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Abstract

In 1904, Prandtl introduced his famous boundary layer in order
to describe the behavior of solutions of Navier Stokes equations near a
boundary as the viscosity goes to 0. His Ansatz has later been justified
for analytic data by R.E. Caflisch and M. Sammartino. In this paper,
we prove that his expansion is false, up to O(ω1/4) order terms in L

→

norm, in the case of solutions with Sobolev regularity, even in cases
where the Prandlt’s equation is well posed in Sobolev spaces.

In addition, we also prove that monotonic boundary layer profiles,
which are stable when ω = 0, are nonlinearly unstable when ω > 0,
provided ω is small enough, up to O(ω1/4) terms in L

→ norm.

Abstract

En 1905, Prandtl introduit sa célèbre couche limite pour décrire le
comportement des solutions des équations de Navier Stokes près d’un
bord lorsque la viscosité tend vers 0. Son Ansatz a été justifié dans le
cas de données analytiques par R.E. Caflisch et M. Sammartino. Dans
cet article nous prouvons que ce développement asymptotique est faux
dans L

→ à l’ordre O(ω1/4) pour des solutions à régularité Sobolev,
même dans des cas où l’équation de Prandtl est elle bien posée.

De plus nous prouvons aussi que des profils de cisaillement mono-
tones, qui sont stables à ω = 0, sont nonlinéairement instable quand
ω > 0 est assez petit, à l’order O(ω1/4) dans L→.
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1 Introduction

In this paper, we are interested in the inviscid limit ω → 0 of the Navier-
Stokes equations for incompressible fluids, possibly subject to some external
forcing f

ω , namely

εtu
ω + (uω ·↑)uω +↑p

ω = ω!u
ω + f

ω
, (1.1)

↑ · u
ω = 0, (1.2)

on the half plane ” = {(x, y) ↓ T↔R+
}, with the no-slip boundary condition

u
ω = 0 on ε”. (1.3)

As ω goes to 0, one would expect the solutions u
ω to converge to solutions

of Euler equations for incompressible fluids

εtu
0 + (u0 ·↑)u0 +↑p

0 = f
0
, (1.4)

↑ · u
0 = 0, (1.5)

with the boundary condition

u
0
· n = 0 on ε”, (1.6)

where n is the unit normal to ε”.
At the beginning of the twentieth century, Prandtl introduced his well

known boundary layers in order to describe the transition from Navier-
Stokes to Euler equations as the viscosity tends to zero. Formally, we expect
that

u
ω(t, x, y) ↗ u

0(t, x, y) + uP

(
t, x,

y
↘
ω

)
+O(

↘
ω)L→ (1.7)

where u0 solves the Euler equations (1.4)-(1.6), and uP is the Prandtl bound-
ary layer correction, which is of order one. The size of Prandtl’s boundary
layer is of order

↘
ω. Formally it is even possible to write an asymptotic

expansion for u
ω in terms of powers of

↘
ω. The aim of this paper is to

investigate whether (1.7) holds true.
The Prandtl’s boundary layer equations on uP = (uP,1, uP,2) read

εtuP,1 + uP ·↑uP,1 + εxp
0 = ε

2
zuP,1 + f

P
,

↑ · uP = 0,
(1.8)

together with appropriate boundary conditions to correct the no-slip bound-
ary conditions of Navier-Stokes solutions. In the above, εxp0 denotes the
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pressure gradient of the Euler flow on the boundary, and uP,1 is the hori-
zontal component of the velocity.

These equations have been intensively studied in the mathematical lit-
erature. Notably, solutions to the Prandtl equations have been constructed
for monotonic data [21, 22, 1, 20] or data with Gevrey or analytic regularity
[23, 5, 16]. In the case of non-monotonic data with Sobolev regularity, the
Prandtl equations are ill-posed [3, 6, 15].

The validity of Prandtl’s Ansatz (1.7) has been established in [23, 24]
for initial data with analytic regularity, leaving a remainder of order

↘
ω.

A similar result is also obtained in [19]. The Ansatz (1.7), with a specific
boundary layer profile, has been recently justified for data with Gevrey
regularity [4] by deriving sharp linear semigroup bounds near a stationary
shear flow via energy estimates.

However these positive results hide a strong instability occurring at high
spatial frequencies. For some profiles, there exist instabilities with horizon-
tal wave numbers of order ω

→1/2 which grow like exp(Ct/
↘
ω). Within an

analytic framework, these instabilities are initially of order exp(≃D/
↘
ω)

and therefore later are of size exp((Ct≃D)/
↘
ω). They remain negligible in

bounded time (as long as t < D/2C for instance).
Within Sobolev spaces, these instabilities are predominant. Initially they

are of size Cω
→s/2 and grow like Cω

→s/2 exp(Ct/
↘
ω). They reach O(1)

within vanishing times, of order
↘
ω log ω.

To construct instabilities we focus on particular initial data, called shear
layer profiles, namely initial data of the form

u
ω(0) = (U0(

↘
ω), 0).

The function U0 is called the profile of the shear layer. Two kinds of insta-
bility may be described

• An instability with horizontal wave numbers of order O(ω→1/2), grow-
ing like exp(Ct/

↘
ω). This instability occurs when the profile is un-

stable with respect to the inviscid Euler equations, or, very roughly
speaking, when the profile U0 has a ”strong” inflexion point (in the
spirit of Rayleigh’s criterium of unstability). For such profiles E. Gre-
nier proved in [7] that Prandtl’s asymptotic expansion is false, up to
a remainder of order ω1/4 in L

↑ norm. More recently, E. Grenier and
T. Nguyen managed to replace O(ω1/4) by O(1) and proved that the
di#erence between the genuine solution and the Prandtl’s expansion
may be of order one in supremum norm, and that this di#erence does

3



not vanish as ω goes to 0. These instabilities are driven by inviscid
instabilities occurring within the boundary layer.

For such shear layer profiles, Prandtl’s Ansatz is false. However, up to
now, there is no existence result for Prandtl equation for small Sobolev
perturbations of these shear layer profiles. It is therefore not possible
to correctly define Prandtl boundary corrector in a neighborhood of
u
ω(0).

• An instability with horizontal wave numbers of order O(ω→1/8), grow-
ing like exp(Ct/ω

1/4). These instabilities are much more subtle. Their
growth is slower. The instability is driven by the so called ”critical
layer”, which is at a distance O(ω5/8) from the boundary. The current
paper is the equivalent of [7] for monotonic profiles. For these profiles
we are not able to prove O(1) separation, but only O(ω1/4). However,
Prandtl equation is well posed in a Sobolev neighborhood of u0(ω).
We will discuss this limitation later.

