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ONE-DIMENSIONAL TENSOR NETWORK RECOVERY
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Abstract. We study the recovery of the underlying graphs or permutations for tensors in the
tensor ring or tensor train format. Our proposed algorithms compare the matricization ranks after
down-sampling, whose complexity is O(d logd) for dth-order tensors. We prove that our algorithms
can almost surely recover the correct graph or permutation when tensor entries can be observed
without noise. We further establish the robustness of our algorithms against observational noise.
The theoretical results are validated by numerical experiments.
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1. Introduction. Tensors, or multidimensional arrays, are powerful in encod-
ing and computing high-order information and have a wide range of applications in
natural sciences and scientific computing. Since the storage and associated computa-
tional complexity of a tensor can be exponential in its order, many tensor formats are
developed to reduce the storage and computation cost, e.g., the Tucker format [36]
and tensor networks [25].

Tensor network models contract low-order tensors with respect to an underlying
graph to form high-order tensors. They are widely used in many fields, such as
quantum many-body physics [26, 25, 44, 30, 38, 12] and machine learning/data science
[33, 7, 8, 6, 32, 28]. Among all tensor network structures, the one-dimensional network
attracts the most attention due to its practical and e!cient numerical performance.
Such a structure represents high-order tensors using a group of 3-tensors ordered as
a loop or a path and is known as matrix product states [30, 25] in physics and tensor
ring (TR) [45], as well as the tensor train (TT) [27], in mathematics and numerical
analysis, and thus, we adopt the name convention in this paper. The other tensor
network formats include tree tensor networks [31], projected entangled pair states
[25, 37], etc.

TR/TT decomposition [45, 27] is the problem to compute the TR/TT representa-
tion of given a high-order tensor and has many applications, such as tensor completion
[43, 42, 2, 39], tensor SVD [46], and complexity reduction of neural network layers
[40]. This direction has been well investigated from both algorithmic and theoretical
aspects; we refer the interested readers to [5, 15, 22, 17, 4].
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1218 ZIANG CHEN, JIANFENG LU, AND ANRU ZHANG

The performance of tensor network decomposition tasks relies heavily on the
choice of the graph. One gets better performance if one employs the right underly-
ing graph for a target tensor in some tensor network format. Thus, in fields such as
machine learning, scientific computing, and theoretical chemistry, several works are
devoted to constructing or discovering the correct underlying graph for tensor net-
works. An agglomerative approach is proposed in [1] to find the suitable tree structure
for hierarchical tensor formats. In [18], the authors view the underlying graph as bi-
nary strings and do searching in the Hamming space. Since then, there have been
other works on searching the graph structure or topology for tensor networks; see,
e.g., [13, 24, 21]. More related to our setting, [20] studies the tensor network permu-
tation search, i.e., the problem of finding the best one-to-one mapping from the tensor
indices to the vertices of a given graph. The algorithm in [20] uses local sampling
to iteratively minimize some loss functions whose minimizer corresponds to the best
permutation in some sense. The result is further improved in [19] with less computa-
tional cost. In quantum chemistry and physics literature, one approach proposed to
find better index ordering or graph topology is to minimize the entanglement; see, e.g.,
[23, 34, 14] and references therein. [10] proposes another strategy using the inversion
symmetry property of singular values.

In this work, we consider the recovery of the underlying graph for the TR and
TT formats. More explicitly, for a given high-order tensor that is assumed to be of
the TR or TT format, we aim to design e!cient and reliable algorithms to recover
the underlying graph, i.e., the permutation that maps the indices of the given tensor
to correct ordering in the underlying loop or path.

We propose polynomial-time complexity algorithms with theoretical guarantees
to solve the tensor indices permutation problem for the TR/TT format. To the best
of our knowledge, this is the first approach with complete rigorous analysis including
clear complexity bounds, almost-sure correctness in the noiseless case, and robustness
theorems against the observation error.

The rest of this paper will be organized as follows. In section 2, after introducing
tensor notations and the TR/TT formats, we define the task of recovering the under-
lying graph. The algorithms will be described in section 3 and analyzed rigorously in
section 4. Section 5 contains some numerical experiments, and the whole paper will
be concluded and discussed in section 6.

2. Problem statement. In this section, we first recall the definitions and no-
tations of two one-dimensional tensor networks: TR and TT. Then, we state the
one-dimensional tensor network recovery problem and our goals. For the rest of the
paper, Sd is the permutation group on {1,2, . . . , d}; for a matrix M and a positive
integer R, let \omega R(M) be the Rth largest singular value of M .

2.1. Tensors. In this paper, tensors are referred to as multidimensional arrays.
We focus on the real-valued tensors, while the developed results can be directly ex-
tended to the complex value cases. Specifically, a d-tensor, or a tensor with order
d, is some X \rightarrow Rn1\rightarrow n2\rightarrow ···\rightarrow nd with entries being X(x1, x2, . . . , xd) \rightarrow R, 1 \uparrow xi \uparrow ni,
1 \uparrow i \uparrow d. We call \varepsilon n = (n1, n2, . . . , nd) the physical or external dimension of the
tensor X. Examples of tensors include vectors (1-tensors) and matrices (2-tensors).
We introduce two operations on tensors below.

Tensor product: LetX\rightarrow Rn1\rightarrow n2\rightarrow ···\rightarrow nd be a d-tensor, and letY \rightarrow Rm1\rightarrow m2\rightarrow ···\rightarrow md\rightarrow 

be a d\uparrow -tensor. The tensor product of X and Y, denoted as X\downarrow Y, is a (d+d\uparrow )-tensor
in Rn1\rightarrow n2\rightarrow ···\rightarrow nd\rightarrow m1\rightarrow m2\rightarrow ···\rightarrow md\rightarrow defined as
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ONE-DIMENSIONAL TENSOR NETWORK RECOVERY 1219

X\downarrow Y(x1, x2 . . . , xd, y1, y2, . . . , yd\rightarrow ) =X(x1, x2, . . . , xd)Y(y1, y2, . . . , yd\rightarrow )

for 1\uparrow xi \uparrow ni, 1\uparrow yi\rightarrow \uparrow mj , 1\uparrow i\uparrow d, and 1\uparrow i\uparrow \uparrow d\uparrow .
Contraction: Let X \rightarrow Rn1\rightarrow n2\rightarrow ···\rightarrow nd be a d-tensor, and let Y \rightarrow Rm1\rightarrow m2\rightarrow ···\rightarrow md\rightarrow 

be a d\uparrow -tensor. Suppose that ni =mi\rightarrow for some i \rightarrow {1,2, . . . , d} and i\uparrow \rightarrow {1,2, . . . , d\uparrow }.
Then, X and Y can be contracted on the two indices with the same dimension,
and the resulting tensor Z \rightarrow Rn1\rightarrow ···\rightarrow ni\uparrow 1\rightarrow ni+1\rightarrow ···\rightarrow nd\rightarrow m1\rightarrow ···\rightarrow mi\rightarrow \uparrow 1\rightarrow mi\rightarrow +1\rightarrow ···\rightarrow md\rightarrow is a
(d+ d\uparrow \updownarrow 2)-tensor defined via

Z(x1, . . . , xi\downarrow 1, xi+1, . . . , xd, y1, . . . , yi\rightarrow \downarrow 1, yi\rightarrow +1, . . . , yd\rightarrow )

=
ni\Biggr) 

z=1

X(x1, . . . , xi\downarrow 1, z, xi+1, . . . , xd)Y(y1, . . . , yi\rightarrow \downarrow 1, z, yi\rightarrow +1, . . . , yd\rightarrow ).

The product of two matrices is a specific example of tensor contraction. Contraction
can also be defined on a single tensor X \rightarrow Rn1\rightarrow n2\rightarrow ···\rightarrow nd as long as ni = ni\rightarrow for some
1\uparrow i < i\uparrow \uparrow d, which results in Z\rightarrow Rn1\rightarrow ···\rightarrow ni\uparrow 1\rightarrow ni+1\rightarrow ···\rightarrow ni\rightarrow \uparrow 1\rightarrow ni\rightarrow +1\rightarrow ···\rightarrow nd with

Z(x1, . . . , xi\downarrow 1, xi+1, . . . , xi\rightarrow \downarrow 1, xi\rightarrow +1, . . . , xd)

=
ni\Biggr) 

z=1

X(x1, . . . , xi\downarrow 1, xi+1, . . . , xi\rightarrow \downarrow 1, xi\rightarrow +1, . . . , xd).

In particular, trace tr(X) of a square matrix X\rightarrow Rn\rightarrow n is a contraction.

2.2. One-dimensional tensor networks. The tensor network model renders
a powerful method to parameterize a high-order tensor by contraction operation on
a collection of low-order tensors. The readers are referred to [25] for discussions
on general tensor network models. In this work, we focus on two prominent one-
dimensional tensor network models: TR and TT.

2.2.1. TR structure. Let d \rightarrow N+ be a fixed order. For the convenience of
presentation, all index symbols on the TR are in a sense of mod d, e.g., u[d+1] := u

[1],
rd+1 = r1, kd+1 = k1. A TR consists of d 3-tensors connected through contraction,
as in Figure 1, where each node has three edges and represents a 3-tensor. For any
i\rightarrow {1,2, . . . , d}, u[i] shares a common edge with u

[i+1], meaning that a contraction is
applied on u

[i] and u
[i+1]. To define rigorously, given the external/physical dimension

\varepsilon n= (n1, n2, . . . , nd) and internal/bond dimension \varepsilon r= (r1, r2, . . . , rd), any collection of
3-tensors

\varepsilon u=
\Biggl[ 
u
[1],u[2], . . . ,u[d]

\Biggr] 
\rightarrow Ud

\omega r,\omega n
=

d\Biggl\lfloor 

i=1

Rri\rightarrow ni\rightarrow ri+1

yields a d-tensor in the TR format:

\vargamma (\varepsilon u)(x1, x2, . . . , xd) = tr
\Biggl[ 
u
[1](x1)u

[2](x2) · · ·u[d](xd)
\Biggr] 
, 1\uparrow xi \uparrow ni,1\uparrow i\uparrow d,(2.1)

where u
[i](xi) := u

[i](:, xi, :) \rightarrow Rri\rightarrow ri+1 . Recall that matrix multiplication and trace
are both tensor contractions, and (2.1) is well-defined since the third dimension of u[i]

coincides with the first dimension of u[i+1], both equal to ri+1, for i= 1,2, . . . , d. An
equivalent way to describe \vargamma (\varepsilon u) is via tensor product:

\vargamma (\varepsilon u) =
\Biggr) 

1\updownarrow ki\updownarrow ri, 1\updownarrow i\updownarrow d

u
[1]
k1,k2

\downarrow u
[2]
k2,k3

\downarrow · · ·\downarrow u
[d]
kd,k1

,(2.2)

where u
[i]
ki,ki+1

= u
[i](ki, :, ki+1)\rightarrow Rni , 1\uparrow ki \uparrow ri, 1\uparrow i\uparrow d.
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1220 ZIANG CHEN, JIANFENG LU, AND ANRU ZHANG

u[1]

u[3]

u[5]

u[7]

u[2]

u[4]u[6]

u[8]

Fig. 1. TR format.

u[1] u[2] u[3] u[4] u[5] u[6] u[7] u[8]

Fig. 2. TT format.

2.2.2. TT structure. The TT format is a special case of TR format where
r1 = 1 is fixed, and hence, the contraction between u

[d] and u
[1] is trivial. The TT

model is shown in Figure 2, where there is no edge connecting u
[d] and u

[1] due to
the trivial contraction. The expression of entries of \vargamma (\varepsilon u) (2.1) becomes

\vargamma (\varepsilon u)(x1, x2, . . . , xd) = u
[1](x1)u

[2](x2) · · ·u[d](xd).

If we denote u
[1]
k2

= u
[1](1, :, k2) \rightarrow Rn1 for 1\uparrow k2 \uparrow r2 and u

[d]
kd

= u
[d](kd, ; ,1) \rightarrow Rnd for

1\uparrow kd \uparrow rd, then (2.2) can be rewritten as

\vargamma (\varepsilon u) =
\Biggr) 

1\updownarrow kj\updownarrow rj , 2\updownarrow j\updownarrow d

u
[1]
k2

\downarrow u
[2]
k2,k3

\downarrow · · ·\downarrow u
[2]
kd\uparrow 1,kd

\downarrow u
[d]
kd
.

