PN T WD

9

10.
11.
12.
13.

THE VLASOV-POISSON-LANDAU SYSTEM
IN THE WEAKLY COLLISIONAL REGIME

SANCHIT CHATURVEDI, JONATHAN LUK, AND TOAN T. NGUYEN

ABSTRACT. Consider the Vlasov—Poisson—-Landau system with Coulomb potential in the
weakly collisional regime on a 3-torus, i.e.

O F(t,x,v) + 0,05, F(t,2,v) + E;(t,2)0,, F(t,z,v) = vQ(F, F)(t,z,v),
_ -1 _
E(t,x) =VA (ASF(t,x,v)dv ]ggfmF(t,x,v)dvdx),

with v «< 1. We prove that for € > 0 sufficiently small (but independent of v), initial data
which are O(ev'/?)-Sobolev space perturbations from the global Maxwellians lead to global-
in-time solutions which converge to the global Maxwellians as ¢ — oo. The solutions exhibit
uniform-in-v Landau damping and enhanced dissipation.

Our main result is analogous to an earlier result of Bedrossian for the Vlasov—Poisson—
Fokker—Planck equation with the same threshold. However, unlike in the Fokker—Planck
case, the linear operator cannot be inverted explicitly due to the complexity of the Landau
collision operator. For this reason, we develop an energy-based framework, which combines
Guo’s weighted energy method with the hypocoercive energy method and the commuting
vector field method. The proof also relies on pointwise resolvent estimates for the linearized
density equation.
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1. INTRODUCTION

In this paper, we study the Vlasov—Poisson—Landau system for a particle density
function F': [0,00) x T3 x R? - [0, 00) on the 3-torus T? := R3/(277Z)3, which takes the form

O F (t,x,v) +v;0,, F(t,x,v) + Ei(t,2)0,, F(t,z,v) =vQ(F, F)(t,z,v), (l.1a)
E(t,x)=-Vé(t,z), o(t,x)= —A‘l('[R3 F(t,z,v)dv - Jgs fRS F(t,x,v)dvdz), (1.1b)

where (from now on) repeated lower case Latin indices are summed over i, j =1,2,3, f, :=
ﬁ J1s, and @ is the Landau collision operator with Coulomb potential given by

Q(G,F)(t,x,v) := 0, A@ Qi (v-v ) G(t, 7,0.) (0, F)(t, z,0)-F(t,2,v)(0,,G)(t,7,v.) } dvs,

where
1 Zi%j
;i (2) = —{8;; - =L}, 1.2
J( ) |Z| { J | Z|2 ( )

with d;; being the Kronecker delta. We will work in the weakly collisional regime, i.e. we
will assume v in (1.1a) satisfies v <« 1, which is relevant in physical situations (see [90]).

The system (1.1a)—(1.1b) describes the dynamics of electrons in a constant ion background.
The electrons both undergo (weak) bilinear collisions and are subject to the mean field force
generated by the electrons themselves. It is also of interest to consider the 2-species analogue
of (1.1a)—(1.1b), which describes the motion of both the electrons and the ions. We will not
explicitly write down that case, though we hope the ideas of this paper will extend to that
case.

It is easy to check that the global Maxwellian

w(v) = e P (1.3)

is a steady state solution to (1.1a)—(1.1b). For any fixed v > 0, the celebrated work of Guo
[61] implies that the global Maxwellian u is asymptotically stable. For v = 0, however, the
situation is much more subtle. The seminal work of Mouhot—Villani [91] showed that the
global Maxwellians are stable in an analytic topology via a phase-mixing mechanism known
as Landau damping, which causes the electric field to decay rapidly. The same was proven
to hold in a sufficiently strong Gevrey topology [16]; see also a more recent proof in [53].
Nevertheless, in a Sobolev topology, Bedrossian showed in [9] that (for a different spatially
homogeneous background,) a uniform statement of the stability does not hold due to so-called
plasma echoes. (See however [54].)

Our goal in this paper is twofold. First, we give a detailed description of the dynamics in the
presence of both (collisional) entropic effect and (non-collisional) phase mixing effect. Second,
we seek to understand the threshold of stability for (1.1a)—(1.1b), i.e. for an appropriate norm
X (which will be chosen to be a Sobolev norm) and a > 0, we want to show

|Data|x < v® == stability. (1.4)

Ideally, we would like to find a g that is optimal.

The proof of Guo’s result [61] discussed above, when appropriately adapted to the weakly
collisional regime, straightforwardly implies a version of (1.4) with 5 = 1. This is summarized
in the following theorem.
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Theorem 1.1 (Guo [61]). There exist a (v-weighted, L?-based, up to second order derivatives)
Sobolev space X and an €y > 0 independent of v such that if the initial data Fy satisfies

1
| —=(Fo - )| x < €ov,
i

then there is a unique global smooth solution to (1.1a)—(1.1b) arising from the given data,
which converges to i as t — +oo.

To improve the threshold in Theorem 1.1, one needs to take advantage of the following
two mechanisms specific to the v - 0 limit:

(1) (Enhanced dissipation) Solutions to (1.1a) dissipate energy much faster than that
given by the proof of Theorem 1.1. From (1.1a), one may expect (say, by comparison
with the heat equation) that the solution dissipates energy at an O(v~!) time scale.
However, the transport part shifts the solution to high v-frequency, which enhances
the dissipation. As a result, after subtracting the average-in-xr mode, the solution in
fact dissipates energy at an O(v~/3) time scale.

(2) (Landau damping) When v = 0, the Vlasov—Poisson-Landau system reduces to the
Vlasov—Poisson system, which as discussed above has a decay mechanism of Landau
damping. One expects that Landau damping persists for small v, and gives a decay
mechanism at an O(1) time, before the collisional effects enter.

To understand exactly how Landau damping enters requires some knowledge of nonlinear
Landau damping for Sobolev data. It is by now well-understood, for instance by adapting
methods of [90], that for initial data of size O(d) (with § small) in a (sufficiently regular)
Sobolev topology, the linear Landau damping mechanism drives the nonlinear dynamics for
the Vlasov—Poisson system up to a time of O(6-1). It is therefore reasonable to expect O(ev3)
to be a natural threshold for the problem (1.4): Landau damping gives a decay mechanism
up to time O(e‘ly‘%), at which point the collisional effect kicks in and dominates due to the
enhanced dissipation. (See discussions in [8].) This is exactly what we obtain in our main
theorem.

Theorem 1.2. There exist a (v-weighted, L?-based, up to eleventh order derivatives) Sobolev
space X and an €y > 0 independent of v such that if the initial data Fy satisfies

1
|—=(Fo 1) |x < eov'’?,
NG
then there is a unique global smooth solution to (1.1a)—(1.1b) arising from the given data,
which converges to p ast — +oo.

Moreover, the solution exhibits enhanced dissipation and uniform-in-v Landau damping.

The enhanced dissipation and uniform-in-r Landau damping are reflected in the large-time
estimates that we prove; see Section 1.1.6 and Theorem 3.1. (Notice that if we only capture
enhanced dissipation without exploiting Landau damping in the proof, this would correspond
to a weaker theorem where the initial data could only be an O(eoyg)—perturbation of the
global Maxwellian.)

A very similar result was proven in a recent work of Bedrossian for the Vlasov—Poisson—
Fokker—Planck system [8]. The Landau collision kernel is more complicated than Fokker—
Planck collision kernel in its anisotropy and degeneracy as |v| - oo, as well as a lack of
a spectral gap. More importantly from the point of view of this problem, the linearized
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Vlasov—Poisson-Landau system around the global Maxwellians cannot be solved explicitly,
unlike the corresponding linearized Vlasov-Poisson—Fokker—Planck system. This requires a
different approach for the problem.

Given the lack of explicit representation formulas for the linear solution, we rely instead
on adaptations of Guo’s energy method, but we further need to design the energies so as to
capture the phenomena of enhanced dissipation and Landau damping.

(1) (Hypocoercivity) To capture enhanced dissipation, we use the hypocoercive energy
method: this is a choice of an energy which incorporates some lower order boundary
terms, which in turn generates useful coercive spacetime terms. This idea is known
to be well-suited to capture the interaction of the transport and the collision terms
[70, 65, 109] (see also Section 1.2.4), and particularly to obtain sharp enhanced
dissipation rate in some weakly viscous settings [10]. See Section 1.1.3.

(2) (Commuting vector fields method) To capture Landau damping, we need quantitative
estimates showing that f := ﬁ(F — 1) behaves like a solution of the transport

equation. To achieve this, we commute the equation with the (t-weighted) vector field
Y; =t0,, +0,, and bound Y f (and its derivatives) in addition to f itself. This lets one
prove transport bounds in the presence of collision, and in fact to take advantage of
the coercivity given by collisions. Such a commutating vector field method is inspired
by related techniques for nonlinear wave equations, fluid equations and other kinetic
models [30, 29, 76, 83, 98, 117]. See Sections 1.1.4 and 1.2.7.

(3) (Resolvent estimates via hypocoercivity and commuting vector field method) Using
the hypocoercive energy method itself is difficult to control the nonlocal terms
associated with the electric field. Thus, in addition to energy estimates for f, we
derive an independent density estimate (as in [8, 16, 53, 91]) for the macroscopic
density p:= [gs f Vi dv, proven using the Volterra equation that it satisfies.

To achieve the density estimates involves (1) proving a resolvent estimate to invert
the linear part and (2) bounding the nonlinear contributions. Both of these can
be achieved by extending the resolvent estimate and nonlinear analysis in [53] in
conjunction with obtaining control of the linear Landau flow (see Section 1.1.5).
Importantly, the linear Landau flow no longer features nonlocal terms. Thus, the
estimates we need for the linear Landau flow can in turn be achieved by a combination
of the hypocoercive energy method and the commuting vector field method.

We further discuss the ideas of the proof in Section 1.1. We then turn to related works in
Section 1.2. Finally, we will end our introduction with some discussions on future directions
in Section 1.3 and an outline of the remainder of the paper in Section 1.4.

1.1. Idea of the proof.

1.1.1. Preliminaries. Let p be the global Maxwellian (1.3). We rewrite the problem for f
defined by F' =y +/pf so that the Vlasov—Poisson-Landau system (1.1a)—(1.1b) becomes

Of+v-Vuf +E-Vof —(E-v)f-2(E-v)\/u+vLf=vI(f, f), (1.5)

where F is as in (1.1b), L is the linearized Landau collision operator, which has some
coercivity properties, and I' is the nonlinear collisional terms in f (see Section 2.1 for precise
definitions). The problem is now rephrased to proving boundedness and decay for f.
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1.1.2. The Guo’s energy method. The starting point of our approach is Guo’s work [61] (see
Theorem 1.1 above). The general strategy, first devised by Guo and is applicable in many
kinetic models of the form 0,f +v- V. f +vLf =vI'(f, f), is to find an energy norm |- ¢, a
dissipation norm || - |p, and a suitable 6 > 0, n € R such that

d
gl oI flp < 0. (1.6)

The control in | - |p comes from the linear Lf part, and the norms are chosen appropriately
to bound the nonlinear term v|(f,T'(f, f))e| S v | flellf]% so that one can indeed obtain
(1.6) with suitable smallness on the initial data.

The proof of such an energy inequality, or even the choice of the norms |- |¢ and | - |p, is
delicate, and depends on the kinetic model under consideration. The construction in general
requires a careful choice of weight functions, as well as using an additional argument to
handle the kernel of the linear operator L. This type of method is particularly useful for soft
potentials (such as the Landau collision operator), since in general the |- |p norm is weaker
than the |- |¢ norm in v-weights.

We highlight two innovations in the energy introduced by Guo [61] which are specific to
the Vlasov—Poisson-Landau system:

e use of e? weights in the energy, where ¢ is the electric potential (to handle the
costly-in-v-moment term (F-v)f), and

e use of weights in (v) which are weaker for higher derivatives (to handle simultaneously
the weak coercivity of the the dissipation energy for large (v) and commutator terms
arising from the linear free streaming term).

A more detailed explanation of these weights and their motivations can be found in the
introduction of [61]. These will also be featured prominently in our energies.

1.1.3. Hypocoercivity and energy method. Slightly over-simplifying! for the moment, the Guo
energy in [61], when adapted to small v, corresponds to

Je? (o) 220 g5, |, Hap = 11070], (1.7)

after appropriately summing up in « and 5. (Note the (v) and e? weights are incorporated
in the energy, as discussed in Section 1.1.2.)

Differentiating the energy (1.7) also gives an integrated decay estimate (cf. (1.6)) which
controls, for H, g as in (1.7),

T T

v /o H€¢<U>2M72|a|72|ﬁ|7%Ha,,8H%g dt +v /0 D He¢’(v)2M*2|a|’2|ﬁ|’%051Ha,,3Hiz dt. (1.8)

" 71=1

One reads off from (1.7) that each 9, derivative costs v~1, and by comparing (1.7) and
(1.8) that integration in ¢ also costs v~1. Heuristically, this means that one expects to deduce
from (1.7) and (1.8) that energy decays on a time scale of order v~1. In particular, this does
not capture the enhanced dissipation generated by the interaction between the transport
and the diffusive terms. (Notice that the second term in (1.8) gives a better (in v) estimate
for the 0, derivatives, but without some corresponding estimates for the 0, derivatives, it is
unclear how that could improve the rate.)

IWe have suppressed in particular the fact that (1) Guo also incorporated E in the energy (which we will
not need, see beginning of Section 1.1.5) and (2) Guo has stronger weighted in v so as to obtain stretched
exponential decay estimates (which we will discuss later in Section 1.1.6).
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Inspired by [7, 10, 70, 109], we modify the Guo energy so as to capture enhanced dissipation.
Precisely, for every (a, 3), we define? the following energy at the H? level for 9985 f:
10507 flz,

= A Z He¢(U>2(M—|a|—laf|—lﬁl)ag'Haﬁ”%gv+V§ Z ”e¢<v>2(M—\a|—|ﬂ|—1)ag,HaﬂHQL%U
/<1 ’ 18=1 ’

(1.9)
+v3 f 2 (vy M-8y [, 5V, H, gdvda.
T3xR3

(*)
where now H, g:= vI83929] f. For Ay large but fixed, (1.9) is comparable to
Z ”e¢<U)2(M—\a|—|af|—|,8\)ag'Ha,ﬂHQL%YU .y Z H€¢<U>Q(M_|a|_|m_1)alea,B”%im- (1.10)

0<la/|<1 |87|=1
The key here is that despite the equivalence of (1.9) and (1.10), when differentiating the
(*) term in (1.9) by 4, a non-negative useful term v'3 ¥, [ e?(v)2M-1e-8-290"H, 5|2,

is generated. As a result, after suppressing some terms, the 4 derivative of |9205 ”%ag
precisely controls

T
/3 ||a§35f|\2@a75 > Vl/S(fO Z H€¢<U>2M—2lal—2lﬁ\—2ag HaﬁH%% ) dt
lo/|=1 ’

. (1.11)
7 !
+1/2/3/ 3 et (o) M2l285 98 )12, dt).
3I<1 ’

In (1.9) and (1.11), we see that each 8, derivative now costs 3. Moreover, comparing the
|o’| =1 and || = 1 terms in (1.9) with those in (1.11) may suggest that the energy for the
derivatives of f decay at a time scale of V_%, which is much earlier than v~1, i.e. this energy
captures enhanced dissipation. This enhancement is crucial in controlling the nonlinear terms.

Note, however, that if we compare the |o/| = 0 term in (1.9) with the |5| = 0 term in (1.11),
we see that the term has an additional loss of ¥=2/3. This is a reflection of the fact that
enhanced dissipation only holds after removing the z-average mode.

1.1.4. Commuting vector fields and Landau damping. We capture Landau damping using
the commuting vector field method, with vector fields adapted to the flow of the transport
equation. The advantage of using such a commuting vector field method approach is that
we can hope to prove transport estimates and largely ignore the collision term because in
principle the collision term gives rise to terms which have a good sign.

Let Y; = t0,, + 0,;,. We will use Y; as a commuting vector field, together with 0,, and
v39,,, i.e. we control /I813|0202Y« f| in appropriate weighted spaces (with weights allowed to
depend on (o, f,w)) and define more generally &, 5., and D, g, spaces (see (5.11)—(5.12) for
details). The significance of Y can be explained as follows:

e For a solution f;, to the linear transport equation 0 fi;, +v-V fiin = 0 with regular data,
it is easy to see that |Y* fy;,,| is uniformly bounded in time (since [0, + v - V., Y:] = 0),
despite Y being a t-weighted vector field. Thus controlling the Y derivatives of f can
be viewed as proving an asymptotic transport-like estimate.

2This is still not yet the actual energy we use, which also includes commutations with Y;; see Section 1.1.4.
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e Controlling Y f also implies decay of averaged quantities of f, thus capturing phase
mizing. For instance, Poincaré’s inequality gives that for p:= [ps f\/pdv and for f
the average over T3, we have

lo= fptelzy 519l 5 ([, 00 /mde)?da
st2 % [ ([ i -ounvEantde s (Y I + IR,

where we integrated by parts in the last estimate.

e Importantly for understanding phase mixing in the presence of collision, capturing
phase mixing by the vector field Y allows one to still take advantage of the coercivity
of the collision term while proving phase mixing. More precisely, a term such as
vL(Y f) (where L is the linear Landau collision operator) that arises in the argument
for bounding Y f is not treated as an error, but instead we take advantage of the
coercivity of L and make use of this term. (There are associated commutator terms,
which we will show to be of a lower order.)

1.1.5. Density estimates. The above ideas would in principle be sufficient to prove enhanced
dissipation and Landau damping for the Landau equation (i.e. without the Poisson part) in
the weakly collisional regime. However, the Vlasov-Poisson-Landau system has terms in £
(see £-V,f, E-vf, and 2(E-v)\/ft in (1.5)), which require an additional idea.

The linear E term was handled by Guo [61] using a cleverly designed energy which
incorporates F so that this linear £ term is cancelled in the derivation of the energy estimates.
Such a strategy seems difficult to implement when at the same time carrying out ideas in
Sections 1.1.3 and 1.1.4. The nonlinear E -V, f, if treated using the energy estimates alone,
would give a worse threshold compared to ev'/3.

Instead, we follow the general strategy [5, 16, 53, 91| and prove an independent estimate
for the density that does not depend on the energy estimate. These density estimates rely on
resolvent bounds on the kernel of the linearized density, which we now explain.

In the Vlasov—Poisson case, the k-th Fourier mode of the density p satisfies a Volterra
equation

put)+ [KE (=) dr = AT ),

where the kernel K)F(t) = ﬁ Jrsi(k-v)e vty dv, and NYF(¢) is an error term containing
the contributions from the initial data and the nonlinear terms.
In the Vlasov—Poisson—Landau case, the Volterra equation is less explicit, and the kernel

takes the form )
Kilt) = [R ik - S () [o/E) /i dv,

where Sy (t) denotes the linear Landau semigroup generated by the fixed mode linear Landau
equation 0;h + ik -vh+vLh = 0.
To solve the nonlinear Volterra equation, we take the following steps:

e We first derive pointwise resolvent estimates (cf. [53, 62, 63]), showing that there is a
kernel Gy, which is rapidly decaying (and thus negligible) such that

e(t) = Ni() + /OtGk(t—s)Nk(s) ds. (1.12)



THE VLASOV-POISSON-LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME 8

Relying on the resolvent estimate proven for the Vlasov—Poisson case in [53], it
essentially suffices to show that lim, o [ Kx(-) = K'F(-)|; = 0. This in turn can be
obtained by energy and vector field methods for the linear Landau flow for all small v.

e We then need to control Ny (¢) in (1.12) (see (7.4), (8.4) for the precise terms). The
most difficult term here comes from the nonlinear contribution F -V, f associated
with the Poisson part, which takes the form

Z/OtE\I(T)‘[]R3 Si(t =) [ VoS (T)]/dvdr.

170

(The nonlinear collisional terms are slightly easier.) As above, we control Si(t —7)
using the hypocoercive energy method and the commuting vector field method. The
bounds we prove give (1) rapid decay in (v'/3(t - 7)), and (2) bounds associated with
the Y vector field, which can be viewed as transport-like bounds. Precisely because
we obtain transport-like bounds, this gives hope of controlling the nonlinear term by
extending ideas from the density estimates for the Vlasov—Poisson system.

1.1.6. Decay estimates. Once we close the energy estimates, we adapt the methods of Strain—
Guo [102, 103] to exchange v-weights in the energy with decay in the variable vt. More
precisely, following [103], we additionally introduce ec*l” weights in the energy (1.9) so as to
obtain energy decay with a stretched exponential rate. In order to avoid the technicalities
associated with simultaneously using eI’ weights and commuting with Y, we only use eclv
weights when there are no Y commutations. At first this only gives decay of energy without
Y commutations, yet a full decay statement can then be achieved by interpolation.

This allows us to obtain the following decay results (see precise statements in Theorem 3.1):

(1) Essentially arguing as Strain—Guo, but taking into account the dependence on v, we
prove that the energy decays with an exp(=8(vt)3) rate (for § > 0 small).

(2) As discussed earlier, there is an enhanced dissipation (which operates at the time
scale of O(v73) instead of O(v™1)) after removing the zeroth spatial Fourier mode.
Instead of explicitly removing the zeroth mode, we prove an enhanced decay estimate
by considering an energy in which f has at least one 0, derivative. For such an energy,

. . 1 1 2
we prove energy decay with a rate min{exp(-0(v3t)3),exp(-0(vt)3)}.

In order to obtain the decay estimates, in addition to deriving weighted energy estimates,
we also need to propagate the stretched exponential decay in the density estimates (recall
Section 1.1.5). This requires (1) a precise estimate for the resolvent, which incorporates the
stretched exponential decay, and (2) a more careful nonlinear analysis. This more precise
nonlinear analysis (see for instance the decomposition of the density in (11.3)—(11.4)) is
devised so that one does not see an analogue of the top-order loss in the energy boundedness
argument (see Section 1.1.8), which is now possible because we are only propagating the
stretched exponential decay estimate for the low-order derivatives. (See the beginning of
Section 11 for further remarks on the nonlinear density estimates.)

Once we obtain the enhanced decay rate for the nonzero modes, the density estimate
implies that the Fourier modes p, obey Landau damping-type uniform inverse polynomial
decay estimates:

ox] § €31+ [k] + [kt]) ™ min{e 0@ 0 om0ty
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1.1.7. Structure of the energy estimates. In order to carry out the full scheme described
above, we implicitly need that under suitable bootstrap assumptions, we can bound various
energies which use only some subsets of commutators.

For instance, for the linear Landau energy estimates used in the density estimates (see
Section 1.1.5), we need to commute the linear Landau equation for each fixed mode with a
large number of Y derivatives, but with at most one 0, or 0, derivatives. This is important
for obtaining the correct constants in the estimates.

On the other hand, for the stretched exponential decay (see Section 1.1.6), we need an
energy without any Y commutations (since, as discussed above, we do not put ¥ commutations
together with eclv” weights). For the decay of the full solution, we use only the hypocoercive
energy without any additional commutations. For the enhanced dissipation, we need to
remove the k£ = 0 z-Fourier mode. For this purpose, we consider the hypocoercive energy with
exactly one additional 0, commutation.

To propagate the boundedness of energies with only suitable subsets of commutators,
we define an energy Eywow n, , v, N, Which is a sum of appropriate &, . energies. The
parameters N°% N, 3, Ng, N,, describe the commutators used: they depend not only on the
total number of commutators, but also on various upper and lower bounds on each type of
commutators used; see (5.15).

1.1.8. Additional difficulties. While we have already described the main conceptual difficulties,
the even more interesting difficulties lie in the technicalities. We highlight a few technical
issues here.

Asymmetric use of commutators. At the top order of energy, we do not allow for an
arbitrary combination of the commutator vector fields. Instead, we only allow for

OOTY [, 0,,0000Y f,  0,0000Y“f, 07, 0500Y"f (1.13)

i i T

for 0 < || + || +|w| € Npaz. (See the &, 5., and D, 3., norms in (5.13)(5.14).) Put differently,

e at the top level (with N,,,, + 2 derivatives), at least two commutators have to be 0,;

e at the penultimate level (with N, + 1 derivatives), at least one commutator has to
be 0, or O,;

e at lower levels (with N, derivatives or fewer), the commutators can be arbitrary
combinations of d,, 0, and Y.

