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Abstract—We investigate the increasingly prominent task of
jointly inferring multiple networks from nodal observations.
While most joint inference methods assume that observations
are available at all nodes, we consider the realistic and more
difficult scenario where a subset of nodes are hidden and cannot
be measured. Under the assumptions that the partially observed
nodal signals are graph stationary and the networks have similar
connectivity patterns, we derive structural characteristics of the
connectivity between hidden and observed nodes. This allows us
to formulate an optimization problem for estimating networks
while accounting for the influence of hidden nodes. We identify
conditions under which a convex relaxation yields the sparsest
solution, and we formalize the performance of our proposed
optimization problem with respect to the effect of the hidden
nodes. Finally, synthetic and real-world simulations provide
evaluations of our method in comparison with other baselines.

Index Terms—Graph learning, network topology inference,
hidden nodes, graph signal processing, graph stationarity, multi-
layer graphs.

I. INTRODUCTION

IN recent years, graphs have become a staple model of the
irregular (non-Euclidean) structure commonly found in con-

temporary data. Disciplines like signal processing often rely
on graphs to capture the underlying irregular domain of the
signals, where such successful applications include genetics,
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brain networks, and communications [2], [3], [4]. Nevertheless,
despite the popularity of graph-based methods, in practice the
topology of the graph is often not readily available, spurring the
development of graph learning algorithms [5], [6], [7] to infer
the network topology from a set of nodal observations.

Indeed, the task of network topology inference, also known
as graph learning, has emerged as a vibrant research area within
graph signal processing (GSP) [8], [9], [10], [11]. A crucial
assumption for learning the graph topology is the statistical
relationship between the signals and the unknown topology.
Different assumptions lead to different methods, with notewor-
thy examples including correlation networks and (Gaussian)
Markov random fields ((G)MRF) [2], [5], [12], smooth (local
total variation) models [13], [14], [15], GSP-based approaches
[16], [17], [18], and models with more elaborate graph priors
[19], [20]. A common feature of the previous works is that
they focus on learning a single graph. However, many contem-
porary setups involve multiple related networks, each with a
subset of signals. Some examples include brain analytics, where
observations from different patients are used to estimate their
brain functional networks; social networks, where the same
set of users may present different types of interactions; or
multi-hop communication networks in dynamic environments,
where a network needs to be inferred for each time instant.
Intuitively, in situations where several closely related networks
exist, approaching the problem in a joint fashion can boost the
performance of network topology inference by harnessing the
relationships among graphs [21], [22], [23], [24], [25], [26].

Despite the clear benefits, joint network topology inference
approaches usually assume that observations from every node
are available, which is often not the case. In many relevant
scenarios, the observed signals correspond only to a subset
of the nodes in the whole graph, while the remaining nodes
stay unobserved or hidden. Ignoring the presence of the hidden
nodes can drastically hinder the performance of the graph learn-
ing algorithms. Nevertheless, accounting for their influence is
not a trivial endeavor since the inference task becomes ill-
posed. For single network inference, some works dealing with
this challenging setting include graphical models [27], [28],
inference of linear Bayesian networks [29], nonlinear regression
[30], and stationary-based algorithms [31], [32]. However, the
presence of hidden nodes is yet to be addressed for several
unknown graphs. Since the key to joint topology inference is
exploiting the similarity of the graphs, it is crucial to model the
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influence of the hidden nodes to measure the graph similarity
between nodes that remain unobserved.

To this end, we propose a topology inference method that
simultaneously performs joint estimation of multiple graphs
and accounts for the presence of hidden variables. Under
the assumption that the observed signals are realizations of a
random process that is stationary on the graph [10], [33], we
formalize the relationship between the nodal observations and
the unknown networks under the influence of the hidden nodes.
The joint formulation necessitates exploiting graph similarities,
not only with respect to observed nodes but also to hidden ones.
To accomplish this, we carefully model the structure associated
with latent variables and exploit it with a regularization inspired
by the group Lasso penalty [34]. Finally, we conduct thorough
mathematical and numerical analyses of the proposed approach,
where we show the conditions under which it recovers the
sparsest solution and bounds the error of the estimated graphs,
and we evaluate its performance and the hidden variables’ detri-
mental influence through simulations with synthetic and real-
world data.

Related work and contributions. Early methods for joint
graph learning were introduced in [22] assuming that observa-
tions follow a GMRF and, later on, in [23] followed by a joint
inference method for graph stationary signals. However, both
works assumed that observations from the whole graphs were
available. At the same time, the influence of hidden nodes when
learning a single graph was studied in [27] and [32] assuming
that the observations adhered respectively to a GMRF or a
graph-stationary model. On the other hand, the relevant task of
learning several graphs in the presence of hidden nodes has only
been considered under GMRF assumptions in the preliminary
results from [35]. In contrast, in this paper, we (i) build upon
our previous work from [1] for joint graph learning with hidden
variables under the more lenient assumption of stationary ob-
servations; and (ii) develop a theoretical analysis to characterize
how the hidden nodes influence the quality of the estimated
graphs. Finally, note that GMRF and graph stationarity are
intrinsically different models for the observations, resulting in
materially different inference algorithms and, even more rel-
evant for the problem at hand, requiring different methods to
encourage graph similarities with respect to both observed and
hidden nodes.

To summarize, our main contributions are:
• We design a convex optimization problem to jointly learn

the topology of several related graphs in the presence of
hidden variables under graph-stationary observations.

• We rely on a regularization inspired by group Lasso to
model the similarity between hidden nodes and hence har-
ness the similarity of the entire node set, both hidden and
observed nodes.

• We derive theoretical guarantees for the recoverability of
the estimated graphs in the presence of hidden nodes.

• We evaluate the performance of the proposed approach and
compare it with state-of-the-art alternatives in synthetic
and real-world datasets.

The remainder of the paper is organized as follows. Section II
introduces GSP concepts necessary for our proposed network

topology inference method and its theoretical guarantees. We
introduce in Section III the task of learning graphs in the pres-
ence of hidden nodes. In Section IV we present our proposed
optimization problem that accounts for hidden nodes, along
with its convex relaxation. We provide theoretical guarantees
for the viability and performance of our method in Section V,
which are validated by several synthetic and real-world ex-
periments in Section VI. Finally, a concluding discussion is
provided in Section VII.

II. FUNDAMENTALS OF GSP

We introduce notation and concepts in GSP to characterize
the statistical relationship between the network topology and
measurements on nodes, both observed and hidden.

Notation. For a matrix Y ∈ RM×N , vec(Y) ∈ RMN denotes
the vertical concatenation of the columns of Y. We let cal-
ligraphic letters denote index sets, where, given any matrix
X ∈ RM×N and any vector x ∈ RN , we let XC,· and X·,C
respectively return the rows and columns of X selected from
index set C and xC returns the entries of x selected from C.
The notation IM denotes the identity matrix of size M × M ,
while 1M×N and 0M×N respectively represent matrices of all
ones and zeros of size M × N . We let D, L, and U respectively
denote the indices of the diagonal, lower triangular, and upper
triangular entries of a vectorized square matrix, i.e., for any
matrix Y ∈ RM×M and y = vec(Y), we have that yD contains
the diagonal entries of Y. We define yL and yU similarly. The
notation O(·) and o(·) denote the usual asymptotic meaning,
and we say that f ≍ g if f = O(g) and g = O(f).

Graph signal processing and graph stationarity. We con-
sider undirected graphs of the form G = (V, E), where V de-
notes the set of |V| = N nodes and E ⊆ V × V is the edge set
such that the unordered pair (i, j) ∈ E if and only if nodes i and
j are connected. A convenient representation for the structure
of a graph is its weighted adjacency matrix A ∈ RN×N , where
Aij = Aji ̸= 0 if and only if (i, j) ∈ E . We may define a more
general class of matrices to encode graph structure known as the
graph shift operator (GSO), of which the adjacency matrix is
an example [8], [9], [10]. Formally, the GSO is a square matrix
S ∈ RN×N , where Sij ̸= 0 only if i = j or (i, j) ∈ E . When G
corresponds to an undirected graph, the GSO S is symmetric,
where Sij = Sji are assigned the same value associated with
the edge (i, j). Commonly chosen GSOs include the adjacency
matrix A and the graph Laplacian L := diag(A1) − A [8],
[10]. Because we consider undirected graphs, S is symmetric
and thus diagonalizable.

Critical to the network inference task is the statistical rela-
tionship between nodal observations and the topology of G. We
represent real-valued observations on the nodes of G as graph
signals x = [x1, . . . , xN ]⊤ ∈ RN , where xi denotes the signal
value at the i-th node. In this work, we assume that the observa-
tions are realizations of a random graph signal that is stationary
on the GSO S associated with graph G [16], [33], [36], a ver-
satile model that has shown theoretical and practical relevance.
From a mathematical point of view, a random graph signal x is
stationary on a GSO S if the covariance matrix of x, denoted
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as C, can be written as a (matrix) polynomial of the GSO S,
which results in C and S having the same eigenvectors [10],
[33], [37], [38]. This definition includes correlation networks,
where C = S and MRFs, where C = S−1, as particular cases.
From a practical (generative) point of view, stationary random
graph signals are particularly suited to represent consensus
dynamics, heat diffusion processes, and network processes on
brain structural networks [39], [40], [41]. Formally, under this
point of view we have that the random graph signal x can be
modelled as x = Hw, where w is a stochastic zero-mean white
input signal and H performs the diffusion process on w that
characterizes the influence of the GSO S on x. To that end, the
matrix H is assumed to be a linear graph filter [9], [42], [43],
a matrix polynomial of the GSO H =

∑L−1
l=0 hlSl with order

L and real-valued filter coefficients {hl}L−1
l=0 that sufficiently

models nodal behavior for many signal processing tasks, in-
cluding denoising and interpolation [10], [39], [42], [44], [45].
The structure of S dictates the behavior of the graph signal
x = Hw, where we may view Slw as the diffusion of w across
an l-hop neighborhood. Under the diffusion model, the signal
behavior at the i-th node is encoded in the diffused signal values
in an (L − 1)-hop radius. Under this setting, the graph signals
are random with covariance C = E[xx⊤] = HE[ww⊤]H⊤ =
HH⊤ = H2 due to the input w being white. Clearly, if H is
a polynomial of S, so is C = H2, showing that both points of
view are equivalent.

