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Abstract. Consider the Vlasov–Poisson–Landau system with Coulomb potential in the
weakly collisional regime on a 3-torus, i.e.

ωtF (t, x, v) + viωxiF (t, x, v) +Ei(t, x)ωviF (t, x, v) = εQ(F,F )(t, x, v),
E(t, x) = ⌐!⌐1(⩀R3

F (t, x, v)dv −⊍T3
⩀R3

F (t, x, v)dv dx),
with ε ≪ 1. We prove that for ϑ > 0 su”ciently small (but independent of ε), initial data
which are O(ϑε1⌜3)-Sobolev space perturbations from the global Maxwellians lead to global-
in-time solutions which converge to the global Maxwellians as t→⋊. The solutions exhibit
uniform-in-ε Landau damping and enhanced dissipation.

Our main result is analogous to an earlier result of Bedrossian for the Vlasov–Poisson–
Fokker–Planck equation with the same threshold. However, unlike in the Fokker–Planck
case, the linear operator cannot be inverted explicitly due to the complexity of the Landau
collision operator. For this reason, we develop an energy-based framework, which combines
Guo’s weighted energy method with the hypocoercive energy method and the commuting
vector field method. The proof also relies on pointwise resolvent estimates for the linearized
density equation.
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1. Introduction

In this paper, we study the Vlasov–Poisson–Landau system for a particle density
function F ⌐ [0,∞) ⋊T3

x ⋊R3
v → [0,∞) on the 3-torus T3 ⌐= R3⌜(2ωZ)3, which takes the form

εtF (t, x, v) + viεxiF (t, x, v) +Ei(t, x)εviF (t, x, v) = ϑQ(F,F )(t, x, v), (1.1a)

E(t, x) = −⋉ϖ(t, x), ϖ(t, x) = −!⌐1(⩀
R3

F (t, x, v)dv −⊍
T3
⩀
R3

F (t, x, v)dv dx), (1.1b)

where (from now on) repeated lower case Latin indices are summed over i, j = 1,2,3, ⊍T3 ⌐=
1(2ω)3 ∫T3 , and Q is the Landau collision operator with Coulomb potential given by

Q(G,F )(t, x, v) ⌐= εvi ⩀R3
”ij(v−v∗){G(t, x, v∗)(εvjF )(t, x, v)−F (t, x, v)(εvjG)(t, x, v∗)}dv∗,

where

”ij(z) ⌐= 1⌜z⌜{ϱij −
zizj⌜z⌜2 }, (1.2)

with ϱij being the Kronecker delta. We will work in the weakly collisional regime, i.e. we
will assume ϑ in (1.1a) satisfies ϑ ≪ 1, which is relevant in physical situations (see [90]).

The system (1.1a)–(1.1b) describes the dynamics of electrons in a constant ion background.
The electrons both undergo (weak) bilinear collisions and are subject to the mean field force
generated by the electrons themselves. It is also of interest to consider the 2-species analogue
of (1.1a)–(1.1b), which describes the motion of both the electrons and the ions. We will not
explicitly write down that case, though we hope the ideas of this paper will extend to that
case.

It is easy to check that the global Maxwellian

µ(v) ⌐= e⌐⌜v⌜2 (1.3)

is a steady state solution to (1.1a)–(1.1b). For any fixed ϑ > 0, the celebrated work of Guo
[61] implies that the global Maxwellian µ is asymptotically stable. For ϑ = 0, however, the
situation is much more subtle. The seminal work of Mouhot–Villani [91] showed that the
global Maxwellians are stable in an analytic topology via a phase-mixing mechanism known
as Landau damping, which causes the electric field to decay rapidly. The same was proven
to hold in a su#ciently strong Gevrey topology [16]; see also a more recent proof in [53].
Nevertheless, in a Sobolev topology, Bedrossian showed in [9] that (for a di$erent spatially
homogeneous background,) a uniform statement of the stability does not hold due to so-called
plasma echoes. (See however [54].)

Our goal in this paper is twofold. First, we give a detailed description of the dynamics in the
presence of both (collisional) entropic e$ect and (non-collisional) phase mixing e$ect. Second,
we seek to understand the threshold of stability for (1.1a)–(1.1b), i.e. for an appropriate norm
X (which will be chosen to be a Sobolev norm) and a ς > 0, we want to show

⌝Data⌝X ≪ ϑε ↢⇒ stability. (1.4)

Ideally, we would like to find a ς that is optimal.
The proof of Guo’s result [61] discussed above, when appropriately adapted to the weakly

collisional regime, straightforwardly implies a version of (1.4) with ς = 1. This is summarized
in the following theorem.



THE VLASOV–POISSON–LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME 3

Theorem 1.1 (Guo [61]). There exist a (v-weighted, L2-based, up to second order derivatives)

Sobolev space X and an φ0 > 0 independent of ϑ such that if the initial data F0 satisfies

⌝ 1⌝
µ
(F0 − µ)⌝X ≤ φ0ϑ,

then there is a unique global smooth solution to (1.1a)–(1.1b) arising from the given data,

which converges to µ as t→ +∞.

To improve the threshold in Theorem 1.1, one needs to take advantage of the following
two mechanisms specific to the ϑ → 0 limit:

(1) (Enhanced dissipation) Solutions to (1.1a) dissipate energy much faster than that
given by the proof of Theorem 1.1. From (1.1a), one may expect (say, by comparison
with the heat equation) that the solution dissipates energy at an O(ϑ⌐1) time scale.
However, the transport part shifts the solution to high v-frequency, which enhances
the dissipation. As a result, after subtracting the average-in-x mode, the solution in
fact dissipates energy at an O(ϑ⌐1⌜3) time scale.

(2) (Landau damping) When ϑ = 0, the Vlasov–Poisson–Landau system reduces to the
Vlasov–Poisson system, which as discussed above has a decay mechanism of Landau
damping. One expects that Landau damping persists for small ϑ, and gives a decay
mechanism at an O(1) time, before the collisional e$ects enter.

To understand exactly how Landau damping enters requires some knowledge of nonlinear
Landau damping for Sobolev data. It is by now well-understood, for instance by adapting
methods of [90], that for initial data of size O(ϱ) (with ϱ small) in a (su#ciently regular)
Sobolev topology, the linear Landau damping mechanism drives the nonlinear dynamics for
the Vlasov–Poisson system up to a time of O(ϱ⌐1). It is therefore reasonable to expect O(φϑ 1

3 )
to be a natural threshold for the problem (1.4): Landau damping gives a decay mechanism
up to time O(φ⌐1ϑ⌐ 1

3 ), at which point the collisional e$ect kicks in and dominates due to the
enhanced dissipation. (See discussions in [8].) This is exactly what we obtain in our main
theorem.

Theorem 1.2. There exist a (v-weighted, L2-based, up to eleventh order derivatives) Sobolev

space X and an φ0 > 0 independent of ϑ such that if the initial data F0 satisfies

⌝ 1⌝
µ
(F0 − µ)⌝X ≤ φ0ϑ1⌜3,

then there is a unique global smooth solution to (1.1a)–(1.1b) arising from the given data,

which converges to µ as t→ +∞.

Moreover, the solution exhibits enhanced dissipation and uniform-in-ϑ Landau damping.

The enhanced dissipation and uniform-in-ϑ Landau damping are reflected in the large-time
estimates that we prove; see Section 1.1.6 and Theorem 3.1. (Notice that if we only capture
enhanced dissipation without exploiting Landau damping in the proof, this would correspond
to a weaker theorem where the initial data could only be an O(φ0ϑ 2

3 )-perturbation of the
global Maxwellian.)
A very similar result was proven in a recent work of Bedrossian for the Vlasov–Poisson–

Fokker–Planck system [8]. The Landau collision kernel is more complicated than Fokker–
Planck collision kernel in its anisotropy and degeneracy as ⌜v⌜ → ∞, as well as a lack of
a spectral gap. More importantly from the point of view of this problem, the linearized
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Vlasov–Poisson–Landau system around the global Maxwellians cannot be solved explicitly,
unlike the corresponding linearized Vlasov–Poisson–Fokker–Planck system. This requires a
di$erent approach for the problem.
Given the lack of explicit representation formulas for the linear solution, we rely instead

on adaptations of Guo’s energy method, but we further need to design the energies so as to
capture the phenomena of enhanced dissipation and Landau damping.

(1) (Hypocoercivity) To capture enhanced dissipation, we use the hypocoercive energy
method: this is a choice of an energy which incorporates some lower order boundary
terms, which in turn generates useful coercive spacetime terms. This idea is known
to be well-suited to capture the interaction of the transport and the collision terms
[70, 65, 109] (see also Section 1.2.4), and particularly to obtain sharp enhanced
dissipation rate in some weakly viscous settings [10]. See Section 1.1.3.

(2) (Commuting vector fields method) To capture Landau damping, we need quantitative
estimates showing that f ⌐= 1⌝

µ(F − µ) behaves like a solution of the transport

equation. To achieve this, we commute the equation with the (t-weighted) vector field
Yi = tεxi +εvi and bound Y ϑf (and its derivatives) in addition to f itself. This lets one
prove transport bounds in the presence of collision, and in fact to take advantage of
the coercivity given by collisions. Such a commutating vector field method is inspired
by related techniques for nonlinear wave equations, fluid equations and other kinetic
models [30, 29, 76, 83, 98, 117]. See Sections 1.1.4 and 1.2.7.

(3) (Resolvent estimates via hypocoercivity and commuting vector field method) Using
the hypocoercive energy method itself is di#cult to control the nonlocal terms
associated with the electric field. Thus, in addition to energy estimates for f , we
derive an independent density estimate (as in [8, 16, 53, 91]) for the macroscopic
density ↼ ⌐= ∫R3 f

⌝
µdv, proven using the Volterra equation that it satisfies.

To achieve the density estimates involves (1) proving a resolvent estimate to invert
the linear part and (2) bounding the nonlinear contributions. Both of these can
be achieved by extending the resolvent estimate and nonlinear analysis in [53] in
conjunction with obtaining control of the linear Landau flow (see Section 1.1.5).
Importantly, the linear Landau flow no longer features nonlocal terms. Thus, the
estimates we need for the linear Landau flow can in turn be achieved by a combination
of the hypocoercive energy method and the commuting vector field method.

We further discuss the ideas of the proof in Section 1.1. We then turn to related works in
Section 1.2. Finally, we will end our introduction with some discussions on future directions
in Section 1.3 and an outline of the remainder of the paper in Section 1.4.

1.1. Idea of the proof.

1.1.1. Preliminaries. Let µ be the global Maxwellian (1.3). We rewrite the problem for f
defined by F = µ +⌝µf so that the Vlasov–Poisson–Landau system (1.1a)–(1.1b) becomes

εtf + v ⋅ ⋉xf +E ⋅ ⋉vf − (E ⋅ v)f − 2(E ⋅ v)⌝µ + ϑLf = ϑ%(f, f), (1.5)

where E is as in (1.1b), L is the linearized Landau collision operator, which has some
coercivity properties, and % is the nonlinear collisional terms in f (see Section 2.1 for precise
definitions). The problem is now rephrased to proving boundedness and decay for f .
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1.1.2. The Guo’s energy method. The starting point of our approach is Guo’s work [61] (see
Theorem 1.1 above). The general strategy, first devised by Guo and is applicable in many
kinetic models of the form εtf + v ⋅ ⋉xf + ϑLf = ϑ%(f, f), is to find an energy norm ⌝ ⋅ ⌝E , a
dissipation norm ⌝ ⋅ ⌝D, and a suitable ↽ > 0, ⇀ ∈ R such that

d

dt
⌝f⌝2E + ↽ϑϖ⌝f⌝2D ≤ 0. (1.6)

The control in ⌝ ⋅ ⌝D comes from the linear Lf part, and the norms are chosen appropriately
to bound the nonlinear term ϑ⌜⌝f,%(f, f)⌝E ⌜ ⧖ ϑϖ⌐⌝f⌝E⌝f⌝2D so that one can indeed obtain
(1.6) with suitable smallness on the initial data.

The proof of such an energy inequality, or even the choice of the norms ⌝ ⋅ ⌝E and ⌝ ⋅ ⌝D, is
delicate, and depends on the kinetic model under consideration. The construction in general
requires a careful choice of weight functions, as well as using an additional argument to
handle the kernel of the linear operator L. This type of method is particularly useful for soft
potentials (such as the Landau collision operator), since in general the ⌝ ⋅ ⌝D norm is weaker
than the ⌝ ⋅ ⌝E norm in v-weights.
We highlight two innovations in the energy introduced by Guo [61] which are specific to

the Vlasov–Poisson–Landau system:

● use of eϱ weights in the energy, where ϖ is the electric potential (to handle the
costly-in-v-moment term (E ⋅ v)f), and● use of weights in ⌝v⌝ which are weaker for higher derivatives (to handle simultaneously
the weak coercivity of the the dissipation energy for large ⌝v⌝ and commutator terms
arising from the linear free streaming term).

A more detailed explanation of these weights and their motivations can be found in the
introduction of [61]. These will also be featured prominently in our energies.

1.1.3. Hypocoercivity and energy method. Slightly over-simplifying1 for the moment, the Guo
energy in [61], when adapted to small ϑ, corresponds to

⌝eϱ⌝v⌝2M⌐2⌜ς⌜⌐2⌜ε⌜Hς,ε⌝2L2
x,v
, Hς,ε ⌐= ϑ ⌜ε⌜ες

xε
ε
v f, (1.7)

after appropriately summing up in ⇁ and ς. (Note the ⌝v⌝ and eϱ weights are incorporated
in the energy, as discussed in Section 1.1.2.)
Di$erentiating the energy (1.7) also gives an integrated decay estimate (cf. (1.6)) which

controls, for Hς,ε as in (1.7),

ϑ ⩀ T

0
⌝eϱ⌝v⌝2M⌐2⌜ς⌜⌐2⌜ε⌜⌐ 1

2Hς,ε⌝2L2
x,v

dt + ϑ ⩀ T

0
∑⌜ε⌐⌜=1 ⌝e

ϱ⌝v⌝2M⌐2⌜ς⌜⌐2⌜ε⌜⌐ 3
2εε⌐

v Hς,ε⌝2L2
x,v

dt. (1.8)

One reads o$ from (1.7) that each εv derivative costs ϑ⌐1, and by comparing (1.7) and
(1.8) that integration in t also costs ϑ⌐1. Heuristically, this means that one expects to deduce
from (1.7) and (1.8) that energy decays on a time scale of order ϑ⌐1. In particular, this does
not capture the enhanced dissipation generated by the interaction between the transport
and the di$usive terms. (Notice that the second term in (1.8) gives a better (in ϑ) estimate
for the εv derivatives, but without some corresponding estimates for the εx derivatives, it is
unclear how that could improve the rate.)

1We have suppressed in particular the fact that (1) Guo also incorporated E in the energy (which we will
not need, see beginning of Section 1.1.5) and (2) Guo has stronger weighted in v so as to obtain stretched
exponential decay estimates (which we will discuss later in Section 1.1.6).
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Inspired by [7, 10, 70, 109], we modify the Guo energy so as to capture enhanced dissipation.
Precisely, for every (⇁,ς), we define2 the following energy at the H1 level for ες

xε
ε
v f :

⌝ες
xε

ε
v f⌝2Eω,ε

⌐=A0 ∑⌜ς⌐⌜≤1 ⌝e
ϱ⌝v⌝2(M⌐⌜ς⌜⌐⌜ς⌐⌜⌐⌜ε⌜)ες⌐

x Hς,ε⌝2L2
x,v
+ ϑ 2

3 ∑⌜ε⌐⌜=1 ⌝e
ϱ⌝v⌝2(M⌐⌜ς⌜⌐⌜ε⌜⌐1)εε⌐

v Hς,ε⌝2L2
x,v

+ ϑ 1
3 ⩀

T3⋊R3
e2ϱ⌝v⌝4(M⌐⌜ς⌜⌐⌜ε⌜⌐1)⋉xHς,ε ⋅ ⋉vHς,ε dv dx

⌝⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞⌞(∗)

.
(1.9)

where now Hς,ε ⌐= ϑ ⌜ε⌜⌜3ες
xε

ε
v f . For A0 large but fixed, (1.9) is comparable to

∑
0≤⌜ς⌐⌜≤1

⌝eϱ⌝v⌝2(M⌐⌜ς⌜⌐⌜ς⌐⌜⌐⌜ε⌜)ες⌐
x Hς,ε⌝2L2

x,v
+ ϑ 2

3 ∑⌜ε⌐⌜=1 ⌝e
ϱ⌝v⌝2(M⌐⌜ς⌜⌐⌜ε⌜⌐1)εε⌐

v Hς,ε⌝2L2
x,v
. (1.10)

The key here is that despite the equivalence of (1.9) and (1.10), when di$erentiating the(∗) term in (1.9) by d
dt , a non-negative useful term ϑ1⌜3⊎⌜ς⌐⌜=1 ⌝eϱ⌝v⌝2(M⌐⌜ς⌜⌐⌜ε⌜⌐2)ες⌐

x Hς,ε⌝2L2
x,v

is generated. As a result, after suppressing some terms, the d
dt derivative of ⌝ες

xε
ε
v f⌝2Eω,ε

precisely controls

ϑ1⌜3⌝ες
xε

ε
v f⌝2Dω,ε

≳ ϑ1⌜3(⩀ T

0
∑⌜ς⌐⌜=1 ⌝e

ϱ⌝v⌝2M⌐2⌜ς⌜⌐2⌜ε⌜⌐2ες⌐
x Hς,ε⌝2L2

x,v
dt

+ ϑ2⌜3⩀ T

0
∑⌜ε⌐⌜≤1 ⌝e

ϱ⌝v⌝2M⌐2⌜ς⌜⌐2⌜ε⌜⌐ 7
2εε⌐

v Hς,ε⌝2L2
x,v

dt). (1.11)

In (1.9) and (1.11), we see that each εv derivative now costs ϑ⌐ 1
3 . Moreover, comparing the⌜⇁′⌜ = 1 and ⌜ς′⌜ = 1 terms in (1.9) with those in (1.11) may suggest that the energy for the

derivatives of f decay at a time scale of ϑ⌐ 1
3 , which is much earlier than ϑ⌐1, i.e. this energy

captures enhanced dissipation. This enhancement is crucial in controlling the nonlinear terms.
Note, however, that if we compare the ⌜⇁′⌜ = 0 term in (1.9) with the ⌜ς′⌜ = 0 term in (1.11),

we see that the term has an additional loss of ϑ⌐2⌜3. This is a reflection of the fact that
enhanced dissipation only holds after removing the x-average mode.

1.1.4. Commuting vector fields and Landau damping. We capture Landau damping using
the commuting vector field method, with vector fields adapted to the flow of the transport
equation. The advantage of using such a commuting vector field method approach is that
we can hope to prove transport estimates and largely ignore the collision term because in
principle the collision term gives rise to terms which have a good sign.
Let Yi = tεxi + εvi . We will use Yi as a commuting vector field, together with εxi and

ϑ
1
3εvi , i.e. we control ϑ ⌜ε⌜⌜3⌜ες

xε
ε
v Y ϑf ⌜ in appropriate weighted spaces (with weights allowed to

depend on (⇁,ς,ω)) and define more generally Eς,ε,ϑ and Dς,ε,ϑ spaces (see (5.11)–(5.12) for
details). The significance of Y can be explained as follows:

● For a solution flin to the linear transport equation εtflin+v⋅⋉xflin = 0 with regular data,
it is easy to see that ⌜Y ϑflin⌜ is uniformly bounded in time (since [εt + v ⋅ ⋉x, Yi] = 0),
despite Y being a t-weighted vector field. Thus controlling the Y derivatives of f can
be viewed as proving an asymptotic transport-like estimate.

2This is still not yet the actual energy we use, which also includes commutations with Yi; see Section 1.1.4.
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● Controlling Y f also implies decay of averaged quantities of f , thus capturing phase

mixing. For instance, Poincaré’s inequality gives that for ↼ ⌐= ∫R3 f
⌝
µdv and for ⊍T3

the average over T3, we have

⌝↼ −⊍
T3
↼dx⌝2L2

x
⧖ ⌝⋉x↼⌝2L2

x
⧖∑

i
⩀
T3
(⩀

R3
εxif
⌝
µdv)2 dx

⧖ t⌐2∑
i
⩀
T3
(⩀

R3
(Yif − εvif)⌝µdv)2 dx ⧖ t⌐2(⌝Y f⌝2L2

x,v
+ ⌝f⌝2L2

x,v
),

where we integrated by parts in the last estimate.● Importantly for understanding phase mixing in the presence of collision, capturing
phase mixing by the vector field Y allows one to still take advantage of the coercivity

of the collision term while proving phase mixing. More precisely, a term such as
ϑL(Y f) (where L is the linear Landau collision operator) that arises in the argument
for bounding Y f is not treated as an error, but instead we take advantage of the
coercivity of L and make use of this term. (There are associated commutator terms,
which we will show to be of a lower order.)

1.1.5. Density estimates. The above ideas would in principle be su#cient to prove enhanced
dissipation and Landau damping for the Landau equation (i.e. without the Poisson part) in
the weakly collisional regime. However, the Vlasov–Poisson–Landau system has terms in E
(see E ⋅ ⋉vf , E ⋅ vf , and 2(E ⋅ v)⌝µ in (1.5)), which require an additional idea.

The linear E term was handled by Guo [61] using a cleverly designed energy which
incorporates E so that this linear E term is cancelled in the derivation of the energy estimates.
Such a strategy seems di#cult to implement when at the same time carrying out ideas in
Sections 1.1.3 and 1.1.4. The nonlinear E ⋅ ⋉vf , if treated using the energy estimates alone,
would give a worse threshold compared to φϑ1⌜3.

Instead, we follow the general strategy [5, 16, 53, 91] and prove an independent estimate
for the density that does not depend on the energy estimate. These density estimates rely on
resolvent bounds on the kernel of the linearized density, which we now explain.
In the Vlasov–Poisson case, the k-th Fourier mode of the density ↼ satisfies a Volterra

equation

↼̂k(t) +⩀ t

0
KV P

k (t − τ)↼̂k(τ)dτ = N V P
k (t),

where the kernel KV P
k (t) = 2⌜k⌜2 ∫R3 i(k ⋅ v)e⌐ik⋉vtµ dv, and N V P

k (t) is an error term containing
the contributions from the initial data and the nonlinear terms.
In the Vlasov–Poisson–Landau case, the Volterra equation is less explicit, and the kernel

takes the form

Kk(t) = 2⌜k⌜2 ⩀R3
ik ⋅ Sk(t)[v⌝µ]⌝µdv,

where Sk(t) denotes the linear Landau semigroup generated by the fixed mode linear Landau
equation εth + ik ⋅ vh + ϑLh = 0.

To solve the nonlinear Volterra equation, we take the following steps:

● We first derive pointwise resolvent estimates (cf. [53, 62, 63]), showing that there is a
kernel Gk which is rapidly decaying (and thus negligible) such that

↼̂k(t) = Nk(t) +⩀ t

0
Gk(t − s)Nk(s) ds. (1.12)
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Relying on the resolvent estimate proven for the Vlasov–Poisson case in [53], it
essentially su#ces to show that limφ→0 ⌝Kk(⋅) −KV P

k (⋅)⌝L1
t
→ 0. This in turn can be

obtained by energy and vector field methods for the linear Landau flow for all small ϑ.● We then need to control Nk(t) in (1.12) (see (7.4), (8.4) for the precise terms). The
most di#cult term here comes from the nonlinear contribution E ⋅ ⋉vf associated
with the Poisson part, which takes the form

∑
l⌜=0⩀

t

0

⌞El(τ) ⋅ ⩀
R3

Sk(t − τ)[⌞⋉vfk⌐l(τ)]⌝µdv dτ.
(The nonlinear collisional terms are slightly easier.) As above, we control Sk(t − τ)
using the hypocoercive energy method and the commuting vector field method. The
bounds we prove give (1) rapid decay in ⌝ϑ1⌜3(t − τ)⌝, and (2) bounds associated with
the Y vector field, which can be viewed as transport-like bounds. Precisely because
we obtain transport-like bounds, this gives hope of controlling the nonlinear term by
extending ideas from the density estimates for the Vlasov–Poisson system.

1.1.6. Decay estimates. Once we close the energy estimates, we adapt the methods of Strain–
Guo [102, 103] to exchange v-weights in the energy with decay in the variable ϑt. More
precisely, following [103], we additionally introduce ec⌜v⌜2 weights in the energy (1.9) so as to
obtain energy decay with a stretched exponential rate. In order to avoid the technicalities
associated with simultaneously using ec⌜v⌜2 weights and commuting with Y , we only use ec⌜v⌜2
weights when there are no Y commutations. At first this only gives decay of energy without
Y commutations, yet a full decay statement can then be achieved by interpolation.

This allows us to obtain the following decay results (see precise statements in Theorem 3.1):

(1) Essentially arguing as Strain–Guo, but taking into account the dependence on ϑ, we
prove that the energy decays with an exp(−ϱ(ϑt) 23 ) rate (for ϱ > 0 small).

(2) As discussed earlier, there is an enhanced dissipation (which operates at the time
scale of O(ϑ⌐ 1

3 ) instead of O(ϑ⌐1)) after removing the zeroth spatial Fourier mode.
Instead of explicitly removing the zeroth mode, we prove an enhanced decay estimate
by considering an energy in which f has at least one εx derivative. For such an energy,
we prove energy decay with a rate min{exp(−ϱ(ϑ 1

3 t) 13 ), exp(−ϱ(ϑt) 23 )}.
In order to obtain the decay estimates, in addition to deriving weighted energy estimates,

we also need to propagate the stretched exponential decay in the density estimates (recall
Section 1.1.5). This requires (1) a precise estimate for the resolvent, which incorporates the
stretched exponential decay, and (2) a more careful nonlinear analysis. This more precise
nonlinear analysis (see for instance the decomposition of the density in (11.3)–(11.4)) is
devised so that one does not see an analogue of the top-order loss in the energy boundedness
argument (see Section 1.1.8), which is now possible because we are only propagating the
stretched exponential decay estimate for the low-order derivatives. (See the beginning of
Section 11 for further remarks on the nonlinear density estimates.)
Once we obtain the enhanced decay rate for the nonzero modes, the density estimate

implies that the Fourier modes ↼k obey Landau damping-type uniform inverse polynomial
decay estimates:

⌜↼k⌜ ⧖ φϑ1⌜3(1 + ⌜k⌜ + ⌜kt⌜)⌐N min{e⌐↼(φ1⌜3t)1⌜3 , e⌐↼(φt)2⌜3}.
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1.1.7. Structure of the energy estimates. In order to carry out the full scheme described
above, we implicitly need that under suitable bootstrap assumptions, we can bound various
energies which use only some subsets of commutators.
For instance, for the linear Landau energy estimates used in the density estimates (see

Section 1.1.5), we need to commute the linear Landau equation for each fixed mode with a
large number of Y derivatives, but with at most one εx or εv derivatives. This is important
for obtaining the correct constants in the estimates.
On the other hand, for the stretched exponential decay (see Section 1.1.6), we need an

energy without any Y commutations (since, as discussed above, we do not put Y commutations
together with ec⌜v⌜2 weights). For the decay of the full solution, we use only the hypocoercive
energy without any additional commutations. For the enhanced dissipation, we need to
remove the k = 0 x-Fourier mode. For this purpose, we consider the hypocoercive energy with
exactly one additional εx commutation.
To propagate the boundedness of energies with only suitable subsets of commutators,

we define an energy EN low
ω ,Nω,ε ,Nε ,Nϑ

, which is a sum of appropriate Eς,ε,ϑ energies. The
parameters N low

ς ,Nς,ε,Nε,Nϑ describe the commutators used: they depend not only on the
total number of commutators, but also on various upper and lower bounds on each type of
commutators used; see (5.15).

1.1.8. Additional di!culties. While we have already described the main conceptual di#culties,
the even more interesting di#culties lie in the technicalities. We highlight a few technical
issues here.

Asymmetric use of commutators. At the top order of energy, we do not allow for an
arbitrary combination of the commutator vector fields. Instead, we only allow for

ες
xε

ε
v Y

ϑf, εxiε
ς
xε

ε
v Y

ϑf, εviε
ς
xε

ε
v Y

ϑf, ε2
vivjε

ς
xε

ε
v Y

ϑf (1.13)

for 0 ≤ ⌜⇁⌜+ ⌜ς⌜+ ⌜ω⌜ ≤ Nmax. (See the ⌟Eς,ε.ϑ and ⌟Dς,ε,ϑ norms in (5.13)–(5.14).) Put di$erently,

● at the top level (with Nmax + 2 derivatives), at least two commutators have to be εv;● at the penultimate level (with Nmax + 1 derivatives), at least one commutator has to
be εx or εv;● at lower levels (with Nmax derivatives or fewer), the commutators can be arbitrary
combinations of εx, εv and Y .

On the one hand, this is needed because the nonlinear density estimates (unlike the energy
estimates) lose derivatives, and thus to bound ες

xY
ϑ↼ requires estimates for ες

xε
ε
v Y ϑf for⌜ς⌜ ≤ 3, which can only be obtained by commuting with two additional εv derivatives. On the

other hand, this is possible because commuting ε2
v does not generate terms like ε2

xf .

Growth of top-order energy. When controlling the energy for the terms (1.13) with⌜⇁⌜+ ⌜ς⌜+ ⌜ω⌜ = Nmax−1 or Nmax, we allow the energy to grow either in t or ϑ⌐ 1
3 . The underlying

reason is that the decay of E by Landau damping is determined by the regularity. The decay
at the highest level is thus slower, and ultimately the terms 2(E ⋅ v)⌝µ and E ⋅ ⋉vf in (1.5)
cause the top-order energy to grow.

Nevertheless, importantly, even though the energies at the top two orders grow, the nonlin-
ear analysis in the density estimates (see Section 1.1.5) still allows one to prove a desired
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density estimate without loss at the top level. This allows the bootstrap argument to close.

Di!erent decay rates for the k = 0 and k ⌜= 0 modes. As we have already discussed
above (see Section 1.1.3), enhanced dissipation is only seen for the spatial Fourier modes
k ⌜= 0, i.e. the k = 0 mode decays slower. This in particular means that in the nonlinear
analysis, we need to be careful of terms without derivatives, as they could potentially be more
slowly decaying. In all cases, we show that there is an integration by parts giving bounds
with the right decay; see Lemmas 9.5 and 9.6.

Handling some lowest order terms. Finally, recall that the linearized Landau operator
has a non-trivial kernel, which was dealt with in [61] by analyzing a separate system for the
macroscopic quantities. The hypocoercive energy allows us to sidestep this complication; see
a related observation in [21]. More precisely, the hypocoercive energy gives better bounds on
the εx derivatives, so that we only need to control the x-mean of the contribution from the
kernel, which in turn can be treated trivially using the conservation laws.

1.2. Related works.

1.2.1. Landau damping for the Vlasov–Poisson system. Linear Landau damping for the
Vlasov–Poisson system was first observed in Landau’s seminal work [78]. A mathematical
breakthrough was achieved by Mouhot–Villani [91], justifying Landau damping in a nonlinear
setting under analyticity assumptions. This has been extended and simplified in [16, 53].
More recently, the e$ect of plasma echoes have been further explored in [9, 54]. See also
[25, 73] for earlier constructions of some Landau damped solutions, [17, 18, 49, 50, 62, 63]
for works on the whole space (instead of the torus), and [119] for the relativistic case.

1.2.2. Nonlinear stability of global Maxwellians. In the ϑ = 1 case of (1.1a)–(1.1b) (or its
two-species analogue), the nonlinear asymptotic stability of global Maxwellians was first
proven in Guo’s [61] in a periodic box; see also [33, 40]. The corresponding stability result on
R3 was proven in [104] (with alternative proofs in [64, 80, 114]). See also the more recent
[41] for stability of local Maxwellians representing rarefaction waves.

The work [61] can be viewed in the context of a larger program of stability of Maxwellians
result using energy methods. This began with Guo’s seminal work [57] for the Landau equation,
and inspired many subsequent works; see [2, 3, 4, 26, 27, 28, 56, 58, 60, 59, 72, 101, 102, 103]
and the references therein for further discussions.

1.2.3. Related works in the physics literature. There have been many works in the physics
literature studying the interaction of Landau damping and weak collisions, see [24, 42, 52,
74, 81, 85, 86, 92, 93, 94, 96, 97, 100, 105, 108, 120, 121] and the references therein.

1.2.4. Hypocoercivity. The method of hypocoercivity has roots in the theory of hypoelliptic
operators [71, 77]. The use of hypocoercivity method for decay estimates was pioneered
Eckmann–Hairer [44], Hérau–Nier [70] and Hel$er–Nier [65]. See [35, 67, 68, 37, 69] for a
small sample of further results, and see particularly for results in a weakly viscous setting
[10, 32]. Finally, we refer the reader to [36, 109, 69] for systematic discussions.
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1.2.5. Weakly collisional regimes for kinetic equations. Despite its physical importance, there
are very few mathematical works on weakly collisional regimes for kinetic equations. This
type of questions were raised in the mathematics literature for instance in [34, IV.25.8.2]
and [110, Section 8]. The only nonlinear result is the work of Bedrossian [8] on the Vlasov–
Poisson–Fokker–Planck system that we already mentioned. This was predated slightly earlier
by a linear analysis in [107]. More recently, the linear analysis was extended to include e$ects
of a uniform background magnetic field [21].

1.2.6. Related models with vanishing dissipation. Even though there are not many works on
weakly collisional regimes for kinetic equations, there are closely related models, problems
and results in fluid dynamics. See [10, 11, 12, 13, 14, 15, 19, 20, 31, 32, 38, 47, 55, 75, 79,
84, 87, 88, 95, 115, 116, 117, 122] and the references therein for a sample of results. We in
particular highlight the paper [32] for its use of the hypocoercive energy method.

1.2.7. Commutating vector field method for kinetic models. The commutating vector field
method, pioneered in [76] for quasilinear wave equations, has been very successful in capturing
dispersion to prove global stability for nonlinear evolution equations. Recently, it has likewise
found many applications for collisionless kinetic equations. In particular, the stability of
vacuum has been established in many di$erent settings [22, 46, 98, 118], and the stability
of the Minkowski spacetime for the Einstein–Vlasov system in general relativity has also
been resolved [23, 45, 82, 99, 106]. (See also [6, 5, 51, 48, 113, 112, 111] for related works on
stability of vacuum type results for collisionless models.) For collisional models, recent works
using the commutating vector field method give — for the first time — stability of vacuum
results for collisional models with a long range interaction, first for the Landau equation
[83, 29], and more recently for Boltzmann equation without angular cuto$ [30]. As for phase
mixing, it has been successfully used for the linearized ς-plane equation in [117].

1.3. Discussions.

1.3.1. Related models.

(1) Magnetic field. Using the methods introduced here, one can potentially study the
problem in the presence of a constant external magnetic field as in [21], but now also
with the Landau collision operator.

(2) While the Landau collision operator is the most commonly used collision operator in
plasma physics, there are other collision models for which the weakly collision regime
is of interest:
(a) The Boltzmann operator. One can consider both the case with or without

cuto$. In either case, one expects the threshold to be di$erent from the Landau
case. See discussions in [8].

(b) The Lenard–Balescu operator. The Lenard–Balescu operator is significantly
more complicated than the Landau operator and takes into account collective
screening e$ects. Notice, however, that mathematical results for the Lenard–
Balescu operator in the Coulomb case are so far confined to the linear setting
[89, 1] (see however [43]), and even a nonlinear result analogous to Theorem 1.1
appears to be out of reach.
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1.3.2. Sharp threshold. We now discuss the conjectured threshold (1.4). While our paper
concerns only initial data with high (but finite) Sobolev regularity, it is of interest to consider
other function spaces, and it is expected that the sharp threshold may depend on the function
space.

(1) (High-regularity Sobolev spaces) It is conjectured by Bedrossian that for the Vlasov–
Poisson–Fokker–Planck system considered in [8], O(φϑ1⌜3) is the sharp threshold,
possibly up to logarithms, due to the possible occurrence of plasma echoes. The same
heuristics in [8] applies to our case (see the discussions before Theorem 1.2) suggesting
that the threshold in Theorem 1.2 may be sharp.

(2) (Gevrey spaces) In Gevrey-1s spaces with s > 1
3 , global stability is established for the

Vlasov–Poisson system. This gives hope that in the weakly collisional regime, one can
treat initial data of size O(ϱ) in these Gevrey spaces, independently of the collisional
parameter ϑ.

(3) (Low-regularity Sobolev spaces) Finally, recall that the ϑ-independent decay rate by
phase mixing depends on the regularity of the initial data. Thus in very low regularity
spaces (e.g. those in [39] so that global stability still holds for the Landau equation
with ϑ = 1), the stabilizing e$ect of phase mixing may be weaker. Nevertheless, it is
still of interest to understand whether one can allow at least for O(ϱϑ1⌜2) data in a
low-regularity space . A similar question may also be studied in the case of bounded
domain where one necessarily carry out low-regularity analysis due to boundary
e$ects.

1.4. Outline of the paper. The remainder of the paper is structured as follows.

● In Section 2, we introduce the notation that will be in e$ect for the rest of the paper.

● In Section 3, we give a precise statement of the main theorem.

● In Section 4, we collect some facts about the Landau collisional operator.

● In Section 5, we set up the main energy estimate for the whole Vlasov–Poisson–
Landau system. In particular, the precise energy and dissipation norms will be
introduced.

● In Section 6, we perform energy estimates for the linear Landau flow that are needed
for closing the density estimates.

● In Section 7, we provide pointwise resolvent bounds on density of the linearized
Vlasov–Poisson–Landau system.

● In Section 8, we establish the nonlinear density estimates under the bootstrap
assumptions on the energy.

● In Section 9, we close the main nonlinear energy estimates for the Vlasov–Poisson–
Landau system.



THE VLASOV–POISSON–LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME 13

● In Section 10, we prove global existence of solutions via a continuity argument.

● In Section 11, we prove stretched exponential decay for the density at lower order.

● In Section 12, we prove stretched exponential decay for lower order energy.

● In Section 13, we put everything together and prove the main conclusions of the
paper including the global existence, the stretched exponential decay, as well as the
uniform Landau damping for the density.

● Finally, in Appendix A, we give two versions of Strain–Guo lemmas adapted to our
setting.

Acknowledgments. S. Chaturvedi and J. Luk are supported by the NSF grant DMS-
2005435. J. Luk also gratefully acknowledges the support of a Terman Fellowship. T. Nguyen
is partly supported by the NSF under grant DMS-1764119, an AMS Centennial fellowship,
and a Simons fellowship.

2. Notation

We first introduce a reformulation of the problem in terms of f ⌐= 1⌝
µ(F − µ), and then

introduce some notations that will be used throughout the paper.

2.1. Reformulation in terms of f . For the remainder of the paper, it is convenient to
first rewrite the problem in terms of f (see Section 1.1.1). Define f via

F = µ +⌝µf. (2.1)

In the remainder of the paper, we will solve (1.1a)–(1.1b) with initial data f⌜t=0 = f0 that in
particular satisfies ⊍T3 ∫R3 f0

⌝
µdv dx = 0. The conservation of mass ensures that

⊍
T3
⩀
R3

f(t, x, v)⌟µ(v)dv dx = 0.
Under this mean zero condition, it can be deduced that the Vlasov–Poisson–Landau system

(1.1a)–(1.1b) is equivalent to the following system for f :

εtf + v ⋅ ⋉xf +E ⋅ ⋉vf −E ⋅ vf − 2(E ⋅ v)⌝µ + ϑLf = ϑ%(f, f), (2.2a)

E(t, x) = −⋉ϖ(t, x), −!ϖ = ⩀
R3

f(t, x, v)⌟µ(v)dv, (2.2b)

where, following [57, Lemma 1],

● the linear Landau operator L admits a decomposition

L = −K −A, (2.3)

where A and K are given respectively by

Ag ⌐= εvi(▷ijεvjg) − ▷ijvivjg + εvi▷ig, (2.4)

Kg ⌐= −µ⌐ 1
2 (v)εvi ⌟µ(v)⩀R3

”ij(v − v′)⌝µ(v′)[εvjg(v′) + v′jg(v′)]dv′⌟ , (2.5)

with
▷ij ⌐= ”ij ⋆ µ, ▷i ⌐= ”ij ⋆ (vjµ) = ▷ijvj, (2.6)
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for ”ij as in (1.2), and ⋆ being the v-convolution,● and the nonlinear Landau collisional term %(f, f) is given by

%(g1, g2) ⌐= εvi⌟(”ij ⋆ (µ1⌜2g1))εvjg2] − ⌟”ij ⋆ (viµ1⌜2g1)]εvjg2
− εvi⌟(”ij ⋆ (µ1⌜2εvjg1))g2] + ⌟”ij ⋆ (viµ1⌜2εvjg1)]g2. (2.7)

The rest of the paper deals with solutions f to (2.2a)-(2.2b).

