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ABSTRACT

The myriad complex systems with multiway interactions motivate
the extension of graph-based pairwise connections to higher-order
relations. In particular, the simplicial complex has inspired general-
izations of graph neural networks (GNNs) to simplicial complex-
based models. Learning on such systems requires large amounts
of data, which can be expensive or impossible to obtain. We pro-
pose data augmentation of simplicial complexes through both linear
and nonlinear mixup mechanisms that return mixtures of existing la-
beled samples. In addition to traditional pairwise mixup, we present
a convex clustering mixup approach for a data-driven relationship
among several simplicial complexes. We theoretically demonstrate
that the resultant synthetic simplicial complexes interpolate among
existing data with respect to homomorphism densities. Our method
is demonstrated on both synthetic and real-world datasets for simpli-
cial complex classification.

Index Terms— Simplicial complex, complexon, data augmen-
tation, mixup, convex clustering

1. INTRODUCTION

Simplicial complexes unlock useful topological tools for data sci-
ence [1-5] and practical applications [6, 7] due to their ability to
model higher-order interactions. Simplicial complex-based learning
has received much attention lately, with the classical graph-based
architectures naturally being extended to higher-order networks [8—
11]. However, graph datasets suffer from limited data due to the
complexity of obtaining labeled samples, a problem which is exac-
erbated for higher-order simplicial complex data.

Data augmentation enables generating synthetic labeled samples
from existing data, where the new samples embody characteristics
that promote desirable model behavior. This procedure is not af-
fected by any machine learning model restrictions as we merely add
to the samples present in the dataset, affecting neither model capac-
ity nor the original data [12, 13]. Mixup serves as an efficient data
augmentation method that generates new labeled data as mixtures of
existing samples [13], and its benefits enjoy copious empirical and
theoretical validation [14, 15].

While graph mixup is still nascent, it has exploded in popular-
ity due to the myriad interesting approaches for interpolating such
discrete complex objects [16—18]. However, data augmentation for
higher-order networks is extremely limited [19], and to the best of
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our knowledge mixup for higher-order networks has never been con-
sidered. Indeed, even in the case of graphs, interpolation of these
non-Euclidean objects is nontrivial due to their irregular structure.
This difficulty extends further for simplicial complexes as we must
obtain mixtures accounting not only for interconnected entities but
also for information shared across dimensions. Even data augmen-
tation methods amenable to discrete graph objects struggle as higher
dimensions are considered [19,20]. We are thus prompted to turn to
the attractive approach of performing mixup in a continuous latent
embedding space. The choice and design of this embedding space
allow us to control which characteristics are preserved during the
mixup process.

Defining limits of discrete objects enables useful operations for
moving within a space of objects as if they are continuous. The
invention of the graphon, the limit object of a convergent sequence
of dense graphs, provides a compact continuous space in which the
graphs are dense [21]. Graphons allow us to perform tasks on graph
data typically restricted to continuous objects, such as barycenter
obtention and interpolation for mixup [16, 17,22]. We can extend
this benefit to higher-order networks through the complexon [23], an
analogous limit object for simplicial complexes.

In this work, we present an inaugural method for Simplicial
Complex Mixup for Augmenting Data (SC-MAD). Similarly to ex-
isting graph mixup methods [16-18], we consider a continuous em-
bedding space for the practical implementation of simplicial com-
plex mixup. We use the space of complexons, as its being the closure
of the space of simplicial complexes means that we can directly com-
pare objects in the original and embedding spaces. Furthermore, we
theoretically show that any continuous interpolant that our method
obtains preserves useful structural characteristics [21,23]. In addi-
tion to traditional pairwise linear mixup [13], we apply convex clus-
tering for mixup [24-26], where new samples describe the mixture
of several simplicial complexes [17].