On the one hand, this is needed because the nonlinear density estimates (unlike the energy
estimates) lose derivatives, and thus to bound 0%Y“p requires estimates for 6%85 Yvf for
|3] < 3, which can only be obtained by commuting with two additional 9, derivatives. On the
other hand, this is possible because commuting 9? does not generate terms like 02 f.

Growth of top-order energy. When controlling the energy for the terms (1.13) with
||+ 8|+ |w| = Nmaz—1 0 Nypaa, we allow the energy to grow cither in ¢ or v~3. The underlying
reason is that the decay of E by Landau damping is determined by the regularity. The decay
at the highest level is thus slower, and ultimately the terms 2(E-v)./it and E -V, f in (1.5)
cause the top-order energy to grow.

Nevertheless, importantly, even though the energies at the top two orders grow, the nonlin-

ear analysis in the density estimates (see Section 1.1.5) still allows one to prove a desired



THE VLASOV-POISSON-LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME 10

density estimate without loss at the top level. This allows the bootstrap argument to close.

Different decay rates for the k=0 and k # 0 modes. As we have already discussed
above (see Section 1.1.3), enhanced dissipation is only seen for the spatial Fourier modes
k 40, i.e. the k =0 mode decays slower. This in particular means that in the nonlinear
analysis, we need to be careful of terms without derivatives, as they could potentially be more
slowly decaying. In all cases, we show that there is an integration by parts giving bounds
with the right decay; see Lemmas 9.5 and 9.6.

Handling some lowest order terms. Finally, recall that the linearized Landau operator
has a non-trivial kernel, which was dealt with in [61] by analyzing a separate system for the
macroscopic quantities. The hypocoercive energy allows us to sidestep this complication; see
a related observation in [21]. More precisely, the hypocoercive energy gives better bounds on
the 0, derivatives, so that we only need to control the z-mean of the contribution from the
kernel, which in turn can be treated trivially using the conservation laws.

1.2. Related works.

1.2.1. Landau damping for the Vlasov—Poisson system. Linear Landau damping for the
Vlasov-Poisson system was first observed in Landau’s seminal work [78]. A mathematical
breakthrough was achieved by Mouhot—Villani [91], justifying Landau damping in a nonlinear
setting under analyticity assumptions. This has been extended and simplified in [16, 53].
More recently, the effect of plasma echoes have been further explored in [9, 54]. See also
[25, 73] for earlier constructions of some Landau damped solutions, [17, 18, 49, 50, 62, 63]
for works on the whole space (instead of the torus), and [119] for the relativistic case.

1.2.2. Nonlinear stability of global Mazwellians. In the v = 1 case of (1.1a)—(1.1b) (or its
two-species analogue), the nonlinear asymptotic stability of global Maxwellians was first
proven in Guo’s [61] in a periodic box; see also [33, 40]. The corresponding stability result on
R3 was proven in [104] (with alternative proofs in [64, 80, 114]). See also the more recent
[41] for stability of local Maxwellians representing rarefaction waves.

The work [61] can be viewed in the context of a larger program of stability of Maxwellians
result using energy methods. This began with Guo’s seminal work [57] for the Landau equation,
and inspired many subsequent works; see [2, 3, 4, 26, 27, 28, 56, 58, 60, 59, 72, 101, 102, 103]
and the references therein for further discussions.

1.2.3. Related works in the physics literature. There have been many works in the physics
literature studying the interaction of Landau damping and weak collisions, see [24, 42, 52
74, 81, 85, 86, 92, 93, 94, 96, 97, 100, 105, 108, 120, 121] and the references therein.

1.2.4. Hypocoercivity. The method of hypocoercivity has roots in the theory of hypoelliptic
operators [71, 77]. The use of hypocoercivity method for decay estimates was pioneered
Eckmann—Hairer [44], Hérau—Nier [70] and Helffer—Nier [65]. See [35, 67, 68, 37, 69] for a
small sample of further results, and see particularly for results in a weakly viscous setting
[10, 32]. Finally, we refer the reader to [36, 109, 69] for systematic discussions.



THE VLASOV-POISSON-LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME 11

1.2.5. Weakly collisional regimes for kinetic equations. Despite its physical importance, there
are very few mathematical works on weakly collisional regimes for kinetic equations. This
type of questions were raised in the mathematics literature for instance in [34, IV.25.8.2]
and [110, Section 8]. The only nonlinear result is the work of Bedrossian [8] on the Vlasov—
Poisson—Fokker—Planck system that we already mentioned. This was predated slightly earlier
by a linear analysis in [107]. More recently, the linear analysis was extended to include effects
of a uniform background magnetic field [21].

1.2.6. Related models with vanishing dissipation. Even though there are not many works on
weakly collisional regimes for kinetic equations, there are closely related models, problems
and results in fluid dynamics. See [10, 11, 12, 13, 14, 15, 19, 20, 31, 32, 38, 47, 55, 75, 79,
84, 87, 88, 95, 115, 116, 117, 122] and the references therein for a sample of results. We in
particular highlight the paper [32] for its use of the hypocoercive energy method.

1.2.7. Commutating vector field method for kinetic models. The commutating vector field
method, pioneered in [76] for quasilinear wave equations, has been very successful in capturing
dispersion to prove global stability for nonlinear evolution equations. Recently, it has likewise
found many applications for collisionless kinetic equations. In particular, the stability of
vacuum has been established in many different settings [22, 46, 98, 118], and the stability
of the Minkowski spacetime for the Einstein—Vlasov system in general relativity has also
been resolved [23, 45, 82, 99, 106]. (See also [6, 5, 51, 48, 113, 112, 111] for related works on
stability of vacuum type results for collisionless models.) For collisional models, recent works
using the commutating vector field method give — for the first time — stability of vacuum
results for collisional models with a long range interaction, first for the Landau equation
83, 29], and more recently for Boltzmann equation without angular cutoff [30]. As for phase
mixing, it has been successfully used for the linearized [-plane equation in [117].

1.3. Discussions.

1.3.1. Related models.

(1) Magnetic field. Using the methods introduced here, one can potentially study the
problem in the presence of a constant external magnetic field as in [21], but now also
with the Landau collision operator.

(2) While the Landau collision operator is the most commonly used collision operator in
plasma physics, there are other collision models for which the weakly collision regime
is of interest:

(a) The Boltzmann operator. One can consider both the case with or without
cutoff. In either case, one expects the threshold to be different from the Landau
case. See discussions in [§].

(b) The Lenard—Balescu operator. The Lenard—Balescu operator is significantly
more complicated than the Landau operator and takes into account collective
screening effects. Notice, however, that mathematical results for the Lenard—
Balescu operator in the Coulomb case are so far confined to the linear setting
[89, 1] (see however [43]), and even a nonlinear result analogous to Theorem 1.1
appears to be out of reach.



THE VLASOV-POISSON-LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME 12

1.3.2. Sharp threshold. We now discuss the conjectured threshold (1.4). While our paper
concerns only initial data with high (but finite) Sobolev regularity, it is of interest to consider
other function spaces, and it is expected that the sharp threshold may depend on the function
space.

(1) (High-regularity Sobolev spaces) It is conjectured by Bedrossian that for the Vlasov—
Poisson-Fokker-Planck system considered in [8], O(ev'/?) is the sharp threshold,
possibly up to logarithms, due to the possible occurrence of plasma echoes. The same
heuristics in [8] applies to our case (see the discussions before Theorem 1.2) suggesting
that the threshold in Theorem 1.2 may be sharp.

(2) (Gevrey spaces) In Gevrey-1 spaces with s > 1, global stability is established for the
Vlasov—Poisson system. This gives hope that in the weakly collisional regime, one can
treat initial data of size O(9) in these Gevrey spaces, independently of the collisional
parameter v.

(3) (Low-regularity Sobolev spaces) Finally, recall that the v-independent decay rate by
phase mixing depends on the regularity of the initial data. Thus in very low regularity
spaces (e.g. those in [39] so that global stability still holds for the Landau equation
with v = 1), the stabilizing effect of phase mixing may be weaker. Nevertheless, it is
still of interest to understand whether one can allow at least for O(dv'/?) data in a
low-regqularity space . A similar question may also be studied in the case of bounded
domain where one necessarily carry out low-regularity analysis due to boundary
effects.

1.4. Outline of the paper. The remainder of the paper is structured as follows.

e In Section 2, we introduce the notation that will be in effect for the rest of the paper.

e In Section 3, we give a precise statement of the main theorem.

¢ In Section 4, we collect some facts about the Landau collisional operator.

e In Section 5, we set up the main energy estimate for the whole Vlasov—Poisson—
Landau system. In particular, the precise energy and dissipation norms will be

introduced.

e In Section 6, we perform energy estimates for the linear Landau flow that are needed
for closing the density estimates.

e In Section 7, we provide pointwise resolvent bounds on density of the linearized
Vlasov—Poisson-Landau system.

e In Section 8, we establish the nonlinear density estimates under the bootstrap
assumptions on the energy.

e In Section 9, we close the main nonlinear energy estimates for the Vlasov—Poisson—
Landau system.
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e In Section 10, we prove global existence of solutions via a continuity argument.
e In Section 11, we prove stretched exponential decay for the density at lower order.
e In Section 12, we prove stretched exponential decay for lower order energy.

e In Section 13, we put everything together and prove the main conclusions of the
paper including the global existence, the stretched exponential decay, as well as the
uniform Landau damping for the density.

¢ Finally, in Appendix A, we give two versions of Strain—Guo lemmas adapted to our
setting.

Acknowledgments. S. Chaturvedi and J. Luk are supported by the NSF grant DMS-
2005435. J. Luk also gratefully acknowledges the support of a Terman Fellowship. T. Nguyen
is partly supported by the NSF under grant DMS-1764119, an AMS Centennial fellowship,
and a Simons fellowship.

2. NOTATION

We first introduce a reformulation of the problem in terms of f := ﬁ(F - ), and then
introduce some notations that will be used throughout the paper.

2.1. Reformulation in terms of f. For the remainder of the paper, it is convenient to
first rewrite the problem in terms of f (see Section 1.1.1). Define f via

F =i+ JEf. 1)
In the remainder of the paper, we will solve (1.1a)-(1.1b) with initial data f,_, = fo that in
particular satisfies {5 [ps for/pdvdae = 0. The conservation of mass ensures that

]gs /11%3 f(t,z,v)\/p(v)dvdz = 0.

Under this mean zero condition, it can be deduced that the Vlasov—Poisson-Landau system
(1.1a)—(1.1b) is equivalent to the following system for f:

Of+v-Vof +E-Vof —E-vf-2(E-v)\/u+vLf=vI(f, f), (2.2a)
B(t2)=-vo(t.a),  -Do= [ f(tao)/u@)dv, (2:20)

where, following [57, Lemma 1],
e the linear Landau operator L admits a decomposition

L=-K-A, (2.3)

where A and K are given respectively by

Ag = 0,,(0i;00,9) — 030059 + 0,019, 24
Ko = -0 fn0) [ @500 - IR + e}, 29
with

0ij 1= Bijx i, 051= By x () = 030, (2.6)
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for ®;; as in (1.2), and * being the v-convolution,
e and the nonlinear Landau collisional term I'(f, f) is given by

I'(g1,92) = 51)1-[((1%]' * (ngl))angz] - [(I)ij * (Uiﬂl/le)]angz
=0 [(®i + (1720,,91) )92 ] + [ @1 * (020,91 |

The rest of the paper deals with solutions f to (2.2a)-(2.2b).

(2.7)

2.2. Notations. Vector Field Y. For any ¢ > 0 and i € {1,2,3}, we introduce the time-
dependent vector field

Y, =0, +1t0,,.

Multi-indices. Given a multi-index « = (aq, @, a3) € (NU{0})3, we define 02 = 05! 052052
and similarly, (()5 = (9511 8522 8533 and Y = Y'Y, Y. Multi-indices are added according to the
rule that if o’ = (o, af, o) and o’ = (of,af), o), then o’ + " = (o] + o, ol + ol afy + ).
We also set o = ag + g + as.

Japanese brackets. Given w € R*, n e N, define (w) := (1 + |w\2)%.

Velocity weights. Fix Ny,u. 29, M = Ny, +30 and ¢o € (0,1) (cf. Theorem 3.1). For
any ¢ € {0,2} and any triple of multi-indices («, 8,w) such that |a| + |5] + |w| £ Nz, We
introduce velocity weights

alv|

Wo B = (v)éa’ﬁ"“ e 2 (2.8)

if 9 =2
for ¢ = 1 1 , and for the polynomially weighted index

0 ifd=0
lopw=2M = (2] +2|5] + 2w|) (2.9)

to be used throughout in the analysis. These velocity weights will be appropriately associated
with norms for derivatives 8385 Yw of the Vlasov—Poisson—Landau solutions. Note that in
the applications below, when w # 0, we take ¥ = 0 in (2.8): namely, only polynomial velocity
weights will be used.

Ly spaces. We will work with LP spaces with standard norm |- |z» or | - |z for functions
depending on x or v, respectively. We also use mixed norms

P 1
Plizey = [ [ b, 0) o)’ das
T3 R3
which reduce to |- [,z in the case when p = g.

Weighted norms. Fix ¢y € (0,1) for the remainder of the paper (cf. Theorem 3.1).
For / € R and 1 < p < oo, we define the following weighted norms

2
¢ ol

¢
Hh”L’;(e,o) = ||(v) h“Lf;a HhHLg(z,z) = [{v) ez h||L€>
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where ¢y € (0,1) is the fixed constant above. Analogously, we introduce the following
dissipation norms

Vi V5 o

20
by = [ (0 [0ug(e)0ng + oy |

2 golo v; U
M = [0 (0,903,009 + 03 22 .

for go € (0,1) as above, and ;5 as in (2.6). We also use mixed norms ||k zr1 1224 9y, [Pl 22a, 0.9)
and |h[a,.,e9) = |h|z2a,(9) in an obvious manner, for ¥ € {0,2}. Using the properties of
oij (see Lemma 4.1 below), we note that

(2.10)

|hl 22 ce-1/2,0) + 1Vl 2(0-312,9) S 2]l auce0)- (2.11)
For all of the above norms, we also define analogous norms, specified with a /, so that when
¥ =2, they have a weaker Gaussian weight in v, with gy replaced by ¢o/2. More precisely, we
define
|7l ooy = 1Rl ooy, [1hlaueoy = 1A, o) (2.12)
and

¢ q0|v|
[hlpge2y = I{v) e

aolvl® V;
hHLP Hh”A @ 2) f <U>2€6 02 |:O'Ua gaUJg+Jlj§—g :IdU (213)

3. STATEMENT OF THE MAIN THEOREM

The following is the precise version of our main theorem.

Theorem 3.1. Let qp € (0,1) and Nyap € N with Npop > 9. Define M = Nyop +30. There
exist €g = €0(qo, Nmaz) > 0 and vy = vo(qo, Nimaz) > 0 such that the following hold.

Consider the Vilasov—Poisson—Landau system (2.2a)—(2.2b) with collision parameter v €
(0,v0]. Suppose that the initial function fy is smooth and satisfies

/T3XR3 Jor/pdvdz = ngxRS fovj/pdvdzr = fTSXRS folv* /i dv da+ /RS |Eo|*dz =0, (3.1)

and for some € € (0,¢], fo obeys the smallness bound

> ||eq0‘”|2(U)ZM(?ﬁ@ffoHLg}v <ev'l3. (3.2)

|+ 8|S Nmax+2

Then there exists a global-in-time smooth solution f to (2.2a)~(2.2b) with fu-o = fo.
Moreover, there exist constants C >0 and 6 > 0 (depending only on qo and Na., and in
particular independent of € and v) such that the following estimates hold for all t € [0, 00):

(1) (Boundedness of weighted energy)
D JIBl/3 “eqo\v\?(v>2M—2IaI—2IBIa§angL% () < Ce'l’, (3.3a)
|a+B|<Nimaz 1 ’
VI3 (p)2M2lel=21812 g0 g0y £ 1 (t) < Cer'V?, (3.3b)

||+ B8]+ |w|€ Nmaz—2

(2) (Energy decay)
2
3 VAR|0208Y“ fl s (t) < CevMPem®D? (3.4)

|| +| B +|w|£ Nmaz—2
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(3) (Enhanced dissipation) For fuo(t,x,v) = f(t,2,v) = fps f(t, 2, v)dz,

1 1 2
V|ﬁ\/3 H@gagwa#o ”L%,v (t) < C€V1/3 min{e—5(u3t)3 ’ 6—5(Vt)3 } (35)

lad|+[Bl+|w|<Nmaz—2

(4) (Uniform polynomial decay rate) For p(t,x) = ¥ ezs pe(t)e™®, it holds that

11 2
k] (£) < CevB(1 + |k| + |kt|)Nmaztt min {e 0@ 303 -3 (3.6)
for every k e Nx{0}.
Finally, the solution is the unique smooth global solutions obeying the bound (3.3a).

A few remarks are in order.

Remark 3.2 (Local existence, uniqueness and continuation criterion). We do not explicitly
handle local existence and uniqueness in this paper, but they follow in essentially the same
manner as [66]. Using their methods, we have a local existence and uniqueness result for
initial data with

> e osol e, < oo (3.7)

lof +|Bl<4

for any p > 0. In particular, as long as one can guarantee the norm in (3.7) to be finite, we
have existence and uniqueness of solutions. (Recalling that F' = u+/if, we note that the
estimate (3.3a) is much stronger than (3.7). For this reason, in most of the proof, we will
focus on proving the a priori estimates. See the proof of Theorem 10.1.

Remark 3.3 (Some top-order bounds not stated). Notice that some of the top-order bounds
are not stated. In fact, the highest order energies will not be shown to be bounded by Cev/3,
but instead has a loss in v~1/3 or (t); see Theorem 9.1.

Remark 3.4 (Exponential v-weights). We only propagate the exponential weight e®l* when
there are no Y derivatives, i.e. when |w| = 0. Note that the techniques of [103] require using
the exponential weights in order to obtain the stretched exponential decay in (3.4) and (3.5).
We will therefore first obtain the stretched exponential decay statement for |w| = 0, and then
deduce the full statement by interpolation.

Remark 3.5 (Stretched exponential decay). Notice that in a manner similar to [61], our
(v-dependent) time decay is not exponential, but is instead only stretched exponential. For
the (vt)-decay, we have e=9"D*” decay, where the 2/3-power is the same as [61]. On the
other hand, for technical reasons concerning the v weights in the hypocoercive energy, for the
(v1/3t)-decay, we have a slightly weaker exponent and only have e=5*9"* decay.

As far as we are aware, it is not known whether this is sharp even for the linearized problem

with v = 1.

Remark 3.6 (v'/? weights for 9, derivatives). Notice that in all estimates (3.3a)—(3.5), every
0, derivative loses a power of v~1/3. These estimates can be improved for short times so that
v=1/3 is replaced by min{v~1/3 (t))}. For this one only needs to perform the corresponding
change in the energy estimates. We will not pursue the details.

The remainder of the paper will be devoted to the proof of Theorem 3.1. From now on,
we work under the assumptions of Theorem 3.1. We will use the convention that,
unless otherwise stated, all constants C' or implicit constants in $ will be allowed
to depend on ¢y and N,,,,, but are not allowed to depend on ¢ or v, as long as ¢
and v, are sufficiently small.
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4. LANDAU COLLISION OPERATOR

In this section, we recall basic properties of the linear and quadratic Landau collision
operators Lf and I'(f, f) (recall (2.3)—(2.7)). Most of these results are proven by Guo [57, 61]
or Strain—-Guo [103].

4.1. Basic properties.

Lemma 4.1 (Lemma 3 in [57]). The functions o;;(v) and o;(v) (see (2.6)) are smooth and
satisfy

108 03;(0)| + |90 (v)] < C (w) 7,

719195 = M (V) {Pogi}* + Mo (0){[1 - P g},

and

i (V)vv5g° = O+ {vivjptg® = Mi(v)|vPg?,
amiat
simple eigenvalue A\ (v) >0 associated with the vector v and a double eigenvalue \y(v) >0
assoctated with vt. Moreover, there are constants c; >0 and co > 0 such that asymptotically,

as [v| - oo, we have

where P,g = the projection of vector g onto v. The spectrum of o,;(v) consists of a

M) > e (V)70 Xa(v) = e (v) 7.

4.2. Lower bounds for the linear Landau operator. In this subsection we will collect
estimates which show that the linear Landau operator L is coercive up to lower order terms.
While most bounds can be found in [57, 61, 103], we need some small modifications when the
vector field commutator Y is involved.

Lower bounds from [57, 61, 103]. We give three lowers bounds for L: (1) a weighted lower
bound with 0, derivatives (Corollary 4.3), (2) a weighted lower bound without 0, derivatives
(Lemma 4.4), (3) an unweighted lower bound without 0, derivatives (Lemma 4.5).

From now on, let us define

1 ifz<l1
0 ifz>2

[v]

X (V) = X(E)’ where x : [0,00) = [0, 00) is smooth, y(z) = { (4.1)

In order to give our first lower bound for L, we estimate each piece in the decomposition
in (2.3)—(2.5). The estimates (4.2)—(4.3) were proven in [103, Lemma 8], while (4.4) follows
from an easy adaptation of the proof of (4.3). (We note that the exact statement in [103]
may look slightly different: in [103], only polynomial weights with negative powers are used,
though the actual proof applies more generally to our setting. In fact, this slightly modified
version was used in [61, (93), (94)].)

Lemma 4.2 (Lemma 8 in [103]). Let |5] >0, £ € R, 9 € {0,2} and fixr 0 < gy < 1. Define

9
a0l

w(l,9) = (v)fe =z . Then for any small n >0, there exists C,, >0 such that

‘_[RB w?(¢, ﬁ)@f[ngl]gg do

S{n > ||35'91|Au(e,0)+Cn||ch91||Lg(z,0)}||92|Av(e,ﬁ). (4.2)
181<18]
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Further,

—f3 w?0P[Ag)oP g dv

R
! 4 (4-3)
2 ”859”2Au(e,19)_77 Z ||359||2Av(e,19)—0n Z e g”2AU(Z+2\B|72\,B”\,19)‘
16"|=18l 18”1<18l

and

‘A@ w28§[Agl]8fgzdv|s( > 107 g1l aerzisi-2io1.0) 195 g2l o, e)- (4.4)

(]
Using (2.3)—(2.5), the inequalities (4.2)—(4.3) easily imply the lower bound given in the
following corollary. This is the content of the first part of [103, Lemma 9.
Corollary 4.3 (Lemma 9 in [103]). Let |f] >0, £ € R, 9 € {0,2} and fizr 0 < go < 1. Define

a0l

w(?,9) =(v)e 2. Then for any small n >0, there exists C,, >0 such that

AB wz(ﬁ,ﬁ)af[Lg]afgdv 2 ||859||2Av(z,19) _77| |Z| ||35’9||2Av(z,19)
p'l=l8

=Cy 27 197 9IA, erajpi-aipmo)-
B8]

We now turn to a weighted lower bound without commutations, corresponding to the
|5] = 0 case of Corollary 4.3. This is the second part of [103, Lemma 9].

Lemma 4.4 (Lemma 9 in [103]). Let £ € R, ¥ € {0,2} and fixr 0 < qo < 1. Define w(¢,?) =

9
(Uyerlel

. Then, for every n >0, there is C, >0 such that

[ w0 (Lglgdv> (1= =gl o) - Cal Te, 1%

Next, we state a lower bound without derivatives in an unweighted space, which can be
viewed as a scalar version of the positivity lemma for L in [61, Lemma 2].

Lemma 4.5 (Lemma 2 in [61]). We have [gs[Lglhdv = [gs[Lh]gdv, [ps[Lglgdv >0 and
Lg = 0 if and only if g = llg where 11 is the L2(R3) projection with respect to the L2
inner product onto the null space of L, given by span{\/ﬁ, Vi1, |v|2\/,t7}, where i € {1,2,3}.
Furthermore,

fRs[Lg]g dv 2 [(I-)g3, 00

Lower bounds for the linear Landau operator when Y commutations are involved.
We now turn to the analogue of Corollary 4.3 when the vector field commutator Y = Vv, +tV,
is involved. The main estimate is given in Corollary 4.7 below.

