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Abstract

In their classical work [34], Caflisch and Sammartino established the inviscid limit and bound-
ary layer expansions of vanishing viscosity solutions to the incompressible Navier-Stokes equa-
tions for analytic data on a half-space. The extension to an exterior domain faces a fundamental
difficulty that the corresponding linear semigroup may not be contractive in analytic spaces as
was the case on the half-space [32]. In this paper, we resolve this open problem for a much larger
class of initial data. The resolution is due to the fact that it suffices to propagate solutions that
are analytic only near the boundary, following the framework developed in the recent works that
involve the boundary vorticity formulation, the analyticity estimates on the Green function, the
adapted geodesic coordinates near a boundary, and the Sobolev-analytic iterative scheme.

1 Introduction
In this paper, we consider the Navier-Stokes equations with small viscosity v > 0

ou” +u” - Vu” + Vp” = vAu”,
V-u =0, (1.1)
u’lon = 0,

on an exterior circular domain € in R?, modeling the dynamics of an incompressible fluid around
a solid body at a sufficiently high Reynolds number. Of great physical and mathematical interest
is the asymptotic behavior of solutions to in the small viscosity limit. When v = 0,
reduces to the Euler equations

o’ 4+ u® - Vul + vp° =0, V-u’=0 (1.2)

with the non-penetration boundary condition u” - n = 0 on the boundary 9. Thus, in the limit
when v — 0, one would formally expect the solutions of the Navier-Stokes equations to converge
to u® in L?(Q2) uniformly for a short time, however it remains elusive whether this may be the
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case. Boundary layers appear due to the discrepancy between the boundary conditions in and
in the limiting model , generating arbitrarily large vorticity near the boundary. Kato in his
celebrated work [20] shows that the inviscid limit, i.e. the strong convergence of solutions in the
natural energy norm, holds if and only if

T
u/ / \Vu! ()P dedt -0 as v — 0, (1.3)
0 J{d(z,09)<v}

which implies that the vorticity needs to be controlled quantitatively near the boundary. For general
smooth initial data, vorticity can however be very unstable on the boundary that could generate
multi-layer solutions at different smaller scales [15} [18], leading to a larger and larger vorticity than
expected, and the inviscid limit problem is therefore unlikely to hold. See, for instance, [3| 16, [28]
and the references therein for further discussion. In this paper, we consider smooth data that are
analytic locally near the boundary.

1.1 Previous results

When ) is the half-space: In their classical work, Sammartino-Caflisch [34] established the inviscid
limit and Prandtl’s boundary layer expansions for analytic data: namely,

u’(t,z,y) = uO(t,z,y) + u” <t,$, \%) +o(1) e, (1.4)
where the error term o(1)re is in fact of order /v for such analytic data and thus vanishing
in the inviscid limit. The result is extended by Maekawa [26] for Sobolev data whose vorticity
is compactly supported away from the boundary. Unlike [34], Maekawa constructed his solution
via the vorticity formulation with a nonlocal boundary condition, which reveals more explicitly
the localized interaction between boundary layers and interior solutions. It was this vorticity
formulation that leads to a more user-friendly direct proof of the inviscid limit given in [32] by the
authors of the present work, where we in addition devise analytic boundary layer norms, adapted
from those introduced in [18], that capture precisely the unbounded vorticity near the boundary.
Building upon [32} 26], Kukavica-Vicol-Wang [22] introduced suitable Sobolev-analytic norms that
allow to establish the inviscid limit for data that are analytic only near the boundary; see also [37]
for a similar result in 3D, [21] for the validity of for such data, and [11, [12] for interesting
stability results for data in some Gevrey classes. For Sobolev data, in strong contrast with the
analytic case, the Prandtl Ansatz is false due to counter-examples given in [15] [18] [17].

When € is a bounded domain: There are only few results in the literature that study the inviscid
limit problem in fluid domains with a curved boundary. We mention a recent work [14] that
studies boundary layers in a suitable linearized flow in a general 3D smooth domain and [36] which
establishes a Prandtl asymptotic expansion in domain with a curved boundary. Very recently,
building upon the recent advances including the vorticity formulation revived in [26], the direct
proof via the Green function approach developed in [32], and the Sobolev-analytic norms introduced
in [22], Bardos-Nguyen-Nguyen-Titi [2] prove the inviscid limit for data that are analytic only near
the boundary in a 2D bounded domain.

When ) is an exterior domain: In the polar coordinates, the exterior disk can be written as ) =




(r,0) € (1,00) x T. Due to the curvature effects and the unbounded values of r, which can be
from 1 to oo, the inviscid limit of the Navier-Stokes on this domain was a major open problem
since 1997, even for analytic data. In [4], Caflisch and Sammartino initiated a program to obtain
the inviscid limit for analytic data in an exterior circular domain, expecting that the techniques
for the half-space will carry over to the case of the exterior of a disk. In [23], Lombardo, Caflisch
and Sammartino were able to perform an asymptotic analysis for the linearized Navier-Stokes
under the same domain, using Bessel functions and the Weber transform. They also point out
that the inviscid limit problem for the fully nonlinear Navier-Stokes remained open. So far, there
have been only a few works dealing with the inviscid limit problem with both curvature effects
and large r > 1, see, for instance, [19], in the stationary setting. We refer the readers to Section
[1.4] where we explain the fundamental difficulty and our main strategy to establish the main result.

When (2 is the whole space R?: For smooth data, the inviscid limit has been addressed in [35].
However, challenges remain with irregular initial data like vortex patches, point vortices, vortex
rings and vortex sheets (|7, 8 129, 15} 9} [33], [10]).

In the presence of symmetric assumptions on the domains or the solutions, we refer the readers to
1241 13} 125] 1311 130].

1.2 Boundary vorticity formulation
We consider the Navier-Stokes equations posed on the following circular exterior domain
Q= {(x1,22) €R*: 2% +23>1},

in which for sake of presentation the radius is taken to be one. We shall work with the standard
polar coordinates (x1,x2) = (rcosf,rsinf) for (r,0) € [1,00) x T. Let e, = (cosf,sinf) and
eg = (—sin#, cos ) be the orthogonal frame, and set (a,b)" = (b, —a). We note that

1 1 1
V=e0+=eg0y, A=0+-0,+ 5,
T T T

Thus, we write
1 1
U = Uprey + ugey, w=Vt u=0mu, — —Op(rug)
r r
for velocity and vorticity of the fluid. The Navier-Stokes equations (1.1)) can be written in the
vorticity formulation as follows:

1
Oww — VA pw = —UpOrw — —upOpw (1.5)
r

on [1,00) x T, in which A, g = 02 + %Or + %283. Making use of the incompressibility condition, we
introduce the stream function ¢ = 1(r, #) defined through u = V4, or equivalently

1
Up = ;891!), ug = —0p1. (1.6)
By definition, the stream function solves the elliptic problem
A gt) =
oY =w (1.7)
/l/)|r:1 = O



whose solutions can be constructed explicitly through the Green function; see Section

Therefore, the Navier-Stokes equation problem reduces to study the scalar vorticity equa-
tion on [1,00) x T, where the velocity is constructed through the Biot-Savart law —.
As for the no-slip boundary condition, u, = 0 follows from the condition ¥ = 0 on the boundary,
while ug = 0 is a direct consequence of the following imposed condition

8tU9 =0

from which we derive the boundary condition on vorticity w. This formulation was introduced and
developed in |1, [26]. See also [32, [2]. Indeed, by construction, we compute

0 =0 = —0,A 10w = —0,[A (VAW — u - Vw)] (1.8)
on the boundary. This yields the following boundary condition for vorticity

v(Or + N)w),_, = [0.A (0 - Vw)] (1.9)

‘7‘:1

where N denotes the Dirichlet-Neumann operator on €2, which will be detailed in Section

1.3 Main result

Our main result is to establish a uniform bound on the vorticity and the inviscid limit of solutions
to the Navier-Stokes problems for initial data whose vorticity is locally analytic near the boundary
r = 1. Precisely,

Definition 1.1. Let 69 > 0 and p > 1. An LP function f(r) defined on [1,1 4+ do] is said to be
locally analytic near the boundary r = 1 if it can be extended analytically to the pencil-like complex
domain

Ry={reC: 1<Rr<1+d, [8r]<p(Rr—1)}
for some positive analyticity radius p with a finite norm || f|| .z = supo<y, | fll Lo (oR,)-

Note that a locally near boundary analytic function needs not to be analytic on the boundary,
but only has bounded derivatives (r — 1)0,. Our main result is stated as follows:

Theorem 1.2. Consider the vorticity equation on [1,00) x T with the boundary condition
and the Biot-Savart law -. Assume that initial vorticity wy(r,0) has Sobolev regularity
r?wy € H5([1,00) x T), and its Fourier coefficients wg (1) with respect to variable 6 are locally
analytic near the boundary and satisfy

Zee"‘”‘HW&n(T)HL;O <00 (1.10)
nel

uniformly in v, for some positive constants ey, pg. Then, there is a positive time T, independent of
v, so that the Navier-Stokes vorticity satisfies

" ()| 1 90y < Covt)™'/? (1.11)

fort € (0,T], and the inviscid limit holds: that is, there exists a unique limiting solution u® that
solves the corresponding solution to Euler equations (1.2]) so that

sup |lu” — UOHLQ(Q) —0 as v —0. (1.12)
0<t<T



Remark 1.3. If we replace the assumption (1.10) by a stronger assumption

S ol (7)1 < o0
nel

then (L.11) can be improved to supg<;<r ||w” ()| Lo (90) < Cov~1/2.