2.3. Recovery of the underlying graph. In Figures 1 and 2, the construction
of the TR and TT formats requires the prior knowledge of what pairs of 3-tensors are
contracted, or, in other words, the underlying graph of the tensor network structure
(see the blue parts in Figures 1 and 2). Note that, for the TR format, the graph is
simply a loop/ring (hence named the tensor ring) with d vertices and d edges, where
each vertex corresponds to a 3-tensor and is associated with two edges. For the TT
format, the graph is a path of length d\updownarrow 1 that visits all d vertices.

However, such prior knowledge is often inaccessible. In this work, we assume that
the underlying graph is unknown. Since the graph for the TR or TT format is just
a loop or a path, all information carried by the graph is the ordering of the vertices.
This can be specified as a permutation \varpi \rightarrow Sd, which then fixes the neighbors (vertex
with distance 1) of each vertex. For example, one can choose \varpi =

\Biggr\rfloor 
1 2 3 4 5 6 7 8
1 4 2 6 7 5 3 8

\Biggl\lceil 
for

the TR format in Figure 3 and \varpi =
\Biggr\rfloor 
1 2 3 4 5 6 7 8
7 5 3 8 1 4 2 6

\Biggl\lceil 
for the TT format in Figure 4.
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ONE-DIMENSIONAL TENSOR NETWORK RECOVERY 1221

u[1]

u[3]

u[5]

u[7]

u[2]

u[4]u[6]

u[8]

(a) Nodes ordered by physical indices.

u[1]

u[2]

u[7]

u[3]

u[4]

u[6]u[5]

u[8]

(b) Nodes ordered by underlying permuta-
tion.

Fig. 3. TR format with permutation.

u[1]

u[3]

u[5]

u[7]

u[2]

u[4]u[6]

u[8]

(a) Nodes ordered by physical indices.

u[7] u[5] u[3] u[8] u[1] u[4] u[2] u[6]

(b) Nodes ordered by underlying permutation.

Fig. 4. TT format.

We introduce the rigorous notations for the TR and TT formats with permutation as
follows.

2.3.1. TR structure with permutation. Given permutation \varpi \rightarrow Sd, external
dimension \varepsilon n= (n1, n2, . . . , nd), and internal dimension \varepsilon r= (r1, r2, . . . , rd), denote
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1222 ZIANG CHEN, JIANFENG LU, AND ANRU ZHANG

Ud

\omega r,\omega n,\varepsilon 
=

d\Biggl\lfloor 

i=1

Rr\omega \uparrow 1(i)\rightarrow ni\rightarrow r\omega \uparrow 1(i)+1 .

Note that the indices/inputs for \varpi , r, etc., are in the sense of mod d, e.g., \varpi (d+ 1) =
\varpi (1), rd+1 = r1. An element in Ud

\omega r,\omega n,\varepsilon 
can be written as a collection of 3-tensors:

\varepsilon u=
\Biggl[ 
u
[1],u[2], . . . ,u[d]

\Biggr] 
\rightarrow Ud

\omega r,\omega n,\varepsilon 
, u

[i] \rightarrow Rr\omega \uparrow 1(i)\rightarrow ni\rightarrow r\omega \uparrow 1(i)+1 , 1\uparrow i\uparrow d.

Note that the third dimension of u[\varepsilon (j)] coincides with the first dimension of u[\varepsilon (j+1)],
and they both equal ri+1. This corresponds to the fact that, in the graph, there is an
edge connecting the vertices representing u

[\varepsilon (j)] and u
[\varepsilon (j+1)] that can be contracted.

Denote

Ud

\omega r,\omega n
=

\Biggr\rceil 

\varepsilon \nearrow Sd

Ud

\omega r,\omega n,\varepsilon 
\nearrow {\varpi }

that consists of all consistent groups of 3-tensors as well as the permutation. The
map that constructs a d-tensor with TR format is given by

\vargamma : Ud

\omega r,\omega n
\searrow Rn1\rightarrow n2\rightarrow ···\rightarrow nd

(\varepsilon u, \varpi ) \simeq \searrow \vargamma (\varepsilon u, \varpi )

with entries of \vargamma (\varepsilon u, \varpi ) being

\vargamma (\varepsilon u, \varpi )(x1, x2, . . . , xd) = tr
\Biggl[ 
u
[\varepsilon (1)](x\varepsilon (1))u

[\varepsilon (2)](x\varepsilon (2)) · · ·u[\varepsilon (d)](x\varepsilon (d))
\Biggr] 

(2.3)

for 1 \uparrow xi \uparrow ni, 1 \uparrow i \uparrow d, where u
[i](xi) := u

[i](:, xi, :) \rightarrow Rr\omega \uparrow 1(i)\rightarrow r\omega \uparrow 1(i)+1 . One can
also define \vargamma (\varepsilon u, \varpi ) using the tensor product:

\vargamma (\varepsilon u, \varpi ) =
\Biggr) 

1\updownarrow kj\updownarrow rj , 1\updownarrow j\updownarrow d

u
[\varepsilon (1)]
k1,k2

\downarrow u
[\varepsilon (2)]
k2,k3

\downarrow · · ·\downarrow u
[\varepsilon (d)]
kd,k1

,(2.4)

where u
[\varepsilon (j)]
kj ,kj+1

= u
[\varepsilon (j)](kj , :, kj+1)\rightarrow Rn\omega (j) , 1\uparrow kj \uparrow rj , 1\uparrow j \uparrow d, and kd+1 := k1.

One observation is that di""erent permutations may result in the same graph,
i.e., the same pairs of adjacent 3-tensors. More explicitly, let \varrho ,\varsigma \rightarrow Sd be defined
via \varrho (j) = j + 1 and \varsigma (j) = d + 1 \updownarrow j for j = 1,2, . . . , d. Then, for any \varpi , \varpi \uparrow \rightarrow Sd,
their underlying graphs are the same if and only if there exists k \rightarrow {0,1, . . . , d \updownarrow 1}
and \varphi \rightarrow 0,1 such that \varpi \uparrow = \varpi \Leftarrow \varrho k \Leftarrow \varsigma \vargamma . In other words, one divides Sd into several
equivalence classes, and permutations in the same class lead to the same graph. The
equivalence class containing \varpi \rightarrow Sd is

CSd

TR(\varpi ) =
\Biggl\{ 
\varpi \Leftarrow \varrho k \Leftarrow \varsigma \vargamma : k \rightarrow {0,1, . . . , d\updownarrow 1}, \varphi \rightarrow 0,1

\Biggr\} 
.(2.5)

2.3.2. TT structure with permutation. The TT format can still be obtained
from the TR format by fixing r1 = 1, which modifies (2.3) into

\vargamma (\varepsilon u, \varpi )(x1, x2, . . . , xd) = u
[\varepsilon (1)](x\varepsilon (1))u

[\varepsilon (2)](x\varepsilon (2)) · · ·u[\varepsilon (d)](x\varepsilon (d)).

Rewrite (2.4) as

\vargamma (\varepsilon u, \varpi ) =
\Biggr) 

1\updownarrow kj\updownarrow rj , 2\updownarrow j\updownarrow d

u
[\varepsilon (1)]
k2

\downarrow u
[\varepsilon (2)]
k2,k3

\downarrow · · ·\downarrow u
[\varepsilon (d\downarrow 1)]
kd\uparrow 1,kd

\downarrow u
[\varepsilon (d)]
kd

,
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ONE-DIMENSIONAL TENSOR NETWORK RECOVERY 1223

where u
[\varepsilon (1)]
k2

= u
[\varepsilon (1)](1, :, k2) \rightarrow Rn\omega (1) for 1 \uparrow k2 \uparrow r2 and u

[\varepsilon (d)]
kd

= u
[\varepsilon (d)](kd, ; ,1) \rightarrow 

Rn\omega (d) for 1\uparrow kd \uparrow rd.
Similar to the TR case, the permutation corresponding to a graph or path for the

TT format is not unique. The di""erence is that the equivalence class containing \varpi is

CSd

TT(\varpi ) = {\varpi , \varpi \Leftarrow \varsigma }.(2.6)

2.3.3. Tasks and goals. In this work, we study how to infer the unknown
underlying graph for TR and TT structures via observations of entries of the whole
tensor T. More specifically, we would like to find all pairs of 3-tensors for which the
associated vertices are adjacent (connected via an edge), that are (u[\varepsilon (j)],u[\varepsilon (j+1)]),
j = 1,2, . . . , d for TR format, and are (u[\varepsilon (j)],u[\varepsilon (j+1)]), j = 1,2, . . . , d \updownarrow 1 for TT
format. For simplicity, we say two 3-tensors are adjacent if their associated vertices are
adjacent. Our goal is to design algorithms that are e!cient both in sample complexity
(number of observed tensor entries) and computational complexity. To sum up, the
goal of this paper is the following:

Given an oracle that can query (noiseless or noisy) entries of the
whole tensor T = \vargamma (\varepsilon u, \varpi ) \rightarrow Rn1\rightarrow n2\rightarrow ···\rightarrow nd of the TR or TT format,
where (\varepsilon u, \varpi ) \rightarrow Ud

\omega r,\omega n
with \varepsilon u, \varpi , and \varepsilon r unknown, can we recover the

underlying graph, i.e., find some permutation in the equivalence class
CSd

TR(\varpi ) or CSd

TT(\varpi )? If yes, what is the complexity and the proba-
bility of success?

It is worth remarking that two permutations representing the same tensor T do
not always belong to the same equivalence class. For example, if \varepsilon r = (1, . . . ,1), then
T = \vargamma (\varepsilon u, \varpi ) can be represented by either the TR or TT format with respect to any
permutation. To strengthen our argument, we prove in Appendix A that, under
certain conditions, only permutations within the same equivalence class can yield the
identical tensor T. This result establishes the uniqueness of the correct permutation
with respect to the equivalence relation.

A related question is how to identify a permutation that may not be in the
equivalence class CSd

TR(\varpi ) or CSd

TT(\varpi ) but can represent the target tensor T with
acceptable error or acceptably increased bond dimension. Although this topic of
approximate recovery is important, it falls outside the scope of this paper, which
concentrates on the precise recovery of the permutation.

3. Proposed algorithms. In this section, we introduce algorithms for recover-
ing underlying graphs of the TR and TT formats as well as the intuition behind it.
The main idea is divide and conquer: For determining the correct relative positions
of all d indices on a loop (or a path), it su!ces to determine the relative positions of
any given 4 indices (for TR format) or 3 indices (for TT format). Therefore, we first
design algorithms for these subproblems and then recover the whole graph based on
solutions to the subproblems. The TR and TT cases will be covered in sections 3.1
and 3.2, respectively.

3.1. Recovery of the underlying loop for TR format. Given four indices
in some order, a basic question is whether one could travel around the underlying
loop such that the four indices are visited in exactly the same order as given. Note
that four is the smallest number of indices such that the question is nontrivial. Thus,
one can classify the order into “correct” or “incorrect” based on the answer to the
question. It is clear that the classification is independent of rotations and reflections.
Based on this observation, we make the following definitions.
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1224 ZIANG CHEN, JIANFENG LU, AND ANRU ZHANG

Definition 3.1. For the TR format with \varpi \rightarrow Sd being the underlying permutation
and four di!erent indices i1, i2, i3, i4 \rightarrow {1,2, . . . , d}, we say that (i1, i2, i3, i4) is of the
correct order with respect to \varpi if there exists some s \rightarrow {1,2,3,4} such that \varpi \downarrow 1(is)<
\varpi \downarrow 1(is+1) < \varpi \downarrow 1(is+2) < \varpi \downarrow 1(is+3) or \varpi \downarrow 1(is) > \varpi \downarrow 1(is+1) > \varpi \downarrow 1(is+2) > \varpi \downarrow 1(is+3),
where subscript of i· is understood via mod 4.

Figure 3 illustrates an example: (1,2,6,3) is of the correct order, while (1,2,3,6)
is not. For identifying the underlying loop, it su!ces to consider whether four indices
are of the correct order with respect to \varpi due to the following proposition.

Proposition 3.2. Let \varpi , \varpi \uparrow \rightarrow Sd. \varpi \uparrow \rightarrow CSd

TR(\varpi ) if and only if, for any 1 \uparrow j1 <
j2 < j3 < j4 \uparrow d, (\varpi \uparrow (j1), \varpi \uparrow (j2), \varpi \uparrow (j3), \varpi \uparrow (j4)) is of the correct order with respect to \varpi .

