechanism.
As such, it is being used by many frameworks, including Apache
Spark and RAPIDS (Dask-CuDF). It provides primitive P2P
communication operations. Unified Collective Communication
(UCCQ) is a collective communication operation API built on top
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CylonFlow using actors for HP-DFF.

of UCX which is still being developed. Similar to MPI, UCC
implements multiple communication algorithms for collective
communications. Based on our experiments, UCX + UCC
performance is on par with or better than OpenMPI. CylonFlow
would use Redis key-value store to instantiate communication
channels between Cylon actors.

4.3 Sharing results with downstream
applications

As discussed in Section 4.1, this approach allows partitioning
of the cluster resources and scheduling of individual applications.
These applications may contain data dependencies, for example,
multiple data preprocessing applications feeding data into a
distributed deep learning application. However this typically
produces DDFs, and it would not be practical to collect
intermediate results to the driver program. We propose an
CylonFlow data store (ie. Cylon store) abstraction to
retain these results. In the following example, data_ df and
aux_data df will be executed in parallel on two resource
partitions, and main function would continue to execute the deep
learning model.

def process aux data(env:CylonEnv=None, store:CylonStore=None) :
aux data df = ...
store.put ("aux data", aux data df, env=env)

def main(env:CylonEnv=None, store:CylonStore=None) :
data df = ...
aux data df = store.get("aux data", timeout=..
df = data df.merge(aux data df, ...)

., env=env)

X _train = torch.from numpy(df.to numpy()) .to(device)
model = Model(...)

init()
CylonExecutor (parallelism=4) .run Cylon (process_aux data)
wait (CylonExecutor (parallelism=4).run_CyIlon(main))
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Cylon_store could be backed by an NFS or distributed object
store (ex: Rays Object Store). This feature is currently being
developed under CylonFlow, and is mentioned here only for
completeness. In instances where applications choose different
parallelism values, the store object may be required to carry out a
repartition routine.

4.4 CylonFlow features
The proposed actor-based solution CylonFlow provides several

benefits compared to traditional MPI-like (BSP) environments as
well as distributed computing environments.

4.4.1 Scalability

Experiments  show  that  CylonFlow-on-Dask  and
CylonFlow-on-Ray  offer Dbetter operator scalability —on
the same hardware compared to Dask DDF and Ray

Datasets, which employ AMT model (Section 5). It also
which

CylonFlow provides

surpasses Spark Datasets, uses a conventional

actor model. data engineering users
DF

with  minimum

a high performance and scalable alternative  to

their
execution environments.

existing applications changes to

4.4.2 Application-level parallelism

Partitioning resources within a distributed computing cluster
enables parallel scheduling of multiple CylonFlow tasks. These
would have much more coarsely grained parallelism compared to
a typical task composed of a DDF operator. A future improvement
we are planning to introduce is an execution plan optimizer that
splits the DAG of a DF application into separate sub-applications
(e.g. coalesce an entire branch). These sub-applications can then be
individually scheduled in the cluster. Outputs (which are already
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partitioned) could be stored in a distributed object store to be
used by subsequent sub-programs. We are potentially looking at
large binary outputs which can be readily stored as objects rather
than using the object store for internal communication routines.
This application-level parallelism could also enable multi-tenant
job submission.

4.4.3 Interactive programming environment
(2020)
programming environment is key for exploratory data analytics. R

Petersohn et al. observed that an interactive
and Python being interpreted languages suits very well with this
experience. One major drawback of Cylon is that it cannot run
distributed computations on a notebook (e.g. Jupyter). CylonFlow
readily resolves this problem by enabling users to acquire a
local/remote resource (managed by Dask/Ray) and submit Cylon

programs to it interactively.

4.4.4 High performance everywhere

The concept of CylonFlow is not limited to distributed
computing libraries, but also extends to larger computing
such as

environments supercomputers.

developing an CylonFlow extension for

We are currently
leadership class
supercomputers. Our end goal is to enable high performance
scalable data engineering everywhere, from a personal laptop to

exascale supercomputers.