Just as Corollary 4.3 is based on Lemma 4.2, the lower bound in Corollary 4.3 is based
on a similar lemma (see Lemma 4.6). One difference between the bounds we prove here in
Lemma 4.6 and the previous bounds where Y commutations are not involved is that we do
not use exponential weights in Lemma 4.6. The proof of Lemma 4.6 is an adaptation of the
ideas in the proof of Lemma 4.2.

Lemma 4.6. Let ¢ € N. Then

| [, [ 0ivelA4go0y g dvdal £ (X 107V 91lse0) IV 0 gala, 0
( |18’ |<|8

|w’|<le]
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and, for any smalln >0, there exists C,, >0 such that

GRS AT

<(n X 107Y“glaen +Co Y 1Y 0ilzzce0) )92 a0
18"I<18l |w’|<]]

In addition, for any small n >0, there exists C,, >0 such that

L w w w 'yvw
foR 2 00V [AglofY “gduda > [07Y“glA. oy -1 3 10V gIA. o

18|<15]
o'l (45)
~C) (% 107Y'gIA, oy~ DY gl ).
o /<l
18|+’ <1B1 o1
Proof. We will only prove (4.5) as the other estimates are similar, if not simpler.
Let w = (v)". To lighten the notation, we write L2(¢) = L2(¢,0), etc. in this proof.
Using (2.4) we get,
- f / W)Y (Ag)a)Y g dvda
T3 JR3
2 ”afngﬂim(z,ﬂ)
— C Z fS \ w23f,leoij(85"Y°J"8Ujg)afywavig dvdax (46)
18]+[87 <[] 1T
||+l |<[ew]
|8 |+’ |21
B C Z AS /]RS a’L}i (w2)a'5/Yw,o-ij(afﬂywuang)a,ﬁng d,U dx (47)
|B'|+|8"|<|A]
|’ [+l |<[ew]
-C ) fTS /1;3 w2PY¥ (0;00;) (05" V" )08 Y g dv dw (4.8)
|B'1+18"|<|A]
||+l |<[ew]
|8 |+ |21
-C Z /TS /RS w28flyw/(9vi0i(85/’Y“’//g)8fY“’g dvdz|. (4.9)
|8 +|8"|<|A]

|+ |<eo]

Estimates for (4.8) and (4.9). Since 0, is independent of z, Y acts as a purely velocity
derivative. It follows from Lemma 4.1 that

@19l S [ [ )08 v glofygldvda. (4.10)
8”18l

| |<le]

For every m > 1, let %, be as in (4.1). Then,
"5 ! _ S _ -1 .
[0) 00 Y g7 0y < Xm0 Y917 0y + 1L =Tn) (o) 0T Y" 332 .
For the large velocity part, we use the extra (v) weights to get

_ -1 " ol 1 1/2 "y ! 1 " !
[(1=X,) (v) 9)Y guig,v(e)ﬁgu( vy oy 9lzz 0 % EH(?B Y93, 0
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For the small velocity part, we interpolate between Sobolev spaces to get that for any m > 1,
n’ >0, there is Cyy ,, > 0 so that

Xm0 Y 172 ) <1 Iv) 2 20,00y 9lZz o)+ Coramll Y " gllZ2
S 107Y < gl3 0+ CrmllnY " gl

Hence, in total we have,

" (JJ 1 " w// w//
[(0) 07 Y<"gl7, 0y S (' + —NOTY < glA, w0 + CrmlnY gl -
Choosing 1/m and 7’ Sufﬁciently small in terms of 7, we obtain

|(4.8)] +](4.9)] < ~= 20T Y gl i+ Cn Y HMY“QHL2 :
1057l TSl

|’ |<fe]
Estimates for (4.7). If |5| + |w/| > 1 in (4.7), the corresponding terms are bounded by

v;Hv

[ w?(v) 310, 07 Y gl|0f Y g| dv dz,
187<]8) 2T

|’ |<le]

which has enough (v) decay for the argument above (with easy modifications) for (4.8), (4.9).
We thus only need to consider [’ +|w’| = 0, for which we integrate by parts in d,; to get

L, [, 0o (0070, 9)05Y g dvda
T3 JR3 ’

1
- / / [02 . (W) oy + O, (W) D,.045]1(05Y ¥ g)? dv da.
2 Jrs Jr3~ 0 ’ !
Now, by Lemma 4.1, this term is bounded above by
[ w*(v)3|0° Y g||0PY“ g|dv da.
T JR3
This is better than the term in (4.10), which can therefore be controlled in the same way.

Estimates for (4.6). If |3’| + |w'| > 2, then using the Cauchy—Schwarz and the Young
inequalities, we can bound

f f Vo Yy 0, 9|l05Y 8, 9| dv dz
W<l
18" [+]w"[<|B]+|w]-2
SU'HawagHzAz,v(z) +Cy Z |67y QHZZ,E(Z)-
575l
w|<|w

8" +lw" <] Bl +]w] -2
If |B'] + |w’| = 1, then we have two cases:
Case 1: |#’| = 1. In this case dY® = 3,05 Y*". Then integrating by parts in d,,, we get,

[ w20y, 045 (08 Y0y, 9)(0,00,08" Y g) dv da
T3 JR3

Vi Yv

1 "
=_§ T3 _/I;o, a’”l(w2awo-ij)(ag Ywang)gdvdx.
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Since |0y, (w2dy,0:;)| < w? (v)™ (by Lemma 4.1), we have
2 4 2 4 2
L, [ a0, @0 0,005 ¥ 10 VglA
18”1<I8l
Case 2: |w'| = 1. In this case 95 Y® = V;05Y*". Then using integration by parts in both
and v;, we get,

fTS fu@s w28vlaz-j(85Y“"8ng)(YlavﬁfY‘””g) dvdz

]_ W”
- _5 T3 ,/Rs 8Ul (w2avlaij)(agy 8ng)2 dvdz.

We again get the required bound as above.
Combining the estimates for (4.6)—(4.9), and choosing 7’ small enough in terms of 7, we
obtain (4.5). O

Using the decomposition (2.3)—(2.5), the previous lemma immediately implies the following
lower bound for L:

Corollary 4.7. Fix { e N. For any small n >0, there exists C,, >0 such that
f f (W) 9°Y“[Lg]lY“8 g dvda
™ JR3

w 2 "W )12 "yw' o112 w12
>V glA, ooy =1 2 105YglA, 0oy = Co(Xs 10TY IR, oy + 2luY gl72 )
18’I<18| 18’I<I8| |’ < e
|’ |< ] |’ < o]
B’ |+|e"<|B]+|w]|-1

4.3. Upper bounds for the linear Landau operator. Using Lemma 4.2 and Lemma 4.6,
we also obtain the following upper bounds for the linear Landau operator.

9
qolv|

Corollary 4.8. (1) For £ eN, 9 €{0,2}, and w(¢,9) = (v)fe 2

| [, [ et 0)di Lo g dvda] $ (T 91l e 921 e
IR 81418

(2) For any (e N,
| [, ]y oiy<ligg. dvdal s (C105Y il s, e g2l s o

7
Proof. Recalling (2.3)—(2.5), the first estimate follows from Lemma 4.2, while the second
estimate follows from Lemma 4.6. U

4.4. Bounds for the nonlinear Landau operator. We close this section with bounds for
the nonlinear Landau operator (see (2.7)). We begin with the following estimate from [103].

Lemma 4.9 (Lemma 10 in [103]). Let ¥ € {0,2}, £ >0 and fix 0 < qo < 1. Define w(¢,9) =

aqlvl?

(v)fe™z . Then for any ' € R we have,
‘/3 w?(£,9)0°Y“T(g1,92)0°Y“ g3 dv
R

S 109y gslaven [107Y 91112107 Y gall ayieny (4.11)

|B’|+18"1<|18] ’ ' " e
|+ <] +105Y g1] au00) 102" Y g2 120,y ] -
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We also need the following more pessimistic estimates for I'(gy, g2), in which we do not
exploit the divergence structure. (They will be relevant for controlling the inhomogeneous
terms in the density estimates; see (8.37) and (11.31).)

aoll

9
Lemma 4.10. Let ¢ € {0,2}, £ >0 and fixr 0 < qo < 1. Define w(¢,9) = (v)fe" 2 . Then

|w(€, )Y T (g1, 92) 3 5 > > 107 Y g |w (€, 9)0) Y go 1z
||6:||+||5Z||sl|ﬁ\| |37|+|B"|<2
W' [+|w [L|lw

Proof. Recalling (2.7), we know that

['(g1,92) = (%[(@ij * (M1/291))av]~92] - [q)ij * (Ui,umgl)]angz

(4.12)
- Gvi[(cl%-j * (u1/28v]-91))g2] + [%- * (vml/?@ngl)]gz

Now, it is easy to check that [|[[v|™ * L. S HhHlL/l?’ Hh”i/f (for instance by adapting the proof
of [83, Lemma 5.1]). It follows that |®;; » ((v)‘u!/2h)| e S [[(v)~“h 2 for any ¢/ > 0.
Therefore, using Holder’s inequality and apply the above observation for A being derivatives

of g1 or go, we obtain the required result. U

5. SETTING UP THE ENERGY ESTIMATES

In this section, we set up the main energy estimates as well as introduce the global energy
and dissipation norms for the full nonlinear Vlasov—Poisson-Landau system (2.2a)—(2.2b).
Precisely, for a given electric field £ = -V ,¢, we shall derive energy estimates for smooth
solutions f to the following Vlasov-Landau equation

D,f-E-vf+vLf=2Q (5.1)
where D; denotes the transport operator
Dt28t+v-vx+E-VU. (52)

The transport-diffusion structure of (5.1) is clear, being transported by the electric field in
the phase space and diffused through the Landau collision operator L. We note that a similar
structure also holds for derivatives of 8;“85 Y« f for any triple of multi-indices (a, 8,w). The
main result of this section will be given in Subsection 5.4 below.

Remark 5.1. The equation (5.1) is exactly the Vlasov—Poisson-Landau equation (2.2a) with

Q=2F-v\/u+vI(f,f). (5.3)

Note that the first term in Q is linear in f and thus it cannot in principle be treated as a
remainder. However, this linear term is very localized both in velocity v (through p = elo*)
and in frequency 0, (through the Poisson equation), a fact that will play a role in our
nonlinear analysis.
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5.1. Basic energy estimates. We start with basic energy estimates for the transport-
diffusion equation (5.1).

qo ’Lf ’19 =2
0 ifd=0
positive constant 0 = 0(9,qo) so that smooth solutions to (5.1) satisfy

. Then, there is a

Lemma 5.2. Let (eR, 0< gy <1, and ¥ € {0,2}. Define q = {

d
EHe(qH)d)fH%g,v(w) + QVHQ((IHMJC”QAI,”(@,@) S VRO”Z + Ry + RoQ’ea (5.4)

where the remainders are defined by
Lyt
REC = [puelsDof|2, |

0
Ry = (00] = + HE”L;’;’)||€(Q+1)¢f\|%g,v(e,ﬁ)v
RDQ’K = ’ [/ e2@ Doy fQ du dv‘.
T3 xR3

Remark 5.3. Observe that there are three contributions to the energy production of (5.1):
namely, the remainders from the transport dynamics D;, the Landau operator L, and the
source Q.

Proof. Directly from the transport structure of (5.1), we compute

Ld

1
Sl sz, == [ R+ 20 B)[e o) dude

+ [[ [ -vLf+ Q]GQ(Q+1)¢w2f dvdz.
T3 xR3

qlv)”
2, we compute

Recalling that E = -V,¢ and w = (v)‘e

1

§(Dt + 20 - B)[eX@D9?] = [(q +1)(0y+v-Vy)d+ E-V,logw+v- 1}?]62("””’152
(5.5)

= [g(ﬁ|v|ﬁ_2 -2-E+(q+1)0:¢+£{v)2v- E]ez(q+1)¢w2,

in which we note that the first term vanishes, since either ¥ =2 or ¢ =0 (when ¢ = 0). This
proves

/fTBXR3 [fP(Dy + 20 B) [0 ] dvda < (2], 1 + €||E||L;°)He(qﬂ)(ﬁfﬂig,v(aﬂ)'

Finally, using Lemma 4.4 with n = # and noting ¢ is independent of v, we get

1-¢? _
ffTSX]RS D2 fFLF doda > T|‘€(q+1)¢f||2Am,v(€,19) - Cq|\ch€(q”)¢f||%gw(e,o)

where X, is a cut off function near the origin. The lemma follows. O

Remark 5.4. Note that the basic energy estimate derived in Lemma 5.2 uses only the
equation (5.1) for a given electric field £ (i.e. the Poisson equation was not used).
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5.2. Derivative energy estimates. Next, we obtain the following energy estimates for
derivatives.

Lemma 5.5. Let feR, 0<qp <1, ¥€{0,2}, and (o, B,w) be any triple of multi-indices. If
Qo ifv=2

0 ifv=0

Then, there is a positive constant 6 so that smooth solutions to (5.1) satisfy

|w| >0, we take ¥ =0. Define q = {

a7ﬁ7w a7/37w a7ﬁ7w’

(5.6)

d
e f 2y () + OV TPOROTY IR, 1) S Ralpe * VR R

in which we have collected
e the remainders Rg’éw due to the transport dynamics:

RiG,= > e D200 Y 1o 00 DOX00Y 2 (0

a,fB,w
18"=181-1
[5'I=1

+ ([0 Lo + HEHL?)||e(q”)‘bag‘@f}/“f||%%’U(M),

o the remainders Riéw due to the linear Landau operator:

Lt +1 aabB' vw r2 +1 a8’ v w 12
Repw=1 2 [€CD20207YFIR 0oy +Cn Y [e9D20207 Y FIX (0o
18’1<18 18’I<18|
[ |’ <o
|8’ |[+|w'[<[B]+|w|-1

+Cy Y el DRy f 7,

' |<e]
for any small n >0,
e the remainders Rgéw due to the source term (of the equations for derivatives):

RYL = 2920298y £ Q. 5., dvda
a,B,w T3xR3 v B,

where w = (v) e 2, and

Qupw=020YQ~[E-v, - E-v,0°0°Y“]f. (5.7)

»Yx v

Proof. Directly from (5.1), we observe that derivatives 92895V solve
| Di- E-v]oeolyef + vOly“[Log ] = 0200V “Q+ [D, - B-v, 0005V “1f.
Note that [0y +v-V,,0,] =0 and [0; +v-V,, Y] =0. Hence, for || >0, we compute

[0, +v-V,,0000Y*] == Y 0FoF ooy, (5.8)
18”[=]]-1
|8|=1

Thus, the lemma follows directly from performing a similar energy estimate as done in the
previous lemma and using Corollary 4.3 and Corollary 4.7 (which contribute precisely into
the remainder R ). O

o,B,w
Remark 5.6. Note that the first term in szs ., is linear (due to (5.8)), which reflects precisely

the linear growth in t of v-derivatives in the regime where the transport dynamics in (5.1) is
dominant.
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5.3. Hypocoercivity estimates. We next derive hypocoercivity estimates that capture
precisely the transport-diffusion structure of (5.1). Precisely, we obtain the following key
lemma.

Lemma 5.7. Let L€ R, 0< gy < 1, ¥ € {0,2}, and (o, B,w) be any triple of multi-indices.

Define q = {CJO ifv=2

0 ifd=0 as before. If |w| >0, we take ¢ =0 and ¥ = 0.

qlv|”

Then, for w = (v)e"2~, smooth solutions to (5.1) satisfy

d QL w (0% w (0% w

L R0, 0000y £0,0000Y 4 dvda + [0, 20V Iy ) (5.9)
T, Lt Q.

S 208wt Zapw T Zabw

in which we have denoted

o by Zg’éw the contribution from the transport dynamics:
2050 = (10015 + [ Elle) 20,0500V fll 12 ) €@ 0,050 fl 2. .0

+ oy (DP9, 9200V« £0,,007 00" Y f dvdw
4 T3XR3 J r N J r v
|/3|[L7||/3\1—1
+ Z 2@ D929, 900PY™ f0, 0047 07" Y™ f dvdal,
T3 xR3 v j T v

18"1=|8]-1
18"1=1

o by Zé’éw the contribution from the linear Landau operator:

zh =] [[ | aey2g, gealy £, 0200y “[Lf] dv dal
T3 xR

a,B,w vi¥x Y

+ 1/| ﬂB , 62(““%2%aﬁafY“fOxjagafyw[Lf] dv dx|,
T3 xR

o by Zﬁﬁw the contribution from the source:

a7B7w

ZQ’K = |ﬂ3 3 62(q+1)¢w2I:amjagagwaga,6+ej,w + avjaggfwagoﬁejﬂ,w] dv dZE|,
T3 xR:
recalling Qu g defined as in (5.7), with 05 = 0., and oy = Dy, -

Remark 5.8. Note that the last integral term in the above remainders Zi’éw are of the same
order as the good term He(Q+1)¢8Ij8285Y”f||%%w(£’79) on the left hand side! A crucial point
here is that these last remainder terms vanish for || = 0, while for |5| > 0 they are controlled
by the good terms for || = 0 and the dissipation norms; see (5.30) below.

Proof. Recall that the derivatives satisfy
(Dy=E-v)0p, f +v0y,[Lf] =0, Q+[E -V~ E-v,0,]f

(Dy = E-v)0y, f + 00y, [Lf] = =0y, f + 0, Q+ [E -V, — E-v,0,,], (5.10)
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in which we note that the first term on the right in the second equation plays a crucial role.
Indeed, we compute

(Dt - 2EU)(8CE]faU7f) + V(aiC]favy[Lf] + avjfaCC][Lf])
= |00, f*+ Du, O, Q+ Dy, [0, Q4 By, BV — E 0,8y, 1f + s, f[E-Vy - E-0,0, 1f-

Therefore, multiplying the above equation by e2(¢*D%w? and integrating the result, we get

4 /f 2@ D029, fO,. f dvdx + f[ e D219, f2 dvdx
dt T3xR3 ’ ’ T3 xR3 ’
= [/3 3(8$jf81,jf)(Dt +2F - v)[eX 0 D9?] dv da
T3 xR
] [0 F O TE 4 00, f 00, [ ) + 02,500, Q 4 00, 101, Q)X dvda
+ ffTS i [(%jf[E Vo= E-0,0,,1f+ 0y, f[E-V, - E- U,avj]f]GQ(Q+1)¢w2 dvdz.
In view of (5.5), we note
ﬂ (02, [00, ) (D + 2E - 0)[e*@*D0?] dv da
T3xR3
S (10:@le + 1B L) €920 fl L2 ey €9 900 £ 22, 0.0

T,V

This yields the lemma for («, 5,w) = 0. For any triple of («, 5,w), we simply observe that the
derivatives 8;“85 Y« f satisfy similar transport-diffusion equations to (5.10), upon noting that

[0+ vV, 0,,0000Y]=— > 09,0000 y*
187 =]B]-1
18'I=1
[0+ v V,,0,,0000Y%] == > 0,,00700" Y -0, 02007,
e

The last term in the second equation above yields the crucial bound on |9, 920 Yw f|2 in
(5.9). Collecting terms, we obtain the lemma. O

5.4. The hypocoercive energies. We are now ready to introduce the main energy estimates,
which are an intricate combination of the energy estimates derived for 8;‘85 Y« f in the previous
sections. In addition to the v-dependence that respects the hypocoercivity scaling of the
Landau equations, the norms also reflect the weight loss in v due to the Landau collision
operator.

The partial energy and dissipation norms. For each triple of multi-indices (o, §,w), we
introduce the partial energy and dissipation norms
HHHZ(ﬁ) = Ay Z He(q+1)¢@§,H||%gw(éaﬁ,wima'\,ﬁ)
B la'[<1 (5.11)
+ VOV H Vo H ) 13 (0 520y + VPNV H T, o)
||H||3)<79) =P 4 Z el oo HHQAM@MM-MLﬂ) + ||e(quVmH”%gm(eaﬁ,w—z,ﬁ)
aBw /<1 (5.12)

+ 1/4/3||e(q”)(z’VvH”Zz,v(éa,g,mlﬁ)’
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if ¥ =2
which are used for derivatives H = t83920] Y« f, with £, 5,, as in (2.9), ¢ = {go ?f 9-0

1 =
above, and A a (large) constant to be determined.

A few comments on the choice of the energies are in order.

e The large constant Ay will be chosen to ensure (5.11) is non-negative, and that the
bulk terms also have a good sign.

e The v powers in the norms above are exactly chosen so that every V, derivative is
paired with a /3 power.

— This choice of norms is consistent with the facts (1) that for the linear transport
equation, every d, gives rise to a (1+t) growth, and (2) that enhanced dissipation
acts on a times scale of t ~ p~1/3,

qo ifv=2
0 ifv=0
avoid difficulties when Y hits on those weights.

— The Gaussian weights are used as in [103] to obtain stretched exponential (v-
dependent) time decay in e 00 or =0 (see (3.4)-(3.6)).

— As a result of not having Gaussian v-weights when |w| # 0, as discussed in
Section 1.1.6, at first we only obtain the polynomial r-dependent time decay
when |w| # 0, though at the end, we can obtain some stretched exponential decay
for |w| # 0 via an interpolation argument.

— We also mention that the stretched exponential decay is only proved starting in
Section 11 i.e. one can in principle close the main bootstrap with just polynomial
weights but that does not give the stretched exponential bounds.

e These norms are weighted by e(@*D?  for a given electric potential ¢. In the nonlinear
analysis, we shall bootstrap the nonlinear solution so that ¢ remains sufficiently small
in L (and in fact decays rapidly in time). Therefore, the weight is harmless.

e Notice that since ¢ = { , we only put in Gaussian v-weights when |w| =0 to

The top-order partial energy and dissipation norms. We need a variation of the
partial energy and dissipation norms & @) and D) gW)

a,fB,w a,fB,w a,B,w
and Dg%w. The difference is that they include one more 0, derivative, which is useful to
handling the loss of derivative from the density estimates; see Section 1.1.8. More precisely,
for H = 1839297y« f as before, define

norms, which we denote by

||H||§"~i19g = ||H||Z~(19) + A61 Z l/2|ﬁ/|/3 ||e(q+1)¢85,H||%%,U(Za,ﬂ,w—‘l,ﬂ)7 (513)

w a,fB,w |5/|:2

| H II%w; = H | + At Y vEHIDBee 9T ]I

@, ,w_4aﬂ)' 514
@B 672 ’ (5.14)

The combined energy and dissipation norms. Given any 9 € {0,2} and any quadruple
(Nlew N, 5,Ng,N,) € (Nu{0})* with N, s+ N, < Npaw, N, Ng < N, 3, define the norms

«
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(9) (9)
EN}Xow,Na,B,NB,Nw and Dy, 5. N5.N, by
F= "o = > ||aa36f”2w> + > HaaaBwaHQ(O) ;
Nlow WNa,g:Ng:No  |af>NLow |8<Ng €a,5.0 lal=Nk®, |8]<Ng
lal+|BI<Na,s | +[B< N, 5, 1<|w|< N
2 . a np o ﬂyw 2 (515>
1F15 00 = D 10205 f”D(ﬁ) + D lozaly«f| D, -
Nlow No g Ng:Now  |a2NL® |8l<Ng B0 a|2Nlew |8l<Ng
o[ +[B|<Na, g | +]8]< N, 5, 1<|w| <N
We emphasize two points about the definition (5.15):
(1) Nlew is a lower bound, while the other are upper bounds.
(2) Even though we may use ¥ = 2 in the E) and D) norms, the

Nclxovaa,BvNﬁyNw Nlow Na B> NB Ny
exponential v-weight is only present when |w| =

We also explain the various parameters in the norms in (5.15):

e The parameter N, g counts the maximum number of d, and 0, derivatives, while Ng
only counts the 0, derivatives. N, separately counts the number of Y derivatives.
The point is that which controlling up to Ng 0,-derivatives, the linear error terms
involve at most Ng —1 0,-derivatives (and similarly for Y derivatives). Thus we can
induct in Ng and N, to obtain estimates with the right constants. See for instance
the step right after (5.41).

e As we said above, N!°¥ is a lower bound. The important point is that we need to
separate the N = 0 and N!°v > 0 cases since we only have enhanced dissipation
when N > 0; see discussions in Section 1.1.8.