The inviscid limit is a direct consequence of the boundary vorticity estimates , which is
optimal in view of the boundary layer expansion as predicted by Prandtl and justified for
analytic data [34]. The assumption holds in particular for data whose vorticity vanishes near
the boundary, and the theorem thus recovers the result by Maekawa [26] to the case of exterior
circular domains. We stress that the near boundary analyticity assumption is necessary for
the vorticity bound to hold, since otherwise the presence of near boundary high frequency
will generate boundary viscous sublayers [18], whose vorticity is proven to reach order v~3/% much
larger than the Prandtl’s classical prediction of order /2. In general, much worse and more
complex structure of boundary vorticity is expected; see [15l 16} [18, [17] for further discussion.

1.4 Difficulties and main ideas

Let us discuss the difficulties in proving the inviscid limit when the domain is an exterior circular
disk. In view of the previous works [32) [2], there are several difficulties that one has to overcome in
the present setting. Namely, the framework relies on the semigroup of the linear Stokes problem,
treating the nonlinearity as a perturbation in the Duhamel representation. For the nonlinear
iterative scheme to work, it is crucial that the semigroup is contractive in the function spaces under
consideration, namely analytic spaces; see Proposition 3. in [32]. However, the contraction in
analytic spaces is open for the linear Stokes problem on the exterior domain. Precisely, we are led
to study the following Stokes problem

Btw—y<8f+18T+1283>w:0
r T (1.13)

(O, + |Dpl)wy,_, =0

whose resolvent kernel and Green kernel can be easily constructed. Deriving the analytic estimates
on the Green function and the semigroup uniformly both in time and in the small viscosity limit
however appears an impossible task. Indeed, following [32] and working with the Laplace-Fourier
transform variables (¢,n) associated with (¢,0), the Green kernel for the resolvent problem is of
the form

Ly (pr) Kn (ur") ’
1 L1 () W (In Kn) (1" if <7,

G T, 'r/ — Kn r Kn 7‘/ + ( ny n) (1)
) T R o) Koa U U Bl g

*We wish to point out a misprint in [32) Proposition 3.1] where the third estimate on the trace semigroup in the
boundary layer norm should read

t
Tt = Dglllo.osorre S\ 7= 119Mllon + VUGl kr1-

Namely, the last term with one loss of derivatives on the boundary was missing! Note however this is harmless in
[32], since the estimates were used only to propagate the boundary layer norms after closing the nonlinear iteration
with L' analytic norms where no loss of derivatives is present on the trace estimates; see the analysis in Section 4.2
of that same paper.



with p = \/g , where the functions K, (z) and I,,(z) are modified Bessel functions with complex value
z € C (e.g., [27]), with W (I,,, K},) being the Wronskian determinant. The temporal Green function
is then defined by taking the inverse Laplace transform in ¢ of the kernel G¢(r, 7). Unfortunately,
the available pointwise bounds and asymptotic expansions of the modified Bessel functions are
given only in the regime for

o fixed n, large r
e or fixed r, large n,

but not when both n,r are sufficiently large and v is sufficiently small. As a consequence, the
propagation of uniform semigroup estimates on analytic spaces remains open, and therefore the
pointwise Green function approach developed in [32] does not apply directly.

We overcome the issue by working with functions that are required to be analytic only near
the boundary, see Theorem Effectively, this only requires analytic estimates of the Green
function near the boundary, which is available from the half-space result [32]. Precisely, close to
the boundary r = 1, we write

83+%8T+ri283: (83+83)+%8T+ (;—1> o
and using the half-space Green kernel for the operator 92 + 97, treating the remaining terms as
a perturbation. Importantly, we note that the last term experiences a loss of two derivatives and
is thus a perturbation only when r is sufficiently close to 1. See Section [3| where we establish the
semigroup estimates for the Stokes problem in Sobolev-analytic spaces.

Unlike the treatment in [2], we need to estimate the solution in the unbounded region and
therefore a careful norm with suitable decay is needed. Our vorticity w(r,#) decays like r—2 away
from the boundary.

Lastly, we refer the readers to the work by Lombardo-Caflisch-Sammartino [23], where they
establish the asymptotic Prandlt expansion for linearized Navier-Stokes in Sobolev norms. In the
spirit of the main difficulties we mentioned above for the full nonlinear Navier-Stokes equations,
their Proposition 3.3 of their work establishes the propagation of the semigroup of Stokes on the
whole exterior domain only in Sobolev spaces. As mentioned above, for the framework of [32] 134] to
work, propagation of analytic norms for solutions to the Stokes problem is crucial to treat the loss
of derivatives in the nonlinear term. Since Proposition 3.3 in [23] is still open for analytic norms, it
is not known to propagate the analyticity of the nonlinear term. Hence, controlling the remainder
in the the Prandtl asymptotic expansion in analytic spaces is still an open problem. In this work,
we resolve this problem by working with data that are analytic only near the boundary. We expect
that the Prandtl expansion holds for the same class of initial data in our current paper, by
combining the analysis of this work and the work on the half-space [21].

2 Scaled equations and locally analytic spaces

2.1 Navier-Stokes equations in the rescaled variables
To take advantage of localization near the boundary, we introduce a change of variables

c=\Y, y=Xx1r-1), r=1"%



for some small parameter A > 0, and define the function w such that
w(T, z,y) = w(t,0,7) = w\2r, Az, 1 + \y) (2.1)

for z € To,/y and y € Ry. By a direct calculation, we have
1 1
Apg=0%+ O+ ﬁag

= A"2 (07 + 92 + Aa(y)dy + Ab(y)03)
= A2 (Agy +AL)

where A, , = 02 + 85 (and hereafter, we simply write A = A, ),

L=a)0, +W0)ok )= 5o W)= (2.
From , the scaled vorticity w satisfies
(0r — vA)w = vALw + B(¢, w) (2.3)
where
B(y,w) = —a(y)V=¢ - Vw, V= (9, —0r). (2.4)

Similarly, abusing the same notation, the scaled stream function v solves
(A + ALY = N,
Yly=0 = 0.

We next derive a boundary condition for w. As mentioned in Section we impose drug = 0,
which gives 0;09y1|y—o = 0 and so

(2.5)

9y (A + AL) 9 wly—o = 0.
Using the vorticity equation (2.3), we get
8y(A + AL)™ (W(A + ALy + B(,w)) [y—o = 0. (2.6)

Let w* solves
(A + AL)w* =0, w*|y=0 = w|y—o. (2.7)

Then becomes
Vay(w - W*)|y=0 = _ay(A + )‘L)_l (B(d),l())) ‘y=0

Defining Nw = —0dyw*|y—o, which is the classical Dirichlet-to-Neumann operator, we obtain the
boundary condition for the vorticity
v(0y + N)wly—o = —0y(A + )‘L)_l (B, w)) [y=0 (2.8)

In this paper, for any function f depending on x € Ty,/y, we denote f, to be the Fourier coefficient
of f in the frequency a € AZ, and f, to be the Fourier coefficient of f in the original variable
0 € Tor where n € Z. We prove the following lemma regarding the Dirichlet-Neumann operator in
the new variables:



Lemma 2.1. The operator Nw, can be written as
oo
Nwa = |afwa(0) + X / (wa0) La(e™W) + Loy ) dy
0

where w}, solves the elliptic problem

{ (02 — a®)@f, = ~ALq (wa(0)e™ W) — AL, @

0 = 0
and Lo = a(y)d, — o?b(y) is the linear operator acting on the frequency o of L.
Proof. We recall the definition of w* in . Taking Fourier in x, we obtain
(85 —a®)wk + A\Lqw?, =0, wh = wa(0).
Let @, = w}(y) — wa (0)e~ 1Y, then
Nuwg = =8yl = ~0y (@5 +wa(0)e™ ) |ymo = ~0,5(0) + alwa (0).

we have

(02 — %)@, = —ALq (wa(O)e*m‘y) CALa@, @y = 0.

By a direct calculation, we have

0y (0) = /0 1WA (g (0)La(e71) + L) dy.

The proof is complete.

2.2 The half-space problem

To summarize, we have reduced the Navier-Stokes equations on the exterior disk to the following

problem on the half-line y > 0: for each spatial frequency o € \Z,

(0r — vVAL)w = vALyw + B (1, w)

(2.10)

with notation Ay = 9 —a?, Lo = a(y)d, — a?b(y), and the following nonlocal boundary condition

v(0y + |al)waly—o = — VA / eI (1, (0) La(e™W) + Lo ) dy
0

- ay(Aa + )‘La)_l (Ba(v, w)) |y=0

where B(1,w) and ¢ are defined as in ([2.4)-(12.5]).

(2.11)



2.3 Near boundary analytic spaces

In this section, we introduce the near boundary analytic norms to control the near boundary
analyticity and the Sobolev regularity of vorticity. These norms are an adaptation from those that
were introduced and developed in [34] 132] 2| 22].

