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ABSTRACT

Node features bolster graph-based learning when exploited jointly
with network structure. However, a lack of nodal attributes is preva-
lent in graph data. We present a framework to recover completely
missing node features for a set of graphs, where we only know the
signals of a subset of graphs. Our approach incorporates prior in-
formation from both graph topology and existing nodal values. We
demonstrate an example implementation of our framework where we
assume that node features depend on local graph structure. Missing
nodal values are estimated by aggregating known features from the
most similar nodes. Similarity is measured through a node embed-
ding space that preserves local topological features, which we train
using a Graph AutoEncoder. We empirically show not only the accu-
racy of our feature estimation approach but also its value for down-
stream graph classification. Our success embarks on and implies the
need to emphasize the relationship between node features and graph
structure in graph-based learning.

Index Terms— Graph Signal Processing, Local Structure Em-
beddings, Missing Feature Generation

1. INTRODUCTION

For practical applications in chemistry [1,2], medicine [3], and many
others [4], data can be naturally represented as interconnected enti-
ties using graphs. Supervised learning on graphs aims to predict
characteristics using both graph structure and, in some cases, node
features, also known as graph signals. These features can improve
graph-based predictions when jointly used with graphs, not only
when the nodal values are semantically relevant but also when the
observations on nodes and the graph structure are dependent [5].
The relationship between node features and their underlying
graph is well-studied for node-level tasks. These tasks typically en-
tail predicting nodal characteristics for a single graph where a subset
of features is known. Classifying nodes in the semi-supervised
learning setting requires the influence of the underlying graph on
nodal values to propagate known information to unlabeled nodes [6].
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Fig. 1: Embeddings for nodes in graphs from the AIDS molecule
dataset. Each point is a node embedding based on local structural
characteristics, such as degree. Nodes corresponding to graphs of
different classes are shifted in the embedding space, implying that
local structure is correlated with molecule class for the AIDS dataset.

Graph signal reconstruction is a common task in graph signal pro-
cessing in which partially observed features and a known graph
signal model are applied together for downstream tasks, such as
approximating hidden node values [7-9]. In these cases, a portion
of the features is known, even if a minority, and the graph topology
informs how existing values provide information about those hidden.

The task of recovering completely missing graph signals for a
given graph is far less explored. As nodal values are critical for
predictions and necessary for the implementation of graph neural
networks (GNNs), we require a method to accurately estimate un-
known node features [5,10]. Unlike node-level predictions for which
we have partial nodal observations, we cannot use the underlying
graph structure to propagate existing information and infer missing
values [6, 11]. In such cases, the graph may belong to a family of
graphs whose structural and nodal characteristics are related. Many
graph-level tasks consist of such data, such as predicting molecular
structures and identifying characteristics of social networks [2, 4].
Existing works often characterize graph families by shared random
graph models [12] or latent embedding spaces [6]. However, these
works enforce a global relationship between the graphs and their sig-
nals, requiring knowledge of the entire graph.

Even under the assumption of a shared graph family, the rela-
tionship between each of the graphs and its node features is largely
decoupled for graph-level learning tasks. For example, methods that
interpolate between labeled graphs for improving classification typi-
cally treat graphs and node features separately [13—15]. Approaches
that do aim to replace missing graph signals typically rely on val-
ues that possess solely topological features with no additional nodal
information [5, 16], and many use unrelated values that do not incor-
porate structure [17, 18]. We empirically show that such approaches
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Fig. 2: Schematic of the proposed methodology. First, we compute a feature matrix F® for each graph G based on structural characteristics.
Then, we train a GAE on F) to produce node embeddings _Z“) and corresponding graph embeddings. The latter are used to measure
similarity among graphs, and find the most similar graphs to G®, collected in Q9. The node embeddings are used to find, among the nodes

of the graphs in 0 those nodes which are the closest to each node n from G, collected in /\/}(L” ). Finally, we estimate node features in
g® by averaging the features of the closest graphs and their nodes, resulting in realistic yet accurate node feature estimates.

are suboptimal, even when we include structural information.