5 Experiments

The following experiments were carried out on a 15-node
Intel® Xeon® Platinum 8160 cluster. Each node is comprised of 48
hardware cores on two sockets, 255GB RAM, SSD storage, and are
connected via Infiniband with 40 Gbps bandwidth. The software
used were Python v3.8; Pandas v1.4; Cylon (GCC v9.4, OpenMPI
v4.1, and Apache Arrow v5.0); Dask v2022.8; Ray v1.12; Modin
v0.13; Apache Spark v3.3; SQLite3. SQLite is used to compare a
join and sort operations with 1 M rows table in a single core in
Table 1. The target is to show how Cylon performs comparable
results within a single database. Performing distributed operations
with SQLite poses additional overheads. We checked two cases:
firstly, a single table from a database is accessed by multiple
workers to perform sort and join operations. We had to ensure
data consistency by implementing lock operations for each worker
which added additional latencies. Secondly, multiple tables are also
used from different databases to perform distributed sort and join
operations. In that case, additional overhead is added to create a
database connection with each worker along with joining multiple
tables. We moved our focus on distributed data frames with

10.3389/fhpcp.2024.1384619

underlying execution with CylonFlow on Dask and Ray clusters.
To do that, uniformly random distributed data was used with two
int64 columns, 10° rows (~16 GB) in column-major format
(Fortran order). Data uses a cardinality (i.e. % of unique keys in
the data) of 90%, which constitutes a worst-case scenario for key-
based operators. The scripts to run these experiments are available
in Github (CylonData, n.d.). Out of the operator patterns discussed
in our previous work (Perera et al., 2022), we have only chosen
join, groupby, and sort operators. These cover some of the
most complex routines from the point of view of DDF operator
design. Only operator timings have been considered (without data
loading time). Input data will either be loaded from the driver to
the workers or loaded as Parquet files from the workers themselves
(Dask and Apache Spark discourage the former). Data is then
repartitioned based on parallelism and cached.

We admit that in real applications, operator performance alone
may not portray a comprehensive idea of the overall performance of
a data engineering framework. However we believe it is reasonably
sufficient for the purpose of proposing an alternative approach for
execution. Dask DDFs, Ray Datasets, Spark Datasets, and Modin
DDFs are only used here as baselines. We tried our best to refer
to publicly available documentation, user guides and forums while
carrying out these tests to get the optimal configurations.

5.1 Communication and computation

Out of the three operators considered, joins have the most
communication overhead, as it is a binary operator (two input
DFs). We investigated how the communication and computation

Communication and Computation Breakdown Cylon Join (Strong Scaling)
16000 BN gloo
AN mpi
O ucx

join
misc
shuffle 1
shuffle r

14000 4

12000

10000

8000 -

time (ms)

6000 -

4000 A

2000 A

04

32 64 128 256 512
Parallelism

FIGURE 6
Communication and computation breakdown of Cylon join
operation (1B rows).

TABLE 1 Experiments on UVA.Rivanna with SQLite and CylonFlow with join and sort operations in a single node.

Experiment type AT (SQLite) AT (CylonFlow) #Rows #Nodes Dataset size
A Join operation 9.1514 9.0137 [1M] 1 1.5GB
B Sort operation 18.4042 17.9173 [1M] 1 1.5GB

We calculate average time (AT) in seconds for SQLite and CylonFlow versions.
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OpenMPI, Gloo, vs. UCX/UCC (1B rows, Log-Log) - Processes

spawned by mpirun.

time varies based on the parallelism (Figure 6). Even at the smallest
parallelism (32), there is a significant communication overhead
(Gloo 27%, MPI 17%, UCX 17%), and as the parallelism increases,
it dominates the wall time (Gloo 76%, MPI 86%, UCX 69%).
Unfortunately, we did not have enough expertise in the Spark,
Dask, or Ray DDF code base to run a similar micro-benchmark. But
even while using libraries specialized for message passing, Cylon
encounters significant communication overhead.

5.2 OpenMPI vs. Gloo vs. UCX/UCC

In this experiment, we test the scalability of Cylon

communicator implementations (for join operation). As
discussed in Section 4, we would not be able to use MPI
implementations inside distributed computing libraries. Figure 7
confirms that our alternative choices of Gloo and UCX/UCC
show equivalent performance and scalability. In fact, UCX/UCC
outperforms OpenMPI in higher parallelisms. We have seen this

trend in other operator benchmarks as well.