2. PRELIMINARIES

Simplicial complexes. A simplicial complex K is a finite collection
of finite sets of elements, or simplices, that are closed under restric-
tion, that is, for every subset o € K, all strict subsets ¢’ C o must
also be in K [27]. We let K¥ C K denote the subset of K con-
taining simplices in K with cardinality d + 1, which are said to have
dimension d. The dimension of a simplicial complex K is d, where
d is the largest dimension for which K (4 is not empty. We may view
the subset K as the nodes in K, K as edges, K® as triangles,
and so on. We further define the degree of node ¢ at dimension d of
KasD = |{c € K :ic o}

For a pair of simplicial complexes F' and K, the homomor-
phism density of F in K is t(F, K) = hom(F, K)/|F© K,
where hom(F, K) denotes the number of homomorphisms from F
to K [23]. Intuitively, ¢(F, K) represents the number of occurrences
of F'in K while preserving simplices.
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Fig. 1: Linear and convex clustering mixup of complexons.
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(a) Clusterpath from complexons estimated from two sets of Vietoris-Rips

complexes, where each complex is formed from i.i.d. points sampled from one of two shapes in R2, a circle and a figure eight. As A
increases, complexes generated from the same shape fuse together before both shapes coalesce, but we maintain knowledge of the overall
spread of data, as Class 1 fuses before Class 0. (b) Superplxel 51mp11c1a1 complex for MNIST digit 0. (c) Superpixel simplicial complex
sampled from the complexon Whew = 0. 5Wo + 0.5Ws, where Wo and W3 denote complexons estimated from the MNIST digits 0 and 3.

(d) Superpixel simplicial complex for MNIST digit 3.

Mixup for graph data augmentation. Mixup has enjoyed well-
deserved popularity as an intuitive and efficient data augmentation
method [13]. The classical mixup method obtains new samples
as convex combinations of pairs of samples from different classes.
Variants have been proposed for several domains and applications,
including graph mixup [16, 17], interpolation in an embedding
space [28], and nonlinear implementations [17].

Despite the rapid development of mixup for graphs, it remains
difficult due to their non-Euclidean nature, so mixup in a continu-
ous embedding space remains a popular approach [16—18]. How-
ever, projection from the graph domain onto a lower-dimensional
space may lose critical semantic information, and the potential for
information loss is even greater for higher-order networks, for which
there are far fewer data augmentation methods [19].

Limit objects for networks. The increasing presence of large
graphs, such as the internet, motivates the concept of graph limits.
The graphon was thus introduced as the limit of a convergent se-
quence of dense graphs [21]. Simplicial complex sequences have
recently received an analogous limit object known as the com-
plexon [23]. Formally, a complexon W is a measurable function

w | ][0, = [0,1]
d>1
that is symmetric in its coordinates at every dimension. We represent
the complexon at dimension d as W (%), and we may view a graphon
as a complexon of dimension 1, WO Similarly to graphons [21],
complexons not only represent limit objects but also can be used as
a generative model to sample new simplicial complexes [23].

We may also define the homomorphism density of the simplicial
complex F' in the complexon W as

tF,W = WCU dC?
(F,W) /[O,HF«»};L ()

where (; corresponds to indexing (C1, ..., o)) € [0, 1]F<0) by

o C FO 23],

3. METHODOLOGY

Given a dataset of labeled simplicial complexes D = { (K, y:)} =1,
we aim to generate a synthetic dataset D' = {(Kj, y;)}sz/l such

that a classifier f trained on the augmented dataset D U D’ achieves
a higher accuracy predicting the labels of unseen samples compared
to training solely on the original dataset D. We present SC-MAD for
simplicial complex data augmentation following a three-step proce-
dure: (1) We embed the existing simplicial complexes onto a contin-
uous space, which we select as the space of complexons [23], (2) we
perform mixup either via the efficient pairwise linear mixup [13] or
the more informative convex clustering mixup [17], and (3) we sam-
ple complexon mixtures from the interpolants obtained from mixup
and generate new simplicial complexes from those mixtures.

We now discuss the intuition behind the complexon as the em-
bedding space. Step (1) of SC-MAD is common for mixup methods,
where samples are interpolated in an embedding space [16, 17, 28].
The choice of embedding space is adaptable to a user’s desired pre-
served characteristics when obtaining mixtures, and the complexon
is a natural choice for the continuous treatment of simplicial com-
plexes. First, as a Euclidean object, it enjoys amenability to inter-
polation for mixup. Second, the complexon can be used as a ran-
dom simplicial complex model, representing a family of simplicial
complexes [23]. For complex objects such as ours, a stochastic in-
version is desirable for generating many views of simplicial com-
plexes from the same complexon mixture. Third, invertible embed-
dings permit learning in the original space, mitigating information
loss from lower-dimensional projections.