Finally, we note that under stationarity of x, we have that
matrices S and C commute and hence, it must hold that CS =
SC. This is a compact and tractable way to account for the
graph stationarity of the observed signals and will be later on
used as a constraint in our optimization problems.

III. INFERENCE OF MULTILAYERED GRAPHS WITH

LATENT VARIABLES

Let there be a set of K undirected networks {G(k)}K
k=1 on the

same set V of N nodes with GSOs denoted as {S∗(k)}K
k=1. We

assume that for each graph there exist a set with Rk realizations
of a stationary graph signal collected in data matrices X(k) ∈
RN×Rk , where the Rk columns contain the nodal observations
on the k-th graph. For a signal x(k) on the k-th graph, its
covariance matrix is denoted by C(k) = E[x(k)(x(k))⊤]. We
further assume that for every graph we do not know the entire
data matrix X(k) but only observe signal values on a subset
O ⊂ V of O nodes, where H := V\O denotes the set of H
hidden nodes. Our goal is to estimate the subnetwork of each
network G(k) induced by O from partially observed graph
signals.

Under this setting, we can now formalize the task of estimat-
ing the network structure at the node subset O that is encoded in
the GSOs {S∗(k)}K

k=1. Without loss of generality, we partition
the GSO and the covariance matrix of each network as

S∗(k) =

[
S∗(k)

O S∗(k)
OH

S∗(k)
HO S∗(k)

H

]
, C(k) =

[
C(k)

O C(k)
OH

C(k)
HO C(k)

H

]
, (1)

where S∗(k)
OH = (S∗(k)

HO )⊤ and C(k)
OH = (C(k)

HO)⊤ by the symmetry
of S∗(k) and C(k). The submatrices S∗(k)

O ∈ RO×O and S∗(k)
H ∈

RH×H encode the connectivity of the subnetworks of G(k)

induced by O and H, respectively, while S∗(k)
OH ∈ RO×H repre-

sents the edges connecting observed nodes to hidden nodes. We
similarly define C(k)

O , C(k)
H , and C(k)

OH. Given the partitions in
(1), we aim to estimate the subnetworks encoded in {S∗(k)

O }K
k=1.

We also partition each X(k) to be conformal with S∗(k)

and C(k) as X(k) = [X(k)⊤
O ,X(k)⊤

H ]⊤, where X(k)
O ∈ RO×Rk

is the data matrix containing the partially observed graph sig-
nals and X(k)

H ∈ RH×Rk remains unknown. We can thus apply
the partially observed stationary graph signals X(k)

O and the
commutative relationship C(k)S∗(k) = S∗(k)C(k) as described
in Section II to recover the structure in S∗(k)

O . Given the problem
setting, we can now formalize our joint topology inference
problem in the presence of hidden nodes as follows.

Problem 1: Given the sets {X(k)
O }K

k=1 of graph signal values
at the observed nodes for each of the K graphs, recover the
sparsest {S∗(k)

O }K
k=1 under the following assumptions:

(AS1) the number of hidden nodes H is much smaller than the
number of observed nodes, that is, H ≪ O;
(AS2) the signals in X(k) are realizations of a process that is
stationary in S∗(k); and
(AS3) the GSOs S∗(k) and S∗(k′) for k ̸= k′ are sparse and have
similar sparsity patterns, that is, S∗(k) − S∗(k′) is sparse.

We elaborate on the implications of the assumptions. The first
assumption (AS1) ensures the tractability of the problem. When
most of the nodes in the graph are observed, the covariance
submatrix C(k)

O sufficiently characterizes the structure of S∗(k)
O .

Importantly, under H ≪ O, the matrix product C(k)
OHS∗(k)

HO is
low-rank, a crucial result for inferring S∗(k)

O , which is also as-
sumed in different single graph-learning approaches. Assump-
tion (AS2) establishes a global relationship between the graph
signals X(k) and the unknown graph structure S∗(k), including
both observed and hidden nodes. This assumption enables us
to specify how the hidden nodes affect X(k) by considering the
connectivity between observed and hidden nodes encoded in
S∗(k)

OH from (1) and the commutative relationship C(k)S∗(k) =
S∗(k)C(k). The final assumption guarantees that all K graphs
have similar edge connectivity patterns across all the shared
node set V . Not only can we then benefit from jointly inferring
the observed subnetworks, but we may also share hidden node
information across all K graphs during inference. We naturally
expect that the support of S∗(k)

O will be similar across all K
graphs [22], [23], [35]; however, it is important to also exploit
the edgewise similarity for S∗(k)

OH to account for connections
between observed and hidden nodes. As multiple matrices S(k)

satisfy C(k)S(k) = S(k)C(k), we require additional structural
priors on our target GSOs. Thus, we select as our target GSOs
{S∗(k)}K

k=1 the sparsest ones that satisfy the commutativity
assumption, resulting in parsimonious network representations
that are interpretable and computationally friendly.

Notice that for the simpler case where the set H of hidden
nodes differs across graphs, (AS3) would allow us to exploit
nodal observations from graph k that are hidden for graph k′ to
account for hidden nodes. However, in this work, we address
the more challenging scenario in Problem 1, where there is a
subset of nodes for which there are no direct observations for
any graph. We rely on the statistical relationship between the
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graph signals and the graph topology to formulate a suitable
optimization problem jointly infer the subnetworks in S∗(k)

O .

IV. JOINT GRAPH LEARNING WITH LATENT VARIABLES AS A

CONVEX OPTIMIZATION PROBLEM

Network topology inference with stationary graph signals
commonly exploits the commutativity of the graph signal co-
variance matrices and the GSOs. We also adopt this approach;
however, unlike previous works, we cannot directly apply the
commutative relationship due to the presence of hidden nodes.
We must revisit the commutativity of C(k) and S∗(k) with
the partitions in (1) before introducing our inference problem
with stationary graph signals. From stationarity (AS2), we know
that S∗(k)C(k) = C(k)S∗(k) for all k = 1, . . . , K. From (1) it
then follows that

C(k)
O S∗(k)

O − S∗(k)
O C(k)

O = (P∗(k))⊤ − P∗(k) (2)

for all k = 1, . . . , K, where P∗(k) := C(k)
OHS∗(k)

HO . The right-
hand side of (2) fully accounts for the influence of hidden nodes.
When P∗(k) is known, estimating S∗(k)

O relies solely on the
commutator on the left-hand side. This is similar to traditional
network inference with stationary graph signals, where we also
know the value of the commutator C(k)S∗(k) − S∗(k)C(k) =
0N×N .

With the prior structural information in place, we can ap-
proach estimating the subnetworks from sample covariance
submatrices Ĉ(k)

O = 1
Rk

X(k)
O (X(k)

O )⊤ by the following noncon-
vex optimization problem

min
{S(k)

O ,P(k)}K
k=1

K∑

k=1

αk∥S(k)
O ∥0 +

∑

k<k′

βk,k′∥S(k)
O − S(k′)

O ∥0

+
K∑

k=1

γk∥P(k)∥2,1 +
∑

k<k′

ηk,k′

∥∥∥∥

[
P(k)

P(k′)

]∥∥∥∥
2,1

s.t.
∑K

k=1 ∥Ĉ
(k)
O S(k)

O − S(k)
O Ĉ(k)

O + P(k) − (P(k))⊤∥2
F ≤ ϵ2,

S(k)
O ∈ S, (3)

where we have introduced auxiliary matrices {P(k)}K
k=1 to

account for the right hand side of (2). We first discuss (3) as
it relates to the GSO submatrix estimates {S(k)

O }K
k=1. The first

two terms in the objective of (3) encourage sparse subnetworks
with similar sparsity patterns as in (AS3). The second constraint
encourages valid GSOs for S(k)

O . In this work, we let the GSOs
denote adjacency matrices, so we define

S :=
{
S : S = S⊤, diag(S) = 0,

∑
j Sj1 = 1

}
, (4)

where {S(k)
O }K

k=1 denote valid submatrices of nontrivial ad-
jacency matrices, that is, S(k)

O ̸= 0O×O. While we select ad-
jacency matrices as GSOs, problem (3) accommodates other
GSOs, such as the graph Laplacian [16], under minor modi-
fications.

We next discuss the estimated auxiliary matrices {P(k)}K
k=1.

The first constraint encourages the commutativity in (2) with
P(k) as an approximation of P∗(k) = C(k)

OHS∗(k)
HO to avoid a

bilinear formulation. As will be discussed in Section V, the
upper bound ϵ accounts for both the sample covariance sub-
matrix error and the difference between P(k) and P∗(k). Thus,
similarly to [35], we introduce the low-rank matrices P(k) to
replace entities that depend on hidden nodes. However, instead
of using the standard convex surrogate for low-rankness given
by the nuclear norm, we harness the additional structure on P(k)

based on the assumptions in Problem 1 via the ℓ2,1 norm.
Precisely, the last two terms in the objective apply a group

Lasso penalty via the ℓ2,1 norm [34], which evaluates the ℓ1
norm of the vector containing the ℓ2 norm of each column
of the input matrix, that is, ∥P(k)∥2,1 =

∑O
i=1 ∥P

(k)
·,i ∥2. Recall

that since H ≪ O by (AS1), and given the definition of P∗(k),
this matrix is not only low-rank but has sparse columns. There-
fore, applying the ℓ2,1 norm in the third term in the objective
encourages a solution P(k) that is column-sparse. While low-
rank constraints are commonly implemented with the convex
nuclear norm penalty [32], where solutions with sparse singular
values are sought, we simultaneously promote low-rankness
while encouraging column sparsity by the group Lasso penalty.
Additionally, since the networks are assumed to have similar
sparsity patterns by (AS3), the support of the matrices S∗(k)

HO

will be similar, hence rendering the matrices P∗(k) with similar
column sparsity patterns. This is captured by the fourth term in
the objective.

As is common with optimization problems for sparse net-
work inference, we introduce a convex relaxation of (3) that
enjoys efficient solvability and theoretical guarantees. Our con-
vex formulation is

min
{S(k)

O ,P(k)}K
k=1

K∑

k=1

αk∥S(k)
O ∥1 +

∑

k<k′

βk,k′∥S(k)
O − S(k′)

O ∥1

+
K∑

k=1

γk∥P(k)∥2,1 +
∑

k<k′

ηk,k′

∥∥∥∥

[
P(k)

P(k′)

]∥∥∥∥
2,1

s.t.
∑K

k=1 ∥Ĉ
(k)
O S(k)

O − S(k)
O Ĉ(k)

O + P(k) − (P(k))⊤∥2
F ≤ ϵ2,

S(k)
O = (S(k)

O )⊤, diag(S(k)
O ) = 0, ∀k = 1, . . . , K,

∑
j [S

(1)
O ]j1 = 1, (5)

where we have removed the nonconvexities in (3) by substitut-
ing the ℓ0 norms in the objective with convex ℓ1 norms. We
further specified the constraints according to (4) for valid adja-
cency submatrices. While the last constraint is valid to preclude
trivial adjacency submatrices, it would not be viable for graph
Laplacians as GSOs. However, the theoretical results in Sec-
tion V still hold for graph Laplacian GSOs by replacing the last
constraint in (4) to enforce valid graph Laplacian submatrices.

