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Abstract—Accurate estimation of the states of a nonlinear
dynamical system is crucial for their design, synthesis, and
analysis. Particle filters are estimators constructed by simulating
trajectories from a sampling distribution and averaging them
based on their importance weight. For particle filters to be
computationally tractable, it must be feasible to simulate the
trajectories by drawing from the sampling distribution. Simul-
taneously, these trajectories need to reflect the reality of the
nonlinear dynamical system so that the resulting estimators are
accurate. Thus, the crux of particle filters lies in designing
sampling distributions that are both easy to sample from and
lead to accurate estimators. In this work, we propose to learn
the sampling distributions. We put forward four methods for
learning sampling distributions from observed measurements.
Three of the methods are parametric methods in which we
learn the mean and covariance matrix of a multivariate Gaussian
distribution; each method exploits a different aspect of the data
(generic, time structure, graph structure). The fourth method
is a nonparametric alternative in which we directly learn a
transform of a uniform random variable. All four methods
are trained in an unsupervised manner by maximizing the
likelihood that the states may have produced the observed
measurements. Our computational experiments demonstrate that
learned sampling distributions exhibit better performance than
designed, minimum-degeneracy sampling distributions.

Index Terms—Machine learning, unsupervised learning,
particle filtering, neural networks, graph neural networks.

I. INTRODUCTION

NONLINEAR dynamical systems serve as models for a
wide range of problems in science and engineering. For

example, due to the natural hysteresis of the material, nonlin-
ear dynamical systems are used to describe electrical circuits
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involving ferromagnetic inductors [2]. Mostly, they have been
very popular tools in control theory [3]. They play a key role in
designing and synthesizing controllers for spacecraft systems
[4], in managing energy consumption of electrical vehicles [5],
in reducing ripple in wind power systems [6], and even in real-
time bidding for programmatic advertising [7].

Due to their practical relevance, research on nonlinear dy-
namical systems has a long history [8]. Topics such as the
existence and uniqueness of solutions, dependence on initial
conditions, stability of the systems, as well as perturbation
analysis have dominated the field [9]. Recent results concern
dissipativity and its connection to stability [10], identification
[11], and oscillations [12].

In this work, we focus on estimating the states of the system
[13], [14]. Almost any decision to be made in the synthesis,
design, or analysis of nonlinear dynamical systems needs to
rely on a solid knowledge of the system state. An inaccurate
modeling of the system or an impossibility to access the state –
and instead being able to measure some function of the state –
are the major hindrances in the task of estimation.

Many estimators have been developed, making different as-
sumptions on the system to reach different levels of accu-
racy guarantees. For instance, assuming linear dynamics with
Gaussian noise leads to the linear least-squares estimator [15].
Another example is assuming the model is nonlinear but follows
the Markov property on the conditionality of its transition prob-
abilities [16]. In this scenario, oftentimes the maximum a pos-
teriori estimate can be obtained. These approaches, however,
either oversimplify the model or can become computationally
intractable due to the high-dimensional integrals involved.

Particle filtering has risen as an algorithmic tool that is
capable of estimating the state in a computationally efficient
way [17], [18], [19]. In essence, particle filtering consists of
simulating plausible trajectories of the system of interest, and
then carrying out a weighted average of these trajectories to ob-
tain accurate estimators [20]. The challenge in particle filtering
is in designing a sampling distribution that is simultaneously
good at generating realistic trajectories and easy to sample
from [21], [22].

Particle filters leverage the law of large numbers to pro-
vide certain guarantees on the accuracy of the estimators and
convergence to the true value of the state if enough par-
ticles are simulated. However, these results oftentimes rely
on using specific sampling distributions that may only be
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computationally efficient in limited scenarios [23]. Further-
more, particle filters suffer from weight degeneracy, a phe-
nomenon that causes only a few of the simulated trajectories to
be meaningful, severely impacting the accuracy of the resulting
estimator [24]. Thus, most of the research on particle filtering
has revolved around the appropriate design of sampling distri-
butions [25], [26]. In this work, however, we leverage modern
deep neural network techniques to learn the sampling distri-
bution from observed measurements – without access to the
true trajectories.

Deep neural networks consist of a cascade of blocks, each of
which applies a linear transformation followed by an activation
function that is, typically, nonlinear [27]. The blocks are known
as layers, and the number of these layers in cascade determines
the depth of the neural networks. The exact matrix values to be
used in the linear transforms at each layer are typically deter-
mined by a gradient-descent algorithm (or a variant thereof) in
an attempt to minimize some loss function over the observed
data. The process of determining the actual value of the linear
transforms is known as training [28].

In this work, we propose four different deep neural network
frameworks that are used to learn the sampling distribution of
particle filters, three of which are parametric – learning the
mean and covariance matrix of a Gaussian distribution – and
one which is non-parametric – learning an arbitrary transform of
a uniform random variable. These frameworks lead, naturally, to
distributions that are easy to sample from (either multivariate
normal or uniform distributions). We train these deep neural
networks in an unsupervised manner. This means that we only
need access to a trajectory of measurements, but not to the
true value of the states. By learning the deep neural network
parameters that maximize the likelihood of the observed tra-
jectories under the given model, we are able to obtain a sam-
pling distribution that is capable of simulating good trajectories.
In short, learning the sampling distribution is, generally, eas-
ier than designing it, while it also allows for more flexibility
and adaptability.

Many works have proposed using learning to improve parti-
cle filtering. Typically, learning is used mostly to estimate the
model or transform the variables into spaces more amenable
for sampling [29], [30], [31]. Recently, conditional normaliz-
ing flows were proposed as parameterization of the proposal
distribution [32]. Recurrent neural networks (RNNs) have also
been used to learn the mean of a multivariate normal sampling
distribution as well as the particle weights [33]. Most impor-
tantly, in all these cases, the neural networks are trained using
supervised learning. This requires access to true trajectories of
the system, which are typically unavailable, and it does not
guarantee that the trajectories observed at test time will be simi-
lar enough to ensure generalization. We address this fundamen-
tal drawback by proposing a trainable particle filter based on
unsupervised learning.

Article structure and overview of results. In Section II,
we review the basics of particle filtering and introduce the
notation. In Section III, we present the main contribution of
the article, which is the unsupervised learning framework of
sampling distributions. We explain first our framework in a

general way, and then we describe each of the four models that
we propose to parameterize the sampling distribution.

• First, we assume the sampling distribution is a multi-
variate normal and we learn a time-dependent mean and
covariance matrix using a fully-connected neural network
(Section III-A).

• Second, we consider a recurrent neural network (RNN)
architecture for learning the mean and covariance ma-
trix (Section III-B). RNNs are good at keeping track
of past values of the trajectory, potentially allowing the
distribution to learn from samples that are located further
in the past.

• Third, we consider architectures that exploit the data
structure. In particular, we consider graph neural net-
works (GNNs) which are architectures tailored to process
graph-based data (Section III-C). GNNs can be particu-
larly useful when dealing with large distributed nonlinear
dynamical systems, where the components have sparse
connections between them.

• Fourth, we consider a non-parametric approach (Section
III-D). More specifically, we sample from a uniform dis-
tribution, and we use a deep neural network to learn an
arbitrary nonlinear transform between the uniform distri-
bution and a random variable that represents the trajectory
of states.

We close Section III by explaining the details of unsupervised
learning through maximization of the likelihood of the model
(Section III-E), and how the model is trained as well as a brief
explanation of the reparameterization trick. In Section IV, we
run a series of simulated examples to showcase the performance
of learned sampling distributions as opposed to designed base-
lines. We consider linear Gaussian (Section IV-A), nonlinear
Gaussian (Section IV-B), linear non-Gaussian (Section IV-C),
and nonlinear non-Gaussian (Section IV-D) dynamical systems.
In general, we observe that learned sampling distributions ex-
hibit better performance than designed, minimum-degeneracy
sampling distributions [17]. Finally, we draw conclusions
in Section V.