The proof of 3.2 is straightforward and omitted.
Next, we focus on the problem of determining the correct order of four spe-

cific indices i1, i2, i3, i4 \rightarrow {1,2, . . . , d}. The main idea is to construct three matri-
ces and compare their ranks or singular values. More specifically, the three ma-
trices are M(i1,i2),(i3,i4) \rightarrow R(ni1ni2 )\rightarrow (ni3ni4 ), M(i1,i3),(i2,i4) \rightarrow R(ni1ni3 )\rightarrow (ni2ni4 ), and
M(i1,i4),(i2,i3) \rightarrow R(ni1ni4 )\rightarrow (ni2ni3 ) defined via matricization of the tensor:

M(i1,i2),(i3,i4)((xi1 , xi2), (xi3 , xi4))

=\vargamma (\varepsilon u, \varpi )(y1, . . . , yi\rightarrow 1\downarrow 1, xi
\rightarrow 
1
, yi\rightarrow 1+1, . . . , yi\rightarrow 2\downarrow 1, xi

\rightarrow 
2
,

yi\rightarrow 2+1, . . . , yi\rightarrow 3\downarrow 1, xi
\rightarrow 
3
, yi\rightarrow 3+1, . . . , yi\rightarrow 4\downarrow 1, xi

\rightarrow 
4
, yi\rightarrow 4+1, . . . , yd),

(3.1)

M(i1,i3),(i2,i4)((xi1 , xi3), (xi2 , xi4)) =M(i1,i2),(i3,i4)((xi1 , xi2), (xi3 , xi4)),(3.2)

and

M(i1,i4),(i2,i3)((xi1 , xi4), (xi2 , xi3)) =M(i1,i2),(i3,i4)((xi1 , xi2), (xi3 , xi4))(3.3)

for 1 \uparrow xis \uparrow nis , 1 \uparrow s \uparrow 4, where {i\uparrow 1, i\uparrow 2, i\uparrow 3, i\uparrow 4} = {i1, i2, i3, i4}, 1 \uparrow i\uparrow 1 < i\uparrow 2 < i\uparrow 3 <
i\uparrow 4 \uparrow d, and yi \rightarrow {1,2, . . . , ni} is a fixed index for each i \rightarrow {1,2, . . . , d}\{i1, i2, i3, i4}.
These three matrices can be constructed by calling the oracle that returns entries of
T= \vargamma (\varepsilon u, \varpi ). Intuitively, if (i1, i2, i3, i4) is of the correct order, r1 = r2 = · · ·= rd =R,
and \varepsilon n is large enough, then rank(M(i1,i3),(i2,i4)) = R4, while rank(M(i1,i2),(i3,i4)) and
rank(M(i1,i4),(i2,i3)) are at most R2, as shown in Figure 5. This leads to the design of
Algorithm 3.1. An input R, ideally an approximation of the bond dimension of the
TR structure, is required in Algorithm 3.1. We will discuss the selection of R later.

Remark 3.3. In the noiseless case, where entries of T = \vargamma (\varepsilon u, \varpi ) can be observed
exactly, noticing (4.4), one can replace the comparison of the R4th largest singular
values of M(i1,i2),(i3,i4), M(i1,i3),(i2,i4), and M(i1,i4),(i2,i3) by the comparison of the
ranks of these three matrices. Then, Algorithm 3.1 can be implemented even if the
positive integer R approximating the bond dimension is unknown.

Now, we consider our goal of obtaining some \varpi \uparrow \rightarrow CSd

TR(\varpi ). By Proposition 3.2,
it su!ces to find some \varpi \uparrow \rightarrow Sd such that (\varpi \uparrow (j1), \varpi \uparrow (j2), \varpi \uparrow (j3), \varpi \uparrow (j4)) is of the correct
order with respect to \varpi . Note that Algorithm 3.1 can return the correct order of
any four indices that fits the requirement on the desired \varpi \uparrow . So, the idea is to apply
Algorithm 3.1 repeatedly and to extend the sequence of indices in the correct order.
We make this idea more precise in Definition 3.4.

Definition 3.4. For the TR format, let \varpi \rightarrow Sd, and let (i1, i2, . . . , it) be a per-
mutation of t di!erent indices in {1,2, . . . , d}, 4 \uparrow t \uparrow d. Then, (i1, i2, . . . , it) is said
to be consistent with \varpi if (ij1 , ij2 , ij3 , ij4) is of the correct order with respect to \varpi for
any 1\uparrow j1 < j2 < j3 < j4 \uparrow t.
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ONE-DIMENSIONAL TENSOR NETWORK RECOVERY 1225

u[i1]

u[i2] u[i3]

u[i4]

(a) M(i1,i2),(i3,i4).

u[i1]

u[i4] u[i3]

u[i2]

(b) M(i1,i4),(i2,i3).

u[i1]

u[i3] u[i4]

u[i2]

(c) M(i1,i3),(i2,i4).

Fig. 5. Intuition of Algorithm 3.1: When (i1, i2, i3, i4) is of the correct order, the rank of
M(i1,i2),(i3,i4) and M(i1,i4),(i2,i3) is at most R2, while the rank of M(i1,i3),(i2,i4) is generically at

least R4. The reason is that the number of blue lines connecting red boxes is two in (a) and (b) but
four in (c), where red boxes group the column indices in the matricization.

Algorithm 3.1. Determine the order of four indices for the TR format.

1: Input: Four indices i1, i2, i3, i4 \rightarrow {1,2, . . . , d}, R \rightarrow N+ approximating the bond
dimension, and an oracle computing entries of T=\vargamma (\varepsilon u, \varpi ).

2: Sample yi \rightarrow {1,2, . . . , ni} for i\rightarrow {1,2, . . . , d}\{i1, i2, i3, i4}.
3: Construct matrices M(i1,i2),(i3,i4), M(i1,i3),(i2,i4), and M(i1,i4),(i2,i3) via (3.1),

(3.2), and (3.3).
4: if \omega R4(M(i1,i2),(i3,i4))>max{\omega R4(M(i1,i3),(i2,i4)),\omega R4(M(i1,i4),(i2,i3))} then

5: Return (i1, i3, i2, i4).
6: end if

7: if \omega R4(M(i1,i3),(i2,i4))>max{\omega R4(M(i1,i2),(i3,i4)),\omega R4(M(i1,i4),(i2,i3))} then

8: Return (i1, i2, i3, i4).
9: end if

10: if \omega R4(M(i1,i4),(i2,i3))>max{\omega R4(M(i1,i2),(i3,i4)),\omega R4(M(i1,i3),(i2,i4))} then

11: Return (i1, i2, i4, i3).
12: end if

Suppose that 4 \uparrow t < d and we already have a permutation of (1,2, . . . , t), say,
(i1, i2, . . . , it), that is consistent with the correct complete order \varpi . We then aim to
insert (t+ 1) into the right position in (i1, i2, . . . , it) that maintains the consistency
with \varpi . For any 1 \uparrow j1 < j2 < j3 \uparrow t, one can run Algorithm 3.1 for t + 1, ij1 ,
ij2 , and ij3 to determine where t+ 1 should be inserted: 1) between ij1 and ij2 , 2)
between ij2 and ij3 , or 3) before ij1 or after ij3 . Then, one can apply the technique
similar to binary search to find the correct position of t+1 by running Algorithm 3.1
for at most O(log t) times and hence obtaining a permutation of (1,2, . . . , t+ 1), say,
(i1, i2, . . . , it+1), that is still consistent with \varpi . The whole procedure is outlined in
Algorithm 3.2.
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1226 ZIANG CHEN, JIANFENG LU, AND ANRU ZHANG

Algorithm 3.2. Recover the underlying graph for the TR format.

1: Input: R \rightarrow N+ approximating the bond dimension and a oracle computing
entries of T=\vargamma (\varepsilon u, \varpi ).

2: Let (i1, i2, i3, i4) be the output of Algorithm 3.1 with the input four indices
being 1,2,3,4.

3: for t= 4 : d\updownarrow 1 do

4: jmin = 1, jmax = t+ 1. {Use the idea of binary search to find a location in
(i1, i2, . . . , it) such that inserting t+ 1 maintains the consistency with \varpi .}

5: while jmax \updownarrow jmin \Rightarrow 2 do

6: if jmax \updownarrow jmin \Rightarrow 3 then

7: j1 = jmin, j2 = jmin + \Uparrow 1
3 · (jmax \updownarrow jmin)\Downarrow , j3 = jmin + \Uparrow 2

3 · (jmax \updownarrow jmin)\Downarrow .
8: else if jmax \uparrow t then
9: j1 = jmin, j2 = jmin + 1, j3 = jmax.
10: else

11: j1 = 1, j2 = t\updownarrow 1, j3 = t.
12: end if

13: Run Algorithm 3.1 with input being t+ 1, ij1 , ij2 , and ij3 .
14: if the output of Algorithm 3.1 is equivalent to (ij1 , t+ 1, ij2 , ij3) then
15: jmin = j1, jmax = j2.
16: else if the output of Algorithm 3.1 is equivalent to (ij1 , ij2 , t+ 1, ij3) then
17: jmin = j2, jmax = j3.
18: else

19: jmin = j3.
20: end if

21: end while

22: (i1, i2, . . . , it+1) = (i1, i2, . . . , ijmin , t+ 1, ijmax , ijmax+1, . . . , it).
23: end for

24: Return \varpi \uparrow \rightarrow Sd with \varpi \uparrow (j) = ij , 1\uparrow j \uparrow d.

Remark 3.5. Algorithm 3.2 combines the partial order of four indices output by
Algorithm 3.1 to recover the order of all d indices. To make the overall procedure
more robust, one can run Algorithm 3.1 several times on each quadruplet (t+ 1, ij1 ,
ij2 , ij3) and take the majority vote of the outputs to determine their order.

Algorithm 3.2 can be implemented by observing O(d logd · n4
max) entries of T =

\vargamma (\varepsilon u, \varpi ) and computing the R4th singular value of O(d logd) matrices of size no larger
than n2

max\nearrow n2
max, where nmax =max1\updownarrow i\updownarrow d ni. The total complexity of Algorithm 3.2

is O(d logd · n6
max). (Recall that the computational complexity of SVD is O(m1m2 ·

min{m1,m2}) for a m1 \nearrow m2 matrix [35].) It is also possible to further reduce the
computational complexity using randomized SVD (see, e.g., [11]), but we will not go
into the details here.

3.2. Recovery of the underlying path for TT format. The idea for recov-
ering the underlying graph of the TT format is similar to that of the TR format. The
di""erence is that the rotational invariance of the TR format no longer holds for the
TT format; i.e., \varrho \rightarrow Sd defined via \varrho (j) = j + 1, j \rightarrow {1,2, . . . , d} appears in (2.5),
but not in (2.6). Therefore, the ordering of four indices in TT format has 12 di""erent
cases, much more complicated than in TR format. As an alternative, we consider the
relative positions of three indices, which leads to the simplest nontrivial subproblems
and is defined below with reflective invariance.
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ONE-DIMENSIONAL TENSOR NETWORK RECOVERY 1227

Definition 3.6. For the TT format with \varpi \rightarrow Sd being the underlying permutation
and three di!erent indices i1, i2, i3 \rightarrow {1,2, . . . , d}, we say that (i1, i2, i3) is of the correct
order with respect to \varpi if \varpi \downarrow 1(i1)< \varpi \downarrow 1(i2)< \varpi \downarrow 1(i3) or \varpi \downarrow 1(i3)< \varpi \downarrow 1(i2)< \varpi \downarrow 1(i1).

Similarly, the relative positions of all triples of indices provide all information
about the underlying permutation up to reflection.

Proposition 3.7. Let \varpi , \varpi \uparrow \rightarrow Sd. \varpi \uparrow \rightarrow CSd

TR(\varpi ) if and only if, for any 1 \uparrow j1 <
j2 < j3 \uparrow d, (\varpi \uparrow (j1), \varpi \uparrow (j2), \varpi \uparrow (j3)) is of the correct order with respect to \varpi .

