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Abstract
The stein variational gradient descent (SVGD) algorithm is a deterministic particle
method for sampling. However, a mean-field analysis reveals that the gradient flow
corresponding to the SVGD algorithm (i.e., the Stein Variational Gradient Flow) only
provides a constant-order approximation to theWasserstein gradient flow correspond-
ing to theKL-divergenceminimization. In this work, we propose the Regularized Stein
Variational Gradient Flow, which interpolates between the Stein Variational Gradient
Flow and the Wasserstein gradient flow. We establish various theoretical properties of
the Regularized SteinVariational Gradient Flow (and its time-discretization) including
convergence to equilibrium, existence and uniqueness of weak solutions, and stability
of the solutions. We provide preliminary numerical evidence of the improved perfor-
mance offered by the regularization.
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1 Introduction

Given a potential function V : Rd → R, the sampling problem involves generating
samples from the density

π(x):=Z−1e−V (x), with Z :=
∫

e−V (x)dx (1)

being the normalization constant, which is typically assumed to be unknown or hard to
compute. The task of sampling arises in several fields of applied mathematics, includ-
ing Bayesian statistics and machine learning in the context of numerical integration.
There are two widely-used approaches for sampling: (i) diffusion-based randomized
algorithms, which are based on discretizations of certain diffusion processes, and (ii)
particle-based deterministic algorithms, which are discretizations of certain approxi-
mate gradient flows. A central idea connecting the two approaches is the seminal work
by [23] which provided a variational interpretation of the Langevin diffusion as the
Wasserstein gradient flow (WGF),

∂tµt = ∇ ·
(
µt ∇W2F(µt )

)
= ∇ ·

(
µt ∇ log

µt

π

⎜
, (2)

where the term ∇W2F(µt ) = ∇ log µt
π could be interpreted as the Wasserstein gradi-

ent1 of the relative entropy functional (also called as theKullback–Leibler divergence),
defined by

F(µt ) = KL(µt |π):=
∫

Rd
log

µt (x)
π(x)

µt (x)dx,

evaluated atµt . This leads to the idea that sampling could be viewed as optimization on
the space of densities/measures, a viewpoint that has provided a deeper understanding
of the sampling problem [44, 50].

There are severalmerits and disadvantages to both the randomized and deterministic
discretizations of the (approximate) WGF. First, note that obtaining exact space-time
discretization of the WGF in (2) is not possible. Indeed, due to the presence of the dif-
fusion term, when initialized with a N -particle based empirical measure, the particles
do not remain as particles for any time t > 0. Hence, on the one hand, randomized
discretizations like the Langevin Monte Carlo algorithm, are used as implementable
space-time discretizations of the WGF. On the other hand, motivated by applications

1 See, for example, [1, 38] for the exact definition.
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where the randomness in the discretization is undesirable, in the applied mathematics
literature, other discretizations of approximate WGF were developed. Such methods
are predominantly based on using mollifiers and we refer the reader to [7, 14, 16, 34,
36] for a partial list and to [10], for a comprehensive overview.

Recently, in the machine learning community, the stein variational gradient descent
[25, 27] was proposed as another deterministic discretization of approximate WGF,
and has gathered significant attention due to applications in reinforcement learning
[29], graphical modeling [48], measure quantization [51], and other fields of machine
learning and applied mathematics [12, 12, 24, 47]. Due to the use of the reproducing
kernels, the stein variational gradient descent (SVGD) algorithm provides a space-
time discretization of the following approximateWasserstein gradient flow (which we
refer to as the Stein Variational Gradient Flow (SVGF) for simplicity)

∂tµt = ∇ ·
(
µt Tk,µt∇ log

µt

π

⎜
, (3)

where Tk,µ : Ld
2(µ) → Ld

2(µ)
2 is the integral operator defined as Tk,µ f (x) =⎟

k(x, y) f (y)µ(y)dy for any function f ∈ Ld
2(µ), and for a kernel k : Rd×Rd → R;

see, for example [30]. Hence, SVGD (which is based on the SVGF), in this context,
while being deterministic only provides a discretization of a constant-order approx-
imation to the Wasserstein gradient flow due to the presence of the kernel integral
operator. Indeed, if supp(µt ) = Rd and k is a bounded continuous translation invari-
ant characteristic kernel [41] on Rd (e.g., Gaussian, Laplacian kernels), then

‖Tk,µt − I‖op = sup{‖Tk,µt f − f ‖Ld
2 (µt )

: ‖ f ‖Ld
2 (µt )

= 1} ≥ ‖Tk,µt 1 − 1‖Ld
2 (µt )

≥ ‖1 − ∫ k(·, x)µt (x) dx‖L2(µt ) > 0,

where 1 = (1, . . ., 1)ᵀ ∈ Rd . This shows that the order of the error is crucially
dependent on the choice of the kernel k.

To overcome the above issue with the SVGF, in this work, we propose the Reg-
ularized Stein Variational Gradient Flow (R-SVGF). To motivate the proposed flow,
we first note that the Wasserstein gradient ∇ log(µt/π) lives in Ld

2(µt ), while the
kernelized Wasserstein gradient Tk,µt∇ log(µt/π) morally lives in the reproducing
kernel Hilbert space3 Hd

k ⊂ Ld
2(µt ). If ∇ log(µt/π) ∈ Ran(Tk,µt ), then it is easy to

verify that

‖((1 − ν)Tk,µt + ν I )−1Tk,µt∇ log(µt/π) − ∇ log(µt/π)‖Ld
2 (µt )

→ 0, as ν → 0.

Additionally, if ∇ log(µt/π) is sufficiently smooth, i.e., there exists γ ∈
(
0, 1

2

]
such

that ∇ log(µt/π) = T γ
k,µt

h, for some h ∈ Ld
2(µt ) (see, for example, [15]), then

‖((1 − ν)Tk,µt + ν I )−1Tk,µt ∇ log(µt/π) − ∇ log(µt/π)‖Ld
2 (µt )

= O(ν2γ ), as ν → 0.

2 Defined in Sect. 1.3.
3 Defined in Sect. 2.
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In other words, ((1 − ν)Tk,µt + ν I )−1Tk,µt∇ log(µt/π) is a good approximation to
∇ log(µt/π) for small ν. With this motivation, we propose the following R-SVGF
given by

∂tµt = ∇ ·
(
µt

(
(1 − ν)Tk,µt + ν I

)−1 Tk,µt

(
∇ log

µt

π

⎜⎜
, (4)

for some regularization parameter ν ∈ (0, 1], where R-SVGF arbitrarily approximates
the WGF as ν → 0. It is important to note that in the case of γ = 1/2, we have
∇ log(µt/π) ∈ Hd

k , yet, (3) suffers from the drawback of providing only a constant-
order approximation to (2).

1.1 Summary of Contributions

Our contributions in this work are as follows:

(1) We propose the Regularized SVGF (R-SVGF) that interpolates between the
Wasserstein gradient flow and the SVGF. The advantage of the proposed flow
is that one could obtain an implementable space-time discretization as long as the
regularization parameter is bounded away from zero. The main intuition behind
the proposed flow is to pick an appropriately small regularization parameter so
that we could arbitrarily approximate the WGF (Theorems 1 and 3).

(2) For the R-SVGF, we provide rates of convergence to the equilibrium density in
two cases: (i) in the Fisher Information metric under no further assumptions on
the target π ∈ P(Rd) (Theorem 2) and (ii) in the KL-divergence metric under an
LSI assumption on the target (Theorem 4). We also establish similar results for
the time-discretized R-SVGF (Theorems 5 and 6).

(3) We characterize the existence and uniqueness (Theorem 7), and stability (Theo-
rem 8) of solutions to the R-SVGF.

(4) We provide preliminary numerical experiments demonstrating the advantage of
the space-time discretization of the R-SVGF, which we call the Regularized stein
variational gradient descent (R-SVGD) algorithm, over the standard SVGD algo-
rithm.

1.2 Organization

The rest of the paper is organized as follows. In Sect. 1.3, we introduce the notations
used in the rest of the paper. In Sect. 2, we provide the preliminaries on reproducing
kernelHilbert spaces required for ourwork. In Sect. 3,we introduce theR-SVGF, along
with the notion of regularized Stein-Fisher information, required for our analysis.
Due to the technical nature of the proofs, we postpone the results on existence and
uniqueness of the R-SVGF, and related stability results respectively to Sects. 5 and 6.
In Sect. 4, we provide convergence results on the R-SVGF and its time-discretized
version. We conclude in Sect. 7 with a space-time discretization which provides a
practically implementable algorithm, and provide preliminary empirical results.
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1.3 Notations

We use the following notations throughout this work:

• For a matrix, ‖ · ‖2 denotes the matrix 2-norm (spectral norm) and ‖ · ‖HS denotes
the Hilbert-Schmidt norm which is defined as ‖A‖2HS = ∑d

i, j=1 |ai j |2 for any
matrix A = (ai j )i, j∈[d].

• The term id denotes the d × d identity matrix. Id corresponds to the identity
operator in the RKHS. I corresponds to the identity operator in L2(µ).

•
(
L∞(Rd), ‖·‖L∞(Rd )

)
denotes the space of all essentially bounded measurable

functions onRd with‖ f ‖L∞(Rd ) := inf{C : | f (x)| + C for almost every x ∈ Rd}
for any f ∈ L∞(Rd).