The top-order combined energy and dissipations norms. Given ¥, N°v N, 5, N3, N,
as above, we also define corresponding combined norms which include the extra 0, derivatives
as in (5.13), (5.14),

| £ 1200 = YN0k + Y020 F0)
N No5:Ng:Nw  |of2NE™,|B|<Ng Eo..0 laf>NL®, |B|<Ng
lof+|B|<Na, lof+|BI<Na, 5, 1<w|<Ne (5.16)
||fHD(v) = > |0zl f 5o T > logajy |2 5O,
NEYNo,g:Ng:Ne  |af2NE™,|B|<Ng Paso la|>NE®, |B1<Ng “
|of+|B|<Na, |o+|B|<Na, g, 1<[w|<Ne
For brevity, we also introduce
£ = 2 Iz I AT D DR 1 - (3.17)

Ng,p+Nuw<N ONaﬁvNa,B’NUJ Ng g+ Nu<N ONa B Na, g Nw

The primed energy and dissipation norms. Finally, for each of the norms defined above,
we introduce an analogous norm, labelled by (#)’ instead of (19) which is deﬁned so that when
¥ = 2, the exponential v-weights e?"” are replaced by €7l where ¢’ = 1q; cf. (2.12)—(2.13).
In other words, starting from (5.11), we define

#1150y = Ao 32 €0 HIL, ooy
o<1 (5.18)

+ 32Oy H v, H) gy + Vel Doy H 2,

L%,U(ZQ,B,W z,u(ga,ﬁ,w_zﬂ)”
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for H = 839285y« f, and make similar definitions for

||U|B|/3@§‘85wa” ~(19>' ) HfHE(ﬂ)’ Hf” NOY )
NEPW N, 5.Ng:Nw Nl‘”“ Ng,5Ng:Now (5.19)
[ £12oy 12 f HEw) s ||Dw>f
Nlow Ng.5Ng,Now Nlow No.5-Ng Now

by modifying (5.12), (5.13), (5.14), (5.15) and (5.17).

5.5. The main energy estimates. In the following proposition, we estimate all the re-
mainder terms in Lemma 5.5 and Lemma 5.7 except for the R% and Z€ terms. For the full
nonlinear solution, those terms will be treated in Sections 9 and 12.

Proposition 5.9. Let ¢ € {0,2}, and (Nlov, Naﬁ, Ng, N,) € (Nu{0})* with Na”g-i-N < Noaz,

Nlow Ng< N,g. Recall the definitions of ENZM NapNoN and ]Dg\fl)ow Na g NoN n (5.15).

There is a posztwe constant 6 so that for Nl"w > 1 smooth solutions to (5. 1) satisfy

Hf” E® + HVI/?’HfHQ(ﬂ)
Nlm” Ng.5:Ng Now Nlow Ng.3:Ng Now (5 20)
S 10:]2s + Il F 1200 + Y Rape '
NEW\Nog:Ng: N |of2NEY, |B<Ng
|at|+|B|< N, g5 [w|<Nw
and for N'ov =0, smooth solutions to (5.1) satisfy
Hf“2<19> + O “f“Q(m
ON ﬁNﬂNW ONQBNBNW
< 3.2)12 P » (5.21)
Svl(@, b, 0)" + (|09 e + [l w)\lfHEm + Y Rape
Na,g:Np-New I8|<Ng
|a|+[B|€Na, g, [wW|<Nw
where the remainders are calculated by
Q,0-2)o/|-2|8’ -2
Ropw= Y. v2UHEDBRIE ,|BO:|5'| |4 1/3,,2181/3 33 ' (5.22)

la’]+]87|<1

with ’RQZ and Zgﬁw as introduced in Lemma 5.5 and Lemma 5.7, and |(@,b,)|? = [a@]? +

w

j=1|b]|2 |2, where

— [[T3XR3 fV/rdvdz, I;j = ffqﬁ»st fvj/pdvde, €= /fwas floP/rdv da.

Remark 5.10. We note that the “remainders” R, g, do contain linear terms (due to Q from
(5.3)), the control of which by the energy and dissipation norms is certainly not immediate;
see Section 9 for the full treatment of these and the other nonlinear terms.

Proof. Let (a, B,w) be any triple of multi-indices, with |a|+|8] + |w| < Nyaw, and let £ =4, 5.,
and w = w, g, be the weight functions defined as in (2.8)-(2.9). Recalling the partial energy
and dissipation norms and appropriately combining Lemma 5.5 and Lemma 5.7, we obtain

d
0200V f30) + 0V PIO2OTY fI ) S R (5.23)

aﬂw an
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where the remainders are calculated by

/0[75#] = A0V2|B‘/3 Z I:RTve_Q'a | + URLI—QW | + RQ1£_2|O‘ ‘:|

a+a’,Bw a+a!,B.w a+a’,B,w
la/|<1

28/3 2|8'|/3[ pT4-2I8"| L,-2|8'] Q,0-2|5|
+ U ‘ |/ | Z 1% ‘ |/ [Ra,ﬁ+ﬂ’,w + VRCX,ﬁ‘FB’,w +RO[,B+,B,1W (524)
B'l<1

+ V1/3V2|6|/3[ 35,2—2 4 zht-2 ZQ,K—Q]

7w a’/Biw a?187w

where the remainders were introduced previously in Lemma 5.5 and Lemma 5.7.

Estimates on Rg’gw. Let us take care of the remainders arising due to the transport

dynamics. We first consider the RT terms in (5.24) with |o/| =0 and || = 0. We claim that

T\ -1/2 aaB' v w fel w
PR SAV S 1Y S+ a8l + IELi RO - (529
< a,pr,w a,B,w

Indeed, in view of the definition of Rgéw from Lemma 5.5, the bound for the last term

involving 0;¢ and E' is immediate. As for the first term in Rg’éw, noting that |#] > 1 and

recalling the weight function (2.8)—-(2.9), for |8”| =1 and |5”| + |5"| = | 5], we bound

V00 207 Y iz ey S VTR0 9208 Y |12 1 20

S ]/1/3 Z ||8§85,,/wa|‘p(19)/” . (526)
16T<l8) e

In addition, again noting || > 1, we bound

VBT DOROTY flliz (0 gy SV Y 19 D90,0000° Y izt o -29)
1618
SA S 0807V e,
18718 B

(5.27)

The claim (5.25) follows from the above computations.

Now consider terms in (5.24) involving sz;,z |6a;|) and RZE}QA’? 1 with either |o/| =1 or || = 1.

Notice that the D, s, norm controls one additional d, or V%&) derivative with exactly the
right weights so that the 0;¢ and F terms can be treated in the same way. Similar argument
applies to (5.26) with an additional v30, derivative and to (5.27) with an additional 8, or
139, derivative. The only non-obvious term we need to consider is (5.26) with an additional
0, derivative. We bound this term as follows, with |o/| =1, |5”| = 1 and |5"] +|8"| = | 5],

1/'5‘/3He(‘“l)d’af”@?/a?afmwaHLE,U(%,BM*Z’”
S99 o 00 Y 1y
S S 00 e

1 g
o’ gl w

a+a’,6’”,w72ﬂ9) (528)

| |=|al+1

18" |<18
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Combining all the above considerations and relabelling the indices give

‘|

Ag28I/3 D RijIg 4 2813 3 yzw'l/sngé—fﬁlél

<1 ? 5T
1/2 '
S Ao(|0ilrs + | Bl ) 0505 “ 20 + A0S 5 0200 Y2,
e 1571<18) i
1 ! ’ /
+ APV 0208V  F oo I X 0200  Fllpw ) (5:29)
15161 R o
187I<18|
1/2 NG
SAo(10:8 ]z + | Eles) 10805 “ [ 20y + AWM S [0 07 Y |2,
B jo/2lal 18'|</8] SRS
|o"[+]8"|<[e+|5]
Estimates on Zgg .+ Next, let us give bounds on Zg’é_j defined as in Lemma 5.7. We claim

that

V1/31/2|B|/3Z§’§;3 SA51/2U1/3 Z ||8§"85"wa”1>“?’3, Hag(’)fwaupwg
lo'|=e +1 anrhe wme

1'|<(8] (5.30)
+ ([0¢] s + IIEHL;P)||3§35Y“fIIng :

Note that the weight function is rightly indexed at ¢, 5, — 2. Again, the term involving 0;¢
and F is direct, contributing to the last term in the above estimate. Next, for |5’| = 1 and
|5"] < |B], we bound the integral

J113,2181/3

f[ P ()4, )Y [0, 00 00 Y f dvda
T3 xR

< ’/1/3’/2|’8V3||62(q+1)¢3xj3§+ﬁlafnwaHL%,U(%,B,W—ZM ||62(q+1)¢(9 0%)’83”]6||L%,v(€a,g,w—2n9)

vi¥x v

< V1/3(V|5"|/3 Haxj a:?Jrﬂ,af"waHL%U(ZM/@/,,@HW—?’&) ) (V(|ﬁ|+1)/3 ”agagwa”Ax,v(fa,g,w,ﬁ))
S APV T O Y f ey 0200V o
a+B’,8" w o, B,w

Relabelling the multi-indices yields the bounds as claimed in (5.30). The last integral
term in Zgé_f that involves 8%. 8%85 Y« fé’yj oy *h 85 Y« f is treated similarly. This verifies

the claim (5.30).

Estimates on Rié - We go on with giving bounds on Ri’gw as introduced in Lemma 5.5.

Recall from Lemma 5.5 that R>*

o B has three contributions, which we label as

Lt . pLel L2 L,0,3
Ra,ﬂ,w - Ra,ﬁ,w + Raﬁ,w + Ra,ﬂ,w‘
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The first terms can be bounded directly using the definition of the dissipation norms as
follows:

A0VV2|5\/3 z ,RLZ 2|au|}1+yy2|g\/3 Z 216 \/3RL13 2/8|,1

a+a’ a,f+p"w
la’|<1 18’11
<SPPI 4, Z |elarDogare’ 9By e f”iw(zam, )
/<1 o
18”<|8]
| <]
Y -l ” 531
+ nI/VQlﬁI/SAO Z VQ'B ‘/3 ‘|e(q+1)¢8?8’5 +ﬁ Yw f”iz,v(ga,,@lu-ﬁ/’w) ( )
|8’|<1
18" |<I8|
Jw"|<[w]
l "
Snvs Z |o2ay v f”2 ()
|ﬁ”|§|6| (JL [3// "

|w”|<le]

In a similar manner, the second terms can be bounded by
AO,/,/QIﬁ\/S Z R” 2\a’|2+wj2lﬁl/3 Z 28 |/3R§£+2|,,8|2
lo/|<1 |6'I<1

1 "
S CUV3 Z ”axaaf v fHDw) . (5.32)
\5"|S|ﬁ| a, B! W'
w”|<]w]
18" |+|w" || B +H|w|-1

The third terms require slightly more work. First, we bound

2181/3 Lﬁ?\a’li’) 2|8/3 216'|/3 L€2|,3|3
Agvv 181/ ZR 27 181/ Z 18137

a+a, a,B+6,
lo/|<1 |87|<1
S Oy Agui2BI3 | pelar s gavay ' £ |2, (5.33)
lo/[<1 oY
" |<

We will analyze the RHS of (5.33) further. The issue here is that if we control it directly with
the dissipation norms, we would not have enough smallness. For any function g, decompose
g = g-o + g0, where g_o(t,v) := [15 g(t,2z,v)dz. For |o'| <1 and |w'| < |w|, we bound

Agv|| et Degare’y e f|12,

at+a’ v w' 2 at+a’ W' 2 (q+1)¢ o vw'! 2 (534)
= A (@'Y Pl + (@Y P)olZy + (@D~ 1)as Y+ [, ).

The last term is clearly bounded by v|¢|| 1« H(?;“Yw'fﬂiw) . As for the first term, if |o/| = 1,
a,0,w’

then we bound it directly by v?/3v1/3| ey« f ||2 » (noting the extra factor of ©%/3); while if

an

|a’| = 0, we use the Poincaré’s inequality to obtain

A | n(O3Y Flaollez, S Aov|uva 02 flliz, s VP P|0sY FI2 o)
,0,w’
Next, note that the zeroth mode (i.e. second term in (5.34)) is only non-vanishing when
la| = /| = 0. Fixing |a| = [a/| = 0, we further have two cases: if [w’| = 0, we Simply bound the
term by AOV”[LfOHLQ ; while if |w’| >0, we write Y« = Y;Y“" for some j and w”, and use the
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fact (Y f)oo =Y (foo) = (10, + 0y, )Y fog = 0, Y f-g to deduce

Aov[[ (Y F)-ol7 | $ Aov][udy, Y fol7 | 5 ViV FI2 G, (5.35)

a,0,w’’

Hence, combining all the cases above, we obtain

RHS of (5.33)

Cy S Y L+ VIOl 00TV F I, ) iffal>0
w’<w
Cp Y (P 0] Y FI2 oy +v0l= 0507 Y FI20y ) (5.36)
< E o
~ |/3 I<(B] P g ! B
|’ <] )
+C, Y vPozo) v fH2 w  +Cwlnfolzs if |of =
22 e
w |<|w

Putting together (5.31), (5.32) and (5.36), we obtain

A 218113 Z RLe 2|a/\ +VV2\ﬁ|/3 Z 2|8’ |/3RL£ 2|5

a,B+p" w
o<1 871
(n+ Cop )l S 3000 Y FI2 0, + Cl3 S 0207 Y fI2,
18"1<|8] P 18"1<(8 P
| |<[w] |’ |<[w]
, 18" [+w"|<|B]+|w|-1
LCloli- S 10205y fl20 if o] > 0
‘ﬂ//‘glﬁ| o [3" "
< |w”‘S|w| 1’ 1
(n+ CypBY s S 0200 Y 12 0 + 3 S 0202" Y £I2,)
|/8/I|S|/B‘ Oé B I I/ |/BII|S|/B‘ Ot BII 14
| |<[w] | |<[w]
, 18" [+w"|<|8]+w|-1
cCldlim 10207V Fy  +Corlifol?s, if o =
16"1<|8] Eaprwt '
| <ew]

(5.37)

Estimates on Zﬁ,ﬁ,w' We now bound the remainder Zfééw introduced in Lemma 5.7 and
appeared on the right hand side of (5.23). Using Corollary 4.8, we bound

| [ (v) w22 @t D998y L[0,,00 10,,0200Y f dul
RS

S D 00,0505Y Fl At 5020 05,0202 Y Fl Ayt 5.-2.0)
18"<18]

|w’|<]w]
and
| [ )t D90, 00y <L (00 19,0200~ F
R3

S Z ”awz agafwaHAv (Zoz,,B,w_Zﬂ% ”a"?aflywlf“A’U(za,ﬂ,w_lﬁ)'
1B'I<18]+1

|’ |<leo]
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Therefore, multiplying by v#/31281/3 and integrating over z, we get

YA13,,2181/3 ZLt-2

a,fB,w
SV 0200V Fll ay(tupo-20) O VeOR0E Y Fllay(bus-2.0))
18'|<l8l
jw[<o]
+V BUIBIG, 0207V fllayta 5200 (NS0T Y Fllaystap2m)  (5:38)
18'1<|8]+1
o' [<o]
~1/2 ’ ’
SVPA IR OTY fllp X 10507 Y fllpe
P 1818 e
|’ |<few]

Proof of (5.20). We now put together the above estimates. The |a| > 0 and |a| = 0 cases are
treated slightly differently. Consider first || > 0. Combining (5.23), (5.24) with the bounds
(5.29), (5.30), (5.37) and (5.38) for the remainder terms,

d
SNOROTY <20y + 0|0V £ o
a,B,w a,B,w
~-1/2 ’ ’
S (n+ CAB + A7V Y |02l Y I,
1871<18] 8w
|w’|<ew]
LN U el AP e D O) /278 G ke (5.39)
18"1<18| B W o [2]ed, [B8"]<|B] @b w
|’ |<[w] o' [+]8"|<]ee|+|B]

16" ||| <] Bl+w| -1

+ CpAo(|0:fl Lz + ISllya=) D2 1050 Y fI2y  + Rapu
157 a

|w'|<le]

Summing over |a| > N% |a|+|5| < Nag, |8] < Ns, |w| < N, and recalling (5.15), we obtain

|f“12E<19) + QVI/SHJCH%W
NP N, 5.Ng,New NEPW N, 5.Ng.Nw

S (n+ Ol + AT B 112,

NEPW, Ny 3,Ng: N

4
dt

1/2 (5.40)
+(Cy+ AP 12 ) [ £12 0 )
NAOW,NQ,B,NB—I,NW N};’w,NQﬁ,Nﬂ,NWq
+ CpAo(10i0 ] + 16w )1 f 50 + D Rape,

NEW. Ny 5:Ng.Nw  |al2NL™, |8|<Ng
lal+|B|<Na, g, lw]<No

where we have introduced the convention | f|| ) =0, etc.
* %%, —1

Choosing first Ay and 7 small, and then choosing vy small, we can arrange n+C,v?/3+ A, 172
to be small enough so that the first term on the RHS can be absorbed by the second term on
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the LHS. At this point, we fix n and Ay so that

||f 12 ) O P f2 )
Nlow Ny g:Ng:Nw Nlow No.5Ng:No
1/2
S(Cy+ Ay / )V1/3(”f“2(19> HfHQ(m ) (5.41)
Nlow Ne,g:Ng=1,Ne Nlow N, g:Ng N1 :
+ CyAo(10:0 ] g + 01w f120) + 2 Rape

NEWNogNg: N |al2NE®, |B|<Ng
Jo+{81< Ny 5. lwl< N

For fixed N,p > Nl°v > 1, we now perform an induction in Nz and N,. The base case

is Ng = N, = 0: since HfH ) = || £l = 0, the desired conclusion is
DN low N, p-LNw DNIOU’ Ny g:Ng,~1

immediate. A simple induction, say, first in N, and then in N3, finishes the proof of the
proposition in the case Nw > (.

Proof of (5.21). Finally, we consider the case N/® = (. Notice that when repeating the
argument in the proof of (5.20), the only difference is that we obtain an extra term v f-o[?2,

(coming from (5.36) in the |a| = 0 case). Thus

”f”Qw) + v/ ”f”Q(ﬁ)
ON BNB Nw ONO(BNE Nw (5 42)
Svlufoliz, + (10l + 6]y °°)HfHEw> + Y Rapu '

Na,pNg:Nw |Bl<Ng
|a‘+|ﬁ|§Na,,87 |w|SNw

To proceed, we write f(t,z,v) = a(t,x)\/1+b;(t,x)v;\/p+ c(t, x)|v|*\ /i + (I =1I) f, where
I is the identity, and II is the projection as in Lemma 4.5. Repeating now the basic energy
estimate in Lemma 5.4 with ¢ =9 =0, we obtain

Sttt vv [ Lty dude s RES, + RES,

Applying Lemma 4.5 for (e?f, L(e?f)) and controlling 'RO 00 by (5.25), we thus obtain

d
—Ne?fl7.  +a*v[e?(I-IDfIA,, S (10:]2s + ||E||L°°)||f||2<o> +Ro.  (5.43)
dt

Notice that (5.43) implies

vlpfolis, svl(@b o)l +vle?(I - fIA, , +vIdlis lunf-ol7:
— 7 - ,0
SUI@ 0,0 + (10 e + I9le) 1 f 120 +Rioo.

0,N, BNBNL,J

(5.44)

Plugging this into (5.42) yields the desired conclusion. O

5.6. The main energy estimates including the top-order energy.

Proposition 5.11. Fiz ¥ € {0,2}. The estimates (5.20) and (5.21) in Proposition 5.9 both

hold (for N'ew >0 and Nlow =0 respectively) with ng)ow Na g NN ]D)%)Ow N g N3V and Ro. g
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I’E(ﬁ) ~,(9)
Nlw Ny 3,Ng,No,” = N Ny g,Ng,No,

are as in (5.16), and

7O

and R p. respectively, where NIow N 5NN

replaced by

D
and N(l)zowaNa,BzNBan

> _ 2 ") /372 QA-2I5|
Repw=Rapw+ IBZ'QQ L2818/ R 52800

where ’Rgéw and Rq g are as introduced in Lemma 5.5 and Proposition 5.9.

Proof. We repeat the argument in Proposition 5.9, except that we now derive the energy
estimates for &, g, and D, g, instead of &, 5., and D, .. For this, we need to handle the
additional terms

-1, 2|8/3 216|/3[ pT:¢-218'] L,6=2|p’] Q,6-2|B']
Ayt |§|; v [Ra,mﬁcw VR s T Rajpep o]
=2

Now the ¥ g2 RS;;%',B ;' term is part of R g, and does not need to be estimated for the
purpose of this proposition.

As for the other two terms, notice that while they contain one more 0, derivative compared
to their counterparts in Proposition 5.9, the norms &, 3., and D, g, also control the additional
terms as indicated in (5.13) and (5.14). It can be checked that the same energy estimates as
in Proposition 5.9 can be obtained, as long as the (£, D) norms are replaced by the (&, D).
We only consider in detail the following term from Rzéﬂ? l which requires modifications

that are not completely obvious:
PR S S o ogue S g Y [T 0T Y f 1 )

18"1=218"|=|8|-1
ELR!
SUMB@ITIERE S @207 2 07 Y fliz (0us-a.0))
|o”|=|a|+1
18'=2,18"|=15]-1
x (VB2 S e DO020T Y fl1a (4,50-0.9))
6'|=2
< Vl/g(]/‘ﬂ,/‘/3+2/3 Z ”6(q+l)¢vva§”afﬂwa”Az,u(fo‘,@,w*Q,ﬁ))
o’ |=Ja+1
18" |=181-1
x (V|ﬁ|/3+2/3 Z ||6(Q+1)¢85W8§‘85"waHAI’U(gmB,,’w,;mg))
18" |=181-1
1|2
” " 1/2 "
SV 00 Y Flsn ) x (A Y 10800V fllper ).
la”|=[a+1 B |8 |=18]-1 wie
18" |=181-1

As a result, we can then complete the argument following the proof of Proposition 5.9. [

6. LINEAR LANDAU EQUATION
In this section, we derive estimates on the semigroup of the linear Landau equation
Of +v-Vuf +vLf=0 (6.1)

on T3 x R3, with initial data f(0,z,v) = fo(z,v), where L denotes the leading linear Landau
operator as in (2.3), (2.4) and (2.5). Let S(¢) be the semigroup associated to (6.1), that is,
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for each fo(z,v), we set

S®Ofol(x,v) = f(t,z,v) (6.2)
where f(t,x,v) is the unique solution to (6.1) with initial data fo(x,v). As L is independent
of x, the problem (6.1) can be solved via the Fourier transform. Indeed, we can write

S fol(z,v) = Y e* S () [ for] (v)
keZ3
in which, for each k € Z3, fok(v) is the Fourier transform of f(x,v) in variable x, and
Sk(t)[ho] denotes the corresponding semigroup to the Fourier transform of (6.1): namely,
h(t) = Sk(t)[ho] solves the following fixed mode linear Landau equation

Oih +ik-vh+vLh =0 (6.3)
with initial data h(0,v) = ho(v).
This section is devoted to deriving estimates for | Jrs B/ dv‘. We will prove both finite

time bounds (Proposition 6.5) and decay estimates (Proposition 6.4). We prove two types of
decay estimates:

e Uniform phase mixing: decay in the variable (kt), uniformly in v > 0.
e Enhanced dissipation: decay in the variable (v1/3t).

The precise decay estimates can be found in Proposition 6.4 below. When v =0, (6.3)
becomes the free transport equation, whose semigroup reads Sk (t)[h] = e7**vh. In that case
the decay estimates in (kt) are thus direct. We shall prove the phase mixing for the linear
Landau equations (6.1) uniformly in v > 0. (In fact, we also prove a “twisted” estimate with
decay in (kt +n) for n € R3, which will be useful in the nonlinear density estimate.)

Next, using methods of [61], it follows that the Landau diffusion dissipates energy at
least at a rate of order e=-9()% ° which in particular becomes relevant at time of order 1 [v.
Making use of the transport-diffusion structure of the Landau operator, we shall prove the
enhanced dissipation in (v'/3t), which takes place at a much earlier time of order v~1/3, as v
is sufficiently small.

