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Abstract

This paper is the continuation of a program, initiated in |8 [9], to
derive pointwise estimates on the Green function of Orr Sommerfeld
equations. In this paper we focus on long wavelength perturbations,
more precisely horizontal wavenumbers « of order /4, which cor-
respond to the lower boundary of the instability area for monotonic
profiles.

1 Introduction

We are interested in the study of linearized Navier Stokes around a given
fixed profile Us = (U(%),0) in the inviscid limit ¥ — 0. Namely, we consider
the following set of equations

ov+Us - Vo+ov-VUs+ Vp—vAv =0, (1.1)

V.v=0, (1.2)

where 0 < v <« 1, posed on the half plane x € R, z > 0, with the no-slip
boundary conditions
v=0 on z=0. (1.3)

The linear problem ((1.1))-(1.3]) is a very classical problem that has led to
a huge physical and mathematical literature, focussing in particular on the
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linear stability, on the dispersion relation, on the study of eigenvalues and
eigenmodes, and on the onset of nonlinear instabilities and turbulence [1}[15].
We also mention several efforts in proving linear to nonlinear stability and
instability around shear flows in the small viscosity limit [2, 3} [4} |5} [10].

Throughout this paper, we will assume that U(z) is holomorphic near
z =0, that U(0) = 0, that U'(0) > 0, that U(z) > 0 for any z > 0, and that
U converges exponentially fast at co, to some positive constant Uy

0< Uy = lim U(z) < o0,
Z—00
as well as all its derivatives (which converge to 0). Note in particular that
this class of profiles includes for instance the exponential profile

U) = Uy (1 - )

where 8 > 0. As such a profile has no inflection point, according to
Rayleigh’s inflection criterium, it is stable with respect to linearized Eu-
ler equations. However, strikingly, a small viscosity has a destabilizing ef-
fect. That is, all such shear profiles are unstable for large enough Reynolds
numbers v [6, [7].

More precisely, for such shear flows there exist lower and upper marginal
stability branches ajoy(v) ~ v/* and ayp(v) ~ v'/6) so that whenever
the horizontal wave number a belongs to [cew(V), aup(v)], the linearized
Navier-Stokes equations about this shear profile have an eigenfunction and
a corresponding eigenvalue A\, with

RN, ~ /2. (1.4)

Heisenberg |11, [12], then Tollmien and C. C. Lin [13},[14] were among the first
physicists to use asymptotic expansions to study this spectral instability. We
refer to Drazin and Reid [1] and Schlichting [15] for a complete account of the
physical literature on the subject, and to 6, [7] for a complete mathematical
proof of this instability.

To study the linear stability of U we first introduce the vorticity of the
perturbation

w=V Xv =011 — dyvg,

which leads to
(0 + Udp)w + v2U" — vAw =0 (1.5)

together with v = V¢ and A¢ = w, where ¢ is the related stream function.
The no-slip boundary condition (|1.3) becomes ¢ = 9,¢ = 0 on {z = 0}.



We then take the Fourier transform in the tangential variables with
Fourier variable a and the Laplace transform in time with dual variable
—iac, following the traditional notations. In other words we study solutions
of linearized Navier Stokes equations which are of the form

v =L (eia(xfct)gi)a(z))

This leads to the classical Orr-Sommerfeld equation,

Orrg o(Ba) i= —A2¢a + (U — ¢) Apda — U =0 (1.6)
where
v
E =,
i

together with the boundary conditions

¢a|z:0 = az¢a|2:0 = 0, lim ¢a(2) = 0, (17)

Z—00

and where
Ay =07 — o’

The aim of this paper is to give bounds on the Green function of the
Orr Sommerfeld equation when « is of order v'/* and ¢ is of the same order,
which corresponds to one of the boundaries of the instability area. This
restricted study appears to be sufficient to construct linear and nonlinear
instabilities for the full nonlinear Navier Stokes equations [8, [10].

We first observe that since U”(z) decays exponentially fast to zero as
z — +00, the equation ”converges” to the following constant-coefficient
equation

Orr i (¢) = —eA2¢a + (U — )Aada =0, (1.8)
which has four independent solutions, with two slow modes e™s* and two
+
fast modes e/ *, where
U—c+ea? .
poi=lal, pr(z) =\ ————— py = lm pp(z). (19)

Here, we take the positive real part of the square root. Note in particular

that
Sec+ va aSce + va? _
s ()] = ||| === = ||| == = o7 (1.10)



for a = O(v'/*), and let ¢ = O(v/4), with |S¢| > ogv'/4. That is, slow and
fast modes have distinct behavior at z = oo.

In order to construct the Green function of the Orr-Sommerfeld equa-
tions, we need to construct all four independent solutions. In the previous
joint work with Y. Guo [7], we were able to construct two exact slow and
fast decaying solutions using an exact Rayleigh-Airy iterative scheme. The
scheme is rather delicate to construct the remaining two growing solutions.
In this paper, we provide a much simplified iterative scheme to construct
both decaying and growing modes to (1.6). The simplification is due to
the fact that we only need to construct approximate solutions and approx-
imate Green functions. The exact Green function follows by the standard
iteration.

The slow approximate solutions will be solutions of the Rayleigh equation

(U—-c)App—U"p=0 (1.11)

with boundary condition ¢(0) = 0. They will be constructed by perturbation
of the case a = 0 where the Rayleigh equation degenerates in

Rayo(¢) = (U — ¢)02¢ — U"¢. (1.12)

The main observation is that ¢19 = U — ¢ is a particular of (1.12). Let ¢z,
be the other solution of this equation such that the Wronskian W{¢1 9, ¢2 0]
equals 1. We will construct approximate solutions to the Orr Sommerfeld
equation which satisfy

P3P (0) = U(0) — ¢+ aU? ¢2,0(0) + O(a?), (1.13)
9.0(0) = U'(0) + O(a). (1.14)

The " fast approximate solutions” will emerge in the balance between —cA2¢
and (U — ¢)A,¢. Keeping in mind that « is small, they will be constructed
starting from solutions of the simplified equation

—02¢ 4+ (U - ¢)9%¢ = 0.