Precisely, let §o > 0 be the size of the analytic domain for our solution near the boundary.
Throughout the paper, we fix py > dp, and take p € (0, pg). We define the complex domain

Q,={yeC: 0<Ry<qm, [y <oy}
U{yeC: do < Ry < o+ p, \%yls&)w—%y}-

We note that the domain €2, only contains y with 0 < Ry < dp + p. For a complex valued function
f defined on Q,, let

flley = sap || fllz1 (00 fllLge = sup |[fll Lo (a0
[ OS77<p|| o, Il 0§77<pH Lo (602,)

where the integration is taken over the two directed paths along the boundary of the domain (2,,.
Now for an analytic function f(z,y) defined on (z,y) € Tor/x X Q,, we define

1l = S

aENZ

2.

aENZ

eao(5o+p—%y)|a\fa‘

Lé’ ( )
2.12
11l

=0 (Bo+p=Ry)a f‘“H _
Lo©

The function spaces E}) and L7° are to control the scaled vorticity and velocity, respectively. We
stress that the analyticity weight is identically zero on Ry > dg + p. For convenience, we also
introduce the following analytic norms

I i = D 105w0yY £l (2.13)

i+75<k

for kK > 0 and p = 1,00. The above definition also applies for a function g defined on the domain
T2y /5. Namely,

lgllzs = Y lafbezolorPlel|g, . (2.14)
aENZ

For convenience, we also write

ID%,fllx = > 10:05f1x

i+j<k
where X is a function space. We recall the following simple algebra.

Lemma 2.2. There hold
1fgllcy < [fllezellgll ey (2.15)

P

and for any 0 < p' < p,
1

p—r

1921t + 190 flct, S —— 1y, (2.16)



Proof. The proof is direct; see [2,[32]. O

We also have the following lemma, which will be useful in controlling the velocity in the inter-
mediate region in Section We note that in the lemma below, we only give the real pointwise
bounds in L*° norm on the real line.

Lemma 2.3. Let f = f(x,y) be analytic in Tyr/y X Q, where the analyticity radius p > %0. Then
for any 61 < 62 < &g and k > 0, we have

k
1Dz f | oo 6y <y<sn) S Il cy-

Proof. We first prove the bound for 8% f. Since OFf =" €' (ia)* f,, we have
102 f |z @ <y S D 1ol 19 (@)l <y<e),
«

noting y > §;. Now for any y < Jo, we have

Y 02 02
yfaly)] = \ [ otetonds] < [Tl [0 (2.17)
For the first integral, we have
52 52
/ |fa(2)|dz = / 6*50(50+P*Z)|0¢|680(50+P*Z)|04\|fa(z)|dz < 6*50(50*52)\04”(]0&”41)' (2.18)
0 0

For the second integral, we first use the estimate (2.16]) to get

o2 1
0 telld S el S O (2.19)
8

where in the last inequality, we have used the fact that

650\a|(50+60/87§)?z) < 6750|a|60/8€50\a|(6o+pf§)‘iz) for Rz < 50 and p > 50/4
Combining the inequalities (2.17), (2.18) and (2.19)), we get

[yfaly)] 5 (emoCom02lel 4 m2olelGo/®) ) | oy

The proof for 0% f is complete, by multiplying both sides of the above inequality by |a|* and
summing all over «. Similarly, we compute

10y f | o0 (5, <y<s0) S 1070y Fll oo, <y<io) < D 52Oy Fall oo (s, <y<o)
(0%

S w0y fallziese) + O N6°0% fall 11 (y<so)
o o
SISz, < 01Fllz-

where we use the Cauchy estimate and the fact that p > %. The estimates on higher derivatives

follow similarly. O

10



3 The Stokes problem

In this section, we consider the Stokes problem in the exterior domain, written in the rescaled
geodesic coordinates:

(Or —vA —vAL)w = f
v(0; + N)w|=0 =g
where L = a(2)0, + b(2)9d? is the linear operator defined in (2.2)) and N is the Dirichlet-Neumann

operator. The main result of this section is to provide uniform estimates on the solution of (3.1
in the Sobolev-analytic spaces. Precisely, we have the following theorem.

(3.1)

Theorem 3.1. Let e’*® be the semigroup of the linear Stokes problem (3.1), and let T'°(vt) be its
trace on the boundary. Fix any finite time T'. Then, for sufficiently small A\, and for any 0 <t < T,
p >0, and k > 0, there hold

HeytSTUOHWL“l < COHU)OHWLCJ + Hy?D’;leOHB(yZ(SﬁP)

s (3.2)
I (@) gellyyer < Collgnllze

uniformly in the inviscid limit, where || -
(2.13) and (2.14), respectively.

The proof relies on the analytic estimates for solutions of the Stokes problem on the half-space.
Indeed, in view of Lemma we can rewrite the boundary condition in (3.1]) as follows:

[SYSHE ”H’; are near boundary analytic norms defined in
P

V(az + |a|)wa|z:0 =0ga t ha

where

he = —Av /OOO (wa(O)La(e_|a|y) + Loﬂﬂg) dy (3.3)

and w}, solves the elliptic problem ([2.9)). Therefore, we obtain the following Duhamel principle for

solution of (3.1)),

w(T) =" By + /T e’ T=IB (LA Lw)(s)ds + /T e’ T8 f(s)ds
) 0 T 0 (3.4)
+ [ Tt =g+ [ T - 9,

where e’™B is the Stokes semigroup on the half-space and I'(v7) denotes its trace on the boundary.
To estimate each term on the right hand side, we first recall the following results from [32, [2],
which give the Duhamel formula, Green functions estimates, and semigroup bounds for the Stokes
problem on the half-space in the vorticity boundary condition.

Theorem 3.2 (32, 12]). Consider the Stokes problem

(0r —vAYW =F
V(az + |8x’)W‘z:0 =0 (35)
Wlr—o =Wp

11



on the analytic-Sobolev domain (x,y) € Tor/n x {2, U{y > 0o + p}}. The solution to (3.5) can be
written as

W(r) =" By + /OT ! TIBE(5)ds + /OT L(v(t —s))gp(s)ds

where e’ B is the Stokes semigroup of the problem (3.5) and T'(vT) denotes its trace on the boundary.
Moreover, there hold the following semigroup estimates

e P Wollyyer S [Wollyyer + 1y Dy, Woll 220+
e TIEE($) ] pea S )yt + 19055 F($)ll 2250 +0): (3.6)

I (T = $))gn()llyer < 96(8) 12k

where || - HH’; are analytic norms defined in (2.13) and (2.14).

s -
In addition, the Fourier coefficients e Ba of the semigroup e
representation Go(T,y,2), in the sense that, for any T > 0, one has

v(T—s) v(T—s)

B have a Green kernel

eyTBaFoz(Tv y)(z) - /0 GO‘(T’ Y, Z)FQ(T’ y)dy

with the decomposition Go(T,y,2) = Huo(T,y,2) + Ra(T,y, 2), in which Hy(T,y;2) is exactly the
one-dimensional heat kernel with the homogenous Neumann boundary condition and Ry (T,y; z) is
the residual kernel due to the boundary condition. Precisely, there hold

1 ly—z|2 ly+z|2
Ha(7'7y; Z) = \/j(e_ y4m— +e yz;f >e_0‘2’”,
vr (3.7)
- 2
05 Ra(r,ys 2)| S e omslvsl o () =5t et s i,

fory,z>0, k>0, and for some 6y > 0 and for py = |a| + \%

We now estimate each term on the right of (3.4). The terms involving initial data, f, and g are
already estimated using the semigroup estimates in (3.6). We now estimate the second and last
terms on the right of (3.4). We start with the linear term vALw.

Proposition 3.3. Let L = a(y)dy + b(y)02. There holds, for 0 < k < 2:

Here, the constant C is independent of .

/ e’ T9B U\ Lw)ds
0

< C\ sup <\|wHW§,1 + HyzD];,leHL%yzéoer))

wh 0<s<r

+cm/ﬂm@mwﬂmyun3/ngmﬂﬂ%@.
0 0

Proof. We focus on the case when k = 0; the other cases are similar. Recalling L = a(y)9y, +b(y)92,
we need to estimate

_|_
£y

v Tel/(T—S)B 2w s S
A /O (b(y)32u(s)) d

VA / e”(T_S)Ba(y)wa(s)ds
0

£y
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Writing the above in Fourier and using the Green kernel decomposition (3.7)), we get

(Veu(r—s)B (b(y)@%w))a = —a?v fOOOH (1 — 8,9, 2)b(y)wa(s,y)dy
—a2v fooo Ro(m = 5,9, 2)b(y)wa(s, y)dy,
(Ve”“””)B(a(y)ayUO)a = 1,150}{ S5y E )a(y)8 wa(s,y)dy

_ijooo a T—5Y,z )a’(y) ywoz(s y)dy

Treating o?v [ Ho(T — 5,4, 2)b(y)wa(s,y)dy. In view of Ho(T — s,y,2), we need to bound

_ly=z?
o’v e WE=)bh(y)wy(s,y)dyds

7 —a?v(T—s) /oo 1
€ —
/o 0 (T —5s)

Here we recall that the L; norm is taken in z near the boundary, when 0 < Rz < §y + p. To gain
analyticity near the boundary, we use

Ly

o(bo+p—R2)lal « e0(Bo+n—Ry)+lal | eolally—2]
(3.8)

< f0(Botn—Ry) o] eoo?u(r—s) oi&f‘s)

_ ly—=?
where the last two factors can be treated using e~ @(T=$)¢ (=3 in the heat kernel. Using this
and the fact that the heat kernel is integrable in z, we obtain

ly—z|2

T o0 1 ly—z|®
a21// e~V (7_5)/ ————e wO-9b(y)wa(s,y)dyds
0 (

T —)

Ly (3.9)
< a2 / —o?u(r—) / o(Goto=0) ol (3 [ (5, )|y .

