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Abstract

In 1904, Prandtl introduced his famous boundary layer in order
to describe the behavior of solutions of Navier Stokes equations near a
boundary as the viscosity goes to 0. His Ansatz has later been justified
for analytic data by R.E. Caflisch and M. Sammartino. In this paper,
we prove that his expansion is false, up to 0(1/1/4) order terms in L*®
norm, in the case of solutions with Sobolev regularity, even in cases
where the Prandlt’s equation is well posed in Sobolev spaces.

In addition, we also prove that monotonic boundary layer profiles,
which are stable when v = 0, are nonlinearly unstable when v > 0,
provided v is small enough, up to O(v'/#) terms in L norm.

Abstract

En 1905, Prandtl introduit sa célebre couche limite pour décrire le
comportement des solutions des équations de Navier Stokes pres d’un
bord lorsque la viscosité tend vers 0. Son Ansatz a été justifié dans le
cas de données analytiques par R.E. Caflisch et M. Sammartino. Dans
cet article nous prouvons que ce développement asymptotique est faux
dans L* a l'ordre O(V1/4) pour des solutions a régularité Sobolev,
méme dans des cas ou 1’équation de Prandtl est elle bien posée.

De plus nous prouvons aussi que des profils de cisaillement mono-
tones, qui sont stables a ¥ = 0, sont nonlinéairement instable quand
v > 0 est assez petit, & order O(v'/*) dans L.
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1 Introduction

In this paper, we are interested in the inviscid limit ¥ — 0 of the Navier-
Stokes equations for incompressible fluids, possibly subject to some external
forcing f¥, namely

o’ + (u” - V)u” + Vp” = vAu” + fY, (1.1)

V-u’ =0, (1.2)
on the half plane Q = {(z,y) € TxR"}, with the no-slip boundary condition

v’ =0 on ON. (1.3)

As v goes to 0, one would expect the solutions u” to converge to solutions
of Euler equations for incompressible fluids

o’ + (u® - V)ul + vp® = f9 (1.4)

V-u® =0, (1.5)

with the boundary condition
uw-n=0 on 09, (1.6)

where n is the unit normal to 0f2.

At the beginning of the twentieth century, Prandtl introduced his well
known boundary layers in order to describe the transition from Navier-
Stokes to Euler equations as the viscosity tends to zero. Formally, we expect

that
Yy

W (t,z,y) ~ w0t z,y) + up (t, z, —) + O(V) Lo (1.7)
N
where u? solves the Euler equations —, and up is the Prandtl bound-
ary layer correction, which is of order one. The size of Prandtl’s boundary
layer is of order /v. Formally it is even possible to write an asymptotic
expansion for u” in terms of powers of \/v. The aim of this paper is to
investigate whether holds true.

The Prandtl’s boundary layer equations on up = (up;1,up2) read

Opupy +up - Vupy + 0yp° = 0upy + [,

1.8
V'UPZO, ( )

together with appropriate boundary conditions to correct the no-slip bound-
ary conditions of Navier-Stokes solutions. In the above, 9,p° denotes the



pressure gradient of the Euler flow on the boundary, and up; is the hori-
zontal component of the velocity.

These equations have been intensively studied in the mathematical lit-
erature. Notably, solutions to the Prandtl equations have been constructed
for monotonic data 21} 22| 1/ 20] or data with Gevrey or analytic regularity
123 15/ [16]. In the case of non-monotonic data with Sobolev regularity, the
Prandtl equations are ill-posed [3, (6} [15].

The validity of Prandtl’s Ansatz has been established in [23] [24]
for initial data with analytic regularity, leaving a remainder of order /v.
A similar result is also obtained in [19]. The Ansatz (1.7)), with a specific
boundary layer profile, has been recently justified for data with Gevrey
regularity [4] by deriving sharp linear semigroup bounds near a stationary
shear flow via energy estimates.

However these positive results hide a strong instability occurring at high
spatial frequencies. For some profiles, there exist instabilities with horizon-
tal wave numbers of order /2 which grow like exp(Ct/,/v). Within an
analytic framework, these instabilities are initially of order exp(—D/+/v)
and therefore later are of size exp((Ct — D)/+/v). They remain negligible in
bounded time (as long as ¢t < D/2C for instance).

Within Sobolev spaces, these instabilities are predominant. Initially they
are of size Cv=%/2 and grow like Cv=*/2exp(Ct/\/v). They reach O(1)
within vanishing times, of order /v logv.

To construct instabilities we focus on particular initial data, called shear
layer profiles, namely initial data of the form

u”(0) = (Uo(Vv),0).

The function Uy is called the profile of the shear layer. Two kinds of insta-
bility may be described

e An instability with horizontal wave numbers of order O(r~/2), grow-
ing like exp(C't/+/v). This instability occurs when the profile is un-
stable with respect to the inviscid Euler equations, or, very roughly
speaking, when the profile Uy has a ”strong” inflexion point (in the
spirit of Rayleigh’s criterium of unstability). For such profiles E. Gre-
nier proved in [7] that Prandtl’s asymptotic expansion is false, up to
a remainder of order /4 in L norm. More recently, E. Grenier and
T. Nguyen managed to replace O(v'/*) by O(1) and proved that the
difference between the genuine solution and the Prandtl’s expansion
may be of order one in supremum norm, and that this difference does



not vanish as v goes to 0. These instabilities are driven by inviscid
instabilities occurring within the boundary layer.