5.3 CylonFlow-on-Dask and
CylonFlow-on-Ray

In this experiment we showcase the performance on the
proposed HP-DDF approach for distributed computing libraries
(Dask and Ray) against their own DDF implementations (Dask
DDF and Ray Datasets). Unfortunately we encountered several
challenges with Ray Datasets. It only supports unary operators
currently, therefore we could not test joins. Moreover, Ray
groupby did not complete within 3 h, and sort was showing
presentable results. We have also included Apache Spark, since
the proposed approach leverages actor model. We enabled Apache
Arrow in PySpark feature because it would be more comparable.
We also added Modin DDFs to the mix. Unfortunately, it only
supports broadcast joins which performs poorly on two
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similar sized DFs. We could only get Modin to run on Ray
backend with our datasets, and it would default to Pandas
for sort. Pandas serial performance is also added as a
baseline comparison.

Looking at the 1 billion rows strong scaling timings in Figure 8,
we observe that Cylon, Cylon-on-Dask, and Cylon-on-Ray are
nearly indistinguishable (using Gloo communication). Thus it
is evident that the proposed CylonFlow actor approach on top
of Dask/Ray does not add any unexpected overheads to vanilla
Cylon HP-DDF performance. Dask and Spark Datasets show
commendable scalability for join and sort, however former
groupby displays very limited scalability. We investigated Dask
and Spark further by performing a 100 million row test case
(bottom row of Figure 8) which constitutes a communication-
bound operation. Under these circumstances, both systems
diverge significantly at higher parallelisms, indicating limitations
in their communication implementations. We also noticed a
consistent anomaly in Spark timings for 8-32 parallelism. We
hope to further investigate this with the help of the Spark
community. CylonFlow also shows decreasing scalability with
much smoother gradients and displays better communication
performance. These findings reinforce our suggestion to use a
pseudo-BSP environment that employs a modular communicator.
In fact, our preliminary tests suggested that using UCX/UCC
communicator could potentially improve the performance further
in the same setup (Section 5.2).

At 512 parallelism, on average CylonFlow performs
142x,123x, and 118x better than Pandas serial performance
for join, groupby, and sort respectively. We also observe
that the serial performance of CylonFlow outperforms others
consistently, which could be directly related to Cylon’s C++
implementation and the use of Apache Arrow format. At every
parallelism, CylonFlow distributed performance is 2 — 4x higher
than Dask/Spark consistently. These results confirm the efficacy of
the proposed approach.

5.4 Pipeline of operators

We also tested the following pipeline on CylonFlow, Dask DDF,

and Spark Datasets,

sort |~>

join |—| groupby |- add_scalar |[.

As depicted in Figure 9, the gains of CylonFlow become more
pronounced in composite use cases. Average speed-up over Dask
DDFs ranges from 10 — 24 x, while for Spark Datasets it is 3 —
5x. As mentioned in Section 4, Cylon execution coalesces all
local operators that are in-between communication routines in the
pipeline, and we believe this is a major reason for this gain.

6 Limitations and future work

From our findings in Section 4, the idea of using BSP
execution environments is a very common use case in HPC
and supercomputing clusters, and the CylonFlow concept readily
fits these environments. We are currently working with Radical-
Cybertools and Parsl teams to extend CylonFlow to leadership class
supercomputers based on workflow management software stack. In
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addition, we plan to extend CylonFlow on top of pure actor libraries
such as Akka. This would enable Cylon’s native performance on
the JVM using Java Native Interface (JNI). We are currently adding
these JNI bindings to Cylon and CylonFlow.

In Section 5 we saw significant time being spent on
communication. In modern CPU hardware, we can perform
computation while waiting on communication results. Since an
operator consists of sub-operators arranged in a DAG, we can
exploit pipeline parallelism by overlapping communication and
computation. Furthermore, we can also change the granularity
of a computation such that it fits into CPU caches. We have
made some preliminary investigations on these ideas, and we
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were able to see significant performance improvements for Cylon.
Section 4 proposed an CylonFlow data store that allows sharing
data with downstream applications. This work is still under
active development.

Providing fault tolerance in an MPI-like environment is
quite challenging, as it operates under the assumption that the
communication channels are alive throughout the application. This
means providing communication-level fault tolerance would be
complicated. However, we are planning to add a checkpointing
mechanism that would allow a much coarser-level fault tolerance.
Load imbalance (especially with skewed datasets) could starve
some processes and might reduce the overall throughput. To
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avoid such scenarios, we are working on a sample-based
repartitioning mechanism.