Now since b(y) = y(f:/\)‘ 2 < 2y, the above can be bounded by

T 9 _
o2 / e ds sup (Ilywals)lcy + lywa(9)r 42040
0 0<s<T

S suwp (lwalley + IvPwall 2yz049)) -

0<s<t

Treating a’v fooo Ro (T — 8,9, 2)b(y)wq(s,y)dy. Using the bounds of the kernel R, in Proposition

13



we have
oldoto—2)lal 42, / Ra(r — 5,9, 2)b(y)wals, y)dy
< a?y - efol0otr) '“/ ppe”Porr WDyl (s, y)|dy
0
0 1
< o2y / e~ 300s (w2) geoGoto=w)tlalyuy (5, y)|dy
0
6 o ) )
= Ial/-(ufe_g“fz)/ (|alye™ 3 #sY) - e 1Y . efoCotp=v)sleal oy, (5, ) |dy
0

o0
< lalv - er—ggoufZ/ 6—%0#fy . 660(50+p_y)+|a|’wa(8,y)|dy
0

—%9,2 botp Oo ~2 4y | eo(Go+p—y)+lal
= (lefv)(upe™2#7%) + e it e [wa(s,y)|dy
0 do+p

_% _ _ %% -1/2
S lalv (ppe™ 2% llwalley + lalw (pe=®r=) e 50 g | a5,

Hence

N / Ro(7 — 5,1, 2)b(y)wa(s, y)dy
0

S vllawalley + 2z
EP
Treating v fooo Hu (1 = s,y,2)a(y)0ywa (s, y)dy. Integrating by parts, we have

o0

v Ho (T — 8,9, 2)a(y)Oywa (s, y)dy

= —V/ Oy( — 8,9, 2)a(y))wa(s,y)dy — vHu (T — 5,0, 2)a(0)w (s, 0).
_g dyv=z1”
Using the fact that |0y Ho| S V(Tl_s)e*90a2'/(7*8)e 045 and la’(y)] < 1, we have

T —s,y,2)a(y))wa(s, y)dy

£y

< <\/@3 + 1) (Hwa(s)H% + Hywa(S)HLQ(yZ50+p)) :

T

For the boundary term vH, (7 — s,0, z)a(0)w,(s,0), we have
lvHo (T — 8,0, z)a(O)wa(s,O)Hﬁ}J < Vlwa(s, 0)]es0lolGo+p),

Hence

v /0 Ho(7 — 5,9, 2)a(y)ywaly, $)dy

£y

S (Volr = 5772 41) (lwa()llep + lywa(s)llzagosos ) + viwals, 0)|elelot),

14



Integrating both sides in time s € [0, 7], we obtain

v /0 Ho(7 — 5,9, 2)a(y)ywaly, 5)dy

o}
S (V4 7) s (loa(@lley + IPwagzsen) + [ ven(s, 00 as
SSST

Treating v fooo Ro (T — s,y,2)a(y)0ywa (s, y)dy. Integrating by parts, we get

v [ Balr = 5,200,005, 1)dy

0
= _V/ 8y(Ra(T - 5Y, Z)a(y))woc(sa y)dy - VRa(T -5 07 z)a(O)wa(s, O)
0

Since |0y Ra| < ,u?efeo“f(y“), we have

v [0y Balr = 5.2t w0

) S VMwaocHzg + VQHywaHLZ(yZ&)—i-p)
£p

S Vllwall ey + vilawal g1 + v lywall 2y zs0+0)-
At the same time, we have
|lvRa (T — 5,0, 2)a(0)wa(s, 0)”5}) < vlwe(s, 0)]es0Cotpllel,
The proof is complete.

In the next propostion, we estimate the boundary term appearing in (3.4)).

Proposition 3.4. There holds

Proof. By the estimate (3.6)), we have

/TF(V(T _ $)h(s)ds
0

i < /0 ) o 5.

/T L(v(t — s))h(s)ds
0

5 < Z |a|k/ |ha(8)|650(60+p)|a‘d3-
Wp’ [ 0
From the identity (3.3), we have h = hy + hy where

hy =-Mv[5° e~ 1w, (0, §) Lo (e 119)dy,
hy =—\v [3° el Lowx (y, s)dy.

Treating hy. Since L, = a(y)dy — a®b(y), by a direct calculation, we have

hy = Avwa (0, 5) < / lale= 21 a(y)dy + o / e_2°‘|yb(y)dy>
0 0

< Avjwe (0, s)].

15



Here we use the fact that a(y) < 1,b(y) < 2y and [ |ale”l*Wdy < 1.
Treating ho. We have hg = ho 1 + ho o where

hoy ==\ [5° e lWa(y)a, @ (y, s)dy,
hao = Ava? [§° e 1lb(y)wy (s, y)dy.

We have
Ihg 100 tRlal < 3 20loolal / = el (), @ (y)dy
0
do+p
S [ oo lelg ) dy
0

o0
+ p)ecodotp)lal e—%|a|(5o+p)a(y) 10,05 () |€—%|alydy
do+p

~x — —eo)|a ~% 1
S vAOy@a ()l gy +vAe(1/2me0) |(50+p)Ha(y)aywa(s)‘|L°°(y250+p)m'
Using the fact that A < |a|, we obtain
[ha,1|e™0Crlel S uX||0y @ | oy + ve 20 a(y)dy @) (s) | o (3.10)

Now we recall from (2.9)) that w}, solves the elliptic problem

(02 — &% + ML) W, = —Awa(0)La(e™11) = —Awa (0)e™ 1 (—|ala(y) — a?b(y))
= Awe (0)]efa(y)e ™1 + a?Mwy (0)b(y)e 1o
= Awa(0)]a] (a(y)e™"W + Jale~"Vb(y))

with the boundary condition w}|,—o = 0. Hence by using Lemma we get

5%)

+ Mwa (0)||cf (Hya(y)eflaly”L2(y260+p) + Ha€7|a‘yb(y)HL2(y260+p))

g 680(60+p)|a‘ . A‘wa(oa S)’

10ywalley < 19y well e

< Mool ([Jatwre ], + e 000)

Similarly, for the second term appearing on the right hand side of (3.10), we use Lemma to get
oo
a0, 1= S [~ Awa(O)lal - falw)e M + fale~Ib(y)| dy
0
S Awa(0, 5)]-

= YY) <4 (y). We skip the details

The bound for hg s is nearly the same, as we note that b(y) = ESTERS

for ho o, and conclude that

|hgole0@otRlal < (0, s).
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Hence we get
‘h2|e€o(5o+p)lal < vlwa (0, 8)|e€o(5o+p)|al’

giving the proposition. O
Combining the previous two propositions, we have obtained the following.

Proposition 3.5. Let w be the solution to the Stokes problem (3.1)) with the initial data wy. Then
for k>0 and p > 0, there hold the coupled semigroup estimates

sup [[w(s)llyyr1 S llwollyyrs + lyDEE woll 250 2)

0<s<t

A sup (JJw(s) lyyer + g2 DE5 () 225040

0<s<t

+Av/ ]w(s)”w§+1,1+/\u/ w(s)s=ollpsds
0

[T (g + DS G ays010) ds+ [ (o).

Proof. Recall the Duhamel representation (3.4). The proof thus follows directly by combining the
semigroup estimates (3.6)), the estimates for the perturbation term in Proposition and the
boundary estimates in Proposition O

Finally, we give bounds on |Jw(s) Z=0”H’; appearing on the right of the previous estimates.
Proposition 3.6. Let w be the solution to the Stokes problem (3.1)). There holds

[w(m)l==0llas < 199aw0l 225072 + (@) 72 [[wollyein

+VA/ [w(s)le=ollyggs ds + Av/v sup [|w(s)l==ollz
0

<s<t

o sup (l(s) g + 192 DE5 05 2zae) + [ 1000(5) ygonads
0<s<t P 0 p

T /0 LD F ()l ymins ) + 2 /0 (r = )72 £(5) s

+ [T 10u5 6 hygads+ [ loto) g
(3.11)

Proof. We shall bound each term in (3.4)), evaluating at z = 0. First, we have
wa(r0) = [ Galrp 0wy + [ Galr 53,0 A L) (5. )y
[0 Galr = s 0gals s + [ Talor = 9)laa + ha) )
0

=P(7) + Po(7) + P5(7) + Py(7).

Hence we get

laffeo@oto)lely, (7,0) = 37 Py(7)

17



where
|afFeso@otolel (%G (7.4, 0)wy q(y)dy

Py(7)

Py(r) = |affeoCotolal [T G (1 — s,y,0)(vALawa) (s, y)dy
Py(1) = |affesolotollel [T [5G, (7 — 5,y,0) fu(s, y)dyds
Py(r) = |affesoCtnlol [FT (u(1 — $))(ga + ha)(s)ds.