2.2. Notations. Vector Field Y . For any t ≥ 0 and i ∈ {1,2,3}, we introduce the time-
dependent vector field

Yi = εvi + tεxi .

Multi-indices. Given a multi-index ⇁ = (⇁1,⇁2,⇁3) ∈ (N∧{0})3, we define ες
x = ες1

x1 ε
ς2
x2 ε

ς3
x3

and similarly, εε
v = εε1

v1 ε
ε2
v2 ε

ε3
v3 and Y ϑ = Y ϑ1

1 Y ϑ2
2 Y ϑ3

3 . Multi-indices are added according to the
rule that if ⇁′ = (⇁′1,⇁′2,⇁′3) and ⇁′′ = (⇁′′1 ,⇁′′2 ,⇁′′3), then ⇁′ + ⇁′′ = (⇁′1 + ⇁′′1 ,⇁′2 + ⇁′′2 ,⇁′3 + ⇁′′3).
We also set ⌜⇁⌜ = ⇁1 + ⇁2 + ⇁3.

Japanese brackets. Given w ∈ Rn, n ∈ N, define ⌝w⌝ ⌐= (1 + ⌜w⌜2) 12 .
Velocity weights. Fix Nmax ≥ 9, M = Nmax + 30 and q0 ∈ (0,1) (cf. Theorem 3.1). For

any ◁ ∈ {0,2} and any triple of multi-indices (⇁,ς,ω) such that ⌜⇁⌜ + ⌜ς⌜ + ⌜ω⌜ ≤ Nmax, we
introduce velocity weights

wς,ε,ϑ = ⌝v⌝↽ω,ε,ϑ e
q⌜v⌜ϖ

2 (2.8)

for q = {q0 if ◁ = 2
0 if ◁ = 0, and for the polynomially weighted index

0ς,ε,ϑ = 2M − (2⌜⇁⌜ + 2⌜ς⌜ + 2⌜ω⌜) (2.9)

to be used throughout in the analysis. These velocity weights will be appropriately associated
with norms for derivatives ες

xε
ε
v Y ϑ of the Vlasov–Poisson–Landau solutions. Note that in

the applications below, when ω ⌜= 0, we take ◁ = 0 in (2.8): namely, only polynomial velocity
weights will be used.

Lp spaces. We will work with Lp spaces with standard norm ⌝ ⋅ ⌝Lp
x
or ⌝ ⋅ ⌝Lp

v
for functions

depending on x or v, respectively. We also use mixed norms

⌝h⌝Lp
xL

q
v
⌐= (⩀

T3
(⩀

R3
⌜h⌜q(x, v)dv) pq dx) 1p

which reduce to ⌝ ⋅ ⌝Lp
x,v

in the case when p = q.
Weighted norms. Fix q0 ∈ (0,1) for the remainder of the paper (cf. Theorem 3.1).
For 0 ∈ R and 1 ≤ p ≤∞, we define the following weighted norms

⌝h⌝Lp
v(↽,0) ⌐= ⌝⌝v⌝↽ h⌝Lp

v
, ⌝h⌝Lp

v(↽,2) ⌐= ⌝⌝v⌝↽ e q0 ⌜v⌜2
2 h⌝Lp

v
,
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where q0 ∈ (0,1) is the fixed constant above. Analogously, we introduce the following
dissipation norms

⌝h⌝2!v(↽,0) ⌐= ⩀R3
⌝v⌝2↽ [εvig(▷ij)εvjg + ▷ij

vi
2

vj
2
g2]dv,

⌝h⌝2!v(↽,2) ⌐= ⩀R3
⌝v⌝2↽ eq0⌜v⌜2 [εvig(▷ij)εvjg + ▷ij

vi
2

vj
2
g2]dv, (2.10)

for q0 ∈ (0, 1) as above, and ▷ij as in (2.6). We also use mixed norms ⌝h⌝Lp1
x L

p2
v (↽,⇀), ⌝h⌝Lp

x!v(↽,⇀)
and ⌝h⌝!x,v(↽,⇀) ⌐= ⌝h⌝L2

x!v(↽,⇀) in an obvious manner, for ◁ ∈ {0,2}. Using the properties of
▷ij (see Lemma 4.1 below), we note that

⌝h⌝L2
v(↽⌐1⌜2,⇀) + ⌝⋉vh⌝L2

v(↽⌐3⌜2,⇀) ⧖ ⌝h⌝!v(↽,⇀). (2.11)

For all of the above norms, we also define analogous norms, specified with a ′, so that when
◁ = 2, they have a weaker Gaussian weight in v, with q0 replaced by q0⌜2. More precisely, we
define ⌝h⌝Lp

v(↽,0)⌐ ⌐= ⌝h⌝Lp
v(↽,0), ⌝h⌝!v(↽,0)⌐ ⌐= ⌝h⌝!v(↽,0) (2.12)

and

⌝h⌝Lp
v(↽,2)⌐ ⌐= ⌝⌝v⌝↽ e q0 ⌜v⌜2

4 h⌝Lp
v
, ⌝h⌝2!v(↽,2)⌐ ⌐= ⩀R3

⌝v⌝2↽ e q0 ⌜v⌜2
2 [▷ijεvigεvjg + ▷ij

vi
2

vj
2
g2]dv. (2.13)

3. Statement of the main theorem

The following is the precise version of our main theorem.

Theorem 3.1. Let q0 ∈ (0,1) and Nmax ∈ N with Nmax ≥ 9. Define M = Nmax + 30. There

exist φ0 = φ0(q0,Nmax) > 0 and ϑ0 = ϑ0(q0,Nmax) > 0 such that the following hold.

Consider the Vlasov–Poisson–Landau system (2.2a)–(2.2b) with collision parameter ϑ ∈(0, ϑ0]. Suppose that the initial function f0 is smooth and satisfies

⩀
T3⋊R3

f0
⌝
µdv dx = ⩀

T3⋊R3
f0vj
⌝
µdv dx = ⩀

T3⋊R3
f0⌜v⌜2⌝µdv dx+⩀

R3
⌜E0⌜2 dx = 0, (3.1)

and for some φ ∈ (0, φ0], f0 obeys the smallness bound

∑⌜ς⌜+⌜ε⌜≤Nmax+2
⌝eq0⌜v⌜2⌝v⌝2Mες

xε
ε
v f0⌝L2

x,v
≤ φϑ1⌜3. (3.2)

Then there exists a global-in-time smooth solution f to (2.2a)–(2.2b) with f⌜t=0 = f0.
Moreover, there exist constants C > 0 and ϱ > 0 (depending only on q0 and Nmax, and in

particular independent of φ and ϑ) such that the following estimates hold for all t ∈ [0,∞):
(1) (Boundedness of weighted energy)

∑⌜ς⌜+⌜ε⌜≤Nmax⌐1
ϑ ⌜ε⌜⌜3⌝eq0⌜v⌜2⌝v⌝2M⌐2⌜ς⌜⌐2⌜ε⌜ες

xε
ε
v f⌝L2

x,v
(t) ≤ Cφϑ1⌜3, (3.3a)

∑⌜ς⌜+⌜ε⌜+⌜ϑ⌜≤Nmax⌐2
ϑ ⌜ε⌜⌜3⌝⌝v⌝2M⌐2⌜ς⌜⌐2⌜ε⌜⌐2⌜ϑ⌜ες

xε
ε
v Y

ϑf⌝L2
x,v
(t) ≤ Cφϑ1⌜3. (3.3b)

(2) (Energy decay)

∑⌜ς⌜+⌜ε⌜+⌜ϑ⌜≤Nmax⌐2
ϑ ⌜ε⌜⌜3⌝ες

xε
ε
v Y

ϑf⌝L2
x,v
(t) ≤ Cφϑ1⌜3e⌐↼(φt) 23 . (3.4)
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(3) (Enhanced dissipation) For f⌜=0(t, x, v) ⌐= f(t, x, v) − ⊍T3 f(t, x, v)dx,
∑⌜ς⌜+⌜ε⌜+⌜ϑ⌜≤Nmax⌐2

ϑ ⌜ε⌜⌜3⌝ες
xε

ε
v Y

ϑf⌜=0⌝L2
x,v
(t) ≤ Cφϑ1⌜3min{e⌐↼(φ 1

3 t) 13 , e⌐↼(φt) 23 }. (3.5)

(4) (Uniform polynomial decay rate) For ↼(t, x) = ⊎k∈Z3 ↼k(t)eik⋉x, it holds that
⌜↼k⌜(t) ≤ Cφϑ1⌜3(1 + ⌜k⌜ + ⌜kt⌜)⌐Nmax+1min{e⌐↼(φ 1

3 t) 13 , e⌐↼(φt) 23 } (3.6)

for every k ∈ N ∨ {0}.
Finally, the solution is the unique smooth global solutions obeying the bound (3.3a).

A few remarks are in order.

Remark 3.2 (Local existence, uniqueness and continuation criterion). We do not explicitly
handle local existence and uniqueness in this paper, but they follow in essentially the same
manner as [66]. Using their methods, we have a local existence and uniqueness result for
initial data with ∑⌜ς⌜+⌜ε⌜≤4 ⌝e

⇁⌜v⌜2ες
xε

ε
vF ⌝L2

x,v
<∞ (3.7)

for any ↼ > 0. In particular, as long as one can guarantee the norm in (3.7) to be finite, we
have existence and uniqueness of solutions. (Recalling that F = µ +⌝µf , we note that the
estimate (3.3a) is much stronger than (3.7). For this reason, in most of the proof, we will
focus on proving the a priori estimates. See the proof of Theorem 10.1.

Remark 3.3 (Some top-order bounds not stated). Notice that some of the top-order bounds
are not stated. In fact, the highest order energies will not be shown to be bounded by Cφϑ1⌜3,
but instead has a loss in ϑ⌐1⌜3 or ⌝t⌝; see Theorem 9.1.

Remark 3.4 (Exponential v-weights). We only propagate the exponential weight eq0⌜v⌜2 when
there are no Y derivatives, i.e. when ⌜ω⌜ = 0. Note that the techniques of [103] require using
the exponential weights in order to obtain the stretched exponential decay in (3.4) and (3.5).
We will therefore first obtain the stretched exponential decay statement for ⌜ω⌜ = 0, and then
deduce the full statement by interpolation.

Remark 3.5 (Stretched exponential decay). Notice that in a manner similar to [61], our
(ϑ-dependent) time decay is not exponential, but is instead only stretched exponential. For
the (ϑt)-decay, we have e⌐↼(φt)2⌜3 decay, where the 2⌜3-power is the same as [61]. On the
other hand, for technical reasons concerning the v weights in the hypocoercive energy, for the(ϑ1⌜3t)-decay, we have a slightly weaker exponent and only have e⌐↼(φ1⌜3t)1⌜3 decay.

As far as we are aware, it is not known whether this is sharp even for the linearized problem
with ϑ = 1.
Remark 3.6 (ϑ1⌜3 weights for εv derivatives). Notice that in all estimates (3.3a)–(3.5), every
εv derivative loses a power of ϑ⌐1⌜3. These estimates can be improved for short times so that
ϑ⌐1⌜3 is replaced by min{ϑ⌐1⌜3, ⌝t⌝)}. For this one only needs to perform the corresponding
change in the energy estimates. We will not pursue the details.

The remainder of the paper will be devoted to the proof of Theorem 3.1. From now on,
we work under the assumptions of Theorem 3.1. We will use the convention that,
unless otherwise stated, all constants C or implicit constants in ⧖ will be allowed
to depend on q0 and Nmax, but are not allowed to depend on φ or ϑ, as long as φ0
and ϑ0 are su”ciently small.
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4. Landau collision operator

In this section, we recall basic properties of the linear and quadratic Landau collision
operators Lf and %(f, f) (recall (2.3)–(2.7)). Most of these results are proven by Guo [57, 61]
or Strain–Guo [103].

4.1. Basic properties.

Lemma 4.1 (Lemma 3 in [57]). The functions ▷ij(v) and ▷i(v) (see (2.6)) are smooth and

satisfy

⌜εε
v ▷ij(v)⌜ + ⌜εε

v ▷i(v)⌜ ≤ Cε ⌝v⌝⌐1⌐⌜ε⌜ ,
▷ijgigj = 11(v){Pvgi}2 + 12(v){[I − Pv]gi}2,

and

▷ij(v)vivjg2 = ”ij ∗ {vivjµ}g2 = 11(v)⌜v⌜2g2,
where Pvg = (v⋉g)v⌜v⌜2 , the projection of vector g onto v. The spectrum of ▷ij(v) consists of a

simple eigenvalue 11(v) > 0 associated with the vector v and a double eigenvalue 12(v) > 0
associated with v↢. Moreover, there are constants c1 > 0 and c2 > 0 such that asymptotically,

as ⌜v⌜→∞, we have

11(v)→ c1 ⌝v⌝⌐3 , 12(v)→ c2 ⌝v⌝⌐1 .
4.2. Lower bounds for the linear Landau operator. In this subsection we will collect
estimates which show that the linear Landau operator L is coercive up to lower order terms.
While most bounds can be found in [57, 61, 103], we need some small modifications when the
vector field commutator Y is involved.

Lower bounds from [57, 61, 103]. We give three lowers bounds for L: (1) a weighted lower
bound with εv derivatives (Corollary 4.3), (2) a weighted lower bound without εv derivatives
(Lemma 4.4), (3) an unweighted lower bound without εv derivatives (Lemma 4.5).

From now on, let us define

2m(v) = 2( ⌜v⌜m ), where 2 ⌐ [0,∞)→ [0,∞) is smooth, 2(z) = {1 if z ≤ 1
0 if z ≥ 2 . (4.1)

In order to give our first lower bound for L, we estimate each piece in the decomposition
in (2.3)–(2.5). The estimates (4.2)–(4.3) were proven in [103, Lemma 8], while (4.4) follows
from an easy adaptation of the proof of (4.3). (We note that the exact statement in [103]
may look slightly di$erent: in [103], only polynomial weights with negative powers are used,
though the actual proof applies more generally to our setting. In fact, this slightly modified
version was used in [61, (93), (94)].)

Lemma 4.2 (Lemma 8 in [103]). Let ⌜ς⌜ > 0, 0 ∈ R, ◁ ∈ {0,2} and fix 0 < q0 < 1. Define

w(0,◁) = ⌝v⌝↽e q0 ⌜v⌜ϖ
2 . Then for any small ⇀ > 0, there exists Cϖ > 0 such that

∣⩀
R3

w2(0,◁)εε
v [Kg1]g2 dv∣ ≤

⎧⎪⎪⎨⎪⎪⎡⇀ ∑⌜ε⌐⌜≤⌜ε⌜⌝ε
ε⌐
v g1⌝!v(↽,0) +Cϖ⌝2Cϱ

g1⌝L2
v(↽,0)
⎤⎪⎪⎣⎪⎪⎦⌝g2⌝!v(↽,⇀). (4.2)
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Further,

−⩀
R3

w2εε
v [Ag]εε

v g dv

≥ ⌝εε
v g⌝2!v(↽,⇀) − ⇀ ∑⌜ε⌐⌜=⌜ε⌜⌝ε

ε⌐
v g⌝2!v(↽,⇀) −Cϖ ∑⌜ε⌐⌐⌜<⌜ε⌜⌝ε

ε⌐⌐
v g⌝2!v(↽+2⌜ε⌜⌐2⌜ε⌐⌐⌜,⇀).

(4.3)

and

⎢⩀
R3

w2εε
v [Ag1]εε

v g2 dv⎢ ⧖ ( ∑⌜ε⌐⌜≤⌜ε⌜⌝ε
ε⌐
v g1⌝!v(↽+2⌜ε⌜⌐2⌜ε⌐⌜,⇀))⌝εε

v g2⌝!v(↽,⇀). (4.4)

Using (2.3)–(2.5), the inequalities (4.2)–(4.3) easily imply the lower bound given in the
following corollary. This is the content of the first part of [103, Lemma 9].

Corollary 4.3 (Lemma 9 in [103]). Let ⌜ς⌜ > 0, 0 ∈ R, ◁ ∈ {0,2} and fix 0 < q0 < 1. Define

w(0,◁) = ⌝v⌝↽e q0 ⌜v⌜ϖ
2 . Then for any small ⇀ > 0, there exists Cϖ > 0 such that

⩀
R3

w2(0,◁)εε
v [Lg]εε

v g dv ≥ ⌝εε
v g⌝2!v(↽,⇀) − ⇀ ∑⌜ε⌐⌜=⌜ε⌜⌝ε

ε⌐
v g⌝2!v(↽,⇀)

−Cϖ ∑⌜ε⌐⌐⌜<⌜ε⌜⌝ε
ε⌐⌐
v g⌝2!v(↽+2⌜ε⌜⌐2⌜ε⌐⌐⌜,⇀).

We now turn to a weighted lower bound without commutations, corresponding to the⌜ς⌜ = 0 case of Corollary 4.3. This is the second part of [103, Lemma 9].

Lemma 4.4 (Lemma 9 in [103]). Let 0 ∈ R, ◁ ∈ {0,2} and fix 0 < q0 < 1. Define w(0,◁) =
⌝v⌝↽e q0 ⌜v⌜ϖ

2 . Then, for every ⇀ > 0, there is Cϖ > 0 such that

⩀
R3

w2(0,◁)[Lg]g dv ≥ (1 − q20 − ⇀)2⌝g⌝2!v(↽,⇀) −Cϖ⌝2Cϱ
g⌝2L2

v
.

Next, we state a lower bound without derivatives in an unweighted space, which can be
viewed as a scalar version of the positivity lemma for L in [61, Lemma 2].

Lemma 4.5 (Lemma 2 in [61]). We have ∫R3[Lg]hdv = ∫R3[Lh]g dv, ∫R3[Lg]g dv ≥ 0 and

Lg = 0 if and only if g = &g where & is the L2
v(R3) projection with respect to the L2

v

inner product onto the null space of L, given by span⎥⌝µ, vi⌝µ, ⌜v⌜2⌝µ⟦ , where i ∈ {1,2,3}.
Furthermore,

⩀
R3
[Lg]g dv ≳ ⌝(I −&)g⌝2!v(0,0).

Lower bounds for the linear Landau operator when Y commutations are involved.
We now turn to the analogue of Corollary 4.3 when the vector field commutator Y = ⋉v + t⋉x

is involved. The main estimate is given in Corollary 4.7 below.
Just as Corollary 4.3 is based on Lemma 4.2, the lower bound in Corollary 4.3 is based

on a similar lemma (see Lemma 4.6). One di$erence between the bounds we prove here in
Lemma 4.6 and the previous bounds where Y commutations are not involved is that we do
not use exponential weights in Lemma 4.6. The proof of Lemma 4.6 is an adaptation of the
ideas in the proof of Lemma 4.2.

Lemma 4.6. Let 0 ∈ N. Then
⎢⩀

T3
⩀
R3
⌝v⌝2↽ εε

v Y
ϑ[Ag1]εε

v Y
ϑg2 dv dx⎢ ⧖ ( ∑⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜

⌝εε⌐
v Y ϑ⌐g1⌝!x,v(↽,0))⌝Y ϑ⌐εε⌐

v g2⌝!x,v(↽,0),
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and, for any small ⇀ > 0, there exists Cϖ > 0 such that

∣⩀
R3
⌝v⌝2↽ εε

v Y
ϑ[Kg1]g2 dv∣ ≤ (⇀ ∑⌜ε⌐⌜≤⌜ε⌜⌝ε

ε⌐
v Y ϑg1⌝!v(↽,0) +Cϖ ∑⌜ϑ⌐⌜≤⌜ϑ⌜⌝µY

ϑ⌐g1⌝L2
v(↽,0))⌝g2⌝!v(↽,0).

In addition, for any small ⇀ > 0, there exists Cϖ > 0 such that

−⩀
T3
⩀
R3
⌝v⌝2↽ εε

v Y
ϑ[Ag]εε

v Y
ϑg dv dx ≥ ⌝εε

v Y
ϑg⌝2!x,v(↽,0) − ⇀ ∑⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜

⌝εε⌐
v Y ϑ⌐g⌝2!x,v(↽,0)

−Cϖ(∑⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜⌜ε⌐⌜+⌜ϑ⌐⌜≤⌜ε⌜+⌜ϑ⌜⌐1

⌝εε⌐
v Y ϑ⌐g⌝2!x,v(↽,0) −∑⌜ϑ⌐⌜≤⌜ϑ⌜⌝µY

ϑ⌐g⌝2L2
x,v
). (4.5)

Proof. We will only prove (4.5) as the other estimates are similar, if not simpler.
Let w = ⌝v⌝↽. To lighten the notation, we write L2

v(0) = L2
v(0,0), etc. in this proof.

Using (2.4) we get,

−⩀
T3
⩀
R3
w2εε

v Y
ϑ(Ag)εε

v Y
ϑg dv dx

≥ ⌝εε
v Y

ϑg⌝2!x,v(↽,⇀)
−C ∑

⌜ε⌐⌜+⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌜+⌜ϑ⌐⌐⌜≤⌜ϑ⌜⌜ε⌐⌜+⌜ϑ⌐⌜≥1

∣⩀
T3
⩀
R3

w2εε⌐
v Y ϑ⌐▷ij(εε⌐⌐

v Y ϑ⌐⌐εvjg)εε
v Y

ϑεvig dv dx∣ (4.6)

−C ∑
⌜ε⌐⌜+⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌜+⌜ϑ⌐⌐⌜≤⌜ϑ⌜

∣⩀
T3
⩀
R3

εvi(w2)εε⌐
v Y ϑ⌐▷ij(εε⌐⌐

v Y ϑ⌐⌐εvjg)εε
v Y

ϑg dv dx∣ (4.7)

−C ∑
⌜ε⌐⌜+⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌜+⌜ϑ⌐⌐⌜≤⌜ϑ⌜⌜ε⌐⌜+⌜ϑ⌐⌜≥1

∣⩀
T3
⩀
R3

w2εε⌐
v Y ϑ⌐(▷ijvivj)(εε⌐⌐

v Y ϑ⌐⌐g)εε
v Y

ϑg dv dx∣ (4.8)

−C ∑
⌜ε⌐⌜+⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌜+⌜ϑ⌐⌐⌜≤⌜ϑ⌜

∣⩀
T3
⩀
R3

w2εε⌐
v Y ϑ⌐εvi▷i(εε⌐⌐

v Y ϑ⌐⌐g)εε
v Y

ϑg dv dx∣ . (4.9)

Estimates for (4.8) and (4.9). Since ▷ij is independent of x, Y acts as a purely velocity
derivative. It follows from Lemma 4.1 that

⌜(4.8)⌜ + ⌜(4.9)⌜ ⧖ ∑
⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌐⌜≤⌜ϑ⌜

⩀
T3
⩀
R3

w2⌝v⌝⌐2⌜εε⌐⌐
v Y ϑ⌐⌐g⌜⌜εε

v Y
ϑg⌜dv dx. (4.10)

For every m ≥ 1, let 2m be as in (4.1). Then,

⌝⌝v⌝⌐1 εε⌐⌐
v Y ϑ⌐⌐g⌝2L2

x,v(↽) ≤ ⌝2mε
ε⌐⌐
v Y ϑ⌐⌐g⌝2L2

x,v(↽) + ⌝(1 − 2m) ⌝v⌝⌐1 εε⌐⌐
v Y ϑ⌐⌐g⌝2L2

x,v(↽).
For the large velocity part, we use the extra ⌝v⌝ weights to get

⌝(1 − 2m) ⌝v⌝⌐1 εε⌐⌐
v Y ϑ⌐⌐g⌝2L2

x,v(↽) ⧖ 1

m
⌝⌝v⌝⌐1⌜2 εε⌐⌐

v Y ϑ⌐⌐g⌝2L2
x,v(↽) ⧖ 1

m
⌝εε⌐⌐

v Y ϑ⌐⌐g⌝2!x,v(↽)
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For the small velocity part, we interpolate between Sobolev spaces to get that for any m > 1,
⇀′ > 0, there is Cϖ⌐,m > 0 so that

⌝2mε
ε⌐⌐
v Y ϑ⌐⌐g⌝2L2

x,v(↽) ≤ ⇀′⌝⌝v⌝⌐ 3
2 εviε

ε⌐⌐
v Y ϑ⌐⌐g⌝2L2

x,v(↽) +Cϖ⌐,m⌝µY ϑ⌐⌐g⌝2L2
x,v⧖ ⇀′⌝εε⌐⌐

v Y ϑ⌐⌐g⌝2!v(↽) +Cϖ⌐,m⌝µY ϑ⌐⌐g⌝2L2
x,v
.

Hence, in total we have,

⌝⌝v⌝⌐1 εε⌐⌐
v Y ϑ⌐⌐g⌝2L2

x,v(↽) ⧖ (⇀′ + 1

m
)⌝εε⌐⌐

v Y ϑ⌐⌐g⌝2!x,v(↽) +Cϖ⌐,m⌝µY ϑ⌐⌐g⌝2L2
x,v
.

Choosing 1⌜m and ⇀′ su#ciently small in terms of ⇀, we obtain

⌜(4.8)⌜ + ⌜(4.9)⌜ ≤ ⇀

10
∑
⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜

⌝εε⌐
v Y ϑ⌐g⌝2!x,v(↽) +Cϖ ∑⌜ϑ⌐⌜≤⌜ϑ⌜⌝µY

ϑ⌐g⌝2L2
x,v
.

Estimates for (4.7). If ⌜ς′⌜ + ⌜ω′⌜ ≥ 1 in (4.7), the corresponding terms are bounded by

∑
⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜

⩀
T3
⩀
R3

w2⌝v⌝⌐3⌜εvjεε⌐⌐
v Y ϑ⌐⌐g⌜⌜εε

v Y
ϑg⌜dv dx,

which has enough ⌝v⌝ decay for the argument above (with easy modifications) for (4.8), (4.9).
We thus only need to consider ⌜ς′⌜ + ⌜ω′⌜ = 0, for which we integrate by parts in εvj to get

⩀
T3
⩀
R3

εvi(w2)▷ij(εε
v Y

ϑεvjg)εε
v Y

ϑg dv dx

= −1
2 ⩀T3

⩀
R3
[ε2

vjvi(w2)▷ij + εvi(w2)εvj▷ij](εε
v Y

ϑg)2 dv dx.
Now, by Lemma 4.1, this term is bounded above by

⩀
T3
⩀
R3

w2⌝v⌝⌐3⌜εε
v Y

ϑg⌜⌜εε
v Y

ϑg⌜dv dx.
This is better than the term in (4.10), which can therefore be controlled in the same way.

Estimates for (4.6). If ⌜ς′⌜ + ⌜ω′⌜ ≥ 2, then using the Cauchy–Schwarz and the Young
inequalities, we can bound

∑
⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌐⌜≤⌜ϑ⌜⌜ε⌐⌐⌜+⌜ϑ⌐⌐⌜≤⌜ε⌜+⌜ϑ⌜⌐2

⩀
T3
⩀
R3

w2 ⌝v⌝⌐3 ⌜εε⌐⌐
v Y ϑ⌐⌐εvjg⌜⌜εε

v Y
ϑεvig⌜dv dx

⧖ ⇀′⌝εε
v Y

ϑg⌝2!x,v(↽) +Cϖ⌐ ∑
⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌐⌜≤⌜ϑ⌜⌜ε⌐⌐⌜+⌜ϑ⌐⌐⌜≤⌜ε⌜+⌜ϑ⌜⌐2

⌝εε⌐⌐
v Y ϑ⌐⌐g⌝2!x,v(↽).

If ⌜ς′⌜ + ⌜ω′⌜ = 1, then we have two cases:
Case 1: ⌜ς′⌜ = 1. In this case εε

v Y ϑ = εvlεε⌐⌐
v Y ϑ⌐⌐ . Then integrating by parts in εvl , we get,

⩀
T3
⩀
R3

w2εvl▷ij(εε⌐⌐
v Y ϑεvjg)(εvlεviεε⌐⌐

v Y ϑg)dv dx
= −1

2 ⩀T3
⩀
R3

εvl(w2εvl▷ij)(εε⌐⌐
v Y ϑεvjg)2 dv dx.
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Since ⌜εvl(w2εvl▷ij)⌜ ≤ w2 ⌝v⌝⌐3 (by Lemma 4.1), we have

⩀
T3
⩀
R3

εvl(w2εvl▷ij)(εε⌐⌐
v Y ϑεvjg)2 ⧖ ∑⌜ε⌐⌐⌜<⌜ε⌜⌝ε

ε⌐⌐
v Y ϑg⌝2!x,v(↽).

Case 2: ⌜ω′⌜ = 1. In this case εε
v Y ϑ = Ylε

ε
v Y ϑ⌐⌐ . Then using integration by parts in both xl

and vl, we get,

⩀
T3
⩀
R3

w2εvl▷ij(εε
v Y

ϑ⌐⌐εvjg)(Ylεviε
ε
v Y

ϑ⌐⌐g)dv dx
= −1

2 ⩀T3
⩀
R3

εvl(w2εvl▷ij)(εε
v Y

ϑ⌐⌐εvjg)2 dv dx.
We again get the required bound as above.

Combining the estimates for (4.6)–(4.9), and choosing ⇀′ small enough in terms of ⇀, we
obtain (4.5). ↭

Using the decomposition (2.3)–(2.5), the previous lemma immediately implies the following
lower bound for L:

Corollary 4.7. Fix 0 ∈ N. For any small ⇀ > 0, there exists Cϖ > 0 such that

⩀
T3
⩀
R3
⌝v⌝2↽ εε

v Y
ϑ[Lg]Y ϑεε

v g dv dx

≥ ⌝Y ϑεε
v g⌝2!x,v(↽,0) − ⇀ ∑⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜

⌝εε⌐
v Y ϑ⌐g⌝2!x,v(↽,0) −Cϖ(∑⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜⌜ε⌐⌜+⌜ϑ⌐⌜≤⌜ε⌜+⌜ϑ⌜⌐1

⌝εε⌐
v Y ϑ⌐g⌝2!x,v(↽,0) +∑⌜ϑ⌐⌜≤⌜ϑ⌜⌝µY

ϑ⌐g⌝2L2
x,v
).

4.3. Upper bounds for the linear Landau operator. Using Lemma 4.2 and Lemma 4.6,
we also obtain the following upper bounds for the linear Landau operator.

Corollary 4.8. (1) For 0 ∈ N, ◁ ∈ {0,2}, and w(0,◁) = ⌝v⌝↽e q0 ⌜v⌜ϖ
2 ,

⎢⩀
T3
⩀
R3

w2(0,◁)εε
v [Lg1]g2 dv dx⎢ ⧖ (∑⌜ε⌐⌜≤⌜ε⌜⌝ε

ε⌐
v g1⌝!x,v(↽,⇀))⌝g2⌝!x,v(↽,⇀).

(2) For any 0 ∈ N,
⎢⩀

T3
⩀
R3
⌝v⌝2↽ εε

v Y
ϑ[Lg1]g2 dv dx⎢ ⧖ (∑⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜

⌝εε⌐
v Y ϑ⌐g1⌝!x,v(↽,0))⌝g2⌝!x,v(↽,0).

Proof. Recalling (2.3)–(2.5), the first estimate follows from Lemma 4.2, while the second
estimate follows from Lemma 4.6. ↭
4.4. Bounds for the nonlinear Landau operator. We close this section with bounds for
the nonlinear Landau operator (see (2.7)). We begin with the following estimate from [103].

Lemma 4.9 (Lemma 10 in [103]). Let ◁ ∈ {0,2}, 0 ≥ 0 and fix 0 < q0 < 1. Define w(0,◁) =
⌝v⌝↽e q0 ⌜v⌜ϖ

2 . Then for any 0′ ∈ R we have,

∣⩀
R3

w2(0,◁)εε
v Y

ϑ%(g1, g2)εε
v Y

ϑg3 dv∣
⧖ ∑
⌜ε⌐⌜+⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌜+⌜ϑ⌐⌐⌜≤⌜ϑ⌜

⌝εε
v Y

ϑg3⌝!v(↽,⇀) ⟦⌝εε⌐
v Y ϑ⌐g1⌝L2

v
⌝εε⌐⌐

v Y ϑ⌐⌐g2⌝!v(↽,⇀)
+⌝εε⌐

v Y ϑ⌐g1⌝!v(0,0)⌝εε⌐⌐
v Y ϑ⌐⌐g2⌝L2

v(↽,⇀)⟦ .
(4.11)
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We also need the following more pessimistic estimates for %(g1, g2), in which we do not
exploit the divergence structure. (They will be relevant for controlling the inhomogeneous
terms in the density estimates; see (8.37) and (11.31).)

Lemma 4.10. Let ◁ ∈ {0,2}, 0 ≥ 0 and fix 0 < q0 < 1. Define w(0,◁) = ⌝v⌝↽e q0 ⌜v⌜ϖ
2 . Then

⌝w(0,◁)εε
v Y

ϑ%(g1, g2)⌝L2
v
⧖ ∑
⌜ε⌐⌜+⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌜+⌜ϑ⌐⌐⌜≤⌜ϑ⌜

∑
⌜⌝ε⌐⌜+⌜⌝ε⌐⌐⌜≤2

⌝εε⌐+⌝ε⌐
v Y ϑ⌐g1⌝L2

v
⌝w(0,◁)εε⌐⌐+⌝ε⌐⌐

v Y ϑ⌐⌐g2⌝L2
v
.

Proof. Recalling (2.7), we know that

%(g1, g2) = εvi⌟(”ij ⋆ (µ1⌜2g1))εvjg2] − ⌟”ij ⋆ (viµ1⌜2g1)]εvjg2
− εvi⌟(”ij ⋆ (µ1⌜2εvjg1))g2] + ⌟”ij ⋆ (viµ1⌜2εvjg1)]g2. (4.12)

Now, it is easy to check that ⌝⌜v⌜⌐1 ⋆ h⌝L∞v ⧖ ⌝h⌝1⌜3L1
v
⌝h⌝2⌜3L2

v
(for instance by adapting the proof

of [83, Lemma 5.1]). It follows that ⌝”ij ⋆ (⌝v⌝↽µ1⌜2h)⌝L∞v ⧖ ⌝⌝v⌝⌐↽⌐h⌝L2
v
for any 0′ ≥ 0.

Therefore, using Hölder’s inequality and apply the above observation for h being derivatives
of g1 or g2, we obtain the required result. ↭

5. Setting up the energy estimates

In this section, we set up the main energy estimates as well as introduce the global energy
and dissipation norms for the full nonlinear Vlasov–Poisson–Landau system (2.2a)–(2.2b).
Precisely, for a given electric field E = −⋉xϖ, we shall derive energy estimates for smooth
solutions f to the following Vlasov–Landau equation

Dtf −E ⋅ vf + ϑLf = Q (5.1)

where Dt denotes the transport operator

Dt = εt + v ⋅ ⋉x +E ⋅ ⋉v. (5.2)

The transport-di$usion structure of (5.1) is clear, being transported by the electric field in
the phase space and di$used through the Landau collision operator L. We note that a similar
structure also holds for derivatives of ες

xε
ε
v Y ϑf for any triple of multi-indices (⇁,ς,ω). The

main result of this section will be given in Subsection 5.4 below.

Remark 5.1. The equation (5.1) is exactly the Vlasov–Poisson–Landau equation (2.2a) with

Q = 2E ⋅ v⌝µ + ϑ%(f, f). (5.3)

Note that the first term in Q is linear in f and thus it cannot in principle be treated as a
remainder. However, this linear term is very localized both in velocity v (through µ = e⌐⌜v⌜2)
and in frequency εv (through the Poisson equation), a fact that will play a role in our
nonlinear analysis.
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5.1. Basic energy estimates. We start with basic energy estimates for the transport-
di$usion equation (5.1).

Lemma 5.2. Let 0 ∈ R, 0 < q0 < 1, and ◁ ∈ {0, 2}. Define q = {q0 if ◁ = 2
0 if ◁ = 0 . Then, there is a

positive constant ↽ = ↽(◁, q0) so that smooth solutions to (5.1) satisfy

d

dt
⌝e(q+1)ϱf⌝2L2

x,v(↽,⇀) + ↽ϑ⌝e(q+1)ϱf⌝2!x,v(↽,⇀) ⧖ ϑRL,↽
0 +RT,↽

0 +RQ,↽
0 , (5.4)

where the remainders are defined by

RL,↽
0 = ⌝µe(q+1)ϱf⌝2L2

x,v
,

RT,↽
0 = (⌝εtϖ⌝L∞x + ⌝E⌝L∞x )⌝e(q+1)ϱf⌝2L2

x,v(↽,⇀),
RQ,↽

0 = ⎢⊎T3⋊R3
e2(q+1)ϱw2fQ dxdv⎢.

Remark 5.3. Observe that there are three contributions to the energy production of (5.1):
namely, the remainders from the transport dynamics Dt, the Landau operator L, and the
source Q.
Proof. Directly from the transport structure of (5.1), we compute

1

2

d

dt
⌝e(q+1)ϱwf⌝2L2

x,v
= 1

2⊎T3⋊R3
⌜f ⌜2(Dt + 2v ⋅E)[e2(q+1)ϱw2] dv dx

+⊎
T3⋊R3

⌟ − ϑLf +Q]e2(q+1)ϱw2f dv dx.

Recalling that E = −⋉xϖ and w = ⌝v⌝↽ e q⌜v⌜ϖ
2 , we compute

1

2
(Dt + 2v ⋅E)[e2(q+1)ϱw2] = ⌟(q + 1)(εt + v ⋅ ⋉x)ϖ +E ⋅ ⋉v logw + v ⋅E]e2(q+1)ϱw2

= ⌟q
2
(◁⌜v⌜⇀⌐2 − 2)v ⋅E + (q + 1)εtϖ + 0⌝v⌝⌐2v ⋅E]e2(q+1)ϱw2,

(5.5)

in which we note that the first term vanishes, since either ◁ = 2 or q = 0 (when ◁ = 0). This
proves

⊎
T3⋊R3

⌜f ⌜2(Dt + 2v ⋅E)[e2(q+1)ϱw2] dv dx ≤ (2⌝εtϖ⌝L∞ + 0⌝E⌝L∞x )⌝e(q+1)ϱf⌝2L2
x,v(↽,⇀).

Finally, using Lemma 4.4 with ⇀ = 1⌐q2
2 and noting ϖ is independent of v, we get

⊎
T3⋊R3

e2(q+1)ϱw2fLf dv dx ≥ 1 − q2
2
⌝e(q+1)ϱf⌝2!x,v(↽,⇀) −Cq⌝2Cq

e(q+1)ϱf⌝2L2
x,v(↽,0)

where 2Cq
is a cut o$ function near the origin. The lemma follows. ↭

Remark 5.4. Note that the basic energy estimate derived in Lemma 5.2 uses only the
equation (5.1) for a given electric field E (i.e. the Poisson equation was not used).
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5.2. Derivative energy estimates. Next, we obtain the following energy estimates for
derivatives.

Lemma 5.5. Let 0 ∈ R, 0 < q0 < 1, ◁ ∈ {0,2}, and (⇁,ς,ω) be any triple of multi-indices. If

⌜ω⌜ > 0, we take ◁ = 0. Define q = {q0 if ◁ = 2
0 if ◁ = 0 .

