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REPRESENTATION THEOREM FOR MULTIVARIABLE TOTALLY
SYMMETRIC FUNCTIONS

CHONGYAO CHEN, ZIANG CHEN, AND JIANFENG LU

ABSTRACT. In this work, we establish a representation theorem for multivariable totally
symmetric functions: a multisymmetric continuous function must be the composition of a
continuous function and a set of generators of the multisymmetric polynomials. We then
study the singularity and geometry of the generators, and show that the regularity may

become worse after applying the decomposition.

1. INTRODUCTION

Symmetric and anti-symmetric functions play important roles in physics and chemistry,
especially in representing many-body systems (see e.g., ) For more efficient modeling
and computation, researchers have been investigating the representation and approximation
results for (anti-)symmetric functions [1}[6}[8[9L11}[13].

We study the representation theorem for symmetric functions: given d > 1, n > 1, and

Q C R, a function f: Q" — R is totally symmetric, or symmetric, if

(11) f(xa(l)axa(2)7 e 7xa(n)) = f(xlax27 cee 7xn>7
for any permutation ¢ € S, and any x; € 2, i = 1,2,...,n. It is proved in that when

d=1and Q = [0, 1], a continuous symmetric function f : [0,1]™ — R can be decomposed as

n

(1.2 f<x1,x2,...,zn>:g(zu,xi,xf,...,xm):g(n,zxi,zxs,...,zx;z),
=1 =1 =1

i=1
where g is continuous. One can see that the embedding dimension in is essentially n
since the constant 1 can be dropped. It is proved in that such embedding is necessary and
hence optimal to exactly represent all continuous symmetric function. Even if the case d = 1
is well understood, the proof in cannot be generalized to d > 1, which will be elaborated
in Section [2l Thus, it remains unclear in the previous literature whether similar representation
theorem holds for the multivariable case d > 1, though several approximation results have been
established [1}6}[13]. There is also work on representing partial permutation-invariant functions
, but still in the sense of approximation.

Our aim of this work is to establish an exact representation theorem for multivariable totally

symmetric functions (multisymmetric functions in short) and further characterizing the repre-

sentation. More specifically, we prove that a result similar to ((1.2) for arbitrary d > 1, and show
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that the regularity of ¢ may be worse than that of f, even if both of them are continuous. We
hope this clarifies the question on representation and helps better understand approximating

symmetric functions.

2. REPRESENTATION THEOREM

Let Psdb;g(R) be the R-algebra consisting of all multisymmetric polynomials with real coef-
ficients, i.e., real polynomials in x = (x1,Xa,...,X,) € (R%)" satisfying . The algebra of
multisymmetric polynomials is well-studied, even when the coefficients are in a general ring
(see [2] and references therein). According to [2] (also see [12]), similar to the setting of d =1,

Pdn (R) can be generated by

sym
n
—— S1 .82 Sd
(2.1) Ns(X1,X2, ..., Xp) 1= E rhaiy o aiy, 0<si+s2+- - +sa<n,
=1
known as multisymmetric power sums, where s := (s1, s2,...,8q) and x; 1= (¥;1,%i2,...,Tid),

and it has other sets of generators such as the elementary multisymmetric polynomials.

Our main representation theorem is stated as below.

Theorem 2.1. Givend > 1, n > 1, and a compact subset Q C R?, suppose that f : Q" — R is
totally symmetric and continuous and that n1,m2, ..., Nm generate szﬁn(R) as R-algebra. Then

there exists a unique continuous function g : n(Q"™) — R such that
f(x1,X2,...,%p) = g(N(x1,X2,...,Xy,)), VYV X1,Xo,...,Xp €L,

where 1 = (N1,M2, ..., Nm) and the topology of n(QY) is induced from R™.

Theoremgeneralizes [13, Theorem 7] to the multivariable case and general generators (not
limited to power sums). A theorem similar to Theorem[2.1]was claimed in [9, Theorem 6], but no
proof is given; this work fills the gap. Our proof is inspired by the proof of [13, Theorem 7], while
to make the proof work for arbitrary dimension, we need to argue that 7(2™) is homeomorphic
to the quotient space 2"/S,,, not a subspace of Q™ as in the proof of [13| Theorem 7], which
will be discussed in details after we present the proof.