As ¢ is small, and as U’(0) # 0, there exists a unique 2z, € C near 0 such
that
U(z) =c. (1.15)

Such a z. is called a ”critical layer” in the physics literature. It turns out
that all the instability is driven by what happens near this critical layer.
Near z., equation ((1.15) is a perturbation of the Airy equation

—e0? P+ U'(0)(2 — z0)1h = 0 (1.16)



posed on ¢ = 92¢. The fast approximate solutions are thus constructed as
perturbations of second primitives of classical Airy functions. This construc-
tion will be detailed in Section [2, where we will construct two approximate

solutions ¢%*? to Orr Sommerfeld equation, with a fast behavior and with
fot 4

ST (0) = Ai(2, —yz.)) + O(w'/*) (1.17)

0.4 (0) = Y Ai(1, —yz.) + O(1), (1.18)
where _—

. (zaUy(zC))l/:a _ 01, (1.19)

and where Ai(1,.) and Ai(2,.) are the first and the second primitives of the
classical Airy function Ai. We now introduce the Tietjens function, defined
by

_Ai(l,2)
CAi(2,2)
Tietjens function is a classical special function in physics, precisely known
and tabulated. Then

0.6 (0)

S0 YTi(—yz) + O(1). (1.20)

Ti(2)

In this paper we will bound the Green function of Orr Sommerfeld equations.
More precisely, for each fixed o € Ry and ¢ € C, we let Gy (x, z) be the
corresponding Green kernel of the Orr Sommerfeld problem. By definition,
for each x € R and ¢ € C, Gy ¢(x, 2) solves

Orro,o(Gae(T, ) = 62(7)
on z > 0, together with the boundary conditions:

Ga,c(7,0) = 0,Go c(2,0) =0, lim Go.c(z,2) =0.
Z—00
That is, for z # x, the Green function G, ¢(x, z) solves the homogenous Orr-
Sommerfeld equations, together with the following jump conditions across
z =

[GfGa,c(ac, 2)]|._, =0, [eag’Ga,c(x, )] =1

for k = 0,1,2. Here, the jump [f(2)],_, across z = z is defined to be the
value of the right limit substracted by that of the left limit as z — x.
The main result in this paper is as follows.

|z:z



Theorem 1.1. Let U(z) be a smooth monotone shear profile so that U(0) =
0, U'(0) > 0, and U(z) converges exponentially fast to a nonzero constant
at z = co. Let og be arbitrarily small and positive, o = O(W*), and
c = OWY*), with |Sc| > ogv'/4, such that

W62, 7] > o (1.21)

S,—?

Let Gy c(x, z) be the Green function of the Orr-Sommerfeld problem. Then,
there exists a smooth function P(z) and there are universal positive constants
0o, Co so that

P(z)¢s—(2) Co [ _tolallz—2|
: < e 70 +
p1/4 | sufc(:c) (

Goel,2) — = ol [ Ruy(y)dy]
(Gael:2) @) )

(1.22)
uniformly for all x,z > 0. Similarly,

P($)3z¢s,—(z)|< Co (6—90|a||a}—z| |pg (2)| b0l J7? mf(y)dm)

|0.Gac(x, 2) —

pl/4 - eu}(x) Iz f(f’«")’
) | P@)es-(2) Co L oolallo—sl o [5G o] 12 R as
9:GCacl®:2) = iR =g < enf(z) (IU— cl @) f )
(1.23)

Let us comment . We have
W (o, @5 = v5y (0)Ti(—72c) 957 (0) — 0.4 (0)¢5 (0)

~(veTi(=nze) + U'(0)) Ai(2, ~y2) + O

Note that both terms under the brackets are of order O(1), since vyc is of
order O(1). The Wronskian vanishes if there exists a linear combination
of ¢¢” and qbap P which satisfies the boundary conditions, namely if there
exists an approximate eigenmode of Orry . (recalling that ¢¢*” and d)ap P are
only approximate solutions of Orr, ). We have to remain away from such
approximate modes, since nearby there exists true eigenmodes where Orr, .
is no longer invertible. Note that o1 may be taken arbitrarily small.

Note that in this Theorem we are at a distance O(v'/4) from a simple
eigenmode 9. It is therefore expected that Orr, . is of order O(v~Y*) and
that

Orr, ( —1/_1/4/ P(z dz>w0+0() (1.24)

As Yo = bs— + OW'*), G is only bounded by O(r~1/4), and its main
component is 1/*1/4P¢s7_.



2 The Airy operator

In this section, we construct two approximate solutions of Orr Sommerfeld
equation, called ¢y = ¢? v, with fast increasing or decreasing behaviors.
For these approximate solutions, it turns out that the zeroth order term
U"¢ s+ may be neglected. Moreover, as « is small, a? terms may also be
neglected. This simplifies the Orr Sommerfeld operator in the so called

modified Airy operator defined by

Airy = A2, (2.1)
where
A= 0>+ (U - ¢). (2.2)
Note that
Orry,c = Airy 4 OrrAiry (2.3)
where

OrrAiry = 2¢020? — ea — *(U —¢) = U".

Note also that U — ¢ behaves like U'(z.)(z — z.) for z near z., hence A is
very similar to the classical Airy operator 92 — z when z is close to z.. The
main difficulty lies in the fact that the "phase” U(z) — ¢ almost vanishes
when z is close to Rz., hence we have to distinguish between two cases:
z < o1 and z > o1 for some small 1. The first case is handled through a
Langer transformation, which reduces to the classical Airy equation.
The second case may be treated using a classical WKB expansion.
We will prove the following proposition.