Given a set of graphs where only a subset has known node fea-
tures, we present a framework to recover completely missing node
features. In particular, we propose node feature recovery for graph-
level tasks incorporating both graph topology and known feature
values. We demonstrate an implementation of this approach assum-
ing that node features depend on local graph structural characteris-
tics, differently from previous approaches that largely rely on ag-
gregating information from a node’s neighborhood, for example via
low-pass graph filters [19,20]. Thus, we train a Graph AutoEncoder
(GAE) to learn a node embedding space that preserves the local
structural characteristics for each node, visualized in Fig. 1. In this
setting, feature values are assumed to be closer when node neigh-
borhoods are similar, so nodes with known features can effectively
provide the most realistic feature estimates for those with similar
local topologies.

Our contributions are as follows.

() We present an approach to learn completely missing node fea-
tures whose values are assumed to be dependent on graph struc-
ture, and we exhibit the approach in practice through the setting
where features depend on local structure.

(i) We demonstrate that for many graph classification benchmark
datasets, local node structure is indeed indicative of class.

(iii) We empirically validate the ability of our method to not only
accurately learn missing node features using a set of graphs with
known features, but we also demonstrate the value of recovering
accurate node features for downstream tasks.

2. BACKGROUND

In this section, we provide the necessary background on graph-based
learning, along with a review of existing approaches on node repre-
sentation learning and addressing missing node features. We start
with some basic notation. A graph G = {V,E} comprises a set of
nodes V = {1,..., N} and a set of edges £ = {(n1,n2)|n1,n2 €
V}. Graphs can be conveniently represented by the so-called adja-
cency matrix A. For edges in G, (n1,n2) € £iff Ap, n, = 1. In
machine learning and signal processing setups, data is often asso-
ciated with each of the nodes. In particular, let X € RY*F be a
data matrix, whose entry X, s represents the value of feature (sig-
nal) f at node n. The nth row of X is typically referred to as the
data features associated with node n and the fth column of X as the
fth graph signal. On top of these node features, one can also asso-
ciate a number of fopological features, such as centrality values or
clustering coefficients, with each of the nodes [21].

Node representation learning. Learning node representations (em-
beddings) has been a prevalent topic of research in the GSP litera-
ture almost since its inception [22,23]. Since the adjacency matrix
A is an alternative representation of G, each node can be (perfectly)
represented in an /N -dimensional vector space using the correspond-
ing row of A. As a result, node representation algorithms typically
aim to learn representations in a lower-dimensional space, that is,
they aim at learning a matrix Z € RY*F with P < N. The ul-
timate goal when designing Z is to sufficiently characterize nodal
behavior in the context of the graph application at hand. Countless
approaches to learn nodal representations include algorithms from
random walks [24] to GNNs [6, 16].

Most of these approaches learn node embeddings based on node
proximity: the closer nodes n and n’ are in the graph, the more
similar their embeddings z,, and z,,- are. Recent works have begun
to emphasize learning node embeddings based on the role of each
node in the graph, guided by its topological features [5,21]. Under
this setting, we may transform structural similarities between nodes
into geometric relationships in the embedding space. Inspired by this
concept, we draw on such structure-based embeddings to identify
which nodes are similar for sharing feature values.

Missing node features. Previous works dealing with missing fea-
ture data consider partially missing node features, where only some
entries of the feature matrix X are observed. In such formulations,
the task, known as feature imputation [25-27] or graph signal inter-
polation [7-9], is to learn the missing entries of X. The full matrix
X (which contains now both the given and estimated values) is then
applied to a downstream task, usually for node-level tasks on a sin-
gle graph, such as node classification. Feature imputation has been
approached by graph spectral approaches [7], kernel approaches [9],
propagating the known features [8,25] or using GNNs [26,27]. Dif-
ferently from these works, we aim to solve a more difficult graph-
level version of this problem, where for a subset of (or all the) fea-
tures, we do not have access to any of the nodes, and we must infer
the entire set of nodal values (either multiple columns of X or the
full matrix itself) from data associated with other graphs. As de-
tailed in Sec. 3, this paper considers the case of having access to a
set of graphs, a subset of which have no observed node features (that
is, no access to any of the values of X)), which is common in social
networks, for example [10].