For such shear layer profiles, Prandtl’s Ansatz is false. However, up to
now, there is no existence result for Prandtl equation for small Sobolev
perturbations of these shear layer profiles. It is therefore not possible

to correctly define Prandtl boundary corrector in a neighborhood of
u”(0).

e An instability with horizontal wave numbers of order O(v~/8), grow-
ing like exp(Ct/v'/4). These instabilities are much more subtle. Their
growth is slower. The instability is driven by the so called ”critical
layer”, which is at a distance O(v*/8) from the boundary. The current
paper is the equivalent of [7] for monotonic profiles. For these profiles
we are not able to prove O(1) separation, but only O(v'/4). However,
Prandtl equation is well posed in a Sobolev neighborhood of u°(v).
We will discuss this limitation later.

In this paper, we shall prove the nonlinear instability of the Ansatz
(1.7) near monotonic profiles. Roughly speaking, given an arbitrary stable
boundary layer, the two main results in this paper are

e in the case of time-dependent boundary layers, we construct Navier-
Stokes solutions, with arbitrarily small forcing, of order O(v?), with P
as large as we want, so that the Ansatz ([1.7)) is false near the boundary
layer, up to a remainder of order v/4+¢ in L° norm, € being arbitrarily
small.

e in the case of stationary boundary layers, we construct Navier-Stokes
solutions, without forcing term, so that the Ansatz (|1.7)) is false, up
to a remainder of order °/® in L norm.

These results prove that there exist no asymptotic expansion of Prandtl’s
type, even in the case of monotonic profiles. For such profiles, adding viscos-
ity destabilizes the flow, which is counter intuitive. Even if Prandtl boundary
layer equation is well posed, it does not describe the limiting behavior as
the viscosity goes to 0.

The complete construction of the instability involves a sublayer, of size
v°/8 which was not expected in this context. This sublayer may itself be-
come unstable when it becomes large enough, leading to the creation of a
sub - sub - layer.

In this case we are not able to prove that the perturbation reaches O(1)
in L* as is the case for Euler unstable profiles, since the linear growth of the



perturbation is much slower. In rescaled variables (see section 3), the linear
growth is of order /4. A simple equivalent in terms of ordinary differential
equations would be

¢ = v'/1¢ + Ag? (1.9)

where v1/4¢ models the linear growth and ¢2 the nonlinear interaction terms.
For , the nonlinear term is comparable to the linear one when ¢ is of
order /4, namely very small. The fate of ¢ then depends on the sign of A
(blow up if A > 0 and convergence to a O(v'/%) stable state if A < 0). The
situation is similar here. The nonlinear term is comparable to the linear one
when the perturbation reaches O(rv'/*), preventing further investigations.

In the next sections, we shall introduce the precise notion of Rayleigh’s
stable boundary layers and present our main results. After a brief recall of
the linear instability results [9} [L1] in Section [2, we give the proof of the
main results in Sections [3] and [4] respectively.

1.1 Stable boundary layer profiles

Throughout this paper, by a boundary layer profile, we mean a shear flow

of the form
U t,i
U = ( bl(o ﬁ)> (1.10)

that solves the Prandtl’s boundary layer problem (|1.8)), with initial data
Un(0, z) = U(z). Without forcing, Uy, is the solution of heat equation

0tUp1 — Oyy Uy = 0.

Boundary layer profiles can also be generated by adding a forcing term £, in
which case we shall focus precisely on the corresponding stationary boundary
layers Uy, = U(z), with —U"(z) = f¥. We will consider these two different
cases, namely time dependent boundary layers (without forcing) and time
independent boundary layers (with given, time independent, forcing).

As mentioned, the Ansatz is proven to be false for initial boundary
layer profiles U(z) that are spectrally unstable to the Euler equations [7].
In this paper, we shall thus focus on stable profiles, those that are spectrally
stable to the Euler equations. This includes, for instance, boundary layer
profiles without an inflection point by view of the classical Rayleigh’s in-
flection point theorem. In this paper we assume in addition that U(z) is
strictly monotonic, real analytic, that U(0) = 0 and that U(z) converges
exponentially fast at infinity to a finite constant U,. By a slight abuse of
language, such profiles will be referred to as stable profiles in this paper.



In order to study the instability of such boundary layers, we first analyze
the spectrum of the corresponding linearized problem around initial profiles
U(z). We first introduce the isotropic boundary layer variables (t,z,z) =
(t,xz,y)/+/v. This leads to the following linearized problem for vorticity
w = 0,v1 — Ozv9, which reads

(0 — L)w = 0, Lw = vAw — Udw — vU", (1.11)

together with v = V¢ and A¢ = w, satisfying the no-slip boundary condi-
tions ¢ = 9,0 = 0 on {z = 0}.

We then take the the Fourier transform in the x variable only, denoting
by a the corresponding wavenumber, which leads to

(O — Lo)w = 0, Low := VA w — iaUw — iagpU” (1.12)

where
Wa = Aa¢aa

together with the zero boundary conditions ¢, = ¢, = 0 on z = 0. Here,
A, = 0% —a?

Together with Y. Guo, we proved in [8,19] that, even for profiles U which are
stable as v = 0, there are unstable eigenvalues to the Navier-Stokes problem
for sufficiently small viscosity v and for a range of wavenumber « €
[av1, ag], with v ~ v/8 and as ~ 1/12. The unstable eigenvalues A of L,
found in [9], satisfy

R\, ~ /4 (1.13)

Such an instability was first observed by Heisenberg [13| [14], then Tollmien
and C. C. Lin [17, [18]; see also Drazin and Reid [2,25] for a complete account
of the physical literature on the subject. See also Theorem below for
precise details. In coherence with the physical literature 2], we believe that,
« being fixed, this eigenvalue is the most unstable one. However, this point
is an open question from the mathematical point of view.