In this paper, we shall prove the nonlinear instability of the Ansatz
(1.7) near monotonic profiles. Roughly speaking, given an arbitrary stable
boundary layer, the two main results in this paper are

• in the case of time-dependent boundary layers, we construct Navier-
Stokes solutions, with arbitrarily small forcing, of order O(ωP ), with P

as large as we want, so that the Ansatz (1.7) is false near the boundary
layer, up to a remainder of order ω1/4+ε in L

↑ norm, ϑ being arbitrarily
small.

• in the case of stationary boundary layers, we construct Navier-Stokes
solutions, without forcing term, so that the Ansatz (1.7) is false, up
to a remainder of order ω5/8 in L

↑ norm.

These results prove that there exist no asymptotic expansion of Prandtl’s
type, even in the case of monotonic profiles. For such profiles, adding viscos-
ity destabilizes the flow, which is counter intuitive. Even if Prandtl boundary
layer equation is well posed, it does not describe the limiting behavior as
the viscosity goes to 0.

The complete construction of the instability involves a sublayer, of size
ω
5/8, which was not expected in this context. This sublayer may itself be-

come unstable when it becomes large enough, leading to the creation of a
sub - sub - layer.

In this case we are not able to prove that the perturbation reaches O(1)
in L

↑ as is the case for Euler unstable profiles, since the linear growth of the
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perturbation is much slower. In rescaled variables (see section 3), the linear
growth is of order ω1/4. A simple equivalent in terms of ordinary di#erential
equations would be

ϖ̇ = ω
1/4

ϖ+Aϖ
2 (1.9)

where ω1/4ϖmodels the linear growth and ϖ
2 the nonlinear interaction terms.

For (1.9), the nonlinear term is comparable to the linear one when ϖ is of
order ω1/4, namely very small. The fate of ϖ then depends on the sign of A
(blow up if A > 0 and convergence to a O(ω1/4) stable state if A < 0). The
situation is similar here. The nonlinear term is comparable to the linear one
when the perturbation reaches O(ω1/4), preventing further investigations.

In the next sections, we shall introduce the precise notion of Rayleigh’s
stable boundary layers and present our main results. After a brief recall of
the linear instability results [9, 11] in Section 2, we give the proof of the
main results in Sections 3 and 4, respectively.

1.1 Stable boundary layer profiles

Throughout this paper, by a boundary layer profile, we mean a shear flow
of the form

Ubl :=

(
Ubl(t,

y↓
ω
)

0

)
(1.10)

that solves the Prandtl’s boundary layer problem (1.8), with initial data
Ubl(0, z) = U(z). Without forcing, Ubl is the solution of heat equation

εtUbl ≃ εY Y Ubl = 0.

Boundary layer profiles can also be generated by adding a forcing term f
P , in

which case we shall focus precisely on the corresponding stationary boundary
layers Ubl = U(z), with ≃U

↔↔(z) = f
P . We will consider these two di#erent

cases, namely time dependent boundary layers (without forcing) and time
independent boundary layers (with given, time independent, forcing).

As mentioned, the Ansatz (1.7) is proven to be false for initial boundary
layer profiles U(z) that are spectrally unstable to the Euler equations [7].
In this paper, we shall thus focus on stable profiles, those that are spectrally
stable to the Euler equations. This includes, for instance, boundary layer
profiles without an inflection point by view of the classical Rayleigh’s in-
flection point theorem. In this paper we assume in addition that U(z) is
strictly monotonic, real analytic, that U(0) = 0 and that U(z) converges
exponentially fast at infinity to a finite constant U+. By a slight abuse of
language, such profiles will be referred to as stable profiles in this paper.

5



In order to study the instability of such boundary layers, we first analyze
the spectrum of the corresponding linearized problem around initial profiles
U(z). We first introduce the isotropic boundary layer variables (t, x, z) =
(t, x, y)/

↘
ω. This leads to the following linearized problem for vorticity

ϱ = εzv1 ≃ εxv2, which reads

(εt ≃ L)ϱ = 0, Lϱ :=
↘
ω!ϱ ≃ Uεxϱ ≃ v2U

↔↔
, (1.11)

together with v = ↑
↗
ϖ and !ϖ = ϱ, satisfying the no-slip boundary condi-

tions ϖ = εzϖ = 0 on {z = 0}.
We then take the the Fourier transform in the x variable only, denoting

by ς the corresponding wavenumber, which leads to

(εt ≃ Lϑ)ϱ = 0, Lϑϱ :=
↘
ω!ϑϱ ≃ iςUϱ ≃ iςϖU

↔↔
, (1.12)

where
ϱϑ = !ϑϖϑ,

together with the zero boundary conditions ϖϑ = ϖ
↔
ϑ = 0 on z = 0. Here,

!ϑ = ε
2
z ≃ ς

2
.

Together with Y. Guo, we proved in [8, 9] that, even for profiles U which are
stable as ω = 0, there are unstable eigenvalues to the Navier-Stokes problem
(1.12) for su$ciently small viscosity ω and for a range of wavenumber ς ↓

[ς1,ς2], with ς1 ⇐ ω
1/8 and ς2 ⇐ ω

1/12. The unstable eigenvalues φ↘ of Lϑ,
found in [9], satisfy

⇒φ↘ ⇐ ω
1/4

. (1.13)

Such an instability was first observed by Heisenberg [13, 14], then Tollmien
and C. C. Lin [17, 18]; see also Drazin and Reid [2, 25] for a complete account
of the physical literature on the subject. See also Theorem 2.1 below for
precise details. In coherence with the physical literature [2], we believe that,
ς being fixed, this eigenvalue is the most unstable one. However, this point
is an open question from the mathematical point of view.

Next, we observe that Lϑ is a compact perturbation of the Laplacian
↘
ω!ϑ, and hence its unstable spectrum in the usual L2 space is discrete.

Thus, for each ς, ω, we can define the maximal unstable eigenvalue φϑ,ω so
that ⇒φϑ,ω is maximum. We set φϑ,ω = 0, if no unstable eigenvalues exist.

In this paper, we assume that the unstable eigenvalues found in the
spectral instability result, Theorem 2.1, are maximal eigenvalues. Precisely,
we introduce

↼0 := lim
ω≃0

sup
ϑ⇐R

ω
→1/4

⇒φϑ,ω . (1.14)
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The existence of unstable eigenvalues in Theorem 2.1 implies that ↼0 is
positive. Our spectral assumption is that ↼0 is finite (that is, the eigenvalues
in Theorem 2.1 are maximal).

1.2 Main results

We are ready to state two main results of this paper.

Theorem 1.1. Let Ubl(t, z) be a time-dependent stable boundary layer pro-
file as described in Section 1.1. Then, for arbitrarily large s,N and arbi-
trarily small positive ϑ, there exists a sequence of functions u

ω that solves
the Navier-Stokes equations (1.1)-(1.3), with some forcing f

ω , so that

⇑u
ω(0)≃ Ubl(0)⇑Hs + sup

t⇐[0,T ω ]
⇑f

ω(t)⇑Hs ⇓ ω
N
,

but
⇑u

ω(T ω)≃ Ubl(T
ω)⇑L→ ⇔ ω

1
4+ε

,

⇑ϱ
ω(T ω)≃ ϱbl(T

ω)⇑L→ → ↖,

for time sequences T
ω
→ 0, as ω → 0. Here, ϱ

ω = ↑ ↔ u
ω denotes the

vorticity of fluids.

