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Abstract. In this work, we establish a representation theorem for multivariable totally

symmetric functions: a multisymmetric continuous function must be the composition of a

continuous function and a set of generators of the multisymmetric polynomials. We then

study the singularity and geometry of the generators, and show that the regularity may

become worse after applying the decomposition.

1. Introduction

Symmetric and anti-symmetric functions play important roles in physics and chemistry,

especially in representing many-body systems (see e.g., [3,4,7,10]). For more e!cient modeling

and computation, researchers have been investigating the representation and approximation

results for (anti-)symmetric functions [1, 6, 8, 9, 11, 13].

We study the representation theorem for symmetric functions: given d → 1, n → 1, and

” ↑ Rd, a function f : ”n ↓ R is totally symmetric, or symmetric, if

(1.1) f(xω(1),xω(2), . . . ,xω(n)) = f(x1,x2, . . . ,xn),

for any permutation ω ↔ Sn and any xi ↔ ”, i = 1, 2, . . . , n. It is proved in [13] that when

d = 1 and ” = [0, 1], a continuous symmetric function f : [0, 1]n ↓ R can be decomposed as

(1.2) f(x1, x2, . . . , xn) = g

(
n∑

i=1

(1, xi, x
2
i , . . . , x

n
i )

)
= g

(
n,

n∑

i=1

xi,
n∑

i=1

x2
i , . . . ,

n∑

i=1

xn
i

)
,

where g is continuous. One can see that the embedding dimension in (1.2) is essentially n

since the constant 1 can be dropped. It is proved in [11] that such embedding is necessary and

hence optimal to exactly represent all continuous symmetric function. Even if the case d = 1

is well understood, the proof in [13] cannot be generalized to d > 1, which will be elaborated

in Section 2. Thus, it remains unclear in the previous literature whether similar representation

theorem holds for the multivariable case d > 1, though several approximation results have been

established [1,6,13]. There is also work on representing partial permutation-invariant functions

[5], but still in the sense of approximation.

Our aim of this work is to establish an exact representation theorem for multivariable totally

symmetric functions (multisymmetric functions in short) and further characterizing the repre-

sentation. More specifically, we prove that a result similar to (1.2) for arbitrary d → 1, and show
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that the regularity of g may be worse than that of f , even if both of them are continuous. We

hope this clarifies the question on representation and helps better understand approximating

symmetric functions.

2. Representation Theorem

Let Pd,n
sym(R) be the R-algebra consisting of all multisymmetric polynomials with real coef-

ficients, i.e., real polynomials in x = (x1,x2, . . . ,xn) ↔ (Rd)n satisfying (1.1). The algebra of

multisymmetric polynomials is well-studied, even when the coe!cients are in a general ring

(see [2] and references therein). According to [2] (also see [12]), similar to the setting of d = 1,

Pd,n
sym(R) can be generated by

(2.1) εs(x1,x2, . . . ,xn) :=
n∑

i=1

xs1
i,1x

s2
i,2 · · ·x

sd
i,d, 0 ↗ s1 + s2 + · · ·+ sd ↗ n,

known as multisymmetric power sums, where s := (s1, s2, . . . , sd) and xi := (xi,1, xi,2, . . . , xi,d),

and it has other sets of generators such as the elementary multisymmetric polynomials.

Our main representation theorem is stated as below.

Theorem 2.1. Given d → 1, n → 1, and a compact subset ” ↑ Rd
, suppose that f : ”n ↓ R is

totally symmetric and continuous and that ε1, ε2, . . . , εm generate Pd,n
sym(R) as R-algebra. Then

there exists a unique continuous function g : ε(”n) ↓ R such that

f(x1,x2, . . . ,xn) = g(ε(x1,x2, . . . ,xn)), ↘ x1,x2, . . . ,xn ↔ ”,

where ε = (ε1, ε2, . . . , εm) and the topology of ε(”) is induced from Rm
.