Proposition 2.1. Let N be an arbitrarily large number. There exist two

smooth functions ¢3**(z), depending on N, to the Orr Sommerfeld equations

such that

A2 | < CvN|pPP|, (2.4)
‘Orra,6(¢ipp)’ < ClopP”|. (2.5)
Moreover for z > vY* and for k=1,2,3, as v — 0,
A ) A €))
() ~ (DM (2), P (2) ~ (2), (2.6)
P P
and any 1 < x2, there hold
oL (x2) 2
— | < . .
¢ipp(9§1)‘ = Cexp(i /a:1 §R,uf(y)dy) (2.7)

7



To prove this proposition we construct ¥ = 92¢" for z < z. in

Section using the Langer’s transformation introduced in and for
z > Zzc in Section using the classical WKB method. We then match
these two constructions in Section integrate them twice in Section
and detail the Green function of Airy operator in Section

2.1 A primer on Langer’s transformation

The first step is to construct approximate solutions to Ay = 0, starting
from solutions of the genuine Airy equation £v)” = 1), thanks to the so
called Langer’s transformation that we will now detail. Let B(z) and C(x)
be two smooth functions. In 1931, Langer introduced the following method
to build approximate solutions to the varying coefficient Airy type equation

—e¢" +C(z)p=0 (2.8)
starting from solutions to the similar Airy type equation
—e" + B(z)y = 0. (2.9)

We assume that both B and C vanish at some point zg, and that their
derivatives at xg does not vanish. Let ¢ be any solution to (2.9). Let f and
g be two smooth functions, to be chosen later. Then

satisfies

—e¢" + C(x)¢ = —ef"v = 2cf'0'g — Bg(2))(g")* ¥ — ef'g" + C(x) fo.

Note that f may be seen as a modulation of amplitude and g as a change
of phase. If we choose g such that

B(g(x))(¢')* = C(x) (2.10)

and f such that
2f'g' + fg" =0, (2.11)

we then have
—e¢" + C(x)p = —f"y.

Hence ¢ may be considered as an approximate solution to —e¢” +C'(x)¢ = 0.



Note that (2.11) may be solved, yielding

1
T) = —F/——. 2.12
fa) === (212)

As a consequence, the link between solutions to (2.8) and (2.9)) is given by
P(z) = ——=1(g(z)). (2.13)

Now as for the choice of function g(z), let By be the primitive of v/ B which
vanishes at x¢ and let C'; be the primitive of v/C which vanishes at ¢. Then
the square root of (2.10) may be rewritten as

Bi(g(z)) = Ci(z). (2.14)

Note that both B; and C) behave like Co(z — 20)*/? near xo. Hence (2.14)
may be solved for x near xy. This defines a smooth function g which satisfies
g(xo) = xo. Moreover if B'(zg) = C'(z9) then ¢'(zo) = 1.

2.2 Airy critical points

In this section we use Langer’s transformation to construct approximate
solutions to A1 = 0 starting from solutions of the genuine Airy equation.

Let ¢ be of order /4. Then there exists an unique z, € C near 0 such
that U(z.) = ¢. Note that z. is also of order /4 since U’(0) # 0. Expanding
U near z. at first order we get the approximate equation

—e0?P + U (2)(2 — 2) =0 (2.15)

which is the classical Airy equation. Let us assume that RU’(z.) > 0, the
opposite case being similar. A first solution to (2.15) is given by

A(z) == Ai(y(z — 2c)) (2.16)

where Ai is the classical Airy function, solution of A’ = zAi, and where
ev® = U'(z2), namely
il (z:)\1/3
= (5

Note that since « is of order /4, 5 is of order v~/ and that

s _
arg(y) = ¢ + O(v 4y,



Moreover, as x goes to +0o, with argument i /6,

1 6—2z3/2/3 3
N (1+o<\xy )).

In particular, Ai'(x)/Ai(x) ~ —2'/2 for large 2. Hence, as v(z — z.) goes to
infinity, A(z) goes to 0 and

Ai(x)

ig}WﬁW@—%W“?%mi%bm@—%w2

~—V/B(),

(2.17)

with
B(z) = e U (2) (2 — 2c).

More precisely, using the next order expansion for A(z), we get

A(z) _
) = —V/B(2) (1 +OWE)2 — 2| 3/2)) (2.18)

for |v(z — z.)| > 1. Here, we have used the fact that ~ is of order v—1/4,
Another independent solution to (2.15) is given by Ci(v(z — z.)) where

Ci = —im(Ai + iBi),

with Bi(-) being the other classical Airy function. In this case |Ci(y(z—z.))]
goes to 400 as z — z. goes to +oo, with a plus instead of the minus in the
corresponding formula (2.17). Precisely,

VO (v(2 — %)) _ . 32
Ci(y(z — zc)) B( )<1 + O cl )) (2.19)

We now use Langer’s transformation introduced in the previous section.
As U(z) and U’(z.)(z—z.) vanish at the same point with the same derivative
at that point, we use Langer’s transformation with

C(z)=eHU(2) - ¢)
and
B(z) = e U (2e) (2 — 2e).

Then, introducing g(z) in accordance to ([2.10), we have g(z) is locally well
defined for z in a neighborhood of z., independent of small e¢. Since z. is
of order v!/4, g(z) is thus defined for 0 < z < oy for some positive o1,

10



independent of v.  Moreover, g(z.) = 2. and ¢'(z2.) = 1. Now, we use
the two independent solutions Ai(y(z — z.)) and Ci(y(z — z.)) to (2.15) to
construct the approximate two solutions to A¢ = 0, which reads

—0% + (U(2) — ) = 0. (2.20)
Indeed, through the Langer’s transformation, see ([2.13)), we set
~ 1
Ai(z) i= —=Ai z)— 2
(2) = = Ai(1((2) - 20)
and ]
Ci(2) == —==Ci((9(2) — z) ).
9'(2) < )

It follows that Ai(z) and Ci(z) are two approximate solutions of A¢ = 0 in
the sense that

Adi = —ef"Ai(v(g(2) — 2)),  ACi=—ef"Ci(v(g(z) — z)),

recalling f(z) = 1/1/¢'(z). Note that the error term is of order & ~ v3/4,
Note also that at first order, for z of order v*/4, Ai(z) equals Ai(y(z — 2.))
since ¢'(z.) = 1.

Moreover, for y(z—z.) > 1, or equivalently, |z — z.| > v'/%, using ,
we get

szli(z) 1 Ag(2)) /
S YO a0 ~ Y OVBGE) ~ YOG ~ ay(a), (221)
and more precisely
8AA(()) ~ () (14 O]z — 2 ). (222)

Note in particular that when |z — z.| 2 1, the above error of approximation
is of order ©3/8. Similarly for higher derivatives in |z — zc| > V14 we get

ok Ai(z
Az‘(z()) ~ (=1 (2). (2.23)
Similarly, using (2.19), we have
azé’i z _
éi(i)) ~ Mf(z)(1 + Oz — 2| 3/2)). (2.24)

The higher derivatives also satisfy the similar bounds as in (2.23).

