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Abstract

This paper is the continuation of a program, initiated in [8, 9], to
derive pointwise estimates on the Green function of Orr Sommerfeld
equations. In this paper we focus on long wavelength perturbations,
more precisely horizontal wavenumbers ω of order ε

1/4, which cor-
respond to the lower boundary of the instability area for monotonic
profiles.

1 Introduction

We are interested in the study of linearized Navier Stokes around a given
fixed profile Us = (U(z), 0) in the inviscid limit ε → 0. Namely, we consider
the following set of equations

ϑtv + Us ·↑v + v ·↑Us +↑p↓ ε!v = 0, (1.1)

↑ · v = 0, (1.2)

where 0 < ε ↔ 1, posed on the half plane x ↗ R, z > 0, with the no-slip
boundary conditions

v = 0 on z = 0. (1.3)

The linear problem (1.1)-(1.3) is a very classical problem that has led to
a huge physical and mathematical literature, focussing in particular on the
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linear stability, on the dispersion relation, on the study of eigenvalues and
eigenmodes, and on the onset of nonlinear instabilities and turbulence [1, 15].
We also mention several e”orts in proving linear to nonlinear stability and
instability around shear flows in the small viscosity limit [2, 3, 4, 5, 10].

Throughout this paper, we will assume that U(z) is holomorphic near
z = 0, that U(0) = 0, that U →(0) > 0, that U(z) > 0 for any z > 0, and that
U converges exponentially fast at ↘, to some positive constant U+

0 < U+ = lim
z↑↓

U(z) < ↘,

as well as all its derivatives (which converge to 0). Note in particular that
this class of profiles includes for instance the exponential profile

U(z) = U+(1↓ e
↔ωz)

where ϖ > 0. As such a profile has no inflection point, according to
Rayleigh’s inflection criterium, it is stable with respect to linearized Eu-
ler equations. However, strikingly, a small viscosity has a destabilizing ef-
fect. That is, all such shear profiles are unstable for large enough Reynolds
numbers ε

↔1 [6, 7].
More precisely, for such shear flows there exist lower and upper marginal

stability branches ωlow(ε) ≃ ε
1/4 and ωup(ε) ≃ ε

1/6, so that whenever
the horizontal wave number ω belongs to [ωlow(ε),ωup(ε)], the linearized
Navier-Stokes equations about this shear profile have an eigenfunction and
a corresponding eigenvalue ϱε with

⇐ϱε ≃ ε
1/2

. (1.4)

Heisenberg [11, 12], then Tollmien and C. C. Lin [13, 14] were among the first
physicists to use asymptotic expansions to study this spectral instability. We
refer to Drazin and Reid [1] and Schlichting [15] for a complete account of the
physical literature on the subject, and to [6, 7] for a complete mathematical
proof of this instability.

To study the linear stability of Us we first introduce the vorticity of the
perturbation

ς = ↑⇒ v = ϑzv1 ↓ ϑxv2,

which leads to
(ϑt + Uϑx)ς + v2U

→→
↓ ε!ς = 0 (1.5)

together with v = ↑
↗
φ and !φ = ς, where φ is the related stream function.

The no-slip boundary condition (1.3) becomes φ = ϑzφ = 0 on {z = 0}.
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We then take the Fourier transform in the tangential variables with
Fourier variable ω and the Laplace transform in time with dual variable
↓iωc, following the traditional notations. In other words we study solutions
of linearized Navier Stokes equations which are of the form

v = ↑
↗
(
e
iϑ(x↔ct)

φϑ(z)
)

This leads to the classical Orr-Sommerfeld equation,

Orrϑ,c(φϑ) := ↓↼!2
ϑφϑ + (U ↓ c)!ϑφϑ ↓ U

→→
φϑ = 0 (1.6)

where
↼ =

ε

iω
,

together with the boundary conditions

φϑ|z=0
= ϑzφϑ|z=0

= 0, lim
z↑↓

φϑ(z) = 0, (1.7)

and where
!ϑ = ϑ

2
z ↓ ω

2
.

The aim of this paper is to give bounds on the Green function of the
Orr Sommerfeld equation when ω is of order ε1/4 and c is of the same order,
which corresponds to one of the boundaries of the instability area. This
restricted study appears to be su#cient to construct linear and nonlinear
instabilities for the full nonlinear Navier Stokes equations [8, 10].

We first observe that since U
→→(z) decays exponentially fast to zero as

z → +↘, the equation (1.6) ”converges” to the following constant-coe#cient
equation

Orr+(φ) = ↓↼!2
ϑφϑ + (U+ ↓ c)!ϑφϑ = 0, (1.8)

which has four independent solutions, with two slow modes e
±µsz and two

fast modes e±µ+
f z, where

µs := |ω|, µf (z) :=

√
U ↓ c+ ↽ω2

↽
, µ

+
f = lim

z↑↓
µf (z). (1.9)

Here, we take the positive real part of the square root. Note in particular
that

|µf (z)| ⇑
∣∣∣
√

⇓c+ εω

↼

∣∣∣ =
∣∣∣
√

ω⇓c+ εω2

ε

∣∣∣ = O(ε↔1/4) (1.10)
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for ω = O(ε1/4), and let c = O(ε1/4), with |⇓c| ⇑ ⇀0ε
1/4. That is, slow and

fast modes have distinct behavior at z = ↘.
In order to construct the Green function of the Orr-Sommerfeld equa-

tions, we need to construct all four independent solutions. In the previous
joint work with Y. Guo [7], we were able to construct two exact slow and
fast decaying solutions using an exact Rayleigh-Airy iterative scheme. The
scheme is rather delicate to construct the remaining two growing solutions.
In this paper, we provide a much simplified iterative scheme to construct
both decaying and growing modes to (1.6). The simplification is due to
the fact that we only need to construct approximate solutions and approx-
imate Green functions. The exact Green function follows by the standard
iteration.

The slow approximate solutions will be solutions of the Rayleigh equation

(U ↓ c)!ϑφ↓ U
→→
φ = 0 (1.11)

with boundary condition φ(0) = 0. They will be constructed by perturbation
of the case ω = 0 where the Rayleigh equation degenerates in

Ray0(φ) = (U ↓ c)ϑ2
zφ↓ U

→→
φ. (1.12)

The main observation is that φ1,0 = U ↓ c is a particular of (1.12). Let φ2,0

be the other solution of this equation such that the Wronskian W [φ1,0,φ2,0]
equals 1. We will construct approximate solutions to the Orr Sommerfeld
equation which satisfy

φ
app
s,↔(0) = U(0)↓ c+ ωU

2
+φ2,0(0) +O(ω2), (1.13)

ϑzφ
app
s,↔(0) = U

→(0) +O(ω). (1.14)

The ”fast approximate solutions” will emerge in the balance between ↓↼!2
ϑφ

and (U ↓ c)!ϑφ. Keeping in mind that ω is small, they will be constructed
starting from solutions of the simplified equation

↓↼ϑ
4
zφ+ (U ↓ c)ϑ2

zφ = 0.

As c is small, and as U
→(0) ⇔= 0, there exists a unique zc ↗ C near 0 such

that
U(zc) = c. (1.15)

Such a zc is called a ”critical layer” in the physics literature. It turns out
that all the instability is driven by what happens near this critical layer.
Near zc, equation (1.15) is a perturbation of the Airy equation

↓↼ϑ
2
z⇁ + U

→(0)(z ↓ zc)⇁ = 0 (1.16)
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posed on ⇁ = ϑ
2
zφ. The fast approximate solutions are thus constructed as

perturbations of second primitives of classical Airy functions. This construc-
tion will be detailed in Section 2, where we will construct two approximate
solutions φapp

f,± to Orr Sommerfeld equation, with a fast behavior and with

φ
app
f,↔(0) = Ai(2,↓γzc)) +O(ε1/4) (1.17)

ϑzφ
app
f,↔(0) = γAi(1,↓γzc) +O(1), (1.18)

where

γ =
(
iωU

→(zc)

ε

)1/3
= O(ε↔1/4), (1.19)

and where Ai(1, .) and Ai(2, .) are the first and the second primitives of the
classical Airy function Ai. We now introduce the Tietjens function, defined
by

T i(z) =
Ai(1, z)

Ai(2, z)
.