The method presented in (5) is a convex optimization ap-
proach that incorporates the structure from multiple networks
and the presence of hidden nodes. However, it involves estimat-
ing 2K matrices of size O × O, so its computational complexity
is given by O(K3.5O7) when an off-the-shelf solver is em-
ployed. While the elevated complexity precludes the application
of the proposed method to large graphs, it is possible to design
efficient algorithms that exploit the particular problem structure
[46], [47], [48]. This interesting line of work falls out of the
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scope of this paper but will be considered as a future line of
research. Finally, recall that the performance of our method is
contingent upon a sufficient number of observed nodes com-
pared to the hidden ones, hence assumption (AS1).

V. THEORETICAL RRESULTS

Now, we formalize the viability of the convex relaxation in
(5). To that end, we present sufficient conditions under which
the solutions to (3) and (5) are equivalent even in the presence
of hidden nodes. Moreover, we compute an upper bound on the
error of the solution to (5) that characterizes the effectiveness
of the proposed method at accounting for hidden nodes. Our
conclusions follow existing theoretical results for network in-
ference from stationary graph signals [16], [23], but previous
works do not consider modifications to the problem such as the
inclusion of hidden nodes. The following results demonstrate
that fundamental theoretical guarantees on convex relaxations
and error bounds may still be ensured even in the presence of
hidden nodes.

A. Sparsity of the Convex Relaxation

We first introduce the following definitions to rewrite the
optimization problems in (3) and (5) in vector form. Let the
vectors α ∈ RK and β ∈ RK(K−1)/2 collect values of αk and
βk,k′ , respectively. Let L′ := L(1) ∪ · · · ∪ L(K), where L(k) :=
{i = j + (k − 1)O2 : j ∈ L} for L containing indices for a O2-
length vector (corresponding to the vector form of an O × O
matrix) as described in Section II. We define the directed dif-
ference matrix Z := [1⊤

K ⊗−IK ]·,L + [IK ⊗ 1⊤
K ]·,L, where L

contains indices for a K2-length vector. We can then introduce
the matrix Ψ := 2[Ψ0]·,L′ associated with the objectives of (3)
and (5), where

Ψ0 :=

[
diag(α) ⊗ IO2

diag(β)Z⊤ ⊗ IO2

]
.

For the first constraint of (3) and (5), we introduce
Σ := blockdiag(Σ(1), . . . ,Σ(K)), where Σ(k) := [Σ(k)

0 ]·,L +

[Σ(k)
0 ]·,U and Σ(k)

0 = (−Ĉ(k)
O ⊕ Ĉ(k)

O ) for all k = 1, . . . , K,
and L and U for Σ(k) return entries of a vector of length O2.
Furthermore, let Q be a commutation matrix such that for
any square matrix Y, we have that vec(Y⊤) = Qvec(Y), and
let M = blockdiag(IO2 − Q, . . . , IO2 − Q) with K diagonal
blocks. Let E(k,i) = {(k − 1)O2 + (i − 1)O + j}O

j=1 be index
sets for all k = 1, . . . , K and i = 1, . . . , O. Based on this,
define E(k,k′,i) = E(k,i) ∪ E(k′,i) for every k, k′ = 1, . . . , K
with k < k′, where E(k,i) corresponds to the indices of
the i-th column in the vectorized version of the matrix
P(k) and E(k,k′,i) to the indices of the i-th columns of the
vectorized versions of P(k) and P(k′). We combine these sets
E :=

⋃O
i=1{E(k,i)}K

k=1 ∪ {E(k,k′,i)}k<k′ and define the set of
parameters {η′g}g∈E where η′E(k,i) = γk and η′E(k,k′,i) = ηk,k′

for every k, k′ = 1, . . . , K such that k < k′ and i = 1, . . . , O.
With the following vectorizations,

s = [vec(S(1)
O )⊤L , · · · , vec(S(K)

O )⊤L ]⊤ ∈ RKO(O−1)/2, (6)

p = [vec(P(1))⊤, · · · , vec(P(K))⊤]⊤ ∈ RKO2

, (7)

we may rewrite the optimization problem (3) as

{s′,p′} ∈ argmin
{s,p}

∥Ψs∥0 +
∑

g∈E
η′g∥pg∥2

s.t. ∥Σs + Mp∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1 (3’)

and (5) as

{ŝ, p̂} ∈ argmin
{s,p}

∥Ψs∥1 +
∑

g∈E
η′g∥pg∥2

s.t. ∥Σs + Mp∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1, (5’)

where we do not guarantee unique solutions but consider a given
global minimum for (3’) and (5’). Note that the first term in (3’)
is not equivalent to the first two summations in (3) since the ℓ0
norm is not homogeneous, but we shall treat them as equivalent
for ease of notation. We further denote J as supp(Ψs′) and I
as supp(s′), where supp(y) denotes the support of the vector
y. With the above definitions in place, we have the following
result.

Theorem 1: Let M := {O,O + 1, . . . , KO(O − 1)/2}. As-
sume that problems (3’) and (5’) are feasible, and that there exist
constants r′, r̂ > 0 such that

ϵ ≥σmax(Σ)r′ + 2r̂

+
√

2(σmax(Σ) + 2)(∥s′∥2 + ∥p′∥2 − r),

for r ∈ [0, 2−1/2 min{∥s′M∥2 + ∥p′∥2, r′}). If the following
two conditions are satisfied:

1) Σ·,I is full column rank; and
2) There exists a constant ψ > 0 such that

∥ΨJ c,·(ψ
−2T + Ψ⊤

J c,·ΨJ c,·)
−1Ψ⊤

J ,·∥∞ < 1,

where

T := Σ⊤Σ + (e1 ⊗ 1O−1)(e1 ⊗ 1O−1)
⊤,

then there exists a solution {ŝ, p̂} of (5’) that is equivalent to a
solution {s′,p′} of (3’).

The proof of Theorem 1 can be found in Appendix A, but
we also provide a summary here. To decouple the joint opti-
mization of s and p, we consider an alternating minimization
algorithm, permitting separate analysis of s-subproblems and
p-subproblems at each iteration. Proximal alternating mini-
mization [49], an iterative optimization algorithm, applied to
(3’) and (5’) can be shown to converge to the original solutions
{s′,p′} and {ŝ, p̂}, respectively. We then show that for a suf-
ficiently large ϵ≥ 0, we can ensure that the s-subproblems for
(3’) and (5’) are equivalent under the conditions of Theorem
1. When the iterations grow sufficiently large for convergence,
this implies that s′ = ŝ.

Under the sufficient conditions of Theorem 1, the convex
relaxation in (5) enjoys recovery of the sparsest solution of (3)
even in the presence of hidden nodes. Note that this result differs
significantly from that of Theorem 1 in [23] due to the presence
of another variable p that is not associated with an entrywise
sparsity penalty. Condition 1) of Theorem 1 guarantees that the
solution to (5) is unique for a fixed {P(k)}K

k=1, and condition 2)
permits the existence of a dual certificate that ensures that the
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solutions to (5) and (3) are equivalent when {P(k)}K
k=1 is fixed

for both problems [23], [50]. More specifically, if condition 1)
of Theorem 1 holds, then matrices Ψ and Σ yield an identifiable
optimal solution to (5’) if p is fixed. By the definitions of Ψ
and Σ, this implies that there is only one sparsest set of GSO
submatrices that satisfies the relaxed commutativity constraint
in (3) and (5) for a fixed {P(k)}K

k=1. Condition 2) guarantees
that the solution {s′, p̂} is indeed optimal for (5’). Note that
when Σ is full column rank, then T is invertible, and we may
select an arbitrarily small ψ > 0 that satisfies condition 2) [23].
In our synthetic simulations, we infer networks from sample
covariance submatrices Ĉ(k)

O obtained from stationary graph
signals as graph filter outputs from Gaussian white noise inputs.
Thus, in all cases of our synthetic simulations, we observe full
rank Ĉ(k)

O and thus full column rank Σ, so both conditions 1)
and 2) hold. Under the conditions of Theorem 1, the ℓ1 norm
does not introduce any estimation error for obtaining the spars-
est GSO submatrix estimates, and we need only consider the
distortion from the sample covariance submatrices {Ĉ(k)

O }K
k=1

and auxiliary matrices {P̂(k)}K
k=1 obtained from (5).

B. Robust Recovery Under Hidden Nodes

By Theorem 1, we can guarantee under mild conditions when
the solution to (5) is equivalent to the sparsest solution from (3).
Therefore, to evaluate the efficacy of our method in estimating
the target GSO submatrices {S∗(k)

O }K
k=1, we need only consider

the estimation error of (5). In the sequel, we derive an upper
bound on the distortion between the target GSO submatrices
{S∗(k)

O }K
k=1 and the estimated ones {Ŝ(k)

O }K
k=1 obtained from

(5). Let s∗ be the vectorization of the target GSO submatri-
ces {S∗(k)

O }K
k=1 as in (6). We define K as supp(Ψs∗), and

we let R :=
∑K

k=1 Rk and ω := maxk=1,...,K ωk, where ωk :=

max{maxi[C
(k)
O ]ii, maxi[S

∗(k)
O C(k)

O S∗(k)
O ]ii}. We present our

main result on the performance of our proposed method.
Theorem 2: Let {Ŝ(k)

O }K
k=1 be the estimated subnetworks

obtained from (5) with ϵ = ϵR + α for

α2 =
K∑

k=1

∥∥∥
(
P̂(k) − (P̂(k))⊤

)
−
(
P∗(k) − (P∗(k))⊤

)∥∥∥
2

F

and ϵR ≥ C1Oω
√

(K log O)/R for some constant C1 > 0.
Furthermore, assume that observations X(k) correspond to in-
dependent realizations of a Gaussian process that is stationary
in S(k). Under the following four conditions,

1) K = o(log O);
2) R1 ≍ R2 ≍ · · · ≍ RK;
3) log O = o(min{R/(K7(log R)2), (R/K7)1/3}); and
4) Σ is full column rank;

with probability at least 1 − e−C2 log O for some constant C2

we have that
K∑

k=1

∥Ŝ(k)
O − S∗(k)

O ∥1 ≤ τ(ϵR + α),

where τ =
4
√

|K|σmax(Ψ)∥Ψ†∥1

σmin(Σ)
(2 +

√
|K|). (8)

The proof of Theorem 2 can be found in Appendix B. In
brief, we first apply the commutative relationship described

in Section II to show that {s∗, p̂} is a feasible solution to
(5’). We can then bound the ℓ1-norm difference between the
vectorization of the target GSOs s∗ and the estimated one ŝ
based on the commutativity constraint, ϵ = ϵR + α.