11



2.3 Away form the critical layer

If z — z. is small then g is well defined, precisely on [0, o1] for some small o}
as in the previous section. However, if z > o1, then Langer’s transformation
is no longer useful, and we may directly use a WKB expansion. We look for
solutions ¥ of the form

P(z) = )/ (2.25)
to the equation Ay = €02y — (U — ¢)y» = 0. Note that

£0%1) = (0’2 + 51/20">1/1.
Hence we look for 6 such that
02 + V20" = (U — ¢). (2.26)

Note that as z is away from the critical layer z., U(z) — ¢ is of order one
and never vanishes.

We shall solve (2.26) in an approximate way by looking for 6 of the form

M
0=>" £i/2p,
=0

for some arbitrarily large M. The profiles 6; may be constructed by iteration,
starting from
0h = +/U(z) —c. (2.27)

Indeed, plugging the Ansatz for € into ([2.26)) and matching the order in e,
we are led to define 6; inductively through the following relation

! n! /! ! nl
0t = —0;_, — Z 9j9k
jHk=i—1

for ¢ > 1, noting that 6], never vanishes on z > o (since ¢ is of order v/ 4).
In (2.27), we take the positive real part of the square root (of the complex
number). The — choice in (2.27) leads to an approximate solution w;p P of
(2.25) that tends to 0 at z = +oo and the + choice gives an approximate
solution zﬂ;ﬁf of (2.25) that tends to +o0 at z = +oc.

In addition, by construction, we have

0/2 +61/29N _ (U - C) + O(VN)

12



where N can be chosen arbitrarily large, provided M is sufficiently large.
Therefore, the approximate solutions 1/}ap P satisfy

AV < NP

Note that
D (1) = pep(01) (1 + OW )i (o). (2.28)

More generally,

DEUPL() = (1)UL (2) (1 + 0w h) (2.29)

for any z > o1 and any k.

2.4 Matching at z = 2z,

It remains to match at z = z. the solutions constructed with the WKB
method for z > o1 with the solutions construct thanks to Langer’s transfor-
mation for z < 1. We look for constants a and b such that
Ai(2) Ci(z)
a

= + b=
Ai(oq) Ci(o1)

and ¢ /95 (01) and their first derivatives match at 2 = o1, which leads
to

at+b=1
aaZAi(al)+ 8.Ci(on) 013" (o)
Ai(oy) Ci(a1) " (o1)

We now use (2.22), (2.24) and (2.28) to get a ~ 1 and b = O(us(o1)1). We

then multiply a and b by @Z);p P(01) to get an extension of ¢ap P from z > oy

to the whole line. The construction is similar to extend zpa” b

2.5 From A to Airy

We have now constructed global approximate solutions @ZJ it o the equation
A = 0 that satisfy
JAYEE < CuN i,

Recall from (2.1)) that Airy = A92. It thus remains to solve

026 (2) = v (2). (2.30)

13



Let us focus on the — case, the other being similar. For z > o1, we look for
solutions anp P of the form

OFL = h( L = h(2)e /" (2:31)
which leads to

W'+ 200 (2)e V2 + ho" (2)e ™2 + ho?(2)e 7! = 1.

Hence h may be expanded as a series in £!/2; namely,
M .
h(z) =Y €/%hi(2)
i=0

for some arbitrarily large M. The first two terms ho(z), h1(z) are defined

by
€ 1

re MO

while the remaining terms h;(z), ¢ > 2, are inductive defined by

ho(z) = (200 (2)0'(2) + hot"(2))

i) = = gy (200 + 2 (8) + haad'(2).

We note that for z > o7 (i.e. away from the critical layer z.), by definition
(2.27), the function 6(z) is bounded away from zero, and so h;(z) are well-
defined and uniformly bounded.

As a consequence, we may write a complete WKB expansion for ¢
given by ([2.31] - In particular, we note that

app

hly) 0%(x) Uz)—c
h(z)  02(y) Uy)—c

for y > x > o1 (i.e. away from the critical layer z.). Hence,

~1

d’app(y) oE SV Rup ()

i @ °

(2.32)

provided y > x > o03.
For z < o1, we integrate once ([2.30) which gives

0.0 (2) = 9:69" (01) — / lw;?f(t)dt

14



Now %" is a combination of Ai and Ci for z < 01. Let us focus on the Ai
term. We have to study

/ " Ait)ydt — / i %Awg(t) — 2))dt.

Let s = ~(g(t) — 2¢). Then ds = v¢'(t)dt, hence

[ it i = [ L ia
1(v(g(t) — z¢ tzv_/ ————=Ai(s)ds.
= VI Wg(2)=z) 9/ (1)*?

As ~ is large, the integral term is equivalent to

7*1 Y(g(o1)—2c) . 771 ‘ |
g(2)? /wg(z)—zC) Ails)ds ~ g'(2)32 [Az(l’7(9(0'1)—%))—142(1,7(9(2)—zc))]

where we introduced the primitive Ai(1,z) of Ai. This leads to

-1

0:672(2) ~ S Ail17(9(2) = z0). (2.33)

We integrate one again az¢jf’ P and introduce Ai(2,x), the second primitive
of A¢ and obtain
-2

app /y

2)~ ———

(bf,—( ) 91(2)5/2

The study of ¢ is similar. As the asymptotic expansion of Ai(z) is known,

we can compute the asymptotic expansions of Ai(1,z) and Ai(2, 2); see, for
instance, [1, Appendix] or |7, Section 4]. For instance, there hold

Ai(2,7(9(2) — 2¢))- (2.34)

‘Ai(k, Z)‘ < C<2;>*1'6/271/4672,23/2/37
2.35

‘Cl(k‘, 2)‘ < C<z>—k/2—1/4ezz3/2/3’ ( )
for k€ 7 and z > 1.