3.1. SC-MAD steps

We elaborate on each step of SC-MAD in the sequel. Of primary
importance is how to convert simplicial complexes into complexons.

Step (1) Complexon estimation. We perform complexon estima-
tion for each labeled simplicial complex {( 4, i) Y1, to obtain a
set of complexon embeddings {(W;, y;)}_,. The task of estimat-
ing a graphon from a single graph is well studled, for which there are
several computationally efficient and effective methods [29-31]. We
adapt sorting-and-smoothing (SAS) for graphon estimation [29] to
complexon estimation, where SAS consists of (1) sorting nodes by
degree and (2) estimating edge probability by computing network
histograms. Inspired by this, we obtain node orderings at every di-
mension and jointly apply them to sort nodes with more information
than if we were to only sort by the number of edges as with graphons.

We first sort nodes in a given d-dimensional simplicial complex
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K with N nodes by computing the following sum
d
Di =YD (1)

for every node ¢ € {1,2,...,N}, where 7 € (0,1) and DEC) is
the degree of node ¢ at dimension c as in Section 2. Reordering
the nodes in K by the degree sum in (1) gives the sorted simplicial
complex K. We obtain a piecewise constant complexon W asa
simplicial complex histogram, whose values at dimension ¢ measure
the frequencies of c-simplices of K in histogram bins [29]. More
specifically, for any ¢(©) = (¢1,..., Cey1) € [0,1]°T2, we obtain

W (¢9) = i 30

Ji=1
h
> I{(@(C)h+ g1, q(Cer)h + jer1) € Ko}, ()
Jet1=1

where A > 0 denotes the number of nodes in each bin and we let
q(¢) = max{[¢|N/h]] — 1,0}. The estimate W, approximates
the faceted complexon [23]. Hence, we obtain the final complexon
estimate 1/ by computing

-1

| ORI (O] B ©)

¢ce¢le

WD) = Wi ()

for every ¢ = (C1,...,Ce11) € [0,1]°". The complexon esti-
mation in (2) and (3) generalizes the popular SAS graphon estima-
tion while accounting for interactions across dimensions for higher-
order objects.

Step (2) Complexon mixup. Once the labeled complexon estimates
{(Wi, y:) YL, are obtained, we can then apply linear or convex clus-
tering m1xup For pairwise linear mixup, we select a pair of com-

plexons W; and W such that y; # y; and interpolate as
Waew = (1 — )W, + AW, @)

where A € [0, 1]. For convex clustering mixup, we solve the follow-
ing optimization problem [24,25]

T

R _ R A

U\ = argmin izg 1 paa(Us, Wi) + T ;<j wij pras (Ui, Uy),
)

where A € [0,1) is the tunable mixup parameter, wi; > 0 is the

weight determining the level of fusion between W; and WJ, and the
functions paq and pgys respectively quantify fidelity and fusion [17].
We choose the following convex functions

YL figagess (WL (Q) = Wi ())?d,
o Sio e IWA2(Q) = W47 (Q)ldC.

paa(Wi, Wa) =
Pfus(Wl» WQ) =

The clusterpath U(\) = {U:(A )}T 1 returns complexon mix-
tures at each A € [0, 1], with U(1) = {+ > W; 1, by definition.
When U;(\) = U;(\), we say that the value is the mixture of WW;
and Wj, where W; and Wj are fused. The mixup parameter A de-
termines how similar to the original complexons W the mixtures

should be. When A\ = 0, U(0) = {W;}7_, returns the original
complexons, and as A increases, complexons begin to fuse into clus-
ters. We encourage the clusterpath U (M) to identify class differences
for downstream classification by letting w;; = 1 when y; = y; and
w;; = € otherwise for some € > 0. For further implementation
details, we refer the reader to [17]. Once we obtain the clusterpath
U(\) from (5), we select complexon mixtures Whew = Ui(\) by
choosing A € [0,1] and ¢ € {1,2,...,T}. A visualization of the
clusterpath U (M) for two sets of Vietoris-Rips complexes is shown
in Fig. la.