This Theorem proves that the Ansatz (1.7) is false, even near stable
boundary layers, for data with Sobolev regularity.

Theorem 1.2 (Instability result for stable profiles). Let Ubl = U(z) be a
stable stationary boundary layer profile as described in Section 1.1. Then,
for any s,N arbitrarily large, there exists a sequence of solutions u

ω to the
Navier-Stokes equations, with forcing f

ω = f
P (boundary layer forcing), so

that uω satisfy
⇑u

ω(0)≃ Ubl⇑Hs ⇓ ω
N
,

but
⇑u

ω(T ω)≃ Ubl⇑L→ ↭ ω
5/8

,

⇑ϱ
ω(T ω)≃ ϱbl⇑L→ ↭ 1,

for some time sequences T
ω
→ 0, as ω → 0.

The spectral instability for stable profiles gives rise to sublayers (or crit-
ical layers) whose thickness is of order ω

5/8. The velocity gradient in this

sublayer grows like ω→5/8
e
t/ω

1/4
, and becomes larg when t is of order T ω . As

a consequence, they may in turn become unstable after the instability time
T
ω obtained in the above theorem. Thus, in order to improve the ω5/8 insta-

bility, one needs to further examine the stability properties of this sublayer
itself (see [12]).
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1.3 Boundary layer norms

We end the introduction by introducing the boundary layer norms to be
used throughout the paper. These norms were introduced in [10] to capture
the large, but localized, behavior of vorticity near the boundary. Precisely,
for each vorticity function ϱϑ = ϱϑ(z), we introduce the following boundary
layer norms

⇑ϱϑ⇑ϖ,ϱ,1 := sup
z⇒0

[(
1 + ↽

→1
ϖp(↽

→1
z)
)→1

e
ϖz
|ϱϑ(z)|

]
, (1.15)

where ⇀ > 0, p is a large, fixed number,

ϖp(z) =
1

1 + zp
,

and with the boundary layer thickness

↽ = ↼ω
1/8

for some ↼ > 0. We introduce the boundary layer space B
ϖ,ϱ,1 to consist of

functions whose ⇑ · ⇑ϖ,ϱ,1 norm is finite. We also denote by L
↑
ϖ

the function
spaces equipped with the finite norm

⇑ϱ⇑ϖ = sup
z⇒0

e
ϖz
|ϱ(z)|.

When there is no weight e
ϖz, we simply write L

↑ for the usual bounded
function spaces. Clearly,

L
↑
ϖ

↙ B
ϖ,ϱ,1

.

In addition, it is straightforward to check that

⇑fg⇑ϖ,ϱ,1 ⇓ ⇑f⇑L→⇑g⇑ϖ,ϱ,1. (1.16)

Finally, for functions ϱ(x, z), we introduce

⇑ϱ⇑ς,ϖ,ϱ,1 := sup
ϑ⇐R

(1 + |ς|)ς⇑ϱϑ⇑ϖ,ϱ,1,

for ⇁ > 1, in which ϱϑ is the Fourier transform of ϱ in the variable x.
Combining with (1.16), we have

⇑fg⇑ς,ϖ,ϱ,1 ⇓ ⇑f⇑ς,0⇑g⇑ς,ϖ,ϱ,1, (1.17)

where ⇑f⇑ς,0 = supϑ⇐R(1 + |ς|)ς⇑fϑ⇑L→ .
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2 Linear instability

In this section, we shall recall the spectral instability of stable boundary
layer profiles [9] and the semigroup estimates on the corresponding linearized
Navier-Stokes equation [10, 11].

2.1 Spectral instability

The following theorem, proved in [9], provides an unstable eigenvalue of L
for generic shear flows.

Theorem 2.1 (Spectral instability; [9]). Let U(z) be an arbitrary shear
profile with U(0) = 0 and U

↔(0) > 0 and satisfy

sup
z⇒0

|ε
k

z (U(z)≃ U+)e
φ0z| < +↖, k = 0, · · · , 4,

for some constants U+ and η0 > 0. Let R = ω
→1/2 be the Reynolds num-

ber, and set ςlow(R) ⇐ R
→1/4 and ςup(R) ⇐ R

→1/6 be the lower and upper
stability branches.

Then, there is a critical Reynolds number Rc so that for all R ⇔ Rc and
all ς ↓ (ςlow(R),ςup(R)), there exist a nontrivial triple c(R), v̂(z;R), p̂(z;R),
with Im c(R) > 0, such that vR := e

iϑ(x→ct)
v̂(z;R) and pR := e

iϑ(x→ct)
p̂(z;R)

solve the linearized Navier-Stokes problem (1.11). Moreover there holds the
following estimate for the growth rate of the unstable solutions:

ς∝c(R) ↗ R
→1/2

as R → ↖.

The proof of the previous Theorem, which can be found in [9], gives a
detailed description of the unstable mode. In this paper we focus on the
lower branch of instability. In this case

ςω ↗ R
→1/4 = ω

1/8
, ⇒φω ↗ R

→1/2 = ω
1/4

,

The vorticity of the unstable mode is of the form

ϱ0 = e
↼ωt!(eiϑωxϖ0(z)) + complex conjugate (2.1)

The stream function ϖ0 is constructed through asymptotic expansions, and
is of the form

ϖ0 := ϖin,0(z) + ↽blϖbl,0(↽
→1
bl z)
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for some boundary layer function ϖbl,0, where ↽bl = ω
1/8.

By construction, derivatives of ϖbl,0 satisfy

|ε
k

zϖbl,0(↽
→1
bl z)| ⇓ Ck↽

→k

bl e
→φ0z/↽bl .

In addition, it is clear that each x-derivative of ϱ0 gains a small factor of
ςω ↗ ω

1/8. We therefore have an accurate description of the linear unstable
mode.

2.2 Linear estimates

The corresponding semigroup e
Lt of the linear problem (1.11) is constructed

through the path integral

e
Lt
ϱ =

∫

R
e
iϑx

e
Lεtϱϑ dς (2.2)

in which ϱϑ is the Fourier transform of ϱ in tangential variables and Lϑ,
defined as in (1.12), is the Fourier transform of L. One of the main results
proved in [11] is the following theorem.