In the setting of completely missing node features, other
works replace these features with carefully crafted random ma-
trices [17, 18], position-dependent values [28-30], or structural
properties, such as the degree [5, 16], surprisingly showing that
GNNss are still able to obtain great performance without meaningful
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MUTAG AIDS PROTEINS ENZYMES ogbg-molbbbp ogbg-molbace

Zeros 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00

Ones 2.450 +0.00 6.083 + 0.00 1.414 £0.00 1.414 +0.00 0.806 £ 0.00 0.803 £ 0.00
Random 1.510 4+ 0.004 3.550 £ 0.003 0.965 £ 0.002 0.961 £ 0.003 0.896 £ 0.000 0.895 +£ 0.000
Degree 0.938 £ 0.001 1.414 4+ 0.006 0.899 £ 0.003 0.891 £ 0.001 0.975 £ 0.000 0.984 + 0.000
LSE-NG (Q = 1) 0.631 £ 0.040 0.790 £ 0.005 0.739 £ 0.010 0.715 £ 0.005 0.288 £ 0.002 0.264 £ 0.002
LSE-NG (Q = 3) 0.607 £ 0.012 0.746 £ 0.005 0.719 £ 0.006 0.716 £ 0.007 0.251 £ 0.003 0.228 £ 0.001
LSE-NN (Q =1) | 0.119£0.017 0.555 4+ 0.005 0.708 £0.010 0.654 +£0.013  0.177 £ 0.002 0.113 £ 0.001
LSE-NN (Q = 3) 0.128 £ 0.024 0.562 £ 0.005 0.696 +0.007  0.664 £ 0.011 0.175 £ 0.004  0.126 4 0.002

Table 1: Normalized feature generation error || X — X||%/||X||%. For LSE-NG and LSE-NN, we predict missing node features for each graph
from the @) nearest graphs in the dataset with respect to the graph embeddings in the same class. The top performing methods are bolded.

node features and only using the graph structure. However, random
and constant features are independent of class labels, and we em-
pirically demonstrate that using random or structural node features
is suboptimal. Moreover, our approach using a realistic estimate of
node features exhibits superior performance.

3. METHODOLOGY

We introduce our proposed approach to estimate missing node fea-
tures using structural information and known node features, which
is visualized in Fig. 2. While the schematic in Fig. 2 illustrates the
use of local structure for sharing nodal values, other assumptions can
easily be made to associate nodes for feature learning.

Consider a graph dataset 7 = {(GV, X® y)}T | where
for the i-th sample we have the graph G with N; node% X ¢
RYi*F is a matrix of node features of length F, and y@ is the asso-
ciated label. Let Tmiss C 7 be a subset of 7 with missing features,
where for every (G, X, y) € Tmiss, We only know the duplex (G, y),
and define a1 = 7 \ Tmiss. Our focus in this work is to recover the
mlssmg features X for every (g X, y) € Tmiss, resulting in a set
’7}11;5 consisting of triplets (g X ,y) with approximated features X.
Subsequently, we may use T =
such as graph classification.

Our approach consists of two steps: we first learn a node embed-
ding space preserving graph structural information through which
we compute node similarity, and then we predict the values of miss-
ing node features using nearby node embeddings. While we select
local structural characteristics as the topological features of interest,
note that our framework is amenable to any choice of embedding
space that allows us to relate nodes based on similarity.

Trant U Triss for downstream tasks

Node embedding space. We first obtain a latent space with which
we compute node similarity. We train a GAE to generate node
embeddings characterized by node roles, that is, their local struc-
ture [21]. More precisely, the GAE consists of a graph convolutional
network (GCN) as the encoder to learn from structural characteris-
tics, both global and local, and a multilayer perceptron (MLP) as
the decoder to invert the embedding process. For a graph G, the
GCN encoder takes as input G @ and a corresponding feature matrix
F® ¢ RN:ixF containing structural information from F' features.
We apply the features in [21], including local characteristics such as
node degree and clustering coefficient, although any features may be
used to emphasize different structural behavior. The parameters ®
of the GAE fe are trained to minimize the loss between the output
of the GAE and the input feature matrix
“g“ HF(Z) _ f@(F(Z), g(l))”%7