For any three indices i1, i2, i3, determining their order can still be done by in-
vestigating three matrices obtained by down-sampling and reshaping/matricizing,
analogous to the TR case: Mi1,(i2,i3) \rightarrow Rni1\rightarrow (ni2ni3 ), Mi2,(i3,i1) \rightarrow Rni2\rightarrow (ni3ni1 ), and
Mi3,(i1,i2) \rightarrow Rni3\rightarrow (ni1ni2 ) with entries being

Mi1,(i2,i3)(xi1 , (xi2 , xi3))

= \varpi (\varepsilon u, \varpi )(y1, . . . , yi\rightarrow 1\downarrow 1, xi
\rightarrow 
1
, yi\rightarrow 1+1, . . . , yi\rightarrow 2\downarrow 1,

xi
\rightarrow 
2
, yi\rightarrow 2+1, . . . , yi\rightarrow 3\downarrow 1, xi

\rightarrow 
3
, yi\rightarrow 3+1, . . . , yd),

(3.4)

Mi2,(i3,i1)(xi2 , (xi3 , xi1)) =Mi1,(i2,i3)(xi1 , (xi2 , xi3)),(3.5)

and

Mi3,(i1,i2)(xi3 , (xi1 , xi2)) =Mi1,(i2,i3)(xi1 , (xi2 , xi3))(3.6)

for 1 \uparrow xis \uparrow nis , 1 \uparrow s \uparrow 3, where {i\uparrow 1, i\uparrow 2, i\uparrow 3} = {i1, i2, i3}, 1 \uparrow i\uparrow 1 < i\uparrow 2 < i\uparrow 3 \uparrow d, and
yi \rightarrow {1,2, . . . , ni} is a fixed index for each i\rightarrow {1,2, . . . , d}\{i1, i2, i3}. Similar to the TR
case, one can obtain some intuition by considering the case with r2 = r3 = · · ·= rd =R
and su!ciently large \varepsilon n: If (i1, i2, i3) is of the correct order, then the ranks of Mi1,(i2,i3)

and Mi3,(i1,i2) are both no larger than R, while the rank of Mi2,(i3,i1) could be R2.
This is shown in Figure 6. A more precise procedure is stated in Algorithm 3.3 that
is based on R \rightarrow N+, which is an approximation to the bond dimension.

Similarly, Algorithm 3.3 can also be implemented without knowing R in the noise-
less case. The idea of building a final algorithm based on Algorithm 3.3 is also similar
to that of the TR format, and we would need the following definition.

Definition 3.8. Let \varpi \rightarrow Sd, and let (i1, i2, . . . , it) be a permutation of t di!erent
indices in {1,2, . . . , d}, 3 \uparrow t \uparrow d. Then, (i1, i2, . . . , it) is said to be consistent with \varpi 
if (ij1 , ij2 , ij3) is of the correct order with respect to \varpi for any 1\uparrow j1 < j2 < j3 \uparrow t.

Similar to the TR case, we may recover the whole path by inserting indices one
by one. Suppose that, for 3 \uparrow t \uparrow d \updownarrow 1, (1,2, . . . , t) is permuted to (i1, i2, . . . , it)
that is consistent with \varpi , and one aims to insert t+1 and keeps the consistency. For
any 1 \uparrow j1 < j2 \uparrow t, the output of Algorithm 3.3 with the three input indices being
t+ 1, ij1 , and ij2 indicates that whether t+ 1 should be placed before ij1 , between
ij1 and ij2 , or after ij2 . By using a similar idea as in the binary search, one could
identify the correct position to insert t+1 by calling Algorithm 3.3 for O(logn) times.
Algorithm 3.4 displays the whole procedure.

Similar to Algorithm 3.2, Algorithm 3.4 also collects and combines partial infor-
mation, and there are other approaches such as majority vote. In addition, the com-
plexity of Algorithm 3.4 is also similar to that of Algorithm 3.2, which is polynomial in
d. More specifically, implementing Algorithm 3.4 requires observing O(d logd · n3

max)
entries of T = \vargamma (\varepsilon u, \varpi ) and computing the R2th largest singular value of O(d logd)
matrices whose sizes are at most nmax \nearrow n2

max with nmax = max1\updownarrow i\updownarrow d ni, leading to
the overall complexity O(d logd · n4

max).
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1228 ZIANG CHEN, JIANFENG LU, AND ANRU ZHANG

u[i1]

u[i2]

u[i3]

(a) Mi1,(i2,i3).

u[i1]

u[i2]

u[i3]

(b) Mi3,(i1,i2).

u[i3]

u[i1]

u[i2]

(c) Mi2,(i3,i1).

Fig. 6. Illustration of the intuition of Algorithm 3.3: When (i1, i2, i3) is of the correct order,
the rank of Mi1,(i2,i3) and Mi3,(i1,i2) is at most R, while the rank of Mi2,(i3,i1) is generically at

least R
2. The reason is that the number of blue lines connecting the red box and the node outside

the red box is one in (a) and (b) but two in (c), where red boxes group the column indices in the
matricization.

Algorithm 3.3. Determine the order of three indices for the TT format.

1: Input: Three indices i1, i2, i3 \rightarrow {1,2, . . . , d}, R \rightarrow N+ approximating the bond
dimension, and an oracle computing entries of T=\vargamma (\varepsilon u, \varpi ).

2: Sample yi \rightarrow {1,2, . . . , ni} for i\rightarrow {1,2, . . . , d}\{i1, i2, i3}.
3: Construct matrices Mi1,(i2,i3), Mi2,(i3,i1), and Mi3,(i1,i2) via (3.4), (3.5), and

(3.6).
4: if \omega R2(Mi1,(i2,i3))>max

\Biggl\{ 
\omega R2(Mi2,(i3,i1)),\omega R2(Mi3,(i1,i2))

\Biggr\} 
then

5: Return (i2, i1, i3).
6: end if

7: if \omega R2(Mi2,(i3,i1))>max
\Biggl\{ 
\omega R2(Mi3,(i1,i2)),\omega R2(Mi1,(i2,i3))

\Biggr\} 
then

8: Return (i1, i2, i3).
9: end if

10: if \omega R2(Mi3,(i1,i2))>max
\Biggl\{ 
\omega R2(Mi1,(i2,i3)),\omega R2(Mi2,(i3,i1))

\Biggr\} 
then

11: Return (i2, i3, i1).
12: end if

4. Analysis of the algorithms. In this section, we establish the theoretical
guarantees for the algorithms displayed in section 3. In section 4.1, we analyze the
noiseless case and establish that Algorithms 3.1 3.2, 3.3, and 3.4 recover the correct
order unless the data lie in a measure-zero set with respect to the Lebesgue measure
(note that Ud

\omega r,\omega n,\varepsilon 
is a Euclidean space). Section 4.2 considers the noisy case and pro-

vides high-probability guarantees when the observation is contaminated by Gaussian
noise.

4.1. Recovery in the noiseless case. We show that Algorithm 3.1 returns the
correct order of any four given indices when the observation is noiseless (Theorem 4.2).
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ONE-DIMENSIONAL TENSOR NETWORK RECOVERY 1229

Algorithm 3.4. Recover the underlying graph for the TT format.

1: Input: R \rightarrow N+ approximating the bond dimension and a oracle computing
entries of T=\vargamma (\varepsilon u, \varpi ).

2: Let (i1, i2, i3) be the output of Algorithm 3.3 with the input three indices being
1,2,3.

3: for t= 3 : d\updownarrow 1 do

4: jmin = 0, jmax = t+ 1. {Use the idea of binary search to find a location in
(i1, i2, . . . , it) such that inserting t+ 1 maintains the consistency with \varpi .}

5: while jmax \updownarrow jmin \Rightarrow 2 do

6: if jmax \updownarrow jmin \Rightarrow 3 then

7: j1 = jmin + \Uparrow 1
3 · (jmax \updownarrow jmin)\Downarrow , j2 = jmin + \Uparrow 2

3 · (jmax \updownarrow jmin)\Downarrow .
8: else if jmin \Rightarrow 1 then

9: j1 = jmin, j2 = jmin + 1.
10: else

11: j1 = 1, j2 = 2.
12: end if

13: Run Algorithm 3.3 with input being t+ 1, ij1 , and ij2 .
14: if the output of Algorithm 3.3 is (t+ 1, ij1 , ij2) or (ij2 , ij1 , t+ 1) then
15: jmax = j1.
16: else if the output of Algorithm 3.3 is (ij1 , t+ 1, ij2) or (ij2 , t+ 1, ij1) then
17: jmin = j1, jmax = j2.
18: else

19: jmin = j2.
20: end if

21: end while

22: (i1, i2, . . . , it+1) = (i1, i2, . . . , ijmin , t+ 1, ijmax , ijmax+1, . . . , it).
23: end for

24: Return \varpi \uparrow \rightarrow Sd with \varpi \uparrow (j) = ij , 1\uparrow j \uparrow d.

This result further implies that Algorithm 3.2 returns the correct complete order of
all d nodes (Corollary 4.3).

Our analysis requires the assumption that the bond dimension \varepsilon r is relatively small
compared to the physical dimension \varepsilon n. Although this does not cover all tensors in
TT/TR format, there exist some interesting tensors with small bond dimensions, such
as the TR representing the Ising spin glass in [17] and the discrete Laplace with TT
format in [27]. In addition, we require that the minimal element in the bond dimension
\varepsilon r is comparable with the maximal one. More precise statements of the assumptions
can be found in Assumption 4.1 for the TR format (and in Assumption 4.7 for the
TT format).

Assumption 4.1. The input R \rightarrow N+ in Algorithms 3.1 and 3.2 satisfies

min
1\updownarrow i\updownarrow d

ni \Rightarrow R2 > max
1\updownarrow j\updownarrow d

rj and min
1\updownarrow j\updownarrow d

rj \Rightarrow R.

Theorem 4.2. For the TR format, suppose that Assumption 4.1 holds and one
can compute the entries of T = \vargamma (\varepsilon u, \varpi ) exactly. Then, for any \varpi \rightarrow Sd and any four
indices i1, i2, i3, i4 \rightarrow {1,2, . . . , d}, the output of Algorithm 3.1 is of the correct order
with respect to \varpi unless \varepsilon u is in a measure-zero set of Ud

\omega r,\omega n,\varepsilon 
.
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1230 ZIANG CHEN, JIANFENG LU, AND ANRU ZHANG

Corollary 4.3. In the same setting as in Theorem 4.2, for any \varpi \rightarrow Sd, Algo-
rithm 3.2 can return some element in CSd

TR(\varpi ) unless \varepsilon u is in a measure-zero set of
Ud

\omega r,\omega n,\varepsilon 
.

For proving Theorem 4.2, we assume that (i1, i2, i3, i4) is of the correct order
with respect to \varpi , is = \varpi (js) for s = 1,2,3,4 and 1 \uparrow j1 < j2 < j3 < j4 \uparrow d without
loss of generality. The following Lemmas 4.4 and 4.5 establish the upper bounds of
rank(M(i1,i2),(i3,i4)) and rank(M(i1,i4),(i2,i3)) and a lower bound of rank(M(i1,i3),(i2,i4)),
respectively.

Lemma 4.4. Suppose that 1 \uparrow j1 < j2 < j3 < j4 \uparrow d and that is = \varpi (js), s =
1,2,3,4. Then, for any \varepsilon u\rightarrow Ud

\omega r,\omega n,\varepsilon 
, it holds that

rank(M(i1,i2),(i3,i4))\uparrow min
j2+1\updownarrow j\updownarrow j3

rj · min
j4+1\updownarrow j\updownarrow j1

rj(4.1)

and similarly that

rank(M(i1,i4),(i2,i3))\uparrow min
j1+1\updownarrow j\updownarrow j2

rj · min
j3+1\updownarrow j\updownarrow j4

rj ,(4.2)

where the index j is understood up to mod d.

Proof. We only prove (4.1). The proof of (4.2) follows the same argument and is
thus omitted. Set

j\uparrow = arg min
j2+1\updownarrow j\updownarrow j3

rj and j\uparrow \uparrow = arg min
j4+1\updownarrow j\updownarrow j1

rj .