Then, there is a positive constant ↽ so that smooth solutions to (5.1) satisfy

d

dt
⌝e(q+1)ϱες

xε
ε
v Y

ϑf⌝2L2
x,v(↽,⇀) + ↽ϑ⌝e(q+1)ϱες

xε
ε
v Y

ϑf⌝2!x,v(↽,⇀) ⧖RT,↽
ς,ε,ϑ + ϑRL,↽

ς,ε,ϑ +RQ,↽
ς,ε,ϑ,

(5.6)
in which we have collected● the remainders RT,↽

ς,ε,ϑ due to the transport dynamics:

RT,↽
ς,ε,ϑ = ∑

⌜ε⌐⌐⌜=⌜ε⌜⌐1⌜ε⌐⌜=1
⌝e(q+1)ϱες+ε⌐

x εε⌐⌐
v Y ϑf⌝L2

x,v(↽,⇀)⌝e(q+1)ϱες
xε

ε
v Y

ϑf⌝L2
x,v(↽,⇀)

+ (⌝εtϖ⌝L∞x + ⌝E⌝L∞x )⌝e(q+1)ϱες
xε

ε
v Y

ϑf⌝2L2
x,v(↽,⇀),

● the remainders RL,↽
ς,ε,ϑ due to the linear Landau operator:

RL,↽
ς,ε,ϑ = ⇀ ∑⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜

⌝e(q+1)ϱες
xε

ε⌐
v Y ϑ⌐f⌝2!x,v(↽,⇀) +Cϖ∑⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜⌜ε⌐⌜+⌜ϑ⌐⌜≤⌜ε⌜+⌜ϑ⌜⌐1

⌝e(q+1)ϱες
xε

ε⌐
v Y ϑ⌐f⌝2!x,v(↽,⇀)

+Cϖ∑⌜ϑ⌐⌜≤⌜ϑ⌜⌝µe
(q+1)ϱες

xY
ϑ⌐f⌝2L2

x,v
,

for any small ⇀ > 0,● the remainders RQ,↽
ς,ε,ϑ due to the source term (of the equations for derivatives):

RQ,↽
ς,ε,ϑ = ⎢⊎T3⋊R3

e2(q+1)ϱw2ες
xε

ε
v Y

ϑfQς,ε,ϑ dv dx⎢
where w = ⌝v⌝↽ e q⌜v⌜ϖ

2 , and

Qς,ε,ϑ ⌐= ες
xε

ε
v Y

ϑQ − [E ⋅ ⋉v −E ⋅ v,ες
xε

ε
v Y

ϑ]f. (5.7)

Proof. Directly from (5.1), we observe that derivatives ες
xε

ε
v Y ϑ solve

⌟Dt −E ⋅ v]ες
xε

ε
v Y

ϑf + ϑεε
v Y

ϑ[Lες
x f] = ες

xε
ε
v Y

ϑQ + [Dt −E ⋅ v,ες
xε

ε
v Y

ϑ]f.
Note that [εt + v ⋅ ⋉x,εx] = 0 and [εt + v ⋅ ⋉x, Y ] = 0. Hence, for ⌜ς⌜ > 0, we compute

[εt + v ⋅ ⋉x,ε
ς
xε

ε
v Y

ϑ] = − ∑
⌜ε⌐⌐⌜=⌜ε⌜⌐1⌜ε⌐⌜=1

εε⌐
x εε⌐⌐

v ες
xY

ϑ. (5.8)

Thus, the lemma follows directly from performing a similar energy estimate as done in the
previous lemma and using Corollary 4.3 and Corollary 4.7 (which contribute precisely into
the remainder RL,↽

ς,ε,ϑ). ↭
Remark 5.6. Note that the first term in RT,↽

ς,ε,ϑ is linear (due to (5.8)), which reflects precisely
the linear growth in t of v-derivatives in the regime where the transport dynamics in (5.1) is
dominant.
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5.3. Hypocoercivity estimates. We next derive hypocoercivity estimates that capture
precisely the transport-di$usion structure of (5.1). Precisely, we obtain the following key
lemma.

Lemma 5.7. Let 0 ∈ R, 0 < q0 < 1, ◁ ∈ {0,2}, and (⇁,ς,ω) be any triple of multi-indices.

Define q = {q0 if ◁ = 2
0 if ◁ = 0 as before. If ⌜ω⌜ > 0, we take q = 0 and ◁ = 0.

Then, for w = ⌝v⌝↽ e q⌜v⌜ϖ
2 , smooth solutions to (5.1) satisfy

d

dt⊎T3⋊R3
e2(q+1)ϱw2εxjε

ς
xε

ε
v Y

ϑfεvjε
ς
xε

ε
v Y

ϑf dv dx + ⌝e(q+1)ϱεxjε
ς
xε

ε
v Y

ϑf⌝2L2
x,v(↽,⇀)

⧖ ZT,↽
ς,ε,ϑ +ZL,↽

ς,ε,ϑ +ZQ,↽
ς,ε,ϑ

(5.9)

in which we have denoted

● by ZT,↽
ς,ε,ϑ the contribution from the transport dynamics:

ZT,↽
ς,ε,ϑ = (⌝εtϖ⌝L∞x + ⌝E⌝L∞x )⌝e(q+1)ϱεxες

xε
ε
v Y

ϑf⌝L2
x,v(↽,⇀)⌝e(q+1)ϱεvες

xε
ε
v Y

ϑf⌝L2
x,v(↽,⇀)

+ ∑
⌜ε⌐⌐⌜=⌜ε⌜⌐1⌜ε⌐⌜=1

⎢⊎
T3⋊R3

e2(q+1)ϱw2εxjε
ς
xε

ε
v Y

ϑfεvjε
ς+ε⌐
x εε⌐⌐

v Y ϑf dv dx⎢

+ ∑
⌜ε⌐⌐⌜=⌜ε⌜⌐1⌜ε⌐⌜=1

⎢⊎
T3⋊R3

e2(q+1)ϱw2εvjε
ς
xε

ε
v Y

ϑfεxjε
ς+ε⌐
x εε⌐⌐

v Y ϑf dv dx⎢,

● by ZL,↽
ς,ε,ϑ the contribution from the linear Landau operator:

ZL,↽
ς,ε,ϑ = ϑ⎢⊎T3⋊R3

e2(q+1)ϱw2εxjε
ς
xε

ε
v Y

ϑfεvjε
ς
xε

ε
v Y

ϑ[Lf] dv dx⎢
+ ϑ⎢⊎

T3⋊R3
e2(q+1)ϱw2εvjε

ς
xε

ε
v Y

ϑfεxjε
ς
xε

ε
v Y

ϑ[Lf] dv dx⎢,
● by ZQ,↽

ς,ε,ϑ the contribution from the source:

ZQ,↽
ς,ε,ϑ = ⎢⊎T3⋊R3

e2(q+1)ϱw2⌟εxjε
ς
xε

ε
v Y

ϑfQς,ε+ej ,ϑ + εvjες
xε

ε
v Y

ϑfQς+ej ,ε,ϑ] dv dx⎢,
recalling Qς,ε,ϑ defined as in (5.7), with ε

ej
x = εxj and ε

ej
v = εvj .

Remark 5.8. Note that the last integral term in the above remainders ZT,↽
ς,ε,ϑ are of the same

order as the good term ⌝e(q+1)ϱεxjε
ς
xε

ε
v Y ϑf⌝2L2

x,v(↽,⇀) on the left hand side! A crucial point

here is that these last remainder terms vanish for ⌜ς⌜ = 0, while for ⌜ς⌜ > 0 they are controlled
by the good terms for ⌜ς⌜ = 0 and the dissipation norms; see (5.30) below.

Proof. Recall that the derivatives satisfy

(Dt −E ⋅ v)εxjf + ϑεxj[Lf] = εxjQ + [E ⋅ ⋉v −E ⋅ v,εxj]f(Dt −E ⋅ v)εvjf + ϑεvj[Lf] = −εxjf + εvjQ + [E ⋅ ⋉v −E ⋅ v,εvj]f, (5.10)
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in which we note that the first term on the right in the second equation plays a crucial role.
Indeed, we compute

(Dt − 2E ⋅ v)(εxjfεvjf) + ϑ(εxjfεvj[Lf] + εvjfεxj[Lf])= −⌜εxjf ⌜2 + εxjfεvjQ + εvjfεxjQ + εvjf[E ⋅ ⋉v −E ⋅ v,εxj]f + εxjf[E ⋅ ⋉v −E ⋅ v,εvj]f.
Therefore, multiplying the above equation by e2(q+1)ϱw2 and integrating the result, we get

d

dt⊎T3⋊R3
e2(q+1)ϱw2εxjfεvjf dv dx +⊎

T3⋊R3
e2(q+1)ϱw2⌜εxjf ⌜2 dv dx

=⊎
T3⋊R3

(εxjfεvjf)(Dt + 2E ⋅ v)[e2(q+1)ϱw2] dv dx
+⊎

T3⋊R3
⌟ − ϑ(εxjfεvj[Lf] + εvjfεxj[Lf]) + εxjfεvjQ + εvjfεxjQ]e2(q+1)ϱw2 dv dx

+⊎
T3⋊R3

⌟εvjf[E ⋅ ⋉v −E ⋅ v,εxj]f + εxjf[E ⋅ ⋉v −E ⋅ v,εvj]f]e2(q+1)ϱw2 dv dx.

In view of (5.5), we note

⊎
T3⋊R3

(εxjfεvjf)(Dt + 2E ⋅ v)[e2(q+1)ϱw2] dv dx
⧖ (⌝εtϖ⌝L∞x + ⌝E⌝L∞x )⌝e(q+1)ϱεxf⌝L2

x,v(↽,⇀)⌝e(q+1)ϱεvf⌝L2
x,v(↽,⇀).

This yields the lemma for (⇁,ς,ω) = 0. For any triple of (⇁,ς,ω), we simply observe that the
derivatives ες

xε
ε
v Y ϑf satisfy similar transport-di$usion equations to (5.10), upon noting that

[εt + v ⋅ ⋉x,εxjε
ε
v ε

ς
xY

ϑ] = − ∑
⌜ε⌐⌐⌜=⌜ε⌜⌐1⌜ε⌐⌜=1

εxjε
ς+ε⌐
x εε⌐⌐

v Y ϑ

[εt + v ⋅ ⋉x,εvjε
ε
v ε

ς
xY

ϑ] = − ∑
⌜ε⌐⌐⌜=⌜ε⌜⌐1⌜ε⌐⌜=1

εvjε
ς+ε⌐
x εε⌐⌐

v Y ϑ − εxjε
ε
v ε

ς
xY

ϑ.

The last term in the second equation above yields the crucial bound on ⌜εxjε
ς
xε

ε
v Y ϑf ⌜2 in

(5.9). Collecting terms, we obtain the lemma. ↭

5.4. The hypocoercive energies. We are now ready to introduce the main energy estimates,
which are an intricate combination of the energy estimates derived for ες

xε
ε
v Y ϑf in the previous

sections. In addition to the ϑ-dependence that respects the hypocoercivity scaling of the
Landau equations, the norms also reflect the weight loss in v due to the Landau collision
operator.

The partial energy and dissipation norms. For each triple of multi-indices (⇁,ς,ω), we
introduce the partial energy and dissipation norms

⌝H⌝2E(ϖ)ω,ε,ϑ

⌐= A0 ∑⌜ς⌐⌜≤1 ⌝e
(q+1)ϱες⌐

x H⌝2L2
x,v(↽ω,ε,ϑ⌐2⌜ς⌐⌜,⇀)

+ ϑ1⌜3⌝e2(q+1)ϱ⋉xH,⋉vH⌝L2
x,v(↽ω,ε,ϑ⌐2,⇀) + ϑ2⌜3⌝e(q+1)ϱ⋉vH⌝2L2

x,v(↽ω,ε,ϑ⌐2,⇀),
(5.11)

⌝H⌝2D(ϖ)ω,ε,ϑ

⌐= ϑ2⌜3A0 ∑⌜ς⌐⌜≤1 ⌝e
(q+1)ϱες⌐

x H⌝2!x,v(↽ω,ε,ϑ⌐2⌜ς⌐⌜,⇀) + ⌝e(q+1)ϱ⋉xH⌝2L2
x,v(↽ω,ε,ϑ⌐2,⇀)

+ ϑ4⌜3⌝e(q+1)ϱ⋉vH⌝2!x,v(↽ω,ε,ϑ⌐2,⇀),
(5.12)
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which are used for derivatives H = ϑ ⌜ε⌜⌜3ες
xε

ε
v Y ϑf , with 0ς,ε,ϑ as in (2.9), q = {q0 if ◁ = 2

0 if ◁ = 0 as

above, and A0 a (large) constant to be determined.
A few comments on the choice of the energies are in order.

● The large constant A0 will be chosen to ensure (5.11) is non-negative, and that the
bulk terms also have a good sign.● The ϑ powers in the norms above are exactly chosen so that every ⋉v derivative is
paired with a ϑ1⌜3 power.

– This choice of norms is consistent with the facts (1) that for the linear transport
equation, every εv gives rise to a (1+t) growth, and (2) that enhanced dissipation
acts on a times scale of t ∼ ϑ⌐1⌜3.

● Notice that since q = {q0 if ◁ = 2
0 if ◁ = 0, we only put in Gaussian v-weights when ⌜ω⌜ = 0 to

avoid di#culties when Y hits on those weights.
– The Gaussian weights are used as in [103] to obtain stretched exponential (ϑ-
dependent) time decay in e⌐↼(φ1⌜3t)1⌜3 or e⌐↼(φt)2⌜3 (see (3.4)-(3.6)).

– As a result of not having Gaussian v-weights when ⌜ω⌜ ≠ 0, as discussed in
Section 1.1.6, at first we only obtain the polynomial ϑ-dependent time decay
when ⌜ω⌜ ≠ 0, though at the end, we can obtain some stretched exponential decay
for ⌜ω⌜ ≠ 0 via an interpolation argument.

– We also mention that the stretched exponential decay is only proved starting in
Section 11 i.e. one can in principle close the main bootstrap with just polynomial
weights but that does not give the stretched exponential bounds.● These norms are weighted by e(q+1)ϱ, for a given electric potential ϖ. In the nonlinear

analysis, we shall bootstrap the nonlinear solution so that ϖ remains su#ciently small
in L∞x (and in fact decays rapidly in time). Therefore, the weight is harmless.

The top-order partial energy and dissipation norms. We need a variation of the
partial energy and dissipation norms E(⇀)ς,ε,ϑ and D(⇀)ς,ε,ϑ norms, which we denote by ⌟E(⇀)ς,ε,ϑ

and ⌟D(⇀)ς,ε,ϑ. The di$erence is that they include one more εv derivative, which is useful to
handling the loss of derivative from the density estimates; see Section 1.1.8. More precisely,
for H = ϑ ⌜ε⌜⌜3ες

xε
ε
v Y ϑf as before, define

⌝H⌝2⌝E(ϖ)ω,ε,ϑ

⌐= ⌝H⌝2E(ϖ)ω,ε,ϑ

+A⌐10 ∑⌜ε⌐⌜=2 ϑ
2⌜ε⌐⌜⌜3⌝e(q+1)ϱεε⌐

v H⌝2L2
x,v(↽ω,ε,ϑ⌐4,⇀), (5.13)

⌝H⌝2⌝D(ϖ)ω,ε,ϑ

⌐= ⌝H⌝2D(ϖ)ω,ε,ϑ

+A⌐10 ∑⌜ε⌐⌜=2 ϑ
(2+2⌜ε⌐⌜)⌜3⌝e(q+1)ϱεε⌐

v H⌝2!x,v(↽ω,ε,ϑ⌐4,⇀). (5.14)

The combined energy and dissipation norms. Given any ◁ ∈ {0, 2} and any quadruple(N low
ς ,Nς,ε,Nε,Nϑ) ∈ (N ∧ {0})4 with Nς,ε +Nϑ ≤ Nmax, N low

ς , Nε ≤ Nς,ε, define the norms
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E(⇀)
N low

ω ,Nω,ε ,Nε ,Nϑ
and D(⇀)

N low
ω ,Nω,ε ,Nε ,Nϑ

by

⌝f⌝2
E(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

⌐= ∑
⌜ς⌜≥N low

ω , ⌜ε⌜≤Nε⌜ς⌜+⌜ε⌜≤Nω,ε

⌝ες
xε

ε
v f⌝2E(ϖ)ω,ε,0

+ ∑
⌜ς⌜≥N low

ω , ⌜ε⌜≤Nε⌜ς⌜+⌜ε⌜≤Nω,ε ,1≤⌜ϑ⌜≤Nϑ

⌝ες
xε

ε
v Y

ϑf⌝2E(0)ω,ε,ϑ

,

⌝f⌝2
D(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

⌐= ∑
⌜ς⌜≥N low

ω , ⌜ε⌜≤Nε⌜ς⌜+⌜ε⌜≤Nω,ε

⌝ες
xε

ε
v f⌝2D(ϖ)ω,ε,0

+ ∑
⌜ς⌜≥N low

ω , ⌜ε⌜≤Nε⌜ς⌜+⌜ε⌜≤Nω,ε ,1≤⌜ϑ⌜≤Nϑ

⌝ες
xε

ε
v Y

ϑf⌝2D(0)ω,ε,ϑ

.
(5.15)

We emphasize two points about the definition (5.15):

(1) N low
ς is a lower bound, while the other are upper bounds.

(2) Even though we may use ◁ = 2 in the E(⇀)
N low

ω ,Nω,ε ,Nε ,Nϑ
and D(⇀)

N low
ω ,Nω,ε ,Nε ,Nϑ

norms, the

exponential v-weight is only present when ⌜ω⌜ = 0.
We also explain the various parameters in the norms in (5.15):

● The parameter Nς,ε counts the maximum number of εx and εv derivatives, while Nε

only counts the εv derivatives. Nϑ separately counts the number of Y derivatives.
The point is that which controlling up to Nε εv-derivatives, the linear error terms
involve at most Nε − 1 εv-derivatives (and similarly for Y derivatives). Thus we can
induct in Nε and Nϑ to obtain estimates with the right constants. See for instance
the step right after (5.41).● As we said above, N low

ς is a lower bound. The important point is that we need to
separate the N low

ς = 0 and N low
ς > 0 cases since we only have enhanced dissipation

when N low
ς > 0; see discussions in Section 1.1.8.

The top-order combined energy and dissipations norms. Given ◁, N low
ς , Nς,ε, Nε, Nϑ

as above, we also define corresponding combined norms which include the extra εv derivatives
as in (5.13), (5.14),

⌝f⌝2⌝E(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

⌐= ∑
⌜ς⌜≥N low

ω , ⌜ε⌜≤Nε⌜ς⌜+⌜ε⌜≤Nω,ε

⌝ες
xε

ε
v f⌝2⌝E(ϖ)ω,ε,0

+ ∑
⌜ς⌜≥N low

ω , ⌜ε⌜≤Nε⌜ς⌜+⌜ε⌜≤Nω,ε ,1≤⌜ϑ⌜≤Nϑ

⌝ες
xε

ε
v Y

ϑf⌝2⌝E(0)ω,ε,ϑ

,

⌝f⌝2⌝D(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

⌐= ∑
⌜ς⌜≥N low

ω , ⌜ε⌜≤Nε⌜ς⌜+⌜ε⌜≤Nω,ε

⌝ες
xε

ε
v f⌝2⌝D(ϖ)ω,ε,0

+ ∑
⌜ς⌜≥N low

ω , ⌜ε⌜≤Nε⌜ς⌜+⌜ε⌜≤Nω,ε ,1≤⌜ϑ⌜≤Nϑ

⌝ες
xε

ε
v Y

ϑf⌝2⌝D(0)ω,ε,ϑ

.
(5.16)

For brevity, we also introduce

⌝f⌝2⌝E(ϖ)N

⌐= ∑
Nω,ε+Nϑ≤N

⌝f⌝2⌝E(ϖ)0,Nω,ε ,Nω,ε ,Nϑ

, ⌝f⌝2⌝D(ϖ)N

⌐= ∑
Nω,ε+Nϑ≤N

⌝f⌝2⌝D(ϖ)0,Nω,ε ,Nω,ε ,Nϑ

. (5.17)

The primed energy and dissipation norms. Finally, for each of the norms defined above,
we introduce an analogous norm, labelled by (◁)′ instead of (◁), which is defined so that when
◁ = 2, the exponential v-weights eq⌜v⌜2 are replaced by eq

⌐⌜v⌜2 , where q′ = 1
2q; cf. (2.12)–(2.13).

In other words, starting from (5.11), we define

⌝H⌝2E(ϖ)⌐ω,ε,ϑ

⌐= A0 ∑⌜ς⌐⌜≤1 ⌝e
(q+1)ϱες⌐

x H⌝2L2
x,v(↽ω,ε,ϑ⌐2⌜ς⌐⌜,⇀)⌐

+ ϑ1⌜3⌝e2(q+1)ϱ⋉xH,⋉vH⌝L2
x,v(↽ω,ε,ϑ⌐2,⇀)⌐ + ϑ2⌜3⌝e(q+1)ϱ⋉vH⌝2L2

x,v(↽ω,ε,ϑ⌐2,⇀)⌐ ,
(5.18)
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for H = ϑ ⌜ε⌜⌜3ες
xε

ε
v Y ϑf , and make similar definitions for

⌝ϑ ⌜ε⌜⌜3ες
xε

ε
v Y

ϑf⌝2⌝D(ϖ)⌐ω,ε,ϑ

, ⌝f⌝2
E(ϖ)⌐
Nlow
ω ,Nω,ε ,Nε ,Nϑ

, ⌝f⌝2
D(ϖ)⌐
Nlow
ω ,Nω,ε ,Nε ,Nϑ

,

⌝f⌝2⌝E(ϖ)⌐
Nlow
ω ,Nω,ε ,Nε ,Nϑ

, ⌝f⌝2⌝D(ϖ)⌐
Nlow
ω ,Nω,ε ,Nε ,Nϑ

, ⌝f⌝2⌝E(ϖ)⌐N

, ⌝f⌝2⌝D(ϖ)⌐N

,
(5.19)

by modifying (5.12), (5.13), (5.14), (5.15) and (5.17).

5.5. The main energy estimates. In the following proposition, we estimate all the re-
mainder terms in Lemma 5.5 and Lemma 5.7 except for the RQ and ZQ terms. For the full
nonlinear solution, those terms will be treated in Sections 9 and 12.

Proposition 5.9. Let ◁ ∈ {0, 2}, and (N low
ς ,Nς,ε,Nε,Nϑ) ∈ (N∧{0})4 with Nς,ε+Nϑ ≤ Nmax,

N low
ς , Nε ≤ Nς,ε. Recall the definitions of E(⇀)

N low
ω ,Nω,ε ,Nε ,Nϑ

and D(⇀)
N low

ω ,Nω,ε ,Nε ,Nϑ
in (5.15).

There is a positive constant ↽ so that for N low
ς ≥ 1, smooth solutions to (5.1) satisfy

d

dt
⌝f⌝2

E(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

+ ↽ϑ1⌜3⌝f⌝2
D(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

⧖ (⌝εtϖ⌝L∞x + ⌝ϖ⌝W 1,∞
x
)⌝f⌝2

E(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

+ ∑
⌜ς⌜≥N low

ω , ⌜ε⌜≤Nε⌜ς⌜+⌜ε⌜≤Nω,ε , ⌜ϑ⌜≤Nϑ

Rς,ε,ϑ,
(5.20)

and for N low
ς = 0, smooth solutions to (5.1) satisfy

d

dt
⌝f⌝2

E(ϖ)0,Nω,ε ,Nε ,Nϑ

+ ↽ϑ1⌜3⌝f⌝2
D(ϖ)0,Nω,ε ,Nε ,Nϑ

⧖ ϑ⌜(a, b, c)⌜2 + (⌝εtϖ⌝L∞x + ⌝ϖ⌝W 1,∞
x
)⌝f⌝2

E(ϖ)0,Nω,ε ,Nε ,Nϑ

+ ∑⌜ε⌜≤Nε⌜ς⌜+⌜ε⌜≤Nω,ε , ⌜ϑ⌜≤Nϑ

Rς,ε,ϑ,
(5.21)

where the remainders are calculated by

Rς,ε,ϑ = ∑⌜ς⌐⌜+⌜ε⌐⌜≤1 ϑ
2(⌜ε⌜+⌜ε⌐⌜)⌜3RQ,↽⌐2⌜ς⌐⌜⌐2⌜ε⌐⌜

ς+ς⌐,ε+ε⌐,ϑ + ϑ1⌜3ϑ2⌜ε⌜⌜3ZQ,↽⌐2
ς,ε,ϑ (5.22)

with RQ,↽
ς,ε,ϑ and ZQ,↽

ς,ε,ϑ as introduced in Lemma 5.5 and Lemma 5.7, and ⌜(a, b, c)⌜2 ⌐= ⌜a⌜2 +
⊎3

j=1 ⌜bj ⌜2 + ⌜c⌜2, where
a ⌐=⊎

T3⋊R3
f
⌝
µdv dx, bj ⌐=⊎

T3⋊R3
fvj
⌝
µdv dx, c ⌐=⊎

T3⋊R3
f ⌜v⌜2⌝µdv dx.

Remark 5.10. We note that the “remainders” Rς,ε,ϑ do contain linear terms (due to Q from
(5.3)), the control of which by the energy and dissipation norms is certainly not immediate;
see Section 9 for the full treatment of these and the other nonlinear terms.

Proof. Let (⇁,ς,ω) be any triple of multi-indices, with ⌜⇁⌜+ ⌜ς⌜+ ⌜ω⌜ ≤ Nmax, and let 0 = 0ς,ε,ϑ
and w = wς,ε,ϑ be the weight functions defined as in (2.8)–(2.9). Recalling the partial energy
and dissipation norms and appropriately combining Lemma 5.5 and Lemma 5.7, we obtain

d

dt
⌝ες

xε
ε
v Y

ϑf⌝2E(ϖ)ω,ε,ϑ

+ ↽ϑ1⌜3⌝ες
xε

ε
v Y

ϑf⌝2D(ϖ)ω,ε,ϑ

⧖R′ς,ε,ϑ, (5.23)
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where the remainders are calculated by

R′ς,ε,ϑ = A0ϑ
2⌜ε⌜⌜3 ∑⌜ς⌐⌜≤1 ⌟R

T,↽⌐2⌜ς⌐⌜
ς+ς⌐,ε,ϑ + ϑRL,↽⌐2⌜ς⌐⌜

ς+ς⌐,ε,ϑ +RQ,↽⌐2⌜ς⌐⌜
ς+ς⌐,ε,ϑ]

+ ϑ2⌜ε⌜⌜3 ∑⌜ε⌐⌜≤1 ϑ
2⌜ε⌐⌜⌜3⌟RT,↽⌐2⌜ε⌐⌜

ς,ε+ε⌐,ϑ + ϑRL,↽⌐2⌜ε⌐⌜
ς,ε+ε⌐,ϑ +RQ,↽⌐2⌜ε⌐⌜

ς,ε+ε⌐,ϑ]
+ ϑ1⌜3ϑ2⌜ε⌜⌜3⌟ZT,↽⌐2

ς,ε,ϑ +ZL,↽⌐2
ς,ε,ϑ +ZQ,↽⌐2

ς,ε,ϑ ]
(5.24)

where the remainders were introduced previously in Lemma 5.5 and Lemma 5.7.

Estimates on RT,↽
ς,ε,ϑ. Let us take care of the remainders arising due to the transport

dynamics. We first consider the RT terms in (5.24) with ⌜⇁′⌜ = 0 and ⌜ς′⌜ = 0. We claim that

ϑ2⌜ε⌜⌜3RT,↽
ς,ε,ϑ ⧖A⌐1⌜20 ϑ1⌜3 ∑

⌜ε⌐⌜<⌜ε⌜
⌝ες

xε
ε⌐
v Y ϑf⌝2D(ϖ)

ω,ε⌐,ϑ
+ (⌝εtϖ⌝L∞x + ⌝E⌝L∞x )⌝ες

xε
ε
v Y

ϑf⌝2E(ϖ)ω,ε,ϑ

. (5.25)

Indeed, in view of the definition of RT,↽
ς,ε,ϑ from Lemma 5.5, the bound for the last term

involving εtϖ and E is immediate. As for the first term in RT,↽
ς,ε,ϑ, noting that ⌜ς⌜ ≥ 1 and

recalling the weight function (2.8)–(2.9), for ⌜ς′′⌜ = 1 and ⌜ς′′⌜ + ⌜ς′′′⌜ = ⌜ς⌜, we bound

ϑ ⌜ε⌜⌜3⌝e(q+1)ϱεε⌐⌐
x ες

xε
ε⌐⌐⌐
v Y ϑf⌝L2

x,v(↽ω,ε,ϑ ,⇀) ⧖ ϑ ⌜ε⌜⌜3⌝e(q+1)ϱεε⌐⌐
x ες

xε
ε⌐⌐⌐
v Y ϑf⌝L2

x,v(↽ω,ε⌐⌐⌐,ϑ⌐2,⇀)⧖ ϑ1⌜3 ∑
⌜ε⌐⌐⌐⌜<⌜ε⌜

⌝ες
xε

ε⌐⌐⌐
v Y ϑf⌝D(ϖ)

ω,ε⌐⌐⌐,ϑ
. (5.26)

In addition, again noting ⌜ς⌜ ≥ 1, we bound

ϑ ⌜ε⌜⌜3⌝e(q+1)ϱες
xε

ε
v Y

ϑf⌝L2
x,v(↽ω,ε,ϑ ,⇀) ⧖ ϑ ⌜ε⌜⌜3 ∑⌜ε⌐⌐⌜<⌜ε⌜ ⌝e

(q+1)ϱεvjες
xε

ε⌐⌐
v Y ϑf⌝L2

x,v(↽ω,ε⌐⌐,ϑ⌐2,⇀)

⧖ A⌐1⌜20 ∑
⌜ε⌐⌐⌜<⌜ε⌜

⌝ες
xε

ε⌐⌐
v Y ϑf⌝D(ϖ)

ω,ε⌐⌐,ϑ
.

(5.27)

The claim (5.25) follows from the above computations.

Now consider terms in (5.24) involving RT,↽⌐2⌜ς⌐⌜
ς+ς⌐,ε,ϑ and RT,↽⌐2⌜ε⌐⌜

ς,ε+ε⌐,ϑ with either ⌜⇁′⌜ = 1 or ⌜ς′⌜ = 1.
Notice that the Dς,ε,ϑ norm controls one additional εx or ϑ

1
3εv derivative with exactly the

right weights so that the εtϖ and E terms can be treated in the same way. Similar argument
applies to (5.26) with an additional ϑ

1
3εv derivative and to (5.27) with an additional εx or

ϑ
1
3εv derivative. The only non-obvious term we need to consider is (5.26) with an additional

εx derivative. We bound this term as follows, with ⌜⇁′⌜ = 1, ⌜ς′′⌜ = 1 and ⌜ς′′⌜ + ⌜ς′′′⌜ = ⌜ς⌜,
ϑ ⌜ε⌜⌜3⌝e(q+1)ϱεε⌐⌐

x ες⌐
x ες

xε
ε⌐⌐⌐
v Y ϑf⌝L2

x,v(↽ω,ε,ϑ⌐2,⇀)
⧖ ϑ ⌜ε⌜⌜3⌝e(q+1)ϱεε⌐⌐

x ες⌐
x ες

xε
ε⌐⌐⌐
v Y ϑf⌝L2

x,v(↽ω+ω⌐,ε⌐⌐⌐,ϑ⌐2,⇀)⧖ ϑ1⌜3 ∑
⌜ς⌐⌐⌜=⌜ς⌜+1⌜ε⌐⌐⌐⌜<⌜ε⌜

⌝ες⌐⌐
x εε⌐⌐⌐

v Y ϑf⌝D(ϖ)
ω⌐⌐,ε⌐⌐⌐,ϑ

.
(5.28)
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Combining all the above considerations and relabelling the indices give

A0ϑ
2⌜ε⌜⌜3 ∑⌜ς⌐⌜≤1R

T,↽⌐2⌜ς⌐⌜
ς+ς⌐,ε,ϑ + ϑ2⌜ε⌜⌜3 ∑⌜ε⌐⌜≤1 ϑ

2⌜ε⌐⌜⌜3RT,↽⌐2⌜ε⌐⌜
ς,ε+ε⌐,ϑ

⧖A0(⌝εtϖ⌝L∞x + ⌝E⌝L∞x )⌝ες
xε

ε
v Y

ϑf⌝2E(ϖ)ω,ε,ϑ

+A1⌜2
0 ϑ1⌜3 ∑

⌜ε⌐⌜<⌜ε⌜
⌝ες

xε
ε⌐
v Y ϑf⌝2D(ϖ)

ω,ε⌐,ϑ

+A1⌜2
0 ϑ

1
3 ( ∑
⌜ε⌐⌜<⌜ε⌜

⌝ες
xε

ε⌐
v Y ϑf⌝D(ϖ)

ω,ε⌐,ϑ
)( ∑
⌜ς⌐⌜=⌜ς⌜+1⌜ε⌐⌜<⌜ε⌜

⌝ες⌐
x εε⌐

v Y ϑf⌝D(ϖ)
ω⌐,ε⌐,ϑ

)
⧖A0(⌝εtϖ⌝L∞x + ⌝E⌝L∞x )⌝ες

xε
ε
v Y

ϑf⌝2E(ϖ)ω,ε,ϑ

+A1⌜2
0 ϑ1⌜3 ∑

⌜ς⌐⌜≥⌜ς⌜, ⌜ε⌐⌜<⌜ε⌜⌜ς⌐⌜+⌜ε⌐⌜≤⌜ς⌜+⌜ε⌜
⌝ες⌐

x εε⌐
v Y ϑf⌝2D(ϖ)

ω⌐,ε⌐,ϑ
.

(5.29)

Estimates on ZT,↽
ς,ε,ϑ. Next, let us give bounds on ZT,↽⌐2

ς,ε,ϑ defined as in Lemma 5.7. We claim
that

ϑ1⌜3ϑ2⌜ε⌜⌜3ZT,↽⌐2
ς,ε,ϑ ⧖A⌐1⌜20 ϑ1⌜3 ∑

⌜ς⌐⌜=⌜ς⌜+1⌜ε⌐⌜<⌜ε⌜
⌝ες⌐

x εε⌐⌐
v Y ϑf⌝D(ϖ)

ω⌐,ε⌐,ϑ
⌝ες

xε
ε
v Y

ϑf⌝D(ϖ)ω,ε,ϑ

+ (⌝εtϖ⌝L∞x + ⌝E⌝L∞x )⌝ες
xε

ε
v Y

ϑf⌝2E(ϖ)ω,ε,ϑ

.

(5.30)

Note that the weight function is rightly indexed at 0ς,ε,ϑ − 2. Again, the term involving εtϖ
and E is direct, contributing to the last term in the above estimate. Next, for ⌜ς′⌜ = 1 and⌜ς′′⌜ < ⌜ς⌜, we bound the integral

ϑ1⌜3ϑ2⌜ε⌜⌜3 ∣⊎
T3⋊R3

e2(q+1)ϱw2⌝v⌝⌐4εvjες
xε

ε
v Y

ϑfεxjε
ς+ε⌐
x εε⌐⌐

v Y ϑf dv dx∣
⧖ ϑ1⌜3ϑ2⌜ε⌜⌜3⌝e2(q+1)ϱεxjε

ς+ε⌐
x εε⌐⌐

v Y ϑf⌝L2
x,v(↽ω,ε,ϑ⌐2,⇀)⌝e2(q+1)ϱεvjες

xε
ε
v Y

ϑf⌝L2
x,v(↽ω,ε,ϑ⌐2,⇀)

⧖ ϑ1⌜3(ϑ ⌜ε⌐⌐⌜⌜3⌝εxjε
ς+ε⌐
x εε⌐⌐

v Y ϑf⌝L2
x,v(↽ω+ε⌐,ε⌐⌐,ϑ⌐2,⇀))(ϑ(⌜ε⌜+1)⌜3⌝ες

xε
ε
v Y

ϑf⌝!x,v(↽ω,ε,ϑ ,⇀))
⧖ A⌐1⌜20 ϑ1⌜3⌝ες+ε⌐

x εε⌐⌐
v Y ϑf⌝D(ϖ)

ω+ε⌐,ε⌐⌐,ϑ
⌝ες

xε
ε
v Y

ϑf⌝D(ϖ)ω,ε,ϑ
.

Relabelling the multi-indices yields the bounds as claimed in (5.30). The last integral
term in ZT,↽⌐2

ς,ε,ϑ that involves εxjε
ς
xε

ε
v Y ϑfεvjε

ς+ε⌐
x εε⌐⌐

v Y ϑf is treated similarly. This verifies
the claim (5.30).

Estimates on RL,↽
ς,ε,ϑ. We go on with giving bounds on RL,↽

ς,ε,ϑ as introduced in Lemma 5.5.

Recall from Lemma 5.5 that RL,↽
ς,ε,ϑ has three contributions, which we label as

RL,↽
ς,ε,ϑ =⌐RL,↽,1

ς,ε,ϑ +RL,↽,2
ς,ε,ϑ +RL,↽,3

ς,ε,ϑ.
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The first terms can be bounded directly using the definition of the dissipation norms as
follows:

A0ϑϑ
2⌜ε⌜⌜3 ∑⌜ς⌐⌜≤1R

L,↽⌐2⌜ς⌐⌜,1
ς+ς⌐,ε,ϑ + ϑϑ2⌜ε⌜⌜3 ∑⌜ε⌐⌜≤1 ϑ

2⌜ε⌐⌜⌜3RL,↽⌐2⌜ε⌐⌜,1
ς,ε+ε⌐,ϑ

⧖ ⇀ϑϑ2⌜ε⌜⌜3A0 ∑⌜ς⌐⌜≤1⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌐⌜≤⌜ϑ⌜

⌝e(q+1)ϱες+ς⌐
x εε⌐⌐

v Y ϑ⌐⌐f⌝2!x,v(↽ω+ω⌐,ε⌐⌐,ϑ)

+ ⇀ϑϑ2⌜ε⌜⌜3A0 ∑⌜ε⌐⌜≤1⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌐⌜≤⌜ϑ⌜

ϑ2⌜ε⌐⌜⌜3⌝e(q+1)ϱες
xε

ε⌐⌐+ε⌐
v Y ϑ⌐⌐f⌝2!x,v(↽ω,ε⌐⌐+ε⌐,ϑ)

⧖ ⇀ϑ 1
3∑
⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌐⌜≤⌜ϑ⌜
⌝ες

xε
ε⌐⌐
v Y ϑ⌐⌐f⌝2D(ϖ)

ω,ε⌐⌐,ϑ⌐⌐
.

(5.31)

In a similar manner, the second terms can be bounded by

A0ϑϑ
2⌜ε⌜⌜3 ∑⌜ς⌐⌜≤1R

L,↽⌐2⌜ς⌐⌜,2
ς+ς⌐,ε,ϑ + ϑϑ2⌜ε⌜⌜3 ∑⌜ε⌐⌜≤1 ϑ

2⌜ε⌐⌜⌜3RL,↽⌐2⌜ε⌐⌜,2
ς,ε+ε⌐,ϑ

⧖Cϖϑ
1
3∑
⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌐⌜≤⌜ϑ⌜⌜ε⌐⌐⌜+⌜ϑ⌐⌐⌜≤⌜ε⌜+⌜ϑ⌜⌐1

⌝ες
xε

ε⌐⌐
v Y ϑ⌐⌐f⌝2D(ϖ)

ω,ε⌐⌐,ϑ⌐⌐
. (5.32)

The third terms require slightly more work. First, we bound

A0ϑϑ
2⌜ε⌜⌜3 ∑⌜ς⌐⌜≤1R

L,↽⌐2⌜ς⌐⌜,3
ς+ς⌐,ε,ϑ + ϑϑ2⌜ε⌜⌜3 ∑⌜ε⌐⌜≤1 ϑ

2⌜ε⌐⌜⌜3RL,↽⌐2⌜ε⌐⌜,3
ς,ε+ε⌐,ϑ

⧖CϖA0ϑϑ
2⌜ε⌜⌜3∑

⌜ς⌐⌜≤1⌜ϑ⌐⌐⌜≤⌜ϑ⌜
⌝µe(q+1)ϱες+ς⌐

x Y ϑ⌐f⌝2L2
x,v

(5.33)

We will analyze the RHS of (5.33) further. The issue here is that if we control it directly with
the dissipation norms, we would not have enough smallness. For any function g, decompose
g = g=0 + g⌜=0, where g=0(t, v) ⌐= ∫T3 g(t, x, v)dx. For ⌜⇁′⌜ ≤ 1 and ⌜ω′⌜ ≤ ⌜ω⌜, we bound

A0ϑ⌝µe(q+1)ϱες+ς⌐
x Y ϑ⌐f⌝2L2

x,v=A0ϑ(⌝µ(ες+ς⌐
x Y ϑ⌐f)⌜=0⌝2L2

x,v
+ ⌝µ(ες+ς⌐

x Y ϑ⌐f)=0⌝2L2
x,v
+ ⌝µ(e(q+1)ϱ − 1)ες+ς⌐

x Y ϑ⌐f⌝2L2
x,v
). (5.34)

The last term is clearly bounded by ϑ⌝ϖ⌝L∞⌝ες
xY

ϑ⌐f⌝2E(ϖ)
ω,0,ϑ⌐

. As for the first term, if ⌜⇁′⌜ = 1,
then we bound it directly by ϑ2⌜3ϑ1⌜3⌝ες

xY
ϑ⌐f⌝2D(ϖ)

ω,0,ϑ⌐
(noting the extra factor of ϑ2⌜3); while if

⌜⇁′⌜ = 0, we use the Poincaré’s inequality to obtain

A0ϑ⌝µ(ες
xY

ϑ⌐f)⌜=0⌝L2
x,v
⧖ A0ϑ⌝µ⋉xε

ς
xY

ϑ⌐f⌝L2
x,v
⧖ ϑ2⌜3ϑ1⌜3⌝ες

xY
ϑ⌐f⌝2D(ϖ)

ω,0,ϑ⌐
.