Theorem 2 presents an upper bound on the estimation error
of (5). If K and O are fixed, then as the number of observed
graph signals R increases, the sample covariance submatrices
{Ĉ(k)

O }K
k=1 approach the true covariance submatrices, and the

first term τϵR in the upper bound in (8) becomes negligible.
With enough observed graph signals, the error primarily de-
pends on the second term τα, which denotes the approximation
error of {P̂(k)}K

k=1, the crux of our proposed method. The value
of τ depends on the sparsity and similarity of the target GSO
submatrices S∗(k)

O via the presence of |K| = |supp(Ψs∗)| and
σmax(Ψ)∥Ψ†∥1, which is proportional to the squared condition
number of Ψ. Additionally, if ϵR + α is less than the lower
bound of ϵ in Theorem 1, then we cannot simultaneously guar-
antee the results of Theorems 1 and 2. That is, we may adhere
to the error bound in Theorem 2 but cannot ensure obtention of
the sparsest solution {S

′(k)
O }K

k=1.
While characterizing the error of P̂(k) is of interest, we

restrict our analysis to formalizing the solution of the estimate
Ŝ(k)

O , which is the problem at hand. Indeed, quantifying the
quality of the estimate P̂(k) requires knowledge of the error of
Ŝ(k)

O , and formalizing the errors of both P̂(k) and Ŝ(k)
O is a more

challenging and ill-posed setting (both practically and from a
theoretical point of view) that goes beyond the scope of this
paper. We instead characterize the error of Ŝ(k)

O based on the
accuracy of the estimate P̂(k). If (5) is effective at enforcing
P(k) to share structural characteristics of C(k)

OHS∗(k)
HO such that

they are close, then the estimation of the GSO submatrices
S∗(k)

O becomes easier according to (8). Furthermore, as P(k)

becomes a more accurate approximation of P∗(k), the estima-
tion accuracy of Ŝ(k)

O improves increasingly when compared to
estimating S∗(k)

O while ignoring the presence of hidden nodes.
We formalize this statement in the following result that char-
acterizes the effectiveness of our proposed formulation with
respect to the auxiliary matrices {P(k)}K

k=1.
Corollary 1: Let the naive subnetwork estimates considering

only observed nodes be denoted as {S̃(k)
O }K

k=1 [23], which
we define as the solution to (5) while fixing P(k) = 0O×O

for every k = 1, 2, . . . , K, and we let ϵ = ϵR, where ϵR ≥
C1Oω

√
(K log O)/R for some constant C1 > 0, and γk = 0,

ηk,k′ = 0 for every k, k′ = 1, 2, . . . , K and k < k′. Addition-
ally, let s̃ be the vectorization as in (6) of {S̃(k)

O }K
k=1 and define

δ as

δ2 =
K∑

k=1

∥P∗(k) − (P∗(k))⊤∥2
F .

Then, with the same probability and τ as in Theorem 2

K∑

k=1

∥S̃(k)
O − S∗(k)

O ∥1 ≤ (τ + τ ′)(ϵR + 1
2δ),

where τ ′ =
2ρKO(O − 1)(1 +

√
|K|)σmax(Ψ)∥Ψ†∥1

σmin(Σ)
(9)
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for some ρ ∈ [0, 1]. Furthermore, we have that if
K∑

k=1

∥∥∥
(
P̂(k) − (P̂(k))⊤

)
−
(
P∗(k) − (P∗(k))⊤

)∥∥∥
2

F

≤
(
τ ′

τ

)2

ϵ2R +

(
τ + τ ′

2τ

)2 K∑

k=1

∥∥∥P∗(k) − (P∗(k))⊤
∥∥∥

2

F
,

(10)

then the error bound in (8) is lower than that of (9).
The proof of Corollary 1 can be found in Appendix C, which

follows a similar procedure to the proof of Theorem 2. Corol-
lary 1 demonstrates the criticality of accounting for hidden
nodes. We describe these implications more intuitively here.
First, as discussed following Theorem 2, we note that as P̂(k)

approximates P∗(k) more accurately, we achieve greater im-
provement over {S̃(k)

O }K
k=1 from our proposed inference prob-

lem (5). Indeed, as the matrix difference (P̂(k))⊤ − P̂(k) ap-
proaches the right-hand side of (2), we remove the influence
of the hidden nodes on the estimation of the observed subma-
trices. Second, note that the second term in the upper bound
of (10) is proportional to δ, which measures the influence of
the hidden nodes on the observed nodes in the stationary graph
signal regime. When δ is negligible, the hidden nodes have little
effect on the observed nodes, and the inclusion of {P(k)}K

k=1
in the inference process may affect performance detrimentally.
However, as δ increases, the need to account for the right-hand
side of (2) becomes crucial. We verify this comparison of (5)
and the naive solution {S̃(k)

O }K
k=1 with synthetic simulations in

Section VI.
Theorem 2 and Corollary 1 demonstrate the error bound for

Ŝ(k)
O in terms of how well we can account for hidden nodes,

that is, the estimation error of P̂(k). These results demonstrate
the need to address missing nodes, as we can achieve error
rates similar to a setting with fully observed graph signals
if we accurately estimate P∗(k). However, we may wish to
characterize the error of Ŝ(k)

O with respect to the hidden node
effect encoded in P∗(k) to determine in which problem settings
we can achieve accurate estimations. To this end, we extend the
results in Theorem 2 and Corollary 1 to consider the error bound
of Ŝ(k)

O in terms of P∗(k), without requiring P̂(k).
We require additional notation for our next result. First, recall

that by the definitions of the index set E and the parameter set
{η′g}g∈E we have the equivalence

∑

g∈E
η′g∥p∗

g∥2 =
K∑

k=1

γk∥P∗(k)∥2,1 +
∑

k<k′

ηk,k′

∥∥∥∥

[
P∗(k)

P∗(k′)

]∥∥∥∥
2,1

,

and we let ηmin := ming∈E η′g and ηmax := maxg∈E η′g . We also
let σ := σmax(Σ) be the largest singular value of the matrix Σ.
Our result on the error of Ŝ(k)

O in terms of the hidden nodes
encoded in P∗(k) is as follows.

Theorem 3: There exists a constant µ > 0 such that when

ηmin > 128
O

K2
µτσ

∑

g∈E
∥p∗

g∥2 + 16

√
O

K
µϵR(2τσ + 1),

(11)

ηmax <
(Kηmin − 8µϵR

√
O(2τσ + 1))2

128Oµτσ
∑

g∈E ∥p∗
g∥2

, (12)

then with the same probability and τ as in Theorem 2 and τ ′

as in Corollary 1

K∑

k=1

∥Ŝ(k)
O − S∗(k)

O ∥1 ≤ τ(ϵR + κ),

where κ =

√∑
g∈E η′g∥p∗

g∥2

2µτσ
. (13)

Moreover, if

∑

g∈E
∥p∗

g∥2 <
Kτ ′ϵR

8τ
√

O
, (14)

δ2 >
4τ ′ϵ2R(2τσ + 1)

σ(τ + τ ′)2
, (15)

then there exist parameters ηmin ≤ ηmax satisfying both as-
sumptions (11) and (12) and also

ηmax <
2µσ

τ
∑

g∈E ∥p∗
g∥2

((τ ′ϵR)2 + 1
4 (τ + τ ′)2δ2), (16)

which guarantees that the error bound for Ŝ(k)
O in (13) is lower

than that of the naive solution in (9). If α≤ κ, then this ensures
that (10) holds.

Appendix D presents the proof of Theorem 3. In short, we
first obtain an upper bound for the error of p̂, which we then
use to bound the error of ŝ via (8). As the true matrices P∗(k)

increase in column sparsity and similarity, κ and thus the error
bound decreases. Moreover, the ratio ηmax/µ tunes between
emphasizing the strongest group lasso penalty and the commu-
tativity constraint. Thus, its presence in κ indicates that when
P∗(k) has denser and more dissimilar column sparsity patterns,
we decrease the ratio ηmax/µ, reducing encouragement of the
group lasso penalties to maintain the error bound. Note that µ
is negatively correlated with ϵR + α; if ϵR + α is small, then
µ will be large. However, in this case there may be no feasible
ratio ηmin/µ satisfying (11). Thus, the right-hand side of (11)
must be small enough to ensure a valid lower bound for ηmin/µ.
For instance, we may reduce the magnitude of the sparsity
parameters αk and βk,k′ to reduce τ , which permits more values
of ηmin/µ that satisfy (11).

To guarantee that our method improves the error bound of
the naive method in Corollary 1, we require two bounds. First,
we have an upper bound on

∑
g∈E ∥p∗

g∥2, that is, the column
sparsity patterns of {P∗(k)}K

k=1 must adhere closely enough
to our hypothesis. Second, the effect of P∗(k) on (2) must be
large enough to warrant its estimation via P̂(k). When there is
no effect due to hidden nodes, that is, δ = 0, then it may be
unhelpful to mitigate its effect by estimating P̂(k). The upper
bound (16) restricts how strongly we enforce the group lasso
penalties. As

∑
g∈E ∥p∗

g∥2 increases or δ decreases, the largest
ηmax that guarantees an improved error rate decreases. Thus,
we demonstrate the conditions with respect to hidden node
behavior, that is,

∑
g∈E ∥p∗

g∥2 and δ, for which we may select

parameters {η′g}g∈E that guarantee that our estimates Ŝ(k)
O via

(5) have a lower error bound than that of the naive solution S̃(k)
O ,

which ignores hidden nodes.
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(a) (b) (c)

Fig. 1. We test the performance of the proposed network topology inference in different settings. (a) Evaluation of the performance of graph inference
accounting for hidden nodes via (5) and graph inference ignoring hidden nodes as described in Corollary 1 as the weights of edges between observed and
hidden nodes increase. (b) Evaluation of the influence of increasing the number of graphs being estimated. (c) Evaluation of the detrimental effects of increasing
the number of hidden nodes. The experiments consider different graph learning alternatives and the reported results are the average error of 100 independent
realizations.