6.1. Phase mixing and vector field bounds. In this subsection, we prove that control of
Yy, derivatives (defined below) implies decay estimates for velocity averages.

Proposition 6.1. For keZ?, neR3, set Yy, =V, +i(n+kt), and g:R3> - R. Then, for any
N >0 and any ¢’ >0, there is a positive constant Cy ¢ so that

‘[ gv/ido| < Cy ekt +n)™ 3 [(0) Y, gl L2 es)- (6.4)

<N

Proof. 1f |kt +n| < 1, the desired estimate follows directly from the Cauchy—Schwarz inequality.
Suppose that |kt + 7| > 1. Take j such that |k;t +n;| > %V{t +n|. Then, writing i(k;t +1;) =

Yk, m; = Ov;, Wwe bound

R

N
Ikt+nlN‘nggﬂdv <32 fRs(ijm)Ng\/ﬁdv
s 2 | [ aevidsve X 1) Vel e,
Ni+Na=N I /R R s lw|<N

where the final inequality is achieved by integrating by parts Ny times in 0, . O
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6.2. Enhanced dissipation. In this subsection, we prove the following enhanced dissipation
estimates for the linear Landau equation (6.1), which are a direct consequence of energy
estimates.

Proposition 6.2. For ke Z3~ {0} and neR3, set Y, =V, +i(n+kt) and let Sp(t) be the
semigroup of (6.3). Then, there exists §' >0 so that

1Y, Sk ()]l 2 5 (V18) 2] holl saoor (6.5)

Landau,k,n,|w|
and

||Sk(t)[h0] ||L% < min{e—ar(yl/st)l/s 5r(ut)2/3}Hh0 ” 2 (6.6)
Landau k,n,0
uniformly in k € Z3\{0}, n € R3, and v > 0, where for {, € R and 9 € {0,2}, the linear Landau
energy norm | ho| yce..oy is defined by

Landau,k,n,|w|

” h'O HEg;nflz:u k,n
q\v
= () e hol 1z + (0)* Y5, hol 2
ey T (6.7
_ o 'l ’
+V1/3|k3| 1 Z (”(U)%* 26 hO|L2 + Z 2& 28,8 YE)nhOHLQ)
|87|=1 1<\w|<N
1 .
_ sqo if =2
dq is d dbyq =42 )
and q' is defined by q {O if9 =0

Remark 6.3. Note that ¢’ = %q with ¢ defined as in Section 5. That is, the linear Landau

energy norm | - | ce..oy has slower Gaussian v-weights than do the corresponding energy
Landau,k,n,N

and dissipation norms. In addition, it involves precisely the stationary vector field Yy, = V,+in
(i.e. independent of t).

Proof. Basic energy estimates. Let h(t) = Si(t)[ho]. We note that h(t) solves the linear
Landau equation (6.3) with initial data hg. As (6.1) is a particular version of the full Landau
equation (2.2a) without the electric field and nonlinear terms, we can thus apply to (6.3) the
same energy estimates developed in Proposition 5.9 for N¥ = N, 5 = N3 = 0. Indeed, we
claim that

IIh(t) 2. 0y + OV IR 2 . 0y <O (6.8)

Eq 50, N, Dg 0.0 N,
for any £, € R and ¥ € {0,2}. Here, in (6.8), the energy norm [[A(t)| ..oy and the dissipation
0,0,0,Ny
norm ||h(t)|| ..oy are defined by
0,0,0,Ne
O] e U1G] WARE DI N 10 ”2(5* o

0,0,0, N 0,0,0 1<|w]<N

”h(t)”D(z* 19)' ||h(t)”2 0y T Z H h(t) HD(e* 0y’

0 0,0 1<|w|<N
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where for H = Y h, we set

HHH2<e* ' —AOZHkaH”m(z 20y TV v 9%[ w?k - (V, H)HdU“/Q/?’HVvHHLz(a ~2,9)"

/<1
HHH2 (éyc 0)’ - A0V2/3 z|: Hka HHA”(& -2|a’|,9)’ + H|k|H”L2(& -2,19) + V4/3HVUHHA1,(€* -2.9)"
a’|<1

'1v[?

for L2(¢,9)", A,(¢,9)" as in (2.12)(2.13), Ay as in (5.11)—(5.12), w = (v)»*2e 2, with
r_ %qO if =2
0

920 Observe that these are exactly the norms in Proposition 5.9 adapted
1 =

to the current setting, except with (1) ¢ =0, (2) Y is replaced by Y}, (3) 2M replaced by

P qlvﬂ
l., (4) the Gaussian weights "3 are replaced by e%, and (5) the polynomial (v) weights

depend only on the £ weights and 9, derivatives, but not the Y}, derivatives.
Now make the following observations:

e Y0 =V, + ikt corresponds to the vector field Y = V, +tV, in the physical space.
Hence, the energy estimates for Y, are a Fourier transformed version of those in
Section 5. Now, for n # 0, we observe that the commutator of Y}, with the linear
Landau equation is identical to that of Y} .

e The argument in Proposition 5.9 goes through identically with ¢ replaced by ¢’ in
the Gaussian v-weights, and with ¢, 5, = £+ — 2|a| - 2|8]. (The choice of ¢, 4, =
2M - 2|a] - 2|B| - 2|w]| will only be relevant in Section 9; see for instance Lemma 9.6.)

Therefore, the estimate (6.8) can be obtained as in Proposition 5.9, read off specifically for
the linear Landau equations.

Polynomial decay. Define
P()= Y (Ao Y ()WY WP + vER(ik - (V,YENTER) + [T, YEHE) (6.9)

lw|<N la/|<1

so that Hh||;(270), = [ps g dv. Notice that (using in particular [(v)=3/2(V,)[z2 < |- ]a.)

0,0,0,N

a0 2 X (REIYE AR 00 + 10 298 M 00) 2 [ (o) 1P dv. (6.10)

0,0,0.N  |wgN

That is, using (6.8) with (¢.,9) = (2,0), we get

d
%/]Ri‘ g?dv+ o'V ng(v)_A‘dev <0, (6.11)

for some positive constant ¢’. Moreover, using (6.8) again, we have

sup ( >16 2(t U) dv$ sup Hh(t)”z(mo)' S Hh(o)”]E(IOO) |k| Hh0H2(100)’ )

te[0,00) R3 te[0,00) Landau k,n,N

recalling the definition of | - | o0y in (6.7) and noting Y} ,h(0) = Yo k. Therefore,
Landau,k,n,N
applying Lemma A.2 to (6.11) (with 2B e k|2 ho ||]2E(1070), and m = 4), we obtain
Landau,k,n,N

. Noticing that g* 2 [k[*[Y? h|* and dividing by [k[?,

(10,0)’
Landau,k,n,N

Jes 3(,0) dv 5 (v3t) 3|k [ o |2
we obtain (6.5).
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Stretched exponential decay. This requires only little mod{iﬁcation from the previous
case, except that we need to prove both e~ @*0* and =D Jecay.
Define g as in (6.9) but only for N =0, i.e.

g3 (t,v) = Ay Y ()N B2 + BR(ik - (VR)R) + vV, R
la/|<1
The equation (6.10) holds in the particular case N = 0. This time, moreover, the initial bound
on |[hol g2y and (6.8) (with (4,,9) = (2,2)) give uniform in ¢ bounds for the Gaussian
Landau,k,n,0
moments for 927,] ie.
lq0|v|2 2 < 2 ,
_43 €2 g de ~ |k‘ HhOHEfa’?dau,k,n,O

Therefore, applying Lemma A.1 to (6.11) (with ¢ 2 /3, €< |k|2|\h||]2E ,m=4), we

(2,2)f
Landau,k,n,0

obtain
_§(V 3113
KPR, 5 [ g% dvs e 0 ],

Landau,k,n,0

Finally, to obtain the other, i.e. the e=39*°  stretched exponential decay, note that we
have (using [(v)~42- |12 <| - |a,) the following bound, in addition to (6.10):

||h\|§)g2,o>' 22DY |kf|2‘a|||h||%g(3/2-2|a'|,0) +V2/3H(U)fl/zvvhnig(o,o) 2 v /R,J"U)lgz dv.

,0,0,0 IO/|S1

Remark that this features both the improved (v)~! weight and the extra v?/3 factor when
compared to (6.10). Thus, an application of (6.8) (with (¢,,v9) =(2,0) and N,, = 0) yields

d 2 ! -1,2
E—[Rgg dv+9Vng<v) g°dv <0,

for some 6’ > 0. Using Lemma A.1 (with ¢ 2 v, € S|k]?||h]? .., , m=1) thus gives

Landau,k,n,0

_ 2/3
KEIRIZ, () 5 [ g% dos e 0" 2[R
v R3 ]ELandau,k:,n,O

Combining the two stretched exponential decay estimates above, and dividing by |k|?, yield
(6.6). OJ

6.3. Mixed decay estimates. In the nonlinear analysis, we also need the following proposi-
tion, which is a direct combination of Proposition 6.1 and Proposition 6.2.

Proposition 6.4. Fix k€ Z3 and n € R3, and let Si(t) be the semigroup of (6.3). Then, for
any N >0, there exist Cy >0 and oy >0 such that

f S hol/aidv| < Cx{kt +m) N (W 53) 32 holl ooy (6.12)
R3 Landau,k,n,N
‘ f Si(t)[ho]/Eidu| < Comin{e 0@ 0™ e=00@O* Y po )y (6.13)
R3 Landau,k,n,0
and
[, Se®lhel e
= (6.14)
_ . S (UIBOB s (2]
< Okt + )Y min{e v @00 OOy o] goor ok fholgear ],
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uniformly in k € Z*\{0}, n € R?, and v > 0, where the norm || - | g0y is defined as in

Landau,k,n

Proposition 6.2.
Proof. Let h(t) = Sg(t)ho. We combine Propositions 6.1 and 6.2 to obtain

‘ JRIONGET B

(kt+m)™ 30 [V hliz S (Kt +0) "N (@ 2) 7 ho[l ooy

|LU|SN L(Ln(ia.u k,n,N
The proof of the exponential decay in (6.13) is similar (there recalling N = 0). For (6.14)
with N > 0, we use Propositions 6.1, 6.2 and interpolate (using Plancherel’s theorem and
Holder’s inequality), namely

[ p@idv| s (kt+ny ™ v hl i

lwlsN

)% ()] e

S(kt+n)™(C 3 1V,

|w|<N+1

N S (WO 5 (i)2]
Gkt )Y minge SO0 O gl oo afholyesy ] D

Landau,k,n,N Landau,k,n,0

6.4. Finite time energy estimates and the v — 0 limit. In this subsection, we study the
v — 0 limit of Sk(t)[ho], where ¢ ranges over a finite time interval. To clarify the notations,

in this subsection we use S,EV)(t) to denote the semigroup associated to equation (6.3).

Proposition 6.5. Fiz T € (0,+00). For any hy € S(R3),

[ S (#)[ho] /i dv - f SO @) [ho] /i dv| =

lim sup
v=0e [0,7]

Proof. Let f) = S,E”)(t)[ho]. For every v € [0,1], standard finite time energy estimates for
(6.3) give that for Cr >0 (depending on 7" but not on v)

sup . kT f 2 <Cp D> k05 hol p2. (6.15)
te[0,T] |af+|8|<2 |la|+|8]<2

(For finite time energy estimates, we simply use Gronwall’s inequality for many commutator
terms, making them much easier than those in Proposition 5.9.)

Consider now the equation 9;(f*) — f(O) + ik -v(f®) - fO) = —y L f*) Multiplying by
f®) — f(O) integrating in v and then using (6.15) gives

d
Z I = FOUL svlf© = FOURILS iy s Covl £ = fPaz - 3 [k°07hol 13-
ol +15l<2

This implies 4| f®) - fO) ;. < Cv, for some constant depending on 7" and hy. Noticing
now that Hf(”) - f(O)HLg(O) 0, we then deduce that sup,o 7 [ f) = O] 12(t) < CTv. The
conclusion then follows from the Cauchy—Schwarz inequality in v. 0J

7. LINEAR DENSITY ESTIMATES

The goal of this section is to derive decay estimates for the density of the following linear
Vlasov-Poisson-Landau equation

Of+v-Vuf +vLf =2E-v/u+MN(t,x,v) (7.1)
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for the linear Landau operator L defined as in (2.3), (2.4) and (2.5). The equation is solved
with initial data f(0,x,v) = fo(z,v) and a source (¢, z, v), coupled with the Poisson equation
E =-V.(-A,) !p, where the density is defined by

p(t,z) = '/R?’ f(t,z,v)/pdo.

For k € Z3\{0}, let pr(t) be the Fourier transform of p(¢, ) with respect to variable z. We also
denote by fo,(v) and 9 (¢, v) the Fourier transform of fo(z,v) and N(t,z,v), respectively.

The main result of this section is the following proposition.

Proposition 7.1. For any initial data fo(z,v) and any source term N(t,z,v) in L2(R3xR3),
the unique density solution p(t,x) to (7.1) satisfies the following representation

a0 = N0)+ [ "Gt = )N (s) ds (7.2)

for each Fourier mode k € Z*\{0}, where for any Ny > 2, there are Cx, >0 and 0%, >0 such
that the kernel Gi(t) satisfies

1Go(8)] < Cig [k L (kt) " N0*2 min{e % 70" =%, 00"y 0y s, (7.3)
uniformly in k40 and v >0, and the source Ni(t) is given by

— t A
Ni(t) = fRs Sk(t)[ for(v)]\/pdo + /(; /W Sk(t = 7)[Ne(7,0v) ]/ dodr (7.4)
where Sk(t) is the semigroup of the linear Landau equation (6.3).

Remark 7.2. Proposition 7.1 in particular shows uniform linear Landau damping for the
linearized Vlasov-Poisson-Landau equation near the global Maxwellian p = eI Indeed,
combining with Proposition 7.1 with Proposition 6.4, one deduces that for hy(t) := Sk(t)hox,
the corresponding density function py satisfies

196(D)] S (kt)™ min{e v @D oo @ty
uniformly in v > 0, for sufficiently regular initial hy.

Remark 7.3. By comparison with the v =0 case (see e.g., [53]), one may expect that (7.3)
even holds with |G (t)| S |k|"*e%I¥. Proving this seems to require the technically involved
task of deriving Proposition 6.4 for Y}, derivatives of all orders with almost-sharp constants,
and has not been carried out.

7.1. Equation for the density. We first derive an equation for the density from which the
estimates are obtained.

Lemma 7.4. Introduce the kernel

K(t) - % [k Suloy/alade, (7.5)

where Sy(t) is the solution operator of (6.3). Then, for each k € Z3\{0}, the density py(t)
satisfies the following Volterra equation

() + fo "Rt - ) pe(r) dr = Ni(8), (7.6)

where the nonlinear source term N (t) is as in (7.4).
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Proof. The lemma is direct. Indeed, taking the Fourier transform in z of the linear Vlasov—
Poisson—Landau equation (7.1), we get

8tfk + ik - Ufk + l/Lfk = QEk . U\/ﬁ + sj,tk(t, U). (77)

Let Sk(t) be the semigroup of the linear Landau operator d; + ik - v + vL. Applying the
Duhamel’s principle to (7.7), we obtain

fk(t,v):S(t)[ﬁ]k(v)]+2f0tsk(t—7)[Ek(T).U\/p]dﬂfotsk(t—T)[sﬁtk(r,v)]dT. (7.8)

Note that Ej(t) is independent of v, and so

fot S(t = ) [Ew(r) - vy /H] dr = fot Bo(7) - St = 7)[or/E] dr-

Recall that Ej(t) = —ik|k|2p,(t). Therefore, multiplying the equation (7.8) by Vit and
integrating it over R3, we obtain the density equation

¢ _ t .
ﬁk(t)+f0 Ku(t-7)pi(r) dr = fR Sk(t)[fok(v)]\/ﬁdv+/o fR Si(t-7)[F(r,v)]Edv dr

where the kernel Kj(t) is defined as in (7.5). Setting the right hand side to be N (t), which
is the expression (7.4), the lemma follows. O

7.2. Kernel K (t). To solve the density equation (7.6), let us first study the kernel Kj(¢)
defined as in (7.5). We obtain the following.

Lemma 7.5. For any n, N >0, there exist constants Cn, >0 and o5 >0 so that
0P K (8)] < Coyn K[ (kt) ™ min{e o5 (0" c=on 0?2y =y g5 (7.9)
uniformly in v >0 and k # 0.

Proof. Let hi(t,v) = 2|k|72ik - Si(t)[v\/1z], i.e. that hy(t,v) solves the linear fixed mode
Landau equation (6.3) with initial data h(0,v) = 2|k[-2%ik - v\/p. By definition (see (7.5)),

Ki(t) = [Jgs hi(t,v)\/dv. Hence, by (6.14) in Proposition 6.4 with 7 = 0, we have
|Kk(t)| < CN</€t>_N min{e_éN(Vl/?)t)l/B’ e—éN(ut)2/3}”|k|—2k . U\/E”E(M)’
Landau,k,0,N+1

< Ok k)™ minge-ov@POM -ox 007

for k # 0, upon recalling that p = e7"F". As for derivatives, using (6.3) and integrating by
parts in v, we compute

O, (1) = fR Oy (£, 0) /i do = - [R ha(,0) (ik;0; + vL) /i do.
Inductively, for n > 1, we have
O (1) = (~1)" /R (8, 0) (ikyo; + vL)"do.

The estimates for derivatives thus follow similarly, upon noting the loss of one factor of |k
for each time derivative. This ends the proof of the lemma. O
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7.3. Resolvent estimates. We are now ready to solve the linear Volterra equation (7.6) for
the density

)+ [ Kt - ) pu(r) dr = Ne() (7.10)

for the source term N (t) as in (7.4), and thus give the proof of Proposition 7.1.

Proof of Proposition 7.1. Taking the Laplace transform. The linear Volterra equation
(7.10) is solved through its resolvent solution. Precisely, for any F' € L2(R,), let us introduce
the Laplace transform

LIF](\) = fo T e NE(t) dt

which is well-defined for any complex value A with R\ > 0. Thus, taking the Laplace transform
of (7.10), we obtain the resolvent solution
1

S e s TATE))

The representation (7.2) follows from taking the inverse Laplace transform of (7.11) with the
kernel G(t) being the inverse Laplace transform of

LIK](N)
1+ LK ()

LINIO). (7.11)

Gr(\) = - (7.12)

Basic estimates for £[K;]()\). It remains to give estimates on the resolvent kernel G, ().
To simplify the exposition, we only prove the e=9n @'’ decay in (7.3); the e=v@D** decay
can be proven in a completely analogous manner. By definition, we have

LIK ) = fo T MK (1) di

which is well-defined for any complex value A with 98\ > 0. Fix Ny > 1. Using Lemma 7.5
with N = Ny, we bound

LRI < Conlkl™ [ Gkt ™0 di < Co 2 (7.13)
0
uniformly for any SR\ > 0. Similarly, for any 0 < N < Ny -1, we have
0 LU < Co K [ ()20 dit < Cog 172 (7.14)
0

uniformly in & # 0 and 2R\ > 0.
For N > Ny -1, we use also the stretched exponential decay in Lemma 7.5 to obtain

OF LLRION] < O 2071 [ 4N -Nos2emomo 00 )2 gy (7.15)
0

with a constant independent of N. Noticing that sup,(o o gMe=='* < (3M)3M | we have
|8§\V/.,‘[Kk]()\)| < CNO|k|fNo+1(5N0)73(N—N0+2)V—(1/3)(N7N0+2) (3(N — Ny + 2))3(N7N0+2)
< CNO |k‘|_N0+1 [27(5]\[0 )_3V_1/3N3]N,

assuming, without loss of generality, dy,v < 1.
Checking the Penrose condition. We now check the Penrose condition (see (7.18)

(7.16)

below) by comparing with the v = 0 case. To highlight the dependence on v, write K ,g”) = K.
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First, by (7.13), there exists K large such that 1+ E[K,g”)]()\) > £ for for |k| > K and v > 0.
On the other hand, it is classical [91] that the Penrose stability condition holds at v = 0,
i.e. for any positive radial equilibria in R3, which in particular includes the Gaussian u(v),
there is kg € (0,1) such that

inf inf |1+ LKA 2 ko > 0. (7.17)

RA>0 keR3
Now by the estimates in Lemma 7.5, it follows that there exists large T' > 0 such that
[ |Kk|(t)dt < = uniformly in v > 0 and k # 0. Moreover, fixing this 7', Proposition 6.5
implies that lim, o+ fOT |K lg,,) -K ,go)|(t) dt =0 for every k # 0. It therefore follows from (7.17)
that there exists 1 > 0 such that infyyso infigex |1+ L[ K] (X)] > 52 for all v € [0,14]. Together
with the large |k| estimates above, we have, for v € [0, 1],
inf inf |1+ £[K")(0)] > % >0 (7.18)

RA>0 keR3

Basic estimates for G;()\). Combining (7.14) and (7.18), we obtain derivative bounds
on the resolvent kernel, for 0 < N < Ny -1,

0 G(N)] < Cy [ N2 (7.19)
uniformly in & # 0 and 2R\ > 0.
Moreover, since  + % is real analytic on [k, 00), using (7.16), (7.18) and considering a
power series expansion, we obtain that with By, independent of N,
0N Gr(N)] < O k[N~ [ B, v B N3]N (7.20)

uniformly in k # 0, RA >0 and N > Ny - 1.

Improved estimates for G;(\). We need an improvement of (7.19) and (7.20) which
incorporates decay in A. More precisely, the kernel G(t) is obtained through the inverse
Laplace transform formula

1 ~
Git) =5 [ NGV dr 7.21
w(t) = 5 ot © k(A) (7.21)
for any 7o > 0. We stress that the estimates in (7.19) hold for R\ = 0. Thus, to obtain decay
in time, we need decay in J\ independently of 7. To this end, for any A = yo+i7, we compute

(K = W)L = [ (R = 92K (h)
= A1) + 6th(t)]|;: ; fo T (]2 - 92) Ku(t) dt.

In the above, the boundary term at ¢ = oo vanishes, since (by Lemma 7.5) K (t) and its
derivatives decay rapidly in time. On the other hand, a direct calculation yields

Ki(0) = 2|k|™2 fRS ik -vpudv =0
0,1 (0) = 2|k|2 /Rz[ ~ (k- 0)*\ /i~ vk L /i) [V do.

Hence, [0;K;(0)| < C, uniformly in k for v < 1. Finally, using bounds from Lemma 7.5, we
obtain

(kP =X)L < €+ Cll [ (kt) 2 dt <,
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for A = 4y + 47 and for some constant C' that is independent of k,~y, 7. This proves that
|£[Kk](’}/0 + lT)| < m, glVlIlg
C
< ——
|k[? + |2

uniformly for all vy € (0,1/2). Similarly, repeating the proof leading to (7.19) and (7.20), but
incorporating the above integration by parts argument for additional |7|?> decay, we obtain

G0 +i7)]

~ : Cnlk|™N
N N
|a/\ Gk(FyO + ZT)' < |]€|2 4 |7_|2 (722)
for any N < Ny -1, and, taking By, larger (but still independent of N) if necessary,
~ O \EI-No[ B -1/3 N3N
|0V G (v +i7)]| < No K[ By ] (7.23)

[K[? + |72

for any N > Ny — 1, where both estimates hold for any k # 0, 7o € (0,1/2) and 7 € R.
Estimating G (t). Thanks to the decay in 7, we can take the vy - 0* limit in (7.21) with
the dominated convergence theorem and perform repeated integrations by parts in 7, yielding

1 ~ 1 o
Gu(t) = — f{ oy € e A= o [R GGy (i7) dr

211

-1 A L o (™G (ir) dr = =L [ emonGutir) dr (7.24)
21 JRr it 2t JR

- CDT [ e Giir) dr
2wt Jr ATk ‘

First, consider the case ¢ < 10°By,er~/3 with By, as in (7.23). Using (7.22) with N =0 and
N = Ny -2, and plugging into (7.24) (with the same V), we have

dr |kt|~No*2 dr
Gts/—sk—l,Gts —_
GYOI % [, s ST 1G] 5,

S |E[7H kt|Nor2,
R |k +]|7]? No (K17
Therefore, for any ¢” < 10_131_\%6_1,

Gr(t)| S || (Jet)Nor2e=0" PO gor 4 < 103 By e /3. (7.25)

On the other hand, for ¢ > 10 By,ev~/3, we first use (7.23) and (7.24) with N > Ny -1 to
obtain

k|- No+1 dr
R KR+ |7
Given t > 10°By,ev1/3, take N = [(Byle lw'/3t)1/3] so that (By,v Y/3N3)t-1 < L and N 2

(1/2)(Bxtv/3t)1/3. This implies, for 67, < lBJ_Vi/S,

Gr(t)| Sno (Brgv BNH)NEN Sno [k (B v ENB)NEN.