Theorem 2.2. [11] Let ς ↫ ω
1/8. Let ϱϑ ↓ B

ϖ,ϱ,1 for some positive ⇀, ↼0
be defined as in (1.14). Assume that ↼0 is finite. Then, for any ↼1 > ↼0,
there is some positive constant Cϱ so that

⇑e
Lεtϱϑ⇑ϖ,ϱ,1 ⇓ Cϱe

ϱ1ω
1/4

t
e
→ 1

4ϑ
2↓

ωt
⇑ϱϑ⇑ϖ,ϱ,1,

⇑εze
Lεtϱϑ⇑ϖ,ϱ,1 ⇓ Cϱ

(
ω
→1/8 + (

↘
ωt)→1/2

)
e
ϱ1ω

1/4
t
e
→ 1

4ϑ
2↓

ωt
⇑ϱϑ⇑ϖ,ϱ,1.

3 Approximate solutions

Let us now construct an approximate solution uapp, which solves Navier-
Stokes equations, up to very small error terms. First, we introduce the
rescaled isotropic space time variables

t̃ =
t

↘
ω
, x̃ =

x
↘
ω
, z̃ =

z
↘
ω
.

Without any confusion, we drop the tildes. The Navier-Stokes equations in
these scaled variables read

εtu+ (u ·↑)u+↑p =
↘
ω!u,

↑ · u = 0,
(3.1)

with the no-slip boundary conditions on z = 0. Theorem 1.1 follows at once
from the following theorem.
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Theorem 3.1. Let U(z) be a stable boundary layer profile, and let Ubl(
↘
ωt, z)

be the corresponding Prandtl’s boundary layer. Then, there exist an approx-
imate solution ũapp that approximately solves (3.1) in the following sense:
for arbitrarily large numbers p,M and for any ϑ > 0, the functions ũapp

solve
εtũapp + (ũapp ·↑)ũapp +↑p̃app =

↘
ω!ũapp + Eapp,

↑ · ũapp = 0,
(3.2)

for some remainder Eapp and for time t ⇓ Tω , with Tω being defined through

ω
p
e
⇑↼0Tω = ω

1
4+ε

.

In addition, for all t ↓ [0, Tω ], there hold

⇑curl(ũapp ≃ Ubl(
↘
ωt, z))⇑ϖ,ϱ,1 ↫ ω

1
4+ε

,

⇑curlEapp(t)⇑ϖ,ϱ,1 ↫ ω
M
.

Furthermore, there are positive constants θ0, θ1, θ2 independent of ω so that
there holds

θ1ω
p
e
⇑↼0t ⇓ ⇑(ũapp ≃ Ubl)(t)⇑L→ ⇓ θ2ω

p
e
⇑↼0t

for all t ↓ [0, Tω ]. In particular,

⇑(ũapp ≃ Ubl)(Tω)⇑L→ ↭ ω
1
4+ε

.

3.1 Formal construction

The construction is classical, following [7]. Indeed, the approximate solu-
tions are constructed in the following form

ũapp(t, x, z) = Ubl(
↘
ωt, z) + ω

p

M∑

j=0

ω
j/8

uj(t, x, z). (3.3)

For convenience, let us set v = u≃Ubl, where u denotes the genuine solution
to the Navier-Stokes equations (3.1). Then, the vorticity ϱ = ↑↔ v solves

εtϱ + (Ubl(
↘
ωt, y) + v) ·↑ϱ + v2ε

2
yUs(

↘
ωt, y)≃

↘
ω!ϱ = 0

in which v = ↑
↗!→1

ϱ and v2 denotes the vertical component of velocity.
Here and in what follows, !→1 is computed with the zero Dirichlet boundary
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condition. As Ubl depends slowly on time, we can rewrite the vorticity
equation as follows:

(εt ≃ L)ϱ + ω
1/8

Sϱ +Q(ϱ,ϱ) = 0. (3.4)

In (3.4), L denotes the linearized Navier-Stokes operator around the sta-
tionary boundary layer U = Us(0, z):

Lϱ :=
↘
ω!ϱ ≃ Uεxϱ ≃ u2U

↔↔
,

Q(ϱ, ϱ̃) denotes the quadratic nonlinear term u · ↑ϱ̃, with v = ↑
↗!→1

ϱ,
and S denotes the perturbed operator defined by

Sϱ : = ω
→1/8[Us(

↘
ωt, z)≃ U(z)]εxϱ + ω

→1/8
u2[ε

2
yUs(

↘
ωt, z)≃ U

↔↔(z)].

Recalling that Us solves the heat equation with initial data U(z), we have

|Us(
↘
ωt, z)≃ U(z)| ⇓ C⇑U

↔↔
⇑L→e

→φ0z
↘
ωt

and
|ε

2
zUs(

↘
ωt, z)≃ U

↔↔(z)| ⇓ C⇑U
↔↔
⇑W 2,→e

→φ0z
↘
ωt.

Hence,

Sϱ = ω
→1/8

O(
↘
ωte

→φ0z)
[
|εxϱ|+ |εx!

→1
ϱ|

]
(3.5)

in which !→1
ϱ satisfies the zero boundary condition on z = 0. The approx-

imate solutions are then constructed via the asymptotic expansion:

ϱapp = ω
p

M∑

j=0

ω
j/8

ϱj , (3.6)

in which p is an arbitrarily large integer. Plugging this Ansatz into (3.4)
and matching order in ω, we are led to solve

• for j = 0:
(εt ≃ L)ϱ0 = 0

with zero boundary conditions on v0 = ↑
↗(!)→1

ϱ0 on z = 0;

• for 0 < j ⇓ M :

(εt ≃ L)ϱj = Rj , ϱj |t=0
= 0, (3.7)

with zero boundary condition on vj = ↑
↗(!)→1

ϱj on z = 0. Here,
the remainders Rj are defined by

Rj = Sϱj→1 +
∑

k+⇀+8p=j

Q(ϱk,ϱ⇀).

12



As a consequence, the approximate vorticity ϱapp solves (3.4), leaving the
error Rapp defined by

Rapp = ω
p+M+1

8 SϱM +
∑

k+⇀>M+1→8p;1⇓k,⇀⇓M

ω
2p+ k+ϑ

8 Q(ϱk,ϱ⇀) (3.8)

which formally is of order ωp+
M+1

8 , for arbitrary p and M .

3.2 Estimates

We start the construction with ϱ0 being the maximal growing mode, con-
structed in Section 2.1. We recall

ϱ0 = e
↼ωte

iϑωx!ϑω

(
ϖin,0(z) + ω

1/8
ϖbl,0(ω

→1/8
z)
)

+ c.c. (3.9)

with ςω ⇐ ω
1/8 and ⇒φω ⇐ ω

1/4. In what follows, ςω and φω are fixed. We
obtain the following lemma.