T) =

T) =

We recall the pointwise Green kernel bound:

2
Ga(T — 5,9, 0) S (]/(7_ _ S))fl/Qe—Hoﬁefﬁoa%(rfs) + Mfe*ltfy_

/oT /0°° GalT = 5,9,0) fa(s, y)dyds

PO S [ (0lzsen + (0 =) 72 4 fal +77) ol fa)lly) ds. (313

Let us first bound the term

Py(1) = |affeso@otpllel (3.12)

We will show that

To show the above inequality, we split the integral in y in (3.12) into f(;?Jr o f050+p . We note that
if y > &y + p, then G, is exponentially decay in «, which is faster than e—0(o+r)lel for g4 small,
giving

‘a‘keso(%ﬂ)\al

/ Gol(T — 5,1,0) fals, y)dyds
do+p

< /O 19fa() | 20y

Now we consider y < &y + p. By the Cauchy inequality o?v(r — s) + (T > 4|ajy and the fact
that 6g, g is taken to be small, we obtain

e=oCotnlal G (7 — 5.0, y) < <(,,(T _s) 2y Mf) o~ Rlaly o (bo+p)lal

< ((,,(T — ) V24 ,Uf) f0(S0+p—y)lal

/ / 6O+p —5,9,0) fa(s, y)dyds

S /0 (w(r =)™+ Jal + ,,-1/2) ¥l fu(s) | y .

This concludes the proof for the inequality (3.13). Next, we bound

Hence we obtain
\oz|k €0(do+p)|c|

Py(r) = |affeoCotolal / Gl — 5,4,0) (A Lawa) (s, y)dy.
0

The proof for the bound of P,(7) is exactly the same as in the semigroup estimate in Proposition
except now that we cannot use the L' norm in z in this case, as z = 0, giving an extra

18



s = |a| + 72 in the estimate involving the kernel R (7 — 8,0, 2)|,—0. We obtain

,
Pr) S w0 (Il + 192 DE wlagoie) + A [ (0 = 9) 72 (o) ollgs
SSST

T T
+ V/ “8xw,’W§+l,1 + V)\Z/ ’a’k—i-l’wa(s,O)‘efo(60+ﬂ)|a\.
0 — Jo

Finally, for the initial data, we obtain

—-1/2

Py (T) S Hya’;wOHLQ(yZ&)/Q) + (VT) ||w0||W§+1’1’

giving the proposition. O

Remark 3.7. Note that in the above estimates, the boundary value quantity H’LU(T)Z:()HHI; has two

losses of derivatives compared to the norm ||w(T) However, it has only one loss of derivative

Iyt -
P
compared to its norm and we are able to close the Sobolev-analytic estimates by introducing an
iterative adjusted k-indexr norms, yielding close estimates on the Stokes semigroup in terms of

initial and boundary data f,g given in the problem (3.1)).

Proof of Theorem [3.1. Let w = e"*Swy be the solution to (3.1) with f = 0 and g = 0. In view of
the previous propositions, we define the following norm

Ax(w(r), p) = () llyyr + VoTIw(m)lazollys-1)

(3.14)
+ (o) s + Vo) l=ollg ) (o0 = p = B7)"
and the quantity
A(B) = sup { sup (Ak(w(f),p))} + sup 47D} ywllr2y60/2)-
0<TB<po 0<p<po—PBT 0<TB<po
We claim that
-1
A(B) S llwollyzr + 1> D3 ywoll r2(y>s074) + €T TACIET 2D ol r2gys0/0) (3.15)

which would yield the theorem. In fact, in Section[7] using precisely Propositions and above,
we shall prove the claim for the nonlinear solution to with f and g being the nonlinear terms
inherited from the vorticity formulation of the Navier-Stokes problem. We therefore skip to repeat
the details here for the linear problem with zero f and g. O

4 Elliptic estimates

In this section, we prove estimates for velocity near the boundary and away from the boundary in
terms of vorticity. In particular, we consider the elliptic problem

{ (A + ALY = \w, (1)

¢|y:0 =0.
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A . : . .
where Ly = a(y)0yt + b(y) 9%y, a(y) = ﬁ, b(y) = %ﬁjy@ Our main goal in this section is to
show the elliptic estimates in the analytic domain near the boundary (see Proposition below),

in the intermediate region (Proposition 4.6)) and the region away from the boundary (Proposition

19).

4.1 Elliptic estimates in the analytic region
We first show the following lemma that gives a L*> bound for velocity field:
Lemma 4.1. There holds

o0
la(y)atallLe + [|0ytall L~ 5/0 lwa(W)ldy S wallcy + lywallr2(y>60+5)-
Proof. We recall the original elliptic problem on the written in the variables (6,7) € T x [1, 00):
1 n?
(87% + -0, — 2) Y = Wn
r r
where ¥(t,7,0) = (A%, 1+ Ay, Az). We note that o = An where n is the original frequency before

making the change of variables. The solution to the above elliptic problem in the original variables
is given by

rin

1 T 4+ n| _ J1—|n]| 1 00 1—|n|
—Yn(r) = / i ° wn(s)ds + — giInlplnl _ 2 wp(s)ds. (4.2)
2‘77,‘ 1 ’r“nl r ‘

. . —Inl . - . . — 1—|n|
Since the function s/ —s1=1"l is increasing on [1, r] and the function s'~ /"Iyl — 2

on [r,00), we get the pointwise estimate

is decreasing

7’|"‘

[nn(r)] S (r = Tl_zn)/l |wn(s)lds S 7llwn 1 (1,00)-

Hence we obtain ()

n, (r

— S lwnllnr@,e0)- (4.3)
r oo

Now in the rescaled variables (o, y), we get

o
alllealle= 5 [ loaldy  lwalley + Irwalzzs o

upon noting that a(y) = Tl)\y = 1. Now we show that ||a(y)dytall~ < [ [wa(y)|dy. By a direct
calculation, we get

—24)!, (r) = —p Il /T(81+|n| — I (s)ds + (r\n\—1+r—\n\—1> /°° 1= (5)ds.
1

r

Hence -
! < n ds.
mwNN[|wwns

The proof is complete. ]
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Remark 4.2. [t is known from Section 2.2 of [27], that the Biot-Savart law defines a unique
velocity that decays at infinity, under the decaying assumption = "lw, € L'. In our current work,

the vorticity satisfies the decaying assumption HTQDi,yWHL?o < 00, hence the Biot-Savart law (4.2))

gives a unique velocity solution for all |n| > 1. We also note that when n = 0, the stream function
equation reduces to

1
o + ;aﬂbo = wo

giving Yy(r) = L [ swo(s)ds. This gives the Biot-Savart law (uy,ug) = (0,—1 [ swo(s)ds) for

=7
n = 0. We also note that when the frequency n = o = 0, the analytic norm in x (or 0) reduces to
Sobolev norm.

In the next lemma, we derive the elliptic estimate for velocity in the analytic norm near the
boundary:

Lemma 4.3. For X,y and p small, there holds

IVYallcee S llwallcy + lywall L2 y>s0-+0)»

Proof. We first show that

IValleg S llwalley + lywallL2gzs0+0)

Since 1, solves
(85 - az)wa = >‘2wa - Aa(y)ay@ba + >\O‘2b(y)¢a

with the boundary condition 14 |y—o = 0, we get

201)0(2) =\? / N (6’“@“) - e’a‘y’z'> wa(y)dy — A / N (6”“’“) - e"“““') a(y)dya(y)dy
0 0

+ A/ (e—a(y+Z) _ e—aly—z|> a®b(y)va(y)dy
0
=11+ >+ I3,
where
Il — )\2 f()oo (e—a(y—l-Z) _ e—aly—Zl) wa(y)dy,
I ==X [ (emet2) — emeli=2l) a(y)d,a (y)dy,
I3 =\ [57 (emawt2) — emaly=2l) o2p(y) g (y)dy.
Treating [;. Using the first estimate in (3.8)), we simply bound

[e.o]

o]
e~ 5=l o Gorto-vlal |y ()| dy + / lwa(y)|dy
do+p

So+p
Iy ecolr+o—2)lal < /
0

S HwaHL}J + [[ywall L2 (y>60+0)-

Treating I>. We will show that

Iy S l[adall cge In(L + A(60 + p)) + Alla(y)all L= (y=60+)
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Since

b= [ (7o) = o) a)o, v ()
0
we use integration by parts to get
B [ lale I alualdy + A [0 @)l )y

<A /0 e 192 ay) o (3) |dy + A2 /0 a(y)2e 152l s, ()| dy

Therefore,

do+p
’12|650(50+P—z)|a\ < )‘Hawa”ﬁgo /0 dy + )‘”a(y)wanL‘x’(yZEo—l-p)

1+ )y

A2 bote ] A2
Zatballcx ——dy + ~la(y)tall
+ |C¥’ HOAT/J ||£p /0 1+ )\y Y+ |O[| ||a(y)1/} HL (y=>d0+p) (44)

S lletpalleee In(L 4+ A(do + p)) + Alla(y)Vall oo (y>50+0)
S lletballzge In(1 4+ A(do + p)) + [la(y)erball oo (y>60+p)-

where we use the fact that [« > A whenever o # 0.
Treating I35. We will show that

1sllez S MVealler + la(y)aval oo - (4.5)

Indeed, if y < dp + p, then b(y) < 2y < 2(dy + p), and hence
do+p 00 1
eao(5o+p—2’)|a|/ lafelelv==lp(y)dy < 2(60 + p)/ ezl =2ldy < 1.
0 0

If y > do + p, then we have

B © Ay(2 + \y)
680(50+P z)|el e lally—=z| ol —————— Oé'lba y) dy
So+p o (1+ Ay)? (ealy))

— \efo(Botp—2)laf > aflva(y)] (e*|aHy*Z|‘a‘y) ) 2+)‘yd

S . Y
So4p L+ AY 14+ Ay

athq
14+ Ay

[ee]
A / alle™ 319521 1y — 2] 4 2)dy

L (y>80+p) do+p
athy
14+ Ay

<

~ ’