II. PARTICLE FILTERING

Consider a dynamical system described by a sequence of
states {xt}t≥0 with xt ∈ RN for all t ∈ N0. The transition
between states in different time instants is considered to satisfy
the Markov property and, thus, is completely characterized by
the transition distribution given by

xt|xt−1 ∼ p(xt|xt−1) (1)

for all t ≥ 1. The initial state is distributed following

x0 ∼ p(x0). (2)

These states are considered unobservable. Instead, there is a
sequence of measurements {yt}t≥0, with yt ∈ RM for all t ∈
N0, that is accessible. Given the current value of the state, the
measurements are distributed as follows

yt|xt ∼ p(yt|xt) (3)
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for all t ≥ 0. These three distributions (1)–(3) are consid-
ered known.

The objective is to estimate a target quantity zt that de-
pends on the true states of the system x0:t = {x0, . . . ,xt}. We
denote this as zt = ft(x0:t) for some (possibly time-varying)
mapping ft. To estimate zt from a sequence of observations
y0:t = {y0, . . . ,yt}, we use the conditional expectation to con-
struct an estimator z̃t as

z̃t = E
[
zt|y0:t

]
=

∫ +∞

−∞
ft(x0:t)p(x0:t|y0:t) dx0:t. (4)

Using Bayes’ rule, the posterior distribution of the state tra-
jectory given the measurements p(x0:t|y0:t) can be written
recursively as

p(x0:t|y0:t) = p(x0:t−1|y0:t−1)
p(yt|xt)p(xt|xt−1)

p(yt|y0:t−1)
. (5)

Note that the numerator of the update rule, i.e. p(yt|xt)
p(xt|xt−1), can be computed directly from (1)–(3). The de-
nominator p(yt|y0:t−1) can also be computed from (1)–(3) by
marginalizing over all possible states xt and xt−1 at times
t and t − 1 and using the previous step in the recursion
p(x0:t−1|y0:t−1). Then, since all the distributions are known,
it should be technically possible to compute the conditional ex-
pectation estimator (4). However, this entails high-dimensional
integrals with are typically intractable. Therefore, (4) cannot
usually be used in practice.

The law of large numbers can be leveraged to suggest a prac-
tical estimator consisting of taking K samples {x(k)

0:t }K
k=1, in-

dependently, identically distributed as x(k)
0:t ∼ p(x0:t|y0:t), and

then averaging them. Note, however, that even if we had access
to the posterior p(x0:t|y0:t), it may still be intractable to sample
from it.

Particle filtering consists of sampling {x(k)
0:t }k from some

other distribution x(k)
0:t ∼ π(x0:t|y0:t) and computing the esti-

mate as

ẑt =
K∑

k=1

ŵ(k)
t ft

(
x(k)

0:t

)
ŵ(k)

t =
w̃(k)

t∑K
k′=1 w̃(k′)

t

, (6)

where the normalized weights ŵ(k)
t are computed from the set

of unnormalized weights {w̃(k)
t }k, each of which is given by

w̃(k)
t = p(y0:t|x(k)

0:t )p(x(k)
0:t )/π(x(k)

0:t |y0:t). For the estimate in
(6) to be tractable, sampling from π(x0:t|y0:t) has to be com-
putationally feasible. If no further restrictions are imposed on
the sampling distribution π(x0:t|y0:t), then the particle filtering
method receives the name of Bayesian Importance Sampling,
the distribution π is known as the importance function, and the
weights are known as the importance weights [34]. The samples
{x(k)

0:t }k are often referred to as particles or trajectories.
To further facilitate computational tractability in particle fil-

tering, the sampling distribution π is typically restricted to have
the form

π(x0:t|y0:t) = π(x0|y0)
t∏

τ=1

π(xτ |x0:τ−1,y0:τ ). (7)

This implies that π(x0:t|y0:t) can be computed recursively
over time. Then, for each time t, it suffices to sample x(k)

t ∼
π(xt|x(k)

0:t−1,y0:t). The unnormalized weights can be computed
recursively as well, following

w̃(k)
t = w̃(k)

t−1

p(yt|x(k)
t )p(x(k)

t |x(k)
t−1)

π(x(k)
t |x(k)

0:t−1,y0:t)
. (8)

Particle filtering with sampling distributions of the form (7) is
often known as Sequential Importance Sampling [20].

While computationally convenient, adopting a sampling dis-
tribution as in (7) causes the particle filtering to suffer from
weight degeneracy. This means that the unconditional variance
of the weights, considering the observations y0:t as random
variables, increases over time [35]. The practical implications
are that, over time, only one particle carries all the weight while
the rest become insignificant. This affects the quality of the
estimator (6) as it virtually relies on a single trajectory. The
variance of the weights can be minimized, conditional upon
x(k)

0:t−1 and y0:t, if the sampling distribution is chosen to be
such that [36]

π(xt|x(k)
0:t−1,y0:t) = p(xt|x(k)

t−1,yt). (9)

In this case, the unnormalized weight updates become w̃(k)
t =

w̃(k)
t−1p(yt|x(k)

t−1). Sampling from p(xt|x(k)
t−1,yt), however, is

generally intractable.
Weight degeneracy can be minimized [cf. (9)] but it cannot

be avoided completely. Thus, resampling is typically used to
reduce its impact on the estimator (6). In short, resampling
consists of randomly sampling trajectories according to their
weight, thus giving more importance to the trajectories that
carry larger weights. More specifically, the level of weight
degeneracy is measured by

K̂eff
t =

1
∑K

k=1(ŵ
(k)
t )2

, (10)

which is a proxy for the number of particles that can be con-
sidered to be effectively contributing to the estimator. If this
number of effective particles drop below a certain threshold
K̂ thres, then the trajectories are resampled following a distri-
bution that assigns a probability w̃(k)

t of choosing trajectory k.
After sampling K times, a new set of K trajectories is obtained
(some of them likely to be repeated), and the weights are reset
to be 1/K for all particles. It is evident that using resampling
affects the i.i.d. assumption on the particles, and thus many
theoretical results, such as convergence, no longer hold [37].

The particle filter is a computationally simple estimator for
nonlinear systems that has shown significant success. For it to
yield good results, however, the sampling distribution π has to
be carefully designed in such a way that it is both easy to sample
from and leads to good estimators (6). Many design methods
have been proposed [21]. In what follows, instead of designing
it, we propose and discuss several architectures to learn the
sampling distribution from data, in an unsupervised manner.
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III. UNSUPERVISED LEARNING OF SAMPLING DISTRIBUTIONS

Designing a good sampling distribution π for the particle
filter that is simultaneously easy to sample from and yields
acceptable performance is a challenging problem. In what fol-
lows, we propose to use the sequence of measurements {yt}t≥0

to learn a suitable sampling distribution. First, we parametrize
the sampling distribution with a multivariate normal and use
algorithm unrolling to learn the mean and covariance matrix
from data (Section III-A). Second, we use a recurrent neural
network (RNN) that learns a hidden state that keeps track of
past values of the trajectory (Section III-B). Third, we use a
graph neural network that exploits the data structure of the
data improving the scalability of the model (Section III-C).
Fourth, we learn an arbitrary transform comprised of multi-
layer perceptrons (Section III-D). Finally, we discuss how to
learn these sampling distributions in an unsupervised manner
using only the sequence of available measurements (Section
III-E). Simulation results in a myriad of different scenarios can
be found in Section IV.