Next, we observe that L, is a compact perturbation of the Laplacian
VVA4, and hence its unstable spectrum in the usual L? space is discrete.
Thus, for each o, v, we can define the maximal unstable eigenvalue A, , so
that ¥\, , is maximum. We set A\, , = 0, if no unstable eigenvalues exist.

In this paper, we assume that the unstable eigenvalues found in the
spectral instability result, Theorem are maximal eigenvalues. Precisely,
we introduce

o := lim sup 1/_1/43?)\%1,. (1.14)

v—=0 R
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The existence of unstable eigenvalues in Theorem implies that ~g is
positive. Our spectral assumption is that -y is finite (that is, the eigenvalues
in Theorem are maximal).

1.2 Main results

We are ready to state two main results of this paper.

Theorem 1.1. Let Uy(t, z) be a time-dependent stable boundary layer pro-
file as described in Section (1.1, Then, for arbitrarily large s, N and arbi-
trarily small positive €, there exists a sequence of functions u” that solves
the Navier-Stokes equations (1.1)-(1.3)), with some forcing f*, so that
[ (0) = Uua(O) =+ sup £ (0)lr+ < 0™,
t€[0,77]

but )

[w(T") = Unt(T)l[ oo = w17,

[w”(T") = wpa(T")]| oo — o0,

for time sequences TV — 0, as v — 0. Here, w¥ = V X u” denotes the
vorticity of fluids.

This Theorem proves that the Ansatz (1.7 is false, even near stable
boundary layers, for data with Sobolev regularity.

Theorem 1.2 (Instability result for stable profiles). Let Uy = U(z) be a
stable stationary boundary layer profile as described in Section |1.1. Then,
for any s, N arbitrarily large, there exists a sequence of solutions u” to the
Navier-Stokes equations, with forcing f* = ft (boundary layer forcing), so
that u¥ satisfy

[u”(0) = Upill = < v,
but

[u” (T") = Ui pee 2 V™%,
[w”(T") = winllze 2 1,

~

for some time sequences TV — 0, as v — 0.

The spectral instability for stable profiles gives rise to sublayers (or crit-
ical layers) whose thickness is of order v5/8. The velocity gradient in this
sublayer grows like v—%/8¢t/¥ 1/4, and becomes larg when t is of order T%. As
a consequence, they may in turn become unstable after the instability time
T" obtained in the above theorem. Thus, in order to improve the /%/8 insta-
bility, one needs to further examine the stability properties of this sublayer

itself (see [12]).



1.3 Boundary layer norms

We end the introduction by introducing the boundary layer norms to be
used throughout the paper. These norms were introduced in [10] to capture
the large, but localized, behavior of vorticity near the boundary. Precisely,
for each vorticity function w, = wqs(2), we introduce the following boundary
layer norms

-1
Jwallgt i=sup [ (1406716,(6712)) eFlwal2)l],  (115)
2>0

where 8 > 0, p is a large, fixed number,

and with the boundary layer thickness
5 =~vl/8

for some v > 0. We introduce the boundary layer space B%7! to consist of
functions whose || - [|,5,1 norm is finite. We also denote by L3° the function
spaces equipped with the finite norm

lwlls = sup e”|w(2)].
2>0

When there is no weight e%?, we simply write L™ for the usual bounded

function spaces. Clearly,
Ly c B

In addition, it is straightforward to check that

1fgllsra < W fllzllgllsr.1- (1.16)

Finally, for functions w(z, z), we introduce

[wllo,p,4,1 == sup(l + |af)” lwallg,15
a€ER

for 0 > 1, in which w, is the Fourier transform of w in the variable z.
Combining with (1.16), we have

1f9llo871 < [I.fllo0llgllo.s.1, (1.17)

where || fllo.0 = supaer (1 + |af)7|[ fol Lo



2 Linear instability

In this section, we shall recall the spectral instability of stable boundary
layer profiles [9] and the semigroup estimates on the corresponding linearized
Navier-Stokes equation [10, [11].

2.1 Spectral instability

The following theorem, proved in [9], provides an unstable eigenvalue of L
for generic shear flows.

Theorem 2.1 (Spectral instability; [9]). Let U(z) be an arbitrary shear
profile with U(0) = 0 and U'(0) > 0 and satisfy

sup |05(U(z) — Uy )e™?| < 400, k=0, .4,
z>0

for some constants Uy and ng > 0. Let R = v~Y2 be the Reynolds num-
ber, and set oy (R) ~ R™Y* and anp(R) ~ R™Y6 be the lower and upper
stability branches.

Then, there is a critical Reynolds number R, so that for all R > R, and
all o € (ajow(R), aup(R)), there exist a nontrivial triple ¢(R), 0(z; R), p(z; R),
with Im ¢(R) > 0, such that vy := €@~ 4(z; R) and pg = @~ Np(z; R)
solve the linearized Navier-Stokes problem . Moreover there holds the
following estimate for the growth rate of the unstable solutions:

aSc¢(R) ~ R7YV?
as R — oo.