Lemma 3.2. Let ϱ0 be the maximal growing mode (3.9), and let ϱj be
inductively constructed by (3.7). Then, there hold the following uniform
bounds:

⇑ε
a

xε
b

zϱj⇑ς,ϖ,ϱ,1 ⇓ C0ω
a/8

ω
→b/8

ω
→ 1

4 [
j
8p ]e

ϱ0(1+
j
8p )ω

1/4
t (3.10)

for all a, j ⇔ 0 and for b = 0, 1. In addition, the approximate solution ϱapp

defined as in (3.6) satisfies

⇑ε
a

xε
b

zϱapp⇑ς,ϖ,ϱ,1 ↫ ω
a/8

ω
→b/8

M∑

j=0

ω
→ 1

4 [
j
8p ]

(
ω
p
e
ϱ0ω

1/4
t

)1+ j
8p
, (3.11)

for a ⇔ 0 and b = 0, 1. Here, [k] denotes the largest integer so that [k] ⇓ k.

Proof. For j ⇔ 1, we construct ϱj having the form

ϱj =
∑

n⇐Z
e
inϑωxϱj,n

It follows that ϱj,n solves

(εt ≃ Lϑn)ϱj,n = Rj,n, ϱj,n|t=0
= 0

with ςn = nςω and Rj,n the Fourier transform of Rj evaluated at the Fourier
frequency ςn. Precisely, we have

Rj,n = Sϑnϱj→1,n +
∑

k+⇀+8p=j

∑

n1+n2=n

Qϑn(ϱk,n1 ,ϱ⇀,n2),

13



in which Sϑn and Qϑn denote the corresponding operator S and Q in the
Fourier space. The Duhamel’s integral reads

ϱj,n(t) =

∫
t

0
e
Lεn (t→s)

Rj,n(s) ds (3.12)

for all j ⇔ 1 and n ↓ Z.
It follows directly from an inductive argument and the quadratic non-

linearity of Q(·, ·) that for all 0 ⇓ j ⇓ M , ϱj,n = 0 for all |n| ⇔ 2j+1. This
proves that |ςn| ⇓ 2M+1

ςω ↫ ω
1/8, for all |n| ⇓ 2M+1. Since ςn ↫ ω

1/8, the
semigroup bounds from Theorem 2.2 read

⇑e
Lεtϱϑ⇑ϖ,ϱ,1 ↫ e

ϱ1ω
1/4

t
e
→ 1

4ϑ
2↓

ωt
⇑ϱϑ⇑ϖ,ϱ,1,

⇑εze
Lεtϱϑ⇑ϖ,ϱ,1 ↫

(
ω
→1/8 + (

↘
ωt)→1/2

)
e
ϱ1ω

1/4
t
e
→ 1

4ϑ
2↓

ωt
⇑ϱϑ⇑ϖ,ϱ,1.

(3.13)

In addition, since ςn ↫ ω
1/8, from (3.5), we compute

Sϑnϱj→1,n = O(
↘
ωte

→φ0z)
[
|ϱj→1,n|+ |!→1

ϑn
ϱj→1,n|

]

and hence by induction we obtain

⇑Sϑnϱj→1,n⇑ϖ,ϱ,1 ↫
↘
ωt

[
⇑ϱj→1,n⇑ϖ,ϱ,1 + ⇑e

→φ0z!→1
ϑn

ϱj→1,n⇑ϖ,ϱ,1

]

↫
↘
ωt

[
⇑ϱj→1,n⇑ϖ,ϱ,1 + ⇑!→1

ϑn
ϱj→1,n⇑L→

]

↫
↘
ωtω

→ 1
4 [

j↑1
8p ]

e
ϱ0(1+

j↑1
8p )ω1/4t

,

(3.14)

where we used ⇑e
→φ0z · ⇑ϖ,ϱ,1 ⇓ ⇑ · ⇑L→ for ⇀ < η0, and

⇑!→1
ϑ ϱ⇑L→ ⇓ C⇑ϱ⇑ϖ,ϱ,1,

uniformly in small ς; we shall prove this inequality in the Appendix. Let us
first consider the case when 1 ⇓ j ⇓ 8p≃1, for which Rj,n = Sϑnϱj→1,n. That
is, there is no nonlinearity in the remainder. Using the above estimate on Sϑn

and the semigroup estimate (3.13) into (3.12), we obtain, for 1 ⇓ j ⇓ 8p≃1,

⇑ϱj,n(t)⇑ϖ,ϱ,1 ⇓

∫
t

0
⇑e

Lεn (t→s)
Sϑnϱj→1,n(s)⇑ϖ,ϱ,1 ds

⇓ C

∫
t

0
e
ϱ1ω

1/4(t→s)
⇑Sϑnϱj→1,n(s)⇑ϖ,ϱ,1 ds

⇓ C

∫
t

0
e
ϱ1ω

1/4(t→s)↘
ωse

ϱ0(1+
j↑1
8p )ω1/4s

ds.
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We choose

↼1 = ↼0(1 +
j ≃ 1

8p
+

1

16p
)

in (3.13) and use the inequality

ω
1/4

t ⇓ Ce

ϖ0
16pω

1/4
t
.

and obtain

⇑ϱj,n(t)⇑ϖ,ϱ,1 ⇓ C

∫
t

0
e
ϱ1ω

1/4(t→s)
ω
1/4

e
ϱ0(1+

j↑1
8p + 1

16p )ω
1/4

s
ds

⇓ Cω
1/4

e
ϱ0(1+

j↑1
8p + 1

16p )ω
1/4

t

∫
t

0
ds

⇓ Cω
1/4

te
ϱ0(1+

j↑1
8p + 1

16p )ω
1/4

t

⇓ Ce
ϱ0(1+

j
8p )ω

1/4
t
.

(3.15)

Similarly, as for derivatives, we obtain

⇑εzϱj,n(t)⇑ϖ,ϱ,1

⇓

∫
t

0
⇑e

Lεn (t→s)
Sϑnϱj→1,n(s)⇑ϖ,ϱ,1 ds

⇓ C

∫
t

0

(
ω
→1/8 + (

↘
ω(t≃ s))→1/2

)
e
ϱ1ω

1/4(t→s)
⇑Sϑnϱj→1,n(s)⇑ϖ,ϱ,1 ds

⇓ C

∫
t

0

(
ω
→1/8 + (

↘
ω(t≃ s))→1/2

)
e
ϱ1ω

1/4(t→s)↘
ωse

ϱ0(1+
j↑1
8p )ω1/4s

ds,

in which the integral involving ω→1/8 is already treated in (3.15) and bounded

by Cω
→1/8

e
ϱ0(1+

j
8p )ω

1/4
t
. As for the second integral, we estimate

∫
t

0
(
↘
ω(t≃ s))→1/2

e
ϱ1ω

1/4(t→s)↘
ωse

ϱ0(1+
j↑1
8p )ω1/4s

ds

⇓

∫
t

0
(
↘
ω(t≃ s))→1/2

e
ϱ1ω

1/4(t→s)
ω
1/4

e
ϱ0(1+

j↑1
8p + 1

16p )ω
1/4

s
ds

⇓ ω
1/4

e
ϱ0(1+

j↑1
8p + 1

16p )ω
1/4

t

∫
t

0
(
↘
ω(t≃ s))→1/2

ds

⇓ C
↘
te

ϱ0(1+
j↑1
8p + 1

16p )ω
1/4

t

⇓ Cω
→1/8

e
ϱ0(1+

j
8p )ω

1/4
t
.