A. Multivariate Normal Parametrization

One distribution that is easy to sample from is the mul-
tivariate normal distribution. Therefore, we choose to use
this distribution to parametrize the sampling distribution π.
The multivariate normal distribution is completely character-
ized by a mean vector and a covariance matrix. Since it is
necessary for the sampling distribution π to depend on the
trajectory {x(k)

τ }t−1
τ=0 and the measurements {yτ}t

τ=0 up to
the current time t, we propose to learn a mapping between
these and the mean and covariance matrix of the multivariate
normal distribution.

In particular, we consider fully-connected neural networks
(also known as multi-layer perceptrons; MLPs) that, inspired
by (9), take as input the previous state x(k)

t−1 and the current
measurement yt and return the mean and covariance matrix of
the multivariate normal distribution. Namely,

x(k)
t ∼ π(x(k)

t |x(k)
t−1,yt) = N

(
µt,Σt

)
, (11)

with mean vector given by

µt = µt

(
x(k)

t−1,yt

)
(12)

and covariance matrix given by

Σt = Σ
(
x(k)

t−1,yt

)
. (13)

The equalities in both (12) and (13) are used to represent that
the mean vector and covariance matrix actually depend on the
previous value of the state x(k)

t−1 for the kth trajectory and on
the measurement yt at time t.

The mapping between x(k)
t−1 and yt and the mean µt at time

t is given by a fully-connected neural network NNµ
t

µt

(
x(k)

t−1,yt

)
= NNµ

t

(
x(k)

t−1,yt

)
. (14)

This is a cascade of blocks, each of which applies an affine
transform characterized by matrix Wµ

t,ℓ and offset vector bµ
t,ℓ

for block ℓ, followed by an activation function ρ : R → R that is

applied element-wise to the output of the affine transform [28,
Ch. 6]. This can be compactly written as

NNµ
t

(
x(k)

t−1,yt

)
= zµ

t,L with zµ
t,ℓ = ρ

(
Wµ

t,ℓz
µ
t,ℓ−1 + bµ

t,ℓ

)
(15)

for L blocks, so that ℓ = 1, . . . , L. Essentially, each block (the
affine transform followed by the activation function) is applied
to the output of the previous block, forming a cascade. The
input zµ

t,0 to the first block is given by the concatenation of the
previous state and the current measurement [(x(k)

t−1)
T,yT

t ]T ∈
RN+M . This implies that the matrix in the first affine transform
Wµ

t,1 is of size F1 × (M + N) where the value of F1 is known
as the number of (hidden) features at the output of block 1.
We also have that bµ

t,1 ∈ RF1 . In general, Wµ
t,ℓ ∈ RFℓ×Fℓ−1 and

bℓ ∈ RFℓ , so that each block transforms the Fℓ−1 input features
into Fℓ output features. The output of the multi-layer perceptron
is the output of the last layer zµ

t,L ∈ RFL . Note that, since this
output represents the value of the mean zµ

t,L = µt, it has to

hold that FL = N which is the size of the sampled state x(k)
t .

The activation function ρ : R → R is applied elementwise to the
output of each affine transform, and therefore does not alter
the dimensions.

In machine learning, the set of matrices and vectors that form
the affine transforms of each block Θµ

t = {Wµ
t,ℓ,b

µ
t,ℓ}L

ℓ=1 are
called the parameters of the fully-connected neural network.
These are typically learned from data by solving an optimiza-
tion problem [28, Ch. 8]. See Section III-E for more details.
The number of blocks L, and the number of features Fℓ at the
output of each block ℓ = 1, . . . , L − 1 are design choices and
are known as hyperparameters. While there exist methods for
choosing hyperparameters [38], they are typically determined
by experimentation. The activation function ρ is also a design
choice and is typically a nonlinear function such as a rectified
linear unit ρ(x) = ReLU(x) = max{x, 0} or a hyperbolic tan-
gent ρ(x) = tanh(x).

We remark that, in (15), we are choosing to model the map-
ping from the previous state value x(k)

t−1 and the measurement
yt to the target mean value µt by means of a different fully-
connected neural network for each time instant, as indicated by
the subscript t. This approach is known as the unrolling of the
algorithm [39].

There are two main reasons for choosing a fully-connected
neural network to parametrize the mapping from the previous
state value x(k)

t−1 and the current measurement yt to the tar-
get mean value µt = NNµ

t (x(k)
t−1,yt). From a theoretical per-

spective, fully-connected neural networks can approximate any
Borel measurable function with an arbitrary degree of accuracy
if the number of features is large enough. This is known as
the universal approximation theorem [40], [41]. From a prac-
tical perspective, neural networks are somewhat easy to train
with gradient-based methods due to the fact that their learnable
parameters are in the linear operation of the architecture, and
not in the nonlinear one. This makes the optimization problems
easier to solve [28, Ch. 8]

To map the previous state and the current measurement to
the covariance matrix, we propose to first leverage a fully-
connected neural network to learn a representation of the
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data, and then build a distance-based kernel from it. More
specifically,

Σt = C K(zt) CT (16)

where C ∈ RN×N is a matrix that is learnable from data,
and where K(zt) ∈ RN×N is a distance-based kernel matrix
such as

[K(zt)]ij = exp
(
−([zt]i − [zt]j)

2
)

(17)

for the representation zt obtained from a neural network as

zt = z(x(k)
t−1,yt) = NNΣ(x(k)

t−1,yt). (18)

Basically, we first transform the previous state x(k)
t−1 and the

current measurement yt into a representation vector zt ∈ RN

as in (18). Then we compute the distance-based kernel matrix
K(zt) ∈ RN×N as in (17). Finally, we learn matrix C ∈ RN×N

to account for possible changes in direction and rotations of the
variance components as specified in (16). Overall, the resulting
covariance matrix Σt is guaranteed to be non-negative definite.

Note that the covariance matrix Σt is different for each time
instant because the input to the neural network (18) used to
build the representation zt changes with time. However, the
learning architectures are the same for all time instants. The set
of parameters to learn from data is comprised of the matrices
WΣ

ℓ ∈ RFℓ×Fℓ−1 and offset vectors bΣ
ℓ ∈ RFℓ of each layer of

the neural network in (18), as well as the matrix C in (16). Thus,
the set of learnable parameters ΘΣ = {{WΣ

ℓ ,bΣ
ℓ }L

ℓ=1,C} is
the same for all time instants. For the sake of completeness, we
note that, similar to (15), the input to the neural network (18) is
the concatenation of the previous state and the current measure-
ment zΣt,0 = [(x(k)

t−1)
T,yT

t ]T so that F0 = N + M . Likewise, the
representation in (18) is collected as the output of the last layer
zt = zΣt,L so that FL = N . The decision to make the architecture
that learns the covariance matrix fixed with time is to avoid the
number of parameters growing proportionally to both time and
the square of the dimension of the state (through the learnable
matrix C). This is different from the architecture for learning
the mean, in that the latter which grows proportionally to time
and the dimension of the state – not quadratically with it.

B. Recurrent Neural Networks

Parametrizing the sampling distribution π with a multivariate
normal distribution makes it easy to sample from. Learning
the mean and covariance matrix as described in Section III-A
only takes into account the current measurement and the im-
mediate past value of the state. While this is suggested by the
minimum-degeneracy sampling distribution (9), it may be the
case that including past information beyond the immediate one
is helpful. To do so in a way that avoids ever-increasing dimen-
sionality, we consider recurrent neural networks (RNNs) [28,
Ch. 10], [42].