Step (3) Simplicial complex sampling. As with graphons, there is
an analogous process for sampling simplicial complexes from com-

plexons [23]. Given a set of nodes K 152@, we sample edges from the
complexon Whyew as

G ~ Unif([0, 1))
P[(,9) € K] = Wi &)
identical to that of graphons. Beyond edges, to retain closure under

restriction, we must preclude simplices whose proper subsets are not
all already present in the sampled simplicial complex. At dimension

d > 1, we add a d-simplex o to /%), with probability

Ploe K] = wit(c) [] 1{o’ € Kuen},

o/Co

vie K9
Y (i,5) € K& x K%,

where Wég&(qg) represents the probability of 0 € Kyew condi-
tioned on the existence of all its proper subsets in Kpew. Once
a desired dimension is reached, the result is a simplicial complex
Khew satisfying closure under restriction. Further details are pro-
vided in [23]. We can then sample any number of new simplicial
complexes from one complexon Wyeyw, generating multiple views
from the same model whose structural characteristics are preserved.

3.2. Class structure in complexon mixtures

Mixup aims to generate new samples with characteristics from mul-
tiple classes. We theoretically show that the complexon mixtures
Whew from linear mixup (4) or convex clustering mixup (5) contain
a mixture of class-dependent structural characteristics from multiple
simplicial complexes. In particular, we assume that for each class y,
there is a finite set of discriminative simplicial complexes F,, such
that for every labeled simplicial complex (K, y), there exists at least
one F' € F, thatis a subcomplex of K [16], that is, there is a ho-
momorphism from F' to K. We present the following result on the
structural similarities between a complexon mixture and one of the
complexons, inspired by a similar result for graphon mixup [16].

Theorem 1 Consider a set of simplicial complexes {(Ki,yi) Yoy

from which we estimate a set of complexons {W VT .. Let the con-
vex combination Whew = Zi:l %WZ for Zi:l v: = 1 denote a
complexon mixture from (4) or (5), and let Fy; be the discrimina-
tive simplicial complex set for class y;. For any finite F' € Fy,
we present the following convergence result on the homomorphism
density difference for the complexon mixture Whew and the estimate

Wj. Asy; = Lor pras(Wj, 2205 ;’—;JWZ) — 0, we have that
|t(F, Wew) — t(F, W;)| = 0. )

For example, when v; = 1/T for everyi =1,2,. T then as W

approaches the mean of the remaining complexons T T oy Wi
with respect to psus, we have convergence as in (7).
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Method Vietoris-Rips MNIST
Data mixup  Label mixup
None None 0.631£0.167 0.782+0.051
Linear 0.709£0.051 0.802+0.111
Linear Sigmoid 0.719 +0.084 0.687+0.088
Logit 0.5944+0.146  0.705£0.033
Cvx. clust. 0.6694+0.193  0.805+0.057
Linear 0.688£0.196 0.804+0.110
Cvx. clust Sigmoid 0.688+0.156 0.819 £ 0.072
’ ) Logit 0.7094+0.064 0.817+0.049
Cvx. clust. 0.738 £ 0.057 0.856 + 0.052

Table 1: Simplicial complex classification accuracy. The top per-
forming methods are bolded.

Proof sketch. We omit a full proof of Theorem 1 for space and
provide a brief description instead. By the definition of the mixture
Whew, if either of the two conditiong in the statement of Theorem 1
hold, then we have that peys(Whew, W) — 0. Then, it can be shown
that the left-hand side of (7) is bounded above by a finite scaling of
prus(Waew, W;). Thus, if either condition holds, then the homomor-
phism density difference converges to 0 as in (7).

Note that for complexons of dimension 1, when v; = A, y; =
1 — A, and v, = O for every k # 4,7, Theorem 1 is analogous
to the result for pairwise graphon mixup in [16]. Our result gen-
eralizes that of [16] by allowing arbitrary convex combinations and
any complexon dimension. Theorem 1 shows that the discrimina-
tive structure of a given class y; grows increasingly present in the
mixture Whevw as W; becomes more prominent in the mixture or as
W]’ grows closer to the remaining complexons in the set. Further-
more, since convex clustering obtains mixtures of every complexon
in a set, the complexon mixtures obtained from (5) will contain the
discriminative structure for every class.