Theorem 2.1 generalizes [13, Theorem 7] to the multivariable case and general generators (not

limited to power sums). A theorem similar to Theorem 2.1 was claimed in [9, Theorem 6], but no

proof is given; this work fills the gap. Our proof is inspired by the proof of [13, Theorem 7], while

to make the proof work for arbitrary dimension, we need to argue that ε(”n) is homeomorphic

to the quotient space ”n/Sn, not a subspace of ”n as in the proof of [13, Theorem 7], which

will be discussed in details after we present the proof.

Proof. (Proof of Theorem 2.1.) There is a natural group action of Sn on ”n:

(2.2) ω ≃ (x1,x2, . . . ,xn) := (xω(1),xω(2), . . . ,xω(n)), ↘ ω ↔ Sn, x1,x2, . . . ,xn ↔ ”,

and we denote ϑ : ”n ↓ ”n/Sn as the quotient map. Since f is totally symmetric, i.e.,

(1.1) holds for any ω ↔ Sn and x1,x2, . . . ,xn ↔ ”, there exists a unique continuous function

f̃ : ”n/Sn ↓ R such that f = f̃ ⇐ ϑ. In addition, the definition of ε immediately implies that

ε(ω ≃ (x1,x2, . . . ,xn)) = ε(x1,x2, . . . ,xn), ↘ ω ↔ Sn, x1,x2, . . . ,xn ↔ ”.

Therefore, there exists a unique continuous function ε̃ : ”n/Sn ↓ ε(”n) such that ε = ε̃ ⇐ ϑ.
It is clear that ε̃ : ”n/Sn ↓ ε(”n) is surjective. We then prove that it is also injec-

tive. Consider any ϑ(x1,x2, . . . ,xn),ϑ(x→
1,x

→
2, . . . ,x

→
n) ↔ ”n/Sn with ε̃(ϑ(x1,x2, . . . ,xn)) =

ε̃(x→
1,x

→
2, . . . ,x

→
n), or equivalently, ε(x1,x2, . . . ,xn) = ε(x→

1,x
→
2, . . . ,x

→
n). Note that entries of ε
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”n R

”n/Sn

ε(”n)

f

ϑ f̃

ε g

ε̃⇒=

Figure 1. Commutative diagram for the proof of Theorem 2.1.

are generators of Pd,n
sym(R). Thus, p(x1,x2, . . . ,xn) = p(x→

1,x
→
2, . . . ,x

→
n) holds for any multisym-

metric polynomial p ↔ Pd,n
sym(R). By Lemma 2.2, there must exist some permutation ω ↔ Sn

such that (x→
1,x

→
2, . . . ,x

→
n) = ω ≃ (x1,x2, . . . ,xn), i.e., ϑ(x1,x2, . . . ,xn) = ϑ(x→

1,x
→
2, . . . ,x

→
n),

which proves the injectivity.

Since ε̃ : ”n/Sn ↓ ε(”n) is bijective, its inverse is well-defined. We then show that ε̃↑1 :

ε(”n) ↓ ”n/Sn is also continuous, which is equivalent to show that ε̃ : ”n/Sn ↓ ε(”n) is

a closed map. Consider any closed subset E ↑ ”n/Sn. The continuity of ϑ guarantees that

ϑ↑1(E) is closed subset of ”n. Furthermore, ϑ↑1(E) is compact due to the compactness of ”n.

Note that ε : ”n ↓ ε(”n) is continuous. Thus, both ε(”n) and ε(ϑ↑1(E)) = ε̃(E) are compact.

Then one can conclude that ε̃(E) is a closed subset of ε(”n) and hence that ε̃ : ”n/Sn ↓ ε(”n)

is closed.

Combining all these properties of ε̃ : ”n/Sn ↓ ε(”n), one can conclude it is indeed a

homeomorphism. We can finally complete the proof by setting g = ε̃↑1 ⇐ f̃ , since it follows

from the commutative diagram in Figure 1 that f = g ⇐ ε. ↭

Lemma 2.2. For any (x1,x2, . . . ,xn), (x→
1,x

→
2, . . . ,x

→
n) ↔ (Rd)n, if

(2.3) (x→
1,x

→
2, . . . ,x

→
n) ⇑= ω ≃ (x1,x2, . . . ,xn), ↘ ω ↔ Sn,

then there exists some multisymmetric polynomial p ↔ Pd,n
sym(R) such that p(x1,x2, . . . ,xn) ⇑=

p(x→
1,x

→
2, . . . ,x

→
n).