,1/3 P P
GR(8)| Sy [N e™ Sy, K| Norte (/2B R SNo |/€|_N°+16_57V0(”1/5t)1/5.

A similar computation gives, after taking oy, smaller

IGr(E)] S K] Jet] Nor2( By V3NB)N N #No2 ¢ | 1 og -Now2 =08 (4101

Combining the two estimates above gives

G ()] Sy, [T (Ret)No#2e %P0 gor 15 108 By e 18, (7.26)
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Combining (7.25) and (7.26) yields the e O (10 decay estimate in (7.3); the ¢ W0
decay can be proven similarly and is omitted. 0

8. NONLINEAR DENSITY ESTIMATES: BOUNDS FOR ALL DERIVATIVES

In this section, we derive density estimates for the full nonlinear Vlasov—Poisson—Landau
equation (2.2a)—(2.2b) under the bootstrap assumptions on [0,Tg) for N < Ny,

e For all t € [0,Tp), the nonlinear solution f to (2.2a)—(2.2b) satisfies

||f(t)||~w) + vt [ ||f(7)||~(0) dr < ev? min{’/_l/ga (t)}maX{O’N_Nm“I+2} (8.1)

for ¥ € {0,2}, where \|f\|~(ﬂ), If12 5 are defined in (5.17).
e The following holds for all t €0, TB) for ¢ := -Alpyy and E = -V, ¢:

100z + 16D lypze + D 05V E(#) |15 < /2013(E) 2. (8.2)

|o|+|w|<4

The main result of this section is the following.

Theorem 8.1. Consider data as in Theorem 3.1. Suppose there exists Ty >0 such that the
solution f to (2.2a)—(2.2b) remains smooth in [0,Tg) x T? x R® and satisfies the bootstrap
assumptions (8.1) and (8.2).

Then, ps(t,z) satisfies

Tp
> (,sup [05Y“ ppo(t) 75 +v1/° fo [02Y“ppo() |72 dT) S VP2 (8.3)
lo|+w|<Nmaz <T's

The proof of Theorem 8.1 proceeds as follows. We write the nonlinear equation (2.2a) in
the form of (7.1), which we recall

Of +v-Vof +vLf =2E-v\/u+N(t,z,v)
where the nonlinear source term (¢, z,v) is computed by
N(t,z,v)=E-vf -E-V,f+vI'(f, f). (8.4)

We can thus apply the linear theory developed in Proposition 7.1 to compute the density
through the density representation (7.2). Let us first give estimates on the source N(t)
computed by (7.4):

Nl = [ SO+ [* [ 8-St o))y dvdr

where fo,.(v) and ‘fik(t,v) are the Fourier transform of fo(z,v) and (¢, z,v), respectively.
Precisely, we will prove the following proposition.

Proposition 8.2. Define

)= X [sw DU R[S e dr] (85)

Ny +N2<Nmaz O<r<t l%O l%O



THE VLASOV-POISSON-LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME 48

Then, under the assumptions of Theorem 8.1, there holds

S (WP ENGOR - [ S NG ()P )

N1+N2<Nmax k#o k#O (86)
S 23 4 e((1).

We first prove that Proposition 8.2 gives Theorem 8.1. Recalling the density representation
(7.2), with |Gg(t)| S k|71 (kt)No*2 = |k|~1(kt)=2Nmas=2 (choosing Ny = 2Na, +4), we have the
following bound for any Ni + Ny < Nypae

> PR (D < 3 P WGP + 3 Y (12 [ Gt - 5)N(s) |
k#0 k#0 k+0 0

S 3PV (RO + 5 PG [ I - WGP ds [ 16 9)] ds

k#0 k#0

S EIWFN%ktVNﬂﬂ@(ﬂP+-2:%F3JC%k(t—S)YﬂkFN%kSVNﬂﬁh(SNQd&

k#0 k#0
where at the very end we used & < max{t - s, s} so that (k(t — s)) 2Nmee=2(kt)2N2 < (k(t -
s)) (ks)?.

Now using (8.6) and the fact that ((¢) is monotone in ¢, we get

S RV (R (D $ 020+ (1) + YR [ (k(t - 9)) 2220+ e(s)] ds

k#0 k#0

SEvBreC(t)+y ]k]’4[621/2/3 - GC(t)]
k#0

S B eC(t),

noting the summation over Z3 \ {0} of |k|~* is finite. Similarly, using L? bounds in (8.6), we
compute

t
o8[S R ) ()
0

k40

t
S0 [ RPN dr
0

k40

N fo G = )PP (s PN ) ds e

k40

SEVB v eC(t)+ ) |k|’4[62y2/3 + eC(t)] S VB eC(t).
i20

Combining and recalling (8.5), we obtain
C(t) s 2?3 + (1)

which immediately yields Theorem 8.1, upon taking e sufficiently small and recalling that the
Fourier transform of 02Y“p(t) is precisely (ik)®(ikt)* pr(t).
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The remaining subsections are thus entirely devoted to prove Proposition 8.2. In view of
(8.4), we write

Nt) = [ SeOUadvido+ [ [ St -DIETT - (Tl ()yiduds
+,,f0t[RS St =) (O, F)e(r)] Vi dvdr = T (£) + T (¢) + T (£).

We shall now prove (8.6) for each term in the following subsections. For the remainder of the
section, fix Ny, Ny such that N1+ Ny < Npes.

(8.7)

8.1. Imitial data contribution. In this section, we give estimates on

() = [ Sk or(0)]Viidv.
By (6.14) in Proposition 6.4 with n =k,
Lo (4)| S (k(t + 1)) Nmas=1 min{e—(é’/Q)(vl/St)”S, 6_(6,/2)(Vt)2/3}H.%k||]]§(2v2)/

Landau,k:,k,NmaerQ‘
Summing over k, and using the assumption (3.2) for the initial data,
_ . (BB st (u)2/3 -~
Z ‘k|2N1(kt)2N2|Hk(t)|2 < (t) 2m1n{6 &' (v/3t) e ' (vt) } Z HfOkH?E(za)’
k#O keZ3 Landauw,k,k,Nmax+2 (88)
S 223 ()2 min{e“;/(”l/gt)l/g, 6—5’(14)2/3}

which in particular satisfies both the L and L? bounds required in Proposition 8.2.

8.2. Nonlinear interaction I. In this section, we bound

m() = [ t |, 8t =DIE D) = (ETe ()] fidvdr = M (8) + Mea(t)  (89)

under the bootstrap assumption (8.1) on f. Precisely, we will prove that

t
D IR[PN (Rt )N T (1) + 1P [ > [k ()22 | (7) P dr S e (), (8.10)
k0 0 k#0

where ((t) is defined as in (8.5).

Clearly, the first term in (8.9) involving E - vf can be treated similarly as £E-V,f. (In
fact, it is better due to the absence of 9, derivatives). We focus only the proof of the bounds
involving the last term. Note that the semigroup Sy (t - s) commutes with Ej(s), as it is
independent of v. Therefore, we have

Weo(t) =~ Y [ Bir)- [, it -n)[FoFus(n)]Vdvar 8.11)

170

To prove (8.10), we use (6.12) in Proposition 6.4 for the semigroup Sy (¢ —7) with n = (k-1)7.
Thus, for any N, Nj >0 with N + NJ <N, we bound

| [ 81 =T ()]

< (et = 1) "N (A3 (8= 7)) 32| T, ] /

(Rt = r) 2 (2 (1= 7)) 7| fk_z(T)\!Eimwyk,(m)ﬂ% (8.12)

(k= 1) It — by N - 7)) S D108 08Y i (7)1
IOLIS{V{‘&J'wl;Né
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where we have used }/Oy(k_l)Tfk_Z(T) = (Y /)sa(7), recalling the vector fields Yo,(k-tyr = Vo +
(k=07 and Y =tV, + V,.
To lighten the notation, define, for any N € N and k € Z3,
16Dz, = 2 DB} (507 Y < FYR(T) 12 (8.13)

|a|+|w|s N
1<|8|<2
Note that the Gy norm can be controlled by the Eg\?) norm (with an v~1/3 weight) because
it controls up to two , derivatives (taking into account the v'/3 power), and we have a lot of
extra (v)-weights. In other words, for any t € [0,Tg),

DA OIE, SR 20 § emin{y™V3, {¢)ymextON-Nnes2), (8.14)
k N
where at the end we used the bootstrap assumption (8.1).
We now plug the estimate (8.12), for any N, NJ > 0, into (8.11), and recall that E; =
—il|l|2py, to deduce

[l (Rt )2 T 2 (1))

S S [P e (k= 1) G i) = ) e (Dl
1#0

t 4 Ni,No,N, N, N/ ,N, . 5
3 [ A N U i) Yo fee (P,
170
where we have set

OB NENG (3 1y o N1 N (Rt ) N2 (Ur) N (e — 1) N (et — 1) N (M3 (2 - 7)) 2. (8.16)

Here, (N;,N,), (N{,N}) and N are arbitrary, as long as N, + Ny < Npaa, Ny + Ny < N. The
indexes are put for sake of flexibility, though only a certain pair of indexes is needed, as will
be clear below.

(8.15)

. Ni1,Na,N; N,y N{, N} : :
Estimates for C, ;=77 ""2(¢,7). Our next step is to estimate

We divide up the integration region in 7 into |I7| <|kt|/2 and |i7] > |kt|/2 In the former
case, we further split up the sum in [ to |I| < |k|/2 and |I| > |k|/2. In each case, we obtain the
following bound:

e Case 1: |I7| < |kt|/2 and |I| < |k|/2. In this case, |kt - I7| > |kt|/2 and |k -] > |k|/2. We
choose (N7, N}) = (N1, N2), N = Npar and (N, N,) =(2,3). Then

(kt)N () Na(kt = i)™ < (1), (MU (k= 1) 7N S 12,

N17N27ﬂ17E27N{’Né
C, (t,7).

giving
O N NENS (4 2y () B2 (M3 (1 - 7)), (8.17)

e Case 2: |I7| <|kt|/2 and |I| > |k|/2. In this case |kt — I7| > |kt|/2. We choose N = Ny,
Ny, N 2,No +3 if N7 > N
(0, ) = ) g gy < (B D)
(N1+2,3), (O,Ng) if N1<N2.

Notice that our choice satisfies N; + Ny < Npar and N{ + Nj < N = N, (since
Nz 2 9). Whether Ny > Ny or Ny < Ny, it is straightforward to check that

(kt)N2(ir) ekt = Ir) ™™ < (Ur) 7>, [R[M U5 (k= 1) S max{JI2, (k- 1)72),
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giving
OB NENe (1 1y < (1) 3B (¢ - 7)) max (|12, (k- 1)2). (8.18)

e Case 3: |l7| > |kt|/2. In this case we must have |I| > |k|/2 (since 7 < t). Taking
(N, N,) = (N1, Ny), (N{,N3)=(4,2) and N = Npa, — 2 > 6, we have

Cop MR RN (4 7y < (= 1) (et — Ur) 2. (8.19)
Define Cy, Cy and C3 by
Coi=(Ir) U2 (W (e =), Coi= (Ir) 2 (k= 1) 2 (WP (1 = 7)) 22,

8.20
Cy = (k=1)""kt - I7)2, (8.20)
and define
n(t)= 3 PR () elp ()P,
N +Ny<Nmagx
(so that ((t) S supge < Yz 11(T) + y1/3 k0 fot ri(7) dr $((1)).
Set
2
Ti(t) = Z[ e (O fia (D, dr] . i=1.2 (8.21)
k#(] 10
and set
L0 =Y 3 [ Ol 7] (5.22)
k20~ 170
It follows from (8.15), (8.16) and the bounds for C’N1 N DN, Vi NQ(t 7) in (8.17), (8.18),
(8.19) that
O kPN (et )22 M o () S Ty + T + I, (8.23)
k#0
By the bound (8.23), in order to obtain the claim (8.10), it suffices to show
t
Z;(t) s (1), f Ii(r) dr s e (1), 5=1,2,3, (8.24)
0

which will be achieved below.

Ly bounds for Z(t). To bound Z;, we start with (8.21) and the definition of C; in (8.20).
Then, using the Cauchy—Schwarz inequality in 7, and then the Young’s convolution inequality
for the sums, we bound

Il(t)
‘2 %f )0 =) B (Dl 7]
2 E(f Y24 dn) 2[R )l ane] 62

61V (- ’37“1 7) dr)'/? 7712 Ak % T.
s #Zo(/o'” (1) 52 (= 7)) P (r) dr) ][;[Ou Ife(IE,  dr]
By (8.14) (allowing (7)? growth),
S [, eI, s [Tl drse [(n P drse (8.20)

Nmax
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Thus, substituting this into (8.25), we obtain

1 € I[78(17) 52 (V13 V3 () dr) Y2 ‘
Li(t) ;(]H (WPt - 1)) Pry(r) dr) ] (8.27)

To proceed, a direct computation using (8. 5) shows

;(f 1S (LrY 52 (3 (¢ = 7)) P (7) dr)1/2 ;(f 176 (17) 525, (7) dT)l/Q:I -
i’ 70 8.28
S Q)2 (SUP sup re(7)) 5 C(1).

10
Plugging this into (8.27) proves the L estimates in (8.24).

L} bounds for Z;(t). In view of (8.27), to prove the L} bound for Z;(t), it suffices to

understand )
LIS om0 - ) Pr() a2 ds

10
We split the 7-integration: when 7 > max{$,1}, we have (I7)=2(/3(s - 71))3 < (I7) /2 &
(Ir)=5/4(1s)=5/% < (Ir)~5/4(s)75/4; while when 7 < max{%,1}, we have (I7)=2(v1/3(s — 7)) S
(IT)=5/2(v'/35)=3. Hence,

LIS oy #2055 = )y Sr(r) )] ds

10
/ l%zo( JRLRERETCS ar)2] (s) 51 ds
N > ey Gy anye] i) as
<(Z|l| 7/2)2 (sup sup 7"1:(7))[] (s)75/4 ds+/.5 (v35)~3 ds] SvTBC(R).

1#0
Combining this with (8.27) yields the desired conclusion in (8.24).

Ly® bounds for Z,(t). This is similar to Z;, except that we use (k —1)~2 instead of |{|~2 for
summability. More precisely, we argue as in (8.27) except for distributing the ¢! and ¢? sums
differently in the application of Young’s convolution inequality, to obtain

Ir(t)
<) Zf 17 S B (= ) () (D)l dr]z

k£0 - 170

<[ fo 21y 52 (= 7)) Py (7) dr) 2

k#0 ~ 1#0 )
([P I, dn)
S[> [ Hrmy o - ) () dr] [ Dk [, anw]

1#0

T) 5213 ) 3r(r) dr t 7/2 T T
l;@]m (i) 22 =) () @ (S [T, dn.
(8.29)
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where in the very end, we used the Cauchy—Schwarz inequality for the sum in k.
Using (8.26), we thus obtain

ZOLD) f U252 (= 7)) P (7) dr (8.30)
Finally, we use (8.5) to bound
#Zof 172 (1) 22 (B3 (t = 7)) B (1) d7'<(f V=52 dr)( s<1il<)tl;0m(7'))<§() (8.31)

Plugging this into (8.30) gives the desired conclusion in (8.24).

L} bounds for Z,(¢). We bound the integral in (8.30) using Fubini’s theorem:
t s
3 f [ 172(1r) 52 (3 (s — 7)) Pry(r) dr ds
0 Jo Jo
t
SZ/ (1) 5/2(f (VB3 (s =)V 2 ds)r(r) dr S v~ 1/32/ V=52r,(1) dr.
17070

170
Then, using Hélder’s inequality and (8.5), we obtain

y3 t7_5/2r ) dr v t7’5/2d7 su (7)) sv /3 )
% J, () dr s B[S dnup S5 570

0<7<t 1#0

Combining these two estimates with (8.30) yields the desired bound in (8.24).

Ly bounds for Z;(t). Next, we bound Z3 in Lg°. Starting with (8.20), (8.22) and then
using [ fe1(7)[% S e (by (8.14)), we have
Nmaz-2

t)<k%0 I%Zof 1 (= 1) 4kt = )20 P () | e (Dlay, dT]
S e(sup sup 7y (7’ ))Z[ZM [) (et — 17)~2 d7]2 532

U'#0 7'€[0,t] k40 140

< g(sup sup 7‘1'(7',)) Z [Z |l|_2<k - l>_4:|2.

U#0 7'€[0,¢] k40 ~ 140

Hence, Young’s convolution inequality gives

S[2lrk-0] s[Su]| §<k:>-4]2 <

k#0 " 140 1#0

Plugging this back into (8.32) and using (8.5) yields

Zs(t) s eC(t).
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L} bounds for Z3(t). To bound the L} norm for Z3(t), we first use ||fk_l(7')||é Se (by
Nmaaz -2
(8.14)) to obtain

ftfg(s) ds

$3 LIS L s i 2P O e, ar] ds (s

k#0 1#0
< -1 -4 -2.1/2 2
Nezfo Zfo U7 (k= 1) (ks ~ 1) 2} (7) dr] ds.
k20 10

By Schur’s test,

fzo,(s) ds s ¢ Supsup f DI (k= 1) ks 1) 2 dr ) |

Ho0 (8.34)
Supsup f YN R =) ks - 1)” ds Z/ rp(r") dr'.
0 7 k#0 140

Each of the integrals can be easily checked to be bounded, so that by (8.5) we have

f Ty(s) dss ey / r(r) dr < e BC(R).

170

8.3. Nonlinear interaction II. In this section, under the bootstrap assumption (8.1) on f,
we bound

I, (£) = VfotfRS Se(t =) (T ))e(P)]E dvdr.

We will prove that

]§)|k5|2Nl (Kt )2N2 |, (¢)]? + V1/5f ]§)|k|2N1 (kr)2N2 (I, (7) 2 dr § 2073, (8.35)

To prove (8.35), we use (6.12) in Proposition 6.4 for the semigroup Si(t—7) with n = k7.
Thus, for any Ny, Ny such that Ny + Ny < Nyae,

| [ St =TT D)y
(k) (02 (= 7)) 2| (O PR oo (3.36)

Landau,k,kT,No

SR (k) 2 B =) 2 S B Loy (T (f, AT ez

|Ot|=]\717 |,3|51, |w|SN2

in which we used Yg4,T%(7) = (YT),(7), recalling the vector field Y = ¢V, + V.
By Lemma 4.10,

VI () L2y (D (f, PN TR

k‘%o |Oz|:]\]17 |B|S1, |w|SN2

! ! ! " " " 2
S > 10y 02 02 v flus | (w) 008" 00" V" Fllz | |
! [+]a”|= N, || +w"|< N Lz (8.37)
1<|B'|+|8"]<2
! ! 7 1" 4 1" 2
. > v 1(0)100 Y Flug )02 0] Y fla | .

| [+]a"|=N1, |w'|+|w" |< N2

|6°1+18"1=3
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The two terms in (8.37) are to be controlled in appropriate E and D norms. We point out
three important observations:

e Note that the (v)-weights in (8.37) are significantly lower than what is encoded in
the energy and dissipation norms.

e One term could have N,,,, + 3 derivatives (when, say, o/ = ' =w’ = 0), but in that
case exactly three of the derivatives must be d,, so it can be controlled with the ]D)(O) .
norm.

e In each term of (8.37), at least one factor has at least one 0, derivative. We put that

factor in the D norm, and the other factor in the E so as not to incur a loss of v~1/3,

We only consider the second term in (8.37); the first term is similar and slightly simpler.
e Take |o/| + || = Ny, |w'| + |w"| < Ny and |f'| +|6"| =3

e After switching (o/, 5/, w’) with (a, 8" ,w") if necessary, we assume without loss of

generality |o/|+]0|+|w'| < | (Nmaz+2)/2]. We can apply Sobolev embedding in x to the

corresponding term, noting that since Nyuup > 9, we have | (N +2) /2] +2 < Nppgz — 2

e By the pigeonhole principle, |5| > 1 or |8”| > 1, i.e. of = &Uj@f,fej or 9" = &)jf)fnfej.
We use Holder’s inequality and then the Sobolev inequality in x to obtain

2030} 002 08 Y g (o) 002" 0 Y s |

L2
ac

Sy B[ A o) 00g" 0 0F v £, ) x Zﬁlﬂ”ﬂ”n )09 OF Y I3
|a"’|52 B// BII
LY A0 e’ o ey fugz,vy?lﬁ"l/?)u<v>1°as”af”w”fui2] (8.38)
|a//I|S2 o
B'=p'-¢;
L (F{ R T VP F

Nmaax—2 Nmaax Nmaax—2 Nmaax

< ev 23 Hf”~(0> + ey HfHD(O) )

Nmam Nmax—2
where in the very last line we used the bootstrap assumption (8.1). The first term in (8.37)
can be bounded similarly so that we have

VI () L2y (D (f, PN TR(T) 172

k#0 |al=N1,|B|<1, |w|<N2

S B Re  + e P f I3

max Nmaz -2

We now square (8.36), multiply it by |k[?N1(kt)2N2, sum over k, and plug in (8.39). Using
the Cauchy—Schwarz inequality for the 7 integral, we bound

D |K[2% (Rt 2 [T () 2

(8.39)

k0
S8 S | [ [ [ 8- IETE )l advar|
o (8.40)
S(o 1Ry drvat [C1fOR, dr) [e-n)ar

so [ drrat [5@lE,  drsa,

Nmaax Nma:t_2
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where we have also used the bootstrap assumption (8.1) at the end. This gives the desired L*
bounds in (8.35). The L? estimates in (8.35) also follow from essentially the same computation
as (8.40), after also using Fubini’s theorem, namely,

f S K2V (o) 22 LI () s

k#0
se(v [ [T s -y U1 drds
PNmas y (8.41)
+V2/3[ / 1/3(3 7.)) 3/2”f(7_)H~(0) dr ds) sup[ <V1/3(8/_7_)>—3/2d7_
Nmaz—2 0<s’<t Y0

sl [Ty dree [, drsens

Nmaax Nmaaz -2

This ends the proof of Proposition 8.2, and so that of Theorem 8.1.

9. NONLINEAR ENERGY ESTIMATES

In this section, we derive energy estimates for the full nonlinear Vlasov—Poisson—Landau
equation (2.2a)—(2.2b) under the bootstrap assumptions (8.1) and (8.2).

The main result of this section is the following.

Theorem 9.1. Consider data as in Theorem 3.1. Suppose there exists Ty >0 such that the
solution f to (2.2a)—(2.2b) remains smooth in [0,Tg) x T? x R? and satisfies the bootstrap
assumptions (8.1) and ( )

Then, for ¥ €{0,2}, 0<t<Tpg, and 0 < N < Nyaz, the following energy estimate holds:

t
sup | £(1) 2y 7 [ ISR dr 5 A min{p S, () ON Moo (g )
0<7r<t N 0 N

where | |z and || - |50 are the global energy and dissipation norms defined as in (5.17).
N N

The main step in the proof of Theorem 9.1 is the following estimates for the inhomogeneous
terms Rq g0

Proposition 9.2. Fiz 9 € {0,2}. Under the assumptions of Theorem 9.1, for |a|+|5]+|w| < N,

Raps S0 O +PrE1F Oy 1 Ollgn 1 Ol 1/ Ol
il f D lgs 1fOlsw} ¥ 105V pp0(Dlz,

|| +|w|<N

(9.2)

where Ro.p. are as defined in Proposition 5.11.