where fe represents the GAE, whose output is computed as
fo(F,G") = MLPe,(GNNe, (F,G?)), where ® = {©;,©,}

and the GNN is defined via the following recursion [6]
HO — o (AHw—l)@(e)) 7 (1

where H®) are the hidden features at layer £; ©; = {©¥}F
are the learnable parameters of the L layers; and o is a pointwise
non-linearity. We let A denote the adjacency matrix of the input
graph G, and we define A = A + I, D = diag(A1), and
A =D '/2AD /2, Note that the matrix multiplication in (1) can
be understood as a low-pass graph filtering [19], where the nodes av-
erage their own value with the values of their neighbors. As a result,
the embeddings based on (1) will promote similar representations
for nodes whose local structural features are similar. A visualiza-
tion of the resultant node embeddings from graphs in the molecular
classification dataset AIDS [31] is shown in Fig. 1.

Given the GAE, we obtain node embeddings for graph G @ s
Z) = GNNg, (F®,G") € RMi*P where P is the dimension
of the embedding space. We further define graph embeddings z) e
R” by computing the average across the node dimension, that is,

2 = LN 200 ¢ RP where z\”) € R” is kth row of Z(V.

Wlth 'the node and graph embeddings for every graph in T, we
associate G € Triss with nearby graphs and nodes with respect to
the embedding space. Let Q" () C Trun be the set of the Q nearest
graphs to G with the same label, that is, for every V) € Q( ) we
have that ¢y = 3. More specifically, all the graphs in QoW
closer to G () than those with the same label but not in Q O] using
as distance the error between their embeddings ||z — 27 ||5. For
nearby nodes, we s1m11ar1§/ let N;\"7) be the set containing the N
nodes of graph Qm e Q( closest to node n of graph Qm € Tmiss-
That is, all of the N nodes from graph G () in ./\/}(L” ) are closer (in
terms of the same distance previously defined) to node n in graph
G than those not in N\,

Predicting missing graph signals. Once we are able to compute
node similarity, we predict the missing node features using the near-
est graphs and nodes. We propose to generate the features X@ of
g @ e Tmiss as the average of the features in the closest nodes
and graphs to G¥ in T, with respect to their embeddings. Let
C@9) ¢ RNiXNj be the transformation matrix mapping the fea-
tures from G ) ¢ Q(i) to G (i), where the entry at the nth row and
{th column is

1 (%,9)
C(i’j) — \N(i‘j)\ ne {17-~-7Ni}v£€Nn ! )
nt - n .
0 otherwise

For each node n in G, the product C*9) XU ) computes the av-

erage of the feature_s from the nodes in N,S” ), that is, the closest
nodes to n from G\, Given the set of closest graphs QW 10 g,
we compute our node feature estimates for G(*) as

Z C(%J)x(]) 3)

JeQ(l)

X —
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MUTAG AIDS PROTEINS ENZYMES ogbg-molbbbp  ogbg-molbace

True Features 83.25+952 97.00+£1.49 7274+£375 36.17+497 8553 +2.38 74.38 +3.49
Zeros 78.775+9.34 9592187 70.09£525 2550£7.15 @ 77.15+2.63 5333 +£5.25

Ones 8225£9.55 94454+186 6925+£526 2408510 77.77+£3.26 53.55 £ 4.50
Random 81.50 £823 9430+£280 70.75+4.66 22924634 77.61 +£3.46 53.73 +£4.20
Degree 81.00 £ 1241 90.60 £4.88  69.65 +538 25424632  79.71 £3.40 56.34 +4.77

Not using Tmiss 8475 +8.73  95.62£156 7128 +£487 21.83+£675 8327+2.13 67.23 +5.27
LSE-NG(Q =1) | 83.00£748 95754+1.65 71.68+3.76 24.08 £ 5.01 82.94 + 1.90 69.02 +4.10
LSE-NG(Q =3) | 81.504+9.89 95174170 72.79+4.89 2442+530 83.72+1.37 70.28 + 2.94
LSE-NN(Q =1) | 81.50£9.63 9610+ 144 71.154+457 2383+6.10 83.01 £1.54 71.63 + 4.12
LSE-NN(Q =3) | 78254826 9597+ 1.63 70534+4.07 26.00+6.13 84.08-2.10 7033 4+ 3.57

Table 2: Accuracy in the test dataset obtained by the baselines and by the approach presented in this work in the downstream task (graph
classification). The best performances (excluding those obtained using the true features) are bolded.

