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Abstract—This paper looks at the task of network topology
inference, where the goal is to learn an unknown graph from
nodal observations. One of the novelties of the approach put
forth is the consideration of prior information about the density
of motifs of the unknown graph to enhance the inference of
classical Gaussian graphical models. Directly dealing with the
density of motifs constitutes a challenging combinatorial task.
However, we note that if two graphs have similar motif densities,
one can show that the expected value of a polynomial applied to
their empirical spectral distributions will be similar. Guided by
this, we first assume that we observe a reference graph with a
density of motifs similar to that of the sought graph, and then,
we exploit this relation by incorporating a similarity constraint
and a regularization term in the graph learning optimization
problem. The (non-)convexity of the optimization problem is dis-
cussed, and a computationally efficient alternating majorization-
minimization algorithm is designed. We assess the performance of
the proposed method through exhaustive numerical experiments,
where different constraints are considered and compared against
popular alternatives on both synthetic and real-world datasets.

Index Terms—Network topology inference, graphical models,
graph signal processing, motif distribution.

1. INTRODUCTION

ARNESSING graphs to model the underlying structure of

signals is gaining relevance due to the rising of data de-
fined over non-Euclidean domains. This graph-based perspec-
tive is at the core of graph signal processing (GSP) and machine
learning over graphs, fields devoted to the development of meth-
ods for processing and learning from signals defined over irreg-
ular supports modeled by graphs [1], [2], [3], [4]. Successful
applications of these methods are found when processing sig-
nals in power, communication, social, geographical, financial,
and brain networks, to name a few [1], [5], [6], [7]. While the
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default approach is to assume that the graph is known and to
focus on the processing of the network data, there are many rel-
evant scenarios where the topology of the graph is unknown. To
handle this, a preliminary (critical) step is to learn the topology
of the graph from a set of nodal observations. The key to this
task, which is commonly known as network topology inference
or graph learning, is to leverage models/assumptions relating
the properties of the observed signals to the topology of the
sought graph [8], [9], [10], [11], [12]. Noteworthy approaches
to this task include partial correlations and Gaussian graphical
models [13], [14], [15], [16], [17], sparse structural equation
models [18], [19], smooth (total variation) models [20], [21],
[22], and graph stationary models [8], [23], [24], [25], among
others.

All the aforementioned graph-learning approaches share one
common characteristic: the focus is placed on the signals rather
than the graphs. Indeed, most works learn the graph that best
explains the observations without considering any prior infor-
mation about the topology of the graph other than its sparsity. If
information about the topological structure of the graph is avail-
able, we can harness it to improve the quality of the estimated
graphs by promoting desired structural characteristics. An ini-
tial step in this direction is taken in joint graph-learning algo-
rithms [15], [26], [27], [28], where several graphs are jointly
estimated under the additional assumption that they are close
to each other in some sense. This assumption is indeed justified
when, e.g., the graphs being estimated proceed from the same
distribution. Nonetheless, measuring the distance between two
graphs is a non-trivial endeavor, and joint inference works are
typically constrained to comparing graphs with a common set
of nodes and promoting similar edge support across all graphs.

Some other works are also starting to take into considera-
tion prior information about the graph. A relevant example is
found in [17], where the authors propose recovering the graph
Laplacian from a set of Gaussian Markov random field (GMRF)
observations while considering simple spectral constraints like
setting the number of zero eigenvalues. However, as we discuss
in Section III-B, these constraints are limited and cannot cap-
ture more complex information. Alternatively, [24] introduces
a different graph learning method where the unknown graph is
assumed to be drawn from a graphon. The main limitations of
such an approach are that the graphon is assumed to be known,
which may not be trivial in practice since it involves knowing
the distribution of the unknown graph, and moreover, that not
every graph may be represented as a graphon.

1053-587X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 26,2024 at 19:37:11 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-1208-8997
https://orcid.org/0000-0001-9031-6305
https://orcid.org/0000-0002-8408-9633
https://orcid.org/0000-0002-4642-7718
mailto:samuel.rey.escudero@urjc.es
mailto:antonio.garcia.marques@urjc.es
mailto:antonio.garcia.marques@urjc.es
mailto:mitch@rice.edu
mailto:segara@rice.edu

REY et al..: ENHANCED GRAPH-LEARNING SCHEMES DRIVEN BY SIMILAR DISTRIBUTIONS OF MOTIFS

In contrast with previous works, this paper proposes a novel
graph-learning algorithm that considers prior information about
the topology of the graph in a general yet informative way.
We lead with the assumption that a reference graph with a
density of motifs similar to that of the sought graph is known.
Note that access to such a reference graph is common in the
context of dynamic graphs, graph sampling, or multi-layered
graphs [29], [30]. Furthermore, reference graphs have been
successfully employed in, e.g., face recognition and genome
inference [31], [32]. In this work, to harness the information
encoded in the reference graph while avoiding the challenges
associated with the combinatorial nature of motifs, we reveal
a connection between the spectra of both graphs. Then, we
approach the graph learning task as an optimization problem
where we exploit the spectral similarity between the reference
and the sought graph as a constraint. Because the resulting
algorithm is derived from the density of motifs, it is local in
nature, which allows us to compare graphs of different sizes
(as described in further detail in later sections). Furthermore,
the proposed similarity constraints involve the empirical distri-
bution of the eigenvalues, which results in constraints that are
more informative than the ones considered in previous works.
To the best of our knowledge, this is the first graph learning
algorithm harnessing the density of motifs to capture prior
information about the graph topology.

After reviewing basic ideas in graph signal processing and
graph learning in Section II, the structure and main contribu-
tions of the paper are summarized next:

1. We relate the structural characteristics of a graph de-
scribed by the density of motifs to the graph spectrum
(Section III-A), and introduce the similarity constraints
to propose an optimization program for network topology
inference (Section III-B).

2. We analyze the non-convexity of the similarity con-
straints and introduce a convex relaxation based on
Majorization-Minimization techniques (Section IV).

3. We propose a convex computational efficient algorithm
and provide guarantees for its convergence (Section V).

Interesting generalizations of the considered graph learning
problem are discussed in Section VI, and then, the effective-
ness of the proposed approach is demonstrated in Section VII,
followed by brief concluding remarks.

II. PRELIMINARIES: GRAPHS, GSP AND GMRFs

We briefly introduce graph-related and GSP-related notation
and review the definition of GMRFs.

Graphs: Let G := (V, £) denote an undirected and weighted
graph with a set of nodes V and a set of edges £. The graph is
composed of |V| = N nodes and, for every i, j € V, we have
that (¢,7) € £ if and only if the nodes ¢ and j are directly
connected. The neighborhood of any node ¢ represents the set
of nodes that are connected to 4, i.e., N; := {j € V|(i,j) € £}.
The connectivity of G is captured in the sparse adjacency ma-
trix A € RVN with A;; =0 only if (i,j) ¢ £, and whose
entry A;; represents the weight of the edge between nodes
7 and j.
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Graph signals and GSP: Together with the graph G, we
consider signals defined on (associated with) ), the nodes of
G. Formally, a graph signal can be modeled as a function from
the vertex set to the real field x: ) — R or, equivalently, as
an N-dimensional vector x € R, with z; denoting the signal
value at node 7. The last key element in the GSP framework
is the so-called graph-shift operator (GSO), an N x N matrix
denoted as S [2]. The GSO, whose entries satisfy that S;; can be
non-zero only if i = j or (¢, j) € £, captures the topology of the
underlying graph G and can be understood as a topology-aware
local operator that can be applied to process graph signals.
Typical choices for the GSO include the adjacency matrix A,
the graph combinatorial Laplacian L := diag(A1) — A, and
its normalized variants [1], [2]. Note that diag(-) denotes the
diagonal operator that transforms a vector into a diagonal matrix
and 1 denotes the vector of all ones. Since G is undirected, it
follows that S is symmetric and it can be diagonalized as S =
VAV, where the orthonormal matrix V € RV >N collects the
eigenvectors of S, and the diagonal matrix A = diag(\) collects
the eigenvalues A€ R,

GMRF: A multivariate normal distribution is said to form
a GMRF with respect to a graph G = (V, ) if the edges not
present in £ correspond to zeros on the precision matrix (the
inverse covariance matrix). Upon selecting the GSO S as the
positive definite precision matrix, the previous definition im-
plies that if the random graph signal x follows a multivariate
normal distribution AV'(0, S~1), then x is a GMRF with respect
to S.