The main idea of the proof is to express the matricization of T = \vargamma (\varepsilon u, \varpi ) with two
indices grouping x\varepsilon (j\rightarrow \rightarrow ), x\varepsilon (j\rightarrow \rightarrow +1), . . . , x\varepsilon (j\rightarrow \downarrow 1) and x\varepsilon (j\rightarrow ), x\varepsilon (j\rightarrow +1), . . . , x\varepsilon (j\rightarrow \rightarrow \downarrow 1) as the
product of two matrices through reindexing of the TR format. The sizes of two matri-
ces are (n\varepsilon (j\rightarrow \rightarrow )n\varepsilon (j\rightarrow \rightarrow +1) · · ·n\varepsilon (j\rightarrow \downarrow 1))\nearrow (rj\rightarrow rj\rightarrow \rightarrow ) and (rj\rightarrow rj\rightarrow \rightarrow )\nearrow (n\varepsilon (j\rightarrow )n\varepsilon (j\rightarrow +1) · · ·n\varepsilon (j\rightarrow \rightarrow \downarrow 1)),
respectively. More specifically, consider

M̃ \rightarrow R(n\omega (j\rightarrow \rightarrow )n\omega (j\rightarrow \rightarrow +1)···n\omega (j\rightarrow \uparrow 1))\rightarrow (n\omega (j\rightarrow )n\omega (j\rightarrow +1)···n\omega (j\rightarrow \rightarrow \uparrow 1))

defined via

M̃
\Biggr\rfloor 
(x\varepsilon (j\rightarrow \rightarrow ), x\varepsilon (j\rightarrow \rightarrow +1), . . . , x\varepsilon (j\rightarrow \downarrow 1)), (x\varepsilon (j\rightarrow ), x\varepsilon (j\rightarrow +1), . . . , x\varepsilon (j\rightarrow \rightarrow \downarrow 1))

\Biggl\lceil 

= \varpi (\varepsilon u, \varpi )(x1, x2, . . . , xd)

= tr(u[\varepsilon (1)](x\varepsilon (1))u
[\varepsilon (2)](x\varepsilon (2)) · · ·u[\varepsilon (d)](x\varepsilon (d)))

= tr
\Biggl[ 
u
[\varepsilon (j\rightarrow \rightarrow )](x\varepsilon (j\rightarrow \rightarrow ))u

[\varepsilon (j\rightarrow \rightarrow +1)](x\varepsilon (j\rightarrow \rightarrow +1)) · · ·u[\varepsilon (j\rightarrow \downarrow 1)](x\varepsilon (j\rightarrow \downarrow 1))

·u[\varepsilon (j\rightarrow )](x\varepsilon (j\rightarrow ))u
[\varepsilon (j\rightarrow +1)](x\varepsilon (j\rightarrow +1)) · · ·u[\varepsilon (j\rightarrow \rightarrow \downarrow 1)](x\varepsilon (j\rightarrow \rightarrow \downarrow 1))

\Biggr] 

for 1\uparrow xi \uparrow ni, 1\uparrow i\uparrow d. Note that

u
[\varepsilon (j\rightarrow \rightarrow )](x\varepsilon (j\rightarrow \rightarrow ))u

[\varepsilon (j\rightarrow \rightarrow +1)](x\varepsilon (j\rightarrow \rightarrow +1)) · · ·u[\varepsilon (j\rightarrow \downarrow 1)](x\varepsilon (j\rightarrow \downarrow 1))\rightarrow Rrj\rightarrow \rightarrow \rightarrow rj\rightarrow 

and

u
[\varepsilon (j\rightarrow )](x\varepsilon (j\rightarrow ))u

[\varepsilon (j\rightarrow +1)](x\varepsilon (j\rightarrow +1)) · · ·u[\varepsilon (j\rightarrow \rightarrow \downarrow 1)](x\varepsilon (j\rightarrow \rightarrow \downarrow 1))\rightarrow Rrj\rightarrow \rightarrow rj\rightarrow \rightarrow .

Let us define two matrices

N1 \rightarrow R(n\omega (j\rightarrow \rightarrow )n\omega (j\rightarrow \rightarrow +1)···n\omega (j\rightarrow \uparrow 1))\rightarrow (rj\rightarrow rj\rightarrow \rightarrow )
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ONE-DIMENSIONAL TENSOR NETWORK RECOVERY 1231

and

N2 \rightarrow R(rj\rightarrow rj\rightarrow \rightarrow )\rightarrow (n\omega (j\rightarrow )n\omega (j\rightarrow +1)···n\omega (j\rightarrow \rightarrow \uparrow 1))

as

N1

\Biggr\rfloor 
(x\varepsilon (j\rightarrow \rightarrow ), x\varepsilon (j\rightarrow \rightarrow +1), . . . , x\varepsilon (j\rightarrow \downarrow 1)), (kj\rightarrow , kj\rightarrow \rightarrow )

\Biggl\lceil 

:=
\Biggl[ 
u
[\varepsilon (j\rightarrow \rightarrow )](x\varepsilon (j\rightarrow \rightarrow ))u

[\varepsilon (j\rightarrow \rightarrow +1)](x\varepsilon (j\rightarrow \rightarrow +1)) · · ·u[\varepsilon (j\rightarrow \downarrow 1)](x\varepsilon (j\rightarrow \downarrow 1))
\Biggr] 

kj\rightarrow \rightarrow ,kj\rightarrow 

and

N2

\Biggr\rfloor 
(kj\rightarrow , kj\rightarrow \rightarrow ), (x\varepsilon (j\rightarrow ), x\varepsilon (j\rightarrow +1), . . . , x\varepsilon (j\rightarrow \rightarrow \downarrow 1))

\Biggl\lceil 

:=
\Biggl[ 
u
[\varepsilon (j\rightarrow )](x\varepsilon (j\rightarrow ))u

[\varepsilon (j\rightarrow +1)](x\varepsilon (j\rightarrow +1)) · · ·u[\varepsilon (j\rightarrow \rightarrow \downarrow 1)](x\varepsilon (j\rightarrow \rightarrow \downarrow 1))
\Biggr] 

kj\rightarrow ,kj\rightarrow \rightarrow 
,

where 1\uparrow xi \uparrow ni, 1\uparrow i\uparrow d, and 1\uparrow kj\rightarrow \uparrow rj\rightarrow , 1\uparrow kj\rightarrow \rightarrow \uparrow rj\rightarrow \rightarrow . Therefore, it holds that

M̃
\Biggr\rfloor 
(x\varepsilon (j\rightarrow \rightarrow ), x\varepsilon (j\rightarrow \rightarrow +1), . . . , x\varepsilon (j\rightarrow \downarrow 1)), (x\varepsilon (j\rightarrow ), x\varepsilon (j\rightarrow +1), . . . , x\varepsilon (j\rightarrow \rightarrow \downarrow 1))

\Biggl\lceil 

= tr
\Biggl[ 
u
[\varepsilon (j\rightarrow \rightarrow )](x\varepsilon (j\rightarrow \rightarrow ))u

[\varepsilon (j\rightarrow \rightarrow +1)](x\varepsilon (j\rightarrow \rightarrow +1)) · · ·u[\varepsilon (j\rightarrow \downarrow 1)](x\varepsilon (j\rightarrow \downarrow 1))

·u[\varepsilon (j\rightarrow )](x\varepsilon (j\rightarrow ))u
[\varepsilon (j\rightarrow +1)](x\varepsilon (j\rightarrow +1)) · · ·u[\varepsilon (j\rightarrow \rightarrow \downarrow 1)](x\varepsilon (j\rightarrow \rightarrow \downarrow 1))

\Biggr] 

=

rj\rightarrow \Biggr) 

kj\rightarrow =1

rj\rightarrow \rightarrow \Biggr) 

kj\rightarrow \rightarrow =1

\Biggl[ 
u
[\varepsilon (j\rightarrow \rightarrow )](x\varepsilon (j\rightarrow \rightarrow ))u

[\varepsilon (j\rightarrow \rightarrow +1)](x\varepsilon (j\rightarrow \rightarrow +1)) · · ·u[\varepsilon (j\rightarrow \downarrow 1)](x\varepsilon (j\rightarrow \downarrow 1))
\Biggr] 

kj\rightarrow \rightarrow ,kj\rightarrow 

·
\Biggl[ 
u
[\varepsilon (j\rightarrow )](x\varepsilon (j\rightarrow ))u

[\varepsilon (j\rightarrow +1)](x\varepsilon (j\rightarrow +1)) · · ·u[\varepsilon (j\rightarrow \rightarrow \downarrow 1)](x\varepsilon (j\rightarrow \rightarrow \downarrow 1))
\Biggr] 

kj\rightarrow ,kj\rightarrow \rightarrow 

=N1

\Biggr\rfloor 
(x\varepsilon (j\rightarrow \rightarrow ), x\varepsilon (j\rightarrow \rightarrow +1), . . . , x\varepsilon (j\rightarrow \downarrow 1)), :

\Biggl\lceil 
N2

\Biggr\rfloor 
:, (x\varepsilon (j\rightarrow ), x\varepsilon (j\rightarrow +1), . . . , x\varepsilon (j\rightarrow \rightarrow \downarrow 1))

\Biggl\lceil 
.

This implies that M̃ = N1N2 and hence that rank(M̃) \uparrow rj\rightarrow rj\rightarrow \rightarrow , which implies (4.1)
because M(i1,i2),(i3,i4) is a submatrix of M̃ .

Lemma 4.5. Suppose that 1 \uparrow j1 < j2 < j3 < j4 \uparrow d and that is = \varpi (js), s =
1,2,3,4. Let R1,R2,R3,R4 satisfy

Rs \uparrow min
js+1\updownarrow j\updownarrow js+1

rj and nis \Rightarrow Rs\downarrow 1Rs, 1\uparrow s\uparrow 4,

where the subscript of R· and j· is understood via mod 4. Then, the following holds
unless \varepsilon u is in a measure-zero set of Ud

\omega r,\omega n,\varepsilon 
:

rank(M(i1,i3),(i2,i4))\Rightarrow R1R2R3R4.(4.3)

Remark 4.6. The main technique used in the proof of Lemma 4.5 is to establish
the equivalence between the points in Ud

\omega r,\omega n,\varepsilon 
violating (4.3) with common roots of a

class of polynomials. Note that the measure of the root set of a nonzero polynomial is
zero; one only needs to show that some polynomial is nonzero, for which constructing
a point that is not a common root su!ces.

Proof of Lemma 4.5. One has ni1ni3 \Rightarrow R̃ and ni2ni4 \Rightarrow R̃ with R̃ = R1R2R3R4.
We denote N =

\Biggr\rfloor 
n1n2

R̃

\Biggl\lceil 
·
\Biggr\rfloor 
n3n4

R̃

\Biggl\lceil 
, which is the number of R\nearrow R minors in a n1n2\nearrow n3n4

matrix. Consider

f\vargamma : Ud

\omega r,\omega n,\varepsilon 
\searrow R,

\varepsilon u \simeq \searrow det(M (\vargamma )
(i1,i3),(i2,i4)

),
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1232 ZIANG CHEN, JIANFENG LU, AND ANRU ZHANG

where M (\vargamma )
(i1,i3),(i2,i4)

denotes the \varphi th R \nearrow R minor of M(i1,i3),(i2,i4), for 1 \uparrow \varphi \uparrow N .
Observe that f\vargamma is a homogeneous polynomial over entries of \varepsilon u.

For \varepsilon u \rightarrow Ud

\omega r,\omega n,\varepsilon 
, the corresponding M(i1,i3),(i2,i4) satisfies rank(M(i1,i3),(i2,i4)) < R

if and only if

\varepsilon u\rightarrow V(f1, f2, . . . , fN )\leftrightarrow Ud

\omega r,\omega n,\varepsilon 
,

where V(f1, f2, . . . , fN ) is the zero locus of the ideal generated by {f1, f2, . . . , fN}, i.e.,
the set of common roots of f1, f2, . . . , fN . To prove that V(f1, f2, . . . , fN ) is of measure
zero, it su!ces to show that at least one of f1, f2, . . . , fN is a nonzero polynomial.
Therefore, one only needs to construct a \varepsilon u \rightarrow Ud

\omega r,\omega n,\varepsilon 
satisfying \varepsilon u /\rightarrow V(f1, f2, . . . , fN );

i.e., the rank of the matrix M(i1,i3),(i2,i4) associated with \varepsilon u is at least R̃.
Let us then construct such a \varepsilon u=

\Biggr\rfloor 
u
[1],u[2], . . . ,u[d]

\Biggl\lceil 
. We denote ep,r as the vector

in Rr with the pth entry being 1 and other entries being 0. Set

u
[\varepsilon (js)](x\varepsilon (js))

=

\Biggl\langle 
ep,rjs e

\searrow 
q,rjs+1

if x\varepsilon (js) = (p\updownarrow 1)Rs + q, 1\uparrow p\uparrow Rs\downarrow 1, 1\uparrow q\uparrow Rs,

0rjs\rightarrow rjs+1 if Rs\downarrow 1Rs <x\varepsilon (js) \uparrow nis

for s= 1,2,3,4, and

u
[i](yi) =

Rs\Biggr) 

p=1

ep,r\omega \uparrow 1(i)
e\searrow 
p,r\omega \uparrow 1(i)+1

for i \rightarrow {1,2, . . . , d}\{i1, i2, i3, i4}, where s is the unique index in {1,2,3,4} such that
js < \varpi \downarrow 1(i) < js+1. Then, we can compute for x\varepsilon (js) = (ps \updownarrow 1)Rs + qs, where
1\uparrow ps \uparrow Rs\downarrow 1, 1\uparrow qs \uparrow Rs, and 1\uparrow s\uparrow 4, that

M(i1,i3),(i2,i4)((xi1 , xi3), (xi32, xi4))

=M(i1,i3),(i2,i4)((x\varepsilon (j1), x\varepsilon (j3)), (x\varepsilon (j2), x\varepsilon (j4)))