(3.16)
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Thus,

⇑εzϱj,n(t)⇑ϖ,ϱ,1 ⇓ Cω
→1/8

e
ϱ0(1+

j
8p )ω

1/4
t
.

This and (3.15) prove the inductive bound (3.10) for j ⇓ 8p≃ 1.
For j ⇔ 8p, the quadratic nonlinearity starts to play a role. For k + ▷ =

j ≃ 8p, we compute

Qϑn(ϱk,n1 ,ϱ⇀,n2) = iςω

(
n2εz!

→1
ϑn

ϱk,n1ϱ⇀,n2 ≃ n1!
→1
ϑn

ϱk,n1εzϱ⇀,n2

)
. (3.17)

Using the algebra structure of the boundary layer norm (see (1.16)), we have

ςω⇑εz!
→1
ϑn

ϱk,n1ϱ⇀,n2⇑ϖ,ϱ,1 ↫ ω
1/8

⇑εz!
→1
ϑn

ϱk,n1⇑L→⇑ϱ⇀,n2⇑ϖ,ϱ,1

↫ ω
1/8

⇑ϱk,n1⇑ϖ,ϱ,1⇑ϱ⇀,n2⇑ϖ,ϱ,1

↫ ω
1/8

ω
→ 1

4 [
k
8p ]ω

→ 1
4 [

ϑ
8p ]e

ϱ0(2+
k+ϑ
8p )ω1/4t

where we used
⇑εz!

→1
ϑn

ϱk,n1⇑L→ ⇓ C⇑ϱk,n1⇑ϖ,ϱ,1,

an inequality which is proven in the Appendix. Moreover,

ςω⇑!
→1
ϑn

ϱk,n1εzϱ⇀,n2⇑ϖ,ϱ,1 ↫ ω
1/8

⇑!→1
ϑn

ϱk,n1⇑L→⇑εzϱ⇀,n2⇑ϖ,ϱ,1

↫ ω
1/8

⇑ϱk,n1⇑ϖ,ϱ,1⇑εzϱ⇀,n2⇑ϖ,ϱ,1

↫ ω
→ 1

4 [
k
8p ]ω

→ 1
4 [

ϑ
8p ]e

ϱ0(2+
k+ϑ
8p )ω1/4t

,

in which the derivative estimate (3.10) was used. We note that

[
k

8p
] + [

▷

8p
] ⇓ [

k + ▷

8p
] = [

j

8p
]≃ 1.

This proves

⇑Qϑn(ϱk,n1 ,ϱ⇀,n2)⇑ϖ,ϱ,1 ↫ ω
1/4

ω
→ 1

4 [
j
8p ]e

ϱ0(1+
j
8p )ω

1/4
t

for all k+ ▷ = j≃ 8p. This, together with the estimate (3.14) on Sϑn , yields

⇑Rj,n(t)⇑ϖ,ϱ,1 ↫
↘
ωtω

→ 1
4 [

j↑1
8p ]

e
ϱ0(1+

j↑1
8p )ω1/4t + ω

1/4
ω
→ 1

4 [
j
8p ]e

ϱ0(1+
j
8p )ω

1/4
t

↫ ω
1/4

ω
→ 1

4 [
j
8p ]e

ϱ0(1+
j
8p )ω

1/4
t
,

for all j ⇔ 8p and n ↓ Z, in which we used ω
1/4

t ⇓ e
ϱ0t/8p.
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Putting these estimates into the Duhamel’s integral formula (3.12), we
obtain, for j ⇔ 8p,

⇑ϱj,n(t)⇑ϖ,ϱ,1 ⇓ C

∫
t

0
e
ϱ1ω

1/4(t→s)
⇑Rj,n(s)⇑ϖ,ϱ,1 ds

⇓ C

∫
t

0
e
ϱ1ω

1/4(t→s)
ω
1/4

ω
→ 1

4 [
j
8p ]e

ϱ0(1+
j
8p )ω

1/4
s
ds

↫ ω
→ 1

4 [
j
8p ]e

ϱ0(1+
j
8p )ω

1/4
s

and

⇑εzϱj,n(t)⇑ϖ,ϱ,1

⇓ C

∫
t

0

(
ω
→1/8 + (

↘
ω(t≃ s))→1/2

)
e
ϱ1ω

1/4(t→s)
⇑Rj,n(s)⇑ϖ,ϱ,1 ds

⇓ C

∫
t

0

(
ω
→1/8 + (

↘
ω(t≃ s))→1/2

)
e
ϱ1ω

1/4(t→s)
ω
1/4

ω
→ 1

4 [
j
8p ]e

ϱ0(1+
j
8p )ω

1/4
s
ds.

Using (3.16), we obtain

⇑εzϱj,n(t)⇑ϖ,ϱ,1 ↫ ω
→1/8

ω
→ 1

4 [
j
8p ]e

ϱ0(1+
j
8p )ω

1/4
s
,

which completes the proof of (3.10). The lemma follows.

3.3 The remainder

We recall that the approximate vorticity ϱapp, constructed as in (3.6), ap-
proximately solves (3.4), leaving the error Rapp defined by

Rapp = ω
p+M+1

8 SϱM +
∑

k+⇀>M+1→8p;1⇓k,⇀⇓M

ω
2p+ k+ϑ

8 Q(ϱk,ϱ⇀).

Using the estimates in Lemma 3.2, we obtain

⇑SϱM⇑ς,ϖ,ϱ,1 ↫ ω
1/4

ω
→ 1

4 [
M+1
8p ]

e
ϱ0(1+

M+1
8p )ω1/4t

⇑Q(ϱk,ϱ⇀)⇑ς,ϖ,ϱ,1 ↫ ω
1/4

ω
→ 1

4 [
k+ϑ
8p ]

e
ϱ0(2+

k+ϑ
8p )ω1/4t

.

This yields

⇑ Rapp⇑ς,ϖ,ϱ,1 ↫ ω
1/4

2M∑

j=M+1

ω
→ 1

4 [
j
8p ]

(
ω
p
e
ϱ0ω

1/4
t

)1+ j
8p
. (3.18)
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3.4 Proof of Theorem 3.1

The proof of the Theorem now straightforwardly follows from the estimates
from Lemma 3.2 and the estimate (3.18) on the remainder. Indeed, we
choose the time T↘ so that

ω
p
e
ϱ0ω

1/4
T↓ = ω

⇁ (3.19)

for some fixed ◁ >
1
4 . It then follows that for all t ⇓ T↘ and j ⇔ 0, there

holds

ω
→ 1

4 [
j
8p ]

(
ω
p
e
ϱ0ω

1/4
t

)1+ j
8p ↫ ω

⇁
ω
(⇁→ 1

4 )
j
8p .