As a result, the probability density function (PDF) of a zero-
mean GMRF with GSO S is simply

fx(x:8) = (2m) N2 det(S) /% exp (—;XTSX> (D

The above expression will be critical to postulate an optimiza-
tion that learns (estimates) the GSO S (and, hence, the edge
set £) from nodal observations, a key question at the core of
Gaussian graphical models [13], [14], [33].

III. GRAPH LEARNING FROM MOTIF SIMILARITY

Suppose now that we have access to a collection of M graph
signals X =[xy, ...,xa]. Each of the M signals collects N
measurements (one per node) associated with the nodes of a
graph G that is not known. The graph learning problem aims
at using X € RV*M to estimate the GSO S € RV*Y and, as
a result, to identify the unknown edge set £ that connects the
nodes in the graph G. To render this problem tractable, we
consider two main assumptions:

o First, we assume that we have prior knowledge about the
local properties of the graph G and, in particular, on the
distribution of its motifs. More specifically, we consider
that a reference graph G with a density of motifs similar to
that of the unknown graph G is available. Understanding a
graph as a composition of motifs is particularly interesting
due to the local nature of motifs [34]. Intuitively, assuming
that two graphs have a similar density of motifs can be
interpreted as assuming that both graphs have common
“building blocks” or similar patterns.
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agl) QSQ) g
Fig. 1. Two rooted 1-balls a§1)7 agz) and a graph G. Each node of G is

colored to indicate if the rooted 1-ball centered at that node is isomorphic to
agl) (blue), 0452) (red), or neither (white). We observe that 71 (a51)7 g)= %

and 71 (a(12>,g) = %.

o The second assumption establishes a relation between the
(properties of the) observations in X and the underlying
graph G. In particular, we consider that the columns of X
are (independent) realizations of a GMRF with zero mean
and GSO S. While other models relating the graph signals
with the unknown supporting graph exist, we focus on
GMREF due to its flexibility, solid statistical foundations,
and wide adoption within the network science community.
Nonetheless, in Section VI we discuss how to generalize
our approach to models beyond GMRF.

The goal of this section is to formulate the motif-based
graph learning problem rigorously (Problem 1) and postulate
an associated constrained optimization problem that leverages
the information in X and the previous assumptions to generate
as solution the desired S. To that end, we need to describe in
more detail our approach to assess motif similarity (remainder
of this section and Section III-A) and then set a formulation
combining motif similarity with the GMRF topology estimation
framework (Section III-B). The first step is to describe the
structural properties of a graph G in terms of the density of
rooted balls, or motifs. A rooted graph is simply a graph with a
special labeled node, denoted by a tuple (G, p). If (G, p) is such
that each node in G is in the r-hop neighborhood of the root p,
we say that it is a rooted r-ball. For a given integer radius r > 0,
a graph G yields a family of rooted r-balls. For each node i € V,
consider the induced subgraph of the 7-hop neighborhood of <.
Then, treating 7 as the root, this yields a rooted r-ball “centered”
at ¢, which we denote as V,.(G, ).

Then, for a given motif «,., we define the rooted motif den-
sity as

(00, 6) = i =L N1 V(G ) ), @

where V.(G,4) 2 a, denotes isomorphism of rooted r-balls,
i.e., graph isomorphism with the extra condition that the roots
coincide. Simply put, the quantity 7,.(cv., G) measures the fre-
quency with which a specific motif «, appears in the graph
G by computing the proportion of rooted r-balls in G that are
isomorphic to a,.. We illustrate this in Fig. 1.

Based on (2), we can compare the similarity between two
graphs in terms of their motif densities. With this notation at
hand, we formalize the graph learning problem introduced at
the beginning of the section.

Problem 1: Let G be an unknown graph with node set V),
N =[V|and GSO S € RV*N Furthermore, i) let G be a refer-
ence graph with node set V, N = |V| and GSO S € RV*N and
i) let X € RV>*M be a set of M graph signals defined over G.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Our goal is to use X and G to find the underlying graph structure
encoded in S under the assumptions that:

(AS1a) Graphs G and C; have nodes with degree at most D.

(AS1b) Graphs G and C; present a similar density of motifs,
so that |Tr(047(«k), g)— n(a&’“), G)| < e for every k, with e being
a small positive number, r € (0, R], and {ou(nk) HE | being the set
of all (isomorphisms of) rooted r-balls inside the graph G.

(AS2) The columns of X are M independent realizations of
a GMRF with zero mean and GSO S [cf. (1)].

Examining the proposed motif-related assumptions, we note
that (ASla) ensures that there are finitely many possible
r-balls on a given graph, which will be used in the derivation
presented in the following section. On the other hand, (AS1b)
provides prior information about the density of motifs of the
sought graph based on a structurally similar reference graph.
From the definition of rooted motif density in (2), we can
observe that 7,.(c,., G) is an expectation of the frequency with
which the motif «,. appears in the graph G. Moreover, since this
expectation is computed locally at each node, (AS1b) endows
the inference problem with some interesting properties. First,
it allows us to compare graphs of different sizes, something
that was non-trivial in other works where the graph similarity
promoted graphs with similar supports [15], [28]. Also, note
that assuming that two graphs have similar densities of motifs
is a laxer requirement than assuming they have similar supports.
Second, we do not require to know the whole graph G since we
can approximate its associated motif density through a smaller
subgraph, so knowing a sampled version of G suffices.

Unfortunately, despite its attractive properties, the rooted
motif density is intrinsically a combinatorial metric that leads
to an NP-hard problem when directly incorporated into an op-
timization framework. In the next section, we present a way to
overcome this issue.

A. From Similar Densities of Motifs to Spectral Distributions

We are interested in finding an alternative approach to take
advantage of the graph similarity specified in (AS1b) without
falling into an NP-hard combinatorial problem. To that end, we
start by noting that, due to the nature of the GSO, the diagonal
entries of S” are strictly dictated by the r-balls centered at each
node. Furthermore, since tr(S™) = tr(A"), it seems evident that
the density of motifs is closely related to the eigenvalues of the
GSO, collected in the N x N diagonal matrix A = diag(\).
This suggests that the spectra of two graphs with similar den-
sities of motifs should be similar.