Proof. (Proof of Theorem ) There is a natural group action of S,, on Q":
(2.2) 0% (X1,X2, ., Xn) 1= (Xo(1): X0 (2)s - -y Xa(n))s VO € Spy X1,X2,...,Xp, € 8,

and we denote 7w : Q" — Q"/S, as the quotient map. Since f is totally symmetric, i.e.,
(1.1) holds for any o € S, and x1,Xa,...,X, € €, there exists a unique continuous function
f:9Q"/S, = R such that f = f on. In addition, the definition of 1 immediately implies that

(o * (x1,Xa,...,Xn)) =N(X1,X2,...,Xp), Vo€ES S, X1,X9,...,X, € Q.

Therefore, there exists a unique continuous function 7 : Q"/S,, — 1n(Q2") such that n = 7o .
It is clear that 77 : Q"/S, — n(Q") is surjective. We then prove that it is also injec-
tive. Consider any m(X1,X2,...,X,), (X}, X5, ..., X,) € Q"/S, with 7(7(x1,X2,...,Xp)) =
=n

n(x},%5,...,x),), or equivalently, n(x1,Xa,...,X,) (x},%5,...,x},). Note that entries of n
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Q" f R
T f
an/s,
n g
> |7
n(QQ")

FiGURE 1. Commutative diagram for the proof of Theorem [2.1

are generators of 73;13;3 (R). Thus, p(x1,X2,...,Xn) = p(X}, X5, ..., x,,) holds for any multisym-
metric polynomial p € P42 (R). By Lemma , there must exist some permutation o € S,
such that (x},x5,...,%x}) = 0 * (x1,X2,...,Xy,), le, m(X1,Xo,...,X,) = 7(x],%5,...,%}),

which proves the injectivity.

Since 7 : 2/, — n(Q") is bijective, its inverse is well-defined. We then show that 77! :
n(Q") — Q"/S, is also continuous, which is equivalent to show that 7 : Q"/S,, — n(Q") is
a closed map. Cousider any closed subset E C Q"/S,,. The continuity of 7 guarantees that
7~ 1(E) is closed subset of Q™. Furthermore, 7~*(E) is compact due to the compactness of Q™.
Note that 1 : Q" — (") is continuous. Thus, both 7(Q") and n(7~1(E)) = j(E) are compact.
Then one can conclude that 77(E) is a closed subset of n(£2") and hence that 77 : Q™/S,, — n(Q™)
is closed.

Combining all these properties of 77 : 2"/S,, — n(Q"), one can conclude it is indeed a

1

homeomorphism. We can finally complete the proof by setting g = 77" o f7 since it follows

from the commutative diagram in Figure [I] that f = g on. O
Lemma 2.2. For any (X1,Xa2,...,X,), (X}, X5, ...,%},) € (RH", if

(2.3) (x), X5, ..., X)) # 0% (X1,X2,...,Xp), V0oES,,

then there exists some multisymmetric polynomial p € ’Pg?;’]n(R) such that p(Xx1,X2,...,Xn) #
p(X), Xb, .., X0,).

Proof. Denote {X1,Xa2,...,%:} = {x1,Xo,...,%,} U {x],x5,...,x/,}. Define the counters

¢j = Y I(x; = x;) and ¢ == Y1 I(%; = x}), for j = 1,2,...,t, where I(-) is the in-
dicator function. It follows from (2.3) that (c1,ca,...,¢) # (¢}, ch,...,c;). Thus, there exist
21,22,...,2t € R such that Z§:1 cjzj # 22:1 cjzj. Let q: R? — R be a polynomial satisfying
q(%;) = zj, j =1,2,...,t (the existence of such ¢ is guaranteed by polynomial interpolation)