Next, note that the zeroth mode (i.e. second term in (5.34)) is only non-vanishing when⌜⇁⌜ = ⌜⇁′⌜ = 0. Fixing ⌜⇁⌜ = ⌜⇁′⌜ = 0, we further have two cases: if ⌜ω′⌜ = 0, we simply bound the
term by A0ϑ⌝µf0⌝2L2

x,v
; while if ⌜ω′⌜ > 0, we write Y ϑ⌐ = YjY ϑ⌐⌐ for some j and ω′′, and use the
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fact (Y ϑ⌐f)=0 = Y ϑ⌐(f=0) = (tεxj + εvj)Y ϑ⌐⌐f=0 = εvjY ϑ⌐⌐f=0 to deduce

A0ϑ⌝µ(Y ϑ⌐f)=0⌝2L2
x,v
⧖ A0ϑ⌝µεvjY ϑ⌐⌐f=0⌝2L2

x,v
⧖ ϑ 1

3 ⌝Y ϑ⌐⌐f⌝2D(ϖ)
ω,0,ϑ⌐⌐

. (5.35)

Hence, combining all the cases above, we obtain

RHS of (5.33)

⧖

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎡

Cϖ∑⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜
(ϑ2⌜3ϑ1⌜3⌝ες

xε
ε⌐
v Y ϑ⌐f⌝2D(ϖ)

ω,ε⌐,ϑ⌐
+ ϑ⌝ϖ⌝L∞⌝ες

xε
ε⌐
v Y ϑ⌐f⌝2E(ϖ)

ω,ε⌐,ϑ⌐
) if ⌜⇁⌜ > 0

Cϖ∑⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜
(ϑ2⌜3ϑ1⌜3⌝ες

xε
ε⌐
v Y ϑ⌐f⌝2D(ϖ)

ω,ε⌐,ϑ⌐
+ ϑ⌝ϖ⌝L∞⌝ες

xε
ε⌐
v Y ϑ⌐f⌝2E(ϖ)

ω,ε⌐,ϑ⌐
)

+Cϖ∑⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜<⌜ϑ⌜
ϑ1⌜3⌝ες

xε
ε⌐
v Y ϑ⌐f⌝2D(ϖ)

ω,ε⌐,ϑ⌐
+Cϖϑ⌝µf0⌝2L2

x,v
if ⌜⇁⌜ = 0.

(5.36)

Putting together (5.31), (5.32) and (5.36), we obtain

A0ϑϑ
2⌜ε⌜⌜3 ∑⌜ς⌐⌜≤1R

L,↽⌐2⌜ς⌐⌜
ς+ς⌐,ε,ϑ + ϑϑ2⌜ε⌜⌜3 ∑⌜ε⌐⌜≤1 ϑ

2⌜ε⌐⌜⌜3RL,↽⌐2⌜ε⌐⌜
ς,ε+ε⌐,ϑ

⧖

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎡

(⇀ +Cϖϑ2⌜3)ϑ1⌜3∑
⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌐⌜≤⌜ϑ⌜
⌝ες

xε
ε⌐⌐
v Y ϑ⌐⌐f⌝2D(ϖ)

ω,ε⌐⌐,ϑ⌐⌐
+Cϖϑ

1⌜3∑
⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌐⌜≤⌜ϑ⌜⌜ε⌐⌐⌜+⌜ϑ⌐⌐⌜≤⌜ε⌜+⌜ϑ⌜⌐1

⌝ες
xε

ε⌐⌐
v Y ϑ⌐⌐f⌝2D(ϖ)

ω,ε⌐⌐,ϑ⌐⌐

+Cϖϑ⌝ϖ⌝L∞∑⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌐⌜≤⌜ϑ⌜
⌝ες

xε
ε⌐⌐
v Y ϑ⌐⌐f⌝2E(ϖ)

ω,ε⌐⌐,ϑ⌐⌐
if ⌜⇁⌜ > 0

(⇀ +Cϖϑ2⌜3)ϑ1⌜3∑
⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌐⌜≤⌜ϑ⌜
⌝ες

xε
ε⌐⌐
v Y ϑ⌐⌐f⌝2D(ϖ)

ω,ε⌐⌐,ϑ⌐⌐
+Cϖϑ

1⌜3∑
⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌐⌜≤⌜ϑ⌜⌜ε⌐⌐⌜+⌜ϑ⌐⌐⌜≤⌜ε⌜+⌜ϑ⌜⌐1

⌝ες
xε

ε⌐⌐
v Y ϑ⌐⌐f⌝2D(ϖ)

ω,ε⌐⌐,ϑ⌐⌐

+Cϖϑ⌝ϖ⌝L∞∑⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌐⌜≤⌜ϑ⌜
⌝ες

xε
ε⌐⌐
v Y ϑ⌐⌐f⌝2E(ϖ)

ω,ε⌐⌐,ϑ⌐⌐
+Cϖϑ⌝µf0⌝2L2

x,v
if ⌜⇁⌜ = 0.

(5.37)

Estimates on ZL,↽
ς,ε,ϑ. We now bound the remainder ZL,↽

ς,ε,ϑ introduced in Lemma 5.7 and
appeared on the right hand side of (5.23). Using Corollary 4.8, we bound

⌜⩀
R3
⌝v⌝⌐4w2e2(q+1)ϱεε

v Y
ϑL[εxiε

ς
x f]εviες

xε
ε
v Y

ϑf dv⌜
⧖∑
⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜
⌝εviες

xε
ε
v Y

ϑf⌝!v(↽ω,ε,ϑ⌐2,⇀)⌝εxiε
ς
xε

ε⌐
v Y ϑ⌐f⌝!v(↽ω,ε,ϑ⌐2,⇀)

and

⌜⩀
R3
⌝v⌝⌐4w2e2(q+1)ϱεviεε

v Y
ϑL[ες

x f]εxiε
ς
xε

ε
v Y

ϑf dv⌜
⧖∑
⌜ε⌐⌜≤⌜ε⌜+1⌜ϑ⌐⌜≤⌜ϑ⌜
⌝εxiε

ς
xε

ε
v Y

ϑf⌝!v(↽ω,ε,ϑ⌐2,⇀)⌝ες
xε

ε⌐
v Y ϑ⌐f⌝!v(↽ω,ε,ϑ⌐2,⇀).
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Therefore, multiplying by ϑ4⌜3ϑ2⌜ε⌜⌜3 and integrating over x, we get

ϑ4⌜3ϑ2⌜ε⌜⌜3ZL,↽⌐2
ς,ε,ϑ

⧖ ϑ4⌜3ϑ2⌜ε⌜⌜3⌝⋉vε
ς
xε

ε
v Y

ϑf⌝!x,v(↽ω,ε,ϑ⌐2,⇀)(∑⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜
⌝⋉xε

ς
xε

ε⌐
v Y ϑ⌐f⌝!x,v(↽ω,ε,ϑ⌐2,⇀))

+ ϑ4⌜3ϑ2⌜ε⌜⌜3⌝⋉xε
ς
xε

ε
v Y

ϑf⌝!x,v(↽ω,ε,ϑ⌐2,⇀)(∑⌜ε⌐⌜≤⌜ε⌜+1⌜ϑ⌐⌜≤⌜ϑ⌜
⌝ες

xε
ε⌐
v Y ϑ⌐f⌝!x,v(↽ω,ε,ϑ⌐2,⇀))

⧖ ϑ1⌜3A⌐1⌜20 ⌝ες
xε

ε
v Y

ϑf⌝D(ϖ)ω,ε,ϑ
∑
⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜

⌝ες
xε

ε⌐
v Y ϑ⌐f⌝D(ϖ)

ω,ε⌐,ϑ⌐
.

(5.38)

Proof of (5.20). We now put together the above estimates. The ⌜⇁⌜ > 0 and ⌜⇁⌜ = 0 cases are
treated slightly di$erently. Consider first ⌜⇁⌜ > 0. Combining (5.23), (5.24) with the bounds
(5.29), (5.30), (5.37) and (5.38) for the remainder terms,

d

dt
⌝ες

xε
ε
v Y

ϑf⌝2E(ϖ)ω,ε,ϑ

+ ↽ϑ1⌜3⌝ες
xε

ε
v Y

ϑf⌝2D(ϖ)ω,ε,ϑ

⧖ (⇀ +Cϖϑ
2⌜3 +A⌐1⌜20 )ϑ1⌜3∑

⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜
⌝ες

xε
ε⌐
v Y ϑ⌐f⌝2D(ϖ)

ω,ε⌐,ϑ⌐

+Cϖϑ
1⌜3∑
⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜⌜ε⌐⌜+⌜ϑ⌐⌜≤⌜ε⌜+⌜ϑ⌜⌐1

⌝ες
xε

ε⌐
v Y ϑ⌐f⌝2D(ϖ)

ω,ε⌐⌐,ϑ⌐⌐
+A1⌜2

0 ϑ1⌜3 ∑
⌜ς⌐⌜≥⌜ς⌜, ⌜ε⌐⌜<⌜ε⌜⌜ς⌐⌜+⌜ε⌐⌜≤⌜ς⌜+⌜ε⌜

⌝ες⌐
x εε⌐

v Y ϑf⌝2D(ϖ)
ω,ε⌐,ϑ

+CϖA0(⌝εtϖ⌝L∞x + ⌝ϖ⌝W 1,∞
x
)∑
⌜ε⌐⌜≤⌜ε⌜⌜ϑ⌐⌜≤⌜ϑ⌜
⌝ες

xε
ε⌐
v Y ϑ⌐f⌝2E(ϖ)

ω,ε⌐,ϑ⌐
+Rς,ε,ϑ.

(5.39)

Summing over ⌜⇁⌜ ≥ N low
ς , ⌜⇁⌜+ ⌜ς⌜ ≤ Nς,ε, ⌜ς⌜ ≤ Nε, ⌜ω⌜ ≤ Nϑ, and recalling (5.15), we obtain

d

dt
⌝f⌝2

E(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

+ ↽ϑ1⌜3⌝f⌝2
D(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

⧖ (⇀ +Cϖϑ
2⌜3 +A⌐1⌜20 )ϑ1⌜3⌝f⌝2

D(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

+ (Cϖ +A1⌜2
0 )ϑ1⌜3(⌝f⌝2

D(ϖ)
Nlow
ω ,Nω,ε ,Nε⋊1,Nϑ

+ ⌝f⌝2
D(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ⋊1

)
+CϖA0(⌝εtϖ⌝L∞x + ⌝ϖ⌝W 1,∞

x
)⌝f⌝2

E(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

+ ∑
⌜ς⌜≥N low

ω , ⌜ε⌜≤Nε⌜ς⌜+⌜ε⌜≤Nω,ε , ⌜ϑ⌜≤Nϑ

Rς,ε,ϑ,

(5.40)

where we have introduced the convention ⌝f⌝D(ϖ)∗,∗,∗,⋊1 = 0, etc.
Choosing first A0 and ⇀ small, and then choosing ϑ0 small, we can arrange ⇀+Cϖϑ2⌜3+A⌐1⌜20

to be small enough so that the first term on the RHS can be absorbed by the second term on
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the LHS. At this point, we fix ⇀ and A0 so that

d

dt
⌝f⌝2

E(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

+ ↽ϑ1⌜3⌝f⌝2
D(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

⧖ (Cϖ +A1⌜2
0 )ϑ1⌜3(⌝f⌝2

D(ϖ)
Nlow
ω ,Nω,ε ,Nε⋊1,Nϑ

+ ⌝f⌝2
D(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ⋊1

)
+CϖA0(⌝εtϖ⌝L∞x + ⌝ϖ⌝W 1,∞

x
)⌝f⌝2

E(ϖ)
Nlow
ω ,Nω,ε ,Nε ,Nϑ

+ ∑
⌜ς⌜≥N low

ω , ⌜ε⌜≤Nε⌜ς⌜+⌜ε⌜≤Nω,ε , ⌜ϑ⌜≤Nϑ

Rς,ε,ϑ.

(5.41)

For fixed Nς,ε ≥ N low
ς ≥ 1, we now perform an induction in Nε and Nϑ. The base case

is Nε = Nϑ = 0: since ⌝f⌝D(ϖ)
Nlow
ω ,Nω,ε ,⋊1,Nϑ

= ⌝f⌝D(ϖ)
Nlow
ω ,Nω,ε ,Nε ,⋊1

= 0, the desired conclusion is

immediate. A simple induction, say, first in Nϑ, and then in Nε, finishes the proof of the
proposition in the case N low

ς > 0.
Proof of (5.21). Finally, we consider the case N low

ς = 0. Notice that when repeating the
argument in the proof of (5.20), the only di$erence is that we obtain an extra term ϑ⌝µf=0⌝2L2

x,v

(coming from (5.36) in the ⌜⇁⌜ = 0 case). Thus

d

dt
⌝f⌝2

E(ϖ)0,Nω,ε ,Nε ,Nϑ

+ ↽ϑ1⌜3⌝f⌝2
D(ϖ)0,Nω,ε ,Nε ,Nϑ

⧖ ϑ⌝µf=0⌝2L2
x,v
+ (⌝εtϖ⌝L∞x + ⌝ϖ⌝W 1,∞

x
)⌝f⌝2

E(ϖ)0,Nω,ε ,Nε ,Nϑ

+ ∑⌜ε⌜≤Nε⌜ς⌜+⌜ε⌜≤Nω,ε , ⌜ϑ⌜≤Nϑ

Rς,ε,ϑ.
(5.42)

To proceed, we write f(t, x, v) = a(t, x)⌝µ + bj(t, x)vj⌝µ + c(t, x)⌜v⌜2⌝µ + (I −&)f , where
I is the identity, and & is the projection as in Lemma 4.5. Repeating now the basic energy
estimate in Lemma 5.4 with 0 = ◁ = 0, we obtain

1

2

d

dt
⌝eϱf⌝2L2

x,v
+ ϑ⊎

T3⋊R3
eϱfL(eϱf)dv dx ⧖RT,0

0,0,0 +RQ,0
0,0,0.

Applying Lemma 4.5 for ⌝eϱf,L(eϱf)⌝ and controlling RT,0
0,0,0 by (5.25), we thus obtain

d

dt
⌝eϱf⌝2L2

x,v
+ ϱ2ϑ⌝eϱ(I −&)f⌝2!x,v

⧖ (⌝εtϖ⌝L∞x + ⌝E⌝L∞x )⌝f⌝2E(0)0,0,0

+RQ,0
0,0,0. (5.43)

Notice that (5.43) implies

ϑ⌝µf=0⌝2L2
x,v
⧖ϑ ⌜(a, b, c)⌜2 + ϑ⌝eϱ(I −&)f⌝2!x,v

+ ϑ⌝ϖ⌝L∞x ⌝µf=0⌝2L2
x,v

⧖ ϑ⌜(a, b, c)⌜2 + (⌝εtϖ⌝L∞x + ⌝ϖ⌝L∞x )⌝f⌝2E(0)0,Nω,ε ,Nε ,Nϑ

+RQ,0
0,0,0.

(5.44)

Plugging this into (5.42) yields the desired conclusion. ↭

5.6. The main energy estimates including the top-order energy.

Proposition 5.11. Fix ◁ ∈ {0,2}. The estimates (5.20) and (5.21) in Proposition 5.9 both

hold (for N low
ς > 0 and N low

ς = 0 respectively) with E(⇀)
N low

ω ,Nω,ε ,Nε ,Nϑ
, D(⇀)

N low
ω ,Nω,ε ,Nε ,Nϑ

and Rς,ε,ϑ
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replaced by ⌟E(⇀)
N low

ω ,Nω,ε ,Nε ,Nϑ
, ⌟D(⇀)

N low
ω ,Nω,ε ,Nε ,Nϑ

and ⌟Rς,ε,ϑ respectively, where ⌟E(⇀)
N low

ω ,Nω,ε ,Nε ,Nϑ

and ⌟D(⇀)
N low

ω ,Nω,ε ,Nε ,Nϑ
are as in (5.16), and

⌟Rς,ε,ϑ =Rς,ε,ϑ + ∑⌜ε⌐⌜=2 ϑ
2(⌜ε⌜+⌜ε⌐⌜)⌜3RQ,↽⌐2⌜ε⌐⌜

ς,ε+ε⌐,ϑ,

where RQ,↽
ς,ε,ϑ and Rς,ε,ϑ are as introduced in Lemma 5.5 and Proposition 5.9.

Proof. We repeat the argument in Proposition 5.9, except that we now derive the energy
estimates for ⌟Eς,ε,ϑ and ⌟Dς,ε,ϑ instead of Eς,ε,ϑ and Dς,ε,ϑ. For this, we need to handle the
additional terms

A⌐10 ϑ2⌜ε⌜⌜3 ∑⌜ε⌐⌜=2 ϑ
2⌜ε⌐⌜⌜3⌟RT,↽⌐2⌜ε⌐⌜

ς,ε+ε⌐,ϑ + ϑRL,↽⌐2⌜ε⌐⌜
ς,ε+ε⌐,ϑ +RQ,↽⌐2⌜ε⌐⌜

ς,ε+ε⌐,ϑ].
Now the ⊎⌜ε⌐⌜=2RQ,↽⌐2⌜ε⌐⌜

ς,ε+ε⌐,ϑ term is part of ⌟Rς,ε,ϑ and does not need to be estimated for the
purpose of this proposition.
As for the other two terms, notice that while they contain one more εv derivative compared

to their counterparts in Proposition 5.9, the norms ⌟Eς,ε,ϑ and ⌟Dς,ε,ϑ also control the additional
terms as indicated in (5.13) and (5.14). It can be checked that the same energy estimates as
in Proposition 5.9 can be obtained, as long as the (E ,D) norms are replaced by the (⌟E , ⌟D).
We only consider in detail the following term from RT,↽⌐2⌜ε⌐⌜

ς,ε+ε⌐,ϑ which requires modifications
that are not completely obvious:

ϑ(2⌜ε⌜+4)⌜3 ∑⌜ε⌐⌜=2 ∑
⌜ε⌐⌐⌜=⌜ε⌜⌐1⌜ε⌐⌐⌐⌜=1

⌝e(q+1)ϱες+ε⌐⌐⌐
x εε⌐⌐+ε⌐

v Y ϑf⌝L2
x,v(↽ω,ε,ϑ⌐4,⇀)⌝e(q+1)ϱες

xε
ε+ε⌐
v Y ϑf⌝L2

x,v(↽ω,ε,ϑ⌐4,⇀)

⧖ ϑ1⌜3(ϑ ⌜ε⌐⌐⌜⌜3+2⌜3∑
⌜ς⌐⌐⌜=⌜ς⌜+1⌜ε⌐⌜=2,⌜ε⌐⌐⌜=⌜ε⌜⌐1

⌝e(q+1)ϱεε⌐
v ες⌐⌐

x εε⌐⌐
v Y ϑf⌝L2

x,v(↽ω,ε,ϑ⌐4,⇀))
⋊ (ϑ ⌜ε⌜⌜3+2⌜3∑⌜ε⌐⌜=2⌝e

(q+1)ϱες
xε

ε+ε⌐
v Y ϑf⌝L2

x,v(↽ω,ε,ϑ⌐4,⇀))
⧖ ϑ1⌜3(ϑ ⌜ε⌐⌐⌜⌜3+2⌜3∑

⌜ς⌐⌐⌜=⌜ς⌜+1⌜ε⌐⌐⌜=⌜ε⌜⌐1
⌝e(q+1)ϱ⋉vε

ς⌐⌐
x εε⌐⌐

v Y ϑf⌝!x,v(↽ω,ε,ϑ⌐2,⇀))
⋊ (ϑ ⌜ε⌜⌜3+2⌜3 ∑

⌜ε⌐⌐⌜=⌜ε⌜⌐1⌜ε⌐⌐⌐⌜=2
⌝e(q+1)ϱεε⌐⌐⌐

v ες
xε

ε⌐⌐
v Y ϑf⌝!x,v(↽ω,ε⌐⌐,ϑ⌐4,⇀))

⧖ ϑ1⌜3(∑
⌜ς⌐⌐⌜=⌜ς⌜+1⌜ε⌐⌐⌜=⌜ε⌜⌐1

⌝ες⌐⌐
x εε⌐⌐

v Y ϑf⌝⌝D(ϖ)
ω⌐⌐,ε⌐⌐,ϑ

) ⋊ (A1⌜2
0 ∑⌜ε⌐⌐⌜=⌜ε⌜⌐1 ⌝ε

ς
xε

ε⌐⌐
v Y ϑf⌝⌝D(ϖ)

ω,ε⌐⌐,ϑ
).

As a result, we can then complete the argument following the proof of Proposition 5.9. ↭

6. Linear Landau equation

In this section, we derive estimates on the semigroup of the linear Landau equation

εtf + v ⋅ ⋉xf + ϑLf = 0 (6.1)

on T3 ⋊R3, with initial data f(0, x, v) = f0(x, v), where L denotes the leading linear Landau
operator as in (2.3), (2.4) and (2.5). Let S(t) be the semigroup associated to (6.1), that is,
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for each f0(x, v), we set
S(t)[f0](x, v) ⌐= f(t, x, v) (6.2)

where f(t, x, v) is the unique solution to (6.1) with initial data f0(x, v). As L is independent
of x, the problem (6.1) can be solved via the Fourier transform. Indeed, we can write

S(t)[f0](x, v) = ∑
k∈Z3

eik⋉xSk(t)[f̂0k](v)
in which, for each k ∈ Z3, f̂0k(v) is the Fourier transform of f(x, v) in variable x, and
Sk(t)[h0] denotes the corresponding semigroup to the Fourier transform of (6.1): namely,
h(t) = Sk(t)[h0] solves the following fixed mode linear Landau equation

εth + ik ⋅ vh + ϑLh = 0 (6.3)

with initial data h(0, v) = h0(v).
This section is devoted to deriving estimates for ⎢ ∫R3 h

⌝
µdv⎢. We will prove both finite

time bounds (Proposition 6.5) and decay estimates (Proposition 6.4). We prove two types of
decay estimates:

● Uniform phase mixing: decay in the variable ⌝kt⌝, uniformly in ϑ ≥ 0.● Enhanced dissipation: decay in the variable ⌝ϑ1⌜3t⌝.
The precise decay estimates can be found in Proposition 6.4 below. When ϑ = 0, (6.3)

becomes the free transport equation, whose semigroup reads Sk(t)[h] = e⌐ikt⋉vh. In that case
the decay estimates in ⌝kt⌝ are thus direct. We shall prove the phase mixing for the linear
Landau equations (6.1) uniformly in ϑ ≥ 0. (In fact, we also prove a “twisted” estimate with
decay in ⌝kt + ⇀⌝ for ⇀ ∈ R3, which will be useful in the nonlinear density estimate.)
Next, using methods of [61], it follows that the Landau di$usion dissipates energy at

least at a rate of order e⌐↼(φt)2⌜3 , which in particular becomes relevant at time of order 1⌜ϑ.
Making use of the transport-di$usion structure of the Landau operator, we shall prove the
enhanced dissipation in ⌝ϑ1⌜3t⌝, which takes place at a much earlier time of order ϑ⌐1⌜3, as ϑ
is su#ciently small.

6.1. Phase mixing and vector field bounds. In this subsection, we prove that control of
Yk,ϖ derivatives (defined below) implies decay estimates for velocity averages.

Proposition 6.1. For k ∈ Z3, ⇀ ∈ R3, set Yk,ϖ = ⋉v + i(⇀ + kt), and g ⌐ R3 → R. Then, for any

N ≥ 0 and any 0′ ≥ 0, there is a positive constant CN,↽⌐ so that

∣⩀
R3

g
⌝
µdv∣ ≤ CN,↽⌐⌝kt + ⇀⌝⌐N ∑⌜ϑ⌜≤N ⌝⌝v⌝

⌐↽⌐Y ϑ
k,ϖg⌝L2(R3). (6.4)

Proof. If ⌜kt+⇀⌜ ≤ 1, the desired estimate follows directly from the Cauchy–Schwarz inequality.
Suppose that ⌜kt + ⇀⌜ > 1. Take j such that ⌜kjt + ⇀j ⌜ ≥ 1⌝

3
⌜kt + ⇀⌜. Then, writing i(kjt + ⇀j) =

Ykj ,ϖj − εvj , we bound

⌜kt + ⇀⌜N ∣⩀
R3

g
⌝
µdv∣ ≤ 3N

2 ∣⩀
R3
(kjt + ⇀j)Ng⌝µdv∣

⧖N ∑
N1+N2=N

∣⩀
R3

Y N1
kj ,ϖj

εN2
vj g
⌝
µdv∣ ⧖N,↽⌐ ∑⌜ϑ⌜≤N ⌝⌝v⌝

⌐↽⌐Y ϑ
k,ϖg⌝L2(R3),

where the final inequality is achieved by integrating by parts N2 times in εvj . ↭



THE VLASOV–POISSON–LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME 38

6.2. Enhanced dissipation. In this subsection, we prove the following enhanced dissipation
estimates for the linear Landau equation (6.1), which are a direct consequence of energy
estimates.

Proposition 6.2. For k ∈ Z3 ∨ {0} and ⇀ ∈ R3, set Yk,ϖ = ⋉v + i(⇀ + kt) and let Sk(t) be the

semigroup of (6.3). Then, there exists ϱ′ > 0 so that

⌝Y ϑ
k,ϖSk(t)[h0]⌝L2

v
⧖ ⌝ϑ1⌜3t⌝⌐3⌜2⌝h0⌝E(10,0)⌐

Landau,k,ϱ,⌜ϑ⌜ (6.5)

and

⌝Sk(t)[h0]⌝L2
v
⧖min{e⌐↼⌐(φ1⌜3t)1⌜3 , e⌐↼⌐(φt)2⌜3}⌝h0⌝E(2,2)⌐Landau,k,ϱ,0

(6.6)

uniformly in k ∈ Z3⟦{0}, ⇀ ∈ R3, and ϑ ≥ 0, where for 0∗ ∈ R and ◁ ∈ {0, 2}, the linear Landau

energy norm ⌝h0⌝E(ς∗,ϖ)⌐
Landau,k,ϱ,⌜ϑ⌜

is defined by

⌝h0⌝E(ς∗,ϖ)⌐Landau,k,ϱ,N

⌐= ⌝⌝v⌝2↽∗e q⌐ ⌜v⌜ϖ
2 h0⌝L2

v
+ ∑

1≤⌜ϑ⌜≤N
⌝⌝v⌝2↽∗Y ϑ

0,ϖh0⌝L2
v

+ ϑ1⌜3⌜k⌜⌐1 ∑⌜ε⌐⌜=1(⌝⌝v⌝
2↽∗⌐2e q⌐ ⌜v⌜ϖ

2 εε⌐
v h0⌝L2

v
+ ∑

1≤⌜ϑ⌜≤N
⌝⌝v⌝2↽∗⌐2εε⌐

v Y ϑ
0,ϖh0⌝L2

v
),

(6.7)

and q′ is defined by q′ = {1
2q0 if ◁ = 2
0 if ◁ = 0 .

Remark 6.3. Note that q′ = 1
2q with q defined as in Section 5. That is, the linear Landau

energy norm ⌝ ⋅ ⌝E(ς∗,ϖ)⌐Landau,k,ϱ,N

has slower Gaussian v-weights than do the corresponding energy

and dissipation norms. In addition, it involves precisely the stationary vector field Y0,ϖ = ⋉v+i⇀
(i.e. independent of t).

Proof. Basic energy estimates. Let h(t) = Sk(t)[h0]. We note that h(t) solves the linear
Landau equation (6.3) with initial data h0. As (6.1) is a particular version of the full Landau
equation (2.2a) without the electric field and nonlinear terms, we can thus apply to (6.3) the
same energy estimates developed in Proposition 5.9 for N low

ς = Nς,ε = Nε = 0. Indeed, we
claim that

d

dt
⌝h(t)⌝2

E(ς∗,ϖ)⌐0,0,0,Nϑ

+ ↽ϑ1⌜3⌝h(t)⌝2
D(ς∗,ϖ)⌐0,0,0,Nϑ

≤ 0. (6.8)

for any 0∗ ∈ R and ◁ ∈ {0, 2}. Here, in (6.8), the energy norm ⌝h(t)⌝E(ς∗,ϖ)⌐0,0,0,Nϑ

and the dissipation

norm ⌝h(t)⌝D(ς∗,ϖ)⌐0,0,0,Nϑ

are defined by

⌝h(t)⌝2
E(ς∗,ϖ)⌐0,0,0,Nϑ

= ⌝h(t)⌝2E(ς∗,ϖ)⌐0,0,0

+ ∑
1≤⌜ϑ⌜≤N

⌝Y ϑ
k,ϖh(t)⌝2E(ς∗,0)⌐0,0,ϑ

,

⌝h(t)⌝2
D(ς∗,ϖ)⌐0,0,0,Nϑ

= ⌝h(t)⌝2D(ς∗,ϖ)⌐0,0,0

+ ∑
1≤⌜ϑ⌜≤N

⌝Y ϑ
k,ϖh(t)⌝2D(ς∗,0)⌐0,0,ϑ

,
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where for H = Y ϑ
k,ϖh, we set

⌝H⌝2E(ς∗,ϖ)⌐0,0,ϑ

= A0∑⌜ς⌐⌜≤1⌝k
ς⌐H⌝2L2

v(↽∗⌐2⌜ς⌐⌜,⇀)⌐ + ϑ1⌜3R⩀
R3

iw2k ⋅ (⋉vH)H dv + ϑ2⌜3⌝⋉vH⌝2L2
v(↽∗⌐2,⇀)⌐ ,

⌝H⌝2D(ς∗,ϖ)⌐0,0,ϑ

= A0ϑ
2⌜3 ∑⌜ς⌐⌜≤1 ⌝k

ς⌐H⌝2!v(↽∗⌐2⌜ς⌐⌜,⇀)⌐ + ⌝⌜k⌜H⌝2L2
v(↽∗⌐2,⇀) + ϑ4⌜3⌝⋉vH⌝2!v(↽∗⌐2,⇀)⌐ ,

for L2
v(0,◁)′, !v(0,◁)′ as in (2.12)–(2.13), A0 as in (5.11)–(5.12), w = ⌝v⌝↽∗⌐2e q⌐ ⌜v⌜ϖ

2 , with

q′ = {1
2q0 if ◁ = 2
0 if ◁ = 0. Observe that these are exactly the norms in Proposition 5.9 adapted

to the current setting, except with (1) ϖ ≡ 0, (2) Y is replaced by Yk,ϖ, (3) 2M replaced by

0∗, (4) the Gaussian weights e
q⌜v⌜ϖ

2 are replaced by e
q⌐ ⌜v⌜ϖ

2 , and (5) the polynomial ⌝v⌝ weights
depend only on the k weights and εv derivatives, but not the Yk,ϖ derivatives.

Now make the following observations:

● Yk,0 = ⋉v + ikt corresponds to the vector field Y = ⋉v + t⋉x in the physical space.
Hence, the energy estimates for Yk,0 are a Fourier transformed version of those in
Section 5. Now, for ⇀ ⌜= 0, we observe that the commutator of Yk,ϖ with the linear
Landau equation is identical to that of Yk,0.● The argument in Proposition 5.9 goes through identically with q replaced by q′ in
the Gaussian v-weights, and with 0ς,ε,ϑ = 0∗ − 2⌜⇁⌜ − 2⌜ς⌜. (The choice of 0ς,ε,ϑ =
2M − 2⌜⇁⌜ − 2⌜ς⌜ − 2⌜ω⌜ will only be relevant in Section 9; see for instance Lemma 9.6.)

Therefore, the estimate (6.8) can be obtained as in Proposition 5.9, read o$ specifically for
the linear Landau equations.

Polynomial decay. Define

g2(t, v) = ∑⌜ϑ⌜≤N(A0 ∑⌜ς⌐⌜≤1⌝v⌝
4⌐4⌜ς⌐⌜⌜kς⌐Y ϑ

k,ϖh⌜2 + ϑ1⌜3R(ik ⋅ (⋉jY
ϑ
k,ϖh)Y ϑ

k,ϖh) + ϑ2⌜3⌜⋉vY
ϑ
k,ϖh⌜2) (6.9)

so that ⌝h⌝2
E(2,0)⌐0,0,0,N

= ∫R3 g2 dv. Notice that (using in particular ⌝⌝v⌝⌐3⌜2(⋉v ⋅)⌝L2
v
≤ ⌝ ⋅ ⌝!v)

⌝h⌝2
D(2,0)⌐0,0,0,N

≳ ∑⌜ϑ⌜≤N(⌜k⌜
2⌝Y ϑ

k,ϖh⌝2L2
v(0,0) + ϑ2⌜3⌝⌝v⌝⌐3⌜2⋉vY

ϑ
k,ϖh⌝2L2

v(0,0)) ≳ ⩀R3
⌝v⌝⌐4g2 dv. (6.10)

That is, using (6.8) with (0∗,◁) = (2,0), we get

d

dt ⩀R3
g2 dv + ↽′ϑ1⌜3⩀

R3
⌝v⌝⌐4g2 dv ≤ 0, (6.11)

for some positive constant ↽′. Moreover, using (6.8) again, we have

sup
t∈[0,∞)⩀R3

⌝v⌝16g2(t, v)dv ⧖ sup
t∈[0,∞) ⌝h(t)⌝2E(10,0)⌐0,0,0,N

⧖ ⌝h(0)⌝2
E(10,0)0,0,0,N

⧖ ⌜k⌜2⌝h0⌝2E(10,0)⌐Landau,k,ϱ,N

,

recalling the definition of ⌝ ⋅ ⌝E(10,0)⌐Landau,k,ϱ,N

in (6.7) and noting Yk,ϖh(0) = Y0,ϖh0. Therefore,

applying Lemma A.2 to (6.11) (with c ≳ ϑ1⌜3, C ⧖ ⌜k⌜2⌝h0⌝2E(10,0)⌐Landau,k,ϱ,N

and m = 4), we obtain

∫R3 g2(t, v)dv ⧖ ⌝ϑ 1
3 t⌝⌐3⌜k⌜2⌝h0⌝2E(10,0)⌐Landau,k,ϱ,N

. Noticing that g2 ≳ ⌜k⌜2⌜Y ϑ
k,ϖh⌜2 and dividing by ⌜k⌜2,

we obtain (6.5).
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Stretched exponential decay. This requires only little modification from the previous
case, except that we need to prove both e⌐↼⌐(φ1⌜3t)1⌜3 and e⌐↼⌐(φt)2⌜3 decay.

Define g as in (6.9) but only for N = 0, i.e.
g2(t, v) = A0 ∑⌜ς⌐⌜≤1⌝v⌝

4⌐4⌜ς⌐⌜⌜kς⌐h⌜2 + ϑ1⌜3R(ik ⋅ (⋉jh)h) + ϑ2⌜3⌜⋉vh⌜2.
The equation (6.10) holds in the particular case N = 0. This time, moreover, the initial bound
on ⌝h0⌝E(2,2)⌐Landau,k,ϱ,0

and (6.8) (with (0∗,◁) = (2, 2)) give uniform in t bounds for the Gaussian

moments for g2, i.e.

⩀
R3

e
1
2
q0⌜v⌜2g2 dv ⧖ ⌜k⌜2⌝h0⌝E(2,2)⌐Landau,k,ϱ,0

.

Therefore, applying Lemma A.1 to (6.11) (with c ≳ ϑ1⌜3, C ⧖ ⌜k⌜2⌝h⌝2
E(2,2)⌐Landau,k,ϱ,0

, m = 4), we
obtain ⌜k⌜2⌝h⌝2L2

v
(t) ⧖ ⩀

R3
g2 dv ⧖ e⌐↼(φ1⌜3t)1⌜3 ⌜k⌜2⌝h⌝2

E(2,2)⌐Landau,k,ϱ,0

.

Finally, to obtain the other, i.e. the e⌐↼(φt)2⌜3 , stretched exponential decay, note that we
have (using ⌝⌝v⌝⌐1⌜2 ⋅ ⌝L2

v
≤ ⌝ ⋅ ⌝!v) the following bound, in addition to (6.10):

⌝h⌝2
D(2,0)⌐0,0,0,0

≳ ϑ2⌜3[ ∑⌜ς⌐⌜≤1 ⌜k⌜
2⌜ς⌐⌜⌝h⌝2L2

v(3⌜2⌐2⌜ς⌐⌜,0) + ϑ2⌜3⌝⌝v⌝⌐1⌜2⋉vh⌝2L2
v(0,0) ≳ ϑ2⌜3⩀

R3
⌝v⌝⌐1g2 dv.

Remark that this features both the improved ⌝v⌝⌐1 weight and the extra ϑ2⌜3 factor when
compared to (6.10). Thus, an application of (6.8) (with (0∗,◁) = (2,0) and Nϑ = 0) yields

d

dt ⩀R3
g2 dv + ↽′ϑ ⩀

R3
⌝v⌝⌐1g2 dv ≤ 0,

for some ↽′ > 0. Using Lemma A.1 (with c ≳ ϑ, C ⧖ ⌜k⌜2⌝h⌝2
E(2,2)⌐Landau,k,ϱ,0

, m = 1) thus gives
⌜k⌜2⌝h⌝2L2

v
(t) ⧖ ⩀

R3
g2 dv ⧖ e⌐↼(φt)2⌜3 ⌜k⌜2⌝h⌝2

E(2,2)⌐Landau,k,ϱ,0

.

Combining the two stretched exponential decay estimates above, and dividing by ⌜k⌜2, yield
(6.6). ↭

6.3. Mixed decay estimates. In the nonlinear analysis, we also need the following proposi-
tion, which is a direct combination of Proposition 6.1 and Proposition 6.2.

Proposition 6.4. Fix k ∈ Z3 and ⇀ ∈ R3, and let Sk(t) be the semigroup of (6.3). Then, for

any N ≥ 0, there exist CN > 0 and ϱN > 0 such that

∣⩀
R3

Sk(t)[h0]⌝µdv∣ ≤ CN⌝kt + ⇀⌝⌐N⌝ϑ1⌜3t⌝⌐3⌜2⌝h0⌝E(10,0)⌐Landau,k,ϱ,N

, (6.12)

∣⩀
R3

Sk(t)[h0]⌝µdv∣ ≤ C0min{e⌐↼0(φ1⌜3t)1⌜3 , e⌐↼0(φt)2⌜3}⌝h0⌝E(2,2)⌐Landau,k,ϱ,0

, (6.13)

and

∣⩀
R3

Sk(t)[h0]⌝µdv∣
≤ CN⌝kt + ⇀⌝⌐N min{e⌐↼N (φ1⌜3t)1⌜3 , e⌐↼N (φt)2⌜3}⌟⌝h0⌝E(10,0)⌐Landau,k,ϱ,N+1 + ⌝h0⌝E(2,2)⌐Landau,k,ϱ,0

], (6.14)
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uniformly in k ∈ Z3⟦{0}, ⇀ ∈ R3, and ϑ ≥ 0, where the norm ⌝ ⋅ ⌝E(ς∗,ϖ)⌐Landau,k,ϱ,N

is defined as in

Proposition 6.2.

Proof. Let h(t) = Sk(t)h0. We combine Propositions 6.1 and 6.2 to obtain

∣⩀
R3

h(t)⌝µdv∣ ⧖ ⌝kt + ⇀⌝⌐N ∑⌜ϑ⌜≤N ⌝Y
ϑ
k,ϖh⌝L2

v
⧖ ⌝kt + ⇀⌝⌐N⌝ϑ1⌜3t⌝⌐3⌜2⌝h0⌝E(10,0)⌐Landau,k,ϱ,N

.