The proof of the previous Theorem, which can be found in [9], gives a
detailed description of the unstable mode. In this paper we focus on the
lower branch of instability. In this case

a, ~ R4 = yl/g, RN, ~ R/2 = y1/4,
The vorticity of the unstable mode is of the form
wo = e A(e™®py(2))  +  complex conjugate (2.1)

The stream function ¢q is constructed through asymptotic expansions, and
is of the form

G0 = dino(2) + 5131(]51,1,0(5&12’)



for some boundary layer function ¢y o, where oy = vi/8,

By construction, derivatives of ¢y, o satisfy
‘a,]zcgbbl,O((s];llZ)‘ < Ck(sl:lkefnoz/abl.

In addition, it is clear that each z-derivative of wy gains a small factor of

ay, ~ v1/8. We therefore have an accurate description of the linear unstable

mode.

2.2 Linear estimates

The corresponding semigroup e’ of the linear problem (I.11) is constructed
through the path integral

ellw = / eletelaty, do (2.2)
R

in which w, is the Fourier transform of w in tangential variables and L.,
defined as in (1.12), is the Fourier transform of L. One of the main results
proved in [11] is the following theorem.

Theorem 2.2. [11] Let a < V8. Let wa € BPTY for some positive 3, o
be defined as in (1.14). Assume that o is finite. Then, for any y1 > o,
there is some positive constant C so that

1/4; _ 1.2
leXtwa g1 < Cre?™ e 1% VP g .0 1,

0:e5 wallgn < Cy (V715 + (Vot) T2 ) e i gy g

3 Approximate solutions

Let us now construct an approximate solution wu,pp, which solves Navier-
Stokes equations, up to very small error terms. First, we introduce the
rescaled isotropic space time variables
7 t - T - z
=—, I=—, Z=——.
NI N N
Without any confusion, we drop the tildes. The Navier-Stokes equations in

these scaled variables read

Ou+ (u-V)u+ Vp = rvAu,
(3.1)
V.-u=0,

with the no-slip boundary conditions on z = 0. Theorem [L.1] follows at once
from the following theorem.
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Theorem 3.1. Let U(z) be a stable boundary layer profile, and let Uy (y/vt, 2)
be the corresponding Prandtl’s boundary layer. Then, there exist an approz-
imate solution Uapp that approximately solves in the following sense:
for arbitrarily large numbers p, M and for any € > 0, the functions Uapp

solve
62faapp + (aapp : v)ﬂapp + vﬁapp = \ﬁAﬂapp + gapp’

3.2
V - Ugpp = 0, (32

for some remainder E,pp, and for time t < T,,, with T, being defined through
yPeMMTe — it
In addition, for all t € [0,T,], there hold

~ 1
[eurl(app — Uni(V2t, 2))[lgy0 S vite,

leurlEapp (t)ll5,4,1 < v

Furthermore, there are positive constants 6y, 61, 0s independent of v so that

there holds
01170 < || (Tapp — Upt)(t)|| oo < GorPe™o!
for allt € [0,T,]. In particular,

U 1
| (app — Upt)(Ty)) || oo 2 vate.

3.1 Formal construction

The construction is classical, following [7]. Indeed, the approximate solu-
tions are constructed in the following form

M
Uapp(t, T, 2) = Upi(Vvt, z) + VP Z Vj/suj(t,m, ). (3.3)
=0

For convenience, let us set v = u— Uy, where u denotes the genuine solution
to the Navier-Stokes equations (3.1)). Then, the vorticity w = V x v solves

Ohw + (Uni(Vit,y) +v) - Vw + 020, Us (V1 y) — Vv Aw = 0
in which v = V+A~'w and vy denotes the vertical component of velocity.

Here and in what follows, A~! is computed with the zero Dirichlet boundary

11



condition. As Uy depends slowly on time, we can rewrite the vorticity
equation as follows:

(8 — L)w + v"/35w + Q(w,w) = 0. (3.4)

In (3.4), L denotes the linearized Navier-Stokes operator around the sta-
tionary boundary layer U = U,(0, 2):

Lw := VvAw — Udpw — usU”,

Q(w,®) denotes the quadratic nonlinear term u - V&, with v = VA~ w,
and S denotes the perturbed operator defined by

Sw: = v VBU(Vit, 2) = U(2)]0,w + v Bug 02U, (vt 2) — U (2)].
Recalling that Us solves the heat equation with initial data U(z), we have
s/t 2) — U(2)] < Cl|U" e it

and
2Us(Vit,2) = U"(2)] < CU" [[wece™™* /vt
Hence,

Sw = v YB3O(\ute ™) [\am + 19, A | (3.5)

in which A~!w satisfies the zero boundary condition on z = 0. The approx-
imate solutions are then constructed via the asymptotic expansion:

M
Wapp = VP Z Vj/Bwj, (3.6)
=0

in which p is an arbitrarily large integer. Plugging this Ansatz into (3.4))
and matching order in v, we are led to solve

e for j =0:
(815 —L)w(] =0

with zero boundary conditions on vg = V+(A) " twy on z = 0;
o for 0 < j < M:
(0 — L)wj = Ry, Wj,_o =0, (3.7)

with zero boundary condition on v; = V+(A)"lw; on z = 0. Here,
the remainders R; are defined by

Rj = Sw;_1+ E Q(wg, wy).
k+0+8p=j

12



As a consequence, the approximate vorticity wapp solves (3.4]), leaving the
error Rapp, defined by

M1 )
Rapp — Pt73 Swyr + Z el Q(wk,Wg) (3.8)
k4+€>M+1—-8p;1<k <M

which formally is of order Ver%, for arbitrary p and M.