VI. NUMERICAL EVALUATION

We introduce several experiments to assess the performance
of the proposed network topology inference method. The ex-
periments employ synthetic and real-world data and compare
the quality of the graphs estimated by different algorithms. For
the k-th graph, we compute the normalized error between the
target S∗(k)

O and the estimated Ŝ(k)
O as

nerr(S∗(k)
O , Ŝ(k)

O ) =
∥S∗(k)

O − Ŝ(k)
O ∥2

F

∥S∗(k)
O ∥2

F

, (17)

and then report the average across the K graphs being esti-
mated, i.e., 1

K

∑K
k=1 nerr(S∗(k)

O , Ŝ(k)
O ). The code for the pro-

posed method and the experiments is available on GitHub1.

A. Synthetic Experiments

We rely on synthetic graphs and signals to assess how differ-
ent elements impact the performance of the proposed approach.
Unless specified otherwise, in the following experiments we
consider K = 3 graphs with N = 20 nodes from which O = 19
are observed. The graph G(1) is sampled from an Erdős-Rényi
(ER) random graph model with a link probability of p = 0.2,
and the related graphs are created by randomly rewiring a fixed
number of edges. We ensure that sampled graphs are connected
to preclude any isolated nodes. Stationary graph signals are
generated by diffusing a white input signal across the graph,
that is, x = Hw, where the coefficients of H are drawn from
a uniform distribution and w ∼ N (0, I). Under this model, the
covariance of x is a polynomial of S, which constitutes a more
general setting than, for example, graph signals sampled from a
GMRF. We also replace the first constraint in (5) with a penalty
in the objective function, whose weight we can increase for
stronger constraint on commutativity.

Varying the effect of hidden nodes. We start by illustrating the
result in (10) that expresses when it is beneficial to incorporate
P(k) for hidden nodes. To this end, we estimate K = 3 networks
from perfectly known covariance submatrices C(k)

O so ϵR = 0
[cf. (10)], to assess only the effects of P(k) and the hidden

1https://github.com/reysam93/hidden_joint_inference

nodes H, characterized respectively by α from Theorem 2 and δ
from Corollary 1. We compare two network inference methods:
(i) “JH-GSR”, which denotes the method in (5) that accounts
for hidden nodes, and (ii) “J-GSR”, which denotes the method
described in Corollary 1 that ignores hidden variables [23]. Fig.
1(a) shows the network estimation error as the edge weights
connecting observed nodes and hidden nodes increase, that is,
as nonzero entries in S∗(k)

OH grow larger. While the GSO sparsity
patterns do not change, the hidden node influence δ increases
with the edge weights in S∗(k)

OH . To measure performance that is
consistent with Corollary 1, we report the average error across
all K graphs as the normalized ℓ1-norm difference, equivalent
to computing (17) with the ℓ1 norm replacing the squared
Frobenius norm. We let ϵ = 10−8 for the first constraint in (5);
however, the solution to the naive problem with P(k) = 0O×O

may not be feasible. Indeed, when ϵ is small enough, it may
be impossible to obtain a feasible solution {S̃(k)

O }K
k=1 such

that all constraints hold. In such a case where the solution is
infeasible, we let its error be 1. Along with network estimation
error, we compare in Fig. 1(a) normalized values of α and
δ to evaluate when the result in (10) holds. In particular, we
let ᾱ :=

∑
k nerr(P∗(k), (P∗(k))⊤ + P̂(k) − (P̂(k))⊤)/K and

δ̄ :=
∑

k nerr(P∗(k), (P∗(k))⊤)/K. Since we need only con-
sider which value is greater, we plot ᾱ/C and δ̄/C for a constant
C > 0 such that the values are between 0 and 1.

When the edge weight is 0, the hidden nodes are decoupled
from the network and thus have no effect on the observed nodes,
and indeed “J-GSR” perfectly recovers the target networks. For
zero-valued edge weights in S∗(k)

OH , we observe α≥ δ, where
“JH-GSR” is comparable but not superior to “J-GSR”. As the
edge weight increases and becomes nonnegligible, the effect of
the hidden nodes increases, and we observe in Fig. 1(a) that
α < δ for all nonzero edge weights and “JH-GSR” consistently
outperforms “J-GSR” as expected from (10). We thus validate
the necessity of our proposed method, where as the influence
of hidden nodes increases, we must account for their presence
to maintain a satisfactory estimation error.

Varying the number of graphs. We next assess the benefits
of considering a joint network topology inference approach
when several graphs need to be learned. To that end, Fig. 1(b)

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 26,2024 at 18:24:52 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/reysam93/hidden_joint_inference


2718 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

(a) (b)

Fig. 2. We test the performance of the proposed method in different scenarios. (a) Evaluation of the impact of the graph similarity in joint network
topology inference methods in different graph learning alternatives. (b) Evaluation of the impact of the graph sparsity in the support recovery for different
hyperparameter selections. The experiment considers two settings for graph similarity by rewiring 3 and 6 links. The results reported are the average error of
100 independent realizations.

illustrates the normalized error computed according to (17) as
the number of graphs K being estimated increases. The perfor-
mance of “JH-GSR” is compared with (i) “S-GSR”, the network
topology inference method from stationary observations [16]
where graphs are learned individually and the presence of hid-
den variables is ignored; “SH-GSR”, a generalization of (i) that
takes into account the influence of hidden variables [32]; and
(iii) “J-GSR” as in Fig. 1(a). Looking at the results, we observe
that “JH-GSR” outperforms the alternatives, showcasing the
benefits of harnessing the graph similarity while accounting
for the influence of the hidden nodes. We also observed that
the joint approaches achieve a lower error when more than one
graph is being estimated, and furthermore, that the benefits of
the joint approaches increase with K. Lastly, Fig. 1(b) also
shows that for the setup at hand, ignoring the influence of
hidden nodes results in a worse performance than ignoring the
relation across networks, which is studied in more detail in the
following experiment.

Varying the number of hidden nodes. The results in Fig. 1(c)
investigate the detrimental influence of the presence of hidden
nodes in the network topology inference task. We examine
fixed-size graphs with N = 20 nodes and increase the number
of hidden nodes H as shown in the x-axis. We evaluate the
performance of (i) our proposed method, “JH-GSR”, (ii) an
alternative implementation of our method replacing the group
Lasso penalty by the nuclear norm, “NN”, and (iii) the joint
network topology inference ignoring the presence of hidden
nodes, “J-GSR” [23]. Then, for each baseline, we consider the
estimation of either 2 or 6 graphs. First, from Fig. 1(c), it can
be seen that increasing the number of hidden nodes renders
the inference problem more challenging and, moreover, that
ignoring the presence of hidden nodes results in poor perfor-
mance. Second, the superior performance of “JH-GSR” over
“NN” supports our initial intuition that the group Lasso penalty
is better suited to capture the structure of the problem at hand.
Furthermore, we also observe that estimating 6 graphs leads to
a better performance than estimating 2, a behavior aligned with
the previous experiment.

Varying graph similarity. Next, we evaluate the impact of
(AS3), a critical assumption in joint graph learning. More pre-
cisely, we consider estimating K = 3 graphs as the proportion

of different edges increases, i.e., as the graphs become more
dissimilar. The errors of the estimated graphs are depicted in
Fig. 2(a), where we compare the performance of “JH-GSR”
with (i) “LVGL”, a graphical Lasso algorithm modeling the
presence of hidden nodes [27]; and (ii) “FGL”, a joint graphical
Lasso algorithm [22]. Moreover, since graphical Lasso algo-
rithms assume that the observations are drawn from a GMRF,
we consider two different types of signals. Signals sampled
from a GMRF are denoted as “M”, and signals generated as
the diffusion of a white input via a polynomial of the GSO
are denoted as “P”. As expected from (AS3), Fig. 2(a) shows
that the performance of joint methods, “JH-GSR” and “FGL”,
deteriorates as we consider a higher number of different links.
For the two signal models, we observe that “JH-GSR-M” is
superior to “JH-GSR-P” since the GMRF model is a simpler
special case of graph stationarity that is less sensitive to hidden
nodes. Interestingly, “JH-GSR-M” also outperforms “FGL-M”,
although the latter is a method tailored for GMRF observations,
showcasing the more general nature of the stationary model and
the importance of accounting for the presence of hidden nodes.
In contrast, we observe that graphical models are incapable of
estimating graphs from stationary observations, and we note
that “LVGL-P” is not included in the figure due to its high error.

Varying graph sparsity. In the last experiment based on syn-
thetic data, we assess the performance of the proposed method
in terms of the recovery of the support and how the weight
of the regularizers influences the results. To that end, Fig.
2(b) depicts the evolution of the F1-score as the mean node
degree increases for different configurations of the hyperpa-
rameters. Graph G(1) is drawn from a small world random
graph model with a rewiring probability of 0.1, and similar
graphs are generated by rewiring either 3 or 6 links (respec-
tively “3Rw” or “6Rw” in the legend). The results illustrate
how higher values of α obtain the best performance when the
graph is sparse but deteriorates as the graph becomes denser.
Similarly, a high value of β harnesses the similar support of
the graphs but, when graphs are less alike, it may deteriorate
the performance. Last but not least, Fig. 2(b) illustrates how the
support of the graphs is almost perfectly recovered when graphs
are sparse, but the performance deteriorates as the density of
edges increases.
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(a) (b) (c)

Fig. 3. We test the performance of the proposed network topology inference in real-world scenarios. (a) Error estimating three graphs considering either a
joint or a separate method. Graphs are obtained from the students of the University of Ljubljana dataset. (b) Error estimating two graphs from voting signals
considering different approaches for H = 2. (c) Error estimating two graphs from voting signals considering different approaches for H = 4.

B. Application to Real-World Graphs

In addition to the synthetic data where we know the model
relating the networks and the observed graph signals, we assess
our proposed method with real-world data to demonstrate its
efficacy in several scenarios, including those where the station-
arity assumption is not explicitly enforced.