The proof of the exponential decay in (6.13) is similar (there recalling N = 0). For (6.14)
with N > 0, we use Propositions 6.1, 6.2 and interpolate (using Plancherel’s theorem and
Hölder’s inequality), namely

∣⩀
R3

h(t)⌝µdv∣ ⧖ ⌝kt + ⇀⌝⌐N ∑⌜ϑ⌜≤N ⌝Y
ϑ
k,ϖh⌝L2

v

⧖ ⌝kt + ⇀⌝⌐N( ∑⌜ϑ⌜≤N+1 ⌝Y
ϑ
k,ϖh⌝L2

v
) N

N+1 ⌝h(t)⌝ 1
N+1
L2
v

⧖ ⌝kt + ⇀⌝⌐N min{e⌐↼N (φ1⌜3t)1⌜3 , e⌐↼N (φt)2⌜3}⌟⌝h0⌝E(10,0)⌐Landau,k,ϱ,N+1 + ⌝h0⌝E(2,2)⌐Landau,k,ϱ,0

]. ↭

6.4. Finite time energy estimates and the ϑ → 0 limit. In this subsection, we study the
ϑ → 0 limit of Sk(t)[h0], where t ranges over a finite time interval. To clarify the notations,

in this subsection we use S(φ)k (t) to denote the semigroup associated to equation (6.3).

Proposition 6.5. Fix T ∈ (0,+∞). For any h0 ∈ S(R3),
lim
φ→0

sup
t∈[0,T ] ∣⩀R3

S(φ)k (t)[h0]⌝µdv −⩀
R3

S(0)k (t)[h0]⌝µdv∣ = 0.
Proof. Let f (φ) = S(φ)k (t)[h0]. For every ϑ ∈ [0,1], standard finite time energy estimates for
(6.3) give that for CT > 0 (depending on T but not on ϑ)

sup
t∈[0,T ] ∑⌜ς⌜+⌜ε⌜≤2 ⌝k

ςεε
v f
(φ)⌝L2

v
≤ CT ∑⌜ς⌜+⌜ε⌜≤2 ⌝k

ςεε
v h0⌝L2

v
. (6.15)

(For finite time energy estimates, we simply use Grönwall’s inequality for many commutator
terms, making them much easier than those in Proposition 5.9.)
Consider now the equation εt(f (φ) − f (0)) + ik ⋅ v(f (φ) − f (0)) = −ϑLf (φ). Multiplying by

f (φ) − f (0), integrating in v and then using (6.15) gives

d

dt
⌝f (φ) − f (0)⌝2L2

v
⧖ ϑ⌝f (φ) − f (0)⌝L2

v
⌝Lf (φ)⌝L2

v
⧖ CTϑ⌝f (φ) − f (0)⌝L2

v ∑⌜ς⌜+⌜ε⌜≤2 ⌝k
ςεε

v h0⌝L2
v
.

This implies d
dt⌝f (φ) − f (0)⌝L2

v
≤ Cϑ, for some constant depending on T and h0. Noticing

now that ⌝f (φ) − f (0)⌝L2
v
(0) = 0, we then deduce that supt∈[0,T ] ⌝f (φ) − f (0)⌝L2

v
(t) ≤ CTϑ. The

conclusion then follows from the Cauchy–Schwarz inequality in v. ↭

7. Linear density estimates

The goal of this section is to derive decay estimates for the density of the following linear
Vlasov–Poisson–Landau equation

εtf + v ⋅ ⋉xf + ϑLf = 2E ⋅ v⌝µ +N(t, x, v) (7.1)
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for the linear Landau operator L defined as in (2.3), (2.4) and (2.5). The equation is solved
with initial data f(0, x, v) = f0(x, v) and a sourceN(t, x, v), coupled with the Poisson equation
E = −⋉x(−!x)⌐1↼, where the density is defined by

↼(t, x) = ⩀
R3

f(t, x, v)⌝µdv.
For k ∈ Z3⟦{0}, let ↼̂k(t) be the Fourier transform of ↼(t, x) with respect to variable x. We also
denote by ⌞f0k(v) and N̂k(t, v) the Fourier transform of f0(x, v) and N(t, x, v), respectively.

The main result of this section is the following proposition.

Proposition 7.1. For any initial data f0(x, v) and any source term N(t, x, v) in L2(R3⋊R3),
the unique density solution ↼(t, x) to (7.1) satisfies the following representation

↼̂k(t) = Nk(t) +⩀ t

0
Gk(t − s)Nk(s) ds (7.2)

for each Fourier mode k ∈ Z3⟦{0}, where for any N0 ≥ 2, there are CN0 > 0 and ϱ′′N0
> 0 such

that the kernel Gk(t) satisfies
⌜Gk(t)⌜ ≤ CN0 ⌜k⌜⌐1⌝kt⌝⌐N0+2min{e⌐↼⌐⌐N0

(φ1⌜3t)1⌜3 , e⌐↼⌐⌐N0
(φt)2⌜3}, ∀ t ≥ 0, (7.3)

uniformly in k ⌜= 0 and ϑ ≥ 0, and the source Nk(t) is given by

Nk(t) = ⩀
R3

Sk(t)[⌞f0k(v)]⌝µdv +⩀ t

0
⩀
R3

Sk(t − τ)[N̂k(τ, v)]⌝µdv dτ (7.4)

where Sk(t) is the semigroup of the linear Landau equation (6.3).

Remark 7.2. Proposition 7.1 in particular shows uniform linear Landau damping for the
linearized Vlasov–Poisson–Landau equation near the global Maxwellian µ = e⌐⌜v⌜2 . Indeed,
combining with Proposition 7.1 with Proposition 6.4, one deduces that for hk(t) ⌐= Sk(t)ĥ0k,
the corresponding density function ↼̂k satisfies

⌜↼̂k(t)⌜ ⧖N ⌝kt⌝⌐N min{e⌐↼N (φ1⌜3t)1⌜3 , e⌐↼N (φt)2⌜3},
uniformly in ϑ ≥ 0, for su#ciently regular initial h0.

Remark 7.3. By comparison with the ϑ = 0 case (see e.g., [53]), one may expect that (7.3)
even holds with ⌜Gk(t)⌜ ⧖ ⌜k⌜⌐1e⌐↼0⌜kt⌜. Proving this seems to require the technically involved
task of deriving Proposition 6.4 for Yk,ϖ derivatives of all orders with almost-sharp constants,
and has not been carried out.

7.1. Equation for the density. We first derive an equation for the density from which the
estimates are obtained.

Lemma 7.4. Introduce the kernel

Kk(t) = 2⌜k⌜2 ⩀R3
ik ⋅ Sk(t)[v⌝µ]⌝µdv, (7.5)

where Sk(t) is the solution operator of (6.3). Then, for each k ∈ Z3⟦{0}, the density ↼̂k(t)
satisfies the following Volterra equation

↼̂k(t) +⩀ t

0
Kk(t − τ)↼̂k(τ)dτ = Nk(t), (7.6)

where the nonlinear source term Nk(t) is as in (7.4).
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Proof. The lemma is direct. Indeed, taking the Fourier transform in x of the linear Vlasov–
Poisson–Landau equation (7.1), we get

εtf̂k + ik ⋅ vf̂k + ϑLf̂k = 2Êk ⋅ v⌝µ + N̂k(t, v). (7.7)

Let Sk(t) be the semigroup of the linear Landau operator εt + ik ⋅ v + ϑL. Applying the
Duhamel’s principle to (7.7), we obtain

f̂k(t, v) = S(t)[⌞f0k(v)] + 2⩀ t

0
Sk(t − τ)[Êk(τ) ⋅ v⌝µ]dτ +⩀ t

0
Sk(t − τ)[N̂k(τ, v)]dτ. (7.8)

Note that Êk(t) is independent of v, and so

⩀ t

0
Sk(t − τ)[Êk(τ) ⋅ v⌝µ]dτ = ⩀ t

0
Êk(τ) ⋅ Sk(t − τ)[v⌝µ]dτ.

Recall that Êk(t) = −ik⌜k⌜⌐2↼̂k(t). Therefore, multiplying the equation (7.8) by
⌝
µ and

integrating it over R3, we obtain the density equation

↼̂k(t)+⩀ t

0
Kk(t− τ)↼̂k(τ)dτ = ⩀

R3
Sk(t)[⌞f0k(v)]⌝µdv +⩀ t

0
⩀
R3

Sk(t− τ)[N̂k(τ, v)]⌝µdv dτ
where the kernel Kk(t) is defined as in (7.5). Setting the right hand side to be Nk(t), which
is the expression (7.4), the lemma follows. ↭

7.2. Kernel Kk(t). To solve the density equation (7.6), let us first study the kernel Kk(t)
defined as in (7.5). We obtain the following.

Lemma 7.5. For any n,N ≥ 0, there exist constants CN,n > 0 and ϱN > 0 so that

⌜εn
t Kk(t)⌜ ≤ CN,n⌜k⌜n⌐1⌝kt⌝⌐N min{e⌐↼N (φ1⌜3t)1⌜3 , e⌐↼N (φt)2⌜3}, ∀ t ≥ 0, (7.9)

uniformly in ϑ ≥ 0 and k ⌜= 0.
Proof. Let hk(t, v) = 2⌜k⌜⌐2ik ⋅ Sk(t)[v⌝µ], i.e. that hk(t, v) solves the linear fixed mode
Landau equation (6.3) with initial data h(0, v) = 2⌜k⌜⌐2ik ⋅ v⌝µ. By definition (see (7.5)),
Kk(t) = ∫R3 hk(t, v)⌝µdv. Hence, by (6.14) in Proposition 6.4 with ⇀ = 0, we have

⌜Kk(t)⌜ ⧖ CN⌝kt⌝⌐N min{e⌐↼N (φ1⌜3t)1⌜3 , e⌐↼N (φt)2⌜3}⌝⌜k⌜⌐2k ⋅ v⌝µ⌝E(2,2)⌐Landau,k,0,N+1
⧖ CN ⌜k⌜⌐1⌝kt⌝⌐N min{e⌐↼N (φ1⌜3t)1⌜3 , e⌐↼N (φt)2⌜3}

for k ⌜= 0, upon recalling that µ = e⌐⌜v⌜2 . As for derivatives, using (6.3) and integrating by
parts in v, we compute

εtKk(t) = ⩀
R3

εthk(t, v)⌝µdv = −⩀
R3

hk(t, v)(ikjvj + ϑL)⌝µdv.
Inductively, for n ≥ 1, we have

εn
t Kk(t) = (−1)n⩀

R3
hk(t, v)(ikjvj + ϑL)n⌝µdv.

The estimates for derivatives thus follow similarly, upon noting the loss of one factor of ⌜k⌜
for each time derivative. This ends the proof of the lemma. ↭
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7.3. Resolvent estimates. We are now ready to solve the linear Volterra equation (7.6) for
the density

↼̂k(t) +⩀ t

0
Kk(t − τ)↼̂k(τ)dτ = Nk(t) (7.10)

for the source term Nk(t) as in (7.4), and thus give the proof of Proposition 7.1.

Proof of Proposition 7.1. Taking the Laplace transform. The linear Volterra equation
(7.10) is solved through its resolvent solution. Precisely, for any F ∈ L2(R+), let us introduce
the Laplace transform

L[F ](1) = ⩀ ∞
0

e⌐λtF (t) dt
which is well-defined for any complex value 1 with R1 > 0. Thus, taking the Laplace transform
of (7.10), we obtain the resolvent solution

L[↼̂k](1) = 1

1 +L[Kk](1)L[Nk](1). (7.11)

The representation (7.2) follows from taking the inverse Laplace transform of (7.11) with the
kernel Gk(t) being the inverse Laplace transform of

⌟Gk(1) = − L[Kk](1)
1 +L[Kk](1) . (7.12)

Basic estimates for L[Kk](1). It remains to give estimates on the resolvent kernel ⌟Gk(1).
To simplify the exposition, we only prove the e⌐↼N (φ1⌜3t)1⌜3 decay in (7.3); the e⌐↼N (φt)2⌜3 decay
can be proven in a completely analogous manner. By definition, we have

L[Kk](1) = ⩀ ∞
0

e⌐λtKk(t) dt
which is well-defined for any complex value 1 with R1 > 0. Fix N0 > 1. Using Lemma 7.5
with N = N0, we bound

⌜L[Kk](1)⌜ ≤ CN0 ⌜k⌜⌐1⩀ ∞
0
⌝kt⌝⌐N0 dt ≤ CN0 ⌜k⌜⌐2 (7.13)

uniformly for any R1 ≥ 0. Similarly, for any 0 ≤ N < N0 − 1, we have

⌜εN
λ L[Kk](1)⌜ ≤ CN0 ⌜k⌜⌐N⌐1⩀ ∞

0
⌝kt⌝N⌐N0 dt ≤ CN0 ⌜k⌜⌐N⌐2 (7.14)

uniformly in k ⌜= 0 and R1 ≥ 0.
For N ≥ N0 − 1, we use also the stretched exponential decay in Lemma 7.5 to obtain

⌜εN
λ L[Kk](1)⌜ ≤ CN0 ⌜k⌜⌐N0+1⩀ ∞

0
tN⌐N0+2e⌐↼N0

(φ1⌜3t)1⌜3⌝kt⌝⌐2 dt (7.15)

with a constant independent of N . Noticing that supx∈[0,∞) xMe⌐x1⌜3 ≤ (3M)3M , we have

⌜εN
λ L[Kk](1)⌜ ≤CN0 ⌜k⌜⌐N0+1(ϱN0)⌐3(N⌐N0+2)ϑ⌐(1⌜3)(N⌐N0+2)(3(N −N0 + 2))3(N⌐N0+2)

≤CN0 ⌜k⌜⌐N0+1[27(ϱN0)⌐3ϑ⌐1⌜3N3]N , (7.16)

assuming, without loss of generality, ϱN0ϑ ≤ 1.
Checking the Penrose condition. We now check the Penrose condition (see (7.18)

below) by comparing with the ϑ = 0 case. To highlight the dependence on ϑ, write K(φ)k =Kk.
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First, by (7.13), there exists K large such that 1 +L[K(φ)k ](1) ≥ 1
2 for for ⌜k⌜ ≥ K and ϑ ≥ 0.

On the other hand, it is classical [91] that the Penrose stability condition holds at ϑ = 0,
i.e. for any positive radial equilibria in R3, which in particular includes the Gaussian µ(v),
there is 30 ∈ (0,1) such that

inf
Rλ≥0 infk∈R3

⌜1 +L[K(0)k ](1)⌜ ≥ 30 > 0. (7.17)

Now by the estimates in Lemma 7.5, it follows that there exists large T > 0 such that

∫ ∞T ⌜Kk⌜(t)dt ≤ κ0
4 uniformly in ϑ ≥ 0 and k ⌜= 0. Moreover, fixing this T , Proposition 6.5

implies that limφ→0+ ∫ T
0 ⌜K(φ)k −K(0)k ⌜(t)dt = 0 for every k ⌜= 0. It therefore follows from (7.17)

that there exists ϑ0 > 0 such that infRλ≥0 inf ⌜k⌜≤K ⌜1+L[Kk](1)⌜ ≥ κ0
4 for all ϑ ∈ [0, ϑ0]. Together

with the large ⌜k⌜ estimates above, we have, for ϑ ∈ [0, ϑ0],
inf
Rλ≥0 infk∈R3

⌜1 +L[K(φ)k ](1)⌜ ≥ 30

4
> 0 (7.18)

Basic estimates for ⌟Gk(1). Combining (7.14) and (7.18), we obtain derivative bounds
on the resolvent kernel, for 0 ≤ N < N0 − 1,

⌜εN
λ
⌟Gk(1)⌜ ≤ CN ⌜k⌜⌐N⌐2 (7.19)

uniformly in k ⌜= 0 and R1 ≥ 0.
Moreover, since x↦ x

1⌐x is real analytic on [30,∞), using (7.16), (7.18) and considering a
power series expansion, we obtain that with BN0 independent of N ,

⌜εN
λ
⌟Gk(1)⌜ ≤ CN0 ⌜k⌜⌐N0⌐2[BN0ϑ

⌐1⌜3N3]N (7.20)

uniformly in k ⌜= 0, R1 ≥ 0 and N ≥ N0 − 1.
Improved estimates for ⌟Gk(1). We need an improvement of (7.19) and (7.20) which

incorporates decay in 1. More precisely, the kernel Gk(t) is obtained through the inverse
Laplace transform formula

Gk(t) = 1

2ωi ⩀{Rλ=▷0} e
λt ⌟Gk(1) d1 (7.21)

for any 40 > 0. We stress that the estimates in (7.19) hold for R1 = 0. Thus, to obtain decay
in time, we need decay in I1 independently of 40. To this end, for any 1 = 40+ iτ , we compute

(⌜k⌜2 − 12)L[Kk](1) = ⩀ ∞
0
(⌜k⌜2 − ε2

t )[e⌐λt]Kk(t) dt
= e⌐λt⌟1Kk(t) + εtKk(t)]⎢t=∞

t=0 +⩀
∞

0
e⌐λt(⌜k⌜2 − ε2

t )Kk(t) dt.
In the above, the boundary term at t = ∞ vanishes, since (by Lemma 7.5) Kk(t) and its
derivatives decay rapidly in time. On the other hand, a direct calculation yields

Kk(0) = 2⌜k⌜⌐2⩀
R3

ik ⋅ vµdv = 0
εtKk(0) = 2⌜k⌜⌐2⩀

R3
i⌟ − i(k ⋅ v)2⌝µ − ϑkjL(vj⌝µ)]⌝µdv.

Hence, ⌜εtKk(0)⌜ ≤ C, uniformly in k for ϑ ≤ 1. Finally, using bounds from Lemma 7.5, we
obtain

⌜(⌜k⌜2 − 12)L[Kk](1)⌜ ≤ C +C ⌜k⌜⩀ ∞
0
⌝kt⌝⌐2 dt ≤ C,
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for 1 = 40 + iτ and for some constant C that is independent of k,40, τ . This proves that⌜L[Kk](40 + iτ)⌜ ≤ C⌜k⌜2+⌜◁ ⌜2⌐⌜▷0⌜2 , giving

⌜ ⌟Gk(40 + iτ)⌜ ≤ C⌜k⌜2 + ⌜τ ⌜2
uniformly for all 40 ∈ (0, 1⌜2). Similarly, repeating the proof leading to (7.19) and (7.20), but
incorporating the above integration by parts argument for additional ⌜τ ⌜2 decay, we obtain

⌜εN
λ
⌟Gk(40 + iτ)⌜ ≤ CN ⌜k⌜⌐N⌜k⌜2 + ⌜τ ⌜2 (7.22)

for any N < N0 − 1, and, taking BN0 larger (but still independent of N) if necessary,

⌜εN
λ
⌟Gk(40 + iτ)⌜ ≤ CN0 ⌜k⌜⌐N0[BN0ϑ

⌐1⌜3N3]N⌜k⌜2 + ⌜τ ⌜2 (7.23)

for any N ≥ N0 − 1, where both estimates hold for any k ⌜= 0, 40 ∈ (0,1⌜2) and τ ∈ R.
Estimating Gk(t). Thanks to the decay in τ , we can take the 40 → 0+ limit in (7.21) with

the dominated convergence theorem and perform repeated integrations by parts in τ , yielding

Gk(t) = 1

2ωi ⩀{Rλ=0} e
λt ⌟Gk(1) d1 = 1

2ω ⩀R ei◁ t ⌟Gk(iτ) dτ
= 1

2ω ⩀R
1

it
ε◁(ei◁ t)⌟Gk(iτ) dτ = −1

2ωt ⩀R ei◁ tελ ⌟Gk(iτ) dτ
= (−1)N

2ωtN ⩀R ei◁ tεN
λ
⌟Gk(iτ) dτ.

(7.24)

First, consider the case t ≤ 103BN0eϑ
⌐1⌜3 with BN0 as in (7.23). Using (7.22) with N = 0 and

N = N0 − 2, and plugging into (7.24) (with the same N), we have

⌜Gk(t)⌜ ⧖ ⩀
R

dτ⌜k⌜2 + ⌜τ ⌜2 ⧖ ⌜k⌜⌐1, ⌜Gk(t)⌜ ⧖N0 ⩀R
⌜kt⌜⌐N0+2 dτ⌜k⌜2 + ⌜τ ⌜2 ⧖N0 ⌜k⌜⌐1⌜kt⌜⌐N0+2.

Therefore, for any ϱ′′ ≤ 10⌐1B⌐1N0
e⌐1,

⌜Gk(t)⌜ ⧖N0 ⌜k⌜⌐1⌝kt⌝⌐N0+2e⌐↼⌐⌐(φ1⌜3t)1⌜3 for t ≤ 103BN0eϑ
⌐1⌜3. (7.25)

On the other hand, for t ≥ 103BN0eϑ
⌐1⌜3, we first use (7.23) and (7.24) with N ≥ N0 − 1 to

obtain

⌜Gk(t)⌜ ⧖N0 (BN0ϑ
⌐1⌜3N3)N t⌐N ⩀

R

⌜k⌜⌐N0+1 dτ⌜k⌜2 + ⌜τ ⌜2 ⧖N0 ⌜k⌜⌐N0+1(BN0ϑ
⌐1⌜3N3)N t⌐N .

Given t ≥ 103BN0eϑ
⌐1⌜3, take N = ⟦(B⌐1N0

e⌐1ϑ1⌜3t)1⌜3⟧ so that (BN0ϑ
⌐1⌜3N3)t⌐1 ≤ 1

e and N ≥
(1⌜2)(B⌐1N0

ϑ1⌜3t)1⌜3. This implies, for ϱ′′N0
≤ 1

2B
⌐1⌜3
N0

,

⌜Gk(t)⌜ ⧖N0 ⌜k⌜⌐N0+1e⌐N ⧖N0 ⌜k⌜⌐N0+1e⌐(1⌜2)B⋊1⌜3N0
(φ1⌜3t)1⌜3 ⧖N0 ⌜k⌜⌐N0+1e⌐↼⌐⌐N0

(φ1⌜3t)1⌜3 .
A similar computation gives, after taking ϱ′′N0

smaller

⌜Gk(t)⌜ ⧖N0 ⌜k⌜⌐1⌜kt⌜⌐N0+2(BN0ϑ
⌐1⌜3N3)N t⌐N+N0⌐2 ⧖N0 ⌜k⌜⌐1⌜kt⌜⌐N0+2e⌐↼⌐⌐N0

(φ1⌜3t)1⌜3 .
Combining the two estimates above gives

⌜Gk(t)⌜ ⧖N0 ⌜k⌜⌐1⌝kt⌝⌐N0+2e⌐↼⌐⌐N0
(φ1⌜3t)1⌜3 for t ≥ 103BN0eϑ

⌐1⌜3. (7.26)



THE VLASOV–POISSON–LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME 47

Combining (7.25) and (7.26) yields the e⌐↼⌐⌐N0
(φ1⌜3t)1⌜3 decay estimate in (7.3); the e⌐↼⌐⌐N0

(φt)2⌜3
decay can be proven similarly and is omitted. ↭

8. Nonlinear density estimates: bounds for all derivatives

In this section, we derive density estimates for the full nonlinear Vlasov–Poisson–Landau
equation (2.2a)–(2.2b) under the bootstrap assumptions on [0, TB) for N ≤ Nmax:● For all t ∈ [0, TB), the nonlinear solution f to (2.2a)–(2.2b) satisfies

⌝f(t)⌝2⌝E(ϖ)N

+ ϑ1⌜3⩀ t

0
⌝f(τ)⌝2⌝D(ϖ)N

dτ ≤ φϑ2⌜3min{ϑ⌐1⌜3, ⌝t⌝}max{0,N⌐Nmax+2} (8.1)

for ◁ ∈ {0,2}, where ⌝f⌝2⌝E(ϖ)N

, ⌝f⌝2⌝D(ϖ)N

are defined in (5.17).

● The following holds for all t ∈ [0, TB) for ϖ ⌐= −!⌐1x ↼⌜=0 and E ⌐= −⋉xϖ:

⌝εtϖ(t)⌝L∞x + ⌝ϖ(t)⌝W 5,∞
x
+ ∑⌜ς⌜+⌜ϑ⌜≤4 ⌝ε

ς
xY

ϑE(t)⌝L∞x ≤ φ1⌜2ϑ1⌜3⌝t⌝⌐2. (8.2)

The main result of this section is the following.

Theorem 8.1. Consider data as in Theorem 3.1. Suppose there exists TB > 0 such that the

solution f to (2.2a)–(2.2b) remains smooth in [0, TB) ⋊ T3 ⋊R3 and satisfies the bootstrap

assumptions (8.1) and (8.2).
Then, ↼⌜=0(t, x) satisfies

∑⌜ς⌜+⌜ϑ⌜≤Nmax

( sup
0≤t<TB

⌝ες
xY

ϑ↼⌜=0(t)⌝2L2
x
+ ϑ1⌜3⩀ TB

0
⌝ες

xY
ϑ↼⌜=0(τ)⌝2L2

x
dτ) ⧖ φ2ϑ2⌜3. (8.3)

The proof of Theorem 8.1 proceeds as follows. We write the nonlinear equation (2.2a) in
the form of (7.1), which we recall

εtf + v ⋅ ⋉xf + ϑLf = 2E ⋅ v⌝µ +N(t, x, v)
where the nonlinear source term N(t, x, v) is computed by

N(t, x, v) ⌐= E ⋅ vf −E ⋅ ⋉vf + ϑ%(f, f). (8.4)

We can thus apply the linear theory developed in Proposition 7.1 to compute the density
through the density representation (7.2). Let us first give estimates on the source Nk(t)
computed by (7.4):

Nk(t) = ⩀
R3

Sk(t)[⌞f0k(v)]⌝µdv +⩀ t

0
⩀
R3

Sk(t − τ)[N̂k(τ, v)]⌝µdv dτ
where ⌞f0k(v) and N̂k(t, v) are the Fourier transform of f0(x, v) and N(t, x, v), respectively.

Precisely, we will prove the following proposition.

Proposition 8.2. Define

5(t) ⌐= ∑
N1+N2≤Nmax

⌟ sup
0≤◁≤t∑l⌜=0 ⌜l⌜

2N1⌝lτ⌝2N2 ⌜↼̂l(τ)⌜2 + ϑ1⌜3⩀ t

0
∑
l⌜=0
⌜l⌜2N1⌝lτ⌝2N2 ⌜↼̂l(τ)⌜2 dτ]. (8.5)
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Then, under the assumptions of Theorem 8.1, there holds

∑
N1+N2≤Nmax

(∑
k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⌜Nk(t)⌜2 + ϑ1⌜3⩀ t

0
∑
k⌜=0
⌜k⌜2N1⌝kτ⌝2N2 ⌜Nk(τ)⌜2 dτ)

⧖ φ2ϑ2⌜3 + φ5(t).
(8.6)

We first prove that Proposition 8.2 gives Theorem 8.1. Recalling the density representation
(7.2), with ⌜Gk(t)⌜ ⧖ ⌜k⌜⌐1⌝kt⌝⌐N0+2 = ⌜k⌜⌐1⌝kt⌝⌐2Nmax⌐2 (choosing N0 = 2Nmax + 4), we have the
following bound for any N1 +N2 ≤ Nmax

∑
k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⌜↼̂k(t)⌜2 ≤∑

k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⌜Nk(t)⌜2 +∑

k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⎢⩀ t

0
Gk(t − s)Nk(s) ds⎢2

⧖ ∑
k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⌜Nk(t)⌜2 +∑

k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⩀ t

0
⌜Gk(t − s)⌜⌜Nk(s)⌜2 ds⩀ t

0
⌜Gk(t − s)⌜ ds

⧖ ∑
k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⌜Nk(t)⌜2 +∑

k⌜=0
⌜k⌜⌐3⩀ t

0
⌝k(t − s)⌝⌐2⌜k⌜2N1⌝ks⌝2N2 ⌜Nk(s)⌜2 ds,

where at the very end we used t
2 ≤ max{t − s, s} so that ⌝k(t − s)⌝⌐2Nmax⌐2⌝kt⌝2N2 ⧖ ⌝k(t −

s)⌝⌐2⌝ks⌝2N2 .
Now using (8.6) and the fact that 5(t) is monotone in t, we get

∑
k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⌜↼̂k(t)⌜2 ⧖ φ2ϑ2⌜3 + φ5(t) +∑

k⌜=0
⌜k⌜⌐3⩀ t

0
⌝k(t − s)⌝⌐2⌟φ2ϑ2⌜3 + φ5(s)] ds

⧖ φ2ϑ2⌜3 + φ5(t) +∑
k⌜=0
⌜k⌜⌐4⌟φ2ϑ2⌜3 + φ5(t)]

⧖ φ2ϑ2⌜3 + φ5(t),
noting the summation over Z3 ∨ {0} of ⌜k⌜⌐4 is finite. Similarly, using L2

t bounds in (8.6), we
compute

ϑ1⌜3⩀ t

0
∑
k⌜=0
⌜k⌜2N1⌝kτ⌝2N2 ⌜↼̂k(τ)⌜2 dτ

⧖ ϑ1⌜3⩀ t

0
∑
k⌜=0
⌜k⌜2N1⌝kτ⌝2N2 ⌜Nk(τ)⌜2 dτ

+ ϑ1⌜3∑
k⌜=0
⌜k⌜⌐3⩀ t

0
⩀ ◁

0
⌝k(τ − s)⌝⌐2⌜k⌜2N1⌝ks⌝2N2 ⌜Nk(s)⌜2 ds dτ

⧖ φ2ϑ2⌜3 + φ5(t) +∑
k⌜=0
⌜k⌜⌐4⌟φ2ϑ2⌜3 + φ5(t)] ⧖ φ2ϑ2⌜3 + φ5(t).

Combining and recalling (8.5), we obtain

5(t) ⧖ φ2ϑ2⌜3 + φ5(t)
which immediately yields Theorem 8.1, upon taking φ su#ciently small and recalling that the
Fourier transform of ες

xY
ϑ↼(t) is precisely (ik)ς(ikt)ϑ↼̂k(t).
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The remaining subsections are thus entirely devoted to prove Proposition 8.2. In view of
(8.4), we write

Nk(t) = ⩀
R3

Sk(t)[⌞f0k]⌝µdv +⩀ t

0
⩀
R3

Sk(t − τ)[(⟧E ⋅ vf)k − (⟧E ⋅ ⋉vf)k](τ)⌝µdvdτ
+ ϑ ⩀ t

0
⩀
R3

Sk(t − τ)[(⟧%(f, f))k(τ)]⌝µdv dτ =⌐ Ik(t) + IIk(t) + IIIk(t).
(8.7)

We shall now prove (8.6) for each term in the following subsections. For the remainder of the
section, fix N1, N2 such that N1 +N2 ≤ Nmax.

8.1. Initial data contribution. In this section, we give estimates on

Ik(t) = ⩀
R3

Sk(t)[⌞f0k(v)]⌝µdv.
By (6.14) in Proposition 6.4 with ⇀ = k,

⌜Ik(t)⌜ ⧖ ⌝k(t + 1)⌝⌐Nmax⌐1min{e⌐(↼⌐⌜2)(φ1⌜3t)1⌜3 , e⌐(↼⌐⌜2)(φt)2⌜3}⌝⌞f0k⌝E(2,2)⌐Landau,k,k,Nmax+2
.

Summing over k, and using the assumption (3.2) for the initial data,

∑
k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⌜Ik(t)⌜2 ⧖ ⌝t⌝⌐2min{e⌐↼⌐(φ1⌜3t)1⌜3 , e⌐↼⌐(φt)2⌜3} ∑

k∈Z3

⌝⌞f0k⌝2E(2,2)⌐Landau,k,k,Nmax+2
⧖ φ2ϑ2⌜3⌝t⌝⌐2min{e⌐↼⌐(φ1⌜3t)1⌜3 , e⌐↼⌐(φt)2⌜3}. (8.8)

which in particular satisfies both the L∞t and L2
t bounds required in Proposition 8.2.

8.2. Nonlinear interaction I. In this section, we bound

IIk(t) = ⩀ t

0
⩀
R3

Sk(t − τ)[(⟧E ⋅ vf)k(τ) − (⟧E ⋅ ⋉vf)k(τ)]⌝µdv dτ =⌐ IIk,1(t) + IIk,2(t) (8.9)

under the bootstrap assumption (8.1) on f . Precisely, we will prove that

∑
k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⌜IIk(t)⌜2 + ϑ1⌜3⩀ t

0
∑
k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⌜IIk(τ)⌜2 dτ ⧖ φ5(t), (8.10)

where 5(t) is defined as in (8.5).
Clearly, the first term in (8.9) involving E ⋅ vf can be treated similarly as E ⋅ ⋉vf . (In

fact, it is better due to the absence of εv derivatives). We focus only the proof of the bounds
involving the last term. Note that the semigroup Sk(t − s) commutes with ⌞El(s), as it is
independent of v. Therefore, we have

IIk,2(t) = −∑
l⌜=0⩀

t

0

⌞El(τ) ⋅ ⩀
R3

Sk(t − τ)[⌞⋉vfk⌐l(τ)]⌝µdv dτ. (8.11)

To prove (8.10), we use (6.12) in Proposition 6.4 for the semigroup Sk(t− τ) with ⇀ = (k − l)τ .
Thus, for any N ′1, N ′2 ≥ 0 with N ′1 +N ′2 ≤ N , we bound

⎢⩀
R3

Sk(t − τ)[⌞⋉vfk⌐l(τ)]⌝µdv⎢
⧖ ⌝kt − lτ⌝⌐N ⌐2⌝ϑ1⌜3(t − τ)⌝⌐3⌜2⌝⌞⋉vfk⌐l(τ)⌝E(10,0)⌐

Landau,k,(k⋊l)φ,N ⌐2⧖ ⌝k − l⌝⌐N ⌐1⌝kt − lτ⌝⌐N ⌐2⌝ϑ1⌜3(t − τ)⌝⌐3⌜2∑
⌜ς⌜≤N ⌐1, ⌜ϑ⌜≤N ⌐2

1≤⌜ε⌜≤2
ϑ(⌜ε⌜⌐1)⌜3⌝⌝v⌝10(ες

xε
ε
v Y

ϑf)⌞k⌐l(τ)⌝L2
v
,

(8.12)
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where we have used Y0,(k⌐l)◁ f̂k⌐l(τ) = (⟧Y f)k⌐l(τ), recalling the vector fields Y0,(k⌐l)◁ = ⋉v +
i(k − l)τ and Y = t⋉x +⋉v.

To lighten the notation, define, for any N ∈ N and k ∈ Z3,

⌝f̂k(τ)⌝⌝GN
⌐=∑⌜ς⌜+⌜ϑ⌜≤N
1≤⌜ε⌜≤2

ϑ(⌜ε⌜⌐1)⌜3⌝⌝v⌝10(ες
xε

ε
v Y

ϑf)⌞k(τ)⌝L2
v
. (8.13)

Note that the ⌟GN norm can be controlled by the ⌟E(0)N norm (with an ϑ⌐1⌜3 weight) because
it controls up to two εv derivatives (taking into account the ϑ1⌜3 power), and we have a lot of
extra ⌝v⌝-weights. In other words, for any t ∈ [0, TB),

∑
k

⌝f̂k(t)⌝2⌝GN
⧖ ϑ⌐2⌜3⌝f(t)⌝2⌝E(0)N

⧖ φmin{ϑ⌐1⌜3, ⌝t⌝}max{0,N⌐Nmax+2}, (8.14)

where at the end we used the bootstrap assumption (8.1).
We now plug the estimate (8.12), for any N ′1, N ′2 ≥ 0, into (8.11), and recall that Êl =−il⌜l⌜⌐2↼̂l, to deduce

⌜k⌜N1⌝kt⌝N2 ⌜IIk,2(t)⌜
⧖ ∑

l⌜=0⩀
t

0
⌜l⌜⌐1⌜k⌜N1⌝kt⌝N2⌝k − l⌝⌐N ⌐1⌝kt − lτ⌝⌐N ⌐2⌝ϑ1⌜3(t − τ)⌝⌐3⌜2⌜↼̂l(τ)⌜⌝f̂k⌐l(τ)⌝⌝GN

dτ

⧖ ∑
l⌜=0⩀

t

0
⌜l⌜⌐1CN1,N2,N1,N2,N

⌐
1,N

⌐
2

k,l (t, τ)⌜l⌜N1⌝lτ⌝N2 ⌜↼̂l(τ)⌜⌝f̂k⌐l(τ)⌝⌝GN
dτ,

(8.15)

where we have set

C
N1,N2,N1,N2,N

⌐
1,N

⌐
2

k,l (t, τ) ⌐= ⌜k⌜N1 ⌜l⌜⌐N1⌝kt⌝N2⌝lτ⌝⌐N2⌝k − l⌝⌐N ⌐1⌝kt− lτ⌝⌐N ⌐2⌝ϑ1⌜3(t− τ)⌝⌐3⌜2. (8.16)
Here, (N1,N2), (N ′1,N ′2) and N are arbitrary, as long as N1 +N2 ≤ Nmax, N ′1 +N ′2 ≤ N . The
indexes are put for sake of flexibility, though only a certain pair of indexes is needed, as will
be clear below.

Estimates for C
N1,N2,N1,N2,N

⌐
1,N

⌐
2

k,l (t, τ). Our next step is to estimate C
N1,N2,N1,N2,N

⌐
1,N

⌐
2

k,l (t, τ).
We divide up the integration region in τ into ⌜lτ ⌜ ≤ ⌜kt⌜⌜2 and ⌜lτ ⌜ > ⌜kt⌜⌜2. In the former

case, we further split up the sum in l to ⌜l⌜ ≤ ⌜k⌜⌜2 and ⌜l⌜ > ⌜k⌜⌜2. In each case, we obtain the
following bound:

● Case 1: ⌜lτ ⌜ ≤ ⌜kt⌜⌜2 and ⌜l⌜ ≤ ⌜k⌜⌜2. In this case, ⌜kt − lτ ⌜ ≥ ⌜kt⌜⌜2 and ⌜k − l⌜ ≥ ⌜k⌜⌜2. We
choose (N ′1,N ′2) = (N1,N2), N = Nmax and (N1,N2) = (2,3). Then

⌝kt⌝N2⌝lτ⌝⌐N2⌝kt − lτ⌝⌐N ⌐2 ⧖ ⌝lτ⌝⌐3, ⌜k⌜N1 ⌜l⌜⌐N1⌝k − l⌝⌐N ⌐1 ⧖ ⌜l⌜⌐2,
giving

C
N1,N2,N1,N2,N

⌐
1,N

⌐
2

k,l (t, τ) ⧖ ⌝lτ⌝⌐3⌜l⌜⌐2⌝ϑ1⌜3(t − τ)⌝⌐3⌜2. (8.17)

● Case 2: ⌜lτ ⌜ ≤ ⌜kt⌜⌜2 and ⌜l⌜ > ⌜k⌜⌜2. In this case ⌜kt − lτ ⌜ ≥ ⌜kt⌜⌜2. We choose N = Nmax,

(N1,N2) = {(N1,N2)(N1 + 2,3), (N ′1,N ′2) = {(2,N2 + 3) if N1 ≥ N2(0,N2) if N1 < N2.