3.2 Estimates

We start the construction with wg being the maximal growing mode, con-
structed in Section 2.1 We recall

wp = e’\”teia“anU ((bm,g(z) + ul/ggbblyo(y*l/sz)) + c.c. (3.9)

with o, ~ vY/8 and R\, ~ /4. In what follows, a,, and )\, are fixed. We
obtain the following lemma.

Lemma 3.2. Let wg be the mazimal growing mode (3.9), and let w; be
inductively constructed by (3.7). Then, there hold the following uniform

bounds:

1080210 .01 < Cor™/Sub/8y = ilRs o) (3.10)

z

for all a,j > 0 and for b= 0,1. In addition, the approximate solution wapp

defined as in (3.6]) satisfies

M )
Hagai’wapplla,ﬂm S /8, b/8 Z V_%[;?] <Vp670”1/4t) Sp, (3.11)
=0
fora >0 and b=0,1. Here, [k] denotes the largest integer so that [k] < k.

Proof. For j > 1, we construct w; having the form
wj = Z einal,ijm
nez
It follows that w;,, solves

(at — Lan)Oijn = R',n, wj, =0

M=o

with o, = na, and Rj,, the Fourier transform of R; evaluated at the Fourier
frequency «,. Precisely, we have

Rin=Sa,wi-tnt D Y. QanlWhnisWms),

k+£+8p=j ni1+nz2=n

13



in which S,, and @,, denote the corresponding operator S and @ in the
Fourier space. The Duhamel’s integral reads

t
wjn(t) —/0 eL“”(t_S)Rj,n(s) ds (3.12)

forall j > 1 and n € Z.

It follows directly from an inductive argument and the quadratic non-
linearity of Q(-,-) that for all 0 < j < M, wj,, = 0 for all |n| > 2771, This
proves that |ay,| < 2M+1a, < v/8) for all |n| < 2M+1. Since a,, < v/8, the
semigroup bounds from Theorem read

1/4; _ 1.2
env /it —ga Vt

La
||e twOéHB,’y,l S ||O‘)Oé||ﬁu%17 (3 13)
_ _ 1/44 _1_2 °
||8zeLatwa”B,%1 S (V Ve + (ﬁt) 1/2>€’YIV fema® ﬁt”“@”ﬁ,%l'

In addition, since a,, < /%, from , we compute

Sewi—1.n = O(v/vte ™?) [|wj,1,n| + m;jwj,l,nq
and hence by induction we obtain
51 SV |yl 6.1

S Vot |wimrallsan + 185 w5 1all= (3.14)

_1rj—1 j=1y,1/4
< Vvt il'sp ]e'yo(l"" v t,

Bya + e AL w1

anWj—1,n
1S |

where we used [[e™7% - ||g 1 < || - ||z for B < no, and

1AL wllze < Cllw]

Byv,1»

uniformly in small «; we shall prove this inequality in the Appendix. Let us
first consider the case when 1 < j < 8p—1, for which R;,, = S,,w;—1,. That
is, there is no nonlinearity in the remainder. Using the above estimate on Sy,
and the semigroup estimate into ([3.12), we obtain, for 1 < j < 8p—1,

t
lwojn(®) g < /0 lebon =98, wi 1 n(s)llpa ds
t
<C / eW”“<t—S>|yks*%wj,17n(s)||M1 ds
0

t .
i=1ly,1/4
< C/ 671”1/4“_5)\55670(14' )0 g,
0

14



We choose ) .
J—
= 1 _— _—
M =1+ 5 16p)
in (3.13) and use the inequality

J1/44

1/4t < Ce 16p

and obtain

t i
[wjn(@)llgy1 < C/ 1) A (I g g e g
0

. t
j—=1 1 1/4
< Cp/Ae0 Ut g +ig)v / t/ ds
0
1/44

(3.15)
< Cyl/4te’yo(1+%+ﬁ)v
< Ce’yo(lJré)yl/‘lt.

Similarly, as for derivatives, we obtain

10205, (t)

t
< [ 1B Sl s

< C/ U (Vu(t - 8))71/2)671V1/4(t78)HSanwj—l,n(S)Hﬂml ds
1/4

< C/ U8 4 (Vo — 8))71/2) 671”1/4(7578)\58@70(”%)” *ds,

in which the integral involving v~1/8 is already treated in (3.15) and bounded

4 yy1/4 . .
by Cr1/800F 5 Ag for the second integral, we estimate

1/4

t i
/(\/;(t_s))—l/Qe'ylyl/‘l(t—s)\/178670(14‘]5;1,1)” 5 ds
0

71

t
< / (\/77(75—5))—1/2671111/4(75 s) 1/4 Yo(1+L1— oo lép),jlms ds
0

. t
< V1/4670(1+J8pl+1<13p)z/1/4t/ (Vo(t — )" Y2 ds (3.16)
0

j—1 1
< OVEe s Tt/

dy1/4
< Oy 8ol
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Thus, ,
[0 ()l] 1 < O /8 F

This and (3.15) prove the inductive bound (3.10) for j < 8p — 1.
For j > 8p, the quadratic nonlinearity starts to play a role. For k 4 ¢ =

j — 8p, we compute
Qo (Whyny s Weny) = 0y, (nzazA;iwk,mwz,nQ - nlA;iwk,nlazwé,ng>- (3.17)
Using the algebra structure of the boundary layer norm (see (1.16))), we have

O‘V‘|8ZA;iwk,n1W&n2 Hﬂ,'y,l N Vl/SHazA;iwk,m [l Lo wa,nz Hﬂ,%l

S v |wp |

B?’Wl”weﬂ’la”ﬁa"/vl
L1k 1.6 kt0y, 1/4
< /8, algpl, ~algpl 102450 /44

where we used
”62A(;iwk7nl HLOO S CHwkynl HB?’Y?l’

an inequality which is proven in the Appendix. Moreover,

WG s Ot 11 S VN AL k| 00,5 1 8.7,1

S 03|k 18,9, 10:we gl .70

11k 110 kLY 1/4
V—z[@}y—z[@}e’m(ﬂ'@)” /44

AN 2

)

in which the derivative estimate (3.10) was used. We note that

A T
§]+[%] [W]:[g

[

IA

]—1.