S Ha(y)a¢a||Loo(yzao+p) :
Lo (y>d0+p)

A
S ( + A(do + P))
af
since A < |a|. In summary, we get

IVallzz < Co (lwalley + llywal 2ot + la@W)atall pogzs040)

+Co (IV%alleg ) A+ In(1+ Ao + p))
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We note that in the estimate above, the constant Cy does not depend on o and A. Taking A to be
small so that

< -
A+In(1+ A0 + ) < 5

the last term in the estimate (4.6)) can be absorbed to the left hand side, giving
IVYallce S llwallcy + lywall L2 y>s0+p) + la@)avall oo (y504p) -

Finally, using Lemma (4.1)) for the last time in the above, we obtain

IVYallcee S llwallcy + lywall L2 y>s0+0)-
The proof is complete. ]

In order to close the estimate for velocity in terms of vorticity, we need the following lemma

Proposition 4.4. Let ¢ be the solution to the elliptic problem (&), and set u = V4. For
k € {0,1}, there hold

1087l < lwllyer + Ny DES wl 20,
10y il < lwllyyea + [wDES 0l L2210,
Db lpoe S lnollyyis + 19wl + [9DE el 2250 )

Proof. First, when k = 0, from Lemma [4.3] we have

lallce S lwller + D lywallz2zs+n)
aENL

S lwlles + lyDewl 2(y>50+p)-

Now we give the proof for k = 1. Since 0,1 solves the same elliptic problem with the condition
Oz|y=0 = 0, we obtain

Haccﬂﬂzlgo S HaccwHL}J + HyD:?:,yw”LQ(yZ(So-‘rp)'
Now for ||ydyul cse, we note that

150y (0et) g S 10y (@at)lleze S NOxwll ey + 1D ywll 220250 +0)-

Now we have
Y0, (0y1)) = yoih = y(N>w — Aa(y)yp — Ab(y) Doty — 92)).
Hence we get
19950l cee < lywllese + lllese + 11002 2o
S (Iwlgy + Nydywley ) + 10awlcy + D2 ywlzzzs04p)

N HwHW;»l + H?JD:?:,ywHB(yzéoer)'
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The proof is complete. Now we show the last inequality stated in this proposition. When k& = 0,
we have, for any y < dy + p:

y
Buth = / 0. (0s) (2)dz.
0
Since eollotp—y) < efolal(do+r—2) e have

Iy~ utllze S 108l 2y S 1058l e S 10wwllzy + 1D ywll 22 (y250+)-

For k = 1, we note that
O (Y™ 0xt)) = y~10:(0u0)),
yay(yilazw) = _%83377/} + yayaacw-

Hence

18y (y ™ 0u)l 25 < Ny~ 0u(009) .20 + 110y (B0 25
SJ ”a:%wHE}J + HyD:%,yw”Lz(yZ%-‘rp)'
The proposition follows. ]
4.2 Elliptic estimates in the intermediate region

We also need the following elliptic estimates in the intermediate region away from the boundary.
We first prove the following elementary lemma.

Lemma 4.5. Assume 0 < 61 < d3 < 09 and let ¢ € (0,1) be any constant such that d2 < cdy. Then
for any function F,(y) and k > 1, there holds

|a|k:/0 e~lllv=2| F (y)|dy < C (HFaHﬁ}, +/

30

e—%lally—ZI |Fo(y) |dy)

for z € [01,02]. The constant C' depends only on 01, 02,9 and k.

Proof. Splitting the integral in y into y < ¢dp and y > cdp, we have two cases:

Case 1. y < ¢dp. In this case, we get y < dg + p, and moreover

e—colal(Gotp—y) < o—eo(l—c)laldo
Hence
o . <o k 5 5
/ o eanqua(y),dyS/ e lally=21) o [te—=0(1=0)aldd geolal (Boto=1) | 1, (1)) dy
0 0
S HFa”ﬂ},'

Case 2. y > ¢dp. In this case we have |y — z| > ¢dy — d2. And hence o~ slally—z| < e~ 3(cBo=32)lal

/ |afFe 1=l F (y)|dy < / |affez(Go=d2)lelg=3lely=2l| £ ()| dy
Ci

) cdo
0 1
< / e Hlellv=21 2, ()] dy.
0

The proof is complete. ]
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Proposition 4.6. Let ¢ be the solution to the elliptic problem (A1), and set & = V+1). Then for
any 61 < 62 < &g, we have

k ~
1Dz yull oo (5, <y<sn) S Nwlley + lyDawll 12(y>es0)
where ¢ € (0,1) is any constant such that cdy € (d2,d).

Proof. We give the proof for 93 and 85’17 only. The other cases are similar. Since v solves
A= Nw = ALy, ly—o =0,

we use the Green kernel for the Laplacian (65 — a?) and integrating by parts for the term a(y)d,,
to get

o’ [ia(2)] < lof® /OOO eI (N wa (y)] + Alala(y)[va(y)] + M (W)][$a(y)] + Aa®b(y)[Ya(y)]) dy.

Applying Lemma for three terms on the right hand side in the above, we get

o
~ _1 _
0Pt (2)] £ lwalles + 19yalles + larvalles + / e=3olv=2l |y, () dy

cdo

A /5 e 115210 (y) ][ (3) |y + A / Bl () [a(p)ldy (A7)

cdo

I / e 310l =2102b(y) [ (3) dy.
cdo

Now we will bound each term appearing on the right hand side of the above inequality. Using
Proposition we have

10y¥allcy + llavalley S lltallcy S ltallege S llwallcy + lywall L2y>s50+9)
S HwaHE% + HywOAHLQ(yZCEO)'

Also, it is obvious that

o0
_1 _
/5 e 31521 e ()| dy < lyaall 12 (yes)-
cdo

Now for the terms involving a(y) on the right hand side of (4.7)), we recall from the proof of (4.4])
that this term can be bounded by

[tallcze + la(W)all Lo =0+ S lwallry + lywallz2ys0+p)
thanks to Proposition 4.4 and Lemma [4.1
Now for the last term on the right hand side of (4.7)), we bound this term by

g
14+ My

HA/OO e~ 21011V 023 [y () | dy
cdo

<A [Vialles + \

Lee Lo (y>60+p)

S HwOéH,C}J + HywaHLZ(yZCS()-FP)'
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Here, we use the inequality (4.5) and Lemma The bound for the last term appearing in (4.7))
is complete.

Finally, combining the the bounds for all of the terms on the right hand side of (4.7)), we get
|a?[ta(2)] S lwallzs + lywall L2 (y>eso)-
Summing all a € M\Z, we get

1020 Lo (5, <y<b2) < Z | [|Tall Lo (5, <y<ss)

. (4.8)
S laPllaalz= S lwlley + lyDewll L2 (y>es0)-

«

On the other hand, for 3317, we use 851/1 = —02p — AL + A\®w to compute
1030 oo (5, <y<62) S N D7 ywll oo (5, <y<s2) + 1050 Lo (5, <y<ss)
+ A |0y L(0up) + L(874) + 05 (L)) HL°° (61 <y<ds)
S HwHL,g + [lywl| 22 (y>es0)
+ A |0y L(0up) + L(874) + 05 (L)) HLoo (61 <y<ds) °
Using L = a(y)dy + b(y)9?, we thus obtain

Z ||a§17HLoo(5lgyg52) + HD:?;,ywHLoo(algygag) S Hw”L}, + HyDccwHL2(y2c50)-
k<3

The proof is complete. O

4.3 Elliptic estimates away from the boundary

We first show the following simple lemma that will be used in the next proposition.

Lemma 4.7. Let f(r),&(r) be smooth functions onr > 1, and {(r) =0 on [1, R]. Let ¢ solves the
elliptic problem

5 1 n?
ar +=0r — ) o= f(?“)arf(?”)
r r
with the boundary condition ¢|,—1 = 0. There holds

o

SNEfN Lo + 1€ f Il
LOO
Proof. As in (4.2)), we get, for n >0

O (r) = /1 TS S (s)ds + / b <51"7’" - Sl_n) £(s)f(s)ds.
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By integrating by parts, we get

r n)s" — —n)s " 'rsl n_Slfn
_2n¢>n(7“):—/1 (L+n)s"—(1-n) §(s)f(s)ds—/1 S ST ) f(s)ds

TTL

rn

’I“l n __ Tl_n r r o0
N ( + )g( )f( ) _ / ((1 _ n)s—nrn _ (1 — n)s—nr—n) g(s)f(s)ds

Hence
1o (r)] S v (1€f e + 1€ fllzr) -
The proof is complete. O

Finally, we state the main Proposition for this section:

Proposition 4.8. Let 1 be the solution to the elliptic problem (A1), and set ©w = V1. For any
5 €(0,00), k>0 and p € (dp/4,00), one has

ko~ k
la(y) Dy il Lo (=) < lwlls + Iy Dat wll L2 (y250/2);

’ (49)
1D% (@)@ 12(y25) S Iwlley + 1y D5 ywll 2250 /2)-
for k>0, where a(y) = ﬁ
Proof. We first give the proof for |[D% il 1o (y>5). When k = 0, the inequality
la(y)ullzee S llwllzy + [[yDawll 2> /2) (4.10)

follows from Lemma Moreover, we also have
k~ k k
la(y)Ozull e < 0zwlley o+ ly D wll L2y 60/2)
k
S llwlley + YD wll 1250 /2)

where we use the fact that p > %0. We can now assume that D’;y = 85 and we will use induction
on k > 0. We first give a proof for k = 1, which is 9,. We have