RNNs are machine learning architectures conceived to learn
from sequential data. Given an input sequence, they learn an
internal representation known as a hidden state. This hidden
state is expected to capture past information from the sequence
that is relevant for the task at hand. More specifically, given

the input sequence, which in our case is {[(x(k)
t−1)

T,yT
t ]T}t, a

sequence of internal states {zt}t for zt ∈ RH is computed as

zt = ρ
(
Azt−1 + B

[
x(k)

t−1

yt

])
. (19)

The matrices A ∈ RH×H and B ∈ RH×(M+N) are the parame-
ters learned from data. Note that these matrices are the same for
all time instants, and thus, unlike the method in Section III-A,
the number of parameters to learn does not depend on the length
of the sequence.

The computation of the hidden state as in (19) may be unable
to capture long-term dependencies [43], [44]. To overcome this,
we actually employ long short-term memory (LSTM) architec-
tures. These architectures add a series of gating strategies to be
able to control the influx of present information with respect to
past values of the input sequence. Formally, the internal states
are computed as

zt = ρ
(
ftst−1 + gtρ

(
Azt−1 + B

[
x(k)

t−1

yt

])

︸ ︷︷ ︸
st

)
, (20)

where st is an LSTM cell’s internal state, ft is a forget gate unit,
defined in (21), and gt is an input gate unit, defined in (22)

ft = ρ
(
Afzt−1 + Bf

[
x(k)

t−1

yt

])
, (21)

ft = ρ
(
Agzt−1 + Bg

[
x(k)

t−1

yt

])
. (22)

Notice that the cells of LSTM are RNN. Thus, the main differ-
ence between the LSTM and a vanilla RNN is that the former
has an additional internal recurrence – a self-loop – in addition
to the outer recurrence of the RNN, which is (20). More details
can be found in [45], [46]. Gated recurrent units (GRUs) consti-
tute an alternative architecture to LSTMs, and their description
can be found in [47], [48].

The mean of the multivariate normal can then be learned
at each time instant by computing an affine transform on the
hidden state

µt = Wµ
RNNzt + bµ

RNN, (23)

with Wµ
RNN ∈ RN×H and bµ

RNN ∈ RN being learnable param-
eters. For the covariance matrix, we compute the kernel of an
affine transform of the hidden state [cf. (16)]

Σt = C K(WΣ
RNNzt + bΣ

RNN) CT, (24)

where WΣ
RNN ∈ RN×H , bΣ

RNN ∈ RN and C ∈ RN×N are all
learnable parameters.

The set of learnable parameters for the RNN is ΘRNN =
{A,B,C,Wµ

RNN,bµ
RNN,WΣ

RNN,bΣ
RNN}. Note that this set is

independent of time, which allows for scalability to arbitrarily
long sequences. The information about past states and mea-
surements is captured by the sequence of hidden states {zt}.
Thus, learning the mean and covariance by means of (19)–(24)
has the potential to leverage information that is not directly
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accessible to the method proposed in Section III-A, albeit in
compressed form.

Finally, we would like to note that the expressivity of the
hidden state can be enhanced by considering deep RNNs,
instead of single-layer ones. The same holds for the mean
vector and the covariance matrix, where the affine trans-
forms in (23) and (24) can be replaced by fully-connected
neural networks.

C. Exploiting Data Structure: Graph Neural Networks

The fully-connected NN architecture used to map the pre-
vious state and the current measurement to the mean vector
and covariance matrix of a multivariate normal (Section III-A)
learns an affine transform from (N + M)-dimensional vectors
to N -dimensional ones. The RNN architecture (Section III-B)
maps analogous dimensions but does so in a way that exploits
the time structure by learning a hidden state that keeps track
of past values of the measurement sequence and the simulated
trajectory. The number of learnable parameters in both archi-
tectures depends on the size of the state N and on the size of
the measurements M . Oftentimes, the states or measurements
may present additional structure that can further regularize the
number of learnable parameters to be independent of either N
or M , improving scalability.

One such particular case is that of graph neural networks
(GNNs) [49], [50], [51]. GNNs consider the input to be a graph
signal [52], [53], [54]. Given a graph support G = (V, E) where
V is a set of N nodes and E ⊆ V × V is the set of edges, a graph
signal associates an F -dimensional vector xn ∈ RF to each
node, n = 1, . . . , N . The collection of N vectors of dimension
F can be compactly written in a matrix X ∈ RN×F where each
row is given by the vector xT

n. Graph signals can be used to
model measurements that arise in distributed plants [55], power
grids [56], communication networks [57], brain activity [58],
and teams of autonomous agents [59], among many others [60].

To exploit the underlying graph structure, we require an oper-
ation that only relates measurements if they are connected by an
edge. Towards this end, let S ∈ RN×N be a matrix description
of the graph, i.e. it satisfies that [S]ij = 0 whenever (j, i) /∈ E for
i ̸= j. The most popular choices of graph matrix descriptions
in the literature include the adjacency matrix [52], [54], the
Laplacian matrix [53], [60], the random walk matrix [61], and
their normalized counterparts. Then, we can define the graph
convolutional filter [62] as a linear operation on the input graph
signal X whose output is computed by means of a D-order
polynomial on the graph matrix description S

Y = W(X;S) =
D∑

d=0

SdXWd. (25)

The operation SdX in (25) gathers information located at the
d-hop neighborhood of each node by means of d successive
exchanges with one-hop neighbors. Multiplying SdX by the
filter coefficients in Wd ∈ RF×G determines how much weight
to assign to the information at each d-hop neighborhood. Note
that the output is a graph signal Y ∈ RN×G consisting of
G-dimensional vectors at each node, yn ∈ RG. The set of

(D + 1) filter coefficients {Wk}D
d=0 amounts to FG(D + 1)

parameters which may be learned from data.
A GNN is a particular case of the fully-connected neural

network, where the affine transform is replaced by a graph
convolutional filter (25). Then, the mean vector can be learned
as µt = µt(x

(k)
t−1,yt) = GNNµ

t (x(k)
t−1,yt;S) = Zµ

t,L where

Zµ
t,ℓ = ρ

(
Wµ

t,ℓ(Z
µ
t,ℓ−1;S) + Bµ

t,ℓ

)
. (26)

Here, the graph convolutional filter at each layer Wµ
t,ℓ is

of order Dt,ℓ and maps Ft,ℓ−1-dimensional input graph sig-
nals into Ft,ℓ-dimensional output graph signals. Thus, each
graph filter is characterized by a set of (Dt,ℓ + 1) filter co-
efficients {Wµ

t,ℓ,d}
Dt,ℓ

d=0 , where Wµ
t,ℓ,d ∈ RFt,ℓ−1×Ft,ℓ . The off-

set matrix Bt,ℓ ∈ RN×Ft,ℓ is actually computed as Bt,ℓ =
[bt,ℓ,11N , . . . , bt,ℓ,Ft,ℓ1N ] where the f th column is bt,ℓ,f1N

with 1N ∈ RN a vector of all ones and bt,ℓ,f the learnable
coefficient, for f = 1, . . . , Ft,ℓ. The input to the GNN is given
by Zµ

t,0 = [x(k)
t−1,A

µ
t yt] ∈ RN×2 so that F0 = 2. The matrix

Aµ
t ∈ RN×M is used to adapt the potentially different dimen-

sions of the measurement and the state. The number of features
at the output of the GNN is Ft,L = 1 so that Zµ

t,L ∈ RN×Ft,L

becomes an N -dimensional vector that is used as the mean vec-
tor for the multivariate normal distribution zµ

t,L = µt. Finally,
we note that the set of learnable parameters for the GNN-based
architecture for learning the mean vector is given by Θµ,GNN

t =
{{Wµ

t,ℓ,d}
Dt,ℓ

d=0 , {bµ
t,ℓ,f}Ft,ℓ

f=1}L
ℓ=1. This amounts, for each time

t, to
∑L

ℓ=1(Ft,ℓFt,ℓ−1(Dt,ℓ + 1) + Ft,ℓ) learnable parameters,
a quantity determined by design choices and independent of
the size of the measurement N . Thus, the dimensionality of
the optimization landscape is also independent of N , allowing
for scalability.