2.6 End of proof of Proposition [2.1

By construction, we have constructed approximate solutions ¢ to the
equation A0,¢ = 0. Namely,

|AG2TP| < CvN |9,

15



which is qﬁl) As 0.9} (2) is bounded by cvY 11 (2), (]ﬁl) combined
with (| gives (| n We now check the estimates stated in Proposition
2,11

In fact, we first normalize qb‘}p ? by multiplying it with 7%, again denoted
by qﬁ'}f’ ', giving the expansions (1.17) and (1.18) at z = 0. Note in particular
that

¢1L(0) = O(1). (2.36)

Next, the bounds in (2.6) follow directly from the construction and the
estimates (2.23))-(2.24) and (2.29) for z near and away from the critical
layers, respectively.

It remains to prove (2.7). For v'/* <« z < 2/, the estimate ([2.32) is

exactly E} We thus focus on the case when z < v¥/4. For 2/ > v/, in
view of (2.28) and

we have

PL () S Cexp (i /O . érmf(s)ds)

)

As piy(2) is of order O(v~/4) for z of order v*/4, we obtain for any
0<z<7,

(s)ds‘ (2.37)

‘ app

for some constant C, and similarly for ¢ _, which gives (2.7).
£7)

2.7 Green function for Airy

We will now construct an approximate Green function for the Airy operator.

We first construct an approximate Green function for the operator A =
—£0? + (U(x) —¢). Let

if <z,
1 Yy

Aify o) = ¥
G (xay) - m Q/)app
(4

if y>a,

where W4 is the Wronskian determinant of ¢)3"” (). Note that the Wron-
skian determinant is independent of x, since there is no first derivative term
in A. In addition, we have

WA (z) ~ vy = O™,

16



In particular, we have

GA(z,y) = O~ 1?) eXp dz

therefore GA* is rapidly decreasing in y on both sides of , within scales of
order /4. By construction,

AGY (2, y) = 6, + O NG (2, y).

We then integrate twice G in y to get an approximate Green function for
the Airy operator. More precisely, let

GA (g, ) = / Gz, 2)dz
y

and similarly for GA"Y = G442, the primitive of GA%1, so that 8§GAi’2 (z,y) =
GA%(z,y). We have

G (1, y) = O ) exp(

)dz’) + O M1 yen
and similarly for G4%2

G2 (xz,y) = O(1) eXp

/ Rpup (= )dZD + O M1y cpa,

Note that, taking into account the fast decay of G4 near x,

Airy(GA"?) = 6, + O(v 3/4)GA2(33 Y)

=0, + O/ exp / Rus(z) dz (2.38)
=8, + O(W'/h).
We define the AirySolve operator by
AirySolve(f)(y) = /0+OO GAY2(x,y) f(x)dx (2.39)
and the associated error term
Error Airy(f)(y) = /0 T O GA (2, y) () (2.40)

the Airy operator acting on the y variable. These operators will be used in

Section 3.5
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3 Rayleigh solutions near critical layers

In this section, we construct two approximate solutions ¢¢’f(z) to the Orr
Sommerfeld equation, with slow behaviors as z — +o00. This together with
the approximate solutions ¢ 4 = gb‘}f’ ¥ with fast behaviors constructed in the
previous section forms a basis of approximate solutions, which are sufficient
for the next section to construct the Green function to the Orr Sommerfeld
problem. More precisely, in this section, we prove the following lemma.

Lemma 3.1. For v small enough, there exist two independent functions
Pt such that

W, ¢571(2) = 1+ o(1),
Orra (@) = O(W'?),  Orrae(¢) = O logv).
Furthermore, we have the following expansions in L
¢app(z) e~ o% (U —c+ O(l/l/4)>.
¢app(z) — —azo( )

as z — 00. At z =0, there hold

a U—%— 1/2
sf)f(O)— c—l—aU,(O) + O( )
a; 1 1/2

where Uy = lim,_,o, U(2).

The construction of approximate solutions for the Orr Sommerfeld equa-
tion starts with the construction of approximate solutions for the Rayleigh
operator. For small a, the construction of solutions to the Rayleigh equation
is a perturbation of the construction for o = 0, which is explicit. We will
now detail the construction of an inverse of Rayy and then of an approximate
inverse of Ray, for small . For convenience, we recall that

Orroc(Pa) = —6Ai¢a + (U = ¢)Auo — U" b0
Raya(¢a) = (U - C)Aa¢a - U/,¢a-

In particular, Rayy(-) denotes the Rayleigh operator Ray,(-) for a = 0.
Note that

Orrg o(¢a) = Ray, (o) — eAZ ¢y, (3.1)
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3.1 Function spaces

In the next sections we will denote
X1=rF={f | supl|f(2)le” < +oo} .
2>0

The highest derivative of the Rayleigh equation vanishes at z = z., since
U(z;.) = c¢. To handle functions which have large derivatives when z is
close to Rz., we introduce the space Y" defined as follows. Note that in
our analysis, z. is never real, so z — 2z, never vanishes. We are close to a
singularity but never reach it.

Precisely, we say that a function f lies in Y7 if for any z > 1,

|F(2)| + 0. F(2)| + | O2f(2)| < Ce™™*
and if for z <1,
1£(2)] <O+ |z — z]|log(z — 2.)]),

10-f(2)] < C(1 + |log(z — z)]),
2F () < C(L+ |2 — 2 7h).

The best constant C' in the previous bounds defines the norm || f||y». Note
that Y7 C X".
3.2 Rayleigh equation when o =0

In this section, we study the Rayleigh operator Ray,. More precisely, we
solve

Rayg(¢) = (U — )26 —U"¢ = f. (3.2)

The main observation is that
Rayy(U —¢) = 0.

Therefore
pro=U—c

is a first explicit solution. The second one is obtained through the Wronskian
equation
W10, p2,0] = 1.

This leads to the following Lemma whose proof is given in [7, Lemma 3.2]
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Lemma 3.2 ([6, [7]). Assume that Sc # 0. There exist two independent
solutions ¢10 = U — ¢ and ¢ of Rayy(¢) = 0 with unit Wronskian deter-
minant

W (1,0, 02,0) = 0:02,001,0 — $2,00:01,0 = 1.

Furthermore, there exist smooth functions P(z) and Q(z) with P(z.) # 0
and Q(z.) # 0, so that, near z = z,

$2,0(2) = P(2) + Q(2)(z — 2z¢) log(z — z¢). (3.3)
Moreover 1
¢2,0(0) = _U,(O)
and 1
8Z¢270(Z) + U7+ eymn (3.4)

for some m > 0.