4. NUMERICAL EVALUATION

We evaluate SC-MAD for generating labeled simplicial complexes
to improve classification accuracy. We use a simplicial convolutional
network (SCN) as the architecture for each of the following sim-
ulations [9], and we compare model prediction performance with
and without data augmentation. We perform simplicial complex
mixup via linear mixup (4), denoted “Linear”, and convex cluster-
ing mixup (5), denoted “Cvx. clust.”, as described in Section 3. For
both methods, we let A ~ Unif([0, 1]). We also compare four meth-
ods for mixup of labels [17]. We interpolate labels y; and y; given
the mapping ¢ : [0,1] — [0, 1] as

Ynew = (1 = g(N)) yi + 9(N)y;-

For a > 0, we consider “Linear” mixup g(\) = A; “Sigmoid”
mixup g(A) = 1/(1 + exp{—a(2X — 1)}); “Logit” mixup g(\) =
log(A/(1—=X))/2a+1/2; and “Cvx. clust.”, convex clustering label
mixup as introduced in [17].

Synthetic data. Consider two classes of Vietoris-Rips complexes,
where each complex is formed from i.i.d. points sampled from one
of two shapes in R?, a circle and a figure eight. We perform simpli-
cial complex classification to identify from which shape each com-
plex is sampled. We present the shape classification accuracy for
each method in the column of Table 1 denoted “Vietoris-Rips”. The
first row of Table 1 corresponds to the original dataset with no data
augmentation. The column “Data mixup” indicates the simplicial
complex mixup method and “Label mixup” the label mixup method.

In all cases but one, data augmentation via mixup improves pre-
diction performance. We observe the greatest increase in classifica-
tion accuracy when using convex clustering for both data and labels,
as expected due to the more informative sampling of new labeled
simplicial complexes. We emphasize the practicality of convex clus-
tering for mixup as we achieve superior performance without requir-
ing a specified mixup function for data or labels, nor do we require
a user-defined sampling mechanism for the mixup parameter A [13].
We thus demonstrate the viability of the complexon for interpolating
in the higher-order simplicial complex space. With this choice of
interpolation space, we reap the advantages of mixup for improving
performance even for such complex structures.

Image data. We also evaluate our proposed mixup on the MNIST
image dataset [32]. Any image can be represented as a superpixel
graph, where each node corresponds to a cluster of pixels denoting
meaningful regions and each edge connects nodes that are adjacent
in pixel space [8]. To encode richer visual information, we add trian-
gles for every clique of three nodes in the superpixel graph, resulting
in a set of simplicial complexes modeling related regions within each
image. In Fig. 1b and d, we show simplicial complex representations
of two handwritten digits in the MNIST dataset, while in Fig. 1c, we
present the simplicial complex sampled from a complexon mixture
obtained via linear mixup of the original two images with A = 0.5.
We obtain a mixed superpixel simplicial complex that exhibits struc-
tural interpolation rather than mere pixel-wise value mean. In par-
ticular, the mixture in Fig. 1c not only mixes pixel values by in-
terpolating simplex features but also changes how image regions,
represented by nodes, are connected, modifying which regions are
relevant to which.

A comparison of our results for simplicial complex classifica-
tion on a subset of three classes of MNIST images is shown in the
column of Table 1 denoted “MNIST”. As image classification is
well understood, superpixel network classification serves as a useful
benchmark for comparing simplicial complex-based learning meth-
ods. Convex clustering for both images and labels results in the
greatest increase in classification accuracy over the original super-
pixel dataset. This demonstrates the power of convex clustering for
providing informative synthetic samples for real-world multiclass
data. Moreover, almost all mixup methods achieve superior per-
formance relative to the original dataset, including those that apply
different methods for label and image mixup. This motivates future
investigation in pursuing optimal ways to mixup data and labels.

5. CONCLUSION

In this work, we presented simplicial complex mixup via complex-
ons, the limit object of convergent simplicial complex sequences.
With the continuous complexon, we were able to exploit the effi-
ciency of linear pairwise mixup along with the effectiveness of con-
vex clustering mixup for discrete, irregular simplicial complexes.
The success of our method for simplicial complexes implies the
practicality of exploring limit objects for other data types to perform
useful tasks typically limited to Euclidean data, without needing do-
main expertise or computationally intensive approaches. Further-
more, we theoretically validated our ability to manipulate simplicial
complexes while preserving structural characteristics, so the ubiqui-
tous use of graphs in many applications can be naturally extended to
simplicial complexes. We may more easily adopt these higher-order
networks for other useful fields that graphs already occupy, such as
social network analysis.
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