Using this into the estimates (3.11) and (3.18), respectively, we obtain

⇑ε
b

zϱapp(t)⇑ς,ϖ,ϱ,1 ↫ ω
p→b/8

e
ϱ0ω

1/4
t ↫ ω

⇁→b/8
,

⇑Rapp(t)⇑ς,ϖ,ϱ,1 ↫ ω
1/4

ω
→ 1

4 [
M
8p ]

(
ω
p
e
ϱ0ω

1/4
t

)1+M
8p

↫ ω
⇁+1/4

ω
(⇁→ 1

4 )
M
8p ,

(3.20)

for all t ⇓ T↘. Since ◁ >
1
4 and M is arbitrarily large (and fixed), the

remainder is of order ω
P for arbitrarily large number P . The theorem is

proved.

4 Nonlinear instability

We are now ready to give the proof of Theorem 1.2. Let ũapp be the ap-
proximate solution constructed in Theorem 3.1 and let

v = u≃ ũapp,

with u being the genuine solution to the nonlinear Navier-Stokes equations.
The corresponding vorticity ϱ = ↑↔ v solves

εtϱ + (ũapp + v) ·↑ϱ + v ·↑ϱ̃app =
↘
ω!ϱ +Rapp

for the remainder Rapp = curl Eapp satisfying the estimate (3.18). Let us
write

uapp = ũapp ≃ Ubl.

To make use of the semigroup bound for the linearized operator εt ≃ L, we
rewrite the vorticity equation as

(εt ≃ L)ϱ + (uapp + v) ·↑ϱ + v ·↑ϱapp = Rapp

18



with ϱ|t=0
= 0. We note that since the boundary layer profile is stationary,

the perturbative operator S defined as in (3.5) is in fact zero. The Duhamel’s
principle then yields

ϱ(t) =

∫
t

0
e
L(t→s)

(
Rapp ≃ (uapp + v) ·↑ϱ ≃ v ·↑ϱapp

)
ds. (4.1)

Using the representation (4.1), we shall prove the existence and give esti-
mates on ϱ. We shall work with the following norm

|||ϱ(t)||| := ⇑ϱ(t)⇑ς,ϖ,ϱ,1 + ω
1/8

⇑εxϱ(t)⇑ς,ϖ,ϱ,1 + ω
1/8

⇑εzϱ(t)⇑ς,ϖ,ϱ,1 (4.2)

in which the factor ω1/8 added in the norm is to overcome the loss of ω→1/8

for derivatives (see (4.4) for more details).
Let p be an arbitrary large number. We introduce the maximal time Tω

of existence, defined by

Tω := max
{
t ↓ [0, T↘] : sup

0⇓s⇓t

|||ϱ(s)||| ⇓ ω
p
e
ϱ0ω

1/4
t

}
(4.3)

in which T↘ is defined as in (3.19). By the short time existence theory, with
zero initial data, Tω exists and is positive. It remains to give a lower bound
estimate on Tω . First, we obtain the following lemmas.

Lemma 4.1. For t ↓ [0, T↘], there hold

⇑ε
a

xε
b

zϱapp(t)⇑ς,ϖ,ϱ,1 ↫ ω
a/8→b/8

(
ω
p
e
ϱ0ω

1/4
t

)

⇑ε
a

xε
b

zRapp(t)⇑ς,ϖ,ϱ,1 ↫ ω
1/4+a/8→b/8

ω
→ 1

4 [
M
8p ]

(
ω
p
e
ϱ0ω

1/4
t

)1+M
8p
.

Proof. This follows directly from Lemma 3.2 and the estimate (3.18) on the

remainder Rapp, upon noting the fact that for t ↓ [0, T↘], ωpeϱ0ω
1/4

t remains
su$ciently small.

Lemma 4.2. There holds
∥∥∥(uapp + v) ·↑ϱ + v ·↑ϱapp

∥∥∥
ς,ϖ,ϱ,1

↫ ω
→ 1

8

(
ω
p
e
ϱ0ω

1/4
t

)2
.

for t ↓ [0, Tω ].

Proof. We first recall the elliptic estimate

⇑u⇑ς,0 ↫ ⇑ϱ⇑ς,ϖ,ϱ,1
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which is proven in the Appendix A), and the following uniform bounds (see
(1.17))

⇑u ·↑ϱ̃⇑ς,ϖ,ϱ,1 ⇓ ⇑u⇑ς,0⇑↑ϱ̃⇑ς,ϖ,ϱ,1

⇓ ⇑ϱ⇑ς,ϖ,ϱ,1⇑↑ϱ̃⇑ς,ϖ,ϱ,1.

Using this and the bounds on ϱapp, we obtain

⇑v ·↑ϱapp⇑ς,ϖ,ϱ,1 ↫ ω
→1/8

(
ω
p
e
ϱ0ω

1/4
t

)
⇑ϱ⇑ς,ϖ,ϱ,1 ↫ ω

→ 1
8

(
ω
p
e
ϱ0ω

1/4
t

)2

and

⇑(uapp + v) ·↑ϱ⇑ς,ϖ,ϱ,1 ↫
(
ω
p
e
ϱ0ω

1/4
t + ⇑ϱ⇑ς,ϖ,ϱ,1

)
⇑↑ϱ⇑ς,ϖ,ϱ,1

↫ ω
→ 1

8

(
ω
p
e
ϱ0ω

1/4
t

)2
.

This proves the lemma.

Next, using Theorem 2.2 and noting that ςe
→ϑ

2
ωt ↫ 1 + (ωt)→1/2, we

obtain the following uniform semigroup bounds:

⇑e
Lt
ϱ⇑ς,ϖ,ϱ,1 ⇓ C0ω

→1/4
e
ϱ1ω

1/4
t
⇑ϱ⇑ς,ϖ,ϱ,1

⇑εxe
Lt
ϱ⇑ς,ϖ,ϱ,1 ⇓ C0ω

→1/4
(
1 + (

↘
ωt)→1/2

)
e
ϱ1ω

1/4
t
⇑ϱ⇑ς,ϖ,ϱ,1

⇑εze
Lt
ϱ⇑ς,ϖ,ϱ,1 ⇓ C0ω

→1/4
(
ω
→1/8 + (

↘
ωt)→1/2

)
e
ϱ1ω

1/4
t
⇑ϱ⇑ς,ϖ,ϱ,1.