Motivated by the previous discussion, we encode the similar
density of motifs between two graphs by means of test functions
applied to the spectral distribution of the graphs. Let A € RV
denote the vector containing the eigenvalues of S, and denote
its associated empirical spectral density function as uy, with
tx(A;) quantifying the multiplicity of the ith eigenvalue nor-
malized by the number of nodes in S. Indeed, . is (formally)
a probability distribution on R. Then, for any continuous func-
tion, g : R — R compute the Lebesgue integral

1 N
BN = [IWdn =5 o0, @)
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where the last equality follows from S having a discrete spec-
trum. With these definitions in place, the following result shows
that if S and S have similar densities of motifs, then ¢, (\) and
cq(X) are close. i

Theorem 1: Let A € RY and A € RY denote the eigenvalues
of the GSOs of the graphs G and G. For any continuous test

function g, under (AS1a) and (AS1b), it follows that
leg(A) —

where ¢, (+) is given in (3), d. > 0 is a constant dependent only
on g, D, and € such that 6. —+0 as ¢ — 0, and 6, >0 is a
constant dependent only on g, D, and r such that §,. — 0 as
r — max{N, N}.

The proof of the theorem is provided in Appendix A. In a
nutshell, the proof shows that for any continuous test function
g, the quantity ¢, () can be approximated by the expected value
of some continuous function depending only on rooted r-balls.

Theorem 1 reduces the similarity of motif densities between
two graphs to a comparison of an appropriate test function
g applied to their empirical spectral densities. This cguantity
cg(A) is less expressive than the motif densities Tr(agk ,G) in
describing the structure of the graph, but it bypasses the com-
binatorial difficulties in computing the precise motif densities.
In the next section, we show that this trade-off is beneficial,
as it enables easy integration into network topology inference
methods. Moreover, it is worth mentioning that the connection
revealed in Theorem 1 can be leveraged in other graph-related
problems beyond the graph learning task considered here.

cg(N)| < 6. + 6, 4)

B. Graph Motif-Enhanced Optimization for GMRF Learning

Suppose for now that we ignore the assumptions (AS1a) and
(AS1b). Leveraging (AS2) and the PDF in (1), we have that
the likelihood of the joint observation of the M signals in X =
%1, x] i [TV, (20)~N/2 det(S) /2 exp (—1xT Sx,y,).
Upon adopting a maximum likelihood (ML) approach, ex-
ploiting the monotonicity of the log function, and using the
observations in X to build the empirical covariance matrix
C=54 M x,,x], the matrix S can be estimated as

msin tr(CS)—log det(S)
st: S»0, (5)

with the constraint S > 0 guaranteeing that the precision matrix
is positive semidefinite and that the logdet function in the
objective is well defined. In the context of GMRF, a widely
adopted approach is to augment the objective in (5) with a spar-
sity promoting regularizer A||S|1, giving rise to the celebrated
graphical lasso algorithm [13], [14], [33]. In the previous, A > 0
controls the level of sparsity and ||S||; denotes the ¢; norm
of the vectorization of the matrix S. On top of augmenting
the ML formulation with an ¢; norm, other graph learning
approaches incorporate topological conditions by considering
a set of feasible GSOs S and augmenting the formulation in
(5) with the constraint S € S [35], [36].

Hence, the key to our approach is to formulate a modi-
fied version of the ML estimation in (5) capable of exploiting
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the availability of the reference graph G and the results in
Theorem 1. More specifically, we encode the fact of G and Q
having similar densities of motifs by leveraging (4) and, as a
result, approach Problem 1 through the following non-convex
optimization program:

Juin, tr(CS) —log det(diag (X)) + «|S]|1

+ gus — Vdiag M)V ||%
stileg(A) —cg(A)| <6, S€S, VIV=L (6

Note that this alternative formulation for learning GMRFs is
amenable to constraints involving the spectrum of S. In addi-
tion, X is a known constant since it can be obtained from the
eigendecomposition of the reference graph cg(j\).

We refer to the first constraint in (6) as the similarity con-
straint because, as stated in Theorem 1, it stems from the as-
sumption that G and G have similar motif densities. Intuitively,
this constraint promotes desirable properties on the eigenvalues
of S by requiring that evaluating the empirical spectral dis-
tribution of S and S using a common test function g results
in a similar value. If we are interested in further reducing the
size of the feasible set, it is possible to simultaneously employ
several test functions {g, } ‘j]:1 resulting in the associated set of
functions {c,, }7_,. We can trivially modify the program in (6)
to include a similarity constraint for each function c,,. When
several constraints are included, we face a trade-off between
the improvement in the estimation of S and the additional com-
plexity of enlarging the set of constraints. In the remainder of
the paper, we assume that a single similarity constraint is used,
and leave the (optimal) combination of multiple constraints as
a future research direction.

The optimization framework introduced in (6) estimates sep-
arately the GSO S from its eigendecomposition Vdiag(A)V T,
including a Frobenius-norm penalty in the objective function
to encourage that S and Vdiag(A\)V T stay close. Dealing with
V and A as explicitly separated optimization variables allows
us to incorporate constraints involving the spectrum of the
graph. While this sacrifices convexity, the selected approach
is amenable to designing an efficient iterative algorithm, as
detailed in Section V. Consideration of graph eigenvalues as
explicit optimization variables in the context of graph learning
has been explored in, e.g., [8] and [17]. In [8], the eigenvectors
were considered to be given. Meanwhile, in [17], they consider
that S =1L and the (convex) spectral constraints are mainly
concerned with relatively simple conditions, such as bounding
the minimum and maximum value of non-zero elements in A or
selecting the number of connected components (number of zero
eigenvalues). In contrast, the similarity constraints considered
in this paper are more involved and lead to non-convex formula-
tions. Moreover, they stem from the assumption that two graphs
have similar motif densities. We explore these differences in
more detail through the numerical experiments presented in
Section VII.

Capturing more complex prior information about (the spec-
trum of) S comes at the cost of employing non-convex
constraints. However, since the optimization in (6) was already
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non-convex, it does not fundamentally change the complexity of
the problem. This is further discussed in the following section,
where a convex-approximation approach to handle the similar-
ity constraints is introduced.

IV. CONVEX RELAXATION FOR THE SIMILARITY
CONSTRAINTS

Solving the optimization problem introduced in (6) is a chal-
lenge due to its non-convexity, stemming from the bilinear
terms involving V and A, the orthogonality of V, and the
similarity constraint. The bilinear terms and the orthogonality
constraint can be dealt with by implementing an alternating
optimization scheme and leveraging results from optimization
over manifolds [37], respectively. However, dealing with the
similarity constraint requires further elaboration.

To analyze the curvature of the similarity constraint, we start
by noting that |c,(A) — ¢,(A)| < d is a composition of func-
tions, an operation that is non-convex in general [38]. We also
observe that the convexity of ¢, is determined by the convexity
of the test function g. Then, due to the presence of the absolute
value, the similarity constraint will only be convex when the
considered test function ¢ is affine.

According to the definition of the function ¢4 (-) provided in
(3), it follows that any affine function g(z) = ax + b with a,
b € R delimits the same feasible set independently of the values
of a and b. Thus, we select the affine function g(z) = x, which
results in the similarity constraint

1 N 1
— L [ _ <
¥ ; 1 N —Cl= ’Ntr(S) O’ s, (7)

where the constant C':= ¢, () encodes the value of the test
function evaluated over the known reference graph. A closer
inspection reveals that, when C' =1 and § = 0, (7) is equivalent
to tr(S) = N, a common constraint used to fix the scale of
the GSO when learning the graph topology [21]. That is to
say, the constraint tr(S) = N represents a particular case of the
similarity constraints put forth in this paper. Moreover, using
(7) as a constraint incorporates information about the true scale
of the graph, avoiding the scale ambiguity inherent to most
network topology inference approaches. Indeed, we observe in
Section VII that this general approach reduces the scale ambi-
guity of the estimated GSO.

Nonetheless, using a linear test function might not be enough
to capture more complex relations between the spectral distri-
butions of S and S. We tackle this issue below by discussing
a convex alternative to leverage more general classes of test
functions.