Dataframe features discussed in this paper closely relate
to the relational algebra operations in database management
systems (DBMS). Therefore, comparing Cylon and other dataframe
abstractions’ performances with DBMSs would interest the
scientific computing community. We would be taking this up in
a future publication.

7 Related work

Initially, traditional database management systems embraced
distributed query processing. This process involves coordinating
the retrieval and aggregation of data from various distributed
sources. It demands consistency and concurrent control, which
can add complexity and overhead (Ceri and Pelagatti, 1983).
Pandas offers numerous direct advantages, including concurrent
access, data persistence, integrity, and optimized querying. But
to maintain these metrics in any relational database(SQLite),
additional overheads are added to execution time on distributed
operations. Although, in single-node operation, SQLite has
a similar performance as CylonFlow (Table 1), multiple-node
operations have significant complexity in creating connections
and performing join/sort operations to create the global tables.
Additionally, pandas provides a scripting-based programming
interface facilitating integration with other systems like data
visualization, machine learning, and web applications (McKinney,
2022). Our focus lies in implementing a distributed data
engineering framework that inherits the capabilities of pandas and
arrow-based columnar data structures, enabling the processing of
big data through bulk synchronized parallel patterns. In a previous
publication, we proposed a formal framework for designing
and developing high-performance data engineering frameworks
that includes data structures, architectures, and program models
(Kamburugamuve et al., 2021). Kamburugamuve et al. (2020)
proposed a similar big data toolkit named Twister2, which is
based on Java. There the authors observed that using a BSP-like
environment for data processing improves scalability, and they also
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introduced a DF-like API in Java named TSets. However, Cylon
being developed in C++ enables native performance of hardware
and provides a more robust integration to Python and R. Being an
extension built in Python, CylonFlow still manages to achieve the
same performance as Cylon.

In parallel to Cylon, Totoni et al. (2017) also suggested a similar
HP-DDF runtime named HiFrames. They primarily attempt to
compile native MPI code for DDF operators using numba. While
there are several architectural similarities between HiFrames and
Cylon, the latter is the only open-source HP-DDF available at
the moment. The former is still bound to MPI, hence it would
be impractical to use it in distributed computing libraries like
Dask/Ray.

Horovod utilizes Ray-actors that use Gloo communication for
data parallel deep learning in its Horovod-on-Ray project (Horovod
documentation, n.d.). From the outset, this has many similarities
to CylonFlow-on-Ray, but the API only supports communications
on tensors. Cylon/CylonFlow is a more generic approach that
could support both DFs and tensors. In fact, these could be
complementary frameworks, where data preprocessing and deep
learning are integrated together in a single pipeline.

In addition to the DDF runtimes we discussed in this paper,
we would also like to recognize some exciting new projects. Velox
is a C++ vectorized database acceleration library managed by the
Meta Inc. incubator (Pedreira et al., 2022). Currently it does not
provide a DF abstraction, but still offers most of the operators
shown in Figure 3. Photon is another C++ based vectorized query
engine developed by Databricks (Behm et al., 2022) that enables
native performance to the Apache Spark ecosystem. Unfortunately,
it has yet to be released to the open source community. Substrait is
another interesting model that attempts to produce an independent
description of data compute operations (Substrait-io/substrait,
n.d.).

8 Conclusion

Scalable dataframe systems are vital for modern data
engineering applications, but despite this many systems available
today could be improved to meet the scalability expectations. In
this paper, the we present an alternative approach for scalable
dataframes, CylonFlow, which attempts to bring high performance
computing into distributed computing runtimes. The proposed
stateful pseudo-BSP environment and modularized communicator
enable state-of-the-art scalability and performance on Dask
and Ray environments, thereby supercharging them. CylonFlow
is compared against Dask and Ray’s own dataframe systems
as well as Apache Spark, Modin, and Pandas. Using Cylon
HP-DDF C++ backend and Apache Arrow format give CylonFlow
superior sequential performance to the competition. Due to
the modular communicator in CylonFlow, it is possible to
swapp underlaying distributed communication libraries such
as swapping Gloo and UCX/UCC for DDF communications,
which enables scalable distributed performance on Dask/Ray
environments. Hence, CylonFlow creates a ubiquitous data
engineering ecosystem that unifies both HPC and distributed
computing communities.
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