• C(Rd;Rd) is the space of all Rd -valued continuous functions on Rd .
• C∞

0 ([0,∞)×Rd) is the space of allR-valuedmeasurable functions on [0,∞)×Rd

that vanish at infinity, i.e., for any f ∈ C∞
0 ([0,∞)×Rd), f (t, x) → 0 as t → ∞

and f (t, x) → 0 as x → ∞.
• For any function space H on Rd , C([0, T ];H) is the space of functions f such
that for any fixed t ∈ [0, T ], f (t, ·) ∈ H and for any fixed x ∈ Rd , f (·, x) is
a continuous function on [0, T ]. C1([0, T ];H) is the space of functions f such
that for any fixed t ∈ [0, T ], f (t, ·) ∈ H and for any fixed x ∈ Rd , f (·, x) is a
continuous function with a continuous first order derivative on [0, T ].

• Let P(Rd) denote the space of all probability densities (with respect to the
Lebesgue measure) on Rd that are twice continuously differentiable with full
supports on Rd and finite second moments.

• For any µ1, µ2 ∈ P(Rd) and any p ≥ 1, Wp(µ1, µ2) denotes the Wasserstein-
p distance between µ1 and µ2 defined as Wp(µ1, µ2):= infX∼µ1,Y∼µ2 E[|X −
Y |p]

1
p .

• For any µ ∈ P(Rd),
(
L2(µ), ‖·‖L2(µ)

)
is the space of all µ-square integrable

measurable function on Rd with ‖ f ‖2L2(µ)
:=

⎟
Rd | f (x)|2µ(x)dx .

• For any function space H, we say f ∈ Hd if f = [ f1, · · · , fd ]ᵀ such that
fi ∈ H for all i ∈ [d]. If the function space (H, ‖·‖H) is further a Hilbert space,
(Hd , ‖·‖Hd ) denotes the Hilbert space of all vector valued functions whose entries
are in (H, ‖·‖H) with ‖ f ‖2Hd :=

∑d
i=1 ‖ fi‖2H for any f = [ f1, · · · , fd ]ᵀ ∈ Hd .

• Let (H, ‖·‖H) and
(
G, ‖·‖G

)
be two function spaces. For an operator A : H → G,

we denote the adjoint operator of A by A∗. We denote the operator norm by
‖A‖H→G , which is defined as ‖A‖H→G := sup‖u‖H+1 ‖Au‖G . When we don’t
emphasize the spaces, we denote the operator norm of A by ‖A‖op for simplicity.

• Let (H, ‖ · ‖H) and
(
G, ‖ · ‖G

)
be twoHilbert spaces. For an operator A : H → G,

we denote the Hilbert-Schmidt norm by ‖A‖HS which is defined as ‖A‖2HS :=∑
i∈I ‖Aei‖2G where {ei }i∈I is an orthonormal basis of H. We denote the nuclear

norm by ‖A‖nuc which is defined as ‖A‖nuc := ∑
i∈I 〈(A∗A)

1
2 ei , ei 〉H where

{ei }i∈I is an orthonormal basis ofH.
• For a smooth function f : Rd × Rd → R, ∇1 f denotes the gradient of f in the
first variable and ∇2 f denotes the gradient of f in the second variable.
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• For a map φ : Rd → Rd , φi denotes the i-th component of the function value and
∇φ denotes the Jacobian, i.e., (∇φ)i j = ∂ jφi for all i, j ∈ [d].

• T#ρ represents the push-forward of the density ρ under a map T .
• 〈·, ·〉H denotes inner-product in the Hilbert space H. 〈·, ·〉 denotes inner-product
in the Euclidean space Rd .

2 Preliminaries on Reproducing Kernel Hilbert Space

In this section, we introduce some properties of RKHS which would be used later in
the formulation and analysis of R-SVGF. We refer the reader to [6, 33, 42] for the
basics of RKHS.We letHk be a separable RKHS overRd with the reproducing kernel
k : Rd × Rd → R>0 and with ‖ · ‖Hk denoting the associated RKHS norm.

We make the following assumption on the kernel function k throughout the paper.

Assumption A1 The kernel function k : Rd ×Rd → R is symmetric, strictly positive
definite and continuous.

Additional assumptions on the kernel will be introduced when they are required. The
following results are essentially based on [42, Lemma 4.23, and Theorems 4.26 and
4.27].

Proposition 1 [ [42]] The following holds.

(i) The kernel function k is bounded if and only if every f ∈ Hk is bounded.Moreover,
the inclusion ιd : Hk → L∞(Rd) is continuous and ‖ιd‖Hk→L∞(Rd ) = ‖k‖∞,
where ‖k‖∞ := supx∈Rd

√
k(x, x).

(ii) Let µ be a ( -finite measure on Rd and k be a measurable kernel. Assume that

‖k‖L2(µ) :=
(∫

Rd
k(x, x)dµ(x)

) 1
2

< ∞.

Then Hk consists of 2-integrable functions and the inclusion ιk,µ : Hk → L2(µ)

is continuous with
∥∥ιk,µ

∥∥
Hk→L2(µ)

+ ‖k‖L2(µ). Moreover, the adjoint of this
inclusion is the operator ι∗k,µ : L2(µ) → Hk defined by

ι∗k,µg(x) :=
∫

Rd
k(x, y)g(y)dµ(y), g ∈ L2(µ), x ∈ Rd .

(iii) Under the assumptions in (i i),Hk is dense in L2(µ) if and only if ι∗k,µ : L2(µ) →
Hk is injective. Alternatively, ι∗k,µ : L2(µ) → Hk has a dense image if and only
if ιk,µ : Hk → L2(µ) is injective.

(iv) Under the assumptions in (i i), ιk,µ : Hk → L2(µ) is a Hilbert-Schmidt operator
with

∥∥ιk,µ
∥∥
HS = ‖k‖L2(µ). Moreover, the integral operator Tk,µ = ιk,µι∗k,µ :

L2(µ) → L2(µ) is compact, positive, self-adjoint, and nuclear with
∥∥Tk,µ

∥∥
nuc =∥∥ιk,µ

∥∥
HS = ‖k‖L2(µ).
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When f ∈ Hd
k with f = [ f1, · · · , fd ]ᵀ and g ∈ Hk , we define 〈 f , g〉Hk as a

vector in Rd and
(
〈 f , g〉Hk

)
i = 〈 fi , g〉Hk for all i ∈ [d]. When f ∈ Ld

2(µ) with
f = [ f1, · · · , fd ]ᵀ and g ∈ L2(µ), we define 〈 f , g〉L2(µ) as a vector in Rd and(
〈 f , g〉L2(µ)

)
i = 〈 fi , g〉L2(µ) for all i ∈ [d]. Note also that Tk,µ = ιk,µι∗k,µ and

Ran(T 1/2
k,µ ) = Hk ⊂ L2(µ). We refer the interested reader to [15] for more details.

Finally, we remark that by letting ()i , ei )∞i=1 be the set of eigenvalues and eigen-
functions of the operator Tk,µ where )1 ≥ )2 ≥ · · · > 0 and (ei )∞i=1 form an
orthonormal system in Ran(Tk,µ), we have the following spectral representation that,
for all f ∈ L2(µ),

Tk,µ f =
∞∑

i=1

)i 〈 f , ei 〉L2(µ) ei . (5)

Computing the spectral representation, in general for any given µ and kernel k is a
non-trivial task. Results are only known on a case-by-case basis; see, for example, [2,
8, 31, 39]. However, we use the decomposition only in our analysis. For the purely
practical algorithm that we describe eventually in Sect. 7, we do not need to know the
decomposition explicitly.

Remark 1 Strictly speaking, the above notation implicitly assumes that the operator
Tk,µ has a trivial null space, in which case Ran(Tk,µ) ≡ L2(µ) and hence the eigen-
functions (ei )∞i=1 form an orthonormal basis to L2(µ). However, our analysis does not
require this condition on Tk,µ. In particular, if Tk,µ has a non-trivial null-space, then
Ran(Tk,µ) ⊂ L2(µ). In this case, our analysis still holds true. For example, with a
slight abuse of notation, if we let ei , for certain values of i , also denote the basis of
the null-space of Tk,µ, conclusions similar to our results hold.

3 Regularized SVGF

Wenow introduce the formulation of theRegularized-SVGFand discuss its connection
with the SVGF and theWGF. Recall that in the mean-field limit, the SVGF in (3) only
provides a constant order approximation to the WGF in (2), due to the presence of the
operator Tk,µ. As the operator Tk,µ is not invertible, we seek to obtain a regularized
inverse so that we end up with the following Regularized-SVGF, as in (4), for some
regularization parameter ν ∈ (0, 1]. Note in particular that, as ν → 0, the Regularized-
SVGF gets arbitrarily close to the WGF. Our goal in this section is to derive the
above-mentioned R-SVGF from first principles.

The central operator required in our formulation is the following Stein operator,
which is defined for all p ∈ P(Rd), and for all smooth maps φ : Rd → Rd , as

Apφ(x) = φ(x) ⊗ ∇ log p(x)+ ∇φ(x),

where⊗ denotes the outer-product. Generally speaking, the Stein operator can also be
defined for some densities that are outside of P(Rd). We restrict to p ∈ P(Rd) in the
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paper for the purpose of our analysis. Now, the Wasserstein gradient flow in (2) could
be thought of as follows. Consider moving a particle x ∼ ρ (for some ρ ∈ P(Rd))
based on the mapping x 3→ T (x):=x + hφ(x), where h > 0 is a step-size parameter,
and φ is a vector-field chosen so that the KL-divergence between the pushforward of
ρ according to T , denoted as T#ρ, and the target density π in minimal. Liu and Wang
[27, Theorem 3.1], showed that

∇hKL(T#ρ|π)|h=0 = −Ex∼ρ[trace(Aπφ(x))].