A. Convex Relaxation for Convex or Concave Test Functions

Since our goal is to develop a convex relaxation for the simi-
larity constraint defined in (4), we can focus on either convex or
concave test functions g without loss of generality. Therefore,
we start our discussion by proposing a convex relaxation under
the assumption that g is concave.

We already discussed that the similarity constraint |c,(X) —
cg(i)\ < 0 is non-convex due to the composition of the abso-

lute value and the function c,(X) — ¢4 (). Then, the first step

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

towards obtaining a convex surrogate consists of decomposing
the similarity constraint into the inequalities

cg(A) S cg(N) +6 cg(X) = ¢g(A) =45, (8)

where the left and the right constraints are respectively concave
and convex due to the concavity of g.

The pair of constraints in (8) determines a feasible set equiv-
alent to the one determined by our original similarity constraint
based on the composition of functions. Hence, we replace the
optimization problem in (6) with its equivalent form

Juin, tr(CS) —log det(diag (X)) + «/||S]1

B .
+5lI8 - Vdiag(A) V|7 +7¢4(N)
sticg(A)>c,(A) =8, SeS, VIV=L )

Here, the key difference is that we kept the convex inequality
from (8) as a constraint while the concave inequality is used to
augment the objective function. Note that, from the perspective
of duality theory, any constraint can be equivalently expressed
as a regularization term in the objective function with a non-
negative parameter (here denoted as ) playing the role of the
dual variable.

Even though the objective function of (9) is still non-convex
due to the presence of convex and concave terms, now the
optimization problem can be efficiently solved by an MM ap-
proach [39]. Based on the MM framework, we consider an
iterative linear upper bound to the function c4(\) leading to a
convex iterative algorithm that approximates the similarity con-
straint. Because c4(\) is concave, a suitable upper bound is
provided by

u(AAED) = Ve, (AT (10)

which is the first-order approximation of the Taylor series of ¢,
centered at the solution of the previous iteration A(*~1). Note
that we have omitted the terms that do not involve the variable
A since they are constants in the optimization problem.

Intuitively, the original non-convex similarity constraint
leg(A) = ¢4(A)| < & ensured that

cg(A) € [cg(X) = 6, cg(N) + ] (11)

for any feasible A. Now, with the proposed convex relaxation
based on the MM algorithm, the feasible set is modified as
follows. First, the convex constraint c,(X) — ¢y(X) > 4 in (9)
ensures that

cg(X) € [eg(X) = 6, 0]. (12)

Then, successively minimizing the upper bound u(X, A(*=1))

brings the value of ¢,(A) closer to ¢,(A) — &, the minimum
value inside the feasible set. Thus, the value of «y is chosen to
promote that cg(j\) is inside the interval defined in (11). This
process can be interpreted as starting with a loose constraint
for the maximum value of c,(\) that gets tightened as the
iterative algorithm converges. All the details about the specific
implementation of the convex iterative algorithm that solves (9)

are provided in Section V.
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The last step is to discuss the formulation for convex func-
tions g, which lead to a convex c4(A). Using an approach
analogous to that for the concave case, from the two constraints
in (8), we incorporate the convex one into the graph-related
optimization. This entails replacing c,(X) > ¢y(X) — & with
cg(A) < ¢y(A) + 6 in (9). Additionally, since for the convex
case we are interested in maximizing cq (), we replace ycg ()
with —vy¢g(A) in the objective of (9) and employ an MM ap-
proach to minimize a linear upper bound of —yg(\).

To summarize, following an MM approach, we obtain a
convex relaxation for the similarity constraint for every test
function ¢ that is differentiable and either convex or concave.
Next, we present the specific iterative algorithm that simulta-
neously deals with the MM relaxation, the bilinear terms, and
the orthogonality constraints.

V. ALGORITHMIC IMPLEMENTATION

We solve the network topology inference task presented in
Problem 1 by developing an iterative algorithm that solves (9).
To that end, we combine an alternating optimization approach
that decouples the bilinear terms involving A and V via MM
while incorporating the convex relaxation of the similarity con-
straint. The resulting algorithm falls into the family of Block
Successive Upper bound Minimization (BSUM) [40]. This class
of algorithms blend techniques from MM and alternating opti-
mization, and they converge to a stationary point under mild
conditions.

Our proposed BSUM algorithm solves (9) by updating the
optimization variables S, V, and X in three separated steps. At
each step, we optimize over one of the optimization variables
while the rest remain fixed, procuring simpler problems that
can be solved efficiently. Then, for a maximum number of 7'
iterations, the following steps are computed at each iteration
t=0,1,...,T.

Step 1. The first step estimates the block of variables rep-
resented by S while the rest remain fixed. This results in the
convex optimization problem given by

S — argmin tr(CS)+al[S||y —|—§|\S—V(t)A(t)V(’5)T %
S

st:Ses, (13)
where A®) = diag(A(")). The resulting problem is a combi-
nation of linear and (convex) quadratic terms, that can be
handled by a number of projected algorithms. First, let H be
a matrix of signed ones matching the sign of the entries of
S such that ||S||; = tr(SH), and hence, tr(CS) + «||S|; =
tr(KS), where K = C + H. Also, define the linear operator
S:se Rf(N_l)/z — 8s € RVXN that maps the vector s into
the matrix S = Ss satisfying the constraints in S, and denote
the adjoint linear operator of S as S*: Y € RV*YN — §*Y ¢
RNN=1)/2 Then, we efficiently approximate (13) by solving

1
S(t+1) _ (Sm _

+
||s|%(8*(8s“>>—z>> . (14)
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Algorithm 1: Graph learning from similarity con-
straints.

Input: C, ¢, ()

Output: S.
1 Initialize S(©, 50 X\(0) ang V()
2 fort=1to T do

3 Set st as in (14).

4 | StHD = gglt+1),

5 | Set V(1) a5 the eigenvectors of S(+1),
6 Set A1) as the solution to (17).

7 end

s S=8D

where z=8*VUOAONVDO' — 3-1K), (a)* = max(a,0),
and ||S||2 denotes the operator norm. Finally, we update S(*+1)
as S+ = Ss(t+1),

The derivation of the solution presented in (14) from the ini-
tial problem (13) is provided in Appendix B for completeness.

Step 2. The second step estimates the block of variables V
while the others remain fixed. Ignoring the constant terms, the
resulting optimization problem is given by

V) = argmin gus““) —~VAOVT|2
A\

st:VIv=l, (15)
which can be equivalently rewritten as
VD — argmax tr(VISEHDVAWD)
st:VIV=L (16)

We note that the orthogonality constraint implies that the
optimization variables V belong to the Stiefel manifold. This
is a well-known optimization problem and, as explained in [37,
Chapter 4.8], it follows that the solution to (16) is setting V (*+1)
to the eigenvectors of S(+1)

Step 3. The last step estimates the block of variables A while
the others remain fixed. The resulting optimization problem
after ignoring the constant terms can be compactly written as

N
A0HY — argmin — Z log(A;) + é”)\ — A2 4+ yuX, AM)
A 2

j=1

s.t:cg(A) >cg(X) =6, (17)

where u(X, A(!)) denotes the linear majorization of c,(X) at
A, and the vector A collects the elements on the diagonal
of VDT §(t+1) v (t+1) which are the eigenvalues of S+,
Recall that combining the inequality constraint and the mini-
mization of the upper bound u(\, )\(t)) incorporates the prior
information about the distribution of the graph spectrum. More-
over, (17) assumes that the test function g is concave, but, as
explained in Section IV, the formulation can be easily modified
to account for a convex g¢.