Let ¢1,0, ¢2,0 be constructed as in Lemma Then the Green function
GRro(z, z) of the Ray, operator can be explicitly defined by

[ (U@) =) toro(2)p2o(x), if 2>,
Grol,2) = { (U(z) — ) Loro(m)pao(z), if z<um.

The inverse of Ray, is explicitly given by

+oo
RaySolvery(f)(z) := Gro(z,z)f(x)dx. (3.5)
0

Note that the Green kernel G is singular at z.. The following lemma
asserts that the operator RaySolvery(-) is in fact well-defined from X" to
Y, which in particular shows that RaySolvery(-) gains two derivatives, but
losses the fast decay at infinity. It transforms a bounded function into a
function which behaves like (z — z.) log(z — 2.) near z..

Lemma 3.3. Assume that Sc # 0. For any f € X", RaySolvery(f) is a
solution to the Rayleigh problem (3.2). In addition, RaySolvery(f) € YO,
and there holds

[ RaySolvero(f)llyo < C(1 4 [log Se|)[| fllxm,

for some constant C.
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Proof. Using ({3.4), it is clear that ¢ 0(2) and ¢20(2)/(1 + z) are uniformly
bounded. Thus, considering the cases x < 1 and x > 1, we obtain

|Gro(z,2)] < Cmax{(1+2),|z — 2| }. (3.6)

That is, Gro(z, z) grows linearly in x for large x and has a singularity of
order |z — z.|~! when z is near z.. As |f(2)] < e " f| xn, the integral (3.5))
is well-defined and we have

|RaySolvery(f)(z)] < C||fllxn / e " max{(l+ x),|xr — zc|_1} dzx
0

< C(1 4+ [log Sc))| f]xn,

in which we used the fact that &z, ~ Se.
To bound the derivatives, we need to check the order of the singularity
for z near z.. We note that

02020l < C(1 + [log(z — 2z.)|),
and hence
|0.GRro(z,2)] < Cmax{(l+x), |z — zc|71}(1 + |log(z — z¢)])-

Thus, 0, RaySolvery(f)(z) behaves as 1+|log(z—z.)| near the critical layer.
In addition, from the Ray, equation, we have

"

0%(RaySolvery(f)) = RaySolvery(f) +

- T (3.7)

This proves that RaySolvery(f) € Y° and gives the desired bound. O

3.3 Approximate Green function when o < 1

Let ¢1,0 and ¢ be the two solutions of Rayy(¢) = 0 that are constructed
above, in Lemma We now construct an approximate Green function to
the Rayleigh equation for o > 0. To proceed, let us introduce

d1,a = P10 %, P2, = P20e” 7. (3.8)

A direct computation shows that their Wronskian determinant equals

W[¢1,aa ¢2,a] = 8z¢2,a¢1,a - ¢2,aaz¢1,a = e—2az'
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Note that the Wronskian vanishes at infinity since both functions have the
same behavior at infinity. In addition,

Ray,(¢ja) = —2a(U = )8:0j0e™* (3.9)

We are then led to introduce an approximate Green function Ggq(z, 2),
defined by

_ [ (U@) =) e oG o(2)goo(x), i z>w
CRralr,2) = { (U(z) = o) te D¢y g(2)doo(2), if 2z <.

Again, like Gro(z, ), the Green function Gg(z, 2) is “singular” near z..

By a view of (3.9),
Ray,(GRra(z,2)) = 0z + Era(x, 2), (3.10)
for each fixed x, where the error kernel Eg o(z, 2) is defined by

—2a(U(2) — ¢)(U(z) — ) te™ =29,y o(2)d2o(x), if 2>z

Era(z,2) = { —2a(U(2) — ¢)(U(z) — ¢)Le—(z2) $1,0(x)0:020(2), if z<ux.

We then introduce an approximate inverse of the operator Ray, defined by

+o0o
RaySolver,(f)(z) := /0 Gra(z,2)f(z)dx (3.11)

and the related error operator

+o00

Errro(f)(z) :=2a(U(z) —¢) ; ERo(z,2)f(x)dx (3.12)

Lemma 3.4. Assume that Sc > 0. For any f € X", with a < n, the
function RaySolvery(f) is well-defined in Y, and satisfies

Ray, (RaySolvery(f)) = f + Errgr.o(f).
Furthermore, there hold
|RaySolvery(f)|lye < C(1+ |logSc|)|| flxn, (3.13)

and
|ETTRa(f)llyn < Cla|(1 + |log(Se) )| flx, (3.14)

for some universal constant C.
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Proof. The proof follows that of Lemma Indeed, since
GRroal(z,2) = e_a(z_m)GR,o(a:, z),

the behavior near the critical layer z = 2. is the same for these two Green
functions, and hence the proof of and near the critical layer
identically follows from that of Lemma [3.3

Let us check the behavior at infinity. =~ We can normalize to assume

| fllx» = 1. Using (3.6)), we get
IGra(z,2)] < Ce™ ™ max{(1 4 ), |z — z.|7'}.

Hence, by definition,
|RaySolver,(f)(z)] < Ceaz/ e max{(1 + z), |x — z.| '} dz
0

which is bounded by C(1 + |log Sc|)e™*, upon recalling that o < 7. This
proves the right exponential decay of RaySolver,(f)(z) at infinity, for all
feXmn

The estimates on Errg, are the same, once we notice that (U(z) —
¢)0.¢2,0 has the same bound as that for ¢, and similarly for ¢ . O

Remark 3.5. For f(z) = (U — ¢)g(z) with g € X", the same proof as done
for Lemma 3.4 yields

[RaySolvera(f)|ye < Cllgllxn,
[ErrRa(f)llyn < Clalglxn

which are slightly better estimates as compared to (3.13) and (3.14).