Tietjens function is a classical special function in physics, precisely known
and tabulated. Then

ϑzφ
app
f,↔(0)

φ
app
f,↔(0)

= γTi(↓γzc) +O(1). (1.20)

In this paper we will bound the Green function of Orr Sommerfeld equations.
More precisely, for each fixed ω ↗ R+ and c ↗ C, we let Gϑ,c(x, z) be the
corresponding Green kernel of the Orr Sommerfeld problem. By definition,
for each x ↗ R and c ↗ C, Gϑ,c(x, z) solves

Orrϑ,c(Gϑ,c(x, ·)) = δx(·)

on z ⇑ 0, together with the boundary conditions:

Gϑ,c(x, 0) = ϑzGϑ,c(x, 0) = 0, lim
z↑↓

Gϑ,c(x, z) = 0.

That is, for z ⇔= x, the Green function Gϑ,c(x, z) solves the homogenous Orr-
Sommerfeld equations, together with the following jump conditions across
z = x:

[ϑk
zGϑ,c(x, z)]|z=x

= 0, [↽ϑ3
zGϑ,c(x, z)]|z=x

= ↓1

for k = 0, 1, 2. Here, the jump [f(z)]|z=x
across z = x is defined to be the

value of the right limit substracted by that of the left limit as z → x.
The main result in this paper is as follows.
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Theorem 1.1. Let U(z) be a smooth monotone shear profile so that U(0) =
0, U →(0) > 0, and U(z) converges exponentially fast to a nonzero constant
at z = ↘. Let ⇀0 be arbitrarily small and positive, ω = O(ε1/4), and
c = O(ε1/4), with |⇓c| ⇑ ⇀0ε

1/4, such that

|W [φapp
s,↔,φ

app
f,↔]| ⇑ ⇀0. (1.21)

Let Gϑ,c(x, z) be the Green function of the Orr-Sommerfeld problem. Then,
there exists a smooth function P (x) and there are universal positive constants
▷0, C0 so that

|Gϑ,c(x, z)↓
P (x)φs,↔(z)

ε1/4
| ↖

C0

↼µ2
f (x)

(
e
↔ϖ0|ϑ||x↔z| +

1

|µf (x)|
e
↔ϖ0|

∫ z
x ↘µf (y)dy|

)

(1.22)
uniformly for all x, z ⇑ 0. Similarly,

|ϑzGϑ,c(x, z)↓
P (x)ϑzφs,↔(z)

ε1/4
| ↖

C0

↼µ2
f (x)

(
e
↔ϖ0|ϑ||x↔z| +

|µf (z)|

|µf (x)|
e
↔ϖ0|

∫ z
x ↘µf (y)dy|

)
,

|ϑ
2
zGϑ,c(x, z)↓

P (x)φs,↔(z)

ε1/4(U ↓ c)
| ↖

C0

↼µ2
f (x)

( 1

|U ↓ c|
e
↔ϖ0|ϑ||x↔z| +

|µf (z)|2

|µf (x)|
e
↔ϖ0|

∫ z
x ↘µf (y)dy|

)
.

(1.23)

Let us comment (1.21). We have

W [φapp
s,↔,φ

app
f,↔] = γ⇁

app
s,0 (0)T i(↓γzc)φ

app
f,↔(0)↓ ϑzφ

app
s,↔(0)φ

app
f,↔(0)

= ↓

(
γcT i(↓γzc) + U

→(0)
)
Ai(2,↓γzc) +O(ε1/4)

Note that both terms under the brackets are of order O(1), since γc is of
order O(1). The Wronskian vanishes if there exists a linear combination
of φapp

s,↔ and φ
app
f,↔ which satisfies the boundary conditions, namely if there

exists an approximate eigenmode of Orrϑ,c (recalling that φapp
s,↔ and φ

app
f,↔ are

only approximate solutions of Orrϑ,c). We have to remain away from such
approximate modes, since nearby there exists true eigenmodes where Orrϑ,c
is no longer invertible. Note that ⇀1 may be taken arbitrarily small.

Note that in this Theorem we are at a distance O(ε1/4) from a simple
eigenmode ⇁0. It is therefore expected that Orrϑ,c is of order O(ε↔1/4) and
that

Orr↔1
ϑ,c(⇁) = ε

↔1/4
(∫ +↓

0
P (z)⇁(z)dz

)
⇁0 +O(1). (1.24)

As ⇁0 = φs,↔ + O(ε1/4), Gϑ,c is only bounded by O(ε↔1/4), and its main
component is ε↔1/4

Pφs,↔.
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2 The Airy operator

In this section, we construct two approximate solutions of Orr Sommerfeld
equation, called φf,± = φ

app
f,±, with fast increasing or decreasing behaviors.

For these approximate solutions, it turns out that the zeroth order term
U

→→
φf,± may be neglected. Moreover, as ω is small, ω2 terms may also be

neglected. This simplifies the Orr Sommerfeld operator in the so called
modified Airy operator defined by

Airy = Aϑ
2
z , (2.1)

where
A := ↓↼ϑ

2
z + (U ↓ c). (2.2)

Note that
Orrϑ,c = Airy + OrrAiry (2.3)

where
OrrAiry = 2↼ω2

ϑ
2
z ↓ ↼ω

4
↓ ω

2(U ↓ c)↓ U
→→
.

Note also that U ↓ c behaves like U
→(zc)(z ↓ zc) for z near zc, hence A is

very similar to the classical Airy operator ϑ2
z ↓ z when z is close to zc. The

main di#culty lies in the fact that the ”phase” U(z) ↓ c almost vanishes
when z is close to ⇐zc, hence we have to distinguish between two cases:
z ↖ ⇀1 and z ⇑ ⇀1 for some small ⇀1. The first case is handled through a
Langer transformation, which reduces (2.1) to the classical Airy equation.
The second case may be treated using a classical WKB expansion.

We will prove the following proposition.

Proposition 2.1. Let N be an arbitrarily large number. There exist two
smooth functions φapp

± (z), depending on N , to the Orr Sommerfeld equations
such that

|Aϑ
2
zφ

app
± | ↖ Cε

N
|φ

app
± |, (2.4)

|Orrϑ,c(φ
app
± )| ↖ C|φ

app
± |. (2.5)

Moreover for z ↙ ε
1/4 and for k = 1, 2, 3, as ε → 0,

ϑ
k
zφ

app
↔ (z)

φ
app
↔

(z) ≃ (↓1)kµk
f (z),

ϑ
k
zφ

app
+ (z)

φ
app
+

(z) ≃ µ
k
f (z), (2.6)

and any x1 < x2, there hold

∣∣∣
φ
app
± (x2)

φ
app
± (x1)

∣∣∣ ↖ C exp
(
±

∫ x2

x1

⇐µf (y)dy
)
. (2.7)
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To prove this proposition we construct ⇁
app
± = ϑ

2
zφ

app
± for z < zc in

Section 2.2 using the Langer’s transformation introduced in (2.1) and for
z > zc in Section 2.3 using the classical WKB method. We then match
these two constructions in Section 2.4, integrate them twice in Section 2.5
and detail the Green function of Airy operator in Section 2.7.

2.1 A primer on Langer’s transformation

The first step is to construct approximate solutions to A⇁ = 0, starting
from solutions of the genuine Airy equation ↼⇁

→→ = y⇁, thanks to the so
called Langer’s transformation that we will now detail. Let B(x) and C(x)
be two smooth functions. In 1931, Langer introduced the following method
to build approximate solutions to the varying coe#cient Airy type equation

↓↼φ
→→ + C(x)φ = 0 (2.8)

starting from solutions to the similar Airy type equation

↓↼⇁
→→ +B(x)⇁ = 0. (2.9)

We assume that both B and C vanish at some point x0, and that their
derivatives at x0 does not vanish. Let ⇁ be any solution to (2.9). Let f and
g be two smooth functions, to be chosen later. Then

φ(x) = f(x)⇁(g(x))

satisfies

↓↼φ
→→ + C(x)φ = ↓↼f

→→
⇁ ↓ 2↼f →

⇁
→
g
→
↓B(g(x))(g→)2f⇁ ↓ ↼f⇁

→
g
→→ + C(x)f⇁.