We also refer to [23] for an earlier version of the same result. Based on this observa-
tion, if we try to find the vector-field φ in the unit-ball of Ld

2(ρ) that maximizes the
quantity [Ex∼ρ[trace(Aπφ(x))]]2, a straight-forward calculation based on integration-
by-parts, results in the optimal φ being the Wasserstein gradient ∇ log ρ

π . To have a
practical implementation, [27] considered maximizing [Ex∼ρ[trace(Aπφ(x))]]2 over
the unit-ball in the RKHSHd

k , which results in the optimal vector-field being equal to
Tk,ρ∇ log ρ

π , and correspondingly results in the SVGF in (3).
In this work, we propose to find the vector field φ that maximizes[

Ex∼ρ [trace(Aπφ(x))]
]2 over the unit-ball with respect to an interpolated norm

between Ld
2(ρ) and Hd

k . Specifically, the interpolation norm that we consider is of
the form ν ‖·‖2Hd

k
+ (1 − ν) ‖·‖2

Ld
2 (ρ)

, for some regularization parameter ν ∈ (0, 1],
which trades-off between ‖ · ‖2Hd

k
and ‖ · ‖2

Ld
2 (ρ)

. We also remark here that a similar

idea has been leveraged in the context of RKHS-based statistical hypothesis testing
[5]. Formally, for ρ,π ∈ P(Rd), we consider the following optimization problem.

S(ρ,π) := max
φ∈Hd

k

⎫[
Ex∼ρ [trace(Aπφ(x))]

]2 such that ν ‖φ‖2
Hd

k
+ (1 − ν) ‖φ‖2

Ld2 (ρ)
+ 1

⎬
.

For any ρ ∈ P(Rd), the optimal vector field, φ that minimizes KL(T#ρ|π) can be
described via the following result. To make the statements more consistent with the
analysis (and proofs), we will denote Tk,· explicitly as ιk,·ι∗k,· in the rest of the paper.
Before we proceed, we also recall that the Fisher information between two densities
ρ,π ∈ P(Rd), is defined as

I (ρ|π):=
∥∥∥∇ log

ρ

π

∥∥∥
2

L2(ρ)
=

∞∑

i=1

⎭⎭⎭⎭
〈
∇ log

ρ

π
, ei

〉

L2(ρ)

⎭⎭⎭⎭
2

, (6)

with (ei )∞i=1 being an orthonormal basis to L2(ρ).

Proposition 2 Let T (x) = x + hφ(x) and T#ρ(z) be the density of z = T (x) for any
ρ ∈ P(Rd). For ν ∈ (0, 1], define

B := {φ ∈ Hd
k : ν ‖φ‖2Hd

k
+ (1 − ν) ‖φ‖2

Ld
2 (ρ)

+ 1}.
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Let π ∝ e−V and π ∈ P(Rd). If I (ρ|π) < ∞ and k satisfies Assumption A1 with⎟
k(x, x)ρ(x)dx < ∞, then the direction of steepest descent in B that maximizes

−∇hKL(T#ρ|π)|h=0

is given by

φ∗
ρ,π (·) ∝

(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜−1
Ex∼ρ[−∇V (x)k(x, ·)+ ∇k(x, ·)],

where ιk,ρ : Hd
k → Ld

2(ρ) is the inclusion operator and ι∗k,ρ is its adjoint,
as in Proposition 1. Furthermore, under the optimal vector field φ∗

ρ,π , we have
−∇hKL(T#ρ|π)|h=0 = S(ρ,π).

Proof First note that according to [27, Theorem 3.1], we have

∇hKL(T#ρ|π)|h=0 = −Ex∼ρ[trace(Aπφ(x))].

Therefore, we have

φ∗
ρ,π = argmax

φ∈Hd
k

⎫
[Ex∼ρ [trace(Aπφ(x))]]2 such that ν ‖φ‖2

Hd
k
+ (1 − ν) ‖φ‖2

Ld2 (ρ)
+ 1

⎬
.

Next, observe that we have

Ex∼ρ[trace(Aπφ(x))] =
d∑

i=1

Ex∼ρ[−∂i V (x)φi (x)+ ∂iφi (x)]

=
d∑

i=1

Ex∼ρ[−∂i V (x)〈φi , k(x, ·)〉Hk + 〈φi , ∂i k(x, ·)〉Hk ]

= 〈φ,Ex∼ρ[−∇V (x)k(x, ·)+ ∇k(x, ·)]〉Hd
k
.

The termEx∼ρ[−∇V (x)k(x, ·)+∇k(x, ·)] is finite for all x ∈ Rd due to the following
inequality:

|Ex∼ρ [−∇V (x)k(x, ·)+ ∇k(x, ·)]| = |ι∗k,ρ∇ log
ρ

π
(x)|

=
⎭⎭⎭
∫

k(x, y)∇ log
ρ(y)
π(y)

ρ(y)dx
⎭⎭⎭

+ I (ρ|π) 12
√
k(x, x)

( ∫
k(y, y)ρ(y)dy

⎜ 1
2
< ∞,

where the first inequality follows from the Cauchy-Schwartz inequality and the repro-
ducing property of the RKHS. The second inequality follows from conditions on k
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and ρ. Meanwhile, the constraint can be written as

ν ‖φ‖2Hd
k
+ (1 − ν) ‖φ‖2

Ld
2 (ρ)

= ν〈φ,φ〉Hd
k
+ (1 − ν)〈ιk,ρφ, ιk,ρφ〉Ld

2 (ρ)

= 〈
(
ν Id + (1 − ν)ι∗k,ριk,ρ

⎜
φ,φ〉Hd

k

=
∥∥∥∥
(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜ 1
2
φ

∥∥∥∥
2

Hd
k

,

where Id : Hk → Hk is the identity operator. Now, note that
(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜ 1
2

is well-defined since ι∗k,ριk,ρ : Hd
k → Hd

k is positive, compact and self-adjoint.
Therefore, based on the above display, the constraint {φ ∈ Hd

k : ν ‖φ‖2Hd
k
+ (1 −

ν) ‖φ‖2
Ld
2 (ρ)

+ 1} is equivalent to

{φ ∈ Hd
k : ψ =

(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜ 1
2
φ and ‖ψ‖Hd

k
+ 1}.

Since the spectrum of ι∗k,ριk,ρ is positive and ν ∈ (0, 1], (1 − ν)ι∗k,ριk,ρ +
ν Id is invertible. For all φ ∈ Hd

k , there exists a unique ψ ∈ Hd
k such that

(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜− 1
2
ψ = φ. Applying this fact along with the equivalent form

of the constraint, we have

Ex∼ρ (trace(Aπφ(x))) =
〈(

(1 − ν)ι∗k,ριk,ρ + ν Id
⎜− 1

2
ψ,Ex∼ρ [−∇V (x)k(x, ·)+ ∇k(x, ·)]

〉

Hd
k

=
〈

ψ,
(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜− 1
2 Ex∼ρ [−∇V (x)k(x, ·)+ ∇k(x, ·)]

〉

Hd
k

+
∥∥∥∥∥

(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜− 1
2 Ex∼ρ [−∇V (x)k(x, ·)+ ∇k(x, ·)]

∥∥∥∥∥
Hd

k

where the second identity follows from the fact that
(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜− 1
2 is

self-adjoint and the upper bound in the last inequality is achieved when

ψ∗ ∝
(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜− 1
2 Ex∼ρ[−∇V (x)k(x, ·)+ ∇k(x, ·)],

and the result hence follows. 56
With the optimal-vector field as derived above, we consider the following mean-

field partial differential equation (PDE) as the R-SVGF:

∂tρt = ∇ ·
(

ρt ιk,ρt

(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜−1
ι∗k,ρt

(
∇ log

ρt

π

⎜)
. (7)
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It is important to notice that the R-SVGF interpolates between the SVGF and theWGF.
However, the regime of interest for us is when ν → 0, as we get arbitrarily close to
theWGF.We quantify this statement precisely in the later sections. On the other hand,
when ν → 1, the R-SVGF becomes the SVGF.

Remark 2 We now make the following remarks about the above result.

(i) We can alternatively write φ∗
ρ,π from Proposition 2 as

φ∗
ρ,π ∝ −

(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜−1
ι∗k,ρ

(
∇ log

ρ

π

⎜
,

since we have

Ex∼ρ[−∇V (x)k(x, ·)+ ∇k(x, ·)] =
∫

Rd
k(·, x)

(
−∇V (x) − ∇ρ(x)

ρ(x)

)
ρ(x)dx

= − ι∗k,ρ
(
∇ log

ρ

π

⎜
.

(ii) The operator in (7) has an equivalent expression, as we discuss below. First, we
claim that

ιk,ρ

(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜−1
ι∗k,ρ =

(
(1 − ν)ιk,ρι∗k,ρ + ν I

⎜−1
ιk,ρι∗k,ρ .