To learn the covariance matrix, we follow the same scheme
as in (16)–(18), except that we replace (18) with a GNN. The
input to the first layer, then, is analogous to that of the GNN-
based architecture for learning the mean vector, except it may
potentially have a different adaptation matrix AΣ ∈ RM×N ,
i.e. ZΣ

t,0 = [x(k)
t−1,A

Σyt] ∈ RN×2 so that F0 = 2. The output
ZΣ

t,L ∈ RN×FL is set to be a vector zΣt,L, meaning FL = 1,
and then is fed into (17) and later into (16). The GNN is
independent of time in the same way that the fully-connected
NN in (18) is. This makes the set of learnable parameters to be
ΘΣ,GNN = {{Wµ

ℓ,d}
Dℓ
d=0, {bµ

ℓ,f}Fℓ
f=1}L

ℓ=1. Note, however, that
since the matrix C in (16) is of size N × N , the overall number
of learnable parameters required for the covariance matrix does
depend on N . Additionally, the matrices {{Aµ

t },AΣ} can ei-
ther be learned or designed to reflect some sort of topological
structure on the measurements as well. Note, however, that if
they are learned, then the number of learnable parameters will
depend on N , potentially hindering scalability.

GNNs exploit the assumption that the measurements ex-
hibit a graph-based structure. They are naturally distributed
architectures, meaning that each node in the graph can com-
pute its output separately, requiring only to communicate with
nearby neighbors. They are also better at generalizing for graph-
based data, since they are permutation equivariant and sta-
ble to deformations of the graph support [63], [64]. There is
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a vast body of literature on GNNs, whereby graph convolu-
tional filters (25) can be replaced by non-convolutional filters
[65] or where the pointwise activation functions can be re-
placed by graph-based activation functions [66]. Also, graph
RNNs have been developed to handle sequences of graph sig-
nals [67]. The key conceptual aspect to highlight is that, if
the measurements present certain data structures, it could be
convenient to consider learning architectures that exploit such
structures [28, Ch. 9].

D. Arbitrary Transform

All the learning methods discussed in the previous sections
parameterize the sampling distribution as a multivariate normal.
Then, each of them provides different ways of learning the mean
vector and covariance matrix that take into account different
aspects of the data. In this section, we consider an arbitrary
transform of a uniform distribution, increasing the expressivity
of the attainable sampling distribution.

A well-known result from probability theory states that, given
the cumulative distribution function FX of a random variable
x, then the random variable u = FX(x) is uniformly distributed
[68]. Therefore, defining F−1

X as the generalized inverse of FX ,
we can obtain samples from any random variable x by taking
samples from a uniform u and transforming those samples
through F−1

X . Computing F−1
X , however, is typically intractable.

We propose to learn a transform Ψt : RN → RN that maps a
uniform random variable u into the sample x(k)

t for each time
t. To do this, we parametrize Ψt by means of a neural network.
In order to include the information from the past state and the
current measurement, we consider the following architecture

x(k)
t = Ψt(u;x(k)

t−1,yt) = NNΨ
t

(
ρ
(
AΨ

t u + BΨ
t x(k)

t + CΨ
t yt

))

(27)

where u ∼ U([0, 1]N ), AΨ
t ∈ RN×N , BΨ

t ∈ RN×N and
CΨ

t ∈ RN×M .
Each sampled state x(k)

t in the trajectory [cf. (27)] is dis-
tributed according to some probability distribution x(k)

t ∼
πΨ

t (x(k)
t |x(k−1)

t−1 ,yt). A means to evaluate values of πΨ
t is re-

quired in order to be able to compute the weight associated to
each trajectory [cf. (8)]. Observing that Ψt is continuous, and
since u is a continuous random variable, then x(k)

t is continuous
as well, and thus it can be characterized by a continuous proba-
bility density function (pdf). Provided that Ψt is invertible, this
pdf can be computed as follows

πΨ
t (x(k)

t |x(k)
t−1,yt) =

∣∣ det
(
JΨ−1

t
(x(k−1)

t )
)∣∣ (28)

since fX(Ψ−1
t (x(k)

t )) = 1, and where JΨ−1
t

∈ RN×N is the Ja-
cobian of Ψ−1

t . This Jacobian can be computed by noting that

Ψ−1(x(k)
t ) = (AΨ

t )−1
(
zΨt,0 − BΨ

t x(k)
t−1 − CΨ

t yt

)
(29)

with

zΨt,ℓ−1 = (WΨ
t,ℓ)

−1ρ−1(zΨt,ℓ − bΨ
t,ℓ) (30)

for ℓ = 1, . . . , L the number of layers in the neural network
NNΨ

t , and where (WΨ
t,ℓ,b

Ψ
t,ℓ) are the parameters of the affine

transform of layer ℓ. Note that zΨt,L = x(k)
t . In other words,

Ψ−1 has a structure analog to that of a neural network, and
thus its Jacobian can be computed by an algorithm analog to
backpropagation [69].

While we assumed that Ψ is invertible from the moment we
decided to use it to learn F−1

X , neural networks are not necessar-
ily invertible, and thus we need to guarantee this in the design.
The simplest way to do so is to choose square matrices WΨ

ℓ for
all ℓ, and thus Fℓ = N for all ℓ. This curtails the ability of the
designer to control the representation capability of the neural
network. We note that a square matrix does not necessarily
guarantee invertibility. One way to approximately compute the
inverse, then, would be to add a small identity matrix, which
is a common practice in ridge regression estimators [70]. Also,
the activation function has to be invertible, which is the case
for the hyperbolic tangent, but not for the ReLU. More spe-
cific solutions can be find in the field of normalizing flows
[71], [72], [73].

The set of learnable parameters for each time instant t is given
by ΘΨ

t = {{WΨ
t,ℓ,b

Ψ
t,ℓ}L

ℓ=1,A
Ψ
t ,BΨ

t ,CΨ
t }. Note that, in (27),

we have chosen to learn a different neural network for each
time instant t. This makes the number of learnable parameters
a function of t, and thus requires more data as the trajectories
get longer. Alternatively, we can fix a single neural network for
all t, and use the values of x(k)

t−1 and yt to keep track of the
changes in the system across time.

E. Likelihood of the Model

All of the architectures presented so far are determined by
a set of parameters. These parameters are updated iteratively
during the training phase by computing gradient descent steps
towards optimizing some objective function [28, Ch. 8]. We
train the architectures by choosing to maximize the likelihood
of the model. This results in an unsupervised regime, since only
the sequence of measurements {yt} is required for training.
Notice that we consider a sequence of measurements {yt} from
one single trajectory.

The model of the nonlinear dynamical system under study
is characterized by the transition distribution p(xt|xt−1) and
the measurement distribution p(yt|xt), both considered known.
Hence, we learn the sampling distributions π in an unsupervised
way by maximizing the likelihood of the model

max
Θ

K∑

k=1

p
(
x(k)

t [Θ ]
∣∣x(k)

t−1[Θ ]
)
p
(
yt

∣∣x(k)
t [Θ ]

)
. (31)

By the notation x(k)
t [Θ ] we have explicitly indicated that each

sample depends on the learnable parameters Θ through the
learned sampling distribution Θ . By updating the parameters Θ
towards maximizing (31), we attempt to generate samples that
are reasonable in light of the system dynamics. For instance,
if one sampled value x(k)

t would not be reasonable in light of
the measurement yt, as dictated by the distribution p(yt|xt),
then the parameters Θ are going to be updated, subsequently
reducing the probability of sampling such x(k)

t . In this way,
we can train the architectures using only knowledge of the
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system dynamics and the measurements yt, but with no true
knowledge of the states xt, which amounts to an unsupervised
training regime. Notice that to compute (31) and train in an
unsupervised regime, we assume that we know both the system
dynamics and the measurement processes. This is different
from [74], [75], where they parameterize both the dynamic and
measurement processes as Gaussian distributions with mean
and covariance defined as learnable Gaussian processes. Our
approach also differs from [76], where they assume that the
system dynamics are deterministic, and they approximate them
with a polynomial.