These features complete the triplet (g“), X(i), y(i)) for every es-
timate in Tmiss, allowing us to use these graphs for downstream
tasks such as graph classification. Observe that our method alters
the dataset by computing the topological features, training the GAE,
and estimating missing features from the nearest graphs and nodes.
Thus, only model training is affected, and the complexity of any
downstream task is unchanged.

4. RESULTS

We showcase the capabilities of our proposed approach for missing
feature generation. We demonstrate our method in comparison with
several baselines in numerical experiments, both for node feature
learning and downstream graph classification.

Datasets. We use six real-world data benchmarks: MUTAG, AIDS,
PROTEINS and ENZYMES from the TUDataset collection [31],
and ogbg-molbace and ogbg-molbppp from the OGBG collec-
tion [32]. Not only are these standard benchmark datasets for clas-
sification tasks, they also provide node features, which allows us to
test the hypothesis that node features are relevant for the classifica-
tion task as well as to evaluate our proposed approach. The datasets
contain either graphs representing molecules (MUTAG, AIDS,
ogbg-molbbbp and ogbg-molbace), where nodes represent atoms
and edges represent chemical bonds, or proteins (PROTEINS) and
enzymes (ENZYMES), where nodes represent structural elements
and edges encode node proximity.

Experimental setup. We split the dataset with 10% of the data for
validation; 10% for testing; 30% for training, or Te.1; and 50% as
missing, that is, the set of graphs with missing node features Tmjss.
We conduct 15 random realizations of these splits, and the results
presented in Tables 1 and 2 list the mean and standard deviation of
the metric of interest (to be defined next) across every realization.
We demonstrate the efficacy of our method on both feature gen-
eration and downstream graph classification. Our approach that uses
the local structure-based node embeddings of nearest neighbors, de-
noted “LSE-NN”, is compared to several baselines. Alternatives to
“LSE-NN” include classical approaches: “Degree” denoting node
degree, “Ones” for features of all ones, “Zeros” for features of all ze-
ros, “Random” with features sampled uniformly at random on [0, 1].
Our method “LSE-NN” exploits not only similar graphs for esti-
mating missing node features but also nodes with similar local struc-
tures. We highlight the benefits of such an approach by also com-
paring it to a modification denoted “LSE-NG”. For this variant, we
obtain the nearest graphs Q¥ for G(*) as for “LSE-NN”, but we then
assign feature values to each node k£ in G @) by taking node features
uniformly at random from the nodes of graphs G O e 0, This is
equivalent to replacing C*?) in (3) with a random permutation ma-
trix P(47) € {0,1}N+*Ni | Thus, “LSE-NG” predicts node features
using similar graphs but does not align nodes by local structure.

Feature generation performance. We first compare the ability of
each method to recover the original node features. The results pre-
sented in Table 1 show the node feature estimation error as ||X —
X||%/|IX]|%, where X denotes the estimated features and X the
true ones. We see that our architecture consistently beats the alter-
natives, achieving a lower error in every dataset considered, in some
cases by a large margin. This shows that the true node features,
which are assumed to be the optimal features for downstream tasks,
are best recovered by our architecture, without the need for partial
observations on the graphs with missing features.