To see that, we start with the trivial identity in the first line below and proceed as

(
(1 − ν)ιk,ρι∗k,ρ + ν I

⎜
ιk,ρ = ιk,ρ

(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜
,

7⇒ ιk,ρ =
(
(1 − ν)ιk,ρι∗k,ρ + ν I

⎜−1
ιk,ρ

(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜

7⇒ ιk,ρ

(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜−1
=

(
(1 − ν)ιk,ρι∗k,ρ + ν I

⎜−1
ιk,ρ

7⇒ ιk,ρ

(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜−1
ι∗k,ρ =

(
(1 − ν)ιk,ρι∗k,ρ + ν I

⎜−1
ιk,ρι∗k,ρ .

According to this observation, (7) can also be written in the following form

∂tρt = ∇ ·
(

ρt

(
(1 − ν)ιk,ρt ι

∗
k,ρt + ν I

⎜−1
ιk,ρt ι

∗
k,ρt

(
∇ log

ρt

π

⎜)

= ∇ ·
(
ρt

(
(1 − ν)Tk,ρt + ν I

)−1 Tk,ρt
(
∇ log

ρt

π

⎜⎜
,

thereby providing the R-SVGF introduced in (4) in Sect. 1.
(iii) Particle-based spatial discretization.We now describe the spatial discretization

of the R-SVGF. Based on the results in Proposition 2 and (ii) in Remark 2, we
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obtain the following ODE system:





dxi (t)
dt

= −
(
(1 − ν)ι∗

k,ρN
t
ιk,ρN

t
+ ν Id

⎜−1



 1
N

N∑

j=1

−∇2k
(
xi (t), x j (t)

)
+ k

(
xi (t), x j (t)

)
∇V (x j (t))





xi (0) = x0i ∈ Rd , i = 1, 2, . . . , N

,

where {xi (t)}Ni=1 is the set of N particles. ρN
t = 1

N

∑N
j=1 δx j (t) is the empirical

distribution at time t , provides a N -particle spatial discretization of the R-SVGF.
(iv) Time discretization. We also have the following time-discretization of the R-

SVGF. Let {hn}∞n=1 be the sequence of time step-size. We denote the density at
the n-th iterate by ρn for all integers n ≥ 1. Then the time discretization of the
R-SVGF can be written as

ρn+1 =
(
id − hn+1Dνn+1,ρn∇ log

ρn

π

)

#ρn
, (8)

where Dνn ,ρn =
(
(1 − νn)ιk,ρn ι∗k,ρn + νn Id

⎜−1
ιk,ρn ι∗k,ρn .

(v) The parameter ν can also bemade to be dependent on t or n; in fact, in our analysis,
we pick a time-varying regularization parameter.

4 Convergence Results in Continuous and Discrete Time

Our goal in this section is to derive convergence guarantees for the R-SVGF. Before
we proceed, we introduce the notion of Regularized Stein-Fisher information (or Reg-
ularized Kernel Stein Discrepancy).

4.1 Regularized Stein-Fisher Information and its Properties

Related to theFisher informationdefined in (6), severalworks, for example [19, 24, 37],
used the notion of Stein-Fisher Information to understand the convergence properties
of the SVGD algorithm. The Stein-Fisher information was introduced in [13, 22, 26]
under the name Kernel Stein Discrepancy. It is defined as

IStein(ρ|π) : =
∥∥∥ι∗k,ρ∇ log

ρ

π

∥∥∥
2

Hd
k

=
〈
∇ log

ρ

π
, ιk,ρι∗k,ρ∇ log

ρ

π

〉

Ld
2 (ρ)

=
∞∑

i=1

)i

⎭⎭⎭⎭
〈
∇ log

ρ

π
, ei

〉

L2(ρ)

⎭⎭⎭⎭
2

,

where ()i , ei )∞i=1 are the set of eigenvalues and eigenvectors of the operator ιk,ρι∗k,ρ ,
with )1 ≥ )2 ≥ · · · > 0. A drawback of the Stein-Fisher information is that it is a
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weaker metric, for example in comparison to the Fisher information metric in (6); see
[21, 22, 40]. Indeed, comparing (6) and the above definition for the Stein-Fisher infor-
mation, it is immediately clear that the Stein-Fisher information is severely restrictive,
in particular when the eigenvalues of the chosen RKHS decay fast. To counter this
effect, we introduce the following regularized Stein-Fisher information and show that
when the regularization parameter is chosen appropriately, the regularized Stein-Fisher
information upper and lower bounds the Fisher information.

Definition 1 [Regularized Stein-Fisher Information] For any ρ ∈ P(Rd), the regular-
ized Stein Fisher information from ρ to π , denoted as Iν,Stein(ρ|π), is defined as

Iν,Stein(ρ|π) :=
〈
ι∗k,ρ∇ log

ρ

π
,
(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜−1
ι∗k,ρ∇ log

ρ

π

〉

Hd
k

. (9)

The regularized Stein Fisher information in (9) is well-defined because the operator

(1 − ν)ι∗k,ριk,ρ + ν Id : Hd
k → Hd

k

is positive and for any f ∈ Hd
k ,

(
(1 − ν)ι∗k,ριk,ρ + ν Id

⎜
f = 0 if and only if f = 0.

Remark 3 The regularized Stein Fisher information has the following alternative rep-
resentation:

Iν,Stein(ρ|π) =
∞∑

i=1

)i

(1 − ν))i + ν

⎭⎭⎭⎭
〈
∇ log

ρ

π
, ei

〉

L2(ρ)

⎭⎭⎭⎭
2

. (10)

For ν > 0, with the fact that )i decreases to zero as i → ∞, the regularized Stein
Fisher information and the Stein Fisher information both encode the spectral decay
information of ιk,ρι∗k,ρ . However, note that the regularized Stein Fisher information
tends to the Fisher information as ν → 0. Hypothetically speaking, if ν is set to zero,
then the regularized Stein Fisher information actually becomes the Fisher informa-
tion. In our analysis, we will take advantage of the relation between the regularized
Stein Fisher information and the Fisher information, while studying the convergence
properties of R-SVGF under Log-Sobolev inequality assumptions on the target π .
A precise relation between the regularized Stein Fisher information and the Fisher
information is stated in the following result. Before stating the result, we introduce
the following notation for convenience. For γ ∈ (0, 1

2 ], we denote the pre-image of
∇ log ρ

π ∈ Ld
2(ρ) under (ιk,ρι∗k,ρ)

γ as

I(ρ, γ ) := (ιk,ρι∗k,ρ)
−γ ∇ log

ρ

π
.

Note that ‖I(ρ, γ )‖Ld
2 (ρ)

is finite if and only if ∇ log ρ
π ∈ Ran((ιk,ρι∗k,ρ)

γ ).
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Proposition 3 [Equivalence relation between I (ρ|π) and Iν,Stein(ρ|π)] Let ρ,π ∈
P(Rd) and suppose there exists γ ∈ (0, 1

2 ] such that ‖I(ρ, γ )‖Ld
2 (ρ)

< ∞. If the
regularization parameter is chosen to satisfy the following condition,

ν

1 − ν
+



 I (ρ|π)
2 ‖I(ρ, γ )‖2

Ld
2 (ρ)





1
2γ

, (11)

then we have that

1
2
(1 − ν)−1 I (ρ|π) + Iν,Stein(ρ|π) + (1 − ν)−1 I (ρ|π).

Proof of Proposition 3 According to (10), we have

Iν,Stein(ρ|π) =
∞∑

i=1

)i

(1 − ν))i + ν

⎭⎭⎭⎭
〈
∇ log

ρ

π
, ei

〉

L2(ρ)

⎭⎭⎭⎭
2

+ (1 − ν)−1
∞∑

i=1

⎭⎭⎭⎭
〈
∇ log

ρ

π
, ei

〉

L2(ρ)

⎭⎭⎭⎭
2

+ (1 − ν)−1 I (µ|π).

On the other hand, since ‖I(ρ, γ )‖Ld
2 (ρ)

< ∞ for some γ ∈ (0, 1
2 ], there exists

h = I(ρ, γ ) ∈ Ld
2(ρ) such that

∇ log
ρ

π
= (ιk,ρι∗k,ρ)

γ h.

Therefore

(1 − ν)−1 I (ρ|π) − Iν,Stein(ρ|π) =
∞∑

i=1

(1 − ν)−1ν

(1 − ν))i + ν

⎭⎭⎭〈(ιk,ρι∗k,ρ)
γ h, ei 〉L2(ρ)

⎭⎭⎭
2

=
∞∑

i=1

(1 − ν)−1ν)
2γ
i

(1 − ν))i + ν
|〈h, ei 〉L2(ρ)|2

+ (1 − ν)−1−2γ ν2γ ‖I(ρ, γ )‖2
Ld
2 (ρ)

+ 1
2
(1 − ν)−1 I (ρ|π), (12)

where the second to last inequality follows from the fact that

sup
i

(
(1 − ν)−1ν)

2γ
i

(1 − ν))i + ν

)

= (1 − ν)−1−2γ ν2γ sup
i

(
(1 − ν))i

(1 − ν))i + ν

)2γ (
ν

(1 − ν))i + ν

)1−2γ

+ (1 − ν)−1−2γ ν2γ ,

and the last inequality follows from the condition in (11).
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4.2 Convergence Results for R-SVGF

4.2.1 Relationship Between R-SVGF andWGF

Assuming the existence and uniqueness of the R-SVGF (see Sect. 5) and WGF (see
[23] for sufficient conditions) we now provide the relationship between the R-SVGF
and the WGF in various metrics. We first start with the relationship in the Fisher
information metric, without any stringent assumptions on the target density (thereby
allowing for multi-modal and complex densities that arise in practice). Note that the
Fisher information metric corresponds to the first-order stationarity metric for the
WGF, obtained by minimizing the KL divergence. This metric has been recently
proposed as a meaningful metric to consider in the case of sampling from general
non-log-concave densities in [4]. Note in particular under mild conditions on q (e.g.,
connected support) that having the Fisher information I (p|q) = 0 implies p ≡ q.
However, even when I (p|q) + ,, for some , > 0, we have that the modes of the two
densities are well-aligned, as argued in [4]. In order to state our next result, we denote
by ()i,t , ei,t )∞i=1, the set of eigenvalues and eigenvectors of the operator ιk,ρt ι

∗
k,ρt for

any t ≥ 0, with )1,t ≥ )2,t ≥ · · · > 0.