Students dataset. The following experiment combines real-
world graphs with synthetic signals. This mixed approach al-
lows us to investigate the applicability of the proposed method
to real-world graphs while ensuring that the observed signals
are stationary. We employed three graphs defined on a com-
mon set of 32 nodes, where nodes represent students from
the University of Ljubljana, and the different graphs encode
various types of interactions among the students2. The results
are displayed in Fig. 3(a), where we observe the error of the
recovered graphs as the number of samples increases. The error
reported is the average of 50 realizations of random station-
ary graph signals, with only one hidden node considered. For
each of the three graphs, we evaluate the performance of both
the joint and the separate estimation methods, “JH-GSR” and
“SH-GSR”. From the results, it is evident that the recovery of
all three graphs significantly improves with a joint approach,
demonstrating the benefits of leveraging the existing relation-
ship between the networks.

Learning multiple observed graphs from voting data.
Finally, we close with an experiment aimed at learning two
related political graphs from voting data3. More specifically,
we consider 25 cantons of Switzerland as the nodes of the
graph and the percentage of votes in favor of 185 initiatives
submitted between 2000 and 2020 as the signals. In this
setting, links reflect social influence between cantons (for
example, if a canton has a great influence over others its
degree will be larger), and hidden nodes correspond to cantons
whose votes are never observed. Our goal then is to infer the
political graph of Switzerland for two consecutive periods of
time. Intuitively, although political representation may evolve
with time, this process is typically slow and, hence, the two
graphs are expected to be closely related. We validate the

2Original data available at http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:
data:pajek:students

3Original data available at https://swissvotes.ch/page/home

estimations via ground truth graphs whose links reflect the
political preferences of the cantons, which are obtained by
performing separate inference of both graphs with all available
signals. We consider two setups with H = 2 and H = 4 hidden
nodes, respectively illustrated in Fig. 3(b) and 3(c). The figures
present the normalized error of the estimated graphs as the
percentage of available signals ranges from 70% to 90% of all
available signals. We compare the proposed algorithm, “JH-
GSR”, with three alternative methods: “J-GSR”, “SH-GSR”,
and “J-LVGL” from [35].

First, we focus on the estimation performance of the four
methods when H = 2 hidden nodes are considered as shown in
Fig. 3(b). Since the number of available signals for the second
graph is considerably smaller than the signals available for
the first graph, we observe a much larger estimation error for
the second graph when the separate approach “SH-GSR” is
employed. In contrast, for the joint estimation method “J-GSR”,
we observe that errors are similar for both graphs and inferior
on average compared to “SH-GSR”. This behavior illustrates
that harnessing the similarity of the graphs results in an im-
provement in performance since it allows sharing common
learned structures across graphs. Moreover, we observe that
“JH-GSR” outperforms both “SH-GSR” and “J-GSR” since,
in addition to being a joint approach, it takes into account the
influence of the hidden nodes. We also compare “JH-GSR” with
“J-LVGL”, both of which perform joint network inference while
accounting for hidden nodes. However, we find that “JH-GSR”
is drastically superior due to complexities in the data structure
that “J-LVGL” cannot capture accurately. Indeed, the stationary
model subsumes the GMRF model while allowing for more
complex statistical relationships between the graph topology
and the signals.

Moving to the results of Fig. 3(c), we observe that increasing
the number of hidden variables renders the problem more chal-
lenging, hence leading to a drop in the performance of all the
algorithms. It is worth mentioning that the error corresponding
to “G2 J-LVGL” was too high, so it is not included in the figure.
Also note that the fraction of hidden nodes is 4/25, which is
relatively large. Nevertheless, we observe that methods account-
ing for the presence of hidden nodes are more resilient to this
challenging setting, while the performance of the non-robust
alternatives deteriorates significantly. Moreover, the proposed

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 26,2024 at 18:24:52 UTC from IEEE Xplore.  Restrictions apply. 

http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students
http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students
https://swissvotes.ch/page/home


2720 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

method “JH-GSR” continues to outperform the alternatives,
achieving a lower error in both recovered graphs.

To summarize, it is not only crucial to account for the pres-
ence of hidden nodes but, when several related graphs are in-
volved, it is also important to exploit the similarity between both
observed and hidden nodes. This becomes particularly relevant
when data is limited to a subset of the graphs, as demonstrated in
the improved estimation of the second graph when considering
joint network inference methods.

VII. CONCLUSION

In this paper, we presented a method to infer multiple net-
works on the same node set in the presence of hidden nodes.
To characterize the effect of the hidden nodes, we assumed that
graph signals were stationary on their respective networks. By
the inherent block structure of the covariance matrix C(k) and
the GSO S∗(k) of the k-th network, we introduced a set of
auxiliary matrices P(k) to account for the effect of hidden nodes
in the relationship C(k)S∗(k) = S∗(k)C(k) stemming from the
stationarity assumption. By prior assumptions on structure and
stationarity, we derive characteristics of P(k) that permit us to
form an optimization problem that performs network inference
while accounting for the presence of hidden nodes. Moreover,
we verified that the estimation of the sparsest networks is equiv-
alent to a computationally feasible convex relaxation under mild
conditions. We further demonstrated a bound on the error of
our proposed method dependent on the error due to the sample
covariance matrices and P(k). The performance of our method
was evaluated in multiple synthetic and real-world datasets in
comparison with other baseline methods, and we also verified
the improvement in estimation due to the incorporation of P(k).

APPENDIX A
PROOF OF THEOREM 1

Let us consider solving (3’) by proximal alternating mini-
mization [49] with

p′(t) = argmin
p

∑

g∈E
η′g∥pg∥2 +

1

2λ′
t

∥p − p′(t−1)∥2
2

s.t. ∥Σs′
(t−1)

+ Mp∥2 ≤ ϵ, (18a)

s′
(t) ∈ argmin

s
∥Ψs∥0 +

1

2µ′
t

∥s − s′
(t−1)∥2

2

s.t. ∥Σs + Mp′(t)∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1,

(18b)

and (5’) with

p̂(t) = argmin
p

∑

g∈E
η′g∥pg∥2 +

1

2λ̂t

∥p − p̂(t−1)∥2
2

s.t. ∥Σŝ(t−1) + Mp∥2 ≤ ϵ, (19a)

ŝ(t) = argmin
s

∥Ψs∥1 +
1

2µ̂t
∥s − ŝ(t−1)∥2

2

s.t. ∥Σs + Mp̂(t)∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1,

(19b)

for t ∈ N, where the parameters λ′
t, µ′

t, λ̂t, and µ̂t are bounded
above and below by positive real numbers. By the proximal
terms in (18) and (19), the subproblems (18a), (19a), and
(19b) are strongly convex, and each iteration of these has a
unique solution. Furthermore, for every t ∈ N and any given
pair of constants Cs

t , Cp
t ≥ 0, we may select positive values

λ′
t, µ′

t, λ̂t, and µ̂t such that the solutions to (18) and (19) are
equivalent to

p′(t) = argmin
p

∑

g∈E
η′g∥pg∥2

s.t. ∥Σs′
(t−1)

+ Mp∥2 ≤ ϵ, ∥p − p′(t−1)∥2 ≤ Cp
t ,

(20a)

s′
(t) ∈ argmin

s
∥Ψs∥0

s.t. ∥Σs + Mp′(t)∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1

∥s − s′
(t−1)∥2 ≤ Cs

t , (20b)

and

p̂(t) = argmin
p

∑

g∈E
η′g∥pg∥2

s.t. ∥Σŝ(t−1) + Mp∥2 ≤ ϵ, ∥p − p̂(t−1)∥2 ≤ Cp
t ,
(21a)

ŝ(t) = argmin
s

∥Ψs∥1

s.t. ∥Σs + Mp̂(t)∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1

∥s − ŝ(t−1)∥2 ≤ Cs
t . (21b)

Let us initialize the proximal alternating minimization steps
for (20) and (21) with p0 := p′(0) = p̂(0) and s0 := s′(0) = ŝ(0).
Note that the objective functions of (3’) and (5’) are semi-
algebraic functions [51] and thus have the Kurdyka-Łojasiewicz
property [49]. By [49], Theorem 3.3], there exist constants
r′, s′ > 0 such that when we let ∥p′ − p0∥2 + ∥s′ − s0∥2 < r′

and

∥Ψs′∥0 +
∑

g∈E
η′g∥p′

g∥2 ≤ ∥Ψs0∥0 +
∑

g∈E
η′g∥[p0]g∥2

< ∥Ψs′∥0 +
∑

g∈E
η′g∥p′

g∥2 + s′, (22)

where the first inequality is due to the optimality of {s′,p′} for
feasible {s0,p0}, then we have that the sequence {s′(t),p′(t)}
converges to {s′,p′} in finitely many steps. Similarly, there
exist constants r̂, ŝ > 0 such that we can guarantee that the
sequence {ŝ(t), p̂(t)} converges to {ŝ, p̂} in finitely many
steps. More specifically, there exist positive integers T1, T2

such that {s′,p′} = {s′(t),p′(t)} for every t ≥ T1 and {ŝ, p̂} =
{ŝ(t), p̂(t)} for every t ≥ T2.

Note that r̂ > 0 may take any arbitrarily large finite number
[49], so we may select {s0,p0} such that ∥p′ − p0∥2 + ∥s′ −
s0∥2 < r′ and (22) are satisfied. Then, we let r̂ ≥ r′ + ∥ŝ −
s′∥2. Such a finite r̂ exists since problems (3’) and (5’) have
coercive objective functions and we assume feasibility of both,
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that is, ∥ŝ − s′∥2 ≤ ∥ŝ∥2 + ∥s′∥2 < +∞. Similarly, we may se-
lect a finite upper bound Cs = Cs

t ≥ ∥ŝ − s′∥2 for every t ≥ T
for the last constraint in subproblems (20b) and (21b).

We select feasible initial points {s0,p0} to guarantee con-
vergence of (18) and (19). Recall that we define the set M =
{O, O + 1, . . . , KO(O − 1)/2}, and let a′ := [s′M

⊤,p′⊤]⊤

and a0 := [[s0]⊤M,p⊤
0 ]⊤. Consider the optimization problem

min
a0

∥a0∥2
2 s.t. ∥a′ − a0∥2 ≤ r,

whose optimal solution is a0 = Ca′ where C =
(∥a′∥2 − r)/∥a′∥2. Then, our optimal initial point is
[s0]Mc = s′Mc , [s0]M = Cs′M, and p0 = Cp′. By the
inequality (a + b)2 ≤ 2a2 + 2b2 and our assumption
that r < 2−1/2(∥s′M∥2 + ∥p′∥2) ≤ ∥a′∥2, we have that
C ∈ [0, 1). Moreover, the solution {s0,p0} satisfies
∥s′ − s0∥2 + ∥p′ − p0∥2 ≤

√
2∥a′ − a0∥2 ≤

√
2r < r′.