Note that f may be seen as a modulation of amplitude and g as a change
of phase. If we choose g such that

B(g(x))(g→)2 = C(x) (2.10)

and f such that
2f →

g
→ + fg

→→ = 0, (2.11)

we then have
↓↼φ

→→ + C(x)φ = ↓↼f
→→
⇁.

Hence φmay be considered as an approximate solution to ↓↼φ
→→+C(x)φ = 0.
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Note that (2.11) may be solved, yielding

f(x) =
1√
g→(x)

. (2.12)

As a consequence, the link between solutions to (2.8) and (2.9) is given by

φ(x) =
1√
g→(x)

⇁(g(x)). (2.13)

Now as for the choice of function g(x), let B1 be the primitive of
∝
B which

vanishes at x0 and let C1 be the primitive of
∝
C which vanishes at x0. Then

the square root of (2.10) may be rewritten as

B1(g(x)) = C1(x). (2.14)

Note that both B1 and C1 behave like C0(x↓ x0)3/2 near x0. Hence (2.14)
may be solved for x near x0. This defines a smooth function g which satisfies
g(x0) = x0. Moreover if B→(x0) = C

→(x0) then g
→(x0) = 1.

2.2 Airy critical points

In this section we use Langer’s transformation to construct approximate
solutions to A⇁ = 0 starting from solutions of the genuine Airy equation.

Let c be of order ε1/4. Then there exists an unique zc ↗ C near 0 such
that U(zc) = c. Note that zc is also of order ε1/4 since U →(0) ⇔= 0. Expanding
U near zc at first order we get the approximate equation

↓↼ϑ
2
z⇁ + U

→(zc)(z ↓ zc)⇁ = 0 (2.15)

which is the classical Airy equation. Let us assume that ⇐U
→(zc) > 0, the

opposite case being similar. A first solution to (2.15) is given by

A(z) := Ai(γ(z ↓ zc)) (2.16)

where Ai is the classical Airy function, solution of Ai→→ = xAi, and where
↼γ

3 = U
→(zc), namely

γ =
(
iωU

→(zc)

ε

)1/3
.

Note that since ω is of order ε1/4, γ is of order ε↔1/4 and that

arg(γ) =
◁

6
+O(ε↔1/4).
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Moreover, as x goes to ±↘, with argument i◁/6,

Ai(x) ≃
1

2
∝
◁

e
↔2x3/2/3

x1/4

(
1 +O(|x|↔3/2)

)
.

In particular, Ai→(x)/Ai(x) ≃ ↓x
1/2 for large x. Hence, as γ(z ↓ zc) goes to

infinity, A(z) goes to 0 and

A
→(z)

A(z)
≃ ↓γ

3/2(z ↓ zc)
1/2 = ↓

(
iωU

→(zc)

ε

)1/2
(z ↓ zc)

1/2

≃ ↓

√
B(z),

(2.17)

with
B(z) = ↼

↔1
U

→(zc)(z ↓ zc).

More precisely, using the next order expansion for A(z), we get

A
→(z)

A(z)
= ↓

√
B(z)

(
1 +O(ε3/8|z ↓ zc|

↔3/2)
)

(2.18)

for |γ(z ↓ zc)| ↙ 1. Here, we have used the fact that γ is of order ε↔1/4.
Another independent solution to (2.15) is given by Ci(γ(z ↓ zc)) where

Ci = ↓i◁(Ai+ iBi),

with Bi(·) being the other classical Airy function. In this case |Ci(γ(z↓zc))|
goes to +↘ as z ↓ zc goes to +↘, with a plus instead of the minus in the
corresponding formula (2.17). Precisely,

γCi
→(γ(z ↓ zc))

Ci(γ(z ↓ zc))
=

√
B(z)

(
1 +O(ε3/8|z ↓ zc|

↔3/2)
)
. (2.19)

We now use Langer’s transformation introduced in the previous section.
As U(z) and U

→(zc)(z↓zc) vanish at the same point with the same derivative
at that point, we use Langer’s transformation with

C(z) = ↼
↔1(U(z)↓ c)

and
B(z) = ↼

↔1
U

→(zc)(z ↓ zc).

Then, introducing g(z) in accordance to (2.10), we have g(z) is locally well
defined for z in a neighborhood of zc, independent of small ↽. Since zc is
of order ε

1/4, g(z) is thus defined for 0 ↖ z ↖ ⇀1 for some positive ⇀1,
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independent of ε. Moreover, g(zc) = zc and g
→(zc) = 1. Now, we use

the two independent solutions Ai(γ(z ↓ zc)) and Ci(γ(z ↓ zc)) to (2.15) to
construct the approximate two solutions to Aφ = 0, which reads

↓↼ϑ
2
z⇁ + (U(z)↓ c)⇁ = 0. (2.20)

Indeed, through the Langer’s transformation, see (2.13), we set

Ãi(z) :=
1√
g→(z)

Ai

(
γ(g(z)↓ zc)

)

and

C̃i(z) :=
1√
g→(z)

Ci

(
γ(g(z)↓ zc)

)
.

It follows that Ãi(z) and C̃i(z) are two approximate solutions of Aφ = 0 in
the sense that

AÃi = ↓↼f
→→
Ai(γ(g(z)↓ zc)), AC̃i = ↓↼f

→→
Ci(γ(g(z)↓ zc)),

recalling f(z) = 1/
√

g→(z). Note that the error term is of order ↼ ≃ ε
3/4.

Note also that at first order, for z of order ε1/4, Ãi(z) equals Ai(γ(z ↓ zc))
since g

→(zc) = 1.
Moreover, for γ(z↓zc) ↙ 1, or equivalently, |z↓zc| ↙ ε

1/4, using (2.18),
we get

ϑzÃi(z)

Ãi(z)
≃ g

→(z)
A

→(g(z))

A(g(z))
≃ ↓g

→(z)
√
B(g(z)) ≃ ↓

√
C(z) ≃ ↓µf (z), (2.21)

and more precisely

ϑzÃi(z)

Ãi(z)
≃ ↓µf (z)

(
1 +O(ε3/8|z ↓ zc|

↔3/2)
)
. (2.22)

Note in particular that when |z↓ zc| ↭ 1, the above error of approximation
is of order ε3/8. Similarly for higher derivatives in |z ↓ zc| ↙ ε

1/4, we get

ϑ
k
z Ãi(z)

Ãi(z)
≃ (↓1)kµk

f (z). (2.23)

Similarly, using (2.19), we have

ϑzC̃i(z)

C̃i(z)
≃ µf (z)

(
1 +O(ε3/8|z ↓ zc|

↔3/2)
)
. (2.24)

The higher derivatives also satisfy the similar bounds as in (2.23).

11



2.3 Away form the critical layer

If z↓ zc is small then g is well defined, precisely on [0,⇀1] for some small ⇀1
as in the previous section. However, if z > ⇀1, then Langer’s transformation
is no longer useful, and we may directly use a WKB expansion. We look for
solutions ⇁ of the form

⇁(z) = e
ϖ(z)/ϱ1/2 (2.25)

to the equation A⇁ = ↼ϑ
2
z⇁ ↓ (U ↓ c)⇁ = 0. Note that

↼ϑ
2
z⇁ =

(
▷
→2 + ↼

1/2
▷
→→
)
⇁.

Hence we look for ▷ such that

▷
→2 + ↼

1/2
▷
→→ = (U ↓ c). (2.26)

Note that as z is away from the critical layer zc, U(z) ↓ c is of order one
and never vanishes.