= tr

\Biggr\rangle 
4\Bigg/ 

s\downarrow 1

\Biggl[ 
u
[\varepsilon (js)](x\varepsilon (js))u

[\varepsilon (js+1)](y\varepsilon (js+1)) · · ·u[\varepsilon (js+1\downarrow 1)](y\varepsilon (js+1\downarrow 1))
\Biggr] \Bigg\backslash 

= tr

\Big/ 

\Big\backslash 
4\Bigg/ 

s\downarrow 1

\Big/ 

\Big\backslash eps,rjs
e\searrow 
qs,rjs+1

js+1\downarrow 1\Bigg/ 

j=js+1

Rs\Biggr) 

p=1

ep,rje
\searrow 
p,rj+1

\left( 

\right) 

\left( 

\right) 

= tr

\Biggr\rangle 
ep1,rj1

e\searrow 
q1,rj1+1

\Biggr\rangle 
R1\Biggr) 

p=1

ep,rj1+1e
\searrow 
p,rj2

\Bigg\backslash 
ep2,rj2

e\searrow 
q2,rj2+1

\Biggr\rangle 
R2\Biggr) 

p=1

ep,rj2+1e
\searrow 
p,rj3

\Bigg\backslash 

·ep3,rj3
e\searrow 
q3,rj3+1

\Biggr\rangle 
R3\Biggr) 

p=1

ep,rj3+1e
\searrow 
p,rj4

\Bigg\backslash 
ep4,rj4

e\searrow 
q4,rj4+1

\Biggr\rangle 
R4\Biggr) 

p=1

ep,rj4+1e
\searrow 
p,rj1

\Bigg\backslash \Bigg\backslash 

=
4\Bigg/ 

s=1

e\searrow 
qs,rjs+1

\Biggr\rangle 
Rs\Biggr) 

p=1

ep,rjs+1e
\searrow 
p,rjs+1

\Bigg\backslash 
eps+1,rjs+1

= \leftharpoonup q1,p2\leftharpoonup q2,p3\leftharpoonup q3,p4\leftharpoonup q4,p1 ,

where \leftharpoonup ·,· is the Kronecker delta function: \leftharpoonup a,b = 1 if a= b; \leftharpoonup a,b = 0 if a \nwarrow = b. Note that

M(i1,i3),(i2,i4)((xi1 , xi3), (xi2 , xi4)) =M(i1,i3),(i2,i4)((x\varepsilon (j1), x\varepsilon (j3)), (x\varepsilon (j2), x\varepsilon (j4))) = 0
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ONE-DIMENSIONAL TENSOR NETWORK RECOVERY 1233

if there exists s\rightarrow {1,2,3,4} such that x\varepsilon (js) >Rs\downarrow 1Rs. Therefore, we obtain that

rank(M(i1,i3),(i2,i4)) =R1R2R3R4 = R̃,

which completes the proof.

Proof of Theorem 4.2. In Lemma 4.4 and Lemma 4.5, we have shown that, if
Assumption 4.1 holds and (i1, i2, i3, i4) is of the correct order with respect to \varpi , then
almost surely,

rank(M(i1,i3),(i2,i4))\Rightarrow R4 >max
\Biggl\{ 
rank(M(i1,i2),(i3,i4)), rank(M(i1,i4),(i2,i3))

\Biggr\} 
.(4.4)

This guarantees the correctness of Algorithm 3.1.

The correctness of Algorithms 3.3 and 3.4 can be established with similar proof
techniques. We state the result in Theorem 4.8 and Corollary 4.9 and defer the proof
of Theorem 4.8 to Appendix B.

Assumption 4.7. There exists some R \rightarrow N+ such that

min{n\varepsilon (1), n\varepsilon (d)}\Rightarrow R, min
2\updownarrow j\updownarrow d\downarrow 1

n\varepsilon (j) \Rightarrow R2 > max
2\updownarrow j\updownarrow d

rj \Rightarrow min
2\updownarrow j\updownarrow d

rj \Rightarrow R.

Theorem 4.8. For the TT format, suppose that Assumption 4.7 holds and one
can compute the entries of T = \vargamma (\varepsilon u, \varpi ) exactly. Then, for any \varpi \rightarrow Sd and any three
indices i1, i2, i3 \rightarrow {1,2, . . . , d}, the output of Algorithm 3.3 is of the correct order with
respect to \varpi unless \varepsilon u is in a measure-zero set of Ud

\omega r,\omega n,\varepsilon 
.

Corollary 4.9. In the same setting as in Theorem 4.8, for any \varpi \rightarrow Sd, Algo-
rithm 3.4 can return some element in CSd

TT(\varpi ) unless \varepsilon u is in a measure-zero set of
Ud

\omega r,\omega n,\varepsilon 
.

4.2. Robustness against observation error. Because Algorithms, 3.1, 3.2,
3.3, and 3.4 are based on singular values, which are continuous with respect to matrix
entries, they are expected to be robust against observational noise. In this section,
we establish rigorous robustness results assuming the noise is Gaussian. Similar to
the previous subsection, we will present the proof for the TR format and defer the
similar proof for the TT format to Appendix A.

Let \varpi \rightarrow Sd be the underlying permutation, and let R be as in Assumption 4.1. It
has already been proved in Lemma 4.5 that

\omega R4(M(i1,i3),(i2,i4))> 0(4.5)

for almost all \varepsilon u \rightarrow Ud

\omega r,\omega n,\varepsilon 
and all i1, i2, i3, i4 \rightarrow {1,2, . . . , d} of the correct order with

respect to \varpi . For the noisy case, we need a stronger assumption than (4.5), requiring
a uniform positive lower bound of the R4th singular value.

Assumption 4.10. Let \varepsilon u \rightarrow Ud

\omega r,\omega n,\varepsilon 
be the underlying data for the TR format,

and let Assumption 4.1 be satisfied with R > 0. There exists a positive constant
\omega > 0 such that, for any i1, i2, i3, i4 \rightarrow {1,2, . . . , d} of correct order with respect to \varpi 
and any yi \rightarrow {1,2, . . . , ni}, i \rightarrow {1,2, . . . , d}\{i1, i2, i3, i4}, the matrix M(i1,i3),(i2,i4) \rightarrow 
R(ni1ni3 )\rightarrow (ni2ni4 ) satisfies

\omega R4(M(i1,i3),(i2,i4))\Rightarrow \omega .(4.6)

With the uniform bound assumption above, we can establish a high-probability
guarantee of the correctness of Algorithm 3.1.
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1234 ZIANG CHEN, JIANFENG LU, AND ANRU ZHANG

Theorem 4.11. Suppose that Assumption 4.10 holds and the noise in each ob-
servation of T = \vargamma (\varepsilon u, \varpi ) satisfies N (0,\omega 2

e
) independently. For any T < \varpi 

\varpi e
(\omega is de-

fined in (4.6)), any four indices i1, i2, i3, i4 \rightarrow {1,2, . . . , d}, and any yi \rightarrow {1,2, . . . , ni},
i \rightarrow {1,2, . . . , d}\{i1, i2, i3, i4}, the probability that Algorithm 3.1 returns an incorrect
ordering of i1, i2, i3, i4 is no more than

6 · exp
\left[ 
\updownarrow 1

8
max{T \updownarrow 4nmax,0}2

\right] 
.

Corollary 4.12. In the same setting as in Theorem 4.11, the probability that
Algorithm 3.2 returns an incorrect ordering is smaller than or equal to

Cd logd · exp
\left[ 
\updownarrow 1

8
max{T \updownarrow 4nmax,0}2

\right] 
,

where C is an absolute constant.

It is evident from Theorem 4.11 and Corollary 4.12 that the level of robustness
against the noise is largely determined by the singular value threshold \omega in (4.6). In
some datasets, \omega may be small, a scenario to be demonstrated through numerical
examples later.

For proving Theorem 4.11, we first state some preliminaries that bound the sin-
gular values of a matrix with noisy entries.

Theorem 4.13 (largest singular value of matrices with independent and identi-
cally distributed (i.i.d.) Gaussian entries, [29, 9]). Suppose that A\rightarrow Rm1\rightarrow m2 and that
the entries of A are i.i.d. N (0,1). Then, the largest singular value of A satisfies

P(\omega max(A)>
\swarrow 
m1 +

\swarrow 
m2 + t)\uparrow 2e\downarrow t

2
/2 \propto t > 0.

Theorem 4.14 (Weyl’s inequality). For any A,E \rightarrow Rm1\rightarrow m2 , it holds that

|\omega k(A+E)\updownarrow \omega k(A)|\uparrow \omega max(E) \propto 1\uparrow k\uparrow min{m1,m2}.

Proof of Theorem 4.11. We first show the robustness of Algorithm 3.1. With-
out loss of generality, let us assume that (i1, i2, i3, i4) is of the correct order with
respect to \varpi . Let E be the noise matrix in observing M(i1,i2),(i3,i4), M(i1,i3),(i2,i4), or
M(i1,i4),(i2,i3). Then, by Theorem 4.13, it holds that

P
\Biggl[ 
\omega max(E)\Rightarrow \omega 

2

\Biggr] 
\uparrow P (\omega max(E)> (2nmax + t)\omega e)\uparrow 2e\downarrow t

2
/2,

where t = T

2 \updownarrow 2nmax. Then, using Assumption 4.10 and Theorem 4.14 (Weyl’s
inequality) with probability at least

1\updownarrow 6 · exp
\left[ 
\updownarrow t2

2

\right] 
= 1\updownarrow 6 · exp

\left[ 
\updownarrow 1

8
(T \updownarrow 4nmax)

2

\right] 
,

we have \omega R4(M(i1,i2),(i3,i4))<
\varpi 

2 , \omega R4(M(i1,i3),(i2,i4))>
\varpi 

2 , and \omega R4(M(i1,i4),(i2,i3))<
\varpi 

2 ,
which leads to the correctness of the output of Algorithm 3.1.

Proof of Corollary 4.12. Corollary 4.12 follows immediately from Theorem 4.11
and the fact that Algorithm 3.2 calls Algorithm 3.1 for O(d logd) times.

The robustness result of Algorithm 3.3 and Algorithm 3.4 is similar, which is
stated as follows and proved in Appendix B.

Assumption 4.15. Let \varepsilon u \rightarrow Ud

\omega r,\omega n,\varepsilon 
be the underlying data for the TT format, and

let Assumption 4.7 be satisfied with R > 0. There exists a positive constant \omega > 0
such that, for any i1, i2, i3 \rightarrow {1,2, . . . , d} of correct order with respect to \varpi and any
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ONE-DIMENSIONAL TENSOR NETWORK RECOVERY 1235

yi \rightarrow {1,2, . . . , ni}, i \rightarrow {1,2, . . . , d}\{i1, i2, i3}, the matrix Mi2,(i1,i3) \rightarrow Rni2\rightarrow (ni1ni3 )

satisfies

\omega R2(Mi2,(i1,i3))\Rightarrow \omega .(4.7)

Theorem 4.16. Suppose that Assumption 4.15 holds and the noise in each ob-
servation of T = \vargamma (\varepsilon u, \varpi ) satisfies N (0,\omega 2

e
) independently. For any T < \varpi 

\varpi e
(\omega is

defined in (4.7)), any three indices i1, i2, i3 \rightarrow {1,2, . . . , d}, and any yi \rightarrow {1,2, . . . , ni},
i \rightarrow {1,2, . . . , d}\{i1, i2, i3}, the probability that Algorithm 3.3 returns an incorrect or-
dering of i1, i2, i3 is at most

6 · exp
\left[ 
\updownarrow 1

8
max{T \updownarrow 2nmax \updownarrow 2

\swarrow 
nmax,0}2

\right] 

as long as the noise in each observation of T = \vargamma (\varepsilon u, \varpi ) distributes as N (0,\omega 2
e
) inde-

pendently with \omega e <
\varpi 

T
, where \omega is the lower bound in (4.7).

Corollary 4.17. In the same setting as in Theorem 4.16, the probability that
Algorithm 3.4 returns an incorrect ordering is smaller than or equal to

Cd logd · exp
\left[ 
\updownarrow 1

8
max{T \updownarrow 2nmax \updownarrow 2

\swarrow 
nmax,0}2

\right] 
,

where C is an absolute constant.

5. Numerical experiments. We present some numerical results in this section.
Section 5.1 is for implementing the proposed tensor order recovery algorithms, which
shows the correctness and e!ciency of the proposed approach. In section 5.2, we
compare our work with [1], which heuristically identifies the structure of tree tensor
networks. We evaluate our TR order recovery algorithm on a more practical model,
the Potts model, in section 5.3.