The parameters are typically updated by means of some
iterative algorithm based on stochastic gradient ascent [77],
[78]. We note that the objective is not necessarily to optimize the
function, but rather to learn to solve the task at hand. For this
reason, usually a fixed number of iterations are done, instead
of following some stopping criterion based on the value of
the objective function. Oftentimes, it may be convenient to
maximize the log-likelihood, especially when the distributions
of the system dynamics belong to the exponential parametric
family. Finally, we remark that since x(k)

t is actually a sample
drawn from the distribution π, which is the one we want to
learn, we use the reparametrization trick to be able to estimate
the gradients required for the stochastic gradient ascent algo-
rithm [79]. This trick allows us to rewrite an expectation with
respect to the sampling distribution π as a differentiable Monte
Carlo estimator. In a nutshell, the idea is to rewrite the random
variable that we want to sample as a deterministic variable that
depends on an auxiliary random variable, which typically is a
Gaussian random variable.

IV. NUMERICAL EXPERIMENTS

Let us consider a dynamical system given by

xt = φ(Fxt−1) + vt,

yt = Hxt + qt, (32)

where xt ∈ RN is the state, yt ∈ RM is the measurement,
F ∈ RN×N is the state transition matrix and H ∈ RM×N is
the measurement matrix. The function φ : RN → RN may be
nonlinear (depending on the simulation scenario). The state
noise vt ∈ RN×N has mean E[vt] = 0 and covariance matrix
E[vtvT

t ] = σ2
vIN ∈ RN×N for all t. Likewise for the measure-

ment noise qt ∈ RM , where E[qt] = 0 and E[qtqT
t ] = σ2

wIN ∈
RM×M for all t. Noise vectors are independent for any pair
t, t′ such that t ̸= t′, and all the random vectors in the sequence
{vt}t≥0 are independent from those in the sequence {qt}t≥0.

In this context, we consider to have access to a sequence of t
measurements {yt}t=0,...,T and we want to estimate the value
xt of the state at time t, so that the target quantity becomes
zt = ft(x0:t) = xt. The baseline estimator is then given by z̃t as
in (4). In what follows, we will obtain estimates ẑt using particle
filtering as in (6), under the consideration of different sampling
distributions π(xt|x(k)

0:t−1,y0:t) as discussed in Section III.
The baseline sampling distribution is given by the one

that minimizes the degeneracy, i.e. π(xt|x(k)
0:t−1,y0:t) =

p(xt|x(k)
t−1,yt). This sampling distribution can be computed in

closed form for the dynamical system in (32) for the case in
which the noise distributions for vt and qt are Gaussian, see
[17] for details.

In all the following simulations, we set M = N − 2 with
matrix F being generated as the weighted adjacency matrix of
a random geometric graph. The weights are computed using a
Gaussian kernel on the distance, i.e. the weight between node i
and node j is given by exp(−∥ri − rj∥2) where ri ∈ R2 are the
coordinates of node i on the [0, 1] plane. A weighted, 3-nearest
neighbor graph is constructed, and the adjacency matrix is nor-
malized so that it has unit spectral norm. The measurement ma-
trix is obtained from H =

[
IM×M IM×(N−M)

]
where IP×Q

is a P × Q matrix such that [I]ii = 1 and [I]ij = 0 for all i ̸= j,
normalized to have unit spectral norm. Such dynamical system
is characteristic of diffusion processes in graphs, including ru-
mor spreads, heat diffusion, and graph filtering [80].

The initial state x0 is drawn from a multivariate Gaussian
with mean E[x0] = µ0 = 1N and covariance matrix E[(x0 −
µ0)(x0 − µ0)T] = IN . In this setting, we define the state noise
SNR as 10 log10(∥µ0∥2/σ2

v) and the measurement noise SNR
analogously. For the simulations, we consider the SNR to be
5dB, fixing the value of both σ2

v and σ2
w.

We construct particle filter estimates drawing K particles,
with resampling whenever Keff

t is smaller than K̂ thres = K/3.
To account for the randomness in the generation of the particle
filtering estimate, we repeat the process 100 times. That is,
we sample K particles, construct the estimate, sample another
K particles, construct another estimate, and so on for 100
repetitions. These estimates are then averaged to produce a
single particle filtering estimate that accounts for the inherent
randomness in the particle filter.

For the learnable sampling distributions leveraging fully-
connected neural networks to learn the mean and covariance
matrix of a multivariate distribution, we consider 4 layers,
where the input to the first layer is of size N + M and the output
of the last layer is of size N , as explained in Section III-A.
The number of hidden units is set to 256, 512 and 1,024 at
the outputs of layers 1, 2, and 3, respectively. We use the
same hyperparameters for the mean neural network and the
covariance neural network (note that the hyperparameters are
the same, but the parameters actually learned will be different).
For the RNN model (Section III-B), the size of the hidden state
is set to H = 1024. For the GNN (Section III-C) we consider the
graph matrix description to be S = F the state transition matrix,
and we use 4 layers with dimensions Ft,1 = 256, Ft,2 = 512,
Ft,3 = 1024 and Ft,4 = 1 for all t. The number of neighborhood
exchanges is set to D = 3 for all filters involved. Finally, for the
learnable sampling distribution capable of learning an arbitrary
distribution (i.e. not the parameters of a multivariate normal)
described in Section III-D, we consider 9 layers (recall that
the number of hidden units is fixed by the requirement that
the matrices be squared). In all learnable architectures, the
activation function is set to be the hyperbolic tangent.

To train these learnable sampling distributions, we have ac-
cess to a sequence of t measurements {yt}t and we find the
parameters that maximize the likelihood of the model as de-
scribed in Section III-E. To do so, we use an optimization
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Fig. 1. Linear Gaussian dynamical system as a function of the number of particles K. (a)–(c) We vary the state dimension N and the measurement dimension
M . The MSE of the particle filter estimators is normalized by the ground truth, which is the Kalman filter. All the sampling distributions that were learned
from data significantly outperform the baseline of the designed, minimum-degeneracy sampling distribution.

algorithm known as Adam [78] which is a momentum-based
variant of stochastic gradient descent. We use a learning rate
of 0.001, and forgetting factors of 0.9 and 0.999. We carry out
200 training steps, where each step uses all data (also known
as 200 epochs). To account for the randomness of the system
dynamics (in generating the state transition matrices F) and of
the generated measurements {yt} we repeat the whole learning
and testing process 20 times. We report the median performance
of each particle filter estimate, together with the corresponding
standard deviation.

In the following simulations, we explore how the perfor-
mance of particle filters with learnable sampling distributions
changes as a function of the state dimension N (recall that the
measurement dimension is set to M = N − 2), the trajectory
length T , the number of particles K, the noise distribution, and
the nonlinear function φ.