The overall procedure is summarized in Algorithm 1. An-
alyzing its computational complexity, we observe that Step 1
requires a moderate number of operations while the complexity
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of Step 2 is O(IN?) because it computes the eigendecomposi-
tion of S. Regarding Step 3, directly solving the optimization
problem in (17) would result in a computational complexity of
O(N??). However, because the problem is strictly convex and
separable for each optimization variable J)j, it can be solved
efficiently, resulting in a much smaller computational complex-
ity. As a result, the most expensive operation in practice is the
eigendecomposition performed in the second step, and hence,
the complexity of the overall algorithm is O(IN?). We stress that
this is considerably efficient since learning the graph topology
involves O(N?) variables. Furthermore, recall that the original
setting in Problem 1 involves comparing the density of motifs
of two graphs, which is a challenging NP-hard combinatorial
problem. Then, regarding the number of iterations, we observed
that small values of 7" are enough for the solution to converge.
This is further studied in Fig. 4.

Another key aspect of the proposed BSUM algorithm is its
convergence to a stationary point, which is formally stated in
the following proposition.

Proposition 1: Let Y* denote the set of stationary points of
(9). Then, the sequence (S®), V() A1) generated by Algo-
rithm 1 converges to a stationary point in YV* as t — oc.

To prove the convergence of our algorithm, we leverage
the results in [40] and [41]. To be more specific, conditions
under which BSUM algorithms converge to a stationary point
were identified in [40, Th. 1b]. However, the original result
in [40] did not consider formulations with non-convex con-
straints, and this is relevant in our setup because the optimiza-
tion problem in Step 2 includes the non-convex orthogonal-
ity constraint V"'V = I. Fortunately, in the context of tensor
decompositions, [41] proved that the sequence generated by
BSUM algorithms still converges when considering orthogo-
nality constraints like the one in Step 2. As a result, leveraging
[41], we can prove the claim in Proposition 1 by showing that
our problem satisfies the original conditions identified in [40,
Th. 1b]. To be precise, upon denoting the objective function
in (9) as ¢(S,V,A), we have that: (i) the objective func-
tions in (13), (16), and (17) are upper bounds of (S, V, A)!;
(i) the level set {(S, V, A) |4(S, V, ) < ¢(S(@, V(O AO)1
is compact; (iii) the optimization problems in Step 1 and
Step 3 are strictly convex; and (iv) the non-smooth components
of ¢(S,V, ) only involve the variables in S. As a result, the
conditions specified in [40, Th. 1b] are met and, invoking [40,
Th. 1b] and [41], it follows that the solution of our algorithm
converges to a stationary point.

VI. BEYOND GMRFs

To simplify exposition and promote clarity, our discussion
has been focused on addressing the motif-similarity graph-
learning design for the conditions outlined in Problem 1. How-
ever, as pointed out at different points of the manuscript, our
approach can be used under more general circumstances than

ITo be rigorous, when stating that the objective functions of the steps 1, 2
and 3 are upper bounds of ¢(S, V,A) we are also considering the constant
terms omitted in the optimization problems (13), (16), and (17).
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those considered so far, including non-Gaussian graphical mod-
els. Three generalizations particularly appealing are: (i) having
access to more than one reference graph G,; (i) having access
to the actual spectral density function as z in lieu of G: and (iii)
considering more general models than a GMREF to represent the
relation between the signals X and the GSO S. Next, we briefly
discuss the modifications to the optimization in (9) required to
account for these generalizations.

Starting with the first generalization, let us suppose that
we have access to R reference graphs, denoted as {Qr}le.
Assuming that the sought graph G is similar to the graphs
in { g}}{i;l requires only considering the set of constraints
[cf. (8)]

cg(A) < cg(Ar) + 6y cg(A) = ¢g(Ar) = 6p, (18)
for all 7. Here, A, denotes the eigenvalues of the r-th reference
graph and the value of §,. can be selected based on prior infor-
mation on the similarity between G and C;T. If such information
does not exist, then d,. is set to ¢ for all ». Moreover, while all the
constraints in (18) can be incorporated into (9), a more prudent
approach is to identify first the most restrictive ones and then
augment the constraints (objective) of (9) only with those.

We might encounter several reference graphs with similar
densities of motifs if, e.g., they are samples drawn from a
common random graph model. This leads us to the second
generalization, which consists in having access to the desired
(true) spectral density function p associated with the random
graph model at hand. With an eye on real-world applications,
the paper has mostly focused on the case where the prior in-
formation on the distribution of motifs comes from a reference
graph G and its empirical spectral density function. However,
there may be cases where the actual spectral density function
ux is known or, alternatively, where promoting some desired
properties over the spectral density is of interest. The key to
designing graph-learning algorithms that handle the knowledge
of ux efficiently is to leverage (3), which relates the evalu-
ation of the test functions over the ensemble and the sample
distribution. More specifically, it suffices with replacing the
sample estimate cg(S\) in constraint (8) with the ensemble esti-
mate [ g(\) dux(\) computed based on jux, with no additional
changes being required in the optimization.

The third generalization deals with more encompassing mod-
els to represent the relation between the observed signals and
the sought graph. A meaningful and tractable alternative is to
consider that the signals are Gaussian and graph stationary [42],
[43]. Basically, a zero-mean random graph signal x is said to
be stationary in a GSO S if its covariance matrix C, = E[xx’]
can be written as a polynomial of S [43]. Clearly, GMRFs are
a particular instance of graph stationary models, since we have
that C, = S™'. As aresult, graph stationarity has been recently
used in a number of graph-learning-related problems [8], [23],
[44]. For the setup at hand, considering that the signals are both
Gaussian and graph stationary implies that the eigenvectors of
S and those of the precision matrix ® € RV*Y are the same
and, as a result, that the product S® is the same as the product
©S. Then, a tractable way to adapt our formulation in (9) to
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deal with stationary GMREF signals is to consider the constraint
S® = OS, which results in the following optimization problem

e,Ig’l\I,l)\tr(C@) —log det(®) + «||S||1

B ,
+5lIS - Vdiag(A\) V|7 +5¢5(A)

sticgA)>c,(A) =0, SeS, VIV=I,

©S =S06. (19)

Intuitively, rather than promoting a sparse precision matrix such
that ® =S, (19) learns a precision matrix @ that is a polyno-
mial of the sparse GSO. This less restrictive assumption results
in a more flexible graph-learning algorithm capable of handling
a larger range of scenarios. Even though the resulting opti-
mization problem is non-convex, it is amenable to an iterative
approach similar to the one presented in Section V, but with an
additional step for estimating the new optimization variable ©.

VII. NUMERICAL RESULTS

We now present numerical experiments to gain intuition
about the proposed graph-learning algorithm and to assess its
performance. We consider different test functions and compare
the results achieved with popular graph-learning algorithms
over a range of scenarios. The code implementing the proposed
algorithm and the experiments is available on GitHub?.

Upon proper selection of the test functions, the method pro-
posed in this paper is robust to the graph scale ambiguity.
Since, in general, this is not the case for most graph-learning
algorithms, to provide a fairer comparison, we set the true
GSO S* and its estimate S to have unit Frobenius norm before
computing the error. The resulting error metric is given by
N 2

S S*
ISll»

err(S,S*) = (20)

1S*I[7 || ,.
In addition, in the numerical experiments, we focus on esti-
mating the combinatorial Laplacian L, so we solve the opti-
mization problem in (9) by setting the set of feasible GSOs
toL:={L;; <0fori#j; L=LT; L1=0}. While our algo-
rithms work for any type of GSO, most of the literature focuses
on learning Laplacians, so setting S = Li here facilitates the
comparisons with the state of the art.