Notice that our choice satisfies N1 + N2 ≤ Nmax and N ′1 + N ′2 ≤ N = Nmax (since
Nmax ≥ 9). Whether N1 ≥ N2 or N1 < N2, it is straightforward to check that

⌝kt⌝N2⌝lτ⌝⌐N2⌝kt − lτ⌝⌐N ⌐2 ⧖ ⌝lτ⌝⌐3, ⌜k⌜N1 ⌜l⌜⌐N1⌝k − l⌝⌐N ⌐1 ⧖max{⌜l⌜⌐2, ⌝k − l⌝⌐2},
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giving

C
N1,N2,N1,N2,N

⌐
1,N

⌐
2

k,l (t, τ) ⧖ ⌝lτ⌝⌐3⌝ϑ1⌜3(t − τ)⌝⌐3⌜2max{⌜l⌜⌐2, ⌝k − l⌝⌐2}. (8.18)

● Case 3: ⌜lτ ⌜ > ⌜kt⌜⌜2. In this case we must have ⌜l⌜ > ⌜k⌜⌜2 (since τ ≤ t). Taking(N1,N2) = (N1,N2), (N ′1,N ′2) = (4,2) and N = Nmax − 2 ≥ 6, we have

C
N1,N2,N1,N2,N

⌐
1,N

⌐
2

k,l (t, τ) ⧖ ⌝k − l⌝⌐4⌝kt − lτ⌝⌐2. (8.19)

Define C1, C2 and C3 by

C1 ⌐= ⌝lτ⌝⌐3⌜l⌜⌐2⌝ϑ1⌜3(t − τ)⌝⌐3⌜2, C2 ⌐= ⌝lτ⌝⌐3⌝k − l⌝⌐2⌝ϑ1⌜3(t − τ)⌝⌐3⌜2,
C3 ⌐= ⌝k − l⌝⌐4⌝kt − lτ⌝⌐2, (8.20)

and define
rl(t) ⌐= ∑

N1+N2≤Nmax

⌜l⌜2N1⌝lt⌝2N2 ⌜↼̂l(t)⌜2,
(so that 5(t) ⧖ sup0≤◁≤t⊎l⌜=0 rl(τ) + ϑ1⌜3⊎l⌜=0 ∫ t

0 rl(τ) dτ ⧖ 5(t)).
Set

Ij(t) ⌐=∑
k⌜=0
⌟∑
l⌜=0⩀

t

0
⌜l⌜⌐1Cjr1⌜2l (τ)⌝f̂k⌐l(τ)⌝⌝GNmax

dτ]2, j = 1,2, (8.21)

and set

I3(t) ⌐=∑
k⌜=0
⌟∑
l⌜=0⩀

t

0
⌜l⌜⌐1C3r1⌜2l (τ)⌝f̂k⌐l(τ)⌝⌝GNmax⋊2 dτ]

2

. (8.22)

It follows from (8.15), (8.16) and the bounds for C
N1,N2,N1,N2,N

⌐
1,N

⌐
2

k,l (t, τ) in (8.17), (8.18),
(8.19) that

∑
k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⌜IIk,2(t)⌜2 ⧖ I1 + I2 + I3. (8.23)

By the bound (8.23), in order to obtain the claim (8.10), it su#ces to show

Ij(t) ⧖ φ5(t), ⩀ t

0
Ij(τ) dτ ⧖ φϑ⌐1⌜35(t), j = 1,2,3, (8.24)

which will be achieved below.

L∞t bounds for I1(t). To bound I1, we start with (8.21) and the definition of C1 in (8.20).
Then, using the Cauchy–Schwarz inequality in τ , and then the Young’s convolution inequality
for the sums, we bound

I1(t)
≤ ∑

k⌜=0
⌟∑
l⌜=0⩀

t

0
⌜l⌜⌐3⌝lτ⌝⌐3⌝ϑ1⌜3(t − τ)⌝⌐3⌜2r1⌜2l (τ)⌝f̂k⌐l(τ)⌝⌝GNmax

dτ]2

⧖ ∑
k⌜=0
⌟∑
l⌜=0
(⩀ t

0
⌜l⌜⌐6⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(t − τ)⌝⌐3rl(τ) dτ)1⌜2(⩀ t

0
⌝τ⌝⌐7⌜2⌝f̂k⌐l(τ)⌝2⌝GNmax

dτ)1⌜2]2

⧖ ⌟∑
l⌜=0
(⩀ t

0
⌜l⌜⌐6⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(t − τ)⌝⌐3rl(τ) dτ)1⌜2]2⌟∑

k
⩀ t

0
⌝τ⌝⌐7⌜2⌝f̂k(τ)⌝2⌝GNmax

dτ].
(8.25)

By (8.14) (allowing ⌝τ⌝2 growth),

∑
k
⩀ t

0
⌝τ⌝⌐7⌜2⌝f̂k(τ)⌝2⌝GNmax

dτ ⧖ ϑ⌐2⌜3⩀ t

0
⌝τ⌝⌐7⌜2⌝f(τ)⌝2⌝E(0)Nmax

dτ ⧖ φ⩀ t

0
⌝τ⌝⌐3⌜2 dτ ⧖ φ. (8.26)



THE VLASOV–POISSON–LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME 52

Thus, substituting this into (8.25), we obtain

I1(t) ⧖ φ⌟∑
l⌜=0
(⩀ t

0
⌜l⌜⌐6⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(t − τ)⌝⌐3rl(τ) dτ)1⌜2]2. (8.27)

To proceed, a direct computation using (8.5) shows

⌟∑
l⌜=0
(⩀ t

0
⌜l⌜⌐6⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(t − τ)⌝⌐3rl(τ) dτ)1⌜2]2 ⧖ ⌟∑

l⌜=0
(⩀ t

0
⌜l⌜⌐6⌝lτ⌝⌐5⌜2rl(τ) dτ)1⌜2]2

⧖ (∑
l⌜=0
⌜l⌜⌐7⌜2)2(sup

l⌐⌜=0 sup
0≤◁≤t rl⌐(τ)) ⧖ 5(t).

(8.28)

Plugging this into (8.27) proves the L∞t estimates in (8.24).

L1
t bounds for I1(t). In view of (8.27), to prove the L1

t bound for I1(t), it su#ces to
understand

⩀ t

0
⌟∑
l⌜=0
(⩀ s

0
⌜l⌜⌐6⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(s − τ)⌝⌐3rl(τ) dτ)1⌜2]2 ds.

We split the τ -integration: when τ ≥max{ s2 , 1}, we have ⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(s − τ)⌝⌐3 ⧖ ⌝lτ⌝⌐5⌜2 ⧖⌝lτ⌝⌐5⌜4⌝ls⌝⌐5⌜4 ⧖ ⌝lτ⌝⌐5⌜4⌝s⌝⌐5⌜4; while when τ ≤ max{ s2 ,1}, we have ⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(s − τ)⌝⌐3 ⧖⌝lτ⌝⌐5⌜2⌝ϑ1⌜3s⌝⌐3. Hence,
⩀ t

0
⌟∑
l⌜=0
(⩀ s

0
⌜l⌜⌐6⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(s − τ)⌝⌐3rl(τ) dτ)1⌜2]2 ds

⧖ ⩀ t

0
⌟∑
l⌜=0
(⩀ s

0
⌜l⌜⌐6⌝lτ⌝⌐5⌜4rl(τ) dτ)1⌜2]2⌝s⌝⌐5⌜4 ds

+⩀ t

0
⌟∑
l⌜=0
(⩀ s

0
⌜l⌜⌐6⌝lτ⌝⌐5⌜2rl(τ) dτ)1⌜2]2⌝ϑ1⌜3s⌝⌐3 ds

⧖ (∑
l⌜=0
⌜l⌜⌐7⌜2)2(sup

l⌐⌜=0 sup
0≤◁≤t rl⌐(τ))⌟⩀

t

0
⌝s⌝⌐5⌜4 ds +⩀ t

0
⌝ϑ1⌜3s⌝⌐3 ds] ⧖ ϑ⌐1⌜35(t).

Combining this with (8.27) yields the desired conclusion in (8.24).

L∞t bounds for I2(t). This is similar to I1, except that we use ⌝k − l⌝⌐2 instead of ⌜l⌜⌐2 for
summability. More precisely, we argue as in (8.27) except for distributing the 01 and 02 sums
di$erently in the application of Young’s convolution inequality, to obtain

I2(t)
≤∑

k⌜=0
⌟∑
l⌜=0⩀

t

0
⌜l⌜⌐1⌝k − l⌝⌐2⌝lτ⌝⌐3⌝ϑ1⌜3(t − τ)⌝⌐3⌜2r1⌜2l (τ)⌝f̂k⌐l(τ)⌝⌝GNmax

dτ]2

⧖∑
k⌜=0
⌟∑
l⌜=0
(⩀ t

0
⌜l⌜⌐2⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(t − τ)⌝⌐3rl(τ) dτ)1⌜2

⋊ (⩀ t

0
⌝τ⌝⌐7⌜2⌝k − l⌝⌐4⌝f̂k⌐l(τ)⌝2⌝GNmax

dτ)1⌜2]2
⧖ ⌟∑

l⌜=0⩀
t

0
⌜l⌜⌐2⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(t − τ)⌝⌐3rl(τ) dτ]⌟∑

k

⌝k⌝⌐2(⩀ t

0
⌝τ⌝⌐7⌜2⌝f̂k(τ)⌝2⌝GNmax

dτ)1⌜2]2

⧖ ⌟∑
l⌜=0⩀

t

0
⌜l⌜⌐2⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(t − τ)⌝⌐3rl(τ) dτ](∑

k
⩀ t

0
⌝τ⌝⌐7⌜2⌝f̂k(τ)⌝2⌝GNmax

dτ),
(8.29)
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where in the very end, we used the Cauchy–Schwarz inequality for the sum in k.
Using (8.26), we thus obtain

I2(t) ⧖ φ∑
l⌜=0⩀

t

0
⌜l⌜⌐2⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(t − τ)⌝⌐3rl(τ) dτ, (8.30)

Finally, we use (8.5) to bound

∑
l⌜=0⩀

t

0
⌜l⌜⌐2⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(t − τ)⌝⌐3rl(τ) dτ ⧖ (⩀ t

0
⌝τ⌝⌐5⌜2 dτ)( sup

0≤◁≤t∑l⌜=0 rl(τ)) ⧖ 5(t). (8.31)

Plugging this into (8.30) gives the desired conclusion in (8.24).

L1
t bounds for I2(t). We bound the integral in (8.30) using Fubini’s theorem:

∑
l⌜=0⩀

t

0
⩀ s

0
⌜l⌜⌐2⌝lτ⌝⌐5⌜2⌝ϑ1⌜3(s − τ)⌝⌐3rl(τ) dτ ds

⧖∑
l⌜=0⩀

t

0
⌝τ⌝⌐5⌜2(⩀ t

◁
⌝ϑ1⌜3(s − τ)⌝⌐3 ds) rl(τ) dτ ⧖ ϑ⌐1⌜3∑

l⌜=0⩀
t

0
⌝τ⌝⌐5⌜2rl(τ) dτ.

Then, using Hölder’s inequality and (8.5), we obtain

ϑ⌐1⌜3∑
l⌜=0⩀

t

0
⌝τ⌝⌐5⌜2rl(τ) dτ ⧖ ϑ⌐1⌜3(⩀ t

0
⌝τ⌝⌐5⌜2 dτ)( sup

0≤◁≤t∑l⌜=0 rl(τ)) ⧖ ϑ
⌐1⌜35(t).

Combining these two estimates with (8.30) yields the desired bound in (8.24).

L∞t bounds for I3(t). Next, we bound I3 in L∞t . Starting with (8.20), (8.22) and then
using ⌝f̂k⌐l(τ)⌝2⌝GNmax⋊2 ⧖ φ (by (8.14)), we have

I3(t) ⧖∑
k⌜=0
⌟∑
l⌜=0⩀

t

0
⌜l⌜⌐1⌝k − l⌝⌐4⌝kt − lτ⌝⌐2r1⌜2l (τ)⌝f̂k⌐l(τ)⌝⌝GNmax⋊2 dτ]2

⧖ φ(sup
l⌐⌜=0 sup

◁ ⌐∈[0,t] rl⌐(τ ′))∑k⌜=0 ⌟∑l⌜=0 ⌜l⌜
⌐1⌝k − l⌝⌐4⩀ t

0
⌝kt − lτ⌝⌐2 dτ]2

⧖ φ(sup
l⌐⌜=0 sup

◁ ⌐∈[0,t] rl⌐(τ ′))∑k⌜=0 ⌟∑l⌜=0 ⌜l⌜
⌐2⌝k − l⌝⌐4]2.

(8.32)

Hence, Young’s convolution inequality gives

∑
k⌜=0
⌟∑
l⌜=0
⌜l⌜⌐2⌝k − l⌝⌐4]2 ⧖ ⌟∑

l⌜=0
⌜l⌜⌐4]⌟∑

k

⌝k⌝⌐4]2 ⧖ 1.
Plugging this back into (8.32) and using (8.5) yields

I3(t) ⧖ φ5(t).
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L1
t bounds for I3(t). To bound the L1

t norm for I3(t), we first use ⌝f̂k⌐l(τ)⌝2⌝GNmax⋊2 ⧖ φ (by
(8.14)) to obtain

⩀ t

0
I3(s) ds

⧖ ∑
k⌜=0⩀

t

0
⌟∑
l⌜=0⩀

s

0
⌜l⌜⌐1⌝k − l⌝⌐4⌝ks − lτ⌝⌐2r1⌜2l (τ)⌝f̂k⌐l(τ)⌝⌝GNmax⋊2 dτ]2 ds

⧖ φ∑
k⌜=0⩀

t

0
⌟∑
l⌜=0⩀

s

0
⌜l⌜⌐1⌝k − l⌝⌐4⌝ks − lτ⌝⌐2r1⌜2l (τ) dτ]2 ds.

(8.33)

By Schur’s test,

⩀ t

0
I3(s) ds ⧖ φ⌟ sup

k⌜=0 sups (⩀
t

0
∑
l⌜=0
⌜l⌜⌐1⌝k − l⌝⌐4⌝ks − lτ⌝⌐2 dτ)]

⋊ ⌟ sup
l⌜=0 sup

◁
(⩀ t

0
∑
k⌜=0
⌜l⌜⌐1⌝k − l⌝⌐4⌝ks − lτ⌝⌐2 ds)]∑

l⌐⌜=0⩀
t

0
rl⌐(τ ′) dτ ′.

(8.34)

Each of the integrals can be easily checked to be bounded, so that by (8.5) we have

⩀ t

0
I3(s) ds ⧖ φ∑

l⌜=0⩀
t

0
rl(τ) dτ ⧖ φϑ⌐1⌜35(t).

8.3. Nonlinear interaction II. In this section, under the bootstrap assumption (8.1) on f ,
we bound

IIIk(t) = ϑ ⩀ t

0
⩀
R3

Sk(t − τ)[(⟧%(f, f))k(τ)]⌝µdv dτ.
We will prove that

∑
k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⌜IIIk(t)⌜2 + ϑ1⌜3⩀ t

0
∑
k⌜=0
⌜k⌜2N1⌝kτ⌝2N2 ⌜IIIk(τ)⌜2 dτ ⧖ φ2ϑ2⌜3. (8.35)

To prove (8.35), we use (6.12) in Proposition 6.4 for the semigroup Sk(t − τ) with ⇀ = kτ .
Thus, for any N1, N2 such that N1 +N2 ≤ Nmax,

⎢⩀
R3

Sk(t − τ)[(⟧%(f, f))k(τ)]⌝µdv⎢
⧖ ⌝kt⌝⌐N2⌝ϑ1⌜3(t − τ)⌝⌐3⌜2⌝(⟧%(f, f))k(τ)⌝E(10,0)⌐Landau,k,kφ,N2⧖ ⌜k⌜⌐N1⌝kt⌝⌐N2⌝ϑ1⌜3(t − τ)⌝⌐3⌜2 ∑⌜ς⌜=N1, ⌜ε⌜≤1, ⌜ϑ⌜≤N2

ϑ ⌜ε⌜⌜3⌝⌝v⌝10[ες
xε

ε
v Y

ϑ(%(f, f))]⌞k(τ)⌝L2
v

(8.36)

in which we used Y0,k◁
⌞%k(τ) =⟧(Y %)k(τ), recalling the vector field Y = t⋉x +⋉v.

By Lemma 4.10,

∑
k⌜=0 ∑⌜ς⌜=N1, ⌜ε⌜≤1, ⌜ϑ⌜≤N2

ϑ2⌜ε⌜⌜3⌝⌝v⌝10[ες
xε

ε
v Y

ϑ(%(f, f))]⌞k(τ)⌝2L2
v

⧖ ∑
⌜ς⌐⌜+⌜ς⌐⌐⌜=N1, ⌜ϑ⌐⌜+⌜ϑ⌐⌐⌜≤N2

1≤⌜ε⌐⌜+⌜ε⌐⌐⌜≤2
⟧⌝⌝v⌝10ες⌐

x εε⌐
v Y ϑ⌐f⌝L2

v
⌝⌝v⌝10ες⌐⌐

x εε⌐⌐
v Y ϑ⌐⌐f⌝L2

v
⟧2
L2
x

+ ∑
⌜ς⌐⌜+⌜ς⌐⌐⌜=N1, ⌜ϑ⌐⌜+⌜ϑ⌐⌐⌜≤N2⌜ε⌐⌜+⌜ε⌐⌐⌜=3

ϑ2⌜3⟧⌝⌝v⌝10ες⌐
x εε⌐

v Y ϑ⌐f⌝L2
v
⌝⌝v⌝10ες⌐⌐

x εε⌐⌐
v Y ϑ⌐⌐f⌝L2

v
⟧2
L2
x

.

(8.37)
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The two terms in (8.37) are to be controlled in appropriate ⌟E and ⌟D norms. We point out
three important observations:

● Note that the ⌝v⌝-weights in (8.37) are significantly lower than what is encoded in
the energy and dissipation norms.● One term could have Nmax + 3 derivatives (when, say, ⇁′ = ς′ = ω′ = 0), but in that

case exactly three of the derivatives must be εv, so it can be controlled with the ⌟D(0)Nmax

norm.● In each term of (8.37), at least one factor has at least one εv derivative. We put that
factor in the ⌟D norm, and the other factor in the ⌟E so as not to incur a loss of ϑ⌐1⌜3.

We only consider the second term in (8.37); the first term is similar and slightly simpler.

● Take ⌜⇁′⌜ + ⌜⇁′′⌜ = N1, ⌜ω′⌜ + ⌜ω′′⌜ ≤ N2 and ⌜ς′⌜ + ⌜ς′′⌜ = 3.● After switching (⇁′,ς′,ω′) with (⇁′′,ς′′,ω′′) if necessary, we assume without loss of
generality ⌜⇁′⌜+ ⌜ς′⌜+ ⌜ω′⌜ ≤ ⟦(Nmax+2)⌜2⟧. We can apply Sobolev embedding in x to the
corresponding term, noting that since Nmax ≥ 9, we have ⟦(Nmax +2)⌜2⟧+2 ≤ Nmax −2.● By the pigeonhole principle, ⌜ς′⌜ ≥ 1 or ⌜ς′′⌜ ≥ 1, i.e. εε⌐

v = εvjεε⌐⌐ej
v or εε⌐⌐

v = εvjεε⌐⌐⌐ej
v .

We use Hölder’s inequality and then the Sobolev inequality in x to obtain

ϑ2⌜3⟧⌝⌝v⌝10ες⌐
x εε⌐

v Y ϑ⌐f⌝L2
v
⌝⌝v⌝10ες⌐⌐

x εε⌐⌐
v Y ϑ⌐⌐f⌝L2

v
⟧2
L2
x

⧖ ϑ⌐4⌜3⌟(∑
⌜ς⌐⌐⌐⌜≤2

ϑ2⌜ε⌐⌜⌜3⌝⌝v⌝10ες⌐⌐⌐
x ες⌐

x εε⌐
v Y ϑ⌐f⌝2L2

x,v
) ⋊∑⌝ε⌐⌐=ε⌐⌐⌐ejϑ

2⌜ε⌐⌐⌜⌜3⌝⌝v⌝10ες⌐⌐
x ε

⌝ε⌐⌐
v Y ϑ⌐⌐f⌝2!x,v

+ ∑
⌜ς⌐⌐⌐⌜≤2
⌝ε⌐=ε⌐⌐ej

ϑ2⌜ε⌐⌜⌜3⌝⌝v⌝10ες⌐⌐⌐
x ες⌐

x ε
ε⌐⌐ej
v Y ϑ⌐f⌝2!x,v

ϑ2⌜ε⌐⌐⌜⌜3⌝⌝v⌝10ες⌐⌐
x εε⌐⌐

v Y ϑ⌐⌐f⌝2L2
x,v
]

⧖ ϑ⌐4⌜3(⌝f⌝2⌝E(0)Nmax⋊2
⌝f⌝2⌝D(0)Nmax

+ ⌝f⌝2⌝D(0)Nmax⋊2
⌝f⌝2⌝E(0)Nmax

)
⧖ φϑ⌐2⌜3⌝f⌝2⌝D(0)Nmax

+ φϑ⌐4⌜3⌝f⌝2⌝D(0)Nmax⋊2
,

(8.38)

where in the very last line we used the bootstrap assumption (8.1). The first term in (8.37)
can be bounded similarly so that we have

∑
k⌜=0 ∑⌜ς⌜=N1, ⌜ε⌜≤1, ⌜ϑ⌜≤N2

ϑ2⌜ε⌜⌜3⌝⌝v⌝10[ες
xε

ε
v Y

ϑ(%(f, f))]⌞k(τ)⌝2L2
v

⧖ φϑ⌐2⌜3⌝f⌝2⌝D(0)Nmax

+ φϑ⌐4⌜3⌝f⌝2⌝D(0)Nmax⋊2
.

(8.39)

We now square (8.36), multiply it by ⌜k⌜2N1⌝kt⌝2N2 , sum over k, and plug in (8.39). Using
the Cauchy–Schwarz inequality for the τ integral, we bound

∑
k⌜=0
⌜k⌜2N1⌝kt⌝2N2 ⌜IIIk(t)⌜2
≤ ϑ2∑

k⌜=0
⌜k⌜2N1⌝kt⌝2N2⌟⩀ t

0
⩀
R3

Sk(t − τ)[(⟧%(f, f))k(τ)]⌝µdv dτ]2

⧖ (φϑ4⌜3⩀ t

0
⌝f(τ)⌝2⌝D(0)Nmax

dτ + φϑ2⌜3⩀ t

0
⌝f(τ)⌝2⌝D(0)Nmax⋊2

dτ)⩀ t

0
⌝ϑ1⌜3(t − τ)⌝⌐3 dτ

⧖ φϑ ⩀ t

0
⌝f(τ)⌝2⌝D(0)Nmax

dτ + φϑ1⌜3⩀ t

0
⌝f(τ)⌝2⌝D(0)Nmax⋊2

dτ ⧖ φϑ2⌜3,

(8.40)
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where we have also used the bootstrap assumption (8.1) at the end. This gives the desired L∞
bounds in (8.35). The L2 estimates in (8.35) also follow from essentially the same computation
as (8.40), after also using Fubini’s theorem, namely,

⩀ t

0
∑
k⌜=0
⌜k⌜2N1⌝ks⌝2N2 ⌜IIIk(s)⌜2 ds

⧖ φ(ϑ4⌜3⩀ t

0
⩀ s

0
⌝ϑ1⌜3(s − τ)⌝⌐3⌜2⌝f(τ)⌝2⌝D(0)Nmax

dτ ds

+ ϑ2⌜3⩀ t

0
⩀ s

0
⌝ϑ1⌜3(s − τ)⌝⌐3⌜2⌝f(τ)⌝2⌝D(0)Nmax⋊2

dτ ds) sup
0≤s⌐≤t⩀

s⌐

0
⌝ϑ1⌜3(s′ − τ)⌝⌐3⌜2 dτ

⧖ φϑ2⌜3⩀ t

0
⌝f(τ)⌝2⌝D(0)Nmax

dτ + φ⩀ t

0
⌝f(τ)⌝2⌝D(0)Nmax⋊2

dτ ⧖ φ2ϑ1⌜3.

(8.41)

This ends the proof of Proposition 8.2, and so that of Theorem 8.1.

9. Nonlinear energy estimates

In this section, we derive energy estimates for the full nonlinear Vlasov–Poisson–Landau
equation (2.2a)–(2.2b) under the bootstrap assumptions (8.1) and (8.2).

The main result of this section is the following.

Theorem 9.1. Consider data as in Theorem 3.1. Suppose there exists TB > 0 such that the

solution f to (2.2a)–(2.2b) remains smooth in [0, TB) ⋊ T3 ⋊R3 and satisfies the bootstrap

assumptions (8.1) and (8.2).
Then, for ◁ ∈ {0,2}, 0 ≤ t < TB, and 0 ≤ N ≤ Nmax, the following energy estimate holds:

sup
0≤◁≤t ⌝f(τ)⌝2⌝E(ϖ)N

+ ϑ1⌜3⩀ t

0
⌝f(τ)⌝2⌝D(ϖ)N

dτ ⧖ φ2ϑ2⌜3min{ϑ⌐1⌜3, ⌝t⌝}max{0,N⌐Nmax+2}, (9.1)

where ⌝ ⋅ ⌝⌝E(ϖ)N
and ⌝ ⋅ ⌝⌝D(ϖ)N

are the global energy and dissipation norms defined as in (5.17).

The main step in the proof of Theorem 9.1 is the following estimates for the inhomogeneous
terms ⌟Rς,ε,ϑ:

Proposition 9.2. Fix ◁ ∈ {0, 2}. Under the assumptions of Theorem 9.1, for ⌜⇁⌜+ ⌜ς⌜+ ⌜ω⌜ ≤ N ,

⌟Rς,ε,ϑ ⧖ φ1⌜2⌝t⌝⌐2⌝f(t)⌝2⌝E(ϖ)N

+ φ1⌜2ϑ2⌜3⌝f(t)⌝2⌝D(ϖ)N

+ ϑ1⌜3⌝f(t)⌝⌝E(ϖ)N
⌝f(t)⌝⌝D(ϖ)N

⌝f(t)⌝⌝D(ϖ)Nmax⋊2+min{⌝f(t)⌝⌝D(ϖ)N
, ⌝f(t)⌝⌝E(ϖ)N

} ∑⌜ς⌜+⌜ϑ⌜≤N ⌝ε
ς
xY

ϑ↼⌜=0(t)⌝L2
x
,

(9.2)

where ⌟Rς,ε,ϑ are as defined in Proposition 5.11.

We now show that Proposition 9.2 implies Theorem 9.1.
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Proof of Theorem 9.1 assuming Proposition 9.2. Computing d
dt⌝f⌝2⌝E(ϖ)N

and using the main

energy estimates in Proposition 5.11, we obtain

d

dt
(e1+⌝t⌝⋊1⌝f⌝2⌝E(ϖ)N

) + ↽ϑ1⌜3e1+⌝t⌝⋊1⌝f⌝2⌝D(ϖ)N

= ∑
Nω,ε+Nϑ≤N

e1+⌝t⌝⋊1( d
dt
⌝f⌝2⌝E0,Nω,ε ,N,Nϑ

+ ↽ϑ1⌜3⌝f⌝2⌝D0,Nω,ε ,N,Nϑ
) − ⌝t⌝⌐2e1+⌝t⌝⋊1⌝f⌝2⌝E(ϖ)N

≤ − ⌝t⌝⌐2⌝f⌝2⌝E(ϖ)N

+C(ϑ⌜(a, b, c)⌜2 + (⌝εtϖ⌝L∞x + ⌝ϖ⌝W 1,∞
x
)⌝f⌝2⌝E(ϖ)N

+ ∑⌜ς⌜+⌜ε⌜+⌜ϑ⌜≤N
⌟Rς,ε,ϑ),

(9.3)

noting 1 ≤ e1+⌝t⌝⋊1 ≤ e2. We note that the e1+⌝t⌝⋊1 weight is used instead of Grönwall’s inequality
to absorb the linear terms.
Since f satisfies the nonlinear Vlasov–Poisson–Landau system, the conservation law and

(3.1) imply

⊎
T3⋊R3

f
⌝
µ dv dx =⊎

T3⋊R3
vjf
⌝
µ dv dx =⊎

T3⋊R3
⌜v⌜2f⌝µ dv dx+⩀

R3
⌜E⌜2 dx = 0. (9.4)

In other words, a = 0 and b = 0. Moreover, using (8.2), we have ⌜c⌜ ≤ ∫R3 ⌜E⌜2 dx ⧖ φϑ2⌜3⌝t⌝⌐2.
Additionally, the bootstrap assumption (8.2) implies that the third term in (9.3) is bounded⧖ φ1⌜2ϑ1⌜3⌝t⌝⌐2⌝f⌝2⌝E(ϖ)N

. Plugging in also the estimates for ⌟Rς,ε,ϑ from Proposition 9.2, we

obtain

d

dt
(e1+⌝t⌝⋊1⌝f⌝2⌝E(ϖ)N

) + ↽ϑ1⌜3⌝f⌝2⌝D(ϖ)N

+ ⌝t⌝⌐2⌝f⌝2⌝E(ϖ)N⧖ φ2ϑ4⌜3⌝t⌝⌐4 + φ1⌜2⌝t⌝⌐2⌝f(t)⌝2⌝E(ϖ)N

+ φ1⌜2ϑ2⌜3⌝f(t)⌝2⌝D(ϖ)N+ ϑ1⌜3⌝f(t)⌝⌝E(ϖ)N
⌝f(t)⌝⌝D(ϖ)N

⌝f(t)⌝⌝D(ϖ)Nmax⋊2+min{⌝f(t)⌝⌝D(ϖ)N
, ⌝f(t)⌝⌝E(ϖ)N

} ∑⌜ς⌜+⌜ϑ⌜≤N⌝ε
ς
xY

ϑ↼⌜=0(t)⌝L2
x
.

(9.5)

For φ su#ciently small, the second and third terms on the right hand side of (9.5) can be
absorbed by the last two terms on the left hand side, i.e.

d

dt
(e1+⌝t⌝⋊1⌝f⌝2⌝E(ϖ)N

) + ↽ϑ1⌜3⌝f⌝2⌝D(ϖ)N

+ ⌝t⌝⌐2⌝f⌝2⌝E(ϖ)N⧖ φ2ϑ4⌜3⌝t⌝⌐4 + ϑ1⌜3⌝f(t)⌝⌝E(ϖ)N
⌝f(t)⌝⌝D(ϖ)N

⌝f(t)⌝⌝DNmax⋊2
+min{⌝f(t)⌝⌝D(ϖ)N

, ⌝f(t)⌝⌝E(ϖ)N
}∑⌜ς⌜+⌜ϑ⌜≤N⌝ε

ς
xY

ϑ↼⌜=0(t)⌝L2
x
.

(9.6)

Define now

FN[f](t) ⌐= ⌝f(t)⌝2⌝E(ϖ)N

+ ϑ1⌜3⩀ t

0
⌝f(τ)⌝2⌝D(ϖ)N

dτ +⩀ t

0
⌝τ⌝⌐2⌝f(τ)⌝2⌝E(ϖ)N

dτ.

Thus FN[f](t) can be bounded in terms of the t-integral of the right hand side of (9.6). This
will in turn be controlled below for di$erent values of N .
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The case N ≤ Nmax − 2. Consider first the case N ≤ Nmax − 2. Using (8.1), we have⌝f⌝⌝E(ϖ)Nmax⋊2
⧖ φ1⌜2ϑ1⌜3. Thus,

ϑ1⌜3⩀ t

0
⌝f(τ)⌝⌝E(ϖ)N

⌝f(τ)⌝⌝D(ϖ)N
⌝f(τ)⌝⌝D(ϖ)Nmax⋊2

dτ

⧖ φϑ2⌜3⩀ t

0
⌝f(τ)⌝2⌝D(ϖ)Nmax⋊2

dτ ⧖ φϑ1⌜3FN[f](t). (9.7)

On the other hand, since ↼⌜=0 is v-independent and has vanishing x-mean by definition,
Poincaré’s inequality implies that for N ≤ Nmax − 2,
∑⌜ς⌜+⌜ϑ⌜≤N⌝ε

ς
xY

ϑ↼⌜=0(t)⌝L2
x
⧖ ⌝t⌝⌐2 ∑⌜ς⌐⌜=2 ∑⌜ς⌜+⌜ϑ⌜≤N ⌝⌝t⌝

2ες⌐
x ες

xY
ϑ↼⌜=0(t)⌝L2

x
⧖ ⌝t⌝⌐2∑⌜ς⌜+⌜ϑ⌜≤Nmax

⌝ες
xY

ϑ↼⌜=0(t)⌝L2
x
.

Thus, using (8.3) and Young’s inequality, we obtain, for any ⇀ > 0,
⩀ t

0
min{⌝f(τ)⌝⌝D(ϖ)N

, ⌝f(τ)⌝⌝E(ϖ)N
}∑⌜ς⌜+⌜ϑ⌜≤N⌝ε

ς
xY

ϑ↼⌜=0(τ)⌝L2
x
dτ

⧖ ⩀ t

0
⌝f(τ)⌝⌝E(ϖ)N

⌝τ⌝⌐2φϑ1⌜3 dτ ⧖ ⇀FN[f](t) + ⇀⌐1φ2ϑ2⌜3⩀ ∞
0

dτ⌝τ⌝2
⧖ ⇀FN[f](t) + ⇀⌐1φ2ϑ2⌜3.

(9.8)

Plugging (9.7) and (9.8) into (9.6), and bounding the initial data term by (3.2), we thus
obtain

FN[f](t) ⧖ (φϑ1⌜3 + ⇀)FN[f](t) + ⇀⌐1φ2ϑ2⌜3.
Choosing φ0, ϑ0 and ⇀ su#ciently small, we can absorb the first term on the right to the left,
giving the desired bound for FN(t).

The case Nmax − 1 ≤ N ≤ Nmax. We consider the case N = Nmax; the case N = Nmax − 1 is
similar. Note that we need to prove two estimates: one allowing for a loss in ϑ⌐2⌜3, and the
other allowing for a growth in ⌝t⌝2.
As above, we will bound the time-integral of the terms in (9.6), now for N = Nmax. First,

ϑ1⌜3⩀ t

0
⌝f(τ)⌝⌝E(ϖ)Nmax

⌝f(τ)⌝⌝D(ϖ)Nmax

⌝f(τ)⌝⌝D(ϖ)Nmax⋊2
dτ

⧖ ( sup
0≤s<t ⌝f(τ)⌝⌝E(ϖ)Nmax

)(ϑ1⌜3⩀ t

0
⌝f(τ)⌝2⌝D(ϖ)Nmax

dτ)1⌜2(ϑ1⌜3⩀ t

0
⌝f(τ)⌝2⌝D(ϖ)Nmax⋊2

dτ)1⌜2
⧖FNmax[f](t)FNmax⌐2[f]1⌜2(t) ⧖ φϑ1⌜3FNmax[f](t),

(9.9)

where in the final estimate, we used the bound for FNmax⌐2[f](t) derived above.
We have two ways for bounding the other term. Using the L∞t bound in (8.3), we have

⩀ t

0
min{⌝f(τ)⌝⌝D(ϖ)Nmax

, ⌝f(τ)⌝⌝E(ϖ)Nmax

} ∑⌜ς⌜+⌜ϑ⌜≤Nmax

⌝ες
xY

ϑ↼⌜=0(τ)⌝L2
x
dτ

⧖ ⩀ t

0
⌝f(τ)⌝⌝E(ϖ)Nmax

φϑ1⌜3 dτ ⧖ ⇀FNmax[f](t) + ⇀⌐1φ2ϑ2⌜3(⩀ t

0
dτ)2

⧖ ⇀FNmax[f](t) + ⇀⌐1φ2ϑ2⌜3⌝t⌝2.
(9.10)
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and, using instead the L2
t bound in (8.3), we obtain

⩀ t

0
min{⌝f(τ)⌝⌝D(ϖ)Nmax

, ⌝f(τ)⌝⌝E(ϖ)Nmax

} ∑⌜ς⌜+⌜ϑ⌜≤Nmax

⌝ες
xY

ϑ↼⌜=0(τ)⌝L2
x
dτ

⧖ ⇀ϑ1⌜3⩀ t

0
⌝f(τ)⌝2⌝D(ϖ)Nmax

dτ + ⇀⌐1ϑ⌐1⌜3⩀ t

0
∑⌜ς⌜+⌜ϑ⌜≤Nmax

⌝ες
xY

ϑ↼⌜=0(τ)⌝2L2
x
dτ

⧖ ⇀FNmax[f](t) + ⇀⌐1φ2.
(9.11)

Combining (9.9)–(9.11), integrating (9.6), and controlling initial data by (3.2), we thus
obtain

FNmax[f](t) ⧖ (φϑ1⌜3 + ⇀)FNmax[f](t) + ⇀⌐1φ2min{ϑ2⌜3⌝t⌝2,1}.
We can thus conclude as before by choosing φ0, ϑ0 and ⇀ small. ↭

The remainder of this section is thus devoted to the proof of Proposition 9.2, after some
preliminary bounds on the electric field in the next subsection.

9.1. Bounds on the electric field. In this section, we give estimates on the electric field.

Lemma 9.3. Let 0 ≤ N ≤ Nmax. Then

∑⌜ς⌜+⌜ϑ⌜≤N+2
⌝ες

xY
ϑϖ(t)⌝L2

x
+ ∑⌜ς⌜+⌜ϑ⌜≤N+1

⌝ες
xY

ϑE(t)⌝L2
x
⧖ ∑⌜ς⌜+⌜ϑ⌜≤N ⌝ε

ς
xY

ϑ↼⌜=0(t)⌝L2
x

(9.12)

and

∑⌜ς⌜+⌜ϑ⌜≤N ⌝ε
ς
xY

ϑϖ(t)⌝L∞x + ∑⌜ς⌜+⌜ϑ⌜≤N⌐1
⌝ες

xY
ϑE(t)⌝L∞x ⧖ ∑⌜ς⌜+⌜ϑ⌜≤N ⌝ε

ς
xY

ϑ↼⌜=0(t)⌝L2
x
. (9.13)

Proof. The estimate (9.12) follows from the Poisson equation ϖ̂k = ⌜k⌜⌐2↼̂k and the definition
Êk = −ikϖ̂k for each Fourier mode k ∈ Z3⟦{0}. The bound (9.13) then follows from Sobolev
embedding. ↭

Lemma 9.4. The electric potential ϖ satisfies

⌝εtϖ⌝L∞x ⧖ ⌝t⌝⌐2 ∑⌜ς⌜+⌜ϑ⌜≤3 ⌝ε
ς
xY

ϑf⌝L2
x,v
. (9.14)

Proof. Since ∫T3 εtϖ dx = 0, we apply Poincaré’s and Sobolev’s inequalities to obtain

⌝εtϖ⌝L∞x ⧖ ∑⌜ς⌜+⌜ϑ⌜≤2⌝t⌝
⌐2⌝ες

xY
ϑεtϖ⌝L∞x ⧖ ⌝t⌝⌐2 ∑⌜ς⌐⌜≤2 ∑⌜ς⌜+⌜ϑ⌜≤2 ⌝ε

ς+ς⌐
x Y ϑεtϖ⌝L2

x
.

To control the final L2 norm by the right hand side of (9.14), we use the elliptic equation for
εtϖ:

−!εtϖ = εt↼ = −⋉x ⋅ ⩀
R3

vf
⌝
µdv,

where the last identity is the conservation of mass. ↭
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9.2. Estimates on RQ,↽
ς,ε,ϑ. In this subsection, we give the claimed bounds on ⌟RQ,↽

ς,ε,ϑ that
appear in Proposition 5.11 in terms of energy and dissipation norms, under the assumptions
of Theorem 9.1. (The bounds for ZQ,↽

ς,ε,ϑ will be derived later in Section 9.3.) Precisely, we
shall bound

∑⌜ς⌐⌜≤1 ϑ
2⌜ε⌜⌜3RQ,↽⌐2⌜ς⌐⌜

ς+ς⌐,ε,ϑ + ∑⌜ε⌐⌜≤2 ϑ
2(⌜ε⌜+⌜ε⌐⌜)⌜3RQ,↽⌐2⌜ε⌐⌜

ς+,ε+ε⌐,ϑ

for ⌜⇁⌜ + ⌜ς⌜ + ⌜ω⌜ = Nmax. We recall from Lemma 5.5 and (5.3) that

RQ,↽
ς,ε,ϑ =⊎T3⋊R3

e2(q+1)ϱw2ες
xε

ε
v Y

ϑf⌟ες
xε

ε
v Y

ϑ[Ejεvj
⌝
µ] + [E ⋅ ⋉v −E ⋅ v,ες

xε
ε
v Y

ϑ]f
+ ϑες

xε
ε
v Y

ϑ%(f, f)] dv dx
=⌐RQ,↽,1

ς,ε,ϑ +RQ,↽,2
ς,ε,ϑ +RQ,↽,3

ς,ε,ϑ

in which RQ,↽,j
ς,ε,ϑ correspond to the integral involving each term in the bracket. The claimed

estimates on ⌟RQ,↽
ς,ε,ϑ in Proposition 9.2 are thus a combination of Lemmas 9.5–9.7 below giving

bounds on each of these integral terms.
Before we proceed, let us remark that since the ⌝ϖ⌝L∞x ⧖ φ1⌜2ϑ1⌜3⌝t⌝⌐2 ⧖ φ1⌜2 by (8.2), we can

replace any factors of e(q+1)ϱ by 1 (and vice versa) without changing the bounds.