Proof. Denote {x̂1, x̂2, . . . , x̂t} := {x1,x2, . . . ,xn} ⇓ {x→
1,x

→
2, . . . ,x

→
n}. Define the counters

cj :=
∑n

i=1 I(x̂j = xi) and c→j :=
∑n

i=1 I(x̂j = x→
i), for j = 1, 2, . . . , t, where I(·) is the in-

dicator function. It follows from (2.3) that (c1, c2, . . . , ct) ⇑= (c→1, c
→
2, . . . , c

→
t). Thus, there exist

z1, z2, . . . , zt ↔ R such that
∑t

j=1 cjzj ⇑=
∑t

j=1 c
→
jzj . Let q : Rd ↓ R be a polynomial satisfying

q(x̂j) = zj , j = 1, 2, . . . , t (the existence of such q is guaranteed by polynomial interpolation)
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and let p ↔ Pd,n
sym(R) be defined via

p(y1,y2, . . . ,yn) :=
n∑

i=1

q(yi), ↘ y1,y2, . . . ,yn ↔ Rd.

Then it holds that

p(x1,x2, . . . ,xn) =
n∑

i=1

q(xi) =
t∑

j=1

cjq(x̂j) =
t∑

j=1

cjzj

⇑=
t∑

j=1

c→jzj =
t∑

j=1

c→jq(x̂j) =
n∑

i=1

q(x→
i) = p(x→

1,x
→
2, . . . ,x

→
n),

which completes the proof. ↭

Let us remark on the connection and di#erence between our work and [13] that establishes

a special case of Theorem 2.1, say d = 1. One key step in [13] is to prove the homeomorphism

ε(”n) ⇒= X := {(x1, x2, . . . , xn) ↔ ”n : x1 ↗ x2 ↗ · · · ↗ xn} that is actually equivalent to

ε(”n) ⇒= ”n/Sn when d = 1. However, the result ε(”n) ⇒= X may not hold high dimensions.

As an explicit example, let us consider d = n = 2 and define X = {(x1,x2) ↔ ”2 : x1 ⇔ x2}
that is equipped with the topology induced from the Euclidean topology, with ” = [0, 1]2 and

⇔ being the lexicographic order. One observation is that
(
(1↖ 1

n , 1), (1, 0)
)
↔ X for any n ↔ N+

while their limiting point ((1, 1), (1, 0)) /↔ X . This means that X is not closed, and hence

cannot be homeomorphic to ε(”n). To resolve this issue, we have to work with the quotient

space ”n/Sn instead of X ↑ ”n, as in the proof of Theorem 2.1.

The next corollary generalizes Theorem 2.1 in the sense that the result can hold in the whole

space Rd, not just a compact subset ” ↑ Rd.

Corollary 2.3. Given d → 1, n → 1, suppose that f : (Rd)n ↓ R is totally symmetric and

continuous and that ε1, ε2, . . . , εm generate Pd,n
sym(R) as R-algebra. Then there exists a unique

continuous function g : ε((Rd)n) ↓ R such that

f(x1,x2, . . . ,xn) = g(ε(x1,x2, . . . ,xn)), ↘ x1,x2, . . . ,xn ↔ Rd,

where ε = (ε1, ε2, . . . , εm) and the topology of ε(Rd) is induced from Rm
.

Proof. According to Theorem 2.1, for any r ↔ (0,+↙), there uniquely exists continuous gr :

ε(”d
r) ↓ R such that

(2.4) f(x1,x2, . . . ,xn) = gr(ε(x1,x2, . . . ,xn)), ↘ x1,x2, . . . ,xn ↔ ”r,

where ”r ↑ Rd is the closed ϖ2-ball centered at the origin with radius r. It is clear by (2.4)

that for any r, r→ ↔ (0,+↙), gr and gr→ coincide on ε((”r ∝ ”r→)n). Thus, the desired function

g : ε((Rd)n) ↓ R can be well-defined via

g(ε(x1,x2, . . . ,xn)) = gr(ε(x1,x2, . . . ,xn)), if x1,x2, . . . ,xn ↔ ”r.