A. Proposed Test Functions

The test functions g are at the core of the similarity con-
straints proposed in this paper. Hence, before presenting the
numerical results, we provide the different test functions con-
sidered in the experiments and the associated upper bounds.

Linear test function. Considering g(z) = z results in the
similarity constraint (7). Since it involves the tr(S), we denote it
as “Tr” in the experiments. This function renders the similarity
constraint convex, so no upper bound is required.

Heat Kkernel test function. Setting g(z)=e~* results
in a convex function ¢, with an associated upper bound

Zhttps://github.com/reysam93/motif_nti
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(XA =1 Zf\il Ase=>""" This is denoted as “Heat”
in the experiments.

Square root test function. Setting g(z)=/x results
in a concave function ¢, with an associated upper bound
u(A,A)) = A vazl ﬁ This is denoted as “Sqrt” in the
experiments. '

Quadratic test function. Setting g(x) = 22 results in a con-
vex function ¢, with an associated upper bound u(X, A"V =
-2 fvzl /\Z(-tfl))\i. This is denoted as “Sq” in the experiments.

Band-rejection test function. Setting g(x) = (z — 1.5)2/4
results in a convex function ¢, with an associated upper bound
given by u(A, A1) = L3N (0.75 — 0.5 V). This
test function concentrates around small and large values of A,
resembling a band-rejection filter. This is denoted as “BR” in
the experiments.

B. Results on Synthetic Graphs

By using synthetic data, we can test the algorithms in a wider
range of settings, facilitating getting insights. In the following
experiments, the graph signals X =[xy, ..., x| are sampled
from a GMRF where the covariance matrix is given by the
pseudo-inverse of the true Laplacian denoted as (L*)f. The
reported error corresponds to the mean error averaged across
100 realizations of random graphs and graph signals.

Test case 1. The first experiment probes how the test func-
tions in Section VII-A influence the spectrum of the estimated
graphs. We generate the target graph G and the reference graph
G as two lattice graphs with 4 neighbors and N =200 and
N =150 nodes, respectively. The histograms of their eigen-
values A and X are depicted in Fig. 2(a) and 2(b), where we
can observe that the spectra of both graphs are clearly similar.
Then, the remaining panels show the spectrum of the estimated
GSOs, A, obtained following Algorithm 1 when no similarity
constraint is employed (Fig. 2(c)), as well as for the different
test functions. It can be seen that employing any of the se-
lected similarity constraints renders the empirical distribution
of A closer to the ground truth than not using any constraint.
It is also worth noting that “Heat” and “Sqrt” test functions
(Fig. 2(e) and 2(f)) properly capture the distribution of low-
valued eigenvalues but struggle with high-valued eigenvalues,
resulting in longer tails. On the other hand, “BR” and “Sq” test
functions (Fig. 2(g) and 2(h)) are better suited for capturing
the shape of the distribution associated with medium and large
eigenvalues, but are less precise with the smaller ones. This in-
teresting behavior could help in designing specific test functions
that efficiently capture the shape of the spectral distribution
of the graph, a worth-looking problem that is considered as a
future research direction.

In addition to visually comparing the spectral distribution of
the estimated graphs, Fig. 3(a) shows the error of the estimated
eigenvalues as the number of signal observations M increases.
The error is measured as err()A\7 A*), where the Frobenius norm
is replaced by the ¢ norm of the vectors. Once again, we ob-
serve that the worst performance is obtained when no similarity
constraint is used (“Unc” in the legend), clearly illustrating the
benefit of accounting for the similarity of G and ,C'; based on their
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Fig. 2. Histograms representing the empirical spectral distribution of different Laplacian matrices. (a) and (b) Histograms of the true Laplacian L* and the

reference Laplacian L. (c) Histogram of the estimated L when no similarity constraint is used, and (d)—(h) histogram of L when the considered constraints

are linear, heat kernel, square root, band-rejection, and quadratic, respectively.
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Fig. 3. Mean error of the estimated GSOs when using synthetic data and different types of graphs. (a) G and G are generated as lattice graphs with 4

neighbors per node; (b) G and Q~ are sampled from a small world model; (c¢) G and Q~ are sampled from an SBM model. All figures show errors averaged

over 100 realizations of graphs and signals.

local structures. Furthermore, we observe that the quadratic
(“Sq”) and band-rejection (“BR”) test functions consistently
outperform the linear constraint (“Tr””). This supports our previ-
ous hypothesis that more sophisticated test functions are more
capable of capturing the relationship between the reference and
the sought graph.

Test case 2. We continue by evaluating the error of the
estimated S when graphs are sampled from the small world
(SW) random graph model [45] as edge density increases. True
GSOs S* have N = 100 nodes while the reference graphs have
N = 150 nodes. In both cases, the number of neighbors of each
node increases as reflected in the x-axis of Fig. 3(b). The edge
rewiring probability is 0.1, and the number of observations
is M =1,000. The results illustrated in Fig. 3(b) compare
the performance of our proposed approach with that of the
following baselines: (i) “Pinv”’, which considers the naive
solution given by the pseudo-inverse of the sample covariance
matrix C; (i) “GLasso”, which estimates S by means of
the graphical Lasso algorithm [14]; and (iii) “Tr=N",
which solves problem (6) replacing the similarity const-
raint by the fixed constraint tr(S) = N employed in [21]. Our
graph-learning algorithm based on similar motif densities is

denoted as “MGL” followed by an additional label indicating
the similarity constraint considered. Looking at the results,
we observe that the proposed MGL approach outperforms
the other baselines independently of the selected similarity
constraint. Of special interest is the comparison between
“Tr=N" and “MGL-Tr” since the two constraints are intimately
related, as discussed in Section IV. The results show that
“MGL-Tr” clearly outperforms “Tr=N”, which was expected
because the first case employs information about the true
value of the tr(S). Moreover, since the experiments are
conducted with S =L, the value of tr(S) represents the sum
of the degrees across nodes, so the trace constraint can be
interpreted as approximately fixing the value of ||S||; to its true
value.

Test case 3. This experiment evaluates the robustness of the
similarity constraints to discrepancies between G and G . Fur-
thermore, we compare the performance of the proposed method
with the spectral graph learning (SGL) algorithm in [17], which
yields state-of-the-art performance when dealing with graphs
with multiple connected components. We draw the true S* from
a stochastic block model (SBM) [46] with K = 5 communities
and edge probabilities of p = 0.3 and ¢ =0 for nodes within
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Fig. 4. Evaluation of the MGL algorithm in different settings. (a) and (b) Report the running time and the error of S as the size of SW graphs increases.

(c) Compares the performance of the MGL algorithm as described in Algorithm 1 and the alternative model introduced in (19) when the precision matrix of
the GMREF is a polynomial of the GSO. Signals are sampled from a GMRF distribution and the reported error is the average over 100 realizations.

the same community and nodes of different communities. That
is, the SBM graphs have 5 separate connected components, a
setting for which the SGL algorithm is tailored. On the other
hand, the reference GSO S is drawn from an SBM with 150
nodes and the same values of p and K, but the value of ¢ in-
creases progressively as indicated in the x-axis of Fig. 3(c). The
number of samples is M = 1,000 independently of the number
of nodes and, as indicated in the legend, we consider the error
of the estimated S for graphs with 100 and 150 nodes. In other
words, larger values in the x-axis imply that the discrepancy
between S and S* increases. Also, note that the error lines
associated with the SGL algorithm remain constant since they
do not depend on the reference graph.