(3.15)

3.4 Construction of ¢;"”

Let us start with the decaying solution ¢s _. We note that
o =€ (U —c¢)

is only an O(«) smooth approximate solution to Rayleigh equation, leaving
an error of approximation

ey 1= Raya(d}o) = —20((U — C)Ule_az,
which is of order «. Similarly, a direct computation, see (3.1)), shows that

Orrq. c(v0) = ep — EAin =0(a+e|) = (’)(1/1/4)
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upon recalling e = v/ia, with « = O(¥*/*).  This is not sufficient for our
purposes, and we have to go to the next order. We therefore introduce

11 = —RaySolvery(ep).

Note that ¢ is of order O(«) in Y, and behaves like a(z — z.) log(z — z.)
near z.. It particular ¢ is not a smooth function near z.. Its fourth order
derivative behaves like o/(z — z.)3 in the critical layer. We have

Orra (Y1) = —5(83 - 042)2% + Raya(11).

hence
Orrac(to + 1) = —£(92 — &®)*¢1—eA% o + Errpa(eo). (3.16)
Note that, using (3.14), we have

Errga(eo) = O(a?|log()|)yn (3.17)

where log « corresponds to the log loss of log S¢, with [Sc| > oo /4. More-
over, using Rayleigh equation,

_ Raya(¢1) — U

2 9
(az 04)1?1 U—_c s

hence, we compute

(02 — a?)*yy = £(02 — 042){Ray(%l)__c[]llw1 }

In view of Remark Raya(¢1) and U"1); are of order O(«a) in X". We
thus have

2‘Ray(¢1) - U"
U-c

(3.18)

€Ck2 6042

‘go <L < Cea=OW)xn.

EEP T
Next we expand 02 in (3.18) which gives three terms
_BRay(n) —BU") O Ray(n) — 0.(U" )

U-c (U —c¢)?

1
+ e(Ray(y1) — U"?ﬂl)agﬁ-

EQ

We start with the first term. As Ray, (1) and 1 are of order O(«) in Y7,
this first quantity is bounded by

= 0(a?). (3.19)

allog ¢ a > %"
S

C€<1 +

2=z |z =zl
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The second term is treated similarly, while the third term in the expansion

of is
| Ray(un) = U1 (2 = 20) ™

which is bounded by O(c). Thus, putting these into (3.16), we get
Orrc(¢o + Y1) = E, (3.20)
in which we can write the error term as
E=F |+ Es, B = (’)(a2), Ey < Cealz — zc|73.

This error term FEs is therefore too large for our purposes. However, it
is located near z = z., namely in the critical layer. We therefore correct
Yo + 1 by 19 by approximately inverting the Airy operator in this layer.
More precisely, let

o = —AirySolve(Es),

which will create an error term

E3 = Orrg o(¢2) + B2
= Airy(¢9) 4+ OrrAiry(¢2) + Es
= OrrAiry(¢2) + ErrorAiry(Es).

Let us now bound 5. Using ([2.39), we have
+o0 Y
[ha(y)] < Cea/ |z — 2|73 (e*‘fz Rpug (2)dz] 4 (’)(yfl/4)1y<a:x> dz.
0
Writing 1y, = ly<z (@ — 2¢) + 1y<az2e, we thus have
+o00
e < Cza [ (o= 2P 40 il )
0
< Cea(|sc|—2 + 1/_1/4|%c]_1) — O(a?).

This together with (2.3 yields OrrAiry(yn) = O(a?). Similarly, using
(2.38), we get

+oo
ErrorAiry(Es)(z) < C’sa/ 2 — 2| 2O dx = O(a?).
0

Therefore, we have

Orra,c(w() +1 + 1[)2) = O(QQ)‘
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We define
P = o + Y1 + Yo

To end this section we compute (0). By definition,

+oo €0l
¥1(0) = —RaySolver,(eo)(0) = —gbz,a(O)/O 62aa:¢1,a(:€)U(i§zcde‘

+o0 00
= —20020(0) [ U0 =)z = amp(0)[ 0 - 0]
U.
00

0

= —agpa0(0) [(U+ — 0)2 — 62] =« (Ui —2¢).

From the definition, we have
¢s.—(0) = Uy — ¢ +11(0) + O(a?).
This proves the lemma, using that Uy — ¢ = O(z.).

3.5 Construction of ¢’}

We first start with ¢2, = ¢20e”**, which is an approximate solution of
Rayleigh equation, up to a O(a) error term. Precisely, noting Rayo(¢2,0) =
0, we compute the error of approximation

e1 = Raya(¢2,4) = —2a(U — ¢)0,¢20e”** = O(wv)

in which there is no logarithmic loss 0,¢2 o, since U — ¢ vanishes at z = z..
Next, we introduce
¢3 = —RaySolvery(er).

Then, using (3.14),
Raya (2.0 + ¢3) = —Errpa(er) = 0(@2). (3.21)

Let us set
O = do0 + P3.

By construction, ¢ is bounded in Y, 5o is ¢2o = ¢20e”**. On the
other hand, using Lemma and the bound , the function ¢3 =
—RaySolvery(e1) is of order o in Y. That is, ¢57 is bounded in Y, and
thus behaves like (z — z.) log(z — 2.) near z., due to ¢20(z). In addition,

using (3.21), we have
Orrmc((b‘;f’f) = —5(62 - a2)2¢§f’f + O(a?).
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Note that away from z = z., the right hand side is of order O(|e| + a?) =
O(v'/?). Near z = z., we again use the Rayleigh equation (3.21), we get

(@2 a2 = g 1 0(a?),

which gives
U/I
7= e)

(02 - a?)207 = (02 - o?)(

The worst term in the right hand side is
82 1 U// app
U-c Pat

which is of order (Jz.)~3 times @¢2FF t, near z = z.. Hence, recalling |Sc| >
oovt/4, Orra,c(¢57) is of order
v 1

which is of order (z — z.)log(z — 2.), coming from ¢ (z). That is, similar

to (3.20), we obtain
Orra () = E1 + Eo

with By = O(a?), while Ey = O(€)(z — z.) 3$2,, which is a loga loss as
compared to for the construction of ¢¢””. The remaining construc-
tion to correct the approximation near the critical layer by approximately
inverting the Airy operator follows identically to the previous section.