We shall solve (2.26) in an approximate way by looking for ▷ of the form

▷ =
M∑

i=0

↼
i/2

▷i

for some arbitrarily largeM . The profiles ▷i may be constructed by iteration,
starting from

▷
→
0 = ±

√
U(z)↓ c. (2.27)

Indeed, plugging the Ansatz for ▷ into (2.26) and matching the order in ↽,
we are led to define ▷i inductively through the following relation

▷
→
0▷

→
i = ↓▷

→→
i↔1 ↓

∑

j+k=i↔1

▷
→
j▷

→
k

for i ⇑ 1, noting that ▷→0 never vanishes on z > ⇀1 (since c is of order ε1/4).
In (2.27), we take the positive real part of the square root (of the complex
number). The ↓ choice in (2.27) leads to an approximate solution ⇁

app
f,↔ of

(2.25) that tends to 0 at z = +↘ and the + choice gives an approximate
solution ⇁

app
f,+ of (2.25) that tends to +↘ at z = +↘.

In addition, by construction, we have

▷
→2 + ↼

1/2
▷
→→ = (U ↓ c) +O(εN )

12



where N can be chosen arbitrarily large, provided M is su#ciently large.
Therefore, the approximate solutions ⇁app

f,± satisfy

|A⇁
app
f,±| ↖ ε

N
|⇁

app
f,±|.

Note that
ϑz⇁

app
f,±(⇀1) = ±µf (⇀1)(1 +O(ε1/4))⇁app

f,±(⇀1). (2.28)

More generally,

ϑ
k
z⇁

app
f,±(z) = (↓1)kµk

f (z)⇁
app
f,±(z)(1 +O(ε1/4)) (2.29)

for any z ⇑ ⇀1 and any k.

2.4 Matching at z = zc

It remains to match at z = zc the solutions constructed with the WKB
method for z ⇑ ⇀1 with the solutions construct thanks to Langer’s transfor-
mation for z ↖ ⇀1. We look for constants a and b such that

a
Ãi(z)

Ãi(⇀1)
+ b

C̃i(z)

C̃i(⇀1)

and ⇁
app
f,↔/⇁

app
f,↔(⇀1) and their first derivatives match at z = ⇀1, which leads

to
a+ b = 1

a
ϑzÃi(⇀1)

Ãi(⇀1)
+ b

ϑzC̃i(⇀1)

C̃i(⇀1)
=

ϑz⇁
app
f,↔(⇀1)

⇁
app
f,↔(⇀1)

We now use (2.22), (2.24) and (2.28) to get a ≃ 1 and b = O(µf (⇀1)↔1). We
then multiply a and b by ⇁

app
f,↔(⇀1) to get an extension of ⇁app

f,↔ from z > ⇀1

to the whole line. The construction is similar to extend ⇁
app
f,+.

2.5 From A to Airy

We have now constructed global approximate solutions ⇁app
f,± to the equation

A⇁ = 0 that satisfy
|A⇁

app
f,±| ↖ Cε

N
|⇁

app
f,±|.

Recall from (2.1) that Airy = Aϑ
2
z . It thus remains to solve

ϑ
2
zφ

app
f,±(z) = ⇁

app
f,±(z). (2.30)

13



Let us focus on the ↓ case, the other being similar. For z ⇑ ⇀1, we look for
solutions φapp

f,± of the form

φ
app
f,± = h(z)⇁app

f,± = h(z)eϖ(z)/ϱ
1/2

(2.31)

which leads to

h
→→ + 2h→▷→(z)↼↔1/2 + h▷

→→(z)↼↔1/2 + h▷
→2(z)↼↔1 = 1.

Hence h may be expanded as a series in ↼
1/2; namely,

h(z) =
M∑

i=0

↽
i/2

hi(z)

for some arbitrarily large M . The first two terms h0(z), h1(z) are defined
by

h0(z) =
↼

▷→2(z)
, h1(z) = ↓

1

▷→2(z)
(2h→0(z)▷

→(z) + h0▷
→→(z))

while the remaining terms hi(z), i ⇑ 2, are inductive defined by

hi(z) = ↓
1

▷→2(z)

(
h
→→
i↔2(z) + 2h→i↔1(z)▷

→(z) + hi↔1▷
→→(z)

)
.

We note that for z ⇑ ⇀1 (i.e. away from the critical layer zc), by definition
(2.27), the function ▷(z) is bounded away from zero, and so hi(z) are well-
defined and uniformly bounded.

As a consequence, we may write a complete WKB expansion for φ
app
f,±

given by (2.31). In particular, we note that

h(y)

h(x)
≃

▷
→2(x)

▷→2(y)
≃

U(x)↓ c

U(y)↓ c
≃ 1

for y > x ⇑ ⇀1 (i.e. away from the critical layer zc). Hence,

φ
app
f,±(y)

φ
app
f,±(x)

↫ e
±

∫ y
x ↘µf (z)dz (2.32)

provided y > x ⇑ ⇀1.
For z < ⇀1, we integrate once (2.30) which gives

ϑzφ
app
f,↔(z) = ϑzφ

app
f,↔(⇀1)↓

∫ ς1

z
⇁
app
f,↔(t)dt.

14



Now ⇁
app
f,↔ is a combination of Ãi and C̃i for z < ⇀1. Let us focus on the Ãi

term. We have to study
∫ ς1

z
Ãi(t)dt =

∫ ς1

z

1√
g→(t)

Ai(γ(g(t)↓ zc))dt.

Let s = γ(g(t)↓ zc). Then ds = γg
→(t)dt, hence

∫ ς1

z

1√
g→(t)

Ai(γ(g(t)↓ zc))dt = γ
↔1

∫ φ(g(ς1)↔zc)

φ(g(z)↔zc)

1

g→(t)3/2
Ai(s)ds.

As γ is large, the integral term is equivalent to

γ
↔1

g→(z)3/2

∫ φ(g(ς1)↔zc)

φ(g(z)↔zc)
Ai(s)ds ≃

γ
↔1

g→(z)3/2

[
Ai(1, γ(g(⇀1)↓zc))↓Ai(1, γ(g(z)↓zc))

]

where we introduced the primitive Ai(1, x) of Ai. This leads to

ϑzφ
app
f,↔(z) ≃

γ
↔1

g→(z)3/2
Ai(1, γ(g(z)↓ zc)). (2.33)

We integrate one again ϑzφ
app
f,↔ and introduce Ai(2, x), the second primitive

of Ai and obtain

φ
app
f,↔(z) ≃

γ
↔2

g→(z)5/2
Ai(2, γ(g(z)↓ zc)). (2.34)

The study of φf,+ is similar. As the asymptotic expansion of Ai(z) is known,
we can compute the asymptotic expansions of Ai(1, z) and Ai(2, z); see, for
instance, [1, Appendix] or [7, Section 4]. For instance, there hold

∣∣∣Ai(k, z)
∣∣∣ ↖ C′z∞

↔k/2↔1/4
e
↔2z3/2/3

,

∣∣∣Ci(k, z)
∣∣∣ ↖ C′z∞

↔k/2↔1/4
e
2z3/2/3

,

(2.35)

for k ↗ Z and z ↙ 1.

2.6 End of proof of Proposition 2.1

By construction, we have constructed approximate solutions φ
app
± to the

equation Aϑzφ = 0. Namely,

|Aϑ
2
zφ

app
± | ↖ Cε

N
|φ

app
± |,

15



which is (2.4). As ϑzφ
app
f,+(z) is bounded by Cε

↔1/4
φ
app
f,+(z), (2.4) combined

with (2.3) gives (2.5). We now check the estimates stated in Proposition
2.1.

In fact, we first normalize φ
app
f,± by multiplying it with γ

2, again denoted

by φ
app
f,±, giving the expansions (1.17) and (1.18) at z = 0. Note in particular

that
φ
app
f,±(0) = O(1). (2.36)

Next, the bounds in (2.6) follow directly from the construction and the
estimates (2.23)-(2.24) and (2.29) for z near and away from the critical
layers, respectively.