A first look at the results from Fig. 3(c) reveals that our MGL
algorithm is surprisingly robust to the proposed perturbation
on the reference graph. The error remains below 0.1 even for
values of ¢ that are comparable to the values of p. Indeed, this
phenomenon suggests that the similarity constraints are captur-
ing information about the spectrum that goes beyond unveiling
the number of zero eigenvalues. Next, focusing on the graphs
with 100 nodes (solid lines), the best performance is achieved
by the SGL algorithm. This was expected since the spectral
constraints of SGL exactly capture the number of disconnected
communities. More illuminating are the results of graphs with
150 nodes (dashed lines), where it can be observed that the
MGL outperforms the SGL algorithm for the two selected sim-
ilarity constraints. This change of behavior is caused because
the error of SGL increases with the number of nodes, while the
error of the MGL decreases as the graph grows. We stress that
this behavior is counter-intuitive because the number of samples
remains constant independently of the number of nodes, and
hence, a higher NV should carry a higher error. Nonetheless, the
rationale behind this result is as follows. The functions c4(\)
described in (3) may be interpreted as estimating the expecta-
tion of some test function g across all the nodes of the graph,
and hence, as the number of nodes increases the estimation
of this expectations improves. As a result, the similarity con-
straint carries more information when the graph has N = 150
nodes, compensating the additional error derived from estimat-
ing a larger number of edges, and hence resulting in a better
estimate. Finally, note that information about the number of

zero eigenvalues can be incorporated into our proposed model
seamlessly.

Test case 4. The next experiment assesses the performance
of the MGL algorithm with moderately large graphs. Fig. 4(a)
and 4(b) respectively shows the running time and the error of the
estimated GSO as the number of nodes increases. We consider
SW graphs with either k¥ =4 or k£ = 10 neighbors and fix the
number of observed signals to M = 10*. First, Fig. 4(a) shows
that the proposed algorithm takes between 20 and 120 seconds
(considering T'=5 or T'= 50 iterations) to estimate graphs
with 10% nodes, which is a reasonable running time. Then, in
Fig. 4(b), we observe that the error is consistently below 0.1,
showcasing that small values of 7" are enough to obtain a valid
estimate. More interestingly, focusing on the error of the setting
“T'=50, k=4, we observe that the quality of the estimated
GSO barely degrades when N increases if 1" is large enough.
This is aligned with the results from Test case 3, and it shows
that the similarity constraint carries more information when
graphs are larger.

Test case S. The last experiment involving synthetic graphs
investigates the benefits of considering a more general model
for the graph signals. To that end, we sample the graph signals
from a zero-mean multivariate Gaussian distribution whose co-
variance matrix is given by a polynomial of the GSO (in contrast
with previous experiments, where the covariance matrix was
the inverse of the GSO). The reference and the target graphs
are lattice graphs with 4 neighbors, and 50 and 20 nodes,
respectively. Then, Fig. 4(c), compares the performance of
Algorithm 1, which assumes that the covariance of the observed
signals is S™!, with the model introduced in (19) (“Pol” in
the legend), which assumes that the covariance is a polynomial
of S. As expected, we observe that Algorithm 1 has a worse
performance because the observed signals do not comply with
the assumed model. In contrast, the better performance of the
“Pol” model showcases the potential benefits of considering
more lenient assumptions.

C. Results on Real-World Graphs

We close the numerical experiments by validating our pro-
posed algorithm over two datasets with real-world graphs.
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Fig. 5.  Error of the estimated GSO using the graphs from the Ljubljana

student network dataset. Different baselines are considered and signals are
sampled from a GMREF distribution.

Student network dataset. In this experiment, we consider
two graphs with 32 nodes from the Ljubljana student network
dataset’. In these graphs, nodes represent students from the
University of Ljubljana, and the edges of the different net-
works capture different types of interactions among the stu-
dents. Because the same students (nodes) are represented across
both selected networks, it is expected that the topology of the
graphs will be related, allowing us to further assess the value
of the method in this paper. This dataset does not contain
graph signals, which are created as a GMRF using (L*)' as
the covariance. The combination of real graphs and synthetic
data brings us the opportunity of evaluating the performance
of the MGL algorithm on real graphs while ensuring that the
observed signals comply with the assumed model.

The results are depicted in Fig. 5, where we can observe
the error of the estimated graph L as the number of samples
increases (represented in the x-axis). It can be seen that the
MGL based on the band-rejection test function (“MGL-BR”)
consistently outperforms the other alternatives. We also note
that, for the first values of the number of samples, using the
fixed constraint tr(S) = N renders a smaller error than using
the graph similarity constraint based on the linear test func-
tion (“MGL-Tr”). This contrast with the behavior previously
observed can be explained because the number of nodes is small
(N = 32), and hence, as commented in Test case 3, the benefit
of the similarity constraints is more limited. Nonetheless, as the
number of samples increases, the performance of “MGL-Tr”
quickly surpasses that of “Tr=N". We also observe that, for the
largest values of M, the errors of “SGL”, “Unc”, and “MGL-
Tr”, seem to converge to the same value. We recall that the
“Unc” model is a particular implementation of the Laplacian
estimation proposed in [16].

Senate votes dataset. Lastly, we consider a dataset contain-
ing the roll-call votes of the U.S. Senate [47]. As done in [26],
we represent the congresses as networks with 50 nodes (one per
U.S. state) that encode the ideological representation of each
state. Signals X1, ..., Xy correspond to the votes on different
laws and proposals. When voting on a proposal (say the m-th
one), we codify the vote of each senator as 1 for a yea, —1 for a

3The original data can be found at http://vladowiki.fmf.uni-1j.si/doku.php?
id=pajek:data:pajek:students
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Fig. 6. Error estimating the GSO from the roll-call votes of the U.S.
congress dataset. Signals are randomly sampled among all signals, and the
error is the average over 100 realizations.

nay, and O for abstention. We then obtain the value of x,,, for the
i-th node as the sum of the votes of the two senators representing
the ¢-th U.S. state, and repeat this process for z =1, ..., 50. The
resultant graph signals are categorical and, thus, do not follow
the assumption of being sampled from a GMRF. As a result,
this experiment will help to illustrate that the MGL algorithm
may be employed even when the observed graph signals do not
follow a Gaussian distribution.

Modeling the dataset at hand as a dynamic graph, we set
the graph corresponding to the 114th congress (years 2015 and
2016) as the known reference graph G, and our goal is to esti-
mate G, the graph corresponding to the 115th congress (years
2017 and 2018). It is worth mentioning that the MGL algorithm
is not employing specific information about the number of non-
zero eigenvalues. We have access to 499 and 591 observed
signals for each of the graphs. Since there are no evident
ground-truth graphs, we consider as the true underlying graphs
those inferred using the unconstrained solution of problem (6)
when all the signals are available. The error of the estimated L
is reported in Fig. 6, where the x-axis denotes the M observed
signals considered. For low values of M, the “MGL-BR” and
“MGL-Heat” outperform the alternatives, even though “Unc” is
the algorithm used to generate the ground-truth graph. More-
over, in additional experiments, we observe that considering
the median error instead of the mean, the heat test function
outperforms the band-rejection test function. Recalling that the
heat test function learns small eigenvalues better than the larger
ones, the superior performance of the heat test function suggests
that in these networks the small eigenvalues play a more funda-
mental role than in previous settings. On the other hand, as M
increases, the error of the different models converges towards
the same value, except for “Tr=N"" and “MGL-Tr”, showing that
the trace-based constraints struggle to capture the topological
properties of this graph.