Graph classification performance. We also assess the utility of the
estimated features for graph classification. The results are shown in
Table 2, where we present label prediction accuracy using a GNN
model trained with the estimated features. We choose the Graph Iso-
morphism Network (GIN) [16] as our GNN architecture, a standard
model for graph classification. For this task, we also add an addi-
tional baseline “Not using Tmiss”’, Where we train the GIN only on
the subset of graphs Te,1 with known node features, ignoring the
graphs in Tmiss With missing features. In all cases but the MU-
TAG dataset, the best performance is achieved using the learned
GAE embeddings, either from randomly copying nodes from the
nearest graphs “LSE-NG”, which enjoys the best performance on
PROTEINS dataset, or by using the nearest nodes “LSE-NN”, which
obtains superior performance for all other datasets. Thus, not only
do we infer missing node features accurately, but the estimates are
sufficiently realistic to bolster classification performance when we
do not observe the node features of many graphs. Moreover, the su-
perior performance of “Not using Tmiss” over the true features for
MUTAG implies that node features may not be semantically rele-
vant. Note that while we could improve performance by training the
GAE and GIN end-to-end, our focus is node feature recovery, while
graph classification serves as a relevant downstream task.

5. CONCLUSION

In this work, we proposed a framework to recover completely miss-
ing node features for a set of graphs. We implemented this frame-
work for estimating features that are characterized primarily by lo-
cal graph structure. To this end, we presented a node embedding
space using only local topological features. The embedding space
provided a node similarity metric with which we estimated missing
node features using similar nodes from nearby graphs. Our estimates
aid graph classification when features are missing, emphasizing the
need for accurate nodal characteristics. In the future, we will gen-
eralize to applications such as graph data augmentation, where we
can generate synthetic graphs with realistic node features. Our work
connecting node features and graph structure can bolster the success
of graph-based learning by exploiting not only structural information
but also values explicitly embedded therein.

9934

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 26,2024 at 18:31:44 UTC from IEEE Xplore. Restrictions apply.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

6. REFERENCES

J. Gilmer, S. S. Schoenholz, P. FE. Riley, O. Vinyals, and G. E.
Dahl, “Neural message passing for quantum chemistry,” in Intl.
Conf. on Machine Learning (ICML), vol. 70, pp. 1263-1272,
PMLR, 2017.

D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convolutional
networks on graphs for learning molecular fingerprints,” in Ad-
vances in Neural Info. Process. Syst., vol. 28, 2015.

S. I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee,
B. Glocker, and D. Rueckert, “Distance metric learning us-
ing graph convolutional networks: Application to functional
brain networks,” in Medical Intl. Joint Conf. on Artif. Intell.
and Computer Assisted Intervention (MICCAI), vol. 10433,
pp. 469-477, 2017.

J. Kim and M. Hastak, “Social network analysis: Characteris-
tics of online social networks after a disaster,” Intl. J. of Info.
Management, vol. 38, no. 1, pp. 86-96, 2018.

H. Cui, Z. Lu, P. Li, and C. Yang, “On positional and struc-
tural node features for graph neural networks on non-attributed
graphs,” in ACM Inter. Conf. on Info. & Knowledge Man.,
CIKM, p. 3898-3902, 2022.

T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” in Intl. Conf. on Learn-
ing Representations (ICLR), 2017.

S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevi¢, “Dis-
crete signal processing on graphs: Sampling theory,” /IEEE
Trans. Signal Process., vol. 63, no. 24, pp. 6510-6523, 2015.

D. Ramirez, A. G. Marques, and S. Segarra, “Graph-signal
reconstruction and blind deconvolution for structured inputs,”
Signal Process., vol. 188, p. 108180, 2021.

D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based re-
construction of graph signals,” IEEE Trans. Signal Process.,
vol. 65, pp. 764-778, 2016.

C. Cai and Y. Wang, “A simple yet effective base-
line for non-attributed graph classification,” arXiv preprint
arXiv:1811.03508, 2018.

X. Chen, S. Chen, J. Yao, H. Zheng, Y. Zhang, and I. W. Tsang,
“Learning on attribute-missing graphs,” IEEE Trans. Pattern
Analysis and Machine Intell., vol. 44, no. 2, pp. 740-757, 2022.

M. Navarro and S. Segarra, “Joint network topology inference
via a shared graphon model,” IEEE Trans. Signal Process.,
vol. 70, pp. 5549-5563, 2022.