4 CHONGYAO CHEN, ZIANG CHEN, AND JIANFENG LU

and let p € P& (R) be defined via

Py Y2, ¥n) = > a(yi), ¥ y1,y2,...,yn € RE
=1

Then it holds that

n

t t
p(X1,X2, ..., Xp) = Zq(xi) = Z ciq(%5) = chzj
= =1
t

i=1 j=1 j=

t n
£ 3 = alk) = D a(x) = plxg. X X),
Jj=1 j=1 i=1
which completes the proof. O

Let us remark on the connection and difference between our work and [13] that establishes
a special case of Theorem say d = 1. One key step in [13] is to prove the homeomorphism
(") =2 X = {(x1,22,...,2n) € Q" : 21 < x9 < -+ < x,} that is actually equivalent to
n(Q") =2 Q"/S, when d = 1. However, the result n(Q2") =2 X may not hold high dimensions.
As an explicit example, let us consider d = n = 2 and define X = {(x1,x2) € Q? : x; < X2}
that is equipped with the topology induced from the Euclidean topology, with Q = [0, 1]? and
= being the lexicographic order. One observation is that ((1—1,1),(1,0)) € X for any n € N,
while their limiting point ((1,1),(1,0)) ¢ X. This means that X is not closed, and hence
cannot be homeomorphic to 7(2"). To resolve this issue, we have to work with the quotient
space " /S, instead of X C 2", as in the proof of Theorem [2.1

The next corollary generalizes Theorem [2.1]in the sense that the result can hold in the whole
space R%, not just a compact subset  C R?.

Corollary 2.3. Given d > 1, n > 1, suppose that f : (R?)™ — R is totally symmetric and

d,n
sym

continuous function g : n((R*)™) — R such that

continuous and that ny,me2, ..., Mm generate PLM (R) as R-algebra. Then there exists a unique

f(x1, X2, ..., xpn) = g(n(x1,X2, ..., X)), VYV X1,X2,...,Xp € R?,

where n = (N1,M2, ..., m) and the topology of n(R?) is induced from R™.

Proof. According to Theorem for any r € (0, +00), there uniquely exists continuous g, :
n(Q4) — R such that

(2.4) (X1, X, ..., Xn) = gr(N(X1,X2, ..., X)), VX1,X2,...,X, € Qp,
where 2, C R? is the closed f5-ball centered at the origin with radius . It is clear by (2.4)
that for any r, 7’ € (0,+00), g, and g,» coincide on n((Q, N Q,~)™). Thus, the desired function
g : n((RY)™) — R can be well-defined via

g(n(xlax27 (R 7X’I’L)) = g’r‘(n(xl>x27 ) 7Xn)), if X1,X2,...,Xp € Q'r"

In order to prove the continuity of g, it suffices to show that for any bounded subset Y C R™,
9gln(aymyny is continuous. By Lemma n~Y(Y) is bounded and is hence contained in Q"
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for some r > 0. Thus, the continuity of g|,,(ayn)ny is implied directly by the continuity of g,,
which finishes the proof. O

Lemma 2.4. Suppose that 11,12, . .., Nm generate PEL™ (R) as R-algebra. Then for any bounded

sym

subset Y C R™, n~Y(Y) must be bounded in (R)"™, where n = (1,M2, -, m)-

Proof. There exists a polynomial p : R™ — R, such that

n d
szig’ :P(ﬂl(x),ﬂz(x)w'»ﬂm(x)), Vx= (X17X2a~“axn) € (Rd)n7

i=1 j=1
where x; = (z;1,%i2,.-.,%i,q) for i =1,2,...,n. Thus, it holds that
n d
o> alixen (V) p =p(Y)
i=1 j=1
is bounded, which implies the boundedness of n~1(Y). O

3. SINGULARITY OF SYMMETRIC DECOMPOSITION

In this section, we discuss the singularity of the symmetric decomposition f = gon. In
Theorem [2.1] and Corollary we prove that g inherits the continuity property of f. However,
it may not be true that g has the same regularity as f. The reason is that n is singular at

Sing, ,, 1= {x = (X1,X2,...,Xp) € (Rd)" | 3 i1 # o, x4, = XiQ}.
This result is established in the following theorem, where we remark that the number of gen-
erators satisfies m > ("+%) > nd by (2.1).
d,n

sym

Then the locus, where Jacobian matriz Jn(x) € R™ ™ s column-rank-deficient, is the set

Theorem 3.1. Let n1,12,...,0m generate PE™ (R) as R-algebra and let n = (n1,m2, ..y Nm)-

Sing, ,, defined above.