This proves

Bl S V1/4I/_%[é}e%(1+é)yl/4t

HQan (wk’,nl ) wf,nQ) |

for all £+ ¢ = j — 8p. This, together with the estimate (3.14) on S,,,, yields

j—1 j—1 ) )
IRon(t) o1 < vty SURHI 005 1/, =31 ooyt o

_1lrd Jy,1/4
51/1/41/ 4[8p]670(1+8p)y t’

for all j > 8p and n € Z, in which we used v/4t < ¢¥0t/8p,
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Putting these estimates into the Duhamel’s integral formula (3.12), we
obtain, for j > 8p,
t 1/4(¢
aa <O [ IR ()] ds

<C/ MM (t=s) ,1/4, = ] o s g

3] o+ v /is

[lwjn(t)

and
H@Zw] n ”6 ~,1

<0 [ (5 (e ) ) R ) ds
< C/ 1/*1/8 + (Vu(t - s))*l/?) v A=) 174, = 5l o)t ts g
0

Using (3.16)), we obtain

177 .
”azw],n(t) H/B,’Y,l S} V_l/gy_z[gip]e'yo(l'i‘gjfp)lfl/‘ls

)

which completes the proof of (3.10). The lemma follows. O

3.3 The remainder

We recall that the approximate vorticity wapp, constructed as in (3.6, ap-
proximately solves (3.4), leaving the error R,pp, defined by

M+1 ke
Rapp = P75 Swy + E VP Q(w, we).
0> M 4+1—8p:1<k <M

Using the estimates in Lemma |3.2] we obtain
11 M+1 M+1 1/4
”SWM”Uﬂ'yl S V1/4V—1[ o ] ’Yo(l—l- & Ywi/4¢

1/4,,~ 1) yo(2+ L)/ 4

1Q(wrs w)llos 1 S v

This yields

TR ST ag) e
A D (V”ew ) : (3.18)

j=M+1

| Rapp
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3.4 Proof of Theorem [3.1

The proof of the Theorem now straightforwardly follows from the estimates
from Lemma and the estimate (3.18) on the remainder. Indeed, we
choose the time T, so that

PV T — T (3.19)

for some fixed 7 > i. It then follows that for all ¢ < T, and j > 0, there
holds

174 1+ 1y .4
it (VP€70V1/415) o<y 1)E

Using this into the estimates (3.11) and (3.18), respectively, we obtain

_ 1/4 _
Halz)wapp(t)Ha,Bml SvP b/8rov /Tt Svt b/8a

1M 1+M4
| Rapp (D)l g1 S v/ Awals] (o) (3.20)

< V7'+1/41/(7'_i)%’
for all t < T,. Since 7 > 7 and M is arbitrarily large (and fixed), the
remainder is of order v* for arbitrarily large number P. The theorem is
proved.

=

4 Nonlinear instability

We are now ready to give the proof of Theorem Let tapp be the ap-
proximate solution constructed in Theorem and let

V= U— Uspp,

with u being the genuine solution to the nonlinear Navier-Stokes equations.
The corresponding vorticity w = V X v solves

Orw + (Tapp + v) - Vw + 0 - Viapp = vVVAW + Rapp

for the remainder Rap, = curl &,pp satisfying the estimate (3.18]). Let us
write

Uapp = Uapp — Ubl-
To make use of the semigroup bound for the linearized operator 0; — L, we
rewrite the vorticity equation as

(0 = L)w + (tapp + v) - Vw + v - Vwapp = Rapp

18



with w),_, = 0. We note that since the boundary layer profile is stationary,
the perturbative operator S defined as in (3.5]) is in fact zero. The Duhamel’s
principle then yields

t
w(t) = /0 el (t=s) (Rapp — (Uapp +v) - Vw —v- Vwapp) ds. (4.1)

Using the representation (4.1)), we shall prove the existence and give esti-
mates on w. We shall work with the following norm

Ol = llw(®)los7,0 + 2100 lopr1 + 11 P10:0() o (4:2)

in which the factor ©/® added in the norm is to overcome the loss of v—1/8

for derivatives (see (4.4 for more details).
Let p be an arbitrary large number. We introduce the maximal time T},
of existence, defined by

L= max {t€ 0T ¢ sup [lle()| < et} (ug
0<s<t

in which 7} is defined as in (3.19)). By the short time existence theory, with
zero initial data, T, exists and is positive. It remains to give a lower bound
estimate on T,. First, we obtain the following lemmas.

Lemma 4.1. Fort € [0,1}], there hold

— 1/4
195 08ap (1) 0 S w55 (e )

1+42
e R A Ll e

Proof. This follows directly from Lemma[3.2]and the estimate (3.18) on the
remainder R,pp, upon noting the fact that for t € [0, T}], vPe” Y% remains

sufficiently small. O
Lemma 4.2. There holds

2

H(uapp +v) - Vw4 v - Vwapp .