Theorem 1 [Relation to the WGF in Relative Fisher Information] Let (ρt ) be the
solution to (7) and (µt ) be the solution to the WGF, i.e.,





∂tµ = ∇ ·

(
µ∇ log

µ

π

⎜
,

µ(0, ·) = µ0(·).
(13)

For any t > 0, suppose there exists γt ∈ (0, 1
2 ] such that ‖I(ρt , γt )‖Ld

2 (ρt )
< ∞.

Then, for any initial density µ0 ∈ P(Rd), and for any T ∈ (0,∞), we have

∫ T

0
I (ρt |µt )dt + 4

3
KL(ρ0|µ0)+

4
3

∫ T

0
()1,t ∨ 1)2ν2γt (1 − ν)−2γt ‖I(ρt , γt )‖2Ld

2 (ρt )
dt,

(14)

where )1,t is the largest eigenvalue of ιk,ρt ι
∗
k,ρt for all t ≥ 0.

Proof of Theorem 1 First note thatwe have the following upper bound on d
dtKL(ρt |µt ):

d
dt

KL(ρt |µt )

= d
dt

∫

Rd
log

ρt (x)
µt (x)

ρt (x)dx

=
∫

Rd
∂tρt (x) log

ρt (x)
µt (x)

dx +
∫

Rd

(
∂tρt (x)
µt (x)

+ ρt (x)∂t

(
1

µt (x)

))
µt (x)
ρt (x)

ρt (x)dx

=
∫

Rd
∂tρt (x) log

ρt (x)
µt (x)

dx +
∫

Rd
∂tρt (x)dx −

∫

Rd
∂tµt (x)

ρt (x)
µt (x)

dx

= −
∫

Rd

〈
ιk,ρt

(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜−1
ι∗k,ρt ∇ log

ρt (x)
π(x)

,∇ log
ρt (x)
µt (x)

〉
ρt (x)dx
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+ 0+
∫

Rd

〈
µt (x)∇ log

µt (x)
π(x)

,∇
(

ρt (x)
µt (x)

)〉
dx

= −
∫

Rd

〈
ιk,ρt

(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜−1
ι∗k,ρt ∇ log

ρt (x)
π(x)

,∇ log
ρt (x)
µt (x)

〉
ρt (x)dx

+
∫

Rd

〈
∇ log

ρt (x)
µt (x)

,∇ log
µt (x)
π(x)

〉
ρt (x)dx

= −
∫

Rd

〈
∇ log

ρt (x)
µt (x)

,∇ log
ρt (x)
π(x)

− ∇ log
µt (x)
π(x)

〉
ρt (x)dx

−
∫

Rd

〈(
ιk,ρt

(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜−1
ι∗k,ρt − I

)
∇ log

ρt (x)
π(x)

,∇ log
ρt (x)
µt (x)

〉
ρt (x)dx

+ −
∫

Rd

⎭⎭⎭⎭∇ log
ρt (x)
µt (x)

⎭⎭⎭⎭
2
ρt (x)dx

+ 1
4

∫

Rd

⎭⎭⎭⎭∇ log
ρt (x)
µt (x)

⎭⎭⎭⎭
2
ρt (x)dx

+
∥∥∥∥

(
ιk,ρt

(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜−1
ι∗k,ρt − I

)
∇ log

ρt

π

∥∥∥∥
2

Ld2 (ρt )

= − 3
4
I (ρt |µt )+

∞∑

i=1

(1 − )i,t )
2ν2

(
(1 − ν))i,t + ν

)2

⎭⎭⎭⎭
〈
∇ log

ρt

π
, ei,t

〉

L2(ρt )

⎭⎭⎭⎭
2
.

In the above calculation, the fourth equality follows by integration-by-parts. The
inequality follows by Young’s inequality for the inner product (i.e., 〈p, q〉 +
1
2c|p|2 + 1

2c |q|2 for any p, q ∈ Rd ) and the last equality follows from the proof
of Proposition 3. Since ∇ log ρt

π = (ιk,ρt ι
∗
k,ρt )

γt ht for some γt ∈ (0, 1/2] with
ht := I(ρt , γt ) ∈ Ld

2(ρt ), we obtain

d
dt

KL(ρt |µt ) + − 3
4
I (ρt |µt )+

(
max
i

(1 − )i,t )
2
)(

max
i

)
γt
i,tν

(1 − ν))i,t + ν

)2

‖ht‖2Ld2 (ρt )

+ − 3
4
I (ρt |µt )+ ()1,t ∨ 1)2ν2γt (1 − ν)−2γt ‖I(ρt , γt )‖2Ld2 (ρt )

,

where the last inequality follows from the facts that

max
i

(1 − )i,t )
2 + (max

i
)i,t ∨ 1)2 and

)
γt
i,tν

(1 − ν))i,t + ν
+ νγt (1 − ν)−γt .

Integrating from t = 0 to t = T , we get

KL(ρT |µT ) − KL(ρ0|µ0) + −3
4

∫ T

0
I (ρt |µt )dt

+
∫ T

0
()1,t ∨ 1)2ν2γt (1 − ν)−2γt ‖I(ρt , γt )‖2Ld

2 (ρt )
dt .

Since KL-divergence is non-negative, (14) is proved.

Remark 4 The sequence {)1,t }t≥0 in Theorem 1 is the largest eigenvalue of ιk,ρt ι
∗
k,ρt

for all t ≥ 0. Note that it depends on both the kernel k and the solution (ρt ) to (7). If
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the kernel function k is assumed to be uniformly bounded, according to Proposition 1,
)21,t is uniformly upper bounded by supx∈Rd k(x, x) for all t ≥ 0. For specific choices
of kernel function, initial and target distributions, it is required to track )1,t for all
t ≥ 0. We will illustrate this further with an example in Remark 10.

Remark 5 The above result shows that as long as ρ0 = µ0, i.e., both the WGF and the
R-SVGF are initialized with the same density, and ν is chosen such that

T−1
∫ T

0
()1,t ∨ 1)2ν2γt (1 − ν)−2γt ‖I(ρt , γt )‖2Ld

2 (ρt )
dt → 0,

the averaged Fisher information along the path tends to zero. This shows the benefit
of regularizing the SVGF – it enables one to closely approximate the WGF with
appropriate choice of the regularization parameters.

4.2.2 Convergence to Equilibrium Along the Fisher Information

Wenowprovide results on the convergence to equilibrium along the Fisher information
for the R-SVGF.We re-emphasize here that our result provided below holds as long as
the target π ∈ P(Rd), without additional structural assumptions (via, say, functional
inequalities).

Theorem 2 [Convergence of Fisher information] Let (ρt ) be the solution to (7). For
any t > 0, suppose there exists γt ∈ (0, 1

2 ] such that ‖I(ρt , γt )‖Ld
2 (ρt )

< ∞. Then

∫ ∞

0
I (ρt |π)dt + (1 − ν)KL(ρ0|π)+

∫ ∞

0
ν2γt (1 − ν)−2γt ‖I(ρt , γt )‖2Ld

2 (ρt )
dt,

Furthermore, if
⎟ ∞
0 ν2γt (1−ν)−2γt ‖I(ρt , γt )‖2Ld

2 (ρt )
dt < ∞, then we get I (ρ̄t |π) →

0 as t → ∞, where ρ̄t := 1
t

⎟ t
0 ρsds is the averaged density of (ρs)0+s+t .

Before proving the above theorem, we introduce a few intermediate results.

Proposition 4 [Decay of the KL-divergence] For the solution (ρt )t≥0 to the PDE (7),
it holds that

d
dt

KL(ρt |π) = −Iν,Stein(ρt |π), (15)

and consequently

d
dt

KL(ρt |π) + 0. (16)
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Proof of Proposition 4 Note that

d
dt

KL(ρt |π) =
d
dt

∫

Rd
ρt log

ρt

π
dx

=
∫

Rd
∂tρt log

ρt

π
dx +

∫

Rd
∂tρt dx

= −
∫

Rd

〈
∇ log

ρt

π
(x), ιk,ρt

(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜−1
ι∗k,ρt

(
∇ log

ρt

π

⎜
(x)

〉
ρt (x)dx + 0

= −
〈
∇ log

ρt

π
, ιk,ρt

(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜−1
ι∗k,ρt

(
∇ log

ρt

π

⎜〉

Ld
2 (ρt )

= −
〈
ι∗k,ρt ∇ log

ρt

π
,
(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜−1
ι∗k,ρt

(
∇ log

ρt

π

⎜〉

Hd
k

.