A. Linear Gaussian Dynamical System

First, we consider a linear dynamical system, where φ is the
identity function

xt = Fxt−1 + vt,

yt = Hxt + qt, (33)

and we also consider both the state noise and the measurement
noise to be multivariate Gaussian. In such a scenario, we can
compute the ground truth estimator in closed form E[xt|y0:t]
since xt|y0:t is also a multivariate Gaussian random variable.
Notice that the ground truth estimator, which is the optimal
Bayesian estimator, boils down to the Kalman filter for the
linear Gaussian system.

We consider three different values of state dimension, i.e.
N = 10, N = 25 and N = 50. The resulting, normalized mean
squared error between the particle filter estimators and the
ground truth is plotted in Fig. 1 as a function of the number
of particles in the set K ∈ {10, 20, 30, 40, 50}. In all cases, we
set the trajectory length to be T = 12.

For all the state dimensions, we observe that the learned
sampling distributions considerably outperform the designed,
minimum degeneracy sampling distribution. We note that there
is no significant difference between using a fully connected
neural network (Section III-A), a recurrent neural network
(Section III-B) or an arbitrary learned linear transform. In-
terestingly enough, the arbitrary linear transform Ψ exhibits

Fig. 2. Linear Gaussian dynamical system as a function of the trajectory
length T .

comparable performance to the FCNN and the RNN, even
though it relies on significantly less number of parameters.
One difference is that the arbitrary linear transform Ψ exhibits
higher variance, especially for the large case of N = 50. The
sampling distribution based on the GRNN still performs better
than the minimum-degeneracy designed sampling distribution,
but considerably worse than the other learnable distributions.
We believe this may be caused by overfitting due to already
incorporating information on the underlying graph F in the
form of the matrix S used in the graph filtering layers.

Next, we fix the state dimension to be N = 10, the number
of measurements to be M = 8, and the number of particles
to be K = 10, and we simulate the performance of the par-
ticle filters with learnable distributions as a function of T ∈
{12, 16, 20, 24, 28}.

Results are shown in Fig. 2. Again, we note that the particle
filter with learned sampling distribution outperforms the use
of a designed, minimum-degeneracy one, with the GNN per-
forming worse than the other three alternatives. We note that
the performance of the RNN seems independent of the trajec-
tory length, probably due to the fact that this the parameters
of the RNN are time-independent by design. Meanwhile, the
performance of the FCNN and the arbitrary linear transform Ψ
improve with trajectory length, likely because of the increased
expressivity that is obtained by learning a different set of pa-
rameters for each time instant. In any case, the performance of
these three architectures is comparable.

Finally, we fix the trajectory length to be T = 12 and the
number of particles to be K = 10 and we simulate as a function
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Fig. 3. Linear Gaussian dynamical system as a function of the state
dimension N .

of the state dimension for N ∈ {10, 20, 30, 40, 50} (recall that,
for each case, M = N − 2).

Results shown in Fig. 3 exhibit a similar behavior as in the
previous experiments, where all learned distributions perform
better than the designed, minimum-degeneracy one, and where
the GNN works worse than the rest. In this case, the perfor-
mance seems to be independent of the dimension of the state
N , with all three (FCNN, RNN and arbitrary transform Ψ)
performing similarly.

B. Nonlinear Gaussian Dynamical System

Next, we consider a nonlinear dynamical system, where φ
is set to be the absolute value. The distributions of the state
noise and the measurement noise remain Gaussian. In this sce-
nario, the ground truth E[xt|y0:t] can no longer be computed
in closed-form. In this case, we use the simulated values of xt

as ground truth to measure performance against, i.e. the results
shown in the figures report the normalized mean squared error
between the different methods and the estimated ground truth
value xt.

For this case, we fix N = 10, M = 8 and T = 12, and
present simulations as a function of the number of particles
K ∈ {10, 20, 30, 40, 50}. Results are shown in Fig. 4.

The first observation is that, while in general the learned
sampling distributions outperform the designed, minimum-
degeneracy one, the gap now is significantly smaller. Further-
more, the behavior of learned distributions such as the FCNN
or the arbitrary linear transform Ψ is slightly more erratic as a
function of the number of particles K, sometimes being com-
parable to the minimum-degeneracy particle filter, sometimes
being slightly worse. This is likely due to the added complexity
of the model, and the inability of these generic architectures of
adequately capturing the information without proper regular-
ization. As a matter of fact, the impact of regularization (i.e.
choosing operations that reflect certain structure, being either
time, like RNNs, or graphs, like GNNs) is evident in the fact
that the performance of GNNs is now significantly better (in
relative terms) and that both the GNN and the RNN offer a
stable behavior as a function of K.

C. Linear Non-Gaussian Dynamical System

For the third simulation we consider a linear dynamical
system (33), but with non-Gaussian state and measurement

noise. Again, we fix N = 10, M = 8 and T = 12, and present
simulations as a function of the number of particles K ∈
{10, 20, 30, 40, 50}. Results are shown in Fig. 5 for exponential
noise and in Fig. 6 for uniform noise. In both cases, the mean
and covariance matrix are still given by the values described at
the beginning of the section, but the noise samples are sampled
from the corresponding distributions.

As in Section IV-B, the learned sampling distributions out-
perform the designed, minimum-degeneracy one, by a gap
smaller than the one observed in the linear Gaussian case (Sec-
tion IV-A). We note that the FCNN now exhibits a much more
stable behavior than in the nonlinear Gaussian case (Section
IV-B), suggesting that the linearity of the system is more impor-
tant in the performance of the FCNN than the distribution of the
noise. Here, the performance of the arbitrary linear transform
Ψ is considerably more erratic, making it somewhat unreliable.
Regularization techniques may come in handy to avoid this
erratic behavior. Finally, we note that the RNN is the more
consistent performer with the most stable behavior.

D. Realistic Dynamical Models

In this section we consider two mathematical models that are
used to describe real phenomena. The first one consists of a
model that is often employed to describe the dynamics of an
epidemic: the SIR model. It is described by a system of ordinary
differential equations [81] that can be discretized via the Euler
method for our purposes. By doing so with a time step of size
∆, the discrete system is given by

St+1 = −βStIt∆ + St

It+1 = (βStIt − γIt)∆ + It

Rt+1 = γIt∆ + Rt (34)

where St is the number of susceptible people at time t, It is
the number of infected people at time t, and Rt represents the
number of people that have been removed from the system
(either by death or recovery) by time t. The parameters of the
model β, γ, and ∆ are assumed known. The state of the system
is given by xt = [St, It, Rt]T. Notice that the system described
in (34) can be thought of as the nonlinear function φ within the
framework defined in (32).

The second realistic system we focus on consists of an ap-
plication to bioinformatics. In particular, we evaluate our algo-
rithm for estimation and filtering within a heat shock response
system, an essential cellular mechanism conserved in almost
every organism [82]. The model we use corresponds to the
heat shock model in the bacterium Escherichia coli. It can be
expressed as a system of three differential equations

Ḋ(t) = 3
S(t)

1 + 0.05D(t)
1+0.0254U(t)

− 0.015D(t),

Ṡ(t) = 10 − 0.03S(t) − 3

D(t)
1+0.0254U(t)

1 + 0.05D(t)
1+0.0254U(t)

S(t),

U̇(t) = 40(2 × 106 − U(t)) − 6040D(t) (35)
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Fig. 4. Nonlinear Gaussian dynamical system as a function of the number of particles K. (a)–(c) We vary the state dimension N and the measurement
dimension M . While, generally, the learned distributions outperform the minimum-degeneracy one, the relative gap is now smaller compared to Fig. 1.
Additionally, for some distributions (like the FCNN or the arbitrary transform Ψ) the performance is comparable to the minimum degeneracy (and may be
worse) for some values of K.

Fig. 5. Linear non-Gaussian dynamical system as a function of the number of particles K. (a)–(c) We vary the state dimension N and the measurement
dimension M . The performance of the arbitrary distribution Ψ becomes comparable to the one of the minimum degeneracy as the dimension N of the
system grows.