It remains to prove (2.7). For ε
1/4

↔ z ↖ z
→, the estimate (2.32) is

exactly (2.7). We thus focus on the case when z ↫ ε
1/4. For z

→
↙ ε

1/4, in
view of (2.28) and

we have

φ
app
f,±(z

→) ↫ C exp
(
±

∫ z→

0
⇐µf (s)ds

)

As µf (z) is of order O(ε↔1/4) for z of order ε
1/4, we obtain for any

0 ↖ z ↖ z
→,

∣∣∣
φ
app
f,+(z

→)

φ
app
f,+(z)

∣∣∣ ↖ C exp
∣∣∣
∫ z→

z
⇐µf (s)ds

∣∣∣ (2.37)

for some constant C, and similarly for φf,↔, which gives (2.7).
(2.7)

2.7 Green function for Airy

We will now construct an approximate Green function for the Airy operator.
We first construct an approximate Green function for the operator A =
↓↼ϑ

2
x + (U(x)↓ c). Let

G
Ai(x, y) =

1

↼WAi(x)






⇁
app
+ (y)

⇁
app
+ (x)

if y < x,

⇁
app
↔ (y)

⇁
app
↔ (x)

if y > x,

where W
Ai is the Wronskian determinant of ⇁app

± (x). Note that the Wron-
skian determinant is independent of x, since there is no first derivative term
in A. In addition, we have

W
Ai(x) ≃ γ = O(ε↔1/4).
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In particular, we have

G
Ai(x, y) = O(ε↔1/2) exp

(
↓C

∣∣∣
∫ y

x
⇐µf (z)dz

∣∣∣
)
,

therefore G
Ai is rapidly decreasing in y on both sides of x, within scales of

order ε1/4. By construction,

AG
Ai(x, y) = δx +O(ε3/4)GAi(x, y).

We then integrate twice G
Ai in y to get an approximate Green function for

the Airy operator. More precisely, let

G
Ai,1(x, y) =

∫ +↓

y
G

Ai(x, z)dz

and similarly forGAiry = G
Ai,2, the primitive ofGAi,1, so that ϑ2

yG
Ai,2(x, y) =

G
Ai(x, y). We have

G
Ai,1(x, y) = O(ε↔1/4) exp

(
↓C

∣∣∣
∫ y

x
⇐µf (z)dz

∣∣∣
)
+O(ε↔1/4)1y<x

and similarly for GAi,2

G
Ai,2(x, y) = O(1) exp

(
↓C

∣∣∣
∫ y

x
⇐µf (z)dz

∣∣∣
)
+O(ε↔1/4)1y<xx.

Note that, taking into account the fast decay of GAi near x,

Airy(GAi,2) = δx +O(ε3/4)GAi(x, y)

= δx +O(ε1/4) exp
(
↓C

∣∣∣
∫ y

x
⇐µf (z)dz

∣∣∣
)

= δx +O(ε1/4).

(2.38)

We define the AirySolve operator by

AirySolve(f)(y) =

∫ +↓

0
G

Ai,2(x, y)f(x)dx (2.39)

and the associated error term

ErrorAiry(f)(y) =

∫ +↓

0
O(ε3/4)GAi(x, y)f(x)dx (2.40)

the Airy operator acting on the y variable. These operators will be used in
Section 3.5.
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3 Rayleigh solutions near critical layers

In this section, we construct two approximate solutions φ
app
s,±(z) to the Orr

Sommerfeld equation, with slow behaviors as z → +↘. This together with
the approximate solutions φf,± = φ

app
f,± with fast behaviors constructed in the

previous section forms a basis of approximate solutions, which are su#cient
for the next section to construct the Green function to the Orr Sommerfeld
problem. More precisely, in this section, we prove the following lemma.

Lemma 3.1. For ε small enough, there exist two independent functions
φ
app
s,± such that

W [φapp
s,+,φ

app
s,↔](z) = 1 + o(1),

Orrϑ,c(φ
app
s,+) = O(ε1/2), Orrϑ,c(φ

app
s,↔) = O(ε1/2 log ε).

Furthermore, we have the following expansions in L
↓

φ
app
s,↔(z) = e

↔ϑz
(
U ↓ c+O(ε1/4)

)
.

φ
app
s,+(z) = e

↔ϑz
O(1),

as z → ↘. At z = 0, there hold

φ
app
s,↔(0) = ↓c+ ω

U
2
+

U →(0)
+O(ε1/2)

φ
app
s,+(0) = ↓

1

U →(0)
+O(ε1/2)

where U+ = limz↑↓ U(z).

The construction of approximate solutions for the Orr Sommerfeld equa-
tion starts with the construction of approximate solutions for the Rayleigh
operator. For small ω, the construction of solutions to the Rayleigh equation
is a perturbation of the construction for ω = 0, which is explicit. We will
now detail the construction of an inverse of Ray0 and then of an approximate
inverse of Rayϑ for small ω. For convenience, we recall that

Orrϑ,c(φϑ) = ↓↼!2
ϑφϑ + (U ↓ c)!ϑφϑ ↓ U

→→
φϑ

Rayϑ(φϑ) = (U ↓ c)!ϑφϑ ↓ U
→→
φϑ.

In particular, Ray0(·) denotes the Rayleigh operator Rayϑ(·) for ω = 0.
Note that

Orrϑ,c(φϑ) = Rayϑ(φϑ)↓ ↼!2
ϑφϑ. (3.1)
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3.1 Function spaces

In the next sections we will denote

X
↼ = L

↓
↼ =

{
f | sup

z≃0
|f(z)|e↼z < +↘

}
.

The highest derivative of the Rayleigh equation vanishes at z = zc, since
U(zc) = c. To handle functions which have large derivatives when z is
close to ⇐zc, we introduce the space Y

↼ defined as follows. Note that in
our analysis, zc is never real, so z ↓ zc never vanishes. We are close to a
singularity but never reach it.

Precisely, we say that a function f lies in Y
↼ if for any z ⇑ 1,

|f(z)|+ |ϑzf(z)|+ | ϑ
2
zf(z)| ↖ Ce

↔↼z

and if for z ↖ 1,

|f(z)| ↖ C(1 + |z ↓ zc|| log(z ↓ zc)|),

|ϑzf(z)| ↖ C(1 + | log(z ↓ zc)|),

|ϑ
2
zf(z)| ↖ C(1 + |z ↓ zc|

↔1).

The best constant C in the previous bounds defines the norm ∈f∈Y ω . Note
that Y ↼

∋ X
↼.

3.2 Rayleigh equation when ω = 0

In this section, we study the Rayleigh operator Ray0. More precisely, we
solve

Ray0(φ) = (U ↓ c)ϑ2
zφ↓ U

→→
φ = f. (3.2)

The main observation is that

Ray0(U ↓ c) = 0.

Therefore
φ1,0 = U ↓ c

is a first explicit solution. The second one is obtained through the Wronskian
equation

W [φ1,0,φ2,0] = 1.

This leads to the following Lemma whose proof is given in [7, Lemma 3.2]
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Lemma 3.2 ([6, 7]). Assume that ⇓c ⇔= 0. There exist two independent
solutions φ1,0 = U ↓ c and φ2,0 of Ray0(φ) = 0 with unit Wronskian deter-
minant

W (φ1,0,φ2,0) := ϑzφ2,0φ1,0 ↓ φ2,0ϑzφ1,0 = 1.

Furthermore, there exist smooth functions P (z) and Q(z) with P (zc) ⇔= 0
and Q(zc) ⇔= 0, so that, near z = zc,

φ2,0(z) = P (z) +Q(z)(z ↓ zc) log(z ↓ zc). (3.3)

Moreover

φ2,0(0) = ↓
1

U →(0)

and

ϑzφ2,0(z) +
1

U+
↗ Y

↼1 (3.4)

for some 01 > 0.