It suffices to show that for all ν > 0,
(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜−1
is a positive operator

fromHd
k toHd

k . By the definition of ιk,ρt , for any f ∈ Hd
k with ‖ f ‖Hd

k
= 1,

〈 f ,
(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜
f 〉Hd

k
= (1 − ν)〈ιk,ρt f , ιk,ρt f 〉Ld

2 (ρt )
+ ν ‖ f ‖2Hd

k

= (1 − ν)
∥∥ιk,ρt f

∥∥2
Ld
2 (ρt )

+ ν > 0

for all ν > 0. Therefore, (1 − ν)ι∗k,ρt ιk,ρt + ν Id is a positive operator from Hd
k to

Hd
k . So is the operator

(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜−1
. Hence, we have (16). The claim

in (15) follows directly from (16), (5) and Definition 1.

We now provide the proof of Theorem 2. For the proof, we recall that we use
()i,t , ei,t )∞i=1 to denote the set of eigenvalues and eigenvectors of the operator ιk,ρt ι

∗
k,ρt

for any t ≥ 0, with )1,t ≥ )2,t ≥ · · · > 0.

Proof of Theorem 2 From Proposition 4 and (12), we know that

d
dt

KL(ρt |π) = −(1 − ν)−1 I (ρt |π)+
∞∑

i=1

(1 − ν)−1ν

(1 − ν))i,t + ν

⎭⎭⎭⎭
〈
∇ log

ρt

π
, ei,t

〉

L2(ρt )

⎭⎭⎭⎭
2

,

where ∇ log ρt
π = (ιk,ρt ι

∗
k,ρt )

γt ht for some γt ∈ (0, 1
2 ] with ht := I(ρt , γt ) ∈ Ld

2(ρt ).
Therefore, we have

d
dt

KL(ρt |π)

= −(1 − ν)−1 I (ρt |π)+
∞∑

i=1

(1 − ν)−1ν

(1 − ν))i,t + ν

⎭⎭⎭⎭
〈
(ιk,ρt ι

∗
k,ρt )

γt ht , ei,t
〉

L2(ρt )

⎭⎭⎭⎭
2

= −(1 − ν)−1 I (ρt |π)+
∞∑

i=1

(1 − ν)−1ν)
2γt
i,t

(1 − ν))i,t + ν

⎭⎭⎭
〈
ht , ei,t

〉
L2(ρt )

⎭⎭⎭
2

=
∞∑

i=1

(1 − ν)−1−2γt ν2γt
(

(1 − ν))i,t

(1 − ν))i,t + ν

)2γt ( ν

(1 − ν))i,t + ν

)1−2γt ⎭⎭⎭
〈
ht , ei,t

〉
L2(ρt )

⎭⎭⎭
2
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− (1 − ν)−1 I (ρt |π)
+ −(1 − ν)−1 I (ρt |π)+ (1 − ν)−1−2γt ν2γt ‖I(ρt , γt )‖2Ld2 (ρt )

.

The result follows by integrating over t and noting that the KL-divergence is non-
negative. Now, with ρt denoting the solution to (9), we have that I (ρt |π) is non-
negative and continuous in t . The claim of convergence follows from the convexity of
ρ 3→ I (ρ|µ).

4.2.3 Convergence in KL-Divergence Under LSI

While the previous result was provided for any the target density π ∈ P(Rd), in this
section, we provide improved convergence results of the R-SVGF under the assump-
tion that the π further satisfies the Log-Sobolev Inequality. Recall that we say that π
satisfies the Log-Sobolev inequality with constant ) > 0 if for all µ ∈ P(Rd):

KL(µ|π) + 1
2)

I (µ|π).

Our first result below is a stronger version of the result in Theorem 1, under the
assumption that the target π satisfies LSI and Assumption 1 on the initialization of
the WGF.

Assumption 1 The initial density µ0 is chosen so that the solution (µt ) to (13) also
satisfies LSI with parameter ), for all t > 0.

Under the stronger assumption that the target density π is strongly log-concave,
following the arguments in [45, Theorem 8], it is easy to show that Assumption 1 is
satisfied as long as µ0 is chosen such that it satisfies LSI. We conjecture that the same
holds true even when the target density satisfies LSI and additional mild smoothness
assumptions (i.e., LSI is preserved along the trajectory as long as the initial density
µ0 satisfies LSI, presumably with additional milder assumptions). However, a proof
of this conjecture has eluded us thus far.

Theorem 3 [Relation to the WGF under LSI] Assume π satisfies the log-Sobolev
inequality with parameter ). Let (ρt ) be the solution to (7). Let (µt ) be the solution
to the WGF, defined in (13), with µ0 satisfying Assumption 1. For any t > 0, suppose
there exists γt ∈ (0, 1

2 ] such that ‖I(ρt , γt )‖Ld
2 (ρt )

< ∞. Then, for any T ∈ (0,∞),
we have

KL(ρT |µT ) + e−3)T /2KL(ρ0|µ0)

+
∫ T

0
()1,t ∨ 1)2ν2γt (1 − ν)−2γt e−3)(T−t)/2 ‖I(ρt , γt )‖2Ld

2 (ρt )
dt, (17)

where )1,t is the largest eigenvalue of ιk,ρt ι
∗
k,ρt for all t ≥ 0.
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Proof of Theorem 3 Following the same arguments as in the proof of Theorem 1, we
obtain that for any t > 0,

d
dt

KL(ρt |µt ) + −3
4
I (ρt |µt )+

∞∑

i=1

(1 − )i )
2ν2

((1 − ν))i + ν)2

⎭⎭⎭⎭
〈
∇ log

ρt

π
, ei

〉

L2(ρt )

⎭⎭⎭⎭
2

+ −3
4
I (ρt |µt )+ ()1,t ∨ 1)2ν2γt (1 − ν)−2γt ν2γt ‖I(ρt , γt )‖2Ld

2 (ρt )
.

Hence, under Assumption 1 we obtain

d
dt

KL(ρt |µt ) + −3)
2
KL(ρt |µt )+ ()1,t ∨ 1)2ν2γt (1 − ν)−2γt ‖I(ρt , γt )‖2Ld

2 (ρt )
.

Finally, (17) follows from the Gronwall’s inequality.

Our second result is a stronger version of the result in Theorem 2, under the
assumption that the target distribution π satisfies LSI. We remark that convergence to
equilibrium of the relatedWGF under various functional inequalities is a well-studied
topic. We refer the interested reader to [3] for a detailed overview.

Theorem 4 [Decay of KL-divergence under LSI] Assume that π satisfies the log-
Sobolev inequality with ) > 0. Let (ρt ) be the solution to (7). For any t > 0, suppose
there exists γt ∈ (0, 1

2 ] such that ‖I(ρt , γt )‖Ld
2 (ρt )

< ∞. Then, for any T ∈ (0,∞),
we have

KL(ρT |π) + e−2(1−ν)−1)TKL(ρ0|π)

+
∫ T

0
ν2γt (1 − ν)−2γt−1 ‖I(ρt , γt )‖2Ld

2 (ρt )
e2(1−ν)−1)(t−T )dt .

Proof of Theorem 4 From the proof of Theorem 2, we have

d
dt

KL(ρt |π) + −(1 − ν)−1 I (ρt |π)+ (1 − ν)−1−2γt ν2γt ‖I(ρt , γt )‖2Ld
2 (ρt )

+ −2(1 − ν)−1)KL(ρt |π)+ (1 − ν)−1−2γt ν2γt ‖I(ρt , γt )‖2Ld
2 (ρt )

,

where the last inequality follows the log-Sobolev inequality. The final statement fol-
lows from Gronwall’s inequality.

Remark 6 [Exponential Decay of KL-divergence] Yet another way to state the above
result is via the introducing the following regularized Stein-LSI, similar to the intro-
duction of Stein-LSI in [19]. However, the introduction of Stein-LSI is quite restrictive
in the sense that it couples assumptions on the target and the chosenRKHS. Thismakes
verifying the conditions more delicate. To counter this effect, we now introduce the
notion of Regularized Stein-LSI. We say that π ∈ P(Rd) satisfies the regularized
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Stein log-Sobolev inequality with constant ) > 0 if for all µ ∈ P(Rd):

KL(µ|π) + 1
2)

Iν,Stein(µ|π). (18)

An advantage of the above condition is that, as ν → 0 the regularized Stein-LSI
inequality becomes equivalent to the standard LSI inequality. Under the condition that
the target density π satisfies (18), and letting (ρt ) be the solution to (7), it holds that

KL(ρt |π) + e−2)tKL(ρ0|π). (19)

The proof of (19) follows immediately from Proposition 4 and (18).

4.3 Convergence Results for Time-Discretized R-SVGF

In this section, we analyze the convergence properties of the time-discretized R-SVGF
in (8). To do so, we require the following additional assumptions.

Assumption A2 The following conditions hold:

(1) There exists a constant B > 0 such that ‖∇1k(x, ·)‖Hd
k

+ B for all x ∈ Rd .

(2) The potential function V : Rd → R is twice continuously differentiable and
gradient Lipschitz with parameter L .

(3) Along the time discretization (8)), I (ρn|π) < ∞ for all fixed n ≥ 0.