1 1/4
Svs <Vp670” t)
0’767771

forte[0,T,].

Proof. We first recall the elliptic estimate

[ulloo S llwllosq.
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which is proven in the Appendix , and the following uniform bounds (see
(11.17))
[w- V&llopq1 < llullool V@llosq.0

< ||WHU,6,%1HVU~J| a,B,7,1-

Using this and the bounds on wapp, we obtain

2
~1/8( ,perovt/ it —5 (yperort/it
r51 S VS0P ) w500 S TR (v

v+ Vwapp
and
1/4
tapp +0) - Veologigs S (P 4 [l 01 ) 19l

2
1 1/4
<y7s (Vpe%’” / t) .

This proves the lemma. O

Next, using Theorem and noting that ae "t < 1+ (vt)~1/2, we
obtain the following uniform semigroup bounds:

_ 1/4
le"wllo g1 < Cor e o] 5.0
_ _ 1/4
10ee sllo g1 < Cov ™ A(1 -+ (Virt) V) ] (4.4)

[0:6"wllo 1 < Cor ™4 (775 4 (V)2 ) i1

We are now ready to apply the above estimates into the Duhamel’s integral
formula (4.1). We obtain

t 2
||W(t)‘|o,6,fy,1 5 V1/4/ 671V1/4(t—s)yfé (Vpe'yoyl/“) ds
0

t M

1M 1+

_|_1/—1/4/ 671V1/4(t—8)y1/4,/_1[8p <Vpe'YOV1/43> 2 1s
0

< 1/75/8 (Vpe'Yon/4t)2 + P (ype'YOVl/4t> ,
upon taking v; sufficiently close to vg. Set 17 so that
pPetovt T 001/%, (4.5)

for some sufficiently small and positive constant 6y. Then, for all ¢ < T7,
there holds s
(Ol S v 00+ v" |

20



Similarly, we estimate the derivatives of w. The Duhamel integral and the
semigroup bounds yield

IVew(t)

i 7 [ D e ) )
0
X [l/_% (Vpe'yo”l/4s)2 4 L 1lsp) (Upe’youl/éls)l‘*'gi} ds
S y/8 [V_é (Vp670”1/45)2 + V‘i[%] <yp670u1/45> 1+§z{}
By view of and the estimate , the above yields
[9e(t)lop 1 S P~ g + 7).

To summarize, for ¢t < min{7%, 73,7, }, with the times defined as in --3.197
(4.3), and (4.5, we obtain

o)l S e oo + 7],
Taking 6y sufficiently small, we obtain
I[w(®)]]| < vPerr ™

for all time ¢t < min{7},T1,7,}. In particular, this proves that the maximal
time of existence T, is greater than 77, defined as in . This proves that
at the time t = T, the approximate solution grows to order of v°/8 in the
L°° norm. Theorem is proved.

A Elliptic estimates

In this section, for sake of completeness, we recall the elliptic estimates with
respect to the boundary layer norms. These estimates are proven in [10)
Section 3.

First, we consider the classical one-dimensional Laplace equation

DNop= ¢ —a’¢=f (A.1)

on the half line z > 0, with the Dirichlet boundary condition ¢(0) =
0. We recall the function space Ly defined by the finite norm | f[|z =

sup,>q | f(2)|e”*. We will prove
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Proposition A.1. If f € LE for some B > 0, then ¢ € L>®. In addition,
there holds

(L+ )l + (1 + |al) 100l + 026 L < CfI5, (A.2)
where the constant C is independent of o € R.

Proof. The solution ¢ of is explicitly given by
o) = [ Gl 2) (@) (A.3)
where Go(z,2) = —5= (e‘o‘u_Z' - e“"'””“'). A direct bound leads to

C
¢l < 511511

in which the extra factor of ! is due to the z-integration. Differentiating
the integral formula, we get

C
o < — .
10:0llz < = I 1ls

The estimate for 92¢ follows by using directly the equation 8%¢ = o?¢ + f.
This yields the lemma for the case when « is bounded away from zero.

As for small «, we note that G (0, z) = 0 and |0,G4(x, z)| < 1. Hence,
|Go(z, 2)| < |z| and so

6(2)] < /0 |Ga(z, 2) f(z)|de < Hf\l,a/o jzle™?* da < C||f 5.

Similarly, since |0,Gq(z, 2)| < 1, we get

10.6(2)] < / 0.l 2)f (@))dz < || 15 / e di < O|| |5

0 0

The lemma follows. O
We now establish a similar property for B%7! norms:

Proposition A.2. If f € B! for some 8 > 0, then ¢ € L>®. In addition,
there holds

1+ |e)) [[@llzee + 1020l < Cll g1, (A.4)

where the constant C is independent of o € R.
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Proof. We will only consider the case o > 0, the opposite case being similar.
As above, since Gy (z, ) is bounded by o', using (A.3)), we have

6(2)] < @ fllg /0 e e (14 57 gp (57 ) ) da

<ol f|

Byl (a1+51/ (j)p((sflm)dx)
0

which yields the claimed bound for ¢ since P > 1. A similar proof applies
for 0.¢. O

Next, let us now turn to the two dimensional Laplace operator.
Proposition A.3. Let ¢ be the solution of
—Ap=w
with the zero Dirichlet boundary condition, and let
v =Vt

If w € BOPL then ¢ € B0 and v = (vy,ve) € B™Y. Moreover, there hold
the following elliptic estimates

[¢llo0 + l[vrllo0 + [lv2llo0 < Cllwllos.1, (A.5)

Proof. The proof follows directly from taking the Fourier transform in the
x variable, with dual integer Fourier component «, and using Proposition

A2l O

References

[1] Alexandre, R.; Wang, Y.-G.; Xu, C.-J.; and Yang, T. Well-posedness of
the Prandtl equation in Sobolev spaces. J. Amer. Math. Soc. 28 (2015),
no. 3, 745-784.