Let φ1,0,φ2,0 be constructed as in Lemma 3.2. Then the Green function
GR,0(x, z) of the Ray0 operator can be explicitly defined by

GR,0(x, z) =


(U(x)↓ c)↔1

φ1,0(z)φ2,0(x), if z > x,

(U(x)↓ c)↔1
φ1,0(x)φ2,0(z), if z < x.

The inverse of Ray0 is explicitly given by

RaySolver0(f)(z) :=

∫ +↓

0
GR,0(x, z)f(x)dx. (3.5)

Note that the Green kernel GR,0 is singular at zc. The following lemma
asserts that the operator RaySolver0(·) is in fact well-defined from X

↼ to
Y

0, which in particular shows that RaySolver0(·) gains two derivatives, but
losses the fast decay at infinity. It transforms a bounded function into a
function which behaves like (z ↓ zc) log(z ↓ zc) near zc.

Lemma 3.3. Assume that ⇓c ⇔= 0. For any f ↗ X
↼, RaySolver0(f) is a

solution to the Rayleigh problem (3.2). In addition, RaySolver0(f) ↗ Y
0,

and there holds

∈RaySolver0(f)∈Y 0 ↖ C(1 + | log⇓c|)∈f∈Xω ,

for some constant C.

20



Proof. Using (3.4), it is clear that φ1,0(z) and φ2,0(z)/(1 + z) are uniformly
bounded. Thus, considering the cases x < 1 and x > 1, we obtain

|GR,0(x, z)| ↖ Cmax{(1 + x), |x↓ zc|
↔1

}. (3.6)

That is, GR,0(x, z) grows linearly in x for large x and has a singularity of
order |x↓ zc|

↔1 when x is near zc. As |f(z)| ↖ e
↔↼z

∈f∈Xω , the integral (3.5)
is well-defined and we have

|RaySolver0(f)(z)| ↖ C∈f∈Xω

∫ ↓

0
e
↔↼xmax{(1 + x), |x↓ zc|

↔1
} dx

↖ C(1 + | log⇓c|)∈f∈Xω ,

in which we used the fact that ⇓zc △ ⇓c.
To bound the derivatives, we need to check the order of the singularity

for z near zc. We note that

|ϑzφ2,0| ↖ C(1 + | log(z ↓ zc)|),

and hence

|ϑzGR,0(x, z)| ↖ Cmax{(1 + x), |x↓ zc|
↔1

}(1 + | log(z ↓ zc)|).

Thus, ϑzRaySolver0(f)(z) behaves as 1+ | log(z↓zc)| near the critical layer.
In addition, from the Ray0 equation, we have

ϑ
2
z (RaySolver0(f)) =

U
→→

U ↓ c
RaySolver0(f) +

f

U ↓ c
. (3.7)

This proves that RaySolver0(f) ↗ Y
0 and gives the desired bound.

3.3 Approximate Green function when ω ↔ 1

Let φ1,0 and φ2,0 be the two solutions of Ray0(φ) = 0 that are constructed
above, in Lemma 3.2. We now construct an approximate Green function to
the Rayleigh equation for ω > 0. To proceed, let us introduce

φ1,ϑ = φ1,0e
↔ϑz

, φ2,ϑ = φ2,0e
↔ϑz

. (3.8)

A direct computation shows that their Wronskian determinant equals

W [φ1,ϑ,φ2,ϑ] = ϑzφ2,ϑφ1,ϑ ↓ φ2,ϑϑzφ1,ϑ = e
↔2ϑz

.
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Note that the Wronskian vanishes at infinity since both functions have the
same behavior at infinity. In addition,

Rayϑ(φj,ϑ) = ↓2ω(U ↓ c)ϑzφj,0e
↔ϑz (3.9)

We are then led to introduce an approximate Green function GR,ϑ(x, z),
defined by

GR,ϑ(x, z) =


(U(x)↓ c)↔1

e
↔ϑ(z↔x)

φ1,0(z)φ2,0(x), if z > x

(U(x)↓ c)↔1
e
↔ϑ(z↔x)

φ1,0(x)φ2,0(z), if z < x.

Again, like GR,0(x, z), the Green function GR,ϑ(x, z) is “singular” near zc.
By a view of (3.9),

Rayϑ(GR,ϑ(x, z)) = δx + ER,ϑ(x, z), (3.10)

for each fixed x, where the error kernel ER,ϑ(x, z) is defined by

ER,ϑ(x, z) =


↓2ω(U(z)↓ c)(U(x)↓ c)↔1

e
↔ϑ(z↔x)

ϑzφ1,0(z)φ2,0(x), if z > x

↓2ω(U(z)↓ c)(U(x)↓ c)↔1
e
↔ϑ(z↔x)

φ1,0(x)ϑzφ2,0(z), if z < x.

We then introduce an approximate inverse of the operator Rayϑ defined by

RaySolverϑ(f)(z) :=

∫ +↓

0
GR,ϑ(x, z)f(x)dx (3.11)

and the related error operator

ErrR,ϑ(f)(z) := 2ω(U(z)↓ c)

∫ +↓

0
ER,ϑ(x, z)f(x)dx (3.12)

Lemma 3.4. Assume that ⇓c > 0. For any f ↗ X
↼, with ω < 0, the

function RaySolverϑ(f) is well-defined in Y
ϑ, and satisfies

Rayϑ(RaySolverϑ(f)) = f + ErrR,ϑ(f).

Furthermore, there hold

∈RaySolverϑ(f)∈Y ε ↖ C(1 + | log⇓c|)∈f∈Xω , (3.13)

and
∈ErrR,ϑ(f)∈Y ω ↖ C|ω|(1 + | log(⇓c)|)∈f∈Xω , (3.14)

for some universal constant C.
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Proof. The proof follows that of Lemma 3.3. Indeed, since

GR,ϑ(x, z) = e
↔ϑ(z↔x)

GR,0(x, z),

the behavior near the critical layer z = zc is the same for these two Green
functions, and hence the proof of (3.13) and (3.14) near the critical layer
identically follows from that of Lemma 3.3.

Let us check the behavior at infinity. We can normalize to assume
∈f∈Xω = 1. Using (3.6), we get

|GR,ϑ(x, z)| ↖ Ce
↔ϑ(z↔x)max{(1 + x), |x↓ zc|

↔1
}.

Hence, by definition,

|RaySolverϑ(f)(z)| ↖ Ce
↔ϑz

∫ ↓

0
e
ϑx
e
↔↼xmax{(1 + x), |x↓ zc|

↔1
} dx

which is bounded by C(1 + | log⇓c|)e↔ϑz, upon recalling that ω < 0. This
proves the right exponential decay of RaySolverϑ(f)(z) at infinity, for all
f ↗ X

↼.
The estimates on ErrR,ϑ are the same, once we notice that (U(z) ↓

c)ϑzφ2,0 has the same bound as that for φ2,0, and similarly for φ1,0.

Remark 3.5. For f(z) = (U ↓ c)g(z) with g ↗ X
↼, the same proof as done

for Lemma 3.4 yields

∈RaySolverϑ(f)∈Y ε ↖ C∈g∈Xω ,

∈ErrR,ϑ(f)∈Y ω ↖ C|ω|∈g∈Xω
(3.15)

which are slightly better estimates as compared to (3.13) and (3.14).

3.4 Construction of εapp
s,↔

Let us start with the decaying solution φs,↔. We note that

⇁0 = e
↔ϑz(U ↓ c)

is only an O(ω) smooth approximate solution to Rayleigh equation, leaving
an error of approximation

e0 := Rayϑ(⇁0) = ↓2ω(U ↓ c)U →
e
↔ϑz

,

which is of order ω. Similarly, a direct computation, see (3.1), shows that

Orrϑ,c(⇁0) = e0 ↓ ↼!2
ϑ⇁0 = O(ω+ |↼|) = O(ε1/4)

23



upon recalling ↼ = ε/iω, with ω = O(ε1/4). This is not su#cient for our
purposes, and we have to go to the next order. We therefore introduce

⇁1 = ↓RaySolverϑ(e0).