Lemma 9.5. For ⌜⇁⌜ + ⌜ς⌜ + ⌜ω⌜ ≤ N , we have

ϑ2(⌜ε⌜+⌜ε⌐⌜)⌜3RQ,↽⌐2⌜ς⌐⌜⌐2⌜ε⌐⌜,1
ς+ς⌐,ε+ε⌐,ϑ ⧖ min{⌝f(t)⌝⌝E(ϖ)N

, ⌝f(t)⌝⌝D(ϖ)N
} ∑⌜ς⌐⌐⌜+⌜ϑ⌐⌐⌜≤N

⌝ες⌐⌐
x Y ϑ⌐⌐↼⌜=0⌝L2

x

+ φ1⌜2⌝t⌝⌐2⌝f⌝2⌝E(ϖ)N

when either (1) ⌜⇁′⌜ ≤ 1 and ς′ = 0, or (2) ⇁′ = 0, ⌜ς′⌜ ≤ 2.
Proof. Let us consider only the case ⌜⇁′⌜ ≤ 1 and ς′ = 0. The other case is similar after noting

that the ⌟D(⇀)N norm by definition controls the corresponding term with more εv derivative
and that ↼ is independent of v.
We compute

ες⌐
x ες

xε
ε
v Y

ϑ[Ejεvj
⌝
µ] = ∑

ϑ⌐+ϑ⌐⌐=ϑ
ες⌐
x ες

xY
ϑ⌐Ejεvjε

ε+ϑ⌐⌐
v

⌝
µ.

Notice that εvjε
ε+ϑ⌐⌐
v
⌝
µ decays rapidly in v.

Bounding with the ⌟E(⇀)N norm. Using the fact that E gains one derivative over ↼⌜=0, the
above computations and the Cauchy–Schwarz inequality implies

ϑ2⌜ε⌜⌜3RQ,↽⌐2⌜ς⌐⌜,1
ς+ς⌐,ε,ϑ ≤ ϑ2⌜ε⌜⌜3⎢⊎

T3⋊R3
e2(q+1)ϱw2ες+ς⌐

x εε
v Y

ϑfες+ς⌐
x εε

v Y
ϑ[Ejεvj

⌝
µ] dv dx⎢

⧖ ϑ2⌜ε⌜⌜3⌝ες+ς⌐
x εε

v Y
ϑf⌝L2

x,v ∑⌜ς⌐⌜≤1 ∑⌜ς⌐⌐⌜+⌜ϑ⌐⌐⌜≤N
⌝ες⌐⌐+ς⌐

x Y ϑ⌐⌐Ej⌝L2
x

⧖ ⌝f⌝⌝E(ϖ)N
∑⌜ς⌐⌐⌜+⌜ϑ⌐⌐⌜≤N

⌝ες⌐⌐
x Y ϑ⌐⌐↼⌜=0⌝L2

x
.
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Bounding with the ⌟D(⇀)N norm. When ⌜⇁′⌜ = 1, we can thus use the ⌟D(⇀)N norm to control
ες+ς⌐
x εε

v Y ϑf so that

ϑ2⌜ε⌜⌜3RQ,↽⌐2,1
ς+ς⌐,ε,ϑ ≤ ϑ2⌜ε⌜⌜3⎢⊎

T3⋊R3
e2(q+1)ϱw2ες+ς⌐

x εε
v Y

ϑfες+ς⌐
x εε

v Y
ϑ[Ejεvj

⌝
µ] dv dx⎢

⧖ ϑ2⌜ε⌜⌜3⌝ες+ς⌐
x εε

v Y
ϑf⌝L2

x,v ∑⌜ς⌐⌜≤1 ∑⌜ς⌐⌐⌜+⌜ϑ⌐⌐⌜≤N
⌝ες⌐⌐+ς⌐

x Y ϑ⌐⌐Ej⌝L2
x

⧖ ⌝f⌝⌝D(ϖ)N
∑⌜ς⌐⌐⌜+⌜ϑ⌐⌐⌜≤N

⌝ες⌐⌐
x Y ϑ⌐⌐↼⌜=0⌝L2

x
,

where we have used the definition of ⌟D(⇀)N to bound f , and used (9.12) to bound E.

When ⇁′ = 0, note that directly bound the term with the ⌟D(⇀)N norm would cause a loss of
ϑ⌐1⌜3. Instead, we integrate by parts in x: recalling E = −⋉xϖ, we get

ϑ2⌜ε⌜⌜3RQ,↽,1
ς,ε,ϑ = ϑ2⌜ε⌜⌜3⊎

T3⋊R3
e2(q+1)ϱw2εxjε

ς
xε

ε
v Y

ϑfες
xε

ε
v Y

ϑ[ϖεvj⌝µ] dv dx
+ 2(q + 1)ϑ2⌜ε⌜⌜3⊎

T3⋊R3
εxjϖe

2(q+1)ϱw2ες
xε

ε
v Y

ϑfες
xε

ε
v Y

ϑ[ϖεvj⌝µ] dv dx.
Using (9.12), the bootstrap assumption (8.2) on ⌝εxϖ⌝L∞x and the fact that µ = e⌐⌜v⌜2 decays
rapidly, the second integral is clearly bounded by φϑ1⌜3⌝t⌝⌐2⌝f(t)⌝2EN . As for the first integral
term, we use the rapid decay in ⌝v⌝, Hölder’s inequality and (9.12) to bound

ϑ2⌜ε⌜⌜3⎢⊎
T3⋊R3

e2(q+1)ϱw2εxjε
ς
xε

ε
v Y

ϑfες
xε

ε
v Y

ϑ[ϖεvj⌝µ] dv dx⎢
⧖ ϑ2⌜ε⌜⌜3⌝εxjε

ς
xε

ε
v Y

ϑf⌝L2
x,v ∑⌜ϑ⌐⌜≤⌜ϑ⌜ ⌝ε

ς
xY

ϑ⌐ϖ⌝L2
x

⧖ ϑ ⌜ε⌜⌜3⌝f⌝⌝D(ϖ)N
∑⌜ς⌐⌐⌜+⌜ϑ⌐⌜≤N

⌝ες⌐⌐
x Y ϑ⌐⌐↼⌝L2

x
,

giving the lemma. ↭

Lemma 9.6. For ⌜⇁⌜ + ⌜ς⌜ + ⌜ω⌜ ≤ N , we have

ϑ2(⌜ε⌜+⌜ε⌐⌜)⌜3RQ,↽⌐2⌜ς⌐⌜⌐2⌜ε⌐⌜,2
ς+ς⌐,ε+ε⌐,ϑ ⧖ φmin{⌝f(t)⌝⌝E(ϖ)N

, ⌝f(t)⌝⌝D(ϖ)N
} ∑⌜ς⌐⌐⌜+⌜ϑ⌐⌐⌜≤N

⌝ες⌐⌐
x Y ϑ⌐⌐↼⌜=0⌝L2

x

+ φ1⌜2⌝t⌝⌐2⌝f⌝2⌝E(ϖ)N

(9.15)

when either (1) ⌜⇁′⌜ ≤ 1 and ς′ = 0, or (2) ⇁′ = 0, ⌜ς′⌜ ≤ 2.
Proof. Take ⌜⇁⌜+ ⌜ς⌜+ ⌜ω⌜ ≤ N . To avoid notational confusion, we consider only the case ⇁′ = 0
and ς′ = 0; the other cases are almost identical upon using the higher derivative control of⌟Eς,ε,ϑ and ⌟Dς,ε,ϑ and the fact that E gains one εx derivative over ↼⌜=0 (see (9.12)).

Let us start by estimating the integral involving E ⋅ ⋉v. By definition, we compute

⌜[Ejεvj ,ε
ς
xε

ε
v Y

ϑ]f ⌜ ⧖ ∑
⌜ς⌐⌐⌐⌜+⌜ς⌐⌐⌜=⌜ς⌜⌜ϑ⌐⌐⌐⌜+⌜ϑ⌐⌐⌜=⌜ϑ⌜⌜ς⌐⌐⌐⌜+⌜ϑ⌐⌐⌐⌜≥1

⌜(ες⌐⌐⌐
x Y ϑ⌐⌐⌐Ej)εvjες⌐⌐

x εε
v Y

ϑ⌐⌐f ⌜. (9.16)
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Consider first the case when ⌜⇁′′′⌜ + ⌜ω′′′⌜ ≤ 4, for which the L∞ bounds on the electric field in
the bootstrap assumption (8.2) can be used. We have

ϑ2⌜ε⌜⌜3⎢⊎
T3⋊R3

e2(q+1)ϱw2ες
xε

ε
v Y

ϑf(ες⌐⌐⌐
x Y ϑ⌐⌐⌐Ej)εvjες⌐⌐

x εε
v Y

ϑ⌐⌐f dv dx⎢
⧖ ϑ2⌜ε⌜⌜3⌝ες

xε
ε
v Y

ϑf⌝L2
x,v(↽ω,ε,ϑ ,⇀)⌝ες⌐⌐⌐

x Y ϑ⌐⌐⌐E⌝L∞x ⌝εvjες⌐⌐
x εε

v Y
ϑ⌐⌐f⌝L2

x,v(↽ω,ε,ϑ ,⇀)
⧖ (φ1⌜2ϑ1⌜3⌝t⌝⌐2)(ϑ⌐1⌜3⌝f⌝2⌝E(ϖ)N

) ⧖ φ1⌜2⌝t⌝⌐2⌝f⌝2⌝E(ϖ)N

,

(9.17)

upon recalling ⌜⇁′′⌜ + ⌜ω′′⌜ + 1 ≤ ⌜⇁⌜ + ⌜ω⌜.
Next, we consider the case when ⌜⇁′′′⌜ + ⌜ω′′′⌜ ≥ 5, which we will bound by the first term in

(9.15). In this case, we must have ⌜⇁′′⌜ + ⌜ω′′⌜ ≤ ⌜⇁⌜ + ⌜ω⌜ − 5 (and in particular ⌜⇁′′⌜ + ⌜ς⌜ + ⌜ω′′⌜ ≤
Nmax − 5), and so upon using Sobolev embedding in x and the bootstrap assumption (8.1),
we have

ϑ ⌜ε⌜⌜3⌝εvjες⌐⌐
x εε

v Y
ϑ⌐⌐f⌝L∞x L2

v(↽ω,ε,ϑ ,⇀)
⧖ ∑⌜ς⌐⌐⌐⌜≤2 ϑ

⌜ε⌜⌜3⌝ες⌐⌐⌐
x εvjε

ς⌐⌐
x εε

v Y
ϑ⌐⌐f⌝L2

xL
2
v(↽ω,ε,ϑ ,⇀) ⧖ ϑ⌐1⌜3⌝f⌝⌝E(ϖ)Nmax⋊2

⧖ φ1⌜2.
Therefore, using Hölder’s inequality and Lemma 9.3, we bound

ϑ2⌜ε⌜⌜3⎢⊎
T3⋊R3

e2(q+1)ϱw2ες
xε

ε
v Y

ϑf(ες⌐⌐⌐
x Y ϑ⌐⌐⌐Ej)εvjες⌐⌐

x εε
v Y

ϑ⌐⌐f dv dx⎢
⧖ ϑ2⌜ε⌜⌜3⌝ες

xε
ε
v Y

ϑf⌝L2
x,v(↽ω,ε,ϑ ,⇀)⌝ες⌐⌐⌐

x Y ϑ⌐⌐⌐Ej⌝L2
x
⌝εvjες⌐⌐

x εε
v Y

ϑ⌐⌐f⌝L∞x L2
v(↽ω,ε,ϑ ,⇀)

⧖ ⌝f⌝⌝E(ϖ)N
⌝ες⌐⌐⌐

x Y ϑ⌐⌐⌐Ej⌝L2
x
φ1⌜2 ⧖ φ1⌜2⌝f⌝⌝E(ϖ)N

∑
⌜ς⌐⌐⌐⌜≤⌜ς⌜⌜ϑ⌐⌐⌐⌜≤⌜ϑ⌜

⌝ες⌐⌐⌐
x Y ϑ⌐⌐⌐↼⌜=0⌝L2

x
.

(9.18)

We also need a bound with ⌟E(⇀)N above replaced by ⌟D(⇀)N . Noticing that a direct estimate with⌟D(⇀)N causes a loss of ϑ⌐1⌜3, we integrate by parts in εvj . (We remark that when ⇁′ ⌜= 0 or

ς′ ⌜= 0, such an integration by parts is unnecessary, by definition of the ⌟D(⇀)N norm.) After
integration by parts, we argue as above with Sobolev embedding, noting also that since⌜⇁′′⌜ + ⌜ω′′⌜ ≤ ⌜⇁⌜ + ⌜ω⌜ − 5, we have additional weights in ⌝v⌝. In other words, we bound

ϑ2⌜ε⌜⌜3⎢⊎
T3⋊R3

e2(q+1)ϱw2ες
xε

ε
v Y

ϑf(ες⌐⌐⌐
x Y ϑ⌐⌐⌐Ej)εvjες⌐⌐

x εε
v Y

ϑ⌐⌐f dv dx⎢
⧖ ϑ2⌜ε⌜⌜3⎢⊎

T3⋊R3
e2(q+1)ϱw2εvjε

ς
xε

ε
v Y

ϑf(ες⌐⌐⌐
x Y ϑ⌐⌐⌐Ej)ες⌐⌐

x εε
v Y

ϑ⌐⌐f dv dx⎢
+ ϑ2⌜ε⌜⌜3⎢⊎

T3⋊R3
e2(q+1)ϱ(εvjw2)ες

xε
ε
v Y

ϑf(ες⌐⌐⌐
x Y ϑ⌐⌐⌐Ej)ες⌐⌐

x εε
v Y

ϑ⌐⌐f dv dx⎢
⧖ φ1⌜2⌝f⌝⌝D(ϖ)N

∑
⌜ς⌐⌐⌐⌜≤⌜ς⌜⌜ϑ⌐⌐⌐⌜≤⌜ϑ⌜

⌝ες⌐⌐⌐
x Y ϑ⌐⌐⌐↼⌜=0⌝L2

x
.

(9.19)

Combining (9.17), (9.18) and (9.19), we have thus proven the desired estimate corresponding
to the commutator term in (9.16).

Similarly, we now treat the integral involving E ⋅ v. We compute

⌜[Ejvj,ε
ς
xε

ε
v Y

ϑ]f ⌜ ⧖∑
⌜ς⌐⌐⌐⌜+⌜ς⌐⌐⌜=⌜ς⌜⌜ϑ⌐⌐⌐⌜+⌜ϑ⌐⌐⌜=⌜ϑ⌜⌜ε⌐⌜=⌜ε⌜⌐1⌜ς⌐⌐⌐⌜+⌜ϑ⌐⌐⌐⌜≥1

⌜(ες⌐⌐⌐
x Y ϑ⌐⌐⌐Ej)ες⌐⌐

x εε⌐
v Y ϑ⌐⌐f ⌜ +∑

⌜ς⌐⌐⌐⌜+⌜ς⌐⌐⌜=⌜ς⌜⌜ϑ⌐⌐⌐⌜+⌜ϑ⌐⌐⌜=⌜ϑ⌜⌜ς⌐⌐⌐⌜+⌜ϑ⌐⌐⌐⌜≥1

⌜vj(ες⌐⌐⌐
x Y ϑ⌐⌐⌐Ej)ες⌐⌐

x εε
v Y

ϑ⌐⌐f ⌜.
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The first term is similar to previous terms in [Ejεvj ,ε
ς
xε

ε
v Y ϑ]f , and is in fact better because

it has two fewer εv derivatives. The second term experiences a linear growth of ⌜v⌜. This
growth however causes no loss of v-weight, since ⌜⇁′′⌜ + ⌜ω′′⌜ ≤ ⌜⇁⌜ + ⌜ω⌜ − 1, gaining ⌝v⌝⌐4 in the
v-weight. The lemma follows. ↭
Lemma 9.7. For ⌜⇁⌜ + ⌜ς⌜ + ⌜ω⌜ ≤ N , we have

ϑ2(⌜ε⌜+⌜ε⌐⌜)⌜3RQ,↽⌐2⌜ς⌐⌜⌐2⌜ε⌐⌜,3
ς+ς⌐,ε+ε⌐,ϑ ⧖ ϑ1⌜3⌝f⌝⌝E(ϖ)Nmax⋊2

⌝f⌝2⌝D(ϖ)N

+ ϑ1⌜3⌝f⌝⌝EN
⌝f⌝⌝D(ϖ)N

⌝f⌝⌝DNmax⋊2

when either (1) ⌜⇁′⌜ ≤ 1 and ς′ = 0, or (2) ⇁′ = 0, ⌜ς′⌜ ≤ 2.
Proof. Using Lemma 4.9 with 0 = 0ς,ε,ϑ, we bound

⎢⊎
T3⋊R3

e2(q+1)ϱw2ες
xε

ε
v Y

ϑfες
xε

ε
v Y

ϑ%(f, f) dv dx⎢
⧖ ∑
⌜ς⌐⌜+⌜ς⌐⌐⌜≤⌜ς⌜⌜ε⌐⌜+⌜ε⌐⌐⌜≤⌜ε⌜⌜ϑ⌐⌜+⌜ϑ⌐⌐⌜≤⌜ϑ⌜

⌝ες
xε

ε
v Y

ϑf⌝!x,v(↽ω,ε,ϑ ,⇀) ⟦⌝ες⌐
x εε⌐

v Y ϑ⌐f⌝L2
x,v
⌝ες⌐⌐

x εε⌐⌐
v Y ϑ⌐⌐f⌝!x,v(↽ω,ε,ϑ ,⇀)

+⌝ες⌐
x εε⌐

v Y ϑ⌐f⌝!x,v⌝ες⌐⌐
x εε⌐⌐

v Y ϑ⌐⌐f⌝L2
v(↽ω,ε,ϑ ,⇀)⟦

noting the norms involving ες⌐
x εε⌐

v Y ϑ⌐f can have any weight in v. Therefore, by definition,
we have

ϑϑ2⌜ε⌜⌜3RQ,↽,3
ς,ε,ϑ = ϑϑ2⌜ε⌜⌜3⎢⊎

T3⋊R3
e2(q+1)ϱw2ες

xε
ε
v Y

ϑfες
xε

ε
v Y

ϑ%(f, f) dv dx⎢
⧖ ϑ1⌜3⌝f⌝⌝E(ϖ)Nmax⋊2

⌝f⌝2⌝D(ϖ)N

+ ϑ1⌜3⌝f⌝⌝EN
⌝f⌝⌝D(ϖ)N

⌝f⌝⌝DNmax⋊2 .

By definition of the energy and dissipation norms, the same bounds hold for RQ,↽⌐2⌜ς⌐⌜⌐2⌜ε⌐⌜,3
ς+ς⌐,ε+ε⌐,ϑ ,

upon assigning the respective v-weight and ϑ-scaling. ↭

9.3. Estimates on ZQ,↽
ς,ε,ϑ. Finally, in this section, we give bounds on ZQ,↽⌐2

ς,ε,ϑ , defined as
in Lemma 5.7, that appear in (5.22), noting the v-weight function is indexed at 0ς,ε,ϑ − 2.
Recalling the definition of ZQ,↽⌐2

ς,ε,ϑ from Lemma 5.7, we write

ZQ,↽⌐2
ς,ε,ϑ = ZQ,↽⌐2,1

ς,ε,ϑ +ZQ,↽⌐2,2
ς,ε,ϑ

where ZQ,↽⌐2,1
ς,ε,ϑ is defined by

ZQ,↽⌐2,1
ς,ε,ϑ = 2⊎

T3⋊R3
e2(q+1)ϱw2⌝v⌝⌐4(εxjε

ς
xε

ε
v Y

ϑf)εvjες
xε

ε
v Y

ϑ[Ejεvj
⌝
µ] dv dx

+⊎
T3⋊R3

e2(q+1)ϱw2⌝v⌝⌐4(εxjε
ς
xε

ε
v Y

ϑf)[E ⋅ ⋉v,εvjε
ς
xε

ε
v Y

ϑ]f dv dx

−⊎
T3⋊R3

e2(q+1)ϱw2⌝v⌝⌐4(εxjε
ς
xε

ε
v Y

ϑf)[E ⋅ v,εvjες
xε

ε
v Y

ϑ]f dv dx

+ ϑ⊎
T3⋊R3

e2(q+1)ϱw2⌝v⌝⌐4(εxjε
ς
xε

ε
v Y

ϑf)εvjες
xε

ε
v Y

ϑ%(f, f) dv dx
and ZQ,↽⌐2,2

ς,ε,ϑ is defined in a symmetric way, switching εxj and εvj in each of the integrals
above. Now observe that all the integral terms are estimated similarly, if not identically, as
already done for the similar integral terms in Lemma 9.5 (the first term above), Lemma 9.6
(the second and third), and Lemma 9.7 (the last), respectively. This completes the proof of
the claimed bounds on ZQ,↽⌐2

ς,ε,ϑ , and hence the proof of Theorem 9.1.
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10. Global existence of solutions

Theorem 10.1. Consider data as in Theorem 3.1. Then the unique smooth solution arising

from the given initial data is global in time. Moreover, the estimates (8.3) and (9.1) hold for

TB replaced by ∞.

Proof. Using a standard local existence and uniqueness result (suitably adapting [66]), we
can carry out a bootstrap argument.
Suppose there exists TB > 0 such that the solution f to (2.2a)–(2.2b) remains smooth in[0, TB) ⋊T3 ⋊R3 and satisfies the bootstrap assumptions (8.1) and (8.2). It su#ces to show

that in fact (8.1) and (8.2) hold with φ replaced by Cφ2, for some constant C > 0 independent
of φ and ϑ.

● The improvement for (8.1) follows from Theorem 9.1.● The improvement for (8.2) is an immediate consequence of Lemmas 9.3, 9.4 and the
bounds obtained in Theorem 9.1.

This closes the bootstrap argument and implies that the solution is global and remains unique
in the class of solutions obeying the bound (3.3a). Finally, since we have closed the bootstrap,
the bounds (8.3) and (9.1) follow from Theorems 8.1 and 9.1. ↭

11. Nonlinear density estimates: stretched exponential decay

In the next two section, we will turn to the proof of the stretched exponential decay.
Similarly as for the boundedness of the solution, the proof is split into two parts: the
nonlinear density estimates are treated in this section, and the nonlinear energy decay
estimates will be treated in Section 12.

We first point out a few key points for the density estimates, especially in contrast to the
bounds proven in Section 8:

(1) In order to prove the stretched exponential decay, we need to prove a density estimate
also with a stretched exponential decay factor; see e(t) factors in Theorem 11.1.

(2) We prove the estimate (11.2), which is of the same size for all p ∈ [2,∞]. This is in
contrast with the boundedness estimates for ↼⌜=0 in Section 8, where the L2

t estimate
has a weaker ϑ power (see (8.3)).
The main di$erence in the argument comes from the term IIk, where we crucially

rely on the fact that we are at a lower order, and that both the boundedness of the
higher order density estimates and the higher order energy estimates were already
established in the previous sections (see (8.3) and (9.1)).

(3) We need a decomposition of ↼⌜=0 = ↼(1)⌜=0 + ↼(2)⌜=0 : the piece ↼(2)⌜=0 is better in terms of the
size, and (its εx derivatives) obeys an O(φ2ϑ) instead of an O(φ2ϑ2⌜3) bound; the piece
↼(1)⌜=0 only obeys an O(φ2ϑ2⌜3) upper bound, but importantly one can also take L1

t norm
with the same upper bound.

This decomposition is important for closing the energy decay estimates in Section 12.

We put forth another bootstrap argument. For e(t) ∈ {e↼(φ1⌜3t)1⌜3 , e↼(φt)2⌜3}, introduce the
following bootstrap assumption:

sup
0≤t<TB

e(t)⌝f(t)⌝2⌝E(2)⌐1,1,0,0

+ ϑ1⌜3⩀ TB

0
e(τ)⌝f(τ)⌝2⌝D(2)⌐1,1,0,0

dτ ≤ φϑ2⌜3, (11.1)
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where ⌝ ⋅ ⌝⌝E(2)⌐1,1,0,0
and ⌝ ⋅ ⌝⌝D(2)⌐1,1,0,0

are defined as in (5.16) but with exponential weights e
q⌐ ⌜v⌜2

2

instead of e
q⌜v⌜2
2 (cf. (5.19)).

The main result of this section is the following.

Theorem 11.1. Consider data as in Theorem 3.1. Suppose there exists TB > 0 such that the

solution f to (2.2a)–(2.2b) satisfies the bootstrap assumption (11.1) in [0, TB) ⋊T3 ⋊R3.

Then, for e(t) ∈ {e↼(φ1⌜3t)1⌜3 , e↼(φt)2⌜3}, the following hold:

● For any p ∈ [2,∞], ↼⌜=0 obeys the bound

∑⌜ς⌜≤1 ⌝e
1⌜2(t)ες

x ↼⌜=0⌝2Lp
t ([0,TB);L2

x) ⧖ φ2ϑ2⌜3. (11.2)

● ↼⌜=0(t, x) admits a decomposition ↼⌜=0 = ↼(1)⌜=0 + ↼(2)⌜=0 such that

∑⌜ς⌜≤1 ⌝e
1⌜2(t)ες

x ↼
(1)⌜=0 ⌝2L1

t ([0,TB);L2
x) ⧖ φ2ϑ2⌜3, (11.3)

∑⌜ς⌜≤1 ⌝e
1⌜2(t)ες

x ↼
(2)⌜=0 ⌝2L2

t ([0,TB);L2
x) ⧖ φ2ϑ. (11.4)

As in Section 8, we split the density contribution into the terms Ik, IIk and IIIk as in (8.7).
Define N (1)k (t) ⌐= (Ik + IIk)(t), N (2)k (t) ⌐= IIIk(t), (11.5)

and, for e(τ) ∈ {e↼(φ1⌜3◁)1⌜3 , e↼(φ◁)2⌜3} and j ∈ {1,2}, define
M(j)

k (t) ⌐= e(τ)N (j)k (t). (11.6)

The density decomposition asserted in Theorem 11.1 is then defined as ↼(j)⌜=0 = ⊎k⌜=0 ↼(j)k eik⋉x,
where

↼(j)k (t) ⌐=N (j)k (t) +⩀ t

0
Gk(t − s)N (j)k (s) ds. (11.7)

Similarly as done before, we introduce

5e(t) ⌐= sup
◁∈[0,t]∑k⌜=0e(τ)⌜k⌜

2⌜↼(1)k ⌜2(τ) + (⩀ t

0
[∑
k⌜=0

e(τ)⌜k⌜2⌜↼(1)k ⌜2(τ)]1⌜2 dτ)2

+ ϑ⌐1⌜3 sup
◁∈[0,t]∑k⌜=0e(τ)⌜k⌜

2⌜↼(2)k ⌜2(τ) + ϑ⌐1⌜3⩀ t

0
∑
k⌜=0

e(τ)⌜k⌜2⌜↼(2)k ⌜2(τ) dτ.
(11.8)

The following are the main estimates that will be used to prove Theorem 11.1:

Proposition 11.2. For e(τ) ∈ {e↼(φ1⌜3◁)1⌜3 , e↼(φ◁)2⌜3}, the following hold for all t ∈ [0, TB):
sup
0≤◁≤t∑k⌜=0 ⌜k⌜

2⌜M(1)
k ⌜2(τ) + ⌟⩀ t

0
[∑
k⌜=0
⌜k⌜2⌜M(1)

k ⌜2(τ)]1⌜2 dτ]2 ⧖ φ2ϑ2⌜3 + φ5e(t) (11.9)

and

sup
0≤◁≤t∑k⌜=0 ⌜k⌜

2⌜M(2)⌜2(τ) +∑
k⌜=0⩀

t

0
⌜k⌜2⌜M(2)

k ⌜2(τ) dτ ⧖ φ2ϑ. (11.10)
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Proof of Theorem 11.1 assuming Proposition 11.2. First note that the bounds (11.9) and

(11.10) for ⌜M(j)
k (τ)⌜2 imply the same estimates for e(τ)⌜↼(j)k (τ)⌜2 using (11.7). For instance,

using the definitions of N (j)k ,M(j)
k and ↼(j)k in (11.5)–(11.7),

∑
k⌜=0

e(t)⌜k⌜2⌜↼(j)k (t)⌜2 ⧖∑
k⌜=0
⌜k⌜2⌜M(j)

k (t)⌜2 +∑
k⌜=0

e(t)⌜k⌜2[⩀ t

0
⌜Gk(t − τ)⌜⌜N (j)k ⌜(τ) dτ]2. (11.11)

Notice that by (7.3), choosing ϱ small depending on ϱ′′ so that

e(t)min{e⌐↼⌐⌐(φ1⌜3(t⌐◁))1⌜3 , e⌐↼⌐⌐(φ(t⌐◁))2⌜3} ⧖ e(τ), (11.12)

we can bound the last term in (11.11) by

∑
k⌜=0

e(t)⌜k⌜2[⩀ t

0
⌜Gk(t − τ)⌜⌜N (j)k ⌜(τ) dτ]2 ⧖∑

k⌜=0
[⩀ t

0
⌜k⌜⌐1⌝k(t − τ)⌝⌐2⌜k⌜⌜M(j)

k ⌜(τ) dτ]2
⧖ ∑

k⌜=0
⌜k⌜⌐2⌟⩀ t

0
⌝k(t − τ)⌝⌐2 dτ]2 sup

k⌐⌜=0 sup
◁ ⌐∈[0,t] ⌜k′⌜2⌜M(j)

k⌐ ⌜2(τ ′)
⧖ [∑

k⌜=0
⌜k⌜⌐4] sup

k⌐⌜=0 sup
◁ ⌐∈[0,t] ⌜k′⌜2⌜M(j)

k⌐ ⌜2(τ ′) ⧖ sup
k⌐⌜=0 sup

◁ ⌐∈[0,t] ⌜k′⌜2⌜M(j)
k⌐ ⌜2(τ ′).

(11.13)

Combining (11.11) and (11.13), and then using (11.9) and (11.10), we obtain, for j ∈ {1,2},
sup
◁∈[0,t]∑k⌜=0e(τ)⌜k⌜

2⌜↼(1)k (τ)⌜2 ⧖ φ2ϑ2⌜3 + φ5e(t), sup
◁∈[0,t]∑k⌜=0e(τ)⌜k⌜

2⌜↼(2)k (τ)⌜2 ⧖ φ2ϑ. (11.14)

We can control the L1
t 0

2
k norm of ⌜k⌜⌜↼(1)k ⌜ and the L2

t 0
2
k norm of ⌜k⌜⌜↼(2)k ⌜ in a similar manner.

Indeed, using (11.5)–(11.7) and then the bounds for Gk in (7.3),

⌟⩀ t

0
[∑
k⌜=0

e(τ)⌜k⌜2⌜↼(1)k (τ)⌜2]1⌜2 dτ]2

⧖ ⌟⩀ t

0
[∑
k⌜=0
⌜k⌜2⌜M(1)

k (τ)⌜2]1⌜2 dτ]2 + ⌟⩀ t

0
[∑
k⌜=0

e(τ)⌜k⌜2(⩀ ◁

0
⌜Gk(τ − s)⌜⌜N (1)k ⌜(s) ds)2]1⌜2 dτ]2

⧖ ⌟⩀ t

0
[∑
k⌜=0
⌜k⌜2⌜M(1)

k (τ)⌜2]1⌜2 dτ]2 + ⌟⩀ t

0
[∑
k⌜=0
[⩀ ◁

0
⌜k⌜⌐1⌝k(τ − s)⌝⌐2⌜k⌜⌜M(j)

k ⌜(s) ds]2]1⌜2 dτ]2.
To control the final term, we use Minkowski’s inequality to exchange the order of L1

s and 02k,
and then use Fubini’s theorem to exchange the order of L1

t and L1
s so as to obtain

⌟⩀ t

0
[∑
k⌜=0
[⩀ ◁

0
⌜k⌜⌐1⌝k(τ − s)⌝⌐2⌜k⌜⌜M(1)

k ⌜(s) ds]2]1⌜2 dτ]2

⧖ ⌟⩀ t

0
⩀ ◁

0
[∑
k⌜=0
⌜k⌜⌐2⌝k(τ − s)⌝⌐4⌜k⌜2⌜M(1)

k ⌜2(s)]1⌜2 ds dτ]2

⧖ ⌟⩀ t

0
⩀ ◁

0
⌝τ − s⌝⌐2[∑

k⌜=0
⌜k⌜⌐2⌜k⌜2⌜M(1)

k ⌜2(s)]1⌜2 ds dτ]2

⧖ ⌟⩀ t

0
[∑
k⌜=0
⌜k⌜⌐2⌜k⌜2⌜M(1)

k ⌜2(s)]1⌜2 ds]2 ⧖ ⌟⩀ t

0
[∑
k⌜=0
⌜k⌜2⌜M(1)

k ⌜2(s)]1⌜2 ds]2.
Thus, using also (11.9), we have obtained

⌟⩀ t

0
[∑
k⌜=0

e(τ)⌜k⌜2⌜↼(1)k (τ)⌜2]1⌜2 dτ]2 ⧖ φ2ϑ2⌜3 + φ5e(t). (11.15)
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A similar but slightly simpler argument also allows us to bound the L2
t 0

2
k norm of

e1⌜2(τ)⌜k⌜⌜↼(2)k ⌜ using (11.10) so that we have

⩀ t

0
∑
k⌜=0

e(τ)⌜k⌜2⌜↼(2)k (τ)⌜2 dτ ⧖ φ2ϑ. (11.16)

Recalling the definition of 5e in (11.8) and using (11.14), (11.15) and (11.16), we obtain

5e(t) ⧖ φ2ϑ2⌜3 + φ5e(t),
which implies

5e(t) ⧖ φ2ϑ2⌜3. (11.17)

At this point, using (11.17), we easily conclude Theorem 11.1:

● Plugging (11.17) back into (11.15) and (11.16) yields the estimates (11.3) and (11.4).● Plugging (11.17) into (11.14) yields the p =∞ case of (11.2).● Finally, the p ∈ [2,∞) cases of (11.2) can be obtained by interpolating between the
p =∞ case and the bounds (11.3) and (11.4). ↭

The remainder of this section will be devoted to the proof of Proposition 11.2.

11.1. Initial data contribution. By (8.8) with N1 = N2 = 1, we have

∑
k⌜=0

e(t)⌜k⌜2⌜Ik(t)⌜2 ⧖ φ2ϑ2⌜3⌝t⌝⌐4,
which obeys the bounds required in (11.9).

11.2. Nonlinear interaction I. Recall the decomposition in (8.9); as in Section 8.2, we
only consider the term IIk,2, as the term IIk,1 is easier.

For the term IIk,2, we prove below the L∞t and L1
t according to (11.9).

Proving the L∞ bound. Arguing as in (8.15), with (N1,N2) = (1, 0) and (N ′1,N ′2) = (5, 2),
and taking into the extra stretched exponential decay given by (6.14) to obtain

⌜k⌜⌜IIk,2(t)⌜ ⧖∑
l⌜=0⩀

t

0
⌜l⌜⌐1⌜k⌜⌝k − l⌝⌐5⌝kt − lτ⌝⌐2

⋊min{e⌐↼⌐(φ1⌜3(t⌐◁))1⌜3 , e⌐↼⌐(φ(t⌐◁))2⌜3}⌜↼̂l(τ)⌜⌝f̂k⌐l(τ)⌝⌝G⌐Nmax⋊2 dτ

(11.18)

where

⌝f̂k(τ)⌝⌝G⌐N ⌐=∑⌜ς⌜+⌜ϑ⌜≤N
1≤⌜ε⌜≤2

ϑ(⌜ε⌜⌐1)⌜3⌟⌝⌝v⌝10(ες
xε

ε
v Y

ϑf)⌞k(τ)⌝L2
v
+ ⌝⌝v⌝4e 1

4
q0⌜v⌜2(ες

xε
ε
v f)⌞k(τ)⌝L2

v
], (11.19)

noting the last additional term (compared with (8.13)) with the exponential weight e
1
4
q0⌜v⌜2

slower than what is encoded in the energy and dissipation norms (5.16). See also Remark
6.3. In particular, we note that

∑
k

⌝f̂k(t)⌝2⌝G⌐Nmax⋊2
⧖ ϑ⌐2⌜3⌝f(t)⌝2⌝E(2)⌐Nmax⋊2

⧖ ϑ⌐2⌜3⌝f(t)⌝2⌝E(2)Nmax⋊2
⧖ φ (11.20)

and ∑
k⌜=0

e(t)⌜k⌜2⌝f̂k(t)⌝2⌝G⌐0 ⧖ ϑ⌐2⌜3e(t)⌝f(t)⌝2⌝E(2)⌐1,1,0,0

⧖ φ, (11.21)

where we used, respectively, the energy bounds (9.1) and the bootstrap assumption (11.1).
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Next, use (11.12) with ϱ′′ replaced by ϱ′, and notice that ⌜k⌜⌜l⌜⌐1⌝k − l⌝⌐1 ⧖ 1. We obtain

e1⌜2(t)⌜k⌜⌜IIk,2(t)⌜ ⧖ ∑
l⌜=0⩀

t

0
⌝kt − lτ⌝⌐2e1⌜2(τ)⌜↼̂l(τ)⌜⌝k − l⌝⌐4⌝f̂k⌐l(τ)⌝⌝GNmax⋊2 dτ. (11.22)

Using (11.20), the Cauchy–Schwarz inequality in τ , and the Young’s convolution inequality
for the sums, we obtain

∑
k⌜=0

e(t)⌜k⌜2⌜IIk,2(t)⌜2
⧖ ∑

k⌜=0
⌟∑
l⌜=0
(⩀ t

0
e(τ)⌜↼̂l(τ)⌜2 dτ)1⌜2(⩀ t

0
⌝k − l⌝⌐8⌝kt − lτ⌝⌐4⌝f̂k⌐l(τ)⌝2⌝GNmax⋊2 dτ)1⌜2]2

⧖ φ∑
k⌜=0
⌟∑
l⌜=0
(⩀ t

0
e(τ)⌜↼̂l(τ)⌜2 dτ)1⌜2(⩀ t

0
⌝k − l⌝⌐8⌝kt − lτ⌝⌐4 dτ)1⌜2]2

⧖ φ(∑
l⌜=0⩀

t

0
e(τ)⌜↼̂l(τ)⌜2 dτ)[∑

k

⌝k⌝⌐4]2 ⧖ φ(∑
l⌜=0⩀

t

0
e(τ)⌜↼̂l(τ)⌜2 dτ).

(11.23)

It remains to check that

∑
l⌜=0⩀

t

0
e(τ)⌜l⌜2⌜↼̂l(τ)⌜2 dτ ⧖ 5e(t). (11.24)

Indeed, the bound for ⊎l⌜=0 ∫ t
0 e(τ)⌜l⌜2⌜↼̂(2)l (τ)⌜2 dτ is immediate from the definition (11.8),

while that for ⊎l⌜=0 ∫ t
0 e(τ)⌜l⌜2⌜↼̂(1)l (τ)⌜2 dτ follows from interpolating between the L1

t and the
L∞t bounds in (11.8).

Proving the L1 bound. To obtain the L1
t bound, we need to estimate

⩀ t

0
⌟∑
k⌜=0
(∑

l⌜=0⩀
s

0
e1⌜2(s)⌜k⌜⌜l⌜⌐1⌜↼̂l⌜(τ)⎢⩀

R3
Sk(s − τ)[⌞⋉vfk⌐l(τ)]⌝µdv⎢dτ)2]1⌜2 ds. (11.25)

To estimate (11.25), we split the τ -integral into ⌜lτ ⌜ < ⌜ks⌜⌜2 and ⌜lτ ⌜ ≥ ⌜ks⌜⌜2. In the latter
integral, we further split the sums into the l ⌜= k and the l = k parts.