(4.4)

We are now ready to apply the above estimates into the Duhamel’s integral
formula (4.1). We obtain

⇑ϱ(t)⇑ς,ϖ,ϱ,1 ↫ ω
→1/4

∫
t

0
e
ϱ1ω

1/4(t→s)
ω
→ 1

8

(
ω
p
e
ϱ0ω

1/4
s

)2
ds

+ ω
→1/4

∫
t

0
e
ϱ1ω

1/4(t→s)
ω
1/4

ω
→ 1

4 [
M
8p ]

(
ω
p
e
ϱ0ω

1/4
s

)1+M
8p

ds

↫ ω
→5/8

(
ω
p
e
ϱ0ω

1/4
t

)2
+ ω

P

(
ω
p
e
ϱ0ω

1/4
t

)
,

upon taking ↼1 su$ciently close to ↼0. Set T1 so that

ω
p
e
ϱ0ω

1/4
T1 = θ0ω

5
8 , (4.5)

for some su$ciently small and positive constant θ0. Then, for all t ⇓ T1,
there holds

⇑ϱ(t)⇑ς,ϖ,ϱ,1 ↫ ω
p
e
ϱ0ω

1/4
t

[
θ0 + ω

P

]
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Similarly, we estimate the derivatives of ϱ. The Duhamel integral and the
semigroup bounds yield

⇑↑ϱ(t)⇑ς,ϖ,ϱ,1 ↫ ω
→1/4

∫
t

0
e
ϱ1ω

1/4(t→s)
(
ω
→1/8 + (

↘
ω(t≃ s))→1/2

)

↔

[
ω
→ 1

8

(
ω
p
e
ϱ0ω

1/4
s

)2
+ ω

→ 1
4 [

M
8p ]

(
ω
p
e
ϱ0ω

1/4
s

)1+M
8p
]
ds

↫ ω
→5/8

[
ω
→ 1

8

(
ω
p
e
ϱ0ω

1/4
s

)2
+ ω

→ 1
4 [

M
8p ]

(
ω
p
e
ϱ0ω

1/4
s

)1+M
8p
]

By view of (4.5) and the estimate (3.16), the above yields

⇑↑ϱ(t)⇑ς,ϖ,ϱ,1 ↫ ω
p→ 1

8 e
ϱ0ω

1/4
t

[
θ0 + ω

P

]
.

To summarize, for t ⇓ min{T↘, T1, Tω}, with the times defined as in (3.19),
(4.3), and (4.5), we obtain

|||w(t)||| ↫ ω
p
e
ϱ0ω

1/4
t

[
θ0 + ω

P

]
.

Taking θ0 su$ciently small, we obtain

|||w(t)||| ′ ω
p
e
ϱ0ω

1/4
t

for all time t ⇓ min{T↘, T1, Tω}. In particular, this proves that the maximal
time of existence Tω is greater than T1, defined as in (4.5). This proves that
at the time t = T↘, the approximate solution grows to order of ω5/8 in the
L
↑ norm. Theorem 1.2 is proved.

A Elliptic estimates

In this section, for sake of completeness, we recall the elliptic estimates with
respect to the boundary layer norms. These estimates are proven in [10,
Section 3].

First, we consider the classical one-dimensional Laplace equation

!ϑϖ = ε
2
zϖ≃ ς

2
ϖ = f (A.1)

on the half line z ⇔ 0, with the Dirichlet boundary condition ϖ(0) =
0. We recall the function space L

↑
ϖ

defined by the finite norm ⇑f⇑ϖ =

supz⇒0 |f(z)|e
ϖz. We will prove
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Proposition A.1. If f ↓ L
↑
ϖ

for some ⇀ > 0, then ϖ ↓ L
↑. In addition,

there holds

(1 + ς
2)⇑ϖ⇑L→ + (1 + |ς|) ⇑εzϖ⇑L→ + ⇑ε

2
zϖ⇑L→ ⇓ C⇑f⇑ϖ , (A.2)

where the constant C is independent of ς ↓ R.

Proof. The solution ϖ of (A.1) is explicitly given by

ϖ(z) =

∫ ↑

0
Gϑ(x, z)f(x)dx (A.3)

where Gϑ(x, z) = ≃
1
2ϑ

(
e
→ϑ|x→z|

≃ e
→ϑ|x+z|

)
. A direct bound leads to

⇑ϖ⇑L→ ⇓
C

ς2
⇑f⇑ϖ

in which the extra factor of ς→1 is due to the x-integration. Di#erentiating
the integral formula, we get

⇑εzϖ⇑L→ ⇓
C

ς
⇑f⇑ϖ .

The estimate for ε2
zϖ follows by using directly the equation ε

2
zϖ = ς

2
ϖ+ f .

This yields the lemma for the case when ς is bounded away from zero.
As for small ς, we note that Gϑ(0, z) = 0 and |εxGϑ(x, z)| ⇓ 1. Hence,

|Gϑ(x, z)| ⇓ |x| and so

|ϖ(z)| ⇓

∫ ↑

0
|Gϑ(x, z)f(x)|dx ⇓ ⇑f⇑ϖ

∫ ↑

0
|x|e

→ϖx
dx ⇓ C⇑f⇑ϖ .

Similarly, since |εzGϑ(x, z)| ⇓ 1, we get

|εzϖ(z)| ⇓

∫ ↑

0
|εzGϑ(x, z)f(x)|dx ⇓ ⇑f⇑ϖ

∫ ↑

0
e
→ϖx

dx ⇓ C⇑f⇑ϖ .

The lemma follows.

We now establish a similar property for Bϖ,ϱ,1 norms:

Proposition A.2. If f ↓ B
ϖ,ϱ,1 for some ⇀ > 0, then ϖ ↓ L

↑. In addition,
there holds

(1 + |ς|) ⇑ϖ⇑L→ + ⇑εzϖ⇑L→ ⇓ C⇑f⇑ϖ,ϱ,1, (A.4)

where the constant C is independent of ς ↓ R.
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Proof. We will only consider the case ς > 0, the opposite case being similar.
As above, since Gϑ(x, z) is bounded by ς

→1, using (A.3), we have

|ϖ(z)| ⇓ ς
→1

⇑f⇑ϖ,ϱ,1

∫ ↑

0
e
→ϑ|z→x|

e
→ϖx

(
1 + ↽

→1
ϖP (↽

→1
x)
)
dx

⇓ ς
→1

⇑f⇑ϖ,ϱ,1

(
ς
→1 + ↽

→1
∫ ↑

0
ϖP (↽

→1
x)dx

)

which yields the claimed bound for ϖ since P > 1. A similar proof applies
for εzϖ.

Next, let us now turn to the two dimensional Laplace operator.

Proposition A.3. Let ϖ be the solution of

≃!ϖ = ϱ

with the zero Dirichlet boundary condition, and let

v = ↑
↗
ϖ.

If ϱ ↓ B
ς,ϖ,ϱ,1, then ϖ ↓ B

ς,0 and v = (v1, v2) ↓ B
ς,0. Moreover, there hold

the following elliptic estimates

⇑ϖ⇑ς,0 + ⇑v1⇑ς,0 + ⇑v2⇑ς,0 ⇓ C⇑ϱ⇑ς,ϖ,ϱ,1, (A.5)

Proof. The proof follows directly from taking the Fourier transform in the
x variable, with dual integer Fourier component ς, and using Proposition
A.2.
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