The smoothness assumptions in points (1) and (2) of Assumption A2 are commonly
required in analyzing any discrete-time algorithms, albeit deterministic [24, 37] or
randomized [4, 11, 45]. While it could be relaxed (see, for example, [43]), in general it
is impossible to completely avoid them as in the case of analyzing the corresponding
flows. Before stating our results, we also introduce some convenient notations. We let

Sn :=



sup
i

)
(n)
i

1+2γn

(
(1 − νn+1))

(n)
i + νn+1

⎜2



 and Rn :=
∥∥I(ρn, γn)

∥∥
Ld
2 (ρ

n)
, (20)

where the sequence {)(n)i }i≥1 corresponds to the positive eigenvalues of the operator
ιk,ρn ι∗k,ρn in the order of decreasing values for all n ≥ 0.

Theorem 5 [Convergence in Fisher Divergence] Suppose Assumption A2 holds. Let
(ρn) be the time discretization of the R-SVGF described in (8) with initial condition
ρ0 = ρ0 such that KL(ρ0|π) + R. For each n, suppose that νn+1 and the step-size
hn+1 are chosen such that,

hn+1 < min
⎫
1 − νn+1

L
,

α − 1

αBRn
√
Sn

⎬
, (21)
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where α ∈ (1, 2] is some constant, and suppose that there exists γn ∈ (0, 1
2 ], such that

I(ρn, γn) ∈ Ld
2(ρ

n). Then,

∞∑

n=0

hn+1
2(1 − νn+1)

I (ρn |π) +
∞∑

n=0

ν
2γn
n+1(1 − νn+1)

−2γn−1hn+1

(
1+ 1

2
ν−1
n+1α

2B2hn+1

)
R2
n + R.

(22)

Before proving Theorem 5, we first prove the following intermediate result. For the
proofs, we let ()(n)i , e(n)i )∞i=1to denote the set of eigenvalues and eigenvectors of the
operator ιk,ρn ι∗k,ρn , with )

(n)
1 ≥ )

(n)
2 ≥ · · · > 0.

Lemma 1 For each n ≥ 1, define g = Dνn+1,ρn∇ log ρn

π . Under the conditions in
Theorem 5, we have that, for any x ∈ Rd and t ∈ [0, hn+1],

‖∇g(x)‖2HS + B2R2
nSn and

∥∥∥(id − t∇g(x))−1
∥∥∥
2

+ α.

Proof of Lemma 1 Since for each n, there exists γn ∈ (0, 1/2] and a function h =
I(ρn, γn) ∈ Ld

2(ρ
n) such that (ιk,ρn ι∗k,ρn )2γn h j = ∂ j log

ρn

π , where h j is the j-th
component of the function value of h, we have

‖∇g(x)‖2HS =
d∑

j ,l=1

⎭⎭⎭⎭
∂g j (x)

∂xl

⎭⎭⎭⎭
2

=
d∑

j ,l=1




∞∑

i=1

)
(n)
i

(1 − νn+1))
(n)
i + νn+1

〈
∂ j log

ρn

π
, e(n)i

〉

L2(ρn )
∂l e

(n)
i (x)




2

=
d∑

j ,l=1




∞∑

i=1

)
(n)
i

1+γn

(1 − νn+1))
(n)
i + νn+1

〈
h j , e

(n)
i

〉

L2(ρn )
∂l e

(n)
i (x)




2

+
d∑

j ,l=1




∞∑

i=1

〈
h j , e

(n)
i

〉2
L2(ρn )








∞∑

i=1

)
(n)
i

2+2γn

(
(1 − νn+1))

(n)
i + νn+1

⎜2
⎭⎭⎭∂l e

(n)
i (x)

⎭⎭⎭
2





=




∞∑

i=1

⎭⎭⎭⎭
〈
h, e(n)i

〉

L2(ρn )

⎭⎭⎭⎭
2







∞∑

i=1

)
(n)
i

2+2γn

(
(1 − νn+1))

(n)
i + νn+1

⎜2
⎭⎭⎭∇e(n)i (x)

⎭⎭⎭
2





+ sup
i




)
(n)
i

1+2γn

(
(1 − νn+1))

(n)
i + νn+1

⎜2



 ‖∇1k(x, ·)‖2Hd
k
R2
n

+ B2R2
n sup

i




)
(n)
i

1+2γn

(
(1 − νn+1))

(n)
i + νn+1

⎜2



 .

123



Foundations of Computational Mathematics

In the above, the first inequality follows from Cauchy-Schwartz inequality, the second
inequality follows from the fact that

∞∑

i=1

)
(n)
i

⎭⎭⎭∇e(n)i (x)
⎭⎭⎭
2
=

∞∑

i=1

〈∇1k(x, ·),
√

)
(n)
i e(n)i 〉2Hd

k
= ‖∇1k(x, ·)‖2Hd

k
,

and the last inequality follows from Assumption A2. Meanwhile, since ‖∇g(x)‖2 +
‖∇g(x)‖HS for all x ∈ Rd , for every t ∈ [0, hn+1], we have

∥∥∥(id − t∇g(x))−1
∥∥∥
2

+
∞∑

m=0

‖t∇g(x)‖m2 +
∞∑

m=0

‖t∇g(x)‖mHS

+
∞∑

m=0



hn+1BRn sup
i




)
(n)
i

1+2γn

(
(1 − νn+1))

(n)
i + νn+1

⎜2





1
2




m

+
∞∑

m=0

(
α − 1

α

)m

= α.

where the last inequality follows from (21).

Proof of Theorem 5 We start from studying the single step along (8). In the following
analysis, for each n ≥ 1, we denote g = Dνn+1,ρn∇ log ρn

π , φt (x) = x − tg(x) for all
x ∈ Rd , t ∈ [0, hn+1] and ρ̃t = (φt )#ρ

n . Therefore, we have

ρn = ρ̃0 and ρn+1 = (φhn+1)#ρ
n = ρ̃hn+1 .

The following analysis is motivated by [37, Proposition 3.1]. According to [46,
Theorem 5.34], the velocity field ruling the evolution of ρ̃t is .t ∈ Ld

2(ρ̃t ) and
.t (x) = −g(φ−1

t (x)). Define ψ(t) = KL(ρ̃t |π). According to the chain rule in
[46, Section 8.2],

ψ :(t) =
〈
∇W2KL(ρ̃t |π),.t

〉
Ld
2 (ρ̃t )

,

ψ ::(t) =
〈
.t ,HessKL(·|π)(ρ̃t ).t

〉
Ld
2 (ρ̃t )

.

whereHessKL(·|π)(ρ̃t ) is theWassersteinHessian ofKL(·|π) at ρ̃t . For anyµ ∈ P(Rd)

and any v in the Wasserstein tangent space at µ, the Wasserstein Hessian is given
by [24],

〈
v,HessKL(·|π)(µ)v

〉
Ld
2 (µ)

=
〈
v,∇2V v

〉

Ld
2 (µ)

+ Eµ[‖∇v(X)‖2HS].
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Thereforewe can expand the difference inKL-divergence between the two consecutive
iterations as

ψ(hn+1) − ψ(0)

= ψ :(0)hn+1 +
∫ hn+1

0
(hn+1 − t)ψ ::(t)dt

= −hn+1
〈
∇W2KL(ρ

n|π), g
〉
Ld
2 (ρ

n)

+
∫ hn+1

0
(hn+1 − t)〈.t ,HessKL(·|π)(ρ̃t ).t 〉Ld

2 (ρ̃t )
dt . (23)

The first term on the right-hand side of (23) can be studied via the spectrum of the
operator ιk,ρn ι∗k,ρn .

− hn+1
〈
∇W2KL(ρ

n|π), g
〉
Ld
2 (ρ

n)

= −hn+1

〈
∇ log

ρn

π
,
(
(1 − νn+1)ι

∗
k,ρn ιk,ρn + νn+1 Id

⎜−1
ι∗k,ρn∇ log

ρn

π

〉

Ld
2 (ρ

n)

= −hn+1

∞∑

i=1

)
(n)
i

(1 − νn+1))
(n)
i + νn+1

⎭⎭⎭⎭⎭

〈
∇ log

ρn

π
, e(n)i

〉

L2(ρn)

⎭⎭⎭⎭⎭

2

= −hn+1 Iνn+1,Stein(ρ
n|π).

Since ρ̃t = (φt )#ρ
n , for any function h we have EX∼ρ̃t [h(X)] = EY∼ρn [h(φt (Y ))].