First, consider the case ⌜lτ ⌜ < ⌜ks⌜⌜2. We estimate the integrand as in (11.22), i.e.

e1⌜2(s)⌜k⌜⌜l⌜⌐1⌜↼̂l⌜(τ)⎢⩀
R3

Sk(s − τ)[⌞⋉vfk⌐l(τ)]⌝µdv⎢
⧖ ⌝ks − lτ⌝⌐2e1⌜2(τ)⌜↼̂l(τ)⌜⌝k − l⌝⌐4⌝f̂k⌐l(τ)⌝⌝G⌐Nmax⋊2

(11.26)

with ⌝f̂k⌐l(τ)⌝⌝G⌐Nmax⋊2 defined as in (11.19). Since we imposed ⌜lτ ⌜ < ⌜ks⌜⌜2, we have ⌝ks−lτ⌝⌐2 ⧖
⌝ks⌝⌐2 ⧖ ⌝ks⌝⌐5⌜4⌝lτ⌝⌐3⌜4 ⧖ ⌝s⌝⌐5⌜4⌝τ⌝⌐3⌜4. It thus su#ces to bound

⌟⩀ t

0
[∑
k⌜=0
(∑
l⌜=0⩀

s

0
⌝τ⌝⌐3⌜4e(τ)⌜↼̂l(τ)⌜⌝k − l⌝⌐4⌝f̂k⌐l(τ)⌝⌝G⌐Nmax⋊2 dτ)2]1⌜2⌝s⌝⌐5⌜4 ds]2.
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Note that ⌝f̂k⌐l(τ)⌝⌝G⌐Nmax⋊2 ⧖ φ1⌜2 by (11.20). Then, integrating the ⌝s⌝⌐5⌜4 factor, and using

the Cauchy–Schwarz inequality in τ and the Young’s convolution inequality for the sums,

⌟⩀ t

0
[∑
k⌜=0
(∑
l⌜=0⩀

s

0
⌝τ⌝⌐3⌜4e1⌜2(τ)⌜↼̂l(τ)⌜⌝k − l⌝⌐4⌝f̂k⌐l(τ)⌝⌝G⌐Nmax⋊2 dτ)2]1⌜2⌝s⌝⌐5⌜4 ds]2

⧖ φ∑
k⌜=0
(∑
l⌜=0⩀

t

0
⌝τ⌝⌐3⌜4e1⌜2(τ)⌜↼̂l(τ)⌜⌝k − l⌝⌐4 dτ)2

⧖ φ∑
k⌜=0
(∑

l⌜=0
(⩀ t

0
e(τ)⌜↼̂l(τ)⌜2 dτ)1⌜2(⩀ t

0
⌝τ⌝⌐3⌜2⌝k − l⌝⌐8 dτ)1⌜2)2

⧖ φ(∑
l⌜=0⩀

t

0
e(τ)⌜↼̂l(τ)⌜2 dτ)(∑

k

⌝k⌝⌐4)2 ⧖ φ∑
l⌜=0⩀

t

0
e(τ)⌜↼̂l(τ)⌜2 dτ ⧖ φ5e(t),

(11.27)

where at the end we used (11.24).
Next, we turn to the case ⌜lτ ⌜ ≥ ⌜ks⌜⌜2 and k ⌜= l. Here, we bound the integrand di$erently:

starting with (8.15) but taking instead (N1,N2) = (4,3) and (N ′1,N ′2) = (1,0), we have

e1⌜2(s)⌜k⌜⌜l⌜⌐1⌜↼̂l⌜(τ)⎢⩀
R3

Sk(s − τ)[⌞⋉vfk⌐l(τ)]⌝µdv⎢
⧖ ⌜l⌜⌐5⌜k⌜⌝k − l⌝⌐1⌝lτ⌝⌐3e1⌜2(τ)(⌜l⌜4⌝lτ⌝3⌜↼̂l(τ)⌜)(⌜k − l⌜⌝f̂k⌐l(τ)⌝⌝G⌐0),

(11.28)

where ⌝f̂k⌐l(τ)⌝⌝G⌐0 is defined as in (11.19) with N = 0. Observe that ⌜k⌜⌜l⌜⌐1⌝k − l⌝⌐1 ⧖ 1, and
that since ⌜lτ ⌜ ≥ ⌜ks⌜⌜2, it also holds that ⌝lτ⌝⌐3 ⧖ ⌝ks⌝⌐3⌜2⌝lτ⌝⌐3⌜2 ⧖ ⌝s⌝⌐3⌜2⌝τ⌝⌐3⌜2. Hence, it
su#ces to bound the following term:

⌟⩀ t

0
[∑
k⌜=0
(∑
l⌜=0,k⩀

s

0
⌜l⌜⌐4⌝s⌝⌐3⌜2⌝τ⌝⌐3⌜2e1⌜2(τ)(⌜l⌜4⌝lτ⌝3⌜↼̂l(τ)⌜)⌜k − l⌜⌝f̂k⌐l(τ)⌝⌝G⌐0 dτ)2]1⌜2 ds]2

⧖ ∑
k⌜=0
(∑
l⌜=0,k⩀

t

0
⌜l⌜⌐4⌝τ⌝⌐3⌜2e1⌜2(τ)(⌜l⌜4⌝lτ⌝3⌜↼̂l(τ)⌜)⌜k − l⌜⌝f̂k⌐l(τ)⌝⌝G⌐0 dτ)2(⩀

t

0
⌝s⌝⌐3⌜2 ds)2

⧖ ∑
k⌜=0
⌟ ∑
l⌜=0,k
(⩀ t

0
⌜l⌜⌐8⌝τ⌝⌐3⌜2(⌜l⌜8⌝lτ⌝6⌜↼̂l(τ)⌜2) dτ)1⌜2(⩀ t

0
⌝τ⌝⌐3⌜2e(τ)⌜k − l⌜2⌝f̂k⌐l(τ)⌝2⌝G⌐0 dτ)1⌜2]

2

⧖ ∑
k⌜=0
⌟ ∑
l⌜=0,k
⌜l⌜⌐4(sup

l⌐⌜=0 sup
◁ ⌐∈[0,t] ⌜l′⌜4⌝l′τ⌝3⌜↼̂l⌐(τ ′)⌜)(⩀

t

0
⌝τ⌝⌐3⌜2e(τ)⌜k − l⌜2⌝f̂k⌐l(τ)⌝2⌝G⌐0 dτ)1⌜2]

2

⧖ φϑ1⌜3(∑
l⌜=0
⌜l⌜⌐4)2(∑

k⌜=0⩀
t

0
⌝τ⌝⌐3⌜2e(τ)⌜k⌜2⌝f̂k(τ)⌝2⌝G⌐0 dτ)

⧖ φϑ1⌜3( sup
◁ ⌐∈[0,t]∑k⌜=0e(τ

′)⌜k⌜2⌝f̂k(τ ′)⌝2⌝G⌐0)⩀
t

0
⌝τ⌝⌐3⌜2 dτ

⧖ φϑ1⌜3 sup
◁ ⌐∈[0,t]∑k⌜=0e(τ

′)⌜k⌜2⌝f̂k(τ ′)⌝2⌝G⌐0 ⧖ φ,
where we used the Cauchy–Schwarz and the Young’s convolution inequalities, respectively, for
the τ -integral and for the sums, as well as bounded supl⌐⌜=0 sup◁ ⌐∈[0,t] ⌜l′⌜4⌝l′τ⌝3⌜↼̂l⌐(τ ′)⌜ ⧖ φϑ1⌜3
using (8.3). Finally, we used (11.21) in the very last inequality.
The case where ⌜lτ ⌜ ≥ ⌜ks⌜⌜2 with k = l has to be treated di$erently, since in this case f̂k⌐l

corresponds to the zeroth mode and does not experience enhanced dissipation. We bound
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the integrand using (11.26). Considering only k = l, it thus su#ces to bound

⌟⩀ t

0
(∑
k⌜=0
(⩀ s

0
⌜k⌜⌐1⌝k(s − τ)⌝⌐2e1⌜2(τ)⌜k⌜⌜↼̂k(τ)⌜⌝f̂0(τ)⌝⌝G⌐Nmax⋊2 dτ)2)1⌜2 ds]2.

We use Minkowski’s inequality so that the 02 sum in k is taken first, and then use Fubini’s
theorem to integrate out the ⌝s − τ⌝⌐2 factor. More precisely,

⌟⩀ t

0
(∑
k⌜=0
(⩀ s

0
⌜k⌜⌐1⌝k(s − τ)⌝⌐2e1⌜2(τ)⌜k⌜⌜↼̂k(τ)⌜⌝f̂0(τ)⌝⌝G⌐Nmax⋊2 dτ)2)1⌜2 ds]2

⧖ ⌟⩀ t

0
⩀ s

0
(∑
k⌜=0
⌜k⌜⌐2⌝k(s − τ)⌝⌐4e(τ)⌜k⌜2⌜↼̂k(τ)⌜2⌝f̂0(τ)⌝2⌝G⌐Nmax⋊2

)1⌜2 dτ ds]2

⧖ ⌟⩀ t

0
(∑
k⌜=0
⌜k⌜⌐2e(τ)⌜k⌜2⌜↼̂k(τ)⌜2⌝f̂0(τ)⌝2⌝G⌐Nmax⋊2

)1⌜2(⩀ t

◁
⌝s − τ⌝⌐2 ds) dτ]2

⧖ ⌟⩀ t

0
[∑
k⌜=0

e(τ)⌜k⌜2⌜↼̂k(τ)⌜2]1⌜2⌝f̂0(τ)⌝⌝G⌐Nmax⋊2 dτ]
2

.

(11.29)

To proceed, we split ↼̂k = ↼̂(1)k + ↼̂(2)k as in (11.7), so that by using Hölder’s inequality, (11.20),
and (11.8), we have

⌟⩀ t

0
[∑
k⌜=0

e(τ)⌜k⌜2⌜↼̂k(τ)⌜2]1⌜2⌝f̂0(τ)⌝⌝G⌐Nmax⋊2 dτ]
2

⧖ (⩀ t

0
[∑
k⌜=0

e(τ)⌜k⌜2⌜↼̂(1)k (τ)⌜2]1⌜2 dτ)2( sup
◁ ⌐∈[0,t] ⌝f̂0(τ ′)⌝⌝G⌐Nmax⋊2)

2

+ (⩀ t

0
∑
k⌜=0

e(τ)⌜k⌜2⌜↼̂(2)k (τ)⌜2 dτ)(⩀ t

0
⌝f̂0(τ)⌝2⌝G⌐Nmax⋊2

dτ) ⧖ φ5e(t).
(11.30)

Combining all the above cases, we have thus proven the bound (11.9) for the term (11.25).

11.3. Nonlinear interaction II. Finally, we prove the bounds for IIIk(t) corresponding to
those required in (11.10).
We argue as in (8.36) with N1 = 1, N2 = 0, but also take into account the stretched

exponential decay given by (6.13) to obtain

⌜k⌜⎢⩀
R3

Sk(t − τ)[(⟧%(f, f))k(τ)]⌝µdv⎢
⧖min{e⌐↼⌐(φ1⌜3(t⌐◁))1⌜3 , e⌐↼⌐(φ(t⌐◁))2⌜3} ∑⌜ς⌜=1, ⌜ε⌜≤1

ϑ ⌜ε⌜⌜3⌝⌝v⌝2e 1
4
q0⌜v⌜2[ες

xε
ε
v (%(f, f))]⌞k(τ)⌝L2

v
.

To control the %(f, f) term, we argue as in (8.38), (8.39), with the help of Lemma 4.10,
except for noticing that, importantly, there is exactly one factor with a εx derivative. As in
(8.38), (8.39), we still put a factor with at least one εv derivative in the ⌟D norm, and another
factor in the ⌟E norm. We then put the factor with the εx derivative in L2

x, and the other
factor will be bounded in L∞x together with Sobolev embedding. The factor with exactly one

εx derivative can then by put into either that ⌟E(2)⌐1,1,0,0 or the ⌟D(2)⌐1,1,0,0 norm. Hence, we have

∑
k⌜=0 ∑⌜ς⌜=1, ⌜ε⌜≤1

ϑ2⌜ε⌜⌜3⌝⌝v⌝2e 1
4
q0⌜v⌜2[ες

xε
ε
v (%(f, f))]⌞k(τ)⌝2L2

v

⧖ ϑ⌐4⌜3(⌝f(τ)⌝2⌝E(2)⌐Nmax⋊2
⌝f(τ)⌝2⌝D(2)⌐1,1,0,0

+ ⌝f(τ)⌝2⌝D(2)⌐Nmax⋊2
⌝f(τ)⌝2⌝E(2)⌐1,1,0,0

). (11.31)
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Therefore, taking e(t) ∈ {e↼(φ1⌜3t)1⌜3 , e↼(φt)2⌜3}, noting
e(t)min{e⌐↼⌐(φ1⌜3(t⌐◁))1⌜3 , e⌐↼⌐(φ(t⌐◁))2⌜3} ⧖ e(τ)min{e⌐(↼⌐⌜2)(φ1⌜3(t⌐◁))1⌜3 , e⌐(↼⌐⌜2)(φ(t⌐◁))2⌜3},

and using the Cauchy–Schwarz inequality in τ , we obtain

∑
k⌜=0

e(t)⌜k⌜2⌜IIIk(t)⌜2 = ϑ2∑
k⌜=0

e(t)⌜k⌜2⎢⩀ t

0
⩀
R3

Sk(t − τ)[(⟧%(f, f))k(τ)]⌝µdv dτ ⎢2

⧖ ϑ2∑
k⌜=0

e(t)⌜k⌜2⩀ t

0
e(↼⌐⌜2)(φ1⌜3(t⌐◁))1⌜3 ⎢⩀

R3
Sk(t − τ)[(⟧%(f, f))k(τ)]⌝µdv⎢2 dτ

⋊⩀ t

0
e⌐(↼⌐⌜2)(φ1⌜3(t⌐◁))1⌜3 dτ

⧖ ϑ5⌜3∑
k⌜=0

e(t)⌜k⌜2⩀ t

0
e(↼⌐⌜2)(φ1⌜3(t⌐◁))1⌜3 ⎢⩀

R3
Sk(t − τ)[(⟧%(f, f))k(τ)]⌝µdv⎢2 dτ

⧖ ϑ1⌜3 sup
◁ ⌐∈[0,t] ⌝f(τ ′)⌝2⌝E(2)⌐Nmax⋊2 ⩀

t

0
e(τ)e⌐(↼⌐⌜2)(φ1⌜3(t⌐◁))1⌜3⌝f(τ)⌝2⌝D(2)⌐1,1,0,0

dτ

+ ϑ1⌜3 sup
◁ ⌐∈[0,t]e(τ ′)⌝f(τ ′)⌝2⌝E(2)⌐1,1,0,0

⩀ t

0
e⌐(↼⌐⌜2)(φ1⌜3(t⌐◁))1⌜3⌝f(τ)⌝2⌝D(2)⌐Nmax⋊2

dτ.

By the energy bound (9.1) and then the bootstrap assumption (11.1), this implies

∑
k⌜=0

e(t)⌜k⌜2⌜IIIk(t)⌜2 ⧖ φϑ ⩀ t

0
e(τ)⌝f(τ)⌝2⌝D(2)⌐1,1,0,0

dτ + φϑ2⌜3 sup
◁ ⌐∈[0,t]e(τ ′)⌝f(τ ′)⌝2⌝E(2)⌐1,1,0,0

⧖ φ2ϑ4⌜3.
An identical argument, using additionally Fubini’s theorem, gives the desired L2

t bound:

⩀ t

0
∑
k⌜=0

e(s)⌜k⌜2⌜IIIk(s)⌜2 ds
⧖ φϑ ⩀ t

0
(⩀ t

◁
e⌐(↼⌐⌜2)(φ1⌜3(s⌐◁))1⌜3 ds)[e(τ)⌝f(τ)⌝2⌝D(2)⌐1,1,0,0

+ ⌝f(τ)⌝2⌝D(2)⌐Nmax⋊2
] dτ

⧖ φϑ2⌜3⩀ t

0
[e(τ)⌝f(τ)⌝2⌝D(2)⌐1,1,0,0

+ ⌝f(τ)⌝2⌝D(2)⌐Nmax⋊2
] dτ

⧖ φ2ϑ.
This ends the proof of Proposition 11.2, and thus of Theorem 11.1.

12. Nonlinear energy decay

In this section, we establish the nonlinear energy decay estimates for the full nonlinear
Vlasov–Poisson–Landau equation (2.2a)–(2.2b). Throughout this section, we shall use primed
energy and dissipation norms ⌝ ⋅ ⌝⌝E(2)⌐∗,∗,0,0 and ⌝ ⋅ ⌝⌝D(2)⌐∗,∗,0,0 , which are defined as in (5.16) with the

primed exponential weights eq
⌐⌜v⌜2 for q′ = 1

2q (cf. (5.19)).
The main result of this section is the following.

Theorem 12.1. Consider data as in Theorem 3.1. Then, the following hold:

(1) The energy of f decays with the following stretched exponential rate:

sup
0≤◁<∞ e↼(φ◁)2⌜3⌝f(τ)⌝2⌝E(2)⌐0,0,0,0

+ ϑ1⌜3⩀ ∞
0

e↼(φ◁)2⌜3⌝f(τ)⌝2⌝D(2)⌐0,0,0,0

dτ ⧖ φ2ϑ2⌜3.
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(2) The energy of ⋉xf decays with the following enhanced stretched exponential rate:

sup
0≤◁<∞e(τ)⌝f(τ)⌝2⌝E(2)⌐1,1,0,0

+ ϑ1⌜3⩀ ∞
0

e(τ)⌝f(τ)⌝2⌝D(2)⌐1,1,0,0

dτ ≤ φϑ2⌜3,

for e(t) ∈ {e↼(φ1⌜3t)1⌜3 , e↼(φt)2⌜3}.
12.1. Preliminary energy estimates. The first step in the proof of Theorem 12.1 is the
following energy estimates for the lowest order energies.

Proposition 12.2. The following energy estimates hold for e(t) ∈ {e↼(φ1⌜3t)1⌜3 , e↼(φt)2⌜3}:
d

dt
(e1+⌝t⌝⋊1⌝f(t)⌝2⌝E(2)⌐0,0,0,0

) + ↽ϑ1⌜3⌝f(t)⌝2⌝D(2)⌐0,0,0,0

+ ⌝t⌝⌐2⌝f(t)⌝2⌝E(2)⌐0,0,0,0⧖ ⌝↼⌜=0(t)⌝4L2
x
+ ϑ1⌜3⌝f(t)⌝⌝E(2)⌐0,0,0,0

⌝f(t)⌝⌝D(2)⌐0,0,0,0
⌝f(t)⌝⌝DNmax⋊2

+min{⌝f(t)⌝⌝E(2)⌐0,0,0,0
, ⌝f(t)⌝⌝D(2)⌐0,0,0,0

}⌝↼⌜=0(t)⌝L2
x
,

(12.1)

and

d

dt
(e1+⌝t⌝⋊1⌝f(t)⌝2⌝E(2)⌐1,1,0,0

) + ↽ϑ1⌜3⌝f(t)⌝2⌝D(2)⌐1,1,0,0

+ ⌝t⌝⌐2⌝f(t)⌝2⌝E(2)⌐1,1,0,0⧖ ⌝↼⌜=0(t)⌝4L2
x
+ ϑ1⌜3⌝f(t)⌝⌝E(2)⌐1,1,0,0

⌝f(t)⌝⌝D(2)⌐1,1,0,0
⌝f(t)⌝⌝DNmax⋊2

+min{⌝f(t)⌝⌝E(2)⌐1,1,0,0
, ⌝f(t)⌝⌝D(2)⌐1,1,0,0

} ∑⌜ς⌜≤1 ⌝ε
ς
x ↼⌜=0(t)⌝L2

x
.

(12.2)

Proof. The proof is similar to that of Theorem 9.1 in Section 9, except that we use di$erent
bounds for ⌜c⌜2 and for the remainder terms ⌟Rς,0,0.

For the c term, we simply use (9.4) and that E = ⋉!⌐1↼⌜=0 to bound

⌜c⌜(t) ≤ ⩀
R3
⌜E⌜2(t, x)dx ⧖ ⌝↼⌜=0(t)⌝2L2

x
.

We then turn to the bounds for ⌟Rς,ε,ϑ. Here, we take ⌟Rς,ε,ϑ to be as in the ◁ = 2 case in
Proposition 5.11, except that the eq⌜v⌜ϖ weights are replaced by eq

⌐⌜v⌜ϖ with q′ = 1
2q.

In view of the proof of Proposition 9.2, with N = 0 and N = 1, we first note the following
bounds on the inhomogeneous terms ⌟Rς,0,0:

⌟R0,0,0 ⧖ φ1⌜2⌝t⌝⌐2⌝f(t)⌝2⌝E(2)⌐0,0,0,0

+ φ1⌜2ϑ2⌜3⌝f(t)⌝2⌝D(2)⌐0,0,0,0

+ ϑ1⌜3⌝f(t)⌝⌝E(2)⌐0,0,0,0
⌝f(t)⌝⌝D(2)⌐0,0,0,0

⌝f(t)⌝⌝D(2)⌐Nmax⋊2+min{⌝f(t)⌝⌝E(2)⌐0,0,0,0
, ⌝f(t)⌝⌝D(2)⌐0,0,0,0

}⌝↼⌜=0(t)⌝L2
x
,

and

∑⌜ς⌜=1 ⌟Rς,0,0 ⧖ φ1⌜2⌝t⌝⌐2⌝f(t)⌝2⌝E(2)⌐1,1,0,0

+ φ1⌜2ϑ2⌜3⌝f(t)⌝2⌝D(2)⌐1,1,0,0

+ ϑ1⌜3⌝f(t)⌝⌝E(2)⌐1,1,0,0
⌝f(t)⌝⌝D(2)⌐1,1,0,0

⌝f(t)⌝⌝D(2)⌐Nmax⋊2+min{⌝f(t)⌝⌝E(2)⌐1,1,0,0
, ⌝f(t)⌝⌝D(2)⌐1,1,0,0

} ∑⌜ς⌜≤1 ⌝ε
ς
x ↼⌜=0(t)⌝L2

x
.

Using the above estimates, the proposition thus follows in a similar manner as in deriving
(9.6). ↭
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12.2. Decay estimates. We now give the proof of Theorem 12.1. We shall only prove the
enhanced decay rate, part (2) in the theorem; the other part is similar, if not simpler.

Applying Lemma A.1. We proceed by a bootstrap argument. Assume that there is TB > 0
such that the bootstrap assumption (11.1) holds. In particular, we can use the bounds derived
in Theorem 11.1.

We will use the Strain–Guo type estimate in Lemma A.1. For the remainder of the proof,
fix either e(t) = e↼(φt)2⌜3 or e(t) = e↼(φ1⌜3t)2⌜3 . Define g and h so that

⩀
R3

g2(t, v) dv = e1+⌝t⌝⋊1⌝f(t)⌝2⌝E(2)⌐1,1,0,0

, ⩀
R3

h2(t, v) dv = e1+⌝t⌝⋊1⌝f(t)⌝2⌝D(2)⌐1,1,0,0

, (12.3)

noting that the factor e1+⌝t⌝⋊1 is harmless. Note also that the primed exponential weights
eq
⌐⌜v⌜2 are used. Specifically,

g2(t, v) ⌐= ∑⌜ς⌜=1 ⌟A0 ∑⌜ς⌐⌜≤1⩀T3
⌝v⌝4M⌐4⌜ς⌐⌜⌜ες+ς⌐

x f ⌜2 dx + ϑ1⌜3⩀
T3
⌝v⌝4M⌐4⌝⋉xε

ς
x f,⋉vε

ς
x f⌝ dx

+ ∑⌜ε⌐⌜=1,2 ϑ
2⌜ε⌐⌜⌜3⩀

T3
⌝v⌝4M⌐4⌜ε⌐⌜⌜ες

xε
ε⌐
v f ⌜2 dx]e1+⌝t⌝⋊1e 1

2
q0⌜v⌜2 ,

noting the exponential weight e
1
2
q0⌜v⌜2 inserted above. A similar definition is introduced for

h2(t, v) to satisfy (12.3).
By definition, we note that

ϑ ⩀
R3
⌝v⌝⌐1g2(t, v) dv ⧖ ϑ1⌜3⌝f⌝2⌝D(2)⌐1,1,0,0

, ϑ1⌜3⩀
R3
⌝v⌝⌐4g2(t, v) dv ⧖ ϑ1⌜3⌝f⌝2⌝D(2)⌐1,1,0,0

,

where Poincaré’s inequality was used in obtaining the second inequality, upon noting that
ες
x f has zero x-mean with ⌜⇁⌜ = 1.
Therefore, after taking ↽ smaller if necessary, Proposition 12.2 and the definitions of ⌟E(2)⌐1,1,0,0

and ⌟D(2)⌐1,1,0,0 imply that the di$erential inequality (A.2) holds with c = ↽ϑ1⌜3, b = ↽ϑ1⌜3, m = 4,
i.e.

d

dt ⩀R3
g2(t, v)dv + ↽ϑ1⌜3⩀

R3
⌝v⌝⌐4g2(t, v)dv + ↽ϑ1⌜3⩀

R3
h2(t, v)dv ⧖ F(t), (12.4)

and with c = ↽ϑ, b = ↽ϑ1⌜3, m = 1, i.e.
d

dt ⩀R3
g2(t, v)dv + ↽ϑ ⩀

R3
⌝v⌝⌐1g2(t, v)dv + ↽ϑ1⌜3⩀

R3
h2(t, v)dv ⧖ F(t), (12.5)

where F(t) is given by

F(t) ⌐= ⌝↼⌜=0(t)⌝4L2
x
+ ϑ1⌜3⌝f(t)⌝⌝E(2)⌐1,1,0,0

⌝f(t)⌝⌝D(2)⌐1,1,0,0
⌝f(t)⌝⌝D(2)⌐Nmax⋊2+min{⌝f(t)⌝⌝E(2)⌐1,1,0,0

, ⌝f(t)⌝⌝D(2)⌐1,1,0,0
} ∑⌜ς⌜≤1 ⌝ε

ς
x ↼⌜=0(t)⌝L2

x
.

(12.6)

Let e(τ) ∈ {e↼(φt)2⌜3 , e↼(φ1⌜3t)1⌜3}. We will prove below that for any ⇀ > 0, the following holds
uniformly for all T ∈ (0, TB):

⩀ T

0
e(t)F(t)dt

⧖ ⇀⌐1φ2ϑ2⌜3 + (φϑ1⌜3 + ⇀)⌟ sup
0≤t<T e(t)⌝f(t)⌝2⌝E(2)⌐1,1,0,0

+ ϑ1⌜3⩀ T

0
e(τ)⌝f(τ)⌝2⌝D(2)⌐1,1,0,0

dτ]. (12.7)
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Note also that in view of the primed energy and dissipation norms, the boundedness of the
corresponding unprimed norms yields the boundedness of exponential moments for g (as is
needed by (A.1) in Lemma A.1). Namely, using Theorem 9.1, we have

⩀
R3

e
1
2
q0⌜v⌜2g2(t, v)dv ⧖ ⌝f(t)⌝2⌝E(2)1,1,0,0

⧖ φ2ϑ2⌜3.

Therefore, we can apply Lemma A.1, using (12.7) and recalling (12.3), to deduce

sup
0≤t<T e(t)⌝f(t)⌝2⌝E(2)⌐1,1,0,0

+ ϑ1⌜3⩀ T

0
e(τ)⌝f(τ)⌝2⌝D(2)⌐1,1,0,0

dτ

⧖ ⇀⌐1φ2ϑ2⌜3 + (φϑ1⌜3 + ⇀)⌟ sup
0≤t<T e(t)⌝f(t)⌝2⌝E(2)⌐1,1,0,0

+ ϑ1⌜3⩀ T

0
e(τ)⌝f(τ)⌝2⌝D(2)⌐1,1,0,0

dτ]. (12.8)

Taking φ0, ϑ0 and ⇀ su#ciently small, we can absorb the final term to the LHS, which yields

sup
0≤t<T e(t)⌝f(t)⌝2⌝E(2)⌐1,1,0,0

+ ϑ1⌜3⩀ T

0
e(τ)⌝f(τ)⌝2⌝D(2)⌐1,1,0,0

dτ ⧖ φ2ϑ2⌜3, (12.9)

after fixing ⇀ > 0. This then improves the bootstrap assumption (11.1). In particular, this
closes the bootstrap argument, and show that (12.9) holds for all t ∈ (0,∞), which implies
the desired estimate in Theorem 12.1.

It thus remains to prove the claim (12.7), under the bootstrap assumption (11.1).

Controlling F(t). To prove (12.7), we control each of the three terms in (12.6). For the
first term, we use (8.3) and (11.2) to obtain

⩀ T

0
e(t)⌝↼⌜=0⌝4L2

x
(t)dt ⧖ ⌝e(t)↼⌜=0(t)⌝2L2

t ([0,T ];L2
x)⌝↼⌜=0(t)⌝2L∞t ([0,T ];L2

x) ⧖ φ4ϑ4⌜3. (12.10)

For the second term, by Hölder’s inequality,

ϑ1⌜3⩀ T

0
e(t)⌝f(t)⌝⌝E(2)⌐1,1,0,0

⌝f(t)⌝⌝D(2)⌐1,1,0,0
⌝f(t)⌝⌝D(2)⌐Nmax⋊2

dt

⧖ ( sup
0≤◁<T e

1⌜2(τ)⌝f(τ)⌝⌝E(2)⌐1,1,0,0
)(ϑ1⌜3⩀ T

0
e(t)⌝f(t)⌝2⌝D(2)⌐1,1,0,0

dt)1⌜2(ϑ1⌜3⩀ T

0
⌝f(t)⌝2⌝D(2)⌐Nmax⋊2

dt)1⌜2
⧖ φϑ1⌜3⌟ sup

0≤t<T e(t)⌝f(t)⌝2⌝E(2)⌐1,1,0,0

+ ϑ1⌜3⩀ T

0
e(τ)⌝f(τ)⌝2⌝D(2)⌐1,1,0,0

dτ],
(12.11)

where we have used the estimate established in (9.1) for ϑ1⌜3 ∫ T
0 ⌝f(t)⌝2⌝D(2)⌐Nmax⋊2

dt.

For the remaining term, we decompose ↼⌜=0 = ↼(1)⌜=0 + ↼(2)⌜=0 according to Theorem 11.1 so that

e(t)min{⌝f(t)⌝⌝E(2)⌐1,1,0,0
, ⌝f(t)⌝⌝D(2)⌐1,1,0,0

} ∑⌜ς⌜=1 ⌝ε
ς
x ↼⌜=0(t)⌝L2

x

⧖ e(t)⌝f(t)⌝⌝E(2)⌐1,1,0,0
∑⌜ς⌜=1 ⌝ε

ς
x ↼
(1)⌜=0 (t)⌝L2

x
+ e(t)⌝f(t)⌝⌝D(2)⌐1,1,0,0

∑⌜ς⌜=1 ⌝ε
ς
x ↼
(2)⌜=0 (t)⌝L2

x

(12.12)
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Thus, using (11.3) and (11.4) respectively, as well as Hölder’s and Young’s inequality, we
have

⩀ T

0
e(t)⌝f(t)⌝⌝E(2)⌐1,1,0,0

∑⌜ς⌜=1 ⌝ε
ς
x ↼
(1)⌜=0 (t)⌝L2

x
dt

⧖ ⇀( sup
0≤t<T e

1⌜2(t)⌝f(t)⌝⌝E(2)⌐1,1,0,0
)2 + ⇀⌐1[⩀ T

0
e1⌜2(t) ∑⌜ς⌜=1 ⌝ε

ς
x ↼
(1)⌜=0 (t)⌝L2

x
dt]2

⧖ ⇀ sup
0≤t<T e(t)⌝f(t)⌝2⌝E(2)⌐1,1,0,0

+ ⇀⌐1φ2ϑ2⌜3,

(12.13)

as well as

⩀ T

0
e(t)⌝f(t)⌝⌝D(2)⌐1,1,0,0

∑⌜ς⌜=1 ⌝ε
ς
x ↼
(2)⌜=0 (t)⌝L2

x
dt

⧖ ⇀ϑ1⌜3⩀ T

0
e(t)⌝f(t)⌝2⌝D(2)⌐1,1,0,0

dt + ⇀⌐1ϑ⌐1⌜3⩀ T

0
e(t) ∑⌜ς⌜=1 ⌝ε

ς
x ↼
(2)⌜=0 (t)⌝2L2

x
dt

⧖ ⇀⩀ T

0
e(t)⌝f(t)⌝2⌝D(2)⌐1,1,0,0

dt + ⇀⌐1φ2ϑ2⌜3.

(12.14)

Combining (12.11)–(12.14), and recalling (12.6), we have thus obtained (12.7). This ends the
proof of Theorem 12.1.

13. Putting everything together

The main theorem, Theorem 3.1, now follows straightforwardly. Indeed,

● Global existence of smooth solutions follows from Theorem 10.1.● The estimates (3.3a) and (3.3b) follows from (9.1).● The bounds (3.4) and (3.5) follow from interpolating Theorem 12.1 with (3.3b).● Finally, for the uniform Landau damping statement (3.6), we bound, using Parseval’s
theorem, interpolation, (8.3) and (11.2):

⌜↼̂k⌜(t) ⧖ ⌝k(t + 1)⌝⌐Nmax+1 ∑⌜ς⌜+⌜ϑ⌜≤Nmax⌐1
⌝ες

xY
ϑ↼⌜=0(t)⌝L2

x

⧖ ⌝k(t + 1)⌝⌐Nmax+1⌝↼⌜=0⌝1⌜Nmax

L2
x

( ∑⌜ς⌜+⌜ϑ⌜≤Nmax

⌝ες
xY

ϑ↼⌜=0(t)⌝L2
x
)(Nmax⌐1)⌜Nmax

⧖ φϑ1⌜3⌝k(t + 1)⌝⌐Nmax+1min{e⌐↼(φ1⌜3t)1⌜3 , e⌐↼(φt)2⌜3},
after taking ϱ smaller.

This completes the proof of Theorem 3.1.

Appendix A. Strain–Guo type lemmas

Lemma A.1. Let T ∈ (0,∞] and g ⌐ [0, T ) ⋊R3 → R be a smooth function. Suppose there

exist C > 0, c > 0, b > 0, m ≥ 0, q ∈ (0,2) and p ∈ (0, q2) such that the following holds:

(1) There is a uniform bound of Gaussian moments:

sup
t∈[0,T )⩀R3

eq⌜v⌜2g2(t, v)dv ≤ C. (A.1)
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(2) The following di”erential inequality holds for all t ∈ [0,∞):
d

dt ⩀R3
g2(t, v)dv+ c⩀

R3
⌝v⌝⌐mg2(t, v)dv + b⩀

R3
h2(t, v)dv ≤ F(t), (A.2)

for some function h ⌐ [0, T ) ⋊R3 → R, and some function F ⌐ [0, T )→ R satisfying

⩀ T

0
ep(ct) 2

2+mF(t) dt ≤ C. (A.3)

Then, there exists Cq,m > 0 (depending only on q and m) such that

sup
t∈[0,T ) e

p(ct) 2
2+m ⩀

R3
g2(t, v)dv + b⩀ T

0
ep(ct) 2

2+m ⩀
R3

h2(t, v)dv dt ≤ Cq,mC. (A.4)

Proof. We compute using (A.2) that

d

dt
(ep(ct) 2

2+m ⩀
R3

g2(t, v)dv) + bep(ct) 2
2+m ⩀

R3
h2(t, v)dv

≤ ep(ct) 2
2+m ( 2pc

2
2+m

(2 +m)t m
2+m ⩀R3

g2 dv − c⩀
R3
⌝v⌝⌐mg2 dv) + ep(ct) 2

2+mF(t). (A.5)

We control the first term in (A.5). Splitting into ⌝v⌝ ≤ (ct) 1
2+m and ⌝v⌝ ≥ (ct) 1

2+m , we bound
the low velocity by ∫R3⌝v⌝⌐mg2(t, x, v)dv dx and the high velocity using (A.1):

2pc
2

2+m
(2 +m)t m

2+m ⩀R3
g2(t, v)dv ≤ c

2
2+m
t

m
2+m (⩀{v⌜⌝v⌝≤(ct) 1

2+m } +⩀{v⌜⌝v⌝≥(ct) 1
2+m })g2(t, v)dv

≤ c⩀
R3
⌝v⌝⌐mg2 dv dx + c

2
2+m
t

m
2+m eqe⌐q(ct) 2

2+m ⩀
R3

eq⌜v⌜2g2 dv

≤ c⩀
R3
⌝v⌝⌐mg2 dv dx + c

2
2+m
t

m
2+m Ceqe⌐q(ct) 2

2+m .

(A.6)

We plug (A.6) into (A.5) and use p ≤ q
2 . Note that the ∫R3⌝v⌝⌐mg2(t, v)dv terms cancel.

d

dt
(ep(ct) 2

2+m ⩀
R3

g2(t, v)dv) + bep(ct) 2
2+m ⩀

R3
h2(t, v)dv

≤ ep(ct) 2
2+mF(t) + c

2
2+m
t

m
2+m Ceqe⌐ q

2
(ct) 2

2+m .
(A.7)

Integrating, using (A.1) to bound the initial term ∫R3 g2(0, v)dv, and using (A.3) to bound

the L1
t norm of ep(ct) 2

2+mF(t), we have

sup
t∈[0,T ) e

p(ct) 2
2+m ⩀

R3
g2(t, v)dv + b⩀ T

0
ep(ct) 2

2+m ⩀
R3

h2(t, v)dv dt
≤ 2C + C⩀ ∞

0

c
2

2+m
t

m
2+m eqe⌐ q

2
(ct) 2

2+m dt.

(A.8)

To bound the integral in (A.8), split the integration domain into [0, c⌐1] and [c⌐1,∞) so that

⩀ ∞
0

c
2

2+m
t

m
2+m eqe⌐ q

2
(ct) 2

2+m dt ≤ eq(c 2
2+m ⩀ c⋊1

0

dt

t
m

2+m +⩀
∞

c⋊1
e⌐ q

2
(ct) 2

2+m d(ct)) ≤ C ′q,m (A.9)

for some C ′q,m. Plugging (A.9) back into (A.8) yields the conclusion. ↭



THE VLASOV–POISSON–LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME 77

Lemma A.2. Let g ⌐ [0,∞) ⋊R3 → R be a smooth function. Suppose there exist C > 0 and

c > 0 such that

(1) There is a uniform bound of the 4m-th moments:

sup
t∈[0,∞)⩀R3

⌝v⌝4mg2(t, v)dv ≤ C. (A.10)

(2) The following di”erential inequality holds for all t ∈ [0,∞):
d

dt ⩀R3
g2(t, v)dv + c⩀

R3
⌝v⌝⌐mg2(t, v)dv ≤ 0. (A.11)

Then

⩀
R3

g2(t, v)dv ≤ (35ω
2
+ 1)C⌝ct⌝⌐3. (A.12)

Proof. We compute using (A.11) that

d

dt
(⌝ct⌝3⩀

R3
g2(t, v)dv) ≤ ⌝ct⌝3( 3c2t⌝ct⌝2 ⩀R3

g2(t, v)dv − c⩀
R3
⌝v⌝⌐mg2(t, v)dv). (A.13)

To bound the first term in (A.13), we split into ⌝v⌝m ≤ 1
3⌝ct⌝ and ⌝v⌝m ≥ 1

3⌝ct⌝, then bound
the low velocity by ∫R3⌝v⌝⌐mg2(t, v)dv and the high velocity using (A.10):

3c2t⌝ct⌝2 ⩀R3
g2(t, v)dv = 3c2t⌝ct⌝2 (⩀{v⌜⌝v⌝m≤ 1

3
⌝ct⌝} +⩀{v⌜⌝v⌝m≥ 1

3
⌝ct⌝})g2(t, v)dv

≤ c⩀
R3
⌝v⌝⌐mg2 dv + 35c2t⌝ct⌝6 ⩀R3

⌝v⌝4mg2 dv ≤ c⩀
R3
⌝v⌝⌐mg2 dv + 35Cc2t⌝ct⌝6 .

(A.14)

We plug (A.14) into (A.13), noting that the ∫R3⌝v⌝⌐mg2(t, v)dv terms cancel. So

d

dt
(⌝ct⌝3⩀

R3
g2(t, v)dv) ≤ 35Cc2t⌝ct⌝3 ≤ 35Cc⌝ct⌝2 . (A.15)

Integrating, and using (A.10) for the t = 0 term yield the conclusion. ↭
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[69] Frédéric Hérau. Introduction to hypocoercive methods and applications for simple linear inhomogeneous
kinetic models. In Lectures on the analysis of nonlinear partial di!erential equations. Part 5, volume 5
of Morningside Lect. Math., pages 119–147. Int. Press, Somerville, MA, 2018.
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