We now show that Proposition 9.2 implies Theorem 9.1.
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Proof of Theorem 9.1 assuming Proposition 9.2. Computing %Hf”%w) and using the main
N

energy estimates in Proposition 5.11, we obtain

d

dt( HfHEw)) + G ettt Hf”Dw)
_ 1/3 _ 21+
‘NQEW ( F1Z o * O PU, ) —0EORG (93)
<~ {0212 + C(A@DDP + (100] i + [ 6lws)F 2+ 3 Ragis),
BN gl

noting 1 < e+ < e2. We note that the e!*(!)" weight is used instead of Gronwall’s inequality
to absorb the linear terms.

Since f satisfies the nonlinear Vlasov—Poisson-Landau system, the conservation law and
(3.1) imply

= . — 2 2 1. _
[fT3xR3f\//7dvdx—/[T3XR3v]f\/ﬁdvdm—[fT3XR3 V] f\/ﬁdvdx+A®|E| dr=0. (9.4)

In other words, @ =0 and b = 0. Moreover, using (8.2), we have [¢] < [ps |E|?dz § ev?/3(t)2
Additionally, the bootstrap assumption (8.2) implies that the third term in (9.3) is bounded
S e 2utB(t)- 2HfH%ﬁ) Plugging in also the estimates for R, s, from Proposition 9.2, we

obtain

d
i Hf!|~w>) + 0P IS + (021 50

S ety + 1/2( VL@ By + PP ()20
+ V1/3||f(t)||@w> IF ()5 ||f(t)||@w> -
+min{[[f (D) lge, [FOlgo} 2105 pu ()] 2-

lal+w|l<N

For e sufficiently small, the second and third terms on the right hand side of (9.5) can be
absorbed by the last two terms on the left hand side, i.e.

d oo
- @ ||f||%$>)+9vl/3||f||%g> +(t)” 2||f||~<19>
sV B+ B0 g [f Ol 1 f D)5, (9.6)

+min{[[f () g, 1£(O)lgo} 20 102Yppo(0)] 2

|a|+|w|<N

Define now

ENO = 1@+ [ 1O dre [ 12150 dr

Thus Fn[f](t) can be bounded in terms of the ¢-integral of the right hand side of (9.6). This
will in turn be controlled below for different values of N.
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The case N < N, — 2. Consider first the case N < N4, — 2. Using (8.1), we have

| flgw S €V2ui3. Thus,

(
Nmazx—2
t
B 1O 1Dl 1f (Dl dr
0 N N Nmaz~-2

t
s [I@R,  drs a0,

Nmaaz -2

(9.7)

On the other hand, since pyy is v-independent and has vanishing z-mean by definition,
Poincaré’s inequality implies that for N < N, — 2,

D02y pp®lrz S0 3 20 I 0Y “pso(t)llez S ()72 3 105Y“pao() ] 12

e +|w|<N o/ |=2 |a]+|w|< N || +w|€Nmaw

Thus, using (8.3) and Young’s inequality, we obtain, for any 7 > 0,

[ mingl (M e 17 ek 105V “pio(r)lzz dr

o +|w]|<N
S [T 1@l (r) 2t dr [ £10) +n et [ <d_> o
SnFNLFIE) + e,

Plugging (9.7) and (9.8) into (9.6), and bounding the initial data term by (3.2), we thus
obtain

FnLfI@) s (' + ) Fn[£1(t) + nt e,

Choosing €, vy and 7 sufficiently small, we can absorb the first term on the right to the left,
giving the desired bound for Fy(t).

The case N4 — 1 < N < Npor. We consider the case N = N,,4.; the case N = N,ppp — 1 is
similar. Note that we need to prove two estimates: one allowing for a loss in v~2/3, and the
other allowing for a growth in (t)2.

As above, we will bound the time-integral of the terms in (9.6), now for N = N,,4,. First,

y1/3/0 “f(T)”E‘X?) ||f(¢)\|ﬁ§3> ”f(T)”W) dr

max max max—

S (()S;Et ”f(T)Hﬁg\f) )(1/1/3 At ”f(T)”%g\?) d7)1/2(y1/3 ‘/Ot Hf(T)H%(ﬂ) dT)1/2 (99)

mazx max Nmaz-2

S FNoae LIV F a2 [F12 (1) $ P Py, [ F1(E),

where in the final estimate, we used the bound for Fy,, . o[ f](¢) derived above.
We have two ways for bounding the other term. Using the Lg* bound in (8.3), we have

t
[l f e Ol S 10807z dr

Mz || +|w|<Nmaz

t t
S [ UOlg @t dr s nF,, [0 +n e[ dn?

mazx

SF Vo LF1(E) + 7 V22,

(9.10)
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and, using instead the L? bound in (8.3), we obtain

[0 min{| /()50 I Olgo 3 T 108V “pp0(r) 1z dr

max max |a|+|w|SNmM

t t
1 - ayw 9.11
s [IFORe drervt® [T S eyl ar O

Nmaz \a|+|w|§Nmaz

S0P [11(0) + 7€

Combining (9.9)—(9.11), integrating (9.6), and controlling initial data by (3.2), we thus
obtain

FNmaeLF1(E) S (€ 4 0) P, [F1(E) + 07 € min{n?(2)%, 1},

We can thus conclude as before by choosing ¢y, 1y and 7 small. 0

The remainder of this section is thus devoted to the proof of Proposition 9.2, after some
preliminary bounds on the electric field in the next subsection.

9.1. Bounds on the electric field. In this section, we give estimates on the electric field.

Lemma 9.3. Let 0< N < N,u. Then

> loeyee®la+ > [0V E@|zs Y 102V puo(t)]1e (9.12)

|t +|w|<N+2 || +|w|<N+1 |a+|w|<N
and
>, oY o®lee+ 3. 1RYE@Ir s X 107Ypp(t)] 2. (9.13)
| +|w|<N || +|w|<N-1 | +|w|<N

Proof. The estimate (9.12) follows from the Poisson equation ¢y, = |k|-2p;, and the definition

B, = —ikdy, for each Fourier mode k € Z3\{0}. The bound (9.13) then follows from Sobolev
embedding. O

Lemma 9.4. The electric potential ¢ satisfies

|0l s (6)2 3o 107V flLe (9.14)

|t +w|<3

Proof. Since [r5 0;¢ da = 0, we apply Poincaré’s and Sobolev’s inequalities to obtain

[0plee s 30 (2|00 “0dlle {072 D0 3 1057 Y400] 1z

o+ |w|<2 |a’|<2 o+ |w|<2

To control the final L? norm by the right hand side of (9.14), we use the elliptic equation for
8,5@53

B0 =0p= V.- [ v dv,

where the last identity is the conservation of mass. O
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9.2. Estimates on Rgéw In this subsection, we give the claimed bounds on ﬁgéw that
appear in Proposition 5.11 in terms of energy and dissipation norms, under the assumptions
of Theorem 9.1. (The bounds for Z9¢ will be derived later in Section 9.3.) Precisely, we

a,Bw
shall bound
Z V2\6|/3RQ’£—2|Q’\ " Z VZ(\ﬂI+\6’|)/3RQf—2|ﬁ'|

a+a’,Bw a+,B+6 \w
|o/|<1 8’12

for |a] +|B] + |w| = Niaz- We recall from Lemma 5.5 and (5.3) that

awB:w YT Y

R = [, e Duonasy f[0200y “[E;0, Vi) + [B- 9, - -0, 00001 f
T3xR3
+ v2PY T (f, f)] dv dz

= RELL 4 RILZ L RELS

a757w a7ﬁ7w a757w

in which Rgéi correspond to the integral involving each term in the bracket. The claimed

estimates on ﬁgé ., in Proposition 9.2 are thus a combination of Lemmas 9.5-9.7 below giving

bounds on each of these integral terms.
Before we proceed, let us remark that since the ¢z $ €/201/3(t)=2 < €!/2 by (8.2), we can
replace any factors of e(@*1)? by 1 (and vice versa) without changing the bounds.

Lemma 9.5. For |a| +|5| + |w| < N, we have

! £=-2|a’|-2|8'|,1 . "5 o
PUEHPDERETEL s min{|f®)lzo. I Ol Y 102Y puol iz

a+a! B+ w
| |+|w! <N
F 2 12,
N

when either (1) /| <1 and ' =0, or (2) o/ =0, |3'| < 2.

Proof. Let us consider only the case || <1 and 8’ = 0. The other case is similar after noting

that the ]]A)')E\f) norm by definition controls the corresponding term with more 0, derivative
and that p is independent of v.
We compute

O RO (Edu /i) = Y, 0y E0,01" /.
w+w' =w
Notice that 9,, o W//\/ﬁ decays rapidly in v.

Bounding with the Eg\?) norm. Using the fact that £ gains one derivative over py, the
above computations and the Cauchy—Schwarz inequality implies

Q7£72 1’1 ' '
AIBREL 2T ,/45\/3’ [/T - 210290+ 9y f oo+’ 9Y @[ B0, /1] dv dx]
SV Y flug, 3L X OB
s ‘O/|Sl |a”|+|w"|SN

SIflser - > 102"Y paolls.

o |+|w|<N
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()
N

Bounding with the I’[VD%) norm. When |o/| = 1, we can thus use the DY’ norm to control

9o+’ Y@ f so that

£-2,1 at+a’ w £ aata’ w
V2|B‘/3Rg+a’,,8,w < y2|:8|/3| [/TSXRs e2(q+1)¢w28$+ aﬁY foe+ 8EY [Ejavj\//_//] dv dx|
< V2|5|/3 ”8§4+a’agwa”L% ) Z Z ||8g”+a’Yw”Ej HL%
lo/|<1 |a! |+|w" |<N
Sl X 102Y* puolliz,
N+ |w| <N
where we have used the definition of ]ﬁg\?) to bound f, and used (9.12) to bound E.

When o’ = 0, note that directly bound the term with the ﬁ)g\?) norm would cause a loss of
v~1/3. Instead, we integrate by parts in x: recalling £ = —-V,¢, we get

V2|,B\/3RQ,€,1 _ V2‘6|/3 [/ 62(q+1)¢w28mj8aa§waagagyw[¢avj \//_1'] dv dz
T3xR3

a,B,w T
+2(g + 1) ffT oy O 0TV FOROFY (60, /1] du

Using (9.12), the bootstrap assumption (8.2) on 9,6 = and the fact that u = e " decays
rapidly, the second integral is clearly bounded by ev'/3(t)=2[ f(t)|, . As for the first integral
term, we use the rapid decay in (v), Holder’s inequality and (9.12) to bound

| [[[ e, eolye [r0]YT60,,/] dv da|
S0, 0000V fllia, Do 105V )1z

j X Tv
Jw’|<]o]

SO flge 102V plz,

o +|w!|<N
giving the lemma. U

Lemma 9.6. For |a| +|5| + |w| < N, we have

! £-2|a’|-2|8"|,2 ) " "
pORIDBRECAEA s emin{ | f O lgo I Dlse) X 102Y pgolluz

| |+|w" |<N (915)
R 112,

when either (1) || <1 and ' =0, or (2) o/ =0, || <2.

Proof. Take |a|+|5] +|w| < N. To avoid notational confusion, we consider only the case o/ =0
and (" =0; the other cases are almost identical upon using the higher derivative control of
ga”37w and 56%5@ and the fact that F gains one 0, derivative over py (see (9.12)).

Let us start by estimating the integral involving E - V,. By definition, we compute

[E0.,,000Y1fl5 > (02" Y*" E;)d,,05" 0y fI. (9.16)
o’ +]a"”|=|cr
™|+ |= ]
|O[’”|+|UJ’”|21
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Consider first the case when |o| + |w"'| < 4, for which the L* bounds on the electric field in
the bootstrap assumption (8.2) can be used. We have

2905 /f w2008y £(92" Y )0, 00" 05" f dv da
T3 xR
SVIPRNOROIY Y flliz (o 108 Y El L 00,087 00Y " flliz 00y (9-17)
SEPVB )P 20) $ €201 120,
N N
upon recalling o[ + [w”] + 1 < |a] + |w].
Next, we consider the case when || + |w"’| > 5, which we will bound by the first term in
(9.15). In this case, we must have |a”| + [w”| < |a| + |w| = 5 (and in particular |o”| + |8 + |w”| <

Nyaz = 5), and so upon using Sobolev embedding in x and the bootstrap assumption (8.1),
we have

V30,08 00V f 1z 3t )
S 00,08 00V Fliracr, o S P I g 5

|aIII|§2 max—
Therefore, using Holder’s inequality and Lemma 9.3, we bound
V2|5\/3’ [/H:BXR3 62(q4r1)¢w2a§zagywf(agz”’yw”’Ej)avjaxa”afyw”f dv d.ilf‘
SVIVBO0O2Y “ flli2 (0 pu |08 Y Ejl120100,02" 05" fll o 1200 .t
S 1l |02 V" Ej| 262 < 61/2Hf|\ng§§> S0 Y pyol e

| |<|a
o™ <l

(9.18)

We also need a bound with Eg\?) above replaced by ]13)5\?). Noticing that a direct estimate with
]ﬁ)g\f) causes a loss of v71/3, we integrate by parts in Oy, (We remark that when o’ # 0 or

B" # 0, such an integration by parts is unnecessary, by definition of the ]ﬁg\f) norm.) After
integration by parts, we argue as above with Sobolev embedding, noting also that since
|| + |w”| < |a| + |w| = 5, we have additional weights in (v). In other words, we bound

1] /f w2000y f(92" Y E;)0,,00" 07V f dv da
T3 xR

T

< 28173

ff PR, anoRy (08" Y oy 07y | dudal

T3 xR

o) [ o0, u)oroRy f(O8 Y B 03y dvdal (9.19)
TSxR

S lgo X 108Y < prol rz-

| |<|o
| |<e]

Combining (9.17), (9.18) and (9.19), we have thus proven the desired estimate corresponding
to the commutator term in (9.16).
Similarly, we now treat the integral involving E -v. We compute

[0, 0207V 1f| S 31057 Y oy o Y f + 3 oy (92" Y ;)07 07y " f].

o |+]a”|a o | +]a”|ol
"o "+
! nr nr
181151 o+ 21

|OC”"+|UJ”,|21
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The first term is similar to previous terms in [£;0,,, 8%85 Y«]f, and is in fact better because
it has two fewer 0, derivatives. The second term experiences a linear growth of |v|. This
growth however causes no loss of v-weight, since || + |w"| < |a| + |w| — 1, gaining (v)~* in the
v-weight. The lemma follows. ([l

Lemma 9.7. For |a|+ ||+ |w| < N, we have
' £-2]a’|-2|8'|,3
PR RE e s P g 1w + Il sl sy,
when either (1) |a/| <1 and ' =0, or (2) o/ =0, |f'| < 2.

Proof. Using Lemma 4.9 with ¢ = ¢, 3,,, we bound

| f[ | PEORgm00y e fOROPY T (£, f) dudal
TS xR
Sy N0200Y flagwta s 105 07Y fllr2 10907 YY" Fllawttn st

‘O‘,|+|0¢”|S|O¢| ’ ’ ’ " " "
18+1571<l8 0507 Y flla, 105700 Y iz b )]

o’ |+ <]
noting the norms involving 8?'85 Y« f can have any weight in v. Therefore, by definition,
we have

wAIBRAL 2| [ 2 Diugngly foR08Y T (£, f) dudal
o T3 xR

SUP I 1B + 1 g 1 I 1

Q,Z*2‘0{’|*2‘B’|,3

By definition of the energy and dissipation norms, the same bounds hold for R 5,57,

upon assigning the respective v-weight and v-scaling.

9.3. Estimates on Zféw. Finally, in this section, we give bounds on fof, defined as
in Lemma 5.7, that appear in (5.22), noting the v-weight function is indexed at ¢, g, — 2.

Recalling the definition of ZS:BZ;Z from Lemma 5.7, we write

ZQL2 _ ZQL-21  FQ.L-22

a757w a?ﬁ?"u a7ﬁ7w

where Z9/7%! is defined by

a7ﬁ7w

2oy ffT o DR (0) (0, 007 )0, 0200V [ B0, /H] dvda

" ff 200y 2(1) (9, 208V ) B - V,,0,, 0207V ] f dvdz
T3xR3

- ff 2 Do) (D, DY ) E v, 0,, 0008V ] f du du
T3 xR3

v ¥x Y

j T U

+v MSXW 222 (0)4(8,,0500Y £)0,, 0200V “T(f, f) dvda
and Zgﬁ_f’Q is defined in a symmetric way, switching 0,, and 9,, in each of the integrals
above. Now observe that all the integral terms are estimated similarly, if not identically, as
already done for the similar integral terms in Lemma 9.5 (the first term above), Lemma 9.6
(the second and third), and Lemma 9.7 (the last), respectively. This completes the proof of

the claimed bounds on Zﬁﬁ_?, and hence the proof of Theorem 9.1.

w
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10. GLOBAL EXISTENCE OF SOLUTIONS

Theorem 10.1. Consider data as in Theorem 3.1. Then the unique smooth solution arising
from the given initial data is global in time. Moreover, the estimates (8.3) and (9.1) hold for
T replaced by oo.

Proof. Using a standard local existence and uniqueness result (suitably adapting [66]), wi
can carry out a bootstrap argument.

Suppose there exists T > 0 such that the solution f to (2.2a)-(2.2b) remains smooth in
[0,T5) x T3 x R? and satisfies the bootstrap assumptions (8.1) and (8.2). It suffices to show
that in fact (8.1) and (8.2) hold with e replaced by Ce?, for some constant C' > 0 independent
of € and v.

e The improvement for (8.1) follows from Theorem 9.1.
e The improvement for (8.2) is an immediate consequence of Lemmas 9.3, 9.4 and the
bounds obtained in Theorem 9.1.

This closes the bootstrap argument and implies that the solution is global and remains unique
in the class of solutions obeying the bound (3.3a). Finally, since we have closed the bootstrap,
the bounds (8.3) and (9.1) follow from Theorems 8.1 and 9.1. O

11. NONLINEAR DENSITY ESTIMATES: STRETCHED EXPONENTIAL DECAY

In the next two section, we will turn to the proof of the stretched exponential decay.
Similarly as for the boundedness of the solution, the proof is split into two parts: the
nonlinear density estimates are treated in this section, and the nonlinear energy decay
estimates will be treated in Section 12.

We first point out a few key points for the density estimates, especially in contrast to the
bounds proven in Section 8:

(1) In order to prove the stretched exponential decay, we need to prove a density estimate
also with a stretched exponential decay factor; see e(t) factors in Theorem 11.1.

(2) We prove the estimate (11.2), which is of the same size for all p € [2,00]. This is in
contrast with the boundedness estimates for pyy in Section 8, where the L7 estimate
has a weaker v power (see (8.3)).

The main difference in the argument comes from the term Il;, where we crucially
rely on the fact that we are at a lower order, and that both the boundedness of the
higher order density estimates and the higher order energy estimates were already

established in the previous sections (see (8.3) and (9.1)).

(3) We need a decomposition of py = pio) + pio) the piece p( ) is better in terms of the

size, and (its 0, derivatives) obeys an O(e?v) instead of an O( v?/3) bound; the piece

pio) only obeys an O(e2v%/3) upper bound, but importantly one can also take L} norm
with the same upper bound.

This decomposition is important for closing the energy decay estimates in Section 12.

We put forth another bootstrap argument. For e(t) € {2@"*D'* ed@)**1 "introduce the
following bootstrap assumption:

s eI ey~ [ eIy drsat®, (11.1)
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/
[v]

where || - ||~(2y and |- 5@ are defined as in (5.16) but with exponential weights e"2
0,0 1,1,0,0

instead of e~ (cf. (5.19)).

The main result of this section is the following.

Theorem 11.1. Consider data as in Theorem 3.1. Suppose there exists Tg > 0 such that the
solution f to (2.2a)—(2.2b) satisfies the bootstrap assumption (11.1) in [0,Tg) x T3 x R3.
Then, for e(t) e {ed@'*D'* 8@O*PY “4he following hold:

e For any p € [2,00], ps obeys the bound

1/2(1) 9 2 2/3
> [e!2(t)os P#OHLP [0.75)L2) S € s (11.2)

Jal<1

e pyo(t,x) admits a decomposition pyy = pio) + p?(éo) such that

1O o0 S (113)
al<1
2 [ 2(0)02 050 2 o 112y S €2V (11.4)
o<

As in Section 8, we split the density contribution into the terms I, I, and III} as in (8.7).
Define

NO(t) = (T +TL) (), NP (8) = T (2), (11.5)
and, for e(7) € {8 0NV and j e {1,2}, define
MO (1) = e(r)ND (1), (11.6)

Tﬁe density decomposition asserted in Theorem 11.1 is then defined as p;{)) = 2kt0 p,(j ) gk
where

b

PO (1) = NO (1) + f Gi(t - )N (s) ds. (11.7)

Similarly as done before, we introduce

G(t)i= smp S e(mPI P + ([ 15 e(r)kPIoV ()1 dr)

7e[0,t] k40 0 k40

0 sup S (PP + [ e PR () dr

7€[0,t] k40 k40

(11.8)

The following are the main estimates that will be used to prove Theorem 11.1:

Proposition 11.2. For e(r) € {80 e30n)**Y “the following hold for all t € [0,Tp):

sup Y kPIMEVR(R) + | f (S WPMPPEI? dr] s rec ) (119)

0<r<t k#0 k#0

and

sup ST PIM(7) + Z[ KPMPR(r) dr 5 év. (11.10)

0<r<t k40 k40
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Proof of Theorem 11.1 assuming Proposition 11.2. First note that the bounds (11.9) and
(11.10) for |./\/l(j)(7')|2 imply the same estimates for e(7)|p(])(7')]2 using (11.7). For instance,
using the definitions of NV, MY and p%) in (11.5)-(11.7),
. t .

S (kL O 5 3 WM WF + X eI [ 16u(-nINDI(7) a2 (111)

k#0 k#0 k#0 0
Notice that by (7.3), choosing ¢ small depending on ¢” so that

e(t) min{e "¢ 0T o1, (11.12)

we can bound the last term in (11.11) by

> e(OIPL [ 16 - mIND ) drl? s S (k= 7)) M () dr?
k#0 k%O
< Sk [[ (k(t - 7)) dT] sup sup [KPIMPR() (11.13)
k40 k'#0 77€[0,t]
S k] sup sup [KPME () ssup sup [KPIMEP (7).
k#0 k'#0 77€[0,t] k'#0 77€[0,t]

Combining (11.11) and (11.13), and then using (11.9) and (11.10), we obtain, for j € {1, 2},

sup > e(T)kPlp (T)P 5 2P + (1), sup Y e(n)kPp (NP s v, (11.14)
7€[0,t] k40 T€[0,¢] k40

We can control the L;¢3 norm of |k:||pl(€1)| and the L¢2 norm of |k:||pk | in a similar manner.
Indeed, using (11.5)—(11.7) and then the bounds for Gy, in (7.3),

[ [13 IR (P ar]
- k#0

S _f l%“d |./\/l(1)(7')| ]1/2 dT] +[/0 [%9(7’)“{1 (/ |Gk(7‘—3)”/\/(1)|(8) ds) ]1/2 dT]
S_f (S KRIMD ()22 dT + / f K k(= )2 RIMD|(5) ds]2]2 dr] |

k#0 k#o
To control the final term, we use Minkowski’s inequality to exchange the order of L} and 2,
and then use Fubini’s theorem to exchange the order of L} and L! so as to obtain

[y S - ) M o) a5 ar]
< f f k%|k| (k(r - ) SREIMOR() ]2 ds dr]
S [ - OGS MPR(s)]2 ds dr]
_2 MW12()11/2 ds (12 1/2 32.
5_[0%“4 KM ()] ds] g[/o%'k"w ()] ds]

Thus, using also (11.9), we have obtained

[fot[lg(:)e(T)Vd |p(1)(7_)|2]1/2 dTr < 2,213 +€Ce(t)- (11‘15>
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A similar but slightly simpler argument also allows us to bound the L2¢? norm of
e1/2(7)|k||pl(€2)| using (11.10) so that we have

t
f > ()Pl (7P dr 5 . (11.16)
0

k#0
Recalling the definition of (, in (11.8) and using (11.14), (11.15) and (11.16), we obtain

Ce(t) S 2023 +eCu(t),
which implies
Co(t) s V23, (11.17)
At this point, using (11.17), we easily conclude Theorem 11.1:

e Plugging (11.17) back into (11.15) and (11.16) yields the estimates (11.3) and (11.4).

e Plugging (11.17) into (11.14) yields the p = oo case of (11.2).

e Finally, the p € [2,00) cases of (11.2) can be obtained by interpolating between the
p = oo case and the bounds (11.3) and (11.4). O

The remainder of this section will be devoted to the proof of Proposition 11.2.
11.1. Initial data contribution. By (8.8) with N; = Ny = 1, we have

> e(DIEPIL ()P $ v (t) ™,
k#0

which obeys the bounds required in (11.9).