To further assess the performance of the proposed algo-
rithm, we employ the estimated graphs to predict the node
labels via spectral graph clustering. The results are portrayed in
Fig. 7, where we compare the topology and the labels of the
true graph (Fig. 7(a)) with the estimates obtained with different
graph learning algorithms. The labels (colors) of the nodes rep-
resent the ideological representation of each state with red, blue,
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(e) MGL-Heat, 150 samples.

(f) MGL-BR, 150 samples.

Fig. 7.

(g) SGL, 150 samples. (h) Unc, 150 samples.

Representation of the senate network for the 115th congress. (a) Shows the true graph, (b)—(d) show the estimates obtained with “MGL-BR”, “SGL”

and “Unc” algorithms when 100 samples are available, while (e)—(h) show the estimates obtained with “MGL-Heat”, “MGL-BR”, “SGL”, and “Unc” when
150 samples are available. The color of the nodes in (a) represents the true node labels, and the colors from (b)—(h) represent the node labels estimated
through a spectral graph clustering algorithm considering the graph estimated with each method.

and yellow nodes corresponding to states with two Republican
senators, two Democratic senators, and senators from different
parties, respectively. When only 100 samples are employed,
we observe that using the “MGL-BR” algorithm (Fig. 7(b)) is
the alternative that correctly predicts more labels, obtaining an
accuracy of 0.9. In contrast, most of the nodes show the same
label in the “Unc” solution (Fig. 7(d)), and the “SGL” solution
(Fig. 7(c)) misses most of the yellow nodes, resulting in
accuracies of 0.4 and 0.66, respectively. When 150 signals
are employed, it can be seen that the estimate “MGL-Heat”
(Fig. 7(e)) is the alternative that learns more labels while main-
taining a single connected component. The resulting accuracy
is 0.96, which is also the accuracy obtained when the ground
truth graph is employed. Similarly, the “MGL-BR” estimate
with 150 samples (Fig. 7(f)) also achieves an accuracy of 0.96,
but it segregates the nodes in three connected components,
which is useful in this context of node clustering but might be
undesirable in other applications. Finally, the “SGL” and “Unc”
alternatives have an accuracy of 0.58 and 0.68.

VIII. CONCLUSION

In this paper, we faced the relevant problem of learning the
topology of a graph from a set of GMRF nodal observations.
The novel framework proposed herein departs from the max-
imum likelihood estimator of the sought graph G and then
exploits the assumption that the motif density of a known graph
Q is similar to that of G. Indeed, comparing the density of
motifs of two graphs is a non-trivial combinatorial task that
we addressed by leveraging a relation between the distribution
of the spectra of both graphs. More precisely, we showed that,
when two graphs have similar motif densities, evaluating a con-
tinuous test function over their respective empirical distribution

of eigenvalues renders a similar value. This observation was ex-
ploited as a constraint in an optimization problem. The resulting
similarity constraints were non-convex for most test functions,
so we also developed a convex relaxation by proposing an
efficient iterative algorithm capable of handling any differen-
tiable convex or concave test function. The proposed algorithm
blends techniques from MM algorithms and alternating opti-
mization, it is guaranteed to converge to a stationary point, and
its computational complexity is cubic in the number of nodes.
Then, we evaluated the proposed algorithm through different
numerical experiments involving synthetic and real-world data,
where we assessed the influence of several test functions and
showed that the proposed algorithm outperforms other popular
alternatives. Finally, relying on information about the density of
motifs is a promising approach that can be extended to a gamut
of applications, a task considered as a future research direction.

APPENDIX A
PROOF OF THEOREM 1

Let S and S denote the GSOs of G and Q, and let A € RN
and A € RV denote their respective eigenvalues. From (AS1a),
it follows that A; is contained in a bounded interval of R for
every i, so the spectrum of S has compact support. The same
holds for S. Denote the union of the supports of both empirical
spectral densities by A. According to the Stone-Weierstrass
theorem [48], any continuous function defined over a compact
domain can be approximated arbitrarily and uniformly well by
polynomials. That is to say, there is some polynomial of degree
r, which we denote by g,., such that for all A € A, it holds
that [g(\) — g,-(\)| < 9y for some §; > 0. Moreover, §; — 0 as
r — 00. One can then see that

[¢g(A) = ¢4, (N)] < 61, 2D
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with the same bound holding for A.

Let {agk) K:1 be an enumeration of all isomorphism classes
of rooted r-balls whose underlying graph satisfies (AS1a). De-
fine the function i on these rooted r-balls so that for each ai’“),
h(« (k)) yields the diagonal entry at the root of the polynomial
g, applied to the GSO of o (!)_Since there are only finitely many
such rooted r-balls, the magnitude of h is bounded by some
constant C' > 0.

Let p be a node in G. Then, if the rooted ball V,.(G, p) is
isomorphic to aﬁk) for some k, we have that

[9-(8)ii = h(a®) = L(V,.(G, p)).

Since G satisfies (AS1a), every rooted r-ball V,.(G, p) satisfies
(AS1a), so that we can write

| X
Cg.(A) = N Z h(V:(G,
i=1

with a similar equality holding for cg(j\) and G. By (AS1b), we
have

(22)

K

Zh (k)

k=1

L(a®.G), (23)

(aa(jc)v g) - Tr(agk), g~)|

|<Z|h (k)

< mln{K, max{N, N1} - Ce.

g, (A) = ¢g, (A

(24)

We conclude the proof via a simple application of the triangle
inequality.
leg(A) = g (V)] < leg(A) = cg, (A)] + leg, (X) —
+leg, (A) = cg(N)]
< 26, + min{K, max{N, N}} - Ce=:4.
(25)

cg, (M)

APPENDIX B
EFFICIENT APPROXIMATION FOR STEP 1

We now provide the details to develop the efficient solution
for (13). We start by explomng the symmetry of the GSO. To
thatend, recall that S : s € R ? 5 8s € RV*N denotes
the linear operator mapping the non-negative vector s into the
matrix S = Ss while ensuring that the constraints in S are sat-
isfied. Also, recall that ||S||; = tr(SH), where Hisan N x N
matrix of signed ones with the sign of its entries matching the
sign of the entries of S, so we have that tr(CS) + a|S||; =
tr(KS), where K = C + H.

Then, we rewrite the problem in (13) as

s = argmin tr(KSs)+ g ||szV(t)A(t)V(t)T %

s.t:s>0, (26)

where the number of optimization variables has been reduced
to less than half. Moreover, we denote as S* : Y € RV*V
S8*Y € RV(N-1)/2 the adjoint linear operator of S such that
(8s,Y) = (s,8"Y). Then, we reformulate (26) as the follow-
ing equivalent quadratic problem

o1
min S[|Ss|E —2's, @7
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with z = 8* (VW A®) (V)T — =1K). Although the prob-
lem in (27) is strictly convex, the non-negativity constraint pre-
vents us from obtaining a closed-form solution. To circumvent
this issue, we replace the objective function of (27) with an
upper bound centered at s(*), resulting in the optimization

inteTs_sT ( 0 _ 0 )
min-s's—s' s (') ).
2 ||5||2

s>0
The term V f(s®)) = 8*(Ss(")) — z denotes the gradient of the
objective function in (27) and ||S||3 denotes the operator norm
given by ||S||3 = supjx =1 |Sx%.
Finally, the closed-form solution from the KKT optimality
conditions of (28) is given by
+
Vf<s<“>> :

1
(D) _ <S<t> -
which is the update for the first step provided in (14).

(28)

— 29
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