8y(ax¢) = 890(83;1/1)
) ) ) ) (4.11)
Oy(Oyt)) = Oy = Nw — 03¢ — Aa(y) Oy — Ab(y) 054

For the first term 0y(0,v), we simply bound
1020y | oo y25) < 102l oo (y25) S 10zwlly + lyDrwll L2(y60 /2)

For the second term 351/1 in (4.11) we get, for any y > 0:

la(y)05va(y)] < a(y)lwa(y)| + ay)|al[a(y)| + a®)|0ya(y)] + Aa(m)b(y)] ol [ha(y)]
S llwallpeey=s) + lla(y)atial| L + |la(y)tal L

S llwallee=s) + lwallzy + llyowall L2y /2)-
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Let ¢ be a cut-off function so that

_Jo y<4/2,
Cly) = {1 . (4.12)

Then we have
() wall sz S Nallpmss) < 1€ wal2)ll.
We have ; ;
C(2)walz) = / ¢ (y)wa(y)dy + / C(y)Dywa(y)dy.
0 0

Hence, for every z > 0, we bound

C(2)wal2)] < llwallz(5/2<p<s) + /5 Bl

(oo}

S lwalle, + 10, wall=a/asysorn + | a2
0

S lwallgy 4+ y0ywall2(y260/2)-

Combining the above inequalities, we obtain
2
la()0yvallLo(y=s) S wlley + > (lydywallragysses2) + llyowall 2gysse/2))
QaENZ
2
S ||’U)”£;17 + ||me,yw”L2(y260/2)'
This finishes the proof for £k = 1. Now we assume k& > 1. We proceed by induction on the number

of derivatives of y. Assume that the inequality is true for £ — 1, we show that it is also true for k.
We recall that ¢ be a cut-off function defined in (4.12). Then C@z]jw solves the elliptic problem

(A + AL)(COpp) =N*(COpw) + 2¢ ()0, 051 + ¢ (y)Ofap

4.13
+AL(COy) — MOy (L) -

with the boundary condition 4851/1|y:0 = 0. In Fourier frequency «, the right hand side in the
above can be decomposed into Fy + F5 + F3 where

Fi = N (COwa) +2¢ (y)0y05¢ + ¢ (y) Oy
P = Aa(y)ay(ca;j'(ba) - ACalﬁ(a(y)ay@Da),
Fy = =2b(y)a?(CO5ta) + A8y (b(y)a*ta).
From the equation , we get
COp =Wy + Wy + U

where (A + AL)V¥; = F; for 1 <4 < 3 with the boundary condition ¥;|,—o = 0 (this can also be
seen from the formula (4.2])). We also denote

U; = Vi, (4.14)
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Treating U;. Using the same argument as in Lemma for every z > 0, we get

|a(2)U1(2)

5/0 (|C3§wa( )+ ¢ ()0 a(y)| + 1¢" (y )Haf_lﬂa(y)\) dy
S yCokwall e + 1K' ()DL el S lyDE ywallzeyss/2) + 1 DE il 115 /2<y<6)
SyDE wallr2(5/2<y<s0/2) + 1y D% ywall 2550 /2) + <||w||z:}, + Hywa||L2(y260/2)>

k
S lwall gy + 9Dz ywall 2(y>60/2)-

Treating U;. We have

=2 % (H)ewaramag v + xat e
1<i<k
:—Ag;k( ) CW)IE 00— Ad () ()0 + Aa(y)C (1)

=Fy1+Foo+ Faoj3.

Hence we get Uy = Zf’:l(A +AL)TIRy, = Z?:l Us,i. Arguing as in Lemma (4.1)), for every z > 0,
we get

a(z)Uz1(2) < max / " |0ia(y)C (50 ()l dy

2<i<k

< max / a(y) ¢ ()]0 Tia (y) | dy

< 1000} o)1= s [ alo)'dy

k—1~ k—
Slla@)C)oy ™ Tallre < llwlley + Dy wallz2y>s0/2)-

Here, we have used the fact that aéa(y) Sa(y)tt, [ aly)'dy < 1for all i > 2, and the induction

hypothesis in the last inequality.
Now we turn to Fpo = —Aa’(y)C(y)qua. Applying Lemma for £(y) = —Ad'(y)¢(y) and
fy) = 05~ Ye)q, for every z > 0, we get

a(2)U22(2) S 1a'()¢(Y)0F M bal e + 10y (a’ (¥)C(1)Oh ™ al| 1
S a@)C)oh ol + lla” )<k Pallrr + ld' ()¢ (y) 05 all 1
S lwallgy + lyDE wallr2ys6072) + 1" W pr lay)C ()05 allLoe + 1105 all poo (5/2<y <)

k—
rS ”wa”£}7 + ||me,y1waHL2(y260/2)'

Finally, for Up 3 which solves (A + AL)Us 3 = Fh 3 = Aa(y)('(y)8§¢a, we use Lemma again,
for every z > 0, to get

a(2)Us23(2) /0 Aa(W)|¢ )0k vaW)|dy S (105 %allzoo(s/2<y<6) S lwallzr + lywall 2 (y>s0/2)-
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The proof for Us is complete.

Treating Us. We recall that
= —\b(y)a?(COhva) + Agaj(b(y)a%a)

_wz( )<waipm0} o)

Using Lemma“ 4.1| for the equation (A + AL)W3 = Fj, for z > 0, we get

a(2)Us(=)| < max Ao / )b 105 a () dy

<i<k

< max |of / a(y) 2 () 0Dk u(y) | dy

< la)(y) Dy il e mafk/o a(y)*dy

k—
S ||w04||£}) + ”me,ylwoéHLQ(yzéo/Q)'

where we use the induction hypothesis in the last inequality, and the fact that 8/b(y) < a(y)"+? for
all i > 1. The proof is complete for the |- || o (,>4) norm of the velocity. The estimates in L? norm
follow similarly. O

5 Bilinear estimates

In this section, we recall the bilinear estimates for the nonlinear terms. We define the nonlinear
quantity for w as follows:

k
Np(wa k) :|]wHW§+1,1 (”wHW'f’l + HyDa:,ywHL2(225o+p)> (5 1)
A .
+ Hw”wﬁ’l HyDa:,Jgr/2w|’L2(2250+p)‘

Proposition 5.1. Let N,(w, k) be the nonlinear quantity defined in (5.1), and ¢ = (A+AL)~ 1 (A\%w)
be the corresponding stream function defined in the elliptic problem (4.1). For k € {0, 1}, there hold

- wlyr < Ny, &)
where = V).
Proof. For k =0, we have
100y wlles < Iy~ 0utll e lydywlley
S (Iwlgy + 10wl ey + NyD2, 0l 25504 ) lvdyllcy.
upon using Proposition Similarly, for kK = 1, we compute

{ B (DptbOyw) = y L0249 - yOyw + y L0, - D, (ydyw)
ay(axwayw) = 8x(ayw) ) yayw + y_18x¢ : {(yay)Qw - yayw} .
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This implies
10 s w)lcs S Iy 020l lydywl oy + 1y~ 0t 23100 (w0, 0)
< (0wl gy + 122wlcs + 1903wl za040) loByrley
+ (lolley + 0wy + 19D2 w26 ) 10000
S lwlhyyzallwly + ||yD::'2,ywHL2(ZJZ5o+p)HwHWPI’l + ||yD32v,ywHL2(y250+p)HwHWg’l'
Similarly, from the calculation in , we have
Hyé’y(&:w@yw)\\z;
SN0stll e lydywll 23 + 1y~ 0atbll e lwll 2.
S (ol + IwD2 gl 2gzs0 0 ) 1wl + (Il + D2 wll2g a1 ) Iz,
giving the proposition. O
Next we show the nonlinear estimate away from the boundary:
Lemma 5.2. There holds
ly D3, (a(y)t - Vw)ll 226040 S 19D3 4wl L2202 (lelcg + HyD;?é,yMlL?(yzao/z))

Proof. We give the proof for the case when there is no derivative only. The other cases are treated
similarly. We have

lya(y)udyw| 12(y>60+p) = lla(y) 2| Loo (y>s0+0) V00| L2 (y>50+p) + @)1 Loo (y>60+0) [ OxW | L2(y>60+0)
S (H’chg, + HyDi,ywHB(yz(so/Q)) lyDy ywllr2(y>60/2)-

where we used The proof is complete. O

6 Estimates for vorticity away from the boundary

In this section, we estimate

I1y° D5 ywlireyssorz = > 1970L05wll 12¢y60/2)
i+5<5

for the scaled vorticity w solving (2.3). We take a cut off function 7 : [0,00) — [0, 00) such that

{0 ity < o/4 61)

y? if oy >d0/2.
We define | foo
0= 3 [ nwloiojuiray

i+5<5
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to be the main control for the norm [|y*D3 wl|12(,55,/2), and
L 1 o
o) = 3 v{ [+ sl ogui + 5 [ oot}
i+5<5

coming from the dissipation term in the energy estimate. We note that 7/(y) > 0, so all the terms
in D(t) are non-negative. Moreover, we define the following quantity away from the boundary that
is needed to bound &(t):

Na(@t,w) =[1Dg , (aly)@) || oo (260 /2) + | D2y (@)D | L2 (200 /2) + 1D3 g0l oo 30 /a<y<sor)- (6:2)

We obtain the following proposition.