In order to prove the continuity of g, it su!ces to show that for any bounded subset Y ↑ Rm,

g|ε((Rd)n)↓Y is continuous. By Lemma 2.4, ε↑1(Y ) is bounded and is hence contained in ”n
r
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for some r > 0. Thus, the continuity of g|ε((Rd)n)↓Y is implied directly by the continuity of gr,

which finishes the proof. ↭

Lemma 2.4. Suppose that ε1, ε2, . . . , εm generate Pd,n
sym(R) as R-algebra. Then for any bounded

subset Y ↑ Rm
, ε↑1(Y ) must be bounded in (Rd)n, where ε = (ε1, ε2, . . . , εm).

Proof. There exists a polynomial p : Rm ↓ R, such that

n∑

i=1

d∑

j=1

x2
i,j = p(ε1(x), ε2(x), . . . , εm(x)), ↘ x = (x1,x2, . . . ,xn) ↔ (Rd)n,

where xi = (xi,1, xi,2, . . . , xi,d) for i = 1, 2, . . . , n. Thus, it holds that





n∑

i=1

d∑

j=1

x2
i,j : x ↔ ε↑1(Y )




 = p(Y )

is bounded, which implies the boundedness of ε↑1(Y ). ↭

3. Singularity of Symmetric Decomposition

In this section, we discuss the singularity of the symmetric decomposition f = g ⇐ ε. In

Theorem 2.1 and Corollary 2.3, we prove that g inherits the continuity property of f . However,

it may not be true that g has the same regularity as f . The reason is that ε is singular at

Singd,n :=
{
x = (x1,x2, . . . ,xn) ↔ (Rd)n | ′ i1 ⇑= j2, xi1 = xi2

}
.

This result is established in the following theorem, where we remark that the number of gen-

erators satisfies m →
(n+d

d

)
> nd by (2.1).

Theorem 3.1. Let ε1, ε2, . . . , εm generate Pd,n
sym(R) as R-algebra and let ε = (ε1, ε2, . . . , εm).

Then the locus, where Jacobian matrix Jε(x) ↔ Rm↔nd
is column-rank-deficient, is the set

Singd,n defined above.

Proof. We first assume that xi1 = xi2 for some 1 ↗ i1 < i2 ↗ n, and show that Jε(x) is

column-rank-deficient. Consider any k ↔ {1, 2, . . . ,m} and any j ↔ {1, 2, . . . , d} and we have

that

ϱε(x)

ϱxi1,j
= lim

t↗0

ε(x1, . . . ,xi1↑1,xi1 + tej ,xi1+1, . . . ,xi2↑1,xi2 ,xi2+1, . . . ,xn)↖ ε(x)

t

= lim
t↗0

ε(x1, . . . ,xi1↑1,xi1 ,xi1+1, . . . ,xi2↑1,xi2 + tej ,xi2+1, . . . ,xn)↖ ε(x)

t

=
ϱε(x)

ϱxi2,j
,

where ej is a vector in Rd with the j-th entry being 1 and other entries being 0. Thus, Jε(x)

has two identical columns and is hence column-rank-deficient.

Then we assume that xi1 ⇑= xi2 for all 1 ↗ i1 < i2 ↗ n and prove that Jε(x) is full-column-

rank. It su!ces to show that ε is locally injective near x. Since x1,x2, . . . ,xn are pairwise

distinct, it holds that

(3.1) B(xi1 , r) ∝B(xi2 , r) = ∞, ↘ 1 ↗ i1 < i2 ↗ n,
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for su!ciently small r > 0, where B(xi, r) ↑ Rd is the open ϖ2-ball centered at xi with radius

r. Let us consider any y,y→ ↔ B(x1, r) ∈ B(x2, r) ∈ · · · ∈ B(xn, r). If y ⇑= y→, by (3.1), there

is no ω ↔ Sn with ω ≃ y = y→, where the group action is defined in (2.2). Then according to