5.1. Implementation of the proposed algorithms for TR/TT formats.

Throughout this subsection, we set d = 8 and \varepsilon n = (4,4, . . . ,4). \varepsilon r is chosen as
(3,3, . . . ,3) for the TR format and (1,3,3, . . . ,3) for the TT format. One can ver-
ify that Assumption 4.1 and Assumption 4.7 are satisfied for R= 2. For a fixed noise
level \omega e, we repeat the following procedure for 10000 times:

• Sample an underlying permutation from the uniform distribution \varpi \prime U(Sd).
• Sample an element \varepsilon u\rightarrow Ud

\omega r,\omega n,\varepsilon 
with each entry of \varepsilon u being i.i.d. N (0,1).

• Run Algorithm 3.2, Algorithm 3.4, or their majority-vote versions with 5
voters, where each entry of T=\vargamma (\varepsilon u, \varpi ) is observed with noise from N (0,\omega 2

e
).

Denote the output by \varpi \uparrow .
We count the number of trials with \varpi \uparrow \rightarrow CSd

TR(\varpi ) or \varpi \uparrow \rightarrow CSd

TT(\varpi ) and divide it by
10000 to obtain an estimate of the probability that Algorithm 3.2, Algorithm 3.4,
or their majority-vote versions obtain the correct order/underlying graph. We then
repeat the experiments with a modified method for generating the data while keep-
ing all other settings unchanged. Specifically, the entries of \varepsilon u are independent with
u
[i](ki, x\varepsilon (i), ki+1)\prime N (0,0.12) if ki = 3 or ki+1 = 3 and u

[i](ki, x\varepsilon (i), ki+1)\prime N (0,1),
otherwise. This dataset is nearly rank deficient because it can be seen as a pertur-
bation from a TR format with \varepsilon r = (2,2, . . . ,2) or a TT format \varepsilon r = (1,2, . . . ,2), in
contrast to the previous dataset, which is viewed full-rank.

The results are shown in Figure 7 for the TR format and in Figure 8 for the TT
format, respectively. One can see that the probability of correct recovery is 1 when
\omega e = 0 and is high when \omega e is small, which fits the theory established in section 4.
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1236 ZIANG CHEN, JIANFENG LU, AND ANRU ZHANG

Fig. 7. Numerical results for TR format. The probability of correct recovery is 1 when there is
no noise. The robustness is much better on full-rank data compared to nearly rank-deficient data.
Using majority vote with 5 voters significantly improves the robustness of the algorithm.

Fig. 8. Numerical results for TT format. The probability of correct recovery is 1 when there is
no noise. The proposed method is more robust on full-rank data than the nearly rank-deficient data.
Using majority vote with 5 voters significantly improves the robustness of the algorithm.

It is also evident that the robustness on the full-rank data is significantly better than
that on the nearly rank-deficient data. As discussed in section 4.2, this is because
the singular value threshold is small for the nearly rank-deficient data. In addition,
the majority vote can significantly improve the robustness of our approach even if the
number of voters is small.

Another observation is that the algorithms for TT format tensor network recovery
is more robust against the observation noise than those for the TR format. More
specifically, the curves of probability in Figure 7 and Figure 8 are similar, although
the maximal noise levels are significantly di""erent: 0.1 for the TR format and 1 for
the TT format. This is because, when recovering the partial information (i.e., the
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ONE-DIMENSIONAL TENSOR NETWORK RECOVERY 1237

order of 3 or 4 indices), Algorithm 3.1 samples a matrix with size of n2
max \nearrow n2

max,
which is much larger than the matrix sampled in Algorithm 3.3, whose size is at most
nmax \nearrow n2

max. According to Theorem 4.13 and Theorem 4.14, for a fixed noise level,
the perturbation of singular values of a matrix has a larger upper bound when the
size of the matrix is larger. The perturbation of singular subspaces follows similar
rules (see, e.g., [3, Theorem 3]).

5.2. Comparison with previous work for TT format. We compare our
approach with the one proposed in [1] in this subsection. The method introduced in
[1] aims to recover a general tree structure of a tensor network. The method starts
by initializing with a discrete partition {{1},{2}, . . . ,{d}} and subsequently clusters
the partition based on some minimal-rank condition. Note that the TR format does
not admit a tree structure and hence we only compare our method with the one in
[1] for the TT format. An additional insight is that the graph associated with the
TT structure is a very special tree, which means it is unnecessary to implement the
algorithm in [1] for the most general setting. Alternatively, we first select an endpoint
and the TT chain; subsequently, we extend the selected subchain by adding new nodes,
guided by the minimal-rank condition. Note that the subchain extension is in the same
spirit as clustering the existing subchain with a new node. The numerical comparison
between Algorithm 3.4 (with five voters) and that of [1] is shown in Figure 9 for d= 6,
\varepsilon n= (4,4, . . . ,4), \varepsilon r= (1,3,3, . . . ,3), with other settings being the same as the full-rank
experiments in section 5.1. It can be seen that both methods by us and by [1] can
recover the correct order in the noiseless case, but our method performs more robustly
against the observation error. It is worth noting that we implement the method in
[1] while estimating ranks based on observation from all entries of T. This process
entails much higher complexity compared to Algorithm 3.4, which only makes queries
to down-sampled tensors. These distinctions show our proposed approach is more
robust and computationally e!cient compared to the approach in [1].

Fig. 9. Numerical comparison between Algorithm 3.4 (with five voters) and the method proposed
in [1] for tensor train format. We observe all entries of T for the rank estimation when implementing
the method in [1] and only observe down-sampled tensors when implementing our approach. Even if
we allow the method of [1] to have larger query complexity, our work still supersedes [1] in the sense
of having significantly larger probability of finding the correct order.
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1238 ZIANG CHEN, JIANFENG LU, AND ANRU ZHANG

5.3. Potts model. We demonstrate the e!cacy of our algorithm for identifying
the permutation for a Potts model [16, 41] when the underlying geometry is unknown.
The Potts model is a generalization of the Ising model used in statistical physics:
Consider a many-body system with d sites/spins and r di""erent spin values, and only
adjacent sites on a ring (with an unknown permutation \varpi \rightarrow Sd) admit interactions.
Specifically, the Hamiltonian is given by

H\varepsilon (k1, k2, . . . , kd) =
d\Biggr) 

i=1

J\varepsilon (i)(k\varepsilon (i), k\varepsilon (i+1)),

where k\varepsilon (i) is the spin value at the ith site on the ring and J\varepsilon (i) \rightarrow Rr\rightarrow r is a symmetric
matrix representing the interaction pattern of the ith and (i+ 1)st sites on the ring.
This Hamiltonian leads to the following free energy:

f\varepsilon (J1, J2, . . . , Jd) =\updownarrow 1

\varsigma 
log

\Big/ 

\Big\backslash 
r\Biggr) 

k1,k2,...,kd=1

e\downarrow \varrho H\omega (k1,k2,...,kd)

\left( 

\right) (5.1)

=\updownarrow 1

\varsigma 
log

\Biggr\rangle 
tr

\Biggr\rangle 
d\Bigg/ 

i=1

e\downarrow \varrho J\omega (i)

\Bigg\backslash \Bigg\backslash 
,

where \varsigma is the inverse temperature and eA denotes the elementwise exponential of a
matrix A.

Our experiment is a generalization of the Ising model experiment in [17]. We set
d = 6, r = 3, \varsigma = 10 and let J1, J2, . . . , Jd take values among n = 5 predetermined
r \nearrow r symmetric matrices with diagonal and o""-diagonal entries sampled i.i.d. from
N (0,1). The free energy f\varepsilon can thus be viewed as a dth-order tensor with physical
dimension being \varepsilon n = (5, . . . ,5), and we assume that the entries of f\varepsilon are observed
with i.i.d. noise N (0,\omega 2

e
) with some noise level \omega e. We then apply Algorithm 3.1 and

Algorithm 3.2 with R= 2 to recover the underlying permutation \varpi , and the results of
10000 independent trials are shown in Figure 10.

Fig. 10. Numerical results for the Potts model (3 spin values) with TR format. The probability
of correct recovery is relatively high even though the free energy f\omega is not precisely of TR format
with low bond dimension.
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ONE-DIMENSIONAL TENSOR NETWORK RECOVERY 1239

It can be seen from Figure 10 that our algorithms can correctly recover the under-
lying permutation for the Potts model with reasonably high probability. Note that the
free energy f\varepsilon in (5.1) is not precisely in the TR format due to the logarithm, which
means that Assumption 4.1 does not hold. Consequently, the probability of finding
the correct order is not 1 in the noiseless case. Nevertheless, the success probability
is still quite high, which further demonstrates the e""ectiveness of our algorithms.

6. Conclusion and discussions. We propose new algorithms for recovering the
underlying graphs of the TR and TT formats by querying entries of the tensor. The
proposed algorithms obtain the orders of the selected 3 or 4 indices by constructing
matricizations using down-sampling and comparing their ranks. The algorithm follows
from the observation that the resulting matricization has a smaller rank if the grouping
of indices is compatible with the underlying order of indices. These methods are
justified by theory—almost-sure correctness in the noiseless case and high-probability
bounds for cases with observation error. In the numerical experiments, we verify these
theoretical results and observe that a proper strategy of combining partial information
can significantly improve the robustness against the observation error.

We also acknowledge some limitations of this work. First, specific assumptions
regarding the bond dimension and the physical dimension are necessary to ensure the
provable e!ciency of the proposed algorithm and the uniqueness of the underlying
permutation. Second, the level of robustness depends on the singular value threshold,
which is generally unclear in a quantitative sense. Third, our analysis does not cover
incomplete observations, which could be a promising area for future research given ex-
isting methods from tensor/matrix completion and SVD for incomplete observations.
Another important future direction is the recovery of underlying graphs for general
tensor networks. All these topics could be interesting avenues for future research.

Appendix A. Uniqueness of permutations. This section establishes the
uniqueness results for the underlying permutation, in the sense that two permutations
that can represent the same tensor must be in the same equivalence class defined in
(2.5) or (2.6). The results require the same assumptions as in section 4.1 and are
stated in Theorem A.1 and Theorem A.2 for the TR and TT formats, respectively.

Theorem A.1. Let \varpi , \varpi \uparrow \rightarrow Sd, and let \varepsilon u \rightarrow Ud

\omega r,\omega n,\varepsilon 
,\varepsilon u\uparrow \rightarrow Ud

\omega r\rightarrow ,\omega n,\varepsilon \rightarrow satisfy \vargamma (\varepsilon u, \varpi ) =
\vargamma (\varepsilon u\uparrow , \varpi \uparrow ). Suppose that (\varepsilon r,\varepsilon n) and (\varepsilon r\uparrow ,\varepsilon n) both satisfy Assumption 4.1 with the same
R \rightarrow N+. Then, we have \varpi \uparrow \rightarrow CSd

TR(\varpi ) unless \varepsilon u or \varepsilon u\uparrow is located in some measure-zero
subset of Ud

\omega r,\omega n,\varepsilon 
or Ud

\omega r\rightarrow ,\omega n,\varepsilon \rightarrow .

Proof. Suppose that \varpi \uparrow /\rightarrow CSd

TR(\varpi ). Then, there must exist four distinct indices
i1, i2, i3, i4 \rightarrow {1,2, . . . , d} such that (i1, i2, i3, i4) is of the correct order with respect to
\varpi but is not of the correct order with respect to \varpi \uparrow . By Lemma 4.4 and Lemma 4.5,
it holds almost surely that

rank
\Biggr\rfloor 
M \uparrow 

(i1,i2),(i3,i4)

\Biggl\lceil 
\Rightarrow R4 > rank

\Biggr\rfloor 
M(i1,i2),(i3,i4)

\Biggl\lceil 
,(A.1)

where M(i1,i2),(i3,i4) and M \uparrow 
(i1,i2),(i3,i4)

are the matricization of \vargamma (\varepsilon u, \varpi ) and \vargamma (\varepsilon u\uparrow , \varpi \uparrow )
defined in (3.1). However, it follows from \vargamma (\varepsilon u, \varpi ) = \vargamma (\varepsilon u\uparrow , \varpi \uparrow ) that M(i1,i2),(i3,i4) =
M \uparrow 

(i1,i2),(i3,i4)
, which contradicts (A.1).