By our condition on ϵ, we have that

ϵ ≥ σmax(Σ)r′ + 2r̂

+
√

2(σmax(Σ) + 2)(∥s′∥2 + ∥p′∥2 − r)

≥ σmax(Σ)r′ + 2r̂

+ (σmax(Σ) + 2)(∥s′Mc∥2 + C
√

2∥a′∥2)

≥ σmax(Σ)r′ + 2r̂

+ (σmax(Σ) + 2)(∥s0∥2 + ∥p0∥2).

Then, since σmax(M) = 2,

∥Σs′ + Mp̂∥2 ≤ ∥Σ(s′ − s0)∥2 + ∥M(p̂ − p0)∥2

+ ∥Σs0 + Mp0∥2

≤ σmax(Σ)r′ + 2r̂

+ (σmax(Σ) + 2)(∥s0∥2 + ∥p0∥2)

≤ ϵ. (23)

By the finite convergence of (20) and (21), we have that s′ =
s′(t) and ŝ = ŝ(t) for every t ≥ T . We may rewrite (20b) and
(21b) at iteration T + 1 as

s′ = argmin
s

∥Ψs∥0

s.t. ∥Σs + Mp′∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1,

∥s − s′∥2 ≤ Cs, (24)

ŝ = argmin
s

∥Ψs∥1

s.t. ∥Σs + Mp̂∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1,

∥s − ŝ∥2 ≤ Cs. (25)

Thus, the convergence of proximal alternating minimization
allows us to consider minimization with respect to s for both
(3’) and (5’).

We next consider when the solutions to (24) and (25) are
equivalent. We introduce a modification to (25) without the last
constraint

s̄ ∈ argmin
s

∥Ψs∥1

s.t.∥Σs + Mp̂∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1, (26)

which may not have a unique solution. By (23), s′ is a feasible
solution to (26).

By the proof of Theorem 1 in [23] and Theorem 1 of [50],
if Σ·,I is full column rank and there exists a constant ψ > 0
such that

∥ΨJ c,·(ψ
−2T + Ψ⊤

J c,·ΨJ c,·)
−1Ψ⊤

J ,·∥∞ < 1, (27)

then we not only have that s′ = s̄, but s′ is also the unique
solution to (26). These are exactly conditions 1) and 2) in the
statement of Theorem 1. Thus, we need only show that s̄ = ŝ.

Since (25) and (26) share the first two constraints and ∥ŝ −
s′∥2 = ∥ŝ − s̄∥2 ≤ Cs, ŝ and s̄ are both feasible solutions for
(25) and (26). Moreover, both problems have unique solutions,
so ŝ = s̄ = s′, as desired.

APPENDIX B
PROOF OF THEOREM 2

To establish an upper bound on the estimation error of (5),
we first provide the following lemma necessary to determine an
upper bound on the error of (5).

Lemma 1: Under the following four conditions,
1) K = o(log O);
2) R1 ≍ R2 ≍ · · · ≍ RK;
3) log O = o(min{R/(K7(log R)2), (R/K7)1/3}); and
4) ϵR ≥ COω

√
(K log O)/R for some constant C > 0;

with probability at least 1 − e−C1 log O for some constant C1

we have that
K∑

k=1

∥∥∥(Ĉ(k)
O − C(k)

O )S∗(k)
O − S∗(k)

O (Ĉ(k)
O − C(k)

O )
∥∥∥

2

F
≤ ϵ2R.

Proof: The proof of Lemma 1 follows from the proof of
Claim 2 in [23]. !

Recall that s∗ is the vectorization of the target GSO sub-
matrices {S∗(k)

O }K
k=1 as in (6). We show that {s∗, p̂} is a

feasible solution to (5’). We demonstrate an upper bound on
the commutativity of sample covariance submatrices and target
subnetworks as
∣∣∣∣

K∑

k=1

∥Ĉ(k)
O S∗(k)

O − S∗(k)
O Ĉ(k)

O + P̂(k) − (P̂(k))⊤∥2
F

∣∣∣∣

1
2

≤
∣∣∣∣

K∑

k=1

∥∥∥(Ĉ(k)
O − C(k)

O )S∗(k)
O − S∗(k)

O (Ĉ(k)
O − C(k)

O )
∥∥∥

2

F

∣∣∣∣

1
2

+

∣∣∣∣
K∑

k=1

∥∥∥
(
P̂(k) − (P̂(k))⊤

)
−
(
P∗(k) − (P∗(k))⊤

)∥∥∥
2

F

∣∣∣∣

1
2

≤ ϵR + α, (28)

where we have used Lemma 1, the definition of α, and the
relationship in (2). Because

∑O
j=1[S

∗(k)
O ]j1 = 1 by definition,

(28) is equivalent to

∥Σs∗ + Mp̂∥2 ≤ ϵR + α = ϵ, (29)

so {s∗, p̂} is a feasible solution to (5’).
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We introduce a modification of (5’) to combine the con-
straints into one inequality. Consider the following modified
optimization problem that is parameterized by r > 0

{ŝr, p̂r} = argmin
{s,p}

∥Ψs∥1 +
∑

g∈E
η′g∥pg∥2

s.t. ∥Φ̄rs + R̄p − b̄r∥2 ≤ ϵ, (30)

where Φ̄r = [Σ⊤, r(e1 ⊗ 1O−1)]⊤, R̄ = [M⊤,0KO2 ]⊤, and
b̄r = [0⊤

KO(O−1)/2, r]
⊤. The parameter r determines the strict-

ness of the second constraint in (5’) such that when r →∞,
we have that ŝr → ŝ. Note that since (e1 ⊗ 1O−1)⊤ŝ = 1 and
(e1 ⊗ 1O−1)⊤s∗ = 1, then by (29) and the definition of {ŝ, p̂},
we have that {ŝ, p̂} and {s∗, p̂} are feasible solutions of (30)
for every r > 0.

We next provide an upper bound on the difference
between ŝ and s∗ following the proof of Claim 1 in [23].
Recall that we define K as supp(Ψs∗). First, note that
as in the proof of Claim 1 of [23], we have that when Σ
is full column rank, then so is Φ̄r, which guarantees the
existence of a dual certificate y = I⊤K,·sign(ΨK,·s∗), where

Ψ⊤y = Φ̄
⊤
r Φ̄r(Φ̄

⊤
r Φ̄r)−1Ψ⊤I⊤K,·sign(ΨK,·s∗) ∈ Im(Φ̄

⊤
r ),

yK = sign(ΨK,·s∗), ∥yKc∥∞ < 1, and ∥Ψs∗∥1 = y⊤Ψs∗.
Consider the following inequality

∥Ψs∗ −Ψŝ∥1 ≤ ∥Ψŝ − u∥1 + ∥Ψs∗ − u∥1, (31)

where u ∈ RKO(O−1)/2 such that supp(u) ⊆ K. We derive an
upper bound for the second term on the right-hand side of
(31) as

∥Ψs∗ − u∥1 ≤
√

|K|∥Ψs∗ − u∥2

≤
√

|K|∥Ψs∗ −Ψŝ∥2 +
√

|K|∥Ψŝ − u∥1

≤
√

|K|σmax(Ψ)∥s∗ − ŝ∥2

+
√

|K|∥Ψŝ − u∥1

≤
√

|K|σmax(Ψ)

σmin(Φ̄r)
∥Φ̄r(s

∗ − ŝ)∥2

+
√

|K|∥Ψŝ − u∥1. (32)

For the first term on the right-hand side of (31), we have that

ξ := min
u:supp(u)⊆K

∥Ψŝ − u∥1

= max
v

min
u

∥Ψŝ − u∥1

+ v⊤IKc,·(u −Ψŝ) + v⊤IKc,·Ψŝ

= max
w:supp(w)⊆Kc

min
u

∥Ψŝ − u∥1

+ w⊤(u −Ψŝ) + w⊤Ψŝ, (33)

where (33) results from the Lagrangian of ξ and duality theory.
Given the dual certificate y, we have that

ξ = max
w:supp(w)⊆Kc,

∥w∥∞≤1

(y + w)⊤Ψŝ − y⊤Ψŝ

≤ ∥Ψŝ∥1 − y⊤Ψŝ + y⊤Ψs∗ − ∥Ψs∗∥1

≤ y⊤Ψ(s∗ − ŝ), (34)

where the final inequality is due to the optimality of {ŝ, p̂}
and the feasibility of {s∗, p̂} for (5’). Lastly, since Ψ⊤y =
Φ̄

⊤
r Φ̄r(Φ̄

⊤
r Φ̄r)−1Ψ⊤I⊤K,·sign(ΨK,·s∗), we have that

y⊤Ψ(s∗ − ŝ)

≤ sign(ΨK,·s
∗)⊤IK,·Ψ(Φ̄

⊤
r Φ̄r)

−1Φ̄
⊤
r Φ̄r(s

∗ − ŝ)

≤
√

|K|σmax(Ψ)

σmin(Φ̄r)
∥Φ̄r(s

∗ − ŝ)∥2, (35)

where the second inequality results from the fact that every
positive scalar and its ℓ2 norm are equal. We may substitute
(32) and (35) into (31) and the fact that Ψ is full column rank
to obtain

∥s∗ − ŝ∥1 ≤ τr∥Φ̄r(s
∗ − ŝ)∥2,

where

τr =

√
|K|σmax(Ψ)∥Ψ†∥1

σmin(Φ̄r)
(2 +

√
|K|). (36)

As r →∞, we have that

∥s∗ − ŝ∥1 ≤ lim
r→∞

τr∥Φ̄r(s
∗ − ŝ)∥2

≤ 2 lim
r→∞

τr(ϵR + α),

where by the feasibility of {ŝ, p̂} and {s∗, p̂} for every r > 0,
we have that

∥Φ̄r(s
∗ − ŝ)∥2 ≤ ∥Φ̄rs

∗ + R̄p̂ − b̄r∥2

+ ∥Φ̄r ŝ + R̄p̂ − b̄r∥2

≤ 2(ϵR + α). (37)

Finally, we return to the equivalent matrix formulation as

K∑

k=1

∥Ŝ(k)
O − S∗(k)

O ∥1 ≤ 4τr(ϵR + α). (38)

By the end of the proof of Theorem 2 in [23], we have that
limr→∞ 4τr ≤ τ , as desired.