Lemma 2.2, we must have ε(y) ⇑= ε(y→) as ε1, ε2, . . . , εm generate Pd,n
sym(R), which completes

the proof. ↭

Theorem 3.1 establishes the location where ε is singular. in general, the geometry of im(ε) =

ε((Rd)n) seems complicated and we leave the general characterization for future works. In the

following, we consider the special case with n = d = 2 and ε constructed using generators in

(2.1), for which the geometry can be understood rather explicitly. After omitting the constant

polynomial in the set of generators, ε can be written as

ε(x1,x2) =





x1,1 + x2,1

x1,2 + x2,2

x2
1,1 + x2

2,1

x2
1,2 + x2

2,2

x1,1x1,2 + x2,1x2,2




.

Let

Pz : R5 ↓ R4,

(z1, z2, z3, z4, w) ∋↓ (z1, z2, z3, z4),

be the projection map onto the first four coordinates. It is clear that

Pz(im(ε)) =
{
(z1, z2, z3, z4) ↔ R4 : 2z3 → z21 , 2z4 → z22

}

=
{
(z1, z3) ↔ R2 : 2z3 → z21

}
∈
{
(z2, z4) ↔ R2 : 2z4 → z22

}
.

Given (z1, z2, z3, z4) ↔ Pz(im(ε)), the behavior of im(ε) can be divided into three cases:

• If 2z3 > z21 and 2z4 > z22 , then x1,1 ⇑= x2,1, x2,1 ⇑= x2,2, and there is no singularity.

Furthermore, there are two di#erent w such that (z1, z2, z3, z4, w) ↔ im(ε).

• If exactly one of 2z3 = z21 and 2z4 = z22 holds, then only one of x1,1 = x2,1 and

x2,1 = x2,2 is true, which still leads to non-singular behaviour but there only exists a

single w such that (z1, z2, z3, z4, w) ↔ im(ε).

• If 2z3 = z21 and 2z4 = z22 , then both x1,1 = x2,1 and x2,1 = x2,2 are true. There also

exists a single w such that (z1, z2, z3, z4, w) ↔ im(ε), at which ε is singular.

We illustrate the above discussion in Figure 2.

As the result of the singularity of ε, the regularity of g may be worse than f . We give two

simple examples with n = 2 and d = 1 below.

Example 3.2. Consider f(x) = f(x1, x2) = |x1| + |x2|. Let ” = [↖1, 1], x = (ς,↖ς), and

x→ = (2ς,↖2ς). Then f(x) = 2ς, f(x→) = 4ς, and ε(x) = (0, 2ς2), ε(x→) = (0, 8ς2). One has

lim
ϑ↗0+

|g(ε(x))↖ g(ε(x→))|
△ε(x)↖ ε(x→)△ = lim

ϑ↗0+

2ς

6ς2
= +↙.

Thus, f is Lipschitz continuous while g cannot be extended to a Lipschitz-continuous function

on R2
.
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z1, z3 z2, z4

w

singularity

Figure 2. Geometry of im(ε) = ε((R2)2). The blue parts correspond to

{2z3 → z21} and {2z4 → z22}. The greens parts represent {2z3 < z21} and

{2z4 < z22}. The red part is the location of singularity, associated with the

boundaries of both blue parts.

Example 3.3. Consider f(x) = f(x1, x2) = x4/3
1 + x4/3

2 . Let ” = [↖1, 1], x = (ς,↖ς), and

x→ = (0, 0). Then f(x) = 2ς4/3, f(x→) = 0, and ε(x) = (0, 2ς2), ε(x→) = (0, 0). One has

lim
h↗0+

g(0, h)↖ g(0, 0)

h
= lim

ϑ↗0

f(ς,↖ς)↖ f(0, 0)

2ς2
= lim

ϑ↗0

2ς4/3

2ς2
= +↙.

Therefore, f is C1
, i.e., continuously di!erentiable, while g cannot be extended to a C1

function

on R2
.
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