Note that ⇁1 is of order O(ω) in Y
↼, and behaves like ω(z ↓ zc) log(z ↓ zc)

near zc. It particular ⇁1 is not a smooth function near zc. Its fourth order
derivative behaves like ω/(z ↓ zc)3 in the critical layer. We have

Orrϑ,c(⇁1) = ↓↼(ϑ2
z ↓ ω

2)2⇁1 +Rayϑ(⇁1).

hence

Orrϑ,c(⇁0 + ⇁1) = ↓↼(ϑ2
z ↓ ω

2)2⇁1↓↼!2
ϑ⇁0 + ErrR,ϑ(e0). (3.16)

Note that, using (3.14), we have

ErrR,ϑ(e0) = O(ω2
| log(ω)|)Y ω (3.17)

where logω corresponds to the log loss of log⇓c, with |⇓c| ⇑ ⇀0ε
1/4. More-

over, using Rayleigh equation,

(ϑ2
z ↓ ω

2)⇁1 =
Rayϑ(⇁1)↓ U

→→
⇁1

U ↓ c
,

hence, we compute

↼(ϑ2
z ↓ ω

2)2⇁1 = ↼(ϑ2
z ↓ ω

2)
{
Ray(⇁1)↓ U

→→
⇁1

U ↓ c

}
. (3.18)

In view of Remark 3.5, Rayϑ(⇁1) and U
→→
⇁1 are of order O(ω) in X

↼. We
thus have

↼ω
2
∣∣∣
Ray(⇁1)↓ U

→→
⇁1

U ↓ c

∣∣∣ ↖ C
↼ω

2

|z ↓ zc|
↖ C

↼ω
2

|⇓c|
↖ C↼ω = O(ε)Xω .

Next we expand ϑ
2
z in (3.18) which gives three terms

↼
ϑ
2
zRay(⇁1)↓ ϑ

2
z (U

→→
⇁1)

U ↓ c
↓ 2↼U →ϑzRay(⇁1)↓ ϑz(U →→

⇁1)

(U ↓ c)2

+ ↼(Ray(⇁1)↓ U
→→
⇁1)ϑ

2
z

1

U ↓ c
.

We start with the first term. As Rayϑ(⇁1) and ⇁1 are of order O(ω) in Y
↼,

this first quantity is bounded by

C↼

(
1 +

ω| log⇓c|

|z ↓ zc|
+

ω

|z ↓ zc|
2

)
↖ C

↼ω

|⇓c|2
= O(ω2). (3.19)
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The second term is treated similarly, while the third term in the expansion
of (3.18) is

↼

[
Ray(⇁1)↓ U

→→
⇁1

]
(z ↓ zc)

↔3

which is bounded by O(ω). Thus, putting these into (3.16), we get

Orrϑ,c(⇁0 + ⇁1) = E, (3.20)

in which we can write the error term as

E = E1 + E2, E1 = O(ω2), E2 ↖ C↼ω|z ↓ zc|
↔3

.

This error term E2 is therefore too large for our purposes. However, it
is located near z = zc, namely in the critical layer. We therefore correct
⇁0 + ⇁1 by ⇁2 by approximately inverting the Airy operator in this layer.
More precisely, let

⇁2 = ↓AirySolve(E2),

which will create an error term

E3 = Orrϑ,c(⇁2) + E2

= Airy(⇁2) + OrrAiry(⇁2) + E2

= OrrAiry(⇁2) + ErrorAiry(E2).

Let us now bound ⇁2. Using (2.39), we have

|⇁2(y)| ↖ C↼ω

∫ +↓

0
|x↓ zc|

↔3
(
e
↔|

∫ y
x ↘µf (z)dz| +O(ε↔1/4)1y<xx

)
dx.

Writing 1y<xx = 1y<x(x↓ zc) + 1y<xzc, we thus have

|⇁2(y)| ↖ C↼ω

∫ +↓

0

(
|x↓ zc|

↔3 + ε
↔1/4

|x↓ zc|
↔2

)
dx

↖ C↼ω

(
|⇓c|

↔2 + ε
↔1/4

|⇓c|
↔1

)
= O(ω2).

This together with (2.3) yields OrrAiry(⇁2) = O(ω2). Similarly, using
(2.38), we get

ErrorAiry(E2)(z) ↖ C↼ω

∫ +↓

0
|x↓ zc|

↔3
O(ε1/4)dx = O(ω3).

Therefore, we have

Orrϑ,c(⇁0 + ⇁1 + ⇁2) = O(ω2).
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We define
φ
app
s,↔ = ⇁0 + ⇁1 + ⇁2.

To end this section we compute ⇁(0). By definition,

⇁1(0) = ↓RaySolverϑ(e0)(0) = ↓φ2,ϑ(0)

∫ +↓

0
e
2ϑx

φ1,ϑ(x)
e0(x)

U(x)↓ c
dx

= ↓2ωφ2,0(0)

∫ +↓

0
U

→(U ↓ c)dz = ωφ2,0(0)
[
(U ↓ c)2

]+↓

0

= ↓ωφ2,0(0)
[
(U+ ↓ c)2 ↓ c

2
]
= ω

U+

U →(0)
(U+ ↓ 2c).

From the definition, we have

φs,↔(0) = U0 ↓ c+ ⇁1(0) +O(ω2).

This proves the lemma, using that U0 ↓ c = O(zc).

3.5 Construction of εapp
s,+

We first start with φ2,ϑ = φ2,0e
↔ϑz, which is an approximate solution of

Rayleigh equation, up to a O(ω) error term. Precisely, noting Ray0(φ2,0) =
0, we compute the error of approximation

e1 = Rayϑ(φ2,ϑ) = ↓2ω(U ↓ c)ϑzφ2,0e
↔ϑz = O(ω)

in which there is no logarithmic loss ϑzφ2,0, since U ↓ c vanishes at z = zc.
Next, we introduce

φ3 = ↓RaySolverϑ(e1).

Then, using (3.14),

Rayϑ(φ2,ϑ + φ3) = ↓ErrR,ϑ(e1) = O(ω2). (3.21)

Let us set
φ
app
s,+ = φ2,ϑ + φ3.

By construction, φ2,0 is bounded in Y
↼, so is φ2,ϑ = φ2,0e

↔ϑz. On the
other hand, using Lemma 3.4 and the bound (3.13), the function φ3 =
↓RaySolverϑ(e1) is of order ω in Y

↼. That is, φapp
s,+ is bounded in Y

↼, and
thus behaves like (z ↓ zc) log(z ↓ zc) near zc, due to φ2,0(z). In addition,
using (3.21), we have

Orrϑ,c(φ
app
s,+) = ↓↼(ϑ2

z ↓ ω
2)2φapp

s,+ +O(ω2).
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Note that away from z = zc, the right hand side is of order O(|↽| + ω
2) =

O(ε1/2). Near z = zc, we again use the Rayleigh equation (3.21), we get

(ϑ2
z ↓ ω

2)φapp
s,+ =

U
→→

U ↓ c
φ
app
s,+ +O(ω2),

which gives

(ϑ2
z ↓ ω

2)2φapp
s,+ = (ϑ2

z ↓ ω
2)
(

U
→→

U ↓ c
φ
app
s,+

)
.

The worst term in the right hand side is

[
ϑ
2
z

( 1

U ↓ c

)]
U

→→
φ
app
s,+

which is of order (⇓zc)↔3 times φ
app
s,+, near z = zc. Hence, recalling |⇓c| ⇑

⇀0ε
1/4, Orrϑ,c(φ

app
s,+) is of order

↼

(⇓zc)3
φ
app
s,+ ≃

ε

ω

1

ε3/4
φ
app
s,+ ≃ φ

app
s,+ = φ2,ϑ + φ3

which is of order (z ↓ zc) log(z ↓ zc), coming from φ2,0(z). That is, similar
to (3.20), we obtain

Orrϑ,c(φ
app
s,+) = E1 + E2

with E1 = O(ω2), while E2 = O(↽)(z ↓ zc)↔3
φ2,0, which is a logω loss as

compared to (3.20) for the construction of φapp
s,↔. The remaining construc-

tion to correct the approximation near the critical layer by approximately
inverting the Airy operator follows identically to the previous section.