Fig. 6. Linear-exponential dynamical system as a function of the number of particles K. (a) System with state dimension N = 10 and measurement dimension
M = 8. (b) System with state dimension N = 25 and measurement dimension M = 23. (c) System with state dimension N = 50 and measurement dimension
M = 48. While, generally, the learned distributions outperform the minimum-degeneracy one, the gap is now smaller. Additionally, the performance of the
arbitrary distribution Ψ becomes comparable to the one of the minimum degeneracy as the dimension N of the system grows.

where the constants come from replacing the model parameters
by its values given in [82]. In the system of equations (35), D(t)
represents the number of molecules of chaperones, S(t) is the
number of molecules of an enzyme RNA polymerase bound to
a key regulatory factor, and U(t) describes the total number of
unfolded proteins; see [82] for more biological details.

We first evaluate the performance for the SIR model. For
this experiment, we fix the parameters to be β = 5 × 10−4 and
γ = 0.04. We set a trajectory of 200 samples, using a time step
∆ = 0.7. We measure M = 2 states, with It being the state
that we do not measure. More precisely, H in (32) consists
of the first and third row of an identity matrix of size three.
The initial conditions are independently distributed and follow

an exponential distribution, with means E[S0] = 997, E[I0] =
3 and E[R0] = 0, and with variances Var(S0) = Var(I0) =
Var(R0) = 500. The measurement and state noises are also
exponentially distributed, with variances Var(qt) = 2500 and
Var(vt) = 200, respectively. The number of particles is fixed
at K = 300. The architecture of the neural networks is changed
as well, using 4 hidden layers in the case of the FCNN (with
512, 256, 128 and 32 hidden units each, respectively), setting
H = 2048 in the case of the RNN, and using 10 layers for the
arbitrary distribution Ψ. The GNN-based method is not used
in this experiment, as there is no graphical structure in the
system dynamics that could be exploited. The estimation of
the unobserved state using the different methods is shown in
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Fig. 7. The unobserved state I(t) and the estimations using the proposed methods for the SIR model. (a) The state I(t) during all the trajectory. (b) The
state I(t) zoomed to show the time window where t ∈ [20, 50]. (c) The state I(t) zoomed to show the time window where t ∈ [100, 200]. The performance
achieved by the FCNN-based method and the arbitrary distribution Ψ is higher than that of the minimum degeneracy.
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Fig. 8. The unobserved state D(t) and the estimations using the proposed methods for the heat shock response. (a) The state D(t) during all the trajectory.
(b) The state D(t) zoomed to show the time window where t ∈ [35, 55]. (c) The state D(t) zoomed to show the time window where t ∈ [75, 95].

Fig. 7. It is also of interest to evaluate how the learned sampling
distributions perform in terms of filtering out the noise from
the measured states. The MSE for each method can be seen
in Table I.

The FCNN-based method results to be the one that achieves
the best performance, not just at estimating the unknown state
but also at filtering the noise from the measured ones. This
method offers the lowest variance and also the lowest bias. The
arbitrary distribution Ψ outperforms the minimum-degeneracy
one too, although the bias is somewhat larger than the one at-
tained using the FCNN. Nonetheless, the variance of the estima-
tor is really low as well. The RNN-based method fails to provide
a sampling distribution whose performance is comparable to the
other two proposed methods. Not only is the variance much
higher (although still lower than in the minimum-degeneracy
case), but the bias is not desirable either. This can be clearly
observed in Fig. 7(b), where the peak of the signal I(t) is
correctly captured by the other three methods but not by the
RNN-based one.

Now we evaluate our approach for the heat shock response
system in (35). In this setting, we assume that we only have
access to noisy measurements of S(t) and U(t), and we want
to not only filter out the noise from these two signals but also to

TABLE I
NORMALIZED MSE BETWEEN THE TRUE

STATES AND THE ESTIMATES FOR THE
SIR MODEL

S(t) I(t) R(t)
Min. Deg. 0.082 0.161 0.029

FCNN 0.027 0.042 0.017
RNN 0.062 0.172 0.026
Ψ 0.063 0.077 0.016

estimate D(t), the unobserved state. We discretize (35) via the
Euler method, with a time step of ∆ = 0.05. The initial con-
ditions are independently distributed and follow normal distri-
butions, with means E[D0] = E[S0] = 0 and E[U0] = 2 × 106,
and with standard deviations σd = 245, σs = 3 and σu = 44500.
The state noises are also normally distributed, with variances
equal to the ones used in the respective initial conditions. The
measurement noise standard deviations are 5σs and 5σu for
the states S and U , respectively. We use K = 500 particles for
this experiment.

The estimation of the unobserved state using the different
methods is shown in Fig. 8. The normalized MSE for each
method can be seen in Table II for all three states. The nor-
malizing flow method results to be the one that achieves the
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TABLE II
NORMALIZED MSE BETWEEN THE TRUE

STATES AND THE ESTIMATES FOR THE
HEAT SHOCK RESPONSE SYSTEM

D(t) S(t) U(t)
Min. Deg. 0.036 0.046 0.053

FCNN 0.081 0.085 0.206
RNN 0.203 0.105 0.041
Ψ 0.010 0.029 0.040

best performance in this case. Nonetheless, contrary to the SIR
example, the FCNN method fails to capture the correct dynam-
ics of the system. We can conclude that when the dynamics is
highly nonlinear and does not exhibit any underlying structure,
the normalizing flow is the best option as it can successfully
learn an arbitrary sampling distribution.

V. CONCLUSION

We proposed four different methods for learning the sam-
pling distribution of a particle filter. The first three are para-
metric methods, which sample from a multivariate Gaussian
distribution with mean and covariance matrix that are learned in
different ways. First, we consider the generic case, in which the
mean and the covariance matrix are obtained through represen-
tations learned by means of a fully-connected neural network
applied to the current measurement and the previous simulated
state. Second, we consider a recurrent neural network that is
capable of capturing past information beyond the immediate
previous simulated state. Third, we make a case for the possibil-
ity of using neural network architectures that exploit additional
data structure, if available. In particular, we assume that the
nonlinear dynamic system may be explained in terms of a
distributed plant, and leverage graph neural networks to exploit
this structure. The fourth and last method is a non-parametric
one, in which we learn an arbitrary mapping between samples
from a uniform distribution and the state simulation.

We ran several simulations studying the performance of
the proposed method against the sampling distribution de-
signed to minimize particle degeneracy. Overall, while the
learned sampling distributions generally outperform the de-
signed, minimum-degeneracy one, it is the RNN-based ones
that consistently does so in a wide range of scenarios, with sta-
ble performance for a wide range of sweeping problem hyperpa-
rameters. Note, however, that in the case of complex nonlinear
systems, the other methods can provide better estimations, as
seen in the case of the SIR and the heat shock systems. In par-
ticular, the arbitrary distribution is the most flexible, allowing
to learn sampling distributions that adjust better to each instant
of time and thus lead to better results.

This article presents a first approach to learning sampling dis-
tributions in an unsupervised manner as opposed to designing
them. There are many directions for improvement of the meth-
ods presented herein. First of all, more complex architectures
can be considered, which may be better tailored for different
specific nonlinear dynamical systems. Second, the training can
be improved by including regularization techniques such as
dropout or penalties. These may be particularly useful when
the dimension of the systems is large. Third, normalizing flows

arise as an interesting direction to pursue. The fourth method
presented here is a very elementary normalizing flow. Using
more complex conditioning models to ensure the invertibility
of the neural network may actually lead to increased represen-
tation capability and more sophisticated distributions.
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