X. Han, Z. Jiang, N. Liu, and X. Hu, “G-Mixup: Graph
data augmentation for graph classification,” in Intl. Conf. on
Machine Learning (ICML), vol. 162, pp. 8230-8248, PMLR,
2022.

X. Ma, X. Chu, Y. Wang, Y. Lin, J. Zhao, L. Ma, and W. Zhu,
“Graph interpolation via fast Fused-Gromovization,” arXiv
preprint arXiv:2306.15963, 2023.

M. Navarro and S. Segarra, “GraphMAD: Graph mixup
for data augmentation using data-driven convex clustering,”
in IEEE Intl. Conf. Acoust., Speech and Signal Process.
(ICASSP), pp. 1-5, 2023.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?,” in Intl. Conf. on Learning Represen-
tations (ICLR), 2019.

9935

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

R. Abboud, 1. 1. Ceylan, M. Grohe, and T. Lukasiewicz, “The
surprising power of graph neural networks with random node
initialization,” in Intl. Joint Conf. on Artif. Intell., 2021.

R. Sato, M. Yamada, and H. Kashima, “Random features
strengthen graph neural networks,” in SIAM Intl. Conf. on Data
Mining (SDM), 2021.

E. Isufi, F. Gama, D. I. Shuman, and S. Segarra, “Graph filters
for signal processing and machine learning on graphs,” arXiv
preprint arXiv:2211.08854, 2022.

H. Liu, A. Scaglione, and H.-T. Wai, “Blind graph matching
using graph signals,” arXiv preprint arXiv:2306.15747, 2023.

X. Guo, W. Zhang, W. Wang, Y. Yu, Y. Wang, and P. Jiao,
“Role-oriented graph auto-encoder guided by structural in-
formation,” in Database Syst. for Advanced Applications,
pp. 466481, 2020.

H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehen-
sive survey of graph embedding: Problems, techniques, and
applications,” IEEE Trans. Knowledge and Data Engineering,
vol. 30, pp. 1616-1637, 2017.

P. Goyal and E. Ferrara, “Graph embedding techniques, appli-
cations, and performance: A survey,” Knowledge-Based Sys-
tems, vol. 151, pp. 78-94, 2018.

B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online
learning of social representations,” in Intl. Conf. on Knowledge
Discovery and Data Mining (SIGKDD), pp. 701-710, ACM,
2014.

E. Rossi, H. Kenlay, M. I. Gorinova, B. Chamberlain, X. Dong,
and M. M. Bronstein, “On the unreasonable effectiveness of
feature propagation in learning on graphs with missing node
features,” arXiv preprint arXiv:2111.12128, 2021.

J. You, X. Ma, D. Ding, M. Kochenderfer, and J. Leskovec,
“Handling missing data with graph representation learning,”
Advances in Neural Info. Process. Syst., 2020.

I. Spinelli, S. Scardapane, and A. Uncini, “Missing data im-
putation with adversarially-trained graph convolutional net-
works,” Neural Netw., vol. 129, pp. 249-260, 2020.

J. You, R. Ying, and J. Leskovec, “Position-aware graph neural
networks,” in Intl. Conf. on Machine Learning (ICML), vol. 97,
pp. 7134-7143, PMLR, 2019.

P. Li, Y. Wang, H. Wang, and J. Leskovec, “Distance encod-
ing: Design provably more powerful neural networks for graph
representation learning,” in Advances in Neural Info. Process.
Syst., vol. 33, pp. 4465-4478, 2020.

J. You, J. M. Gomes-Selman, R. Ying, and J. Leskovec,
“Identity-aware graph neural networks,” AAAI Conf. on Artif.
Intell., vol. 35, no. 12, pp. 10737-10745, 2021.

C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and
M. Neumann, “TUDataset: A collection of benchmark datasets
for learning with graphs,” in Intl. Conf. on Machine Learning
(ICML), 2020.

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta,
and J. Leskovec, “Open Graph Benchmark: Datasets for Ma-
chine Learning on Graphs,” arXiv preprint arXiv:2005.00687,
vol. abs/2005.00687, 2020.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 26,2024 at 18:31:44 UTC from IEEE Xplore. Restrictions apply.