4 Green function for Orr-Sommerfeld equations

Having constructed slow and fast approximate modes φ
app
s,± and φ

app
f,± in the

previous two sections, we are now ready to construct an approximate Green
function G

app. We will decompose this Green function into two components

G
app = G

app
i +G

app
b

where G
app
i takes care of the source term δx and where G

app
b takes care of

the boundary conditions.
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4.1 Interior approximate Green function

We look for Gapp
i (x, y) of the form

G
app
i (x, y) = a+(x)φ

app
s,+(y) + b+(x)

φ
app
f,+(y)

φ
app
f,+(x)

for y < x,

G
app
i (x, y) = a↔(x)φ

app
s,↔(y) + b↔(x)

φ
app
f,↔(y)

φ
app
f,↔(x)

for y > x,

where φ
app
f,±(x) play the role of normalization constants. Let

F± = φ
app
f,±(x)

and let
v(x) = (↓a↔(x), a+(x),↓b↔(x), b+(x)).

By definition of a Green function, Gapp, ϑyGapp and ϑ
2
yG

app are continuous
at x = y, whereas ↓↼ϑ

3
yG

app has a unit jump at x = y. Let

M =





φs,↔ φs,+ φf,↔/F↔ φf,+/F+

ϑyφs,↔/µf ϑyφs,+/µf ϑyφf,↔/(F↔µf ) ϑyφf,+/(F+µf )
ϑ
2
yφs,↔/µ

2
f ϑ

2
yφs,+/µ

2
f ϑ

2
yφf,↔/(F↔µ

2
f ) ϑ

2
yφf,+/(F+µ

2
f )

ϑ
3
yφs,↔/µ

3
f ϑ

3
yφs,+/µ

3
f ϑ

3
yφf,↔/(F↔µ

3
f ) ϑ

3
yφf,+/(F+µ

3
f )



 ,

(4.1)
where the functions φs,± = φ

app
s,± and φf,± = φ

app
f,± and their derivatives are

evaluated at y = x, and where the various factors µf are introduced to
renormalize the lines of M . Then

Mv = (0, 0, 0,↓1/(↼µ3
f )). (4.2)

We will evaluate M
↔1 using the following block structure. Let A, B, C and

D be the two by two matrices defined by

M =


A B

C D


.

We will prove that C is small, that D is invertible and that A is related
to Rayleigh equations. This will allow the construction of an explicit ap-
proximate inverse, and by iteration, of the inverse of M . Let us detail these
points.

Let us first study D. Following (2.6), for z ↙ ε
1/4,

D =


1 1
↓1 1


+ o(1),
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hence D is invertible and

D
↔1 =


1 ↓1
1 1


+ o(1).

For z of order ε1/4, we note that F+ and F↔ are of order O(1),

ϑ
2
yφf,↔ = γ

2 1

(g→)2(x)

Ai(γg(x))

Ai(2, γg(x))
+O(γ)

and similarly for ϑyφf,↔ and ϑyφf,+. Note that γ2/µ2
f , γ

3
/µ

3
f , Ai(2, γg(x))

and Ci(2, γg(x)) are of order O(1). As g
→(zc) = 1, up to normalization of

lines and columns, D is close to


Ai Ci

Ai
→

Ci
→



which is invertible by definition of the special Airy functions Ai and Ci.
Let us turn to C. The worst term in C is those involving φs,+ because of

its logarithmic singularity. More precisely, ϑk
yφs,+ behaves like (z ↓ zc)1↔k

and is bounded by |⇓c|
1↔k

≃ ε
(1↔k)/4 for k = 2, 3. Hence, as µ↔1

f = O(ε1/4),

C =


O(ε1/2) O(ε1/2(z ↓ zc)↔1)
O(ε3/4) O(ε3/4(z ↓ zc)↔2)



Note that A = A1A2 with

A1 =


1 0
0 µ

↔1
f


, A2 =


φ
app
s,↔ φ

app
s,+

ϑyφ
app
s,↔ ϑyφ

app
s,+


.

We have

A
↔1
2 =

1

det(A2)


ϑyφ

app
s,+ ↓φ

app
s,+

↓ϑyφ
app
s,↔ φ

app
s,↔


.

The determinant A2 is the Wronskian of φapp
s,± and hence a perturbation of the

Wronskian of φ1,ϑ and φ2,ϑ which equals to e
↔ϑx. We distinguish between

x < ω
1/2 and x > ω

1/2. In the second case, Orrc,ϑ is a small perturbation
of a constant coe#cient fourth order operator. The Green function may
therefore be explicitly computed. We will not detail the computations here
and focus on the case where x < ω

1/2. In this case the Wronskian is of order
O(1). As a consequence

A
↔1
2 =


O(log |z ↓ zc|) O(1)

O(1) O(z ↓ zc)


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and

A
↔1 =


O(log |z ↓ zc|) O(µf )

O(1) O(µf (z ↓ zc))



We now observe that the matrix M has an approximate inverse

M =


A

↔1
↓A

↔1
BD

↔1

0 D
↔1



in the sense that MM = Id+N where

N =


0 0

CA
↔1

↓CA
↔1

BD
↔1


.

Now a direct calculation shows that

CA
↔1 = O(ε1/4)

since ⇓zc = O(ε1/4). As D↔1 and B are uniformly bounded, N = O(ε1/4).
In particular, (Id+N)↔1 is well defined and

M
↔1 = M(Id+N)↔1 = M

∑

n≃0

N
n= M

∑

n≃0

O(εn/4).

Note that the two first lines of Nn vanish. The other lines are at most of
order O(ε1/4). Therefore

(Id+N)↔1(0, 0, 0, 1/εµ3
f ) =

(
0, 0,O(1/εµ4

f ), 1/εµ
3
f

)
.

As D↔1 is bounded and A
↔1

BD
↔1 is of order O(µf ), we obtain that a± and

b± are respectively bounded by C/εµ
2
f and C/εµ

3
f .

4.2 Boundary approximate Green function

We now add to G
app
i another Green function G

app
b to handle the boundary

conditions. We look for Gapp
b under the form

G
app
b (y) = dsφs,↔(y) + df

φf,↔(y)

φf,↔(0)
,

where φf,↔(0) in the denominator is a normalization constant, and look for
ds and df such that

G
app
i (x, 0) +G

app
b (0) = ϑyG

app
i (x, 0) + ϑyG

app
b (0) = 0. (4.3)
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Let

M =


φs,↔ φf,↔/φf,↔(0)
ϑyφs,↔ ϑyφf,↔/φf,↔(0)


,

the functions being evaluated at y = 0. Then (4.3) can be rewritten as

Md = ↓(Gapp
i (x, 0), ϑyG

app
i (x, 0))

where d = (ds, df ). Note that

(Gapp
i (x, 0), ϑyG

app
i (x, 0)) = Q(a+, b+)

where

Q =


φs,+(0) 1
ϑyφs,+(0) ϑyφf,+(0)/φf,+(0)


=


O(1) 1

O(log(ε)) O(ε↔1/4)


.

By construction
d = ↓M

↔1
Q(a+, b+). (4.4)

We have

M
↔1 =

1

det(M)


ϑyφf,↔(0)/φf,↔(0) ↓1

↓ϑyφs,↔(0) φs,↔(0)


.

The determinant of M equals

detM =
W [φs,↔,φf,↔](0)

φf,↔(0)

and does not vanish by assumption. Therefore

M
↔1 =


O(ε↔1/4) ↓1
O(1) O(ε1/4)


.

As a consequence,

M
↔1

Q =


O(ε↔1/4) O(ε↔1/4)
O(1) O(1)


.

4.3 Exact Green function

Once we have an approximate Green function, we obtain the exact Green
function by a standard iterative scheme, following the strategy developed
in [8]. The stated bounds follow from those obtained for the approximate
Green function.
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