[2] Drazin, P. G.; Reid, W. H. Hydrodynamic stability. Cambridge Univer-
sity Press, 2004.

[3] Gérard-Varet, D. and Dormy, E.. On the ill-posedness of the Prandtl
equation. J. Amer. Math. Soc. 23 (2010), no. 2, 591-609.

[4] Gérard-Varet, D., Maekawa Y., and Masmoudi, N Gevrey Stability of
Prandt]l Expansions for 2D Navier-Stokes. arXiv:1607.06434

23



[5]

[15]

[16]

Gérard-Varet, D. and Masmoudi, N. Well-posedness for the Prandtl
system without analyticity or monotonicity. Ann. Sci. Ec. Norm. Supér.
(4) 48 (2015), no. 6, 1273-1325.

D. Gérard-Varet and T. Nguyen. Remarks on the ill-posedness of the
Prandtl equation. Asymptotic Analysis, 77 (2012), no. 1-2, 71-88.

Grenier, E. On the nonlinear instability of Euler and Prandtl equations.
Comm. Pure Appl. Math. 53,9 (2000), 1067-1091.

E. Grenier, Y. Guo, and T. Nguyen. Spectral stability of Prandtl bound-
ary layers: an overview. Analysis (Berlin), 35(4):343-355, 2015.

E. Grenier, Y. Guo, and T. Nguyen. Spectral instability of characteristic
boundary layer flows. Duke Math J., to appear, 2016.

E. Grenier and T. Nguyen, Sharp bounds on linear semigroup of Navier-
Stokes with boundary layer norms. arXiv:1703.00881

E. Grenier and T. Nguyen, Green function for linearized Navier-Stokes
around a boundary layer profile: near critical layers. Preprint 2017.

E. Grenier and T. Nguyen, Sublayer of Prandtl boundary layers. Arch.
Ration. Mech. Anal. to appear 2018.

Heisenberg, W. Uber Stabilitit und Turbulenz von Fliissigkeitsstromen.
Ann. Phys. 74, 577-627 (1924)

Heisenberg, W. On the stability of laminar flow. Proceedings of the
International Congress of Mathematicians, Cambridge, Mass., 1950,
vol. 2, pp. 292-296. Amer. Math. Soc., Providence, R. 1., 1952.

Y. Guo and T. Nguyen, A note on Prandtl boundary layers. Comm.
Pure Appl. Math. 64 (2011), no. 10, 1416-1438.

Ignatova, M. and Vicol, V. Almost global existence for the Prandtl
boundary layer equations. Arch. Ration. Mech. Anal. 220 (2016), no.
2, 809-848.

C. C. Lin, On the stability of two-dimensional parallel flow, Proc. Nat.
Acad. Sci. U. S. A. 30, (1944). 316-323.

C. C. Lin, The theory of hydrodynamic stability. Cambridge, at the
University Press, 1955.

24



[19]

[20]

[21]

[24]

[25]

Maekawa, Y. On the inviscid limit problem of the vorticity equations
for viscous incompressible flows in the half-plane. Comm. Pure Appl.
Math. 67 (2014), no. 7, 1045-1128.

Masmoudi, N. and Wong, T. K. Local-in-time existence and uniqueness
of solutions to the Prandtl equations by energy methods. Comm. Pure
Appl. Math. 68 (2015), no. 10, 1683-1741.

Oleinik, O. A. On the mathematical theory of boundary layer for an un-
steady flow of incompressible fluid. Prikl. Mat. Meh. 30 801-821 (Rus-
sian); translated as J. Appl. Math. Mech. 30 1966 951-974 (1967).

Oleinik, O. A. and Samokhin, V. N. Mathematical models in boundary
layer theory. Applied Mathematics and Mathematical Computation,
15. Chapman & Hall/CRC, Boca Raton, FL, 1999. x+516 pp. ISBN:
1-58488-015-5

Sammartino, M. and Caflisch, R. E. Zero viscosity limit for analytic
solutions, of the Navier-Stokes equation on a half-space. 1. Existence
for Euler and Prandtl equations. Comm. Math. Phys. 192 (1998), no.
2, 433-461.

Sammartino, M. and Caflisch, R. E. Zero viscosity limit for analytic
solutions of the Navier-Stokes equation on a half-space. II. Construction
of the Navier-Stokes solution. Comm. Math. Phys. 192 (1998), no. 2,
463-491.

H. Schlichting, Boundary layer theory, Translated by J. Kestin. 4th
ed. McGraw—Hill Series in Mechanical Engineering. McGraw—Hill Book
Co., Inc., New York, 1960.

25



	Introduction
	Stable boundary layer profiles
	Main results
	Boundary layer norms

	Linear instability
	Spectral instability
	Linear estimates

	Approximate solutions
	Formal construction
	Estimates
	The remainder
	Proof of Theorem 3.1

	Nonlinear instability
	Elliptic estimates