Theorem A.2. Let \varpi , \varpi \uparrow \rightarrow Sd, and let \varepsilon u \rightarrow Ud

\omega r,\omega n,\varepsilon 
,\varepsilon u\uparrow \rightarrow Ud

\omega r\rightarrow ,\omega n,\varepsilon \rightarrow with r1 = r\uparrow 1 = 1
satisfy \vargamma (\varepsilon u, \varpi ) =\vargamma (\varepsilon u\uparrow , \varpi \uparrow ). Suppose that (\varepsilon r,\varepsilon n) and (\varepsilon r\uparrow ,\varepsilon n) both satisfy Assumption 4.7
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1240 ZIANG CHEN, JIANFENG LU, AND ANRU ZHANG

with the same R \rightarrow N+. Then, we have \varpi \uparrow \rightarrow CSd

TT(\varpi ) unless \varepsilon u or \varepsilon u\uparrow is located in some
measure-zero subset of Ud

\omega r,\omega n,\varepsilon 
or Ud

\omega r\rightarrow ,\omega n,\varepsilon \rightarrow .

Proof. Suppose that \varpi \uparrow /\rightarrow CSd

TT(\varpi ). Then, there must exist three distinct indices
i1, i2, i3 \rightarrow {1,2, . . . , d} such that (i1, i2, i3) is of the correct order with respect to \varpi but
is not of the correct order with respect to \varpi \uparrow . By Lemma B.1 and Lemma B.2, it holds
almost surely that

rank
\Biggr\rfloor 
M \uparrow 

i1,(i2,i3)

\Biggl\lceil 
\Rightarrow R2 > rank

\Biggr\rfloor 
Mi1,(i2,i3)

\Biggl\lceil 
,(A.2)

where Mi1,(i2,i3) and M \uparrow 
i1,(i2,i3)

are the matricization of \vargamma (\varepsilon u, \varpi ) and \vargamma (\varepsilon u\uparrow , \varpi \uparrow ) defined in
(3.4). However, it follows from \vargamma (\varepsilon u, \varpi ) = \vargamma (\varepsilon u\uparrow , \varpi \uparrow ) that Mi1,(i2,i3) =M \uparrow 

i1,(i2,i3)
, which

contradicts (A.2).

Appendix B. Deferred proofs. We collect all deferred proofs in this section.

B.1. Proof of Theorem 4.8. The proof follows similar ideas and techniques as
in the proof of Theorem 4.2. We also use two lemmas to establish the upper bound
of the rank of Mi1,(i2,i3) and Mi3,(i1,i2), as well as the lower bound of the rank of
Mi2,(i1,i3), given that (i1, i2, i3) is of the correct order with respect to the underlying
permutation \varpi .

Lemma B.1. Suppose that is = \varpi (js) for s = 1,2,3, where 1 \uparrow j1 < j2 < j3 \uparrow d.
Then, for any \varepsilon u\rightarrow Ud

\omega r,\omega n,\varepsilon 
, it holds that

rank(Mi1,(i2,i3))\uparrow min
j1+1\updownarrow j\updownarrow j2

rj(B.1)

and that

rank(Mi3,(i1,i2))\uparrow min
j2+1\updownarrow j\updownarrow j3

rj .(B.2)

Proof. We only prove (B.1) because (B.2) will hold by the same reasoning.
Consider any j \rightarrow {j1 + 1, j1 + 2, . . . , j2} and the matrix M̃ \rightarrow 
R(n\omega (1)n\omega (2)···n\omega (j\uparrow 1))\rightarrow (n\omega (j)n\omega (j+1)···n\omega (d)) defined via

M̃
\Biggr\rfloor 
(x\varepsilon (1), x\varepsilon (2), . . . , x\varepsilon (j\downarrow 1)), (x\varepsilon (j), x\varepsilon (j+1), . . . , x\varepsilon (d))

\Biggl\lceil 

= \varpi (\varepsilon u, \varpi )(x1, x2, . . . , xd)

= u
[\varepsilon (1)](x\varepsilon (1))u

[\varepsilon (2)](x\varepsilon (2)) · · ·u[\varepsilon (j\downarrow 1)](x\varepsilon (j\downarrow 1))

· u[\varepsilon (j)](x\varepsilon (j))u
[\varepsilon (j+1)](x\varepsilon (j+1)) · · ·u[\varepsilon (d)](x\varepsilon (d))

for 1\uparrow xi \uparrow ni, 1\uparrow i\uparrow d. Note that

u
[\varepsilon (1)](x\varepsilon (1))u

[\varepsilon (2)](x\varepsilon (2)) · · ·u[\varepsilon (j\downarrow 1)](x\varepsilon (j\downarrow 1))\rightarrow R1\rightarrow rj

and

u
[\varepsilon (j)](x\varepsilon (j))u

[\varepsilon (j+1)](x\varepsilon (j+1)) · · ·u[\varepsilon (d)](x\varepsilon (d))\rightarrow Rrj\rightarrow 1.

We can know that M̃ is the product of a matrix of size (n\varepsilon (1)n\varepsilon (2) · · ·n\varepsilon (j\downarrow 1))\nearrow rj and
a matrix of size rj \nearrow (n\varepsilon (j)n\varepsilon (j+1) · · ·n\varepsilon (d)) and hence that rank(M̃)\uparrow rj . Therefore,
it holds that rank(Mi1,(i2,i3))\uparrow rj since Mi1,(i2,i3) is a submatrix of M̃ . Then, (B.1)
holds by taking the minimality of j \rightarrow {j1 + 1, j1 + 2, . . . , j2}.
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ONE-DIMENSIONAL TENSOR NETWORK RECOVERY 1241

Lemma B.2. Suppose that is = \varpi (js) for s = 1,2,3, where 1 \uparrow j1 < j2 < j3 \uparrow d,
and that there exist R1 and R2 satisfying

R1 \uparrow min
j1+1\updownarrow j\updownarrow j2

rj , R2 \uparrow min
j2+1\updownarrow j\updownarrow j3

rj

and

ni1 \Rightarrow R1, ni2 \Rightarrow R1R2, ni3 \Rightarrow R2.

Then, there exists a measure-zero subset \# \rightarrow Ud

\omega r,\omega n,\varepsilon 
, such that, for any \varepsilon u \rightarrow Ud

\omega r,\omega n,\varepsilon 
\\#,

it holds that

rank(Mi2,(i3,i1))\Rightarrow R1R2.

Proof. Similar to the proof of Lemma 4.5, one only needs to construct a \varepsilon u\rightarrow Ud

\omega r,\omega n,\varepsilon 

such that the rank of the matrix M1 associated with \varepsilon u is at least R1R2. Set

u
[i1](xi1) =

\Biggl\langle 
e1,rj1 e

\searrow 
q,rj1+1

if xi1 = q, 1\uparrow q\uparrow R1,

0rj1\rightarrow rj1+1 if R1 <xi1 \uparrow ni1 ,

u
[i2](xi2) =

\Biggl\langle 
ep,rj2 e

\searrow 
q,rj2+1

if xi2 = (p\updownarrow 1)R2 + q, 1\uparrow p\uparrow R1, 1\uparrow q\uparrow R2,

0rj2\rightarrow rj2+1 if R1R2 <xi2 \uparrow ni2 ,

u
[i3](xi3) =

\Biggl\langle 
ep,rj3 e

\searrow 
1,rj3+1

if xi3 = p, 1\uparrow p\uparrow R2,

0rj3\rightarrow rj3+1 if R2 <xi3 \uparrow ni3 ,

and

u
[\varepsilon (j)](y\varepsilon (j)) =

 
    

    

e1,rje
\searrow 
1,rj+1

if 1\uparrow j < j1,\left\{ 
R1

p=1 ep,rje
\searrow 
p,rj+1

if j1 < j < j2,\left\{ 
R2

p=1 ep,rje
\searrow 
p,rj+1

if j2 < j < j3,

e1,rje
\searrow 
1,rj+1

if j3 < j \uparrow d.

Then, we can compute for xi1 = q1, xi2 = (p2 \updownarrow 1)R2 + q2, xi3 = p3, where 1 \uparrow q1,
p2 \uparrow R1, 1\uparrow q2, p3 \uparrow R2, that

Mi2,(i3,i1)(xi2 , (xi3 , xi1))

=Mi2,(i3,i1)

\Biggr\rfloor 
x\varepsilon (j2), (x\varepsilon (j3), x\varepsilon (j1))

\Biggl\lceil 

=
j1\downarrow 1\Bigg/ 

j=1

u
[\varepsilon (j)](y\varepsilon (j)) · u[\varepsilon (j1)](y\varepsilon (j1)) ·

j2\downarrow 1\Bigg/ 

j=j1+1

u
[\varepsilon (j)](y\varepsilon (j)) · u[\varepsilon (j2)](y\varepsilon (j2))

·
j3\downarrow 1\Bigg/ 

j=j2+1

u
[\varepsilon (j)](y\varepsilon (j)) · u[\varepsilon (j3)](y\varepsilon (j3)) ·

d\Bigg/ 

j=j3+1

u
[\varepsilon (j)](y\varepsilon (j))

=
j1\downarrow 1\Bigg/ 

j=1

e1,rje
\searrow 
1,rj+1

· e1,rj1 e
\searrow 
q1,rj1+1

·
j2\downarrow 1\Bigg/ 

j1+1

R1\Biggr) 

p=1

ep,rje
\searrow 
p,rj+1

· ep2,rj2
e\searrow 
q2,rj2+1

·
j3\downarrow 1\Bigg/ 

j=j2+1

R2\Biggr) 

p=1

ep,rje
\searrow 
p,rj+1

· ep3,rj3
e\searrow 1,rj3+1

·
d\Bigg/ 

j=j3+1

e1,rje
\searrow 
1,rj+1

=

\Biggr\rangle 
e\searrow 
q1,rj1+1

·
R1\Biggr) 

p=1

ep,rj1+1e
\searrow 
p,rj2

· ep2,rj2

\Bigg\backslash 
·
\Biggr\rangle 
e\searrow 
q2,rj2+1

·
R2\Biggr) 

p=1

ep,rj2+1e
\searrow 
p,rj3

· ep3,rj3

\Bigg\backslash 

= \leftharpoonup q1,p2\leftharpoonup q2,p3 ,
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which, combined with the fact that Mi2,(i3,i1)(xi2 , (xi3 , xi1)) = 0 as long as xi1 \uparrow R1,
xi2 \uparrow R1R2, and xi3 \uparrow R2 do not hold simultaneously, yields that rank(Mi2,(i3,i1)) =
R1R2. So the proof is completed.

Then, one can prove Theorem 4.8.

Proof of Theorem 4.8. Since Assumption 4.7 holds for any (i1, i2, i3) of the correct
order with respect to \varpi , by Lemma B.1 and Lemma B.2, we have

rank(Mi2,(i3,i1))\Rightarrow R2 >max
\Biggl\{ 
rank(Mi1,(i2,i3)), rank(Mi3,(i1,i2))

\Biggr\} 

as long as \varepsilon u is not in some measure-zero set of Ud

\omega r,\omega n,\varepsilon 
. Thus, one can immediately

conclude the correctness of Algorithm 3.3.

B.2. Proof of Theorem 4.16 and Corollary 4.17. The proof is similar to
that of Theorem 4.11 and Corollary 4.12.

Proof of Theorem 4.16. Consider three di""erent indices i1, i2, i3 \rightarrow {1,2, . . . , d},
and assume that (i1, i2, i3) is of the correct order with respect to \varpi . Denote E as
the noise matrix in observing Mi1,(i2,i3), Mi2,(i3,i1), or Mi3,(i1,i2). With size at most
nmax \nearrow n2

max, the matrix E by Theorem 4.13 satisfies that

P
\Biggl[ 
\omega max(E)\Rightarrow \omega 

2

\Biggr] 
\uparrow P (\omega max(E)> (nmax +

\swarrow 
nmax + t)\omega e)\uparrow 2e\downarrow t

2
/2,

where t = T

2 \updownarrow nmax \updownarrow 
\swarrow 
nmax. According to Theorem 4.14 (Weyl’s inequality) and

Assumption 4.15, the probability that Algorithm 3.3 obtains \omega R2(Mi1,(i2,i3)) < \omega /2,
\omega R2(Mi2,(i1,i3))> \omega /2, and \omega R2(Mi3,(i1,i2))< \omega /2 is at least

1\updownarrow 6 · exp
\left[ 
\updownarrow t2

2

\right] 
= 1\updownarrow 6 · exp

\left[ 
\updownarrow 1

8
(T \updownarrow 2nmax \updownarrow 2

\swarrow 
nmax)

2

\right] 
.

The proof is hence completed.

Proof of Corollary 4.17. Noticing that Algorithm 3.3 is called for O(d logd) times
when implementing Algorithm 3.4, one can therefore conclude Corollary 4.17 from
Theorem 4.16.
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