Proof. We first assume that x;, = x;, for some 1 < i; < iy < n, and show that Jn(x) is
column-rank-deficient. Consider any k € {1,2,...,m} and any j € {1,2,...,d} and we have
that

on(x) — Jim (X1, Xy 1, X, H 1€, Xy 11,5 Xig 1, Xigs Xigh 15+ -+ Xpn) — 7(X)

83;‘1'17]* t—0 t

— lim DXL+ Xy 15 Xy, Xy 415 - - Xiy—1, Xy + 1€, Xy 11, ..., Xp) — N(X)
t—0 t

_ On(x)
3Ii27j’

where e; is a vector in R? with the j-th entry being 1 and other entries being 0. Thus, Jn(x)
has two identical columns and is hence column-rank-deficient.

Then we assume that x;, # x;, for all 1 <i; < iz < n and prove that Jn(x) is full-column-
rank. It suffices to show that 7 is locally injective near x. Since x1,Xas,...,X, are pairwise
distinct, it holds that

(3.1) B(x;,,7) N B(x4,,7) =0, V1<i <iy<mn,
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for sufficiently small » > 0, where B(x;,r) C R? is the open #»-ball centered at x; with radius
r. Let us consider any y,y’ € B(x1,7) X B(X2,7) X -+ X B(x,,r). f y #y’, by , there
isno o € S, with o *y = y’, where the group action is defined in . Then according to
Lemma we must have n(y) # n(y’) as 01,72, ..., 7m generate P42 (R), which completes
the proof. O

Theorem establishes the location where 7 is singular. in general, the geometry of im(n) =
n((R%)™) seems complicated and we leave the general characterization for future works. In the
following, we consider the special case with n = d = 2 and 7 constructed using generators in
7 for which the geometry can be understood rather explicitly. After omitting the constant
polynomial in the set of generators, 1 can be written as

T1,1 + X2
T12 + X222
n(x1,X2) = a3+ x%,l
23+ a3,
T11%1,2 + 221T22
Let
P, : RS - R*,

(Zla 22, 23, %4, ’U.)) — (Zla 22,23, Z4)7
be the projection map onto the first four coordinates. It is clear that
P.(im(n)) = {(21722723724) ERY: 223 > 27 224 > zg}
={(z1,23) ER®: 225 > 27} x {(22,24) € R?* : 224 > 23} .
Given (21, 29, 23, 24) € P,(im(n)), the behavior of im(n) can be divided into three cases:
o If 223 > 22 and 224 > 23, then 11 #F T21, T2, F T22, and there is no singularity.
Furthermore, there are two different w such that (z1, 29, 23, 24, w) € im(n).
o If exactly one of 2z3 = zf and 2z4 = z% holds, then only one of z1; = x2,; and
Tp1 = T2 is true, which still leads to non-singular behaviour but there only exists a
single w such that (z1, 22, 23, 24, w) € im(n).
o If 2253 = z% and 2z4 = z%, then both 11 = 221 and z21 = x22 are true. There also
exists a single w such that (z1, 2o, 23, 24, w) € im(n), at which 7 is singular.
We illustrate the above discussion in Figure

As the result of the singularity of 7, the regularity of ¢ may be worse than f. We give two
simple examples with n =2 and d = 1 below.

Example 3.2. Consider f(x) = f(z1,22) = |z1]| + |z2|. Let @ = [-1,1], x = (¢, —¢), and
x' = (2¢,—2¢). Then f(x) = 2¢, f(x') = 4e, and n(x) = (0,2€2), n(x’) = (0,8¢2). One has

lg(n(x) = gGDI -y 26 L
=0+ In(x) —n(x)[ >0+ 6 '

Thus, f is Lipschitz continuous while g cannot be extended to a Lipschitz-continuous function
on R2.
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singularity

21,23 22,24

FIGURE 2. Geometry of im(n) = n((R?)2). The blue parts correspond to
{223 > 23} and {2z4 > 23}. The greens parts represent {223 < z7} and
{224 < 23}. The red part is the location of singularity, associated with the
boundaries of both blue parts.

Example 3.3. Consider f(x) = f(z1,22) = mi/:s + azg/g. Let Q = [-1,1], x = (¢,—¢€), and
x' = (0,0). Then f(x)=2¢*/3, f(x') =0, and n(x) = (0,2¢%), n(x’) = (0,0). One has
— —€) — 4/3
g0 0.0 e~ J0.0) 2

= lim —— = +o0.
h—0+ h e—0 2€2 e—0 2¢€2

Therefore, f is C1, i.e., continuously differentiable, while g cannot be extended to a C' function
on R2.
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