11.2. Nonlinear interaction I. Recall the decomposition in (8.9); as in Section 8.2, we
only consider the term Il 5, as the term Il ; is easier.
For the term Il 5, we prove below the L{* and L} according to (11.9).

Proving the L* bound. Arguing as in (8.15), with (N, N2) = (1,0) and (N7, Nj) = (5,2),
and taking into the extra stretched exponential decay given by (6.14) to obtain

() € 3 [ R = 1)t - 1)

1#0 (11.18)
x min{e=d (TN =8 W t=T)HEY 5 (7)) fk—z(T)H@;;V LT
where
¢ - leY W LY Lgolv lo% |
[Py, = 3 v DR[| 0) (0208 FR(7) |az + (o) et (0207 FY(r) 2], (11.19)
al+|w|<N
|1‘;r||,8||§2

noting the last additional term (compared with (8.13)) with the exponential weight e1%l”
slower than what is encoded in the energy and dissipation norms (5.16). See also Remark
6.3. In particular, we note that

SIAWIE  svPBIfO1Ee, POy Se (11.20)
L Nmax— ]ENmaz—Z ]ENmax—Q
and X
> eIk fe()]Z, sv e f(H)Eey Se (11.21)
k%O 0 1,1,0,0

where we used, respectively, the energy bounds (9.1) and the bootstrap assumption (11.1).



THE VLASOV-POISSON-LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME 68
Next, use (11.12) with §” replaced by ¢’, and notice that |k||[|*(k —1)=* $ 1. We obtain
O] 5 3 [kt~ i) POk - ) e, dr (1122
170

Using (11.20), the Cauchy—Schwarz inequality in 7, and the Young’s convolution inequality
for the sums, we obtain

D e(t) k]|, 2 ()

k#0

S S e@ar)P any [ =15k - ), ane]

k#O 1#0
A 2 1/2 -8 4 1212 (11.23)
SE%[%(/O e(7)|p (72 dr)Y (/ (k=1)"(kt = 1l7)™* dr) /]
se(3 S} e R an) ik Py [ emlaP an)
It remains to check that
> [ emlFlacrPar 5 .0). (11.24)

1#0

Indeed, the bound for ¥, fo e(7')|l|2|p(2)(7)|2 d7 is immediate from the definition (11.8),

while that for ¥, fo |l|2|pl(1)(7')|2 dr follows from interpolating between the L} and the
Lg° bounds in (11.8).

Proving the L' bound. To obtain the L} bound, we need to estimate

Iz

To estimate (11.25), we split the 7-integral into |I7| < |ks|/2 and |I7] > |ks|/2. In the latter
integral, we further split the sums into the [ # k£ and the [ = k parts.
First, consider the case |I7| < |ks|/2. We estimate the integrand as in (11.22), i.e

Zf P2l o (T)|f k(s =) [VoFpa(7)] \/_dv‘dT) ] ds. (11.25)

k#O 10

(IR [ Sels = DToT (]|

: (11.26)
S (ks - ZT)_2e1/2(7)|,51(T)|<k - l>_4||fk—l(7)||@gvma

)

with ||fk Z(T)||G, i deﬁned as in (11.19). Since we imposed |I7| < |ks|/2, we have (ks—IT)72
(ks)™2 s (ks)~ 5/4(l7') a1 S (s)~5/4(7)=3/4. Tt thus suffices to bound

[ Z(Z [ 3/4e(T)|ﬁl(T)|(k - l)*4 [ fk—l(7)|‘@3\rmam—2 d7—)2]1/2<8>75/4 d8]2'
k70 170
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Note that ka_l(T)‘|@§V LS €'/2 by (11.20). Then, integrating the (s)=%/ factor, and using
the Cauchy—-Schwarz irrnlgauality in 7 and the Young’s convolution inequality for the sums,

[ [ [T @lalt -1 e,

)22 ()5 ds]2

k£0 170 maw=2
S XS [ e k-1 dry
k#0140 , (11.27)
c eTszTl/z =3/2() _ )8 q7)1/2
skgo%(f () dry o[y -1y ')
<e %f e(T)|p(1) dT)(Z ‘4 <el#20f e(7)|p ()| dr S e.(t),

where at the end we used (11.24).
Next, we turn to the case |I7| > |ks|/2 and k # [. Here, we bound the integrand differently:
starting with (8.15) but taking instead (Ny, N3) = (4,3) and (N7, Nj) = (1,0), we have

(IR [ Sels = DToT (]|
S HPFRIG = 17 (i) 2t () (0 o (O (K = e () |,

where | fj,_ l(T)HG/ is defined as in (11.19) with N = 0. Observe that |k[[{|"}(k - 1)~' $ 1, and

that since |I7] > |k:s|/2 it also holds that (I7)=3 < (ks)=3/2(I7)=3/2 < (s)=3/2(7)=3/2. Hence, it
suffices to bound the following term:

[ Z( Z [ |l| 3/2 ) 3/281/2(7—)(|l|4<l7—>3|ﬁl(7)|)|k_l|‘|fk—l(7')“@6 dT)Q]l/Q ds]2

k40 140,k

(11.28)

SO [ Uy R ) (DI - s gy [ (s) 4 ds)?

k#0 140,k

S22 LI UEan (R a2 [ ek - 1P () 1, ar)']
s 21 2 i Gsup sup [l '>|>(f ek~ 1P fua ()12, dr)]

k#0 ~ 140,k l’#O '¢[0
s () (2 [ ) #e(r) k21 fu(r)IZ, dr)
z%o k40

sat(Csup S e(rRPL(IZ) [ (1) ar

7'€[0,t] k40

sev'’ sup (kP fi(7)E Se
7/€[0,t] k40 0
where we used the Cauchy—Schwarz and the Young’s convolution inequalities, respectively, for
the 7-integral and for the sums, as well as bounded supy4o sSup,cfo 1 |'[*(I'7)2|pr (77)| § ev'/3
using (8.3). Finally, we used (11.21) in the very last inequality.
The case where |I7] > |ks|/2 with k = has to be treated differently, since in this case fj_;
corresponds to the zeroth mode and does not experience enhanced dissipation. We bound



THE VLASOV-POISSON-LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME 70

the integrand using (11.26). Considering only k = [, it thus suffices to bound

! s R . 12 2
[/(: (%{:)(/0 |/€|*1(k(8—T))*2(_;-1/2(7)|7€||Pk(7)|Hfo(T)||(A;;3Vm(m_2 dr) ) ds] _

We use Minkowski’s inequality so that the ¢2 sum in k is taken first, and then use Fubini’s
theorem to integrate out the (s —7)~2 factor. More precisely,

[ ’ 1 -2,.1/2 - ; 2\ /2 2

, (k%fo K k(s =) e (kI Do (D, dr)?) ds]
s —[ot /os ( > |k|72(k($—7'))748(7')|]€|2|ﬁk(7')|2”fO(T)||f2vgv 2)1/2 dr ds]2

o v o , (11.29)
[ (Zretla e ior, )" en s o]
pS :,/ot[%(:)e(T)|k|2|ﬁk(T)|2]l/2”fO(T)”@?vmax_g dT]2.

To proceed, we split py, = ,5](:) + ﬁ,(f) as in (11.7), so that by using Hélder’s inequality, (11.20),
and (11.8), we have

[fot[z e(T)|k|2|ﬁk(T)|2]1/2HfO(T)H@Nmaz_z dr]Q
k#0
s( (22 (Pl (P dr) s 1o, ) (11.30)

([ S Orar)( [ 1A, | ) s

Combining all the above cases, we have thus proven the bound (11.9) for the term (11.25).

11.3. Nonlinear interaction II. Finally, we prove the bounds for Il (¢) corresponding to
those required in (11.10).

We argue as in (8.36) with V; = 1, Ny = 0, but also take into account the stretched
exponential decay given by (6.13) to obtain

] [, k(e - DICTE )etr)lide]

S min{e @ OGS (0er (0007 (TS, ) TR g
lal=1,]8|<1
To control the T'(f, f) term, we argue as in (8.38), (8.39), with the help of Lemma 4.10,
except for noticing that, importantly, there is exactly one factor with a 0, derivative. As in
(8.38), (8.39), we still put a factor with at least one 9, derivative in the D norm, and another
factor in the & norm. We then put the factor with the 8, derivative in L2, and the other

factor will be bounded in L together with Sobolev embedding. The factor with exactly one
0, derivative can then by put into either that E%),o,o or the Dfl),o,o norm. Hence, we have

ST ekl [oraf (U(f, )2,
k#0 |al=1,|B]<1 (11-31)
v £(7) ||%(2), 2 If(T) ||%(2), ) +|f(7) H%ﬁ)/ . | f(7) H%ﬁ/o 0).

Nmax— 1,1,0 max =
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Therefore, taking e(t) e {ed*0'° 30D} 1oting
e(t) min{ PRGNS 6—5'<u(t_r)>2/3} < e(7) min {e—((i'/?)(l/l/?’(t—T))l/?’, e—(a'/2)<u(t—r))2/3},

and using the Cauchy—Schwarz inequality in 7, we obtain

> (P =02 Y ek [ [ 8t~ DIITE F)(r) /i duds|

k#0 k#0
sv? ) e(t)[kf’ f oA =) [ Sk(t =) (T, ()i dv\ dr
k#0

y / LR ) g
0

S el [ o
0

k#0

5= DD ide] dr

’ U3 (+_))1/3
o sup £ [ e(re GBI p) 2, dr

T G[O t] Nmaz—2

#01 sup e(r)f () e f PR ()2, dr.
7! E Ot 0 ]\rma:r*2
By the energy bound (9.1) and then the bootstrap assumption (11.1), this implies
> e(t)|k[? L (t)[? 561/[ e(MIf(M2ey dr+ea® sup e(r)|f(1)[20y

k40 DiY00 T'€[0,t] Ei10,0
< €243,
An identical argument, using additionally Fubini’s theorem, gives the desired L? bound:

f S e(s) k[ ()P ds

k40

<ez/f ([ (57)2) (W3 (s—r)) 1/ ds)[e(T)Hf(T)H~(2), Hf(T)Hzg\?y 72]d7’
< e?l3 fo eI ey + (D) Tdr

Nmaz 2

< ev.

This ends the proof of Proposition 11.2, and thus of Theorem 11.1.

12. NONLINEAR ENERGY DECAY

In this section, we establish the nonlinear energy decay estimates for the full nonlinear
Vlasov—Poisson—Landau equation (2.2a)—(2.2b). Throughout this section, we shall use primed
energy and dissipation norms || - |z and | [5ey , which are defined as in (5.16) with the

*,%,0,0 *,%,0,0

primed exponential weights e?I'I* for ¢’ = 1g (cf. (5.19)).
The main result of this section is the following.

Theorem 12.1. Consider data as in Theorem 3.1. Then, the following hold:
(1) The energy of f decays with the following stretched exponential rate:

sup 66(1/7-)2/3||f( )H~(2)’ V1/3f 6(1/7-)2/3Hf( )H2(2)’ dTSEQI/Q/B-
0

0<T<00 0000 0000
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(2) The energy of V. f decays with the following enhanced stretched exponential rate:
sup (M) f(Dl2ey +v [T eI () 2y dr <,

0<T<00 1 1,0,0 1 1,0,0
for e(t) € {8 PO ot)?PY

12.1. Preliminary energy estimates. The first step in the proof of Theorem 12.1 is the
following energy estimates for the lowest order energies.

Proposition 12.2. The following energy estimates hold for e(t) e {ed/*D'* @)y

d
( ||f(t)||~(2)/ ) + 91/1/3Hf(t)\|%(2), +(t)” 2||f(t)||~(2)'
dt Dg6,0,0
S Il 1 Ol 1Ol 15Ol (12
+min{[[f(t) [z, 1fOlser Hew)] 2,
0,0,0,0 0,0,0,0

and
G L@y )OO + OOy
S Lol POy Oy, 15, (122)
cmin{1FOllgey,  170ggr )% 108 pgo () 52

Proof. The proot is similar to that of Theorem 9.1 in Section 9, except that we use different
bounds for |¢|? and for the remainder terms Rq .
For the ¢ term, we simply use (9.4) and that E' = VA~ py, to bound

el () < ng [EP(t 2) dz s |pp(t)]7:-

We then turn to the bounds for ﬁa@w. Here, we take ﬁaﬁ,w to be as in the 9 = 2 case in
Proposition 5.11, except that the e?¥l” weights are replaced by €4 with ¢’ = %q.

In view of the proof of Proposition 9.2, with N =0 and N =1, we first note the following
bounds on the inhomogeneous terms Ra 0,0:

Rono S0 2Oy + 1O w1 Ollggy, 1FOlsgy, 17 Olser
el FOlger -+ 1FOlyer HMop(®lis

and
> Rapo Se/3(t) AFO ey + PP

‘O¢|=1 1100 1100

VPOl 1FOlgey, 17®)5er

Nmaz—

cmin{lFOllgey, 1Ol } 3 108000001z

Jel<1

Using the above estimates, the proposition thus follows in a similar manner as in deriving

(9.6). 0
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12.2. Decay estimates. We now give the proof of Theorem 12.1. We shall only prove the
enhanced decay rate, part (2) in the theorem; the other part is similar, if not simpler.

Applying Lemma A.1. We proceed by a bootstrap argument. Assume that there is Tz > 0
such that the bootstrap assumption (11.1) holds. In particular, we can use the bounds derived
in Theorem 11.1.

We will use the Strain—Guo type estimate in Lemma A.1. For the remainder of the proof,
fix either e(t) = ed0** or e(t) = 9*D* Define g and h so that

Sty dv= e Oy [ B0 dos O W - (123)

notmg that the factor e!*()™" is harmless. Note also that the primed exponential weights
e?IV are used. Specifically,

Fto)= B [An 5 LA o e e [ (.08 9,02 ) d
laf=1 o<1
N f (o) M-448 92 98’ fP2 dx]eu 07 okl
18'1=1,2 T
noting the exponential weight 39l ingerted above. A similar definition is introduced for
h2(t,v) to satisfy (12.3).
By definition, we note that

v [0 dos PSRy o [0 do s P
R3 1,0,0 R3 1,0,0

where Poincaré’s inequality was used in obtaining the second inequality, upon noting that
02 f has zero z-mean with |af = 1.

Therefore, after taking # smaller if necessary, Proposition 12.2 and the definitions of Eg?,o,o
and ﬁfl):o,o imply that the differential inequality (A.2) holds with ¢ = 0v1/3, b=0v'/3 m=4,
ie.

d —
dt _és gQ(tﬂJ) dv + 0u'? AB<U> 492(15,1]) dov + 0113 v/lé?) hQ(t,U) dv S F(1), (12.4)

and with c =0, b=0v13 m=1, ie.

%‘[RS 92(t7v) dv + 0y AS<U)_192(t,U)dU + 9V1/3 AS h2(t,v) dv < S(t), (125)
where F(t) is given by
$(0) = ooty + Wl 1@ gy 10l

Nmaxz—

cmin{LFOllgey, 1Ol 3 ¥ 1050001z

lal<1

(12.6)

Let e(7) € {80 0 *)°1 We will prove below that for any 7 > 0, the following holds
uniformly for all 7" € (0,75):

fo o)1) dt

(12.7)
Sortenls o @ )| sup e+ [ e (DI, dr]
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Note also that in view of the primed energy and dissipation norms, the boundedness of the
corresponding unprimed norms yields the boundedness of exponential moments for g (as is
needed by (A.1) in Lemma A.1). Namely, using Theorem 9.1, we have

Lt ) dos O s et

Therefore, we can apply Lemma A.1, using (12.7) and recalling (12.3), to deduce

sup ()| F (D2 407 [ eIy dr

0<t<T 1100 1100

. (12.8)
St (@) sup e (D20, +0 [ eI, dr]
0 1,1,0,0

Taking €y, 19 and n sufficiently small, we can absorb the final term to the LHS, which yields

sup. e(t)||f(t)||~<2>f +V1/3f (T)Hf(7)||~<2>f dr 5 2?2, (12.9)

after fixing > 0. This then improves the bootstrap assumption (11.1). In particular, this
closes the bootstrap argument, and show that (12.9) holds for all ¢ € (0, c0), which implies
the desired estimate in Theorem 12.1.

It thus remains to prove the claim (12.7), under the bootstrap assumption (11.1).

Controlling §(t). To prove (12.7), we control each of the three terms in (12.6). For the
first term, we use (8.3) and (11.2) to obtain

T
‘/0 e(t)HP%OHig (¢)dt s He(t)P%U(t)“2;—7([0,T];Lg) H/O%O(t)Hif([O,T];L};) setvths, (12.10)

For the second term, by Holder’s inequality,

2 [ e Ol 17 Olger 1FOlger e

Nmaaxz—

S (sup ()| (D) YW f (DI f ()20, dt) 20 f IF@®)20 )

0<r<T 1 1,0,0 Nmaz 2

<ev1/3[ sup e(t)llf(t)||~<2y00 +vifs f e(T)Hf(T)Iwy0 dr|,
- g (12.11)

where we have used the estimate established in (9.1) for v1/3 [ f(£)]2

For the remaining term, we decompose p4 = p;O) + 107(40) according to Theorem 11.1 so that

e(t) min{|f (Dlgey N Olgey T2 105000

|of=1

2o dt.

Nmaac—Q

" © (12.12)
<e(t)||f(t)||E<zy . > 1020 (D)]22 +e(t)||f(t)||D<zy O|Z|_:1 102 P45 ()] 2

lal=1
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Thus, using (11.3) and (11.4) respectively, as well as Holder’s and Young’s inequality, we
have

[ e Olgey, ¥ 10200 i

lof=1

Snsw @O Olgy, Vorn L[ e 8 loedy Ol a? (1213

0<t<T lof=1
$n sup e(t)l\f(t)|\~<2>f +n e,
,1,0,0

as well as

[ e Ol IOl o

T
sy [ e(t)||f(t)||%<2y et [Ce) S 1RO 0 (1210

lal=1

S [ eIy dten s,

Combining (12.11)—(12.14), and recalling (12.6), we have thus obtained (12.7). This ends the
proof of Theorem 12.1.

13. PUTTING EVERYTHING TOGETHER

The main theorem, Theorem 3.1, now follows straightforwardly. Indeed,

e Global existence of smooth solutions follows from Theorem 10.1.

e The estimates (3.3a) and (3.3b) follows from (9.1).

e The bounds (3.4) and (3.5) follow from interpolating Theorem 12.1 with (3.3b).

e Finally, for the uniform Landau damping statement (3.6), we bound, using Parseval’s
theorem, interpolation, (8.3) and (11.2):

10k (£) § (Rt + 1)) Nt 50 0RY “pgo(t) ] 22

|| +|w]|€ Nmaz—1

1Nmar (03 w max ™ max
S(k(t+ 1)) Ve Yoo B (N 08V pgo(t) ] z) Ve DN

||+ |w|€Nmaz
S e B(k(t + 1)) Nmar+l min {000 =00y

after taking 0 smaller.

This completes the proof of Theorem 3.1.

APPENDIX A. STRAIN-GUO TYPE LEMMAS

Lemma A.1. Let T € (0,00] and g : [0,T) xR3 - R be a smooth function. Suppose there
exist €>0,¢>0,b6>0, m>0, qe(0,2) and p € (0,3) such that the following holds:

(1) There is a uniform bound of Gaussian moments:

sup eq‘”‘ZgQ(t, v)dv < €. (A.1)
te[0,T)
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(2) The following differential inequality holds for all t € [0, 0c0):

d 2 “m 2 2
y fng (t,0) dv+ C/I;{S(U) Pt v)dv + beS R2(t,v) dv < 3(1), (A.2)
for some function h:[0,T) x R? > R, and some function §:[0,T) - R satisfying
T 2
f PEDOTT(4) df < €. (A.3)
0
Then, there ezists Cqm >0 (depending only on q and m) such that
2 T 2
sup eP(e)™ [ g*(t,v)dv +b f eP(ct)Zm / h*(t,v) dvdt < CynC. (A.4)
te[0,T) R3 0 R3

Proof. We compute using (A.2) that

2 2
i(ep(“)m[ g2(t,v)dv)+bep(“)mf h*(t,v) dv
dt R3 R3
(A.5)

2

2 2pc2+m 2
Cp(eyzim _ APeEm [ o ‘Cf W02 du) + DT (4
<e ((2+m)t2fm grdv—c | {v)™g"dv) +e 5(t)

We control the first term in (A.5). Splitting into (v) < (ct)z= and (v) > (ct) ==, we bound
the low velocity by [gs(v)™g¢?(¢,z,v) dvda and the high velocity using (A.1):

2 2
Q}JCm C2+m
—_— t,v)dov < / +/ g“(t,v)dv
(2+m)tzem g ) t2+m( Pl zm) I ol )>(ct)2+m}) (o)
_2
<c f (0)™g? dv da + eI [ e g* dv (A.6)
R3 t2+m R3

2

C2+m ~2
—q(ct)2+m

——Cele q(et) ZHm

2+m

Sc/ (v)™g 2 dudz + &
R3

We plug (A.6) into (A.5) and use p < 4. Note that the [ps(v)™g?(¢,v)dv terms cancel.
2 2
%(ep(“)m f 92(t,v)dv) + beP(e) 7 f3 h(t,v) dv
R

2 (A7)
< P T (1) .

Qteq _7(Ct)m

2+m
Integrating, using (A.1) to bound the initial term [, ¢?(0,v) dv, and using (A.3) to bound
2
the L} norm of eP(¢Y)™ F(¢), we have
2 T 2
sup eP(e)zm f g*(t,v)dv+b f P () e f h*(t,v) dv dt
te[0,T) 3 0 R3 (A.8)

<2¢ + (’:f T e 2(“)2*"‘ dt.

2+m

To bound the integral in (A.8), split the integration domain into [0,¢™'] and [¢!, 00) so that

(=) Em ¢t [eS) 2
/ c2 oo 2(et) Tim dt < €q(C2+m / df + / e—%(ct)m d(Ct)) < Cc,|m (Ag)
0 0 ol ’

t2+m t2+m

for some Cf . Plugging (A.9) back into (A.8) yields the conclusion. O
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Lemma A.2. Let g:[0,00) x R3 > R be a smooth function. Suppose there exist € >0 and
¢ >0 such that

(1) There is a uniform bound of the 4m-th moments:

sup (v)™g?(t,v)dv < €. (A.10)
te[0,00) R3
(2) The following differential inequality holds for all t € [0, 0c0):

4 / g*(t,v)dv+¢ f (v)™g*(t,v) dv < 0. (A.11)

dt Jrs R3

Then
2 3o -3
fR3 g (t,v)dv < (7 +1)&(ct)™. (A.12)
Proof. We compute using (A.11) that

3c2t

% (ct)? /]R3 g*(t,v)dv) < <Ct>3((ct)2 /RB g*(t,v)dv - CAB(U)_mgz(t,v)dv). (A.13)

To bound the first term in (A.13), we split into (v)™ < 3(ct) and (v)™ > 3(ct), then bound
the low velocity by [gs(v)™g?(t,v) dv and the high velocity using (A.10):

3c?t f 5 3c?t 5
g“(t,v)dov = / +/ g*(t,v)dv
(ct)? Jrs () (ct)Q( {vl{v)m<L(ct)} {v\(v)mzé(ct)}) ()
30c2t 3¢t (A.14)
-m 2 4m 2 -m 2
Sc]ﬂ@(v) g-dv + L /Rza(v) g dUSC[Rs(v) g dv+—(ct)6 .
We plug (A.14) into (A.13), noting that the [ps(v)™g¢?(¢,v)dv terms cancel. So
d 3¢t 3¢
— t3/ 2(t,v)dv) € ——— < . A.15
glteny® [ ot vya) < Jom < o (A.15)
Integrating, and using (A.10) for the ¢ = 0 term yield the conclusion. 0
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