Hence, for the second term on the right side of (23), we obtain

〈
.t ,HessKL(·|π)(ρ̃t ).t

〉
Ld
2 (ρ̃t )

=
〈
.t ,∇2V.t

〉

Ld
2 (ρ̃t )

+ Eρ̃t [‖∇.t (x)‖2HS]

=
〈
g(φ−1

t ),∇2Vg(φ−1
t )

〉

Ld
2 (ρ̃t )

+ Eρn [‖∇.t ; φt (x)‖2HS]

= Eρn

[
g(x)T∇V 2(φt (x))g(x)

]
+ Eρn

[∥∥∥∇g(x)(∇φt (x))−1
∥∥∥
2

HS

]

+ L ‖g‖2
Ld
2 (ρ

n)
+ Eρn

[∥∥∥∇g(x)(∇φt (x))−1
∥∥∥
2

HS

]
,

where the last inequality follows from Assumption A2-(2). Therefore, we obtain

KL(ρn+1|π) − KL(ρn|π) + −hn+1 Iνn+1,Stein(ρ
n|π)+ Lh2n+1

2
‖g‖2

Ld
2 (ρ

n)

+ h2n+1

2
max

t∈[0,hn+1]
Eρn

[∥∥∥∇g(x)(∇φt (x))−1
∥∥∥
2

HS

]
,
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where

‖g‖2
Ld
2 (ρ

n)
=

∥∥∥∥Dνn+1,ρn∇ log
ρn

π

∥∥∥∥
2

Ld
2 (ρ

n)

=
∥∥∥∥
(
(1 − νn+1)ιk,ρn ι∗k,ρn + νn+1 Id

⎜−1
ιk,ρn ι∗k,ρn∇ log

ρn

π

∥∥∥∥
2

Ld
2 (ρ

n)

=
d∑

i=1

(
)
(n)
i

(1 − νn+1))
(n)
i + νn+1

)2 ⎭⎭⎭⎭⎭

〈
∇ log

ρn

π
, e(n)i

〉

L2(ρn)

⎭⎭⎭⎭⎭

2

+ (1 − νn+1)
−2 I (ρn|π),

with ()(n)i , e(n)i )∞i=1 being the sequence of eigenvalues and eigenvectors to the operator
ιk,ρn ι∗k,ρn such that )

(n)
1 ≥ · · · ≥ )

(n)
i ≥ · · · > 0 and (e(n)i )∞i=1 is an orthonormal basis

of L2(ρ
n). According to Lemma 1 and Assumption A2,

‖∇g(x)‖2HS

+ sup
i




)
(n)
i

1+2γn

(
(1 − νn+1))

(n)
i + νn+1

⎜2



 B2R2
n

+ sup
i



 ν
2γn−1
n+1

(1 − νn+1)2γn+1

(
(1 − νn+1))

(n)
i

(1 − νn+1))
(n)
i + νn+1

)1+2γn

(
νn+1

(1 − νn+1))
(n)
i + νn+1

)1−2γn


 B2R2
n

+ ν
2γn−1
n+1 (1 − νn+1)

−2γn−1B2R2
n,

and furthermore according to Lemma 1,
∥∥(id − t∇g(x))−1

∥∥2
2 + α2. Therefore, we

get

KL(ρn+1|π) − KL(ρn |π) + −hn+1 Iνn+1,Stein(ρ
n |π)+ Lh2n+1(1 − νn+1)

−2

2
I (ρn |π)

+ 1
2
α2B2ν

2γn−1
n+1 (1 − νn+1)

−2γn−1R2
nh

2
n+1

+ −hn+1(1 − νn+1)
−1

(
1 − Lhn+1(1 − νn+1)

−1

2

)
I (ρn |π)

+ hn+1ν
2γn
n+1(1 − νn+1)

−2γn−1R2
n

(
1+ 1

2
hn+1ν

−1
n+1α

2B2
)

+ −1
2
hn+1(1 − νn+1)

−1 I (ρn |π)

+ hn+1ν
2γn
n+1(1 − νn+1)

−2γn−1R2
n

(
1+ 1

2
hn+1ν

−1
n+1α

2B2
)
,
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where the last inequality follows from (21) and the second inequality follows from the
fact that

I (ρn|π) − (1 − νn+1)Iνn+1,Stein(ρ
n|π) + ν

2γn
n+1(1 − νn+1)

−2γn R2
n,

which is proved in Proposition 3. Lastly, summing over n and we obtain

∞∑

n=0

hn+1
2(1 − νn+1)

I (ρn |π) +
∞∑

n=0

(
KL(ρn |π) − KL(ρn+1)

⎜

+
∞∑

n=0

hn+1ν
2γn
n+1(1 − νn+1)

−2γn−1R2
n

(
1+ 1

2
hn+1ν

−1
n+1α

2B2
)

+ KL(ρ0|π)+
∞∑

n=0

hn+1ν
2γn
n+1(1 − νn+1)

−2γn−1

R2
n

(
1+ 1

2
hn+1ν

−1
n+1α

2B2
)
,

where the last inequality follows from the fact that KL divergence is non-negative.
Therefore, (22) is proved.

Remark 7 We emphasize that the above result does not make any assumptions on the
target density π , except for π ∈ P(Rd) and the Lipschitz gradient assumption. In
particular, it holds for multi-modal densities. However, the metric of convergence is
the weaker Fisher information metric.

We now provide a stronger result under the LSI assumption.

Theorem 6 Suppose Assumption A2 holds and π satisfies the log-Sobolev inequality
with parameter ). Let (ρn) be as described in (8) with initial condition ρ0 = ρ0
such that KL(ρ0|π) + R. Assume the regularization parameter and the step-size
parameters are chosen such that for all n ≥ 0, they satisfy

hn+1 + min
⎫
1 − νn+1

L
,

α − 1

αBRn
√
Sn

,
2νn+1

α2B2 ,
2(1 − νn+1)

)

⎬
,

νn+1

1 − νn+1
+

(
I (ρn|π)
2R2

n

) 1
2γn

,

(24)

where α ∈ (1, 2] is a constant, γn ∈ (0, 1
2 ], and I(ρn, γn) ∈ Ld

2(ρ
n). Then, for all

n ≥ 1,

KL(ρn|π) + R
n∏

i=1

(
1 − 1

2
)(1 − νi )

−1hi

)
. (25)

Proof of Theorem 6 From the proof of Theorem 5, we can bound the difference in
KL-divergence between two consecutive iterations by
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KL(ρn+1|π) − KL(ρn |π)

+ − 1
2
hn+1(1 − νn+1)

−1 I (ρn |π)+ hn+1ν
2γn
n+1(1 − νn+1)

−2γn−1R2
n

(
1+ 1

2
hn+1ν

−1
n+1α

2B2
)

= − 1
4
hn+1(1 − νn+1)

−1 I (ρn |π)



2 −
ν
2γn
n+1

(1 − νn+1)2γn

R2
n

(
1+ 1

2 hn+1ν
−1
n+1α

2B2
⎜

I (ρn |π)





+ − 1
4
hn+1(1 − νn+1)

−1 I (ρn |π)



2 −
ν
2γn
n+1

(1 − νn+1)2γn

2R2
n

I (ρn |π)





+ − 1
4
hn+1(1 − νn+1)

−1 I (ρn |π),

where the second inequality follows from the fact that 1
2hn+1ν

−1
n+1α

2B2 + 1, and the
last inequality follows from (24).

Last, since π satisfies the log-Sobolev inequality with parameter ), we get

KL(ρn+1|π) +
(
1 − 1

2
)(1 − νn+1)

−1hn+1

)
KL(ρn|π),

and (25) follows from the above recursive inequality.

Remark 8 [Choice of {νn}n≥1] From (24) and (25), we observe that there is a trade-off
in terms of {νn}n≥1, as smaller {νn}n≥1 will result in slower convergence of the time-
discretized R-SVGF in KL-divergence. Indeed, if {νn}n≥1 are chosen to be small, (24)
requires the step-size {hn}n≥1 to be small as well. And, as shown in (25), KL(ρn|π)
decays at a slower rate when {hn}n≥1 are smaller. We also refer to Remark 10 below
and Remark 12 for further trade-offs with respect to the parameter {νn}n≥1.

Remark 9 According to (25), to reach an ,-accuracy in KL-divergence, we need the
number of iterations to be at least n, such that

∏n,
i=1

(
1 − 1

2)(1 − νi )
−1hi

)
R + ,.

With the fact that log(1 − x) < −x for all x ∈ (0, 1), we get n, satisfies

n,∑

i=1

(1 − νi )
−1hi ≥ 2

)
log

(
R
,

)
.

Under (24), if we can choose the time step sizes (hi )∞i=1 to be a constant h > 0, then
we have n, = O(log(R/,)). For comparison, in Table 1, we provide the iteration com-
plexity results for different methods, to obtain KL(ρn|π) + ,, under the assumption
that the target π satisfies LSI.

We also emphasize that prior results on the analysis of time-discretization of the
SVGF under functional inequality assumptions are established only in the weaker
Stein-Fisher information metric [24, 37]. Our results above are established for theKL-
divergence and is more in line with similar results established for other randomized
Monte Carlo algorithms [4, 11, 45]. We end this section with the following remark on
an illustrative example.
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Table 1 The results for SVGF and Regularized SVGF are strictly non-algorithmic, as the stated results
require that the initial density supplied to the method must have finite KL divergence to π

Method Source Type Iterations

SVGF NA Deterministic unknown

LMC [11, 45] Randomized O( 1, )

MALA NA Randomized unknown

Proximal sampler [9] Randomized O
(
log)( 1, )

⎜

Regularized SVGF Theorem 6 Deterministic O
(
log

(
1
,

⎜⎜

The results from [9, 11, 45] are for LMC, MALA and the proximal sampler are algorithmic, and are
presented in a simplified manner to convey the dependency on the accuracy parameter ,. The result for the
proximal sampler holds only in expectation. Currently, it is not clear how to obtain a high-probability result
in KL-divergence; see [9] for details

Remark 10 (An illustrative example) Consider sampling from a Gaussian target π =
N (0, Q), where Q is strictly positive definite and k(x, y) = 〈x, y〉 + 1, the linear
kernel. This model has recently been studied in [28] motivated by connections to
Gaussian variational inference. Note that the above target π satisfies LSI with ) being
the minimal eigenvalue of