Proposition 6.1. Let (w,1)) solve [2.3)-[12.5), and set w = V1 4. For X sufficiently small, there
holds

E'(t) + coD(t) < Cy (5@) + N (i, w)E(t) + Na(@, w)? + N (4, w)25(t)1/2>
for some constants cg, Cy > 0.

Proof. Using (2.3), we compute

=> / y)OLdIOw - DLW

1+5<5

-y /nA (@) - alaﬂwwA/ (1)0100 (a(y)Byw) - 0w

i+5<5

+ I/)\/ )L 89 Y)02w) - 8;8510 + /n(y)@i@i (a(y)u - Vw) - 8;8;@
7
- sz
k=1

where

Il = Zz+]<5 anA(a;:ag/w) 8;78?‘;10

Ty =YipjesvA [ 1) (a()9,0) " w) - 0,05w

Ty = YoM [ 0(y) {0203 a(y)d,w) — (a(y)0i0) w) | - o
Iy = Yirjes VA  ny)b(y)05 20w - 005w

Ty = Yiryes A S 1) {0205 (b(y)02w) — b(y)di?0fw) } - Oiojw

Ty = Yirjes ) 1) (al)i- VOLOjw) - 9i0jw
\17 = Zi+j§5 I n(y) 920 (a(y)u - Vw) — a(y)a - Vﬁ;@{,w) - 00w

Below, we sometimes skip writing >, <5 without any confusion.
By integrating by parts, we obtain

I=—v / DO w2 — v / 010+ wd, (6109 1)
= y/n[@?lﬁiwp — V/n’(y)|8;8§+1w\2 — u/n(y)@é@i“w . 8;85”111
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which yields
_ it1q5 2 1 / i aj+1, 12
Ty = —v | 0|0y dwl 57 ' ()|0,0) " wl*.
Similarly, we get

T =~ [ nly)b(u)]0s 0w
On the other hand, we will now show that Z, +Z3 < £(t). Indeed, by integrating by parts, we have
—-oy Y [ 1iajubo,n s Y [awieiogul
z+j<5 i+35<5

and for Z3, we have

T3 SvA Y / IN0LIw]* S E(t).

i+5<5

For 75, we use integration by parts in x to get
T Svh Y / )L Tw|* < AD(2).
i+5<5

For Zg, we have

1
L= 3 5 [atwati v (@iojul) == Y- 3 [ avtuatmioiogut
i+5<5 ’L+]<5
1 [ o .
—— 3 5 [ Vawewioioul = 5 3 / ) (1(y)a(y)) 0 0
i+j<5 z+]<5

If y > 60/2 then we have
' ()| =2y S y* =n(y).
Hence

- /uz@ a(y))|0,05w]* S llaly)all Lo (y>0/9)E (D).

i+5<4 %o

When %0 <y< %,Weget

1 (%2 i 0 ~ i o
- > /5 20y (n(y)a()|0L5w|* < |[ti2ll Lo 8o /a<y<soszy | EE) + D 0505wl 25 ja<y<so/2)

i+j<5 < 7 00/4 i+5<5

This implies that
Ts < No(U, w)E(t) + Ny(w, w)?.

Lastly, we have
Tr S 11D (@(@)) | oo (y20/4)E (&) + 103 4 (@)@ 2 (y300 /) In(y) /2 V0 | = E (1) 2.
Using the Sobolev embedding L>=(T x R) ¢ H*(T x R), we have
In(y)/*Vw| e S D3, (0 2Vw)l 2 S E@)Y? +11DZ ywll oo 50 a<y<bo2)-

The proof is complete. ]
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Proposition 6.2. There holds
Na(@,w) S [lwll gy + [y D3 ywll 2220 /2)

Proof. This is a direct consequence of the inequality (4.9) and Lemma The proof is complete.
O

7 Nonlinear analysis

Our goal in this section is to combine all the estimates in analytic norm and Sobolev norms in the
previous sections. We recall that w is the solution to the problem

(0r —vA —vAL)w = f,
v(0y + N)wly—o = g,

where
f=a)u -Vw, u=-V+y,

9=—0y(A+ )\L)_lf’y=0-
We will use the coupled semigroup estimate for the exterior domain We also recall the quantity

defined in (j5.1)):

NG, K) =lwllysrss (ol + 1905 0] 2501
lwllygp D80l 0
First we show the semigroup estimates.

Proposition 7.1. Let 0 < k < 2, there holds
l9()llags S No(w(s), k) + [y D w()122(,55, 2)-

Proof. We define the function p solving the elliptic problem (A + AL)p = a(y)u - Vw with the
boundary condition p|y,—g = 0. We have

S el = 37 et lela,p, (0)] S [0l e

@ @
S la)u - Vwll gy + llya(y) De (u - Vw) [ 12> 60+p)
< No(w, 0) + la(y)all 2= [y D3 ywll 2 (260 +0) + 1a(y) Datill oo (>80 +0) 1y D0l 125250 2)
S Ny(w,0) + (Ilwllgy + lyDb gl 20/ ) 1D w2502

where we use Proposition The proof is complete. ]

Now we give the proof for our main theorem. Using the coupled semigroup estimates we
define the norm for 1 < k < 3 (we can take k = 1).

Ax(w(r), p) = (Ilo() e + Vo) =oll )

(7.1)
+ (@)l + VIT () =ollag ) (o = p = B7)7
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and the quantity

A(B)= sup sup  (Ap(w(r),p)) p + sup  [[yD3 wllr2(ys60/2)-
0<TB<po 0<p<po—pBT 0<TB<po

Proposition 7.2. There holds
A(B) Slwollyyzr + lyD3 ywoll r2(y>s0/2) + B~ A(B)?
+ COTADT (ly D3 ywoll 2250/ + B AB)?) -
Proof. For simplicity, we let
Mo = [lwoll,yrr1 + lyD2 woll L2(y>s0/2)

First we bound [|w(7)l|,,1. By Theorem [3.5 and Proposition we get
P

()l S Mo+ 2AG) + 30 [ 45) o0 — p = 55) s
+VRAR) [ (0= p= 5975+ AB) [ (== 55) s+ 57A)
< Mo+ MA(B) + B7HA(B) + BHA(B)”.

Next, we bound \/v7||w(7)|.=0l;x-1. From Propositions and we get
P

Vo) emollg S Mo+ MvTAG) [ 5 2 - p = 85) s

0

FAVTFAB) 4 /TFAB) [ (oo = p =19 s + VTS A()

Ay [ T r(r — 8 V2ds + Jor A(B)? | s u=p=ps)ds
< Mo+ MA(B) + B A(B)%.
Next we bound ||w(7')||W,;)c+1,1. Again using Propositions [3.5] and we get
Ja(r)lygess S Mo+ AA) +WwAB) [ (= p= ps) s
S AVZAR) [ 30— p = ) s

+AB)? /0 (oo~ p— Bs) s + 5LA(B)
< Mo+ AA(B) + (B A(B) + B AB)?) (po — p— Br) .

35



Finally, we bound /v ||w(7)|.= oHHk From Propositions 3.6/ and |7.1} we get

\EH“}(T)‘POHHIZ S Mo+ )\V\/EA(ﬁ)/ 8_1/2(/)0 —p—Bs)" " Lds

0

L MA(B) + 42 TA(B) /0 "o — p— By ds

VTR + G [ ' \/Ti(f)o - Bs)yds

+\/WA(5)/(po—p Bs)” 17ds+\/ﬁ/ *(1+(po — p— Bs) ")ds
< Mo+ MA(B) + B~ (A(B) + A(B)*)(po — p — B7) 7

Finally, for Hy2Dg5:7yw|| L2(y>30/2)> this is bounded by the functional energy £(t) in section @ From
Proposition [6.1] and Proposition we get

E'(r) < Co (E(r) + AB)E(T) + AB)? + AB)E(T)?) .

By Gronwall lemma, we get

£(r) < Col+AB)T ( +C0/A )

Hence X
1y2D3 wl L2 yss0/2) < €COTAEDET (102 D5 wol| 12(y>50/2) + CoBA(B)?) .

This completes the proof. ]

8 Proof of the main theorem

Taking 3 sufficiently large in Proposition we have A(f3) < C for some constant Cj that only
depends on the size of the initial data. This implies

[w(T)lyypr + VeTllw(T)llg < Co
uniformly in the time interval 7 € [0, 5’%] This implies

sup Z %0901 |44, (7) ] 20| < Co.

0<T<—ﬁ aENZ

To show the uniform bound (|1.11) on the vorticity, it is natural to switch back to the original
variables (¢,6,r). Using the relation (2.1)), we obtain

sp VY e, ()], o| < G

2
0<t< 2500 nez
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Let T = %ﬁpo‘ We have, for any § € T and ¢ € [0,T]:
W (8,0, 1) <Y |wn(t, 1)] < Co(wt) /2y " emfomoAinl,
nez neZ
Hence we obtain, for some constant Cy > 0:
lo” (£,60,r = 1)|| oo (ry < Co(vt)~'/? (8.1)

for all 0 <t < T. The proof of (1.11) is complete. To justify the inviscid limit ((1.12), we check the
condition

T
1// |w”(t,0,1)|dt — 0 as v — 0.
0
This is direct from the bound (8.1). The proof of Theorem is complete.
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