4 Green function for Orr-Sommerfeld equations

Having constructed slow and fast approximate modes ¢ and qﬁap P in the
previous two sections, we are now ready to construct an approx1mate Green
function G*P. We will decompose this Green function into two components

GPP — Gapp GZPP

where G takes care of the source term 4, and where G,™ takes care of
the boundary conditions.
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4.1 Interior approximate Green function

We look for G{**(z,y) of the form

app app app(y)
G (‘T y) _a’+(m)¢ ( )+b+( ) Cbpp(x) fOI' y<x7
app app app(y)
G (w,y) = a_(2)62 (y) + b (2) L for y> =,
57 ()
where (b;ﬁf? ip (x) play the role of normalization constants. Let

Fy = ¢ (2)
and let

v(@) = (—a_(2), ay(2), ~b_(2), by ().
By definition of a Green function, G?, 9, GPP and 8§Gapp are continuous
at z = y, whereas —585(?‘””) has a unit jump at x = y. Let

¢s,— ¢s,+ Qbf,*/F— ¢f,+/F+
Oyds,— /1y Oybsv/ng Oybs—/(F-pg) Oybss/(Fypy)
s~ /uf Oybst/ui Oy /(F_p3) 0054/ (Frpi) |
Oybs— /1 Oybst/wp Opds—/(F_p}) Opds+/(Frp})

M =

(4.1)
where the functions ¢+ = ¢t and ¢y = <Z>ap P and their derivatives are
evaluated at y = x, and where the various factors py are introduced to
renormalize the lines of M. Then

Mv = (0,0,0,-1/(cp})). (4.2)

We will evaluate M ~! using the following block structure. Let A, B, C' and
D be the two by two matrices defined by

A B
M = .
(¢ 5)
We will prove that C is small, that D is invertible and that A is related
to Rayleigh equations. This will allow the construction of an explicit ap-
proximate inverse, and by iteration, of the inverse of M. Let us detail these

points.
Let us first study D. Following {} for z > v1/4,

D= < 4 })+o(1),
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hence D is invertible and

4D1::<} 11>+0ﬂ)

For z of order /%, we note that F, and F_ are of order O(1),

1 Ai(yg(e))
(9')%(x) Ai(2,79(z))

and similarly for dy¢_ and 9y¢s . Note that 72//1,?, 73/,w;’c, Ai(2,vg(x))
and Ci(2,vg(z)) are of order O(1). As ¢'(z.) = 1, up to normalization of
lines and columns, D is close to

Ai Ci
Ai' CY
which is invertible by definition of the special Airy functions A7 and Ci.
Let us turn to C. The worst term in C'is those involving ¢, 1 because of

its logarithmic singularity. More precisely, 8§¢S7+ behaves like (z — z.)' 7"
and is bounded by |S¢|'=F ~ v(1=F)/4 for k = 2, 3. Hence, as ,u;l = O(v'/*),

(00 Oz — 2) )
¢= ( OWH ) OWHA(z — 2)2) )

s =7 +0(v)

Note that A = A; Ay with
1 0 PP PP )
A = _ y A = 57a 57;’ .
' ( 0 ”fl > ? ( aqusf’f’ 8y¢s,p-€

PETE N A A Y
207 det(Ag) \ =00 o

Yy¥s,—

We have

The determinant Ay is the Wronskian of ¢35 and hence a perturbation of the
Wronskian of ¢1, and ¢2, which equals to e™**. We distinguish between
z < a/? and z > /2. In the second case, Orr., is a small perturbation
of a constant coefficient fourth order operator. The Green function may
therefore be explicitly computed. We will not detail the computations here
and focus on the case where 2 < o!/2. In this case the Wronskian is of order
O(1). As a consequence

1 [ O(log |z — z) O(1)
4y = < o) Oz — 2) )
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and

L Ollogl—zl)  Oup)
4 ‘( o) 0<uf<z—zc>>)

We now observe that the matrix M has an approximate inverse

~ At —A7'BD™!
=N )

in the sense that MM = Id + N where

0 0
N= < CA™' —CA™'BD™! )
Now a direct calculation shows that
CA™ = oW/

since $z, = O(vY/*). As D~! and B are uniformly bounded, N = O(v'/*).
In particular, (Id + N)~! is well defined and
M™'=M(Id+N)"=M> N'=MY Oow"*.
n>0 n>0
Note that the two first lines of N™ vanish. The other lines are at most of
order O(v'/4). Therefore
(1d -+ N)71(0,0,0,1/vp}) = (0,0,001/vsi}), 1 /vii}).

As D! is bounded and A~'BD ™1 is of order O(p1f), we obtain that ay and
by are respectively bounded by C/ yu?c and C/ y,w;’c.

4.2 Boundary approximate Green function

We now add to G another Green function G;*” to handle the boundary
conditions. We look for Ggp P under the form

o5,—(y)
¢f-(0)°

where ¢ _(0) in the denominator is a normalization constant, and look for
ds and dy such that

Gzpp(y) = ds¢s,—(y) + df

G (2,0) + GyPP(0) = 9,G{™ (2,0) + 9,G}™(0) = 0. (4.3)
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Let

ay(lss,— ay(lsf,f/ﬁbfﬁ(o)
the functions being evaluated at y = 0. Then (4.3)) can be rewritten as

M:( s p-/d5,-(0) )

Md = —(G{"(2,0),0,G™ (x,0))
where d = (d,ds). Note that
(G?pp('r’ 0)7 ayG;lpp(x7 0)) = Q(a+7 b+)

where

_ [ ¢s+(0) 1 B o(1) 1
Q= ( Oy¢s,+(0) 0yos4(0)/dy+(0) > - ( O(log(v)) (9(1/_1/4) ) .

By construction
d=—-M""Q(ay,by). (4.4)

We have
Y ( Oyps-(0)/dr—(0)  —1 ) '
det(M) - y‘bs,—(o) ¢s,—<0)
The determinant of M equals
¢87—7 (bf:*] (0)
¢7,-(0)
and does not vanish by assumption. Therefore

[ oW -1
Ml‘( o(1) 0<u1/4>>'

w
det M = [

As a consequence,

14 (9(1/_1/4) (9(1/_1/4)
Ml@‘( o ou )

4.3 Exact Green function

Once we have an approximate Green function, we obtain the exact Green
function by a standard iterative scheme, following the strategy developed
in [8]. The stated bounds follow from those obtained for the approximate
Green function.
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