APPENDIX C
PROOF OF COROLLARY 1

Consider the following optimization problem

min
{S(k)

O }K
k=1

K∑

k=1

αk∥S(k)
O ∥1 +

∑

k<k′

βk,k′∥S(k)
O − S(k′)

O ∥1

s.t.
∑K

k=1 ∥Ĉ
(k)
O S(k)

O − S(k)
O Ĉ(k)

O ∥2
F ≤ ϵ2R,

S(k)
O = (S(k)

O )⊤, diag(S(k)
O ) = 0, ∀k = 1, . . . , K,

∑
j [S

(1)
O ]j1 = 1, (39)

whose solution is equivalent to the naive solution {S̃(k)
O }K

k=1
described in the statement of Corollary 1. Similarly to (5), we
can define a vectorized version of (39) as

s̃ = argmin
s

∥Ψs∥1 s.t. ∥Σs∥2 ≤ ϵR, (e1 ⊗ 1O−1)
⊤s = 1,

(40)
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and a version parameterized by r > 0 as

s̃r = argmin
s

∥Ψs∥1 s.t. ∥Φ̄rs − b̄r∥2 ≤ ϵR, (41)

where Φ̄r and b̄r are defined as for (30) and limr→∞ s̃r = s̃.
We provide the following upper bound via (2)
∣∣∣∣

K∑

k=1

∥Ĉ(k)
O S∗(k)

O − S∗(k)
O Ĉ(k)

O ∥2
F

∣∣∣∣

1
2

≤
∣∣∣∣

K∑

k=1

∥∥∥(Ĉ(k)
O − C(k)

O )S∗(k)
O − S∗(k)

O (Ĉ(k)
O − C(k)

O )
∥∥∥

2

F

∣∣∣∣

1
2

+

∣∣∣∣
K∑

k=1

∥∥∥P∗(k) − (P∗(k))⊤
∥∥∥

2

F

∣∣∣∣

1
2

≤ ϵR + δ,

and similarly to Theorem 2, we apply Lemma 1 to get

∥Φ̄rs
∗ − b̄r∥2 ≤ ϵR + δ,

where s∗ may not be a feasible solution to (41). However, by
the triangle inequality and the optimality of s̃r, there exists ρ ∈
[0, 1] such that

∥Ψs̃r∥1 − ∥Ψs∗∥1 ≤ ρ∥Ψs̃r −Ψs∗∥1. (42)

In particular, let ρ = max{0, (∥Ψs̃r∥1 − ∥Ψs∗∥1)/∥Ψs̃r −
Ψs∗∥1}, where ρ = 0 when s∗ is a feasible solution to (41),
but otherwise, it may be possible that ρ ∈ (0, 1]. Furthermore,
since (e1 ⊗ 1O−1)⊤s̃ = 1, then s̃ is a feasible solution to (41)
for every r > 0.

We then can introduce a similar inequality to (31) as

∥Ψs∗ −Ψs̃∥1 ≤ ∥Ψs̃ − ũ∥1 + ∥Ψs∗ − ũ∥1, (43)

where ũ ∈ RKO(O−1)/2 such that supp(ũ) ⊆ K. The upper
bound for the second term of the right-hand side of (43) can
be found analogously to (32), where we have

∥Ψs∗ − ũ∥1 ≤
√

|K|σmax(Ψ)

σmin(Φ̄r)
∥Φ̄r(s

∗ − s̃r)∥2

+
√

|K|∥Ψs̃r − ũ∥1. (44)

Similarly to (34) in the proof of Theorem 2, we can upper bound
the first term as

ξ̃ := min
ũ:supp(ũ)⊆K

∥Ψs̃ − ũ∥1

≤ ∥Ψs̃∥1 − y⊤Ψs̃ + y⊤Ψs∗ − ∥Ψs∗∥1

≤ y⊤Ψ(s∗ − s̃) + ρ∥Ψ(s∗ − s̃)∥1, (45)

where we account for the possible infeasibility of s∗ with (42).
We may combine (45), and (44) to obtain

∥s̃ − s∗∥1 ≤ (τr + τ ′r)(2ϵR + δ), (46)

where τr is defined in (36) and we let

τ ′r :=
ρKO(O − 1)(1 +

√
|K|)σmax(Ψ)∥Ψ†∥1

2σmin(Φ̄r)
.

As with the proof of Theorem 2, we have that for r →∞,
K∑

k=1

∥S̃(k)
O − S∗(k)

O ∥1 ≤ (τ + τ ′)(ϵR + 1
2δ), (47)

as desired.
Moreover, the bound (10) is equivalent to the following in-

equality

α2 ≤
(
τ ′

τ

)2

ϵ2R +

(
τ + τ ′

2τ

)2

δ2,

which is a sufficient condition for the upper bound in (8) to be
less than the upper bound in (9).

APPENDIX D
PROOF OF THEOREM 3

The proof of Theorem 3 is inspired by that of [46], Theo-
rem 1]. Analogous to how we obtain the inequality (29), we
apply Lemma 1, the definition of α, and (2) to conclude that

∥Σs∗ + Mp∗∥2 ≤ ϵR.

Then, by (2) and the convexity of (5’), we represent p̂ as

p̂ ∈ argmin
p

µ∥Σŝ + Mp∥2
2 +

∑

g∈E
η′g∥pg∥2, (48)

where by optimization theory there exists a constant µ > 0 such
that (48) is equivalent to

p̂ ∈ argmin
p

∑

g∈E
η′g∥pg∥2 s.t. ∥Σŝ + Mp∥2 ≤ ϵR + α.

We first aim to bound the error of p̂. To this end, consider

ηmin

∑

g∈E
∥p̂g − p∗

g∥2

≤
∑

g∈E
η′g∥p̂g∥2 +

∑

g∈E
η′g∥p∗

g∥2

≤ 2
∑

g∈E
η′g∥p∗

g∥2 + µ∥Σŝ + Mp∗∥2
2 − µ∥Σŝ + Mp̂∥2

2

since p̂ minimizes (48). Then, we have that

ηmin

∑

g∈E
∥p̂g − p∗

g∥2

≤ 2
∑

g∈E
η′g∥p∗

g∥2 + 2µ(Σŝ + Mp∗)⊤M(p̂ − p∗)

≤ 2
∑

g∈E
η′g∥p∗

g∥2 + 4µ(ϵR + σ∥ŝ − s∗∥1)∥p̂ − p∗∥2.

Furthermore, by applying the Cauchy-Schwartz inequality to
the ℓ2 and ℓ1 norms, we obtain the following inequality for the
group lasso penalties

∥p̂ − p∗∥2 ≤
2
√

O

K

∑

g∈E
∥p̂g − p∗

g∥2,

so we have that

∥p̂ − p∗∥2 ≤
4
√

O
∑

g∈E η′g∥p∗
g∥2

Kηmin − 8µ
√

O(ϵR + σ∥ŝ − s∗∥1)
. (49)
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We rewrite the error bound for {Ŝ(k)
O }K

k=1 in Theorem 2 in
vectorized form, and by (49) we have

∥ŝ − s∗∥1 ≤ 2τ(ϵR + α)

≤ 2τ(ϵR + 2∥p̂ − p∗∥2)

≤ 2τϵR +
16τ

√
O
∑

g∈E η′g∥p∗
g∥2

Kηmin − 8µ
√

O(ϵR + σ∥ŝ − s∗∥1)
.

This inequality is quadratic in ∥ŝ − s∗∥1. Solving it for ∥ŝ −
s∗∥1 yields the following bound

∥ŝ − s∗∥1 ≤ 2τϵR +

√
2τ

∑
g∈E η′g∥p∗

g∥2

µσ
,

which is equivalent to the error bound (13).
In addition to providing the error bound for ŝ, assumptions

(11) and (12) also ensure that there exist parameters {η′g}g∈E
such that the error bound (13) is valid. In particular, we have that

8µ
√

O(ϵR + σ∥ŝ − s∗∥1)

≤ 8µ
√

O(ϵR(2τσ + 1) + 2τσκ)

≤ 8µϵR
√

O(2τσ + 1) + 8η1/2
max

√
2Oµτσ

∑

g∈E
∥p∗

g∥2

< Kηmin,

where the final inequality results from (12), so the denominator
in (49) is strictly positive. Then, by (11) there exist parameters
{η′g}g∈E satisfying (12) such that ηmin ≤ ηmax. Thus, the error
bound (13) holds for a valid set of parameters that follow the
given assumptions.

We next prove the conditions under which we can guarantee
that (10) holds, that is, the error bound of {Ŝ(k)

O }K
k=1 is lower

than that of {S̃(k)
O }K

k=1. First, we show that conditions (14) and
(15) guarantee that the lower bound in (11) is strictly lower than
the upper bound for ηmax in (16). To see this, we rewrite (14) as

128
O

K2
µτσ

⎛

⎝
∑

g∈E
∥p∗

g∥2

⎞

⎠
2

< 2µσ
(τ ′ϵR)2

τ
,

so the first term in the right-hand side of (11) is strictly lower
than the first term in the right-hand side of (16).

Second, we consider (15). By (14) and (15), we have that

16

√
O

K
µϵR(2τσ + 1) ·

τ
∑

g∈E ∥p∗
g∥2

2µσ
<

τ ′ϵ2R(2τσ + 1)

σ

< 1
4 (τ + τ ′)2δ2,

so the second term of (11) is strictly less than the second term
of (16). We thus guarantee that there exist parameters {η′g}g∈E
that satisfy ηmin ≤ ηmax and assumptions (11), (12), and (16).

Finally, we show when (16) implies (10). We rewrite (16) to
get

κ2 ≤
ηmax

∑
g∈E ∥p∗

g∥2

2τµσ

≤ (τ ′ϵR)2

τ2
+

(τ + τ ′)2δ2

4τ2
, (50)

which is sufficient for the upper bound τ(ϵR + κ) to be less
than the error bound τ(ϵR + 1

2δ) in Corollary 1. If α≤ κ, then

we can guarantee that (10) holds, but for α > κ we achieve a
stronger result comparing the error bounds for Ŝ(k)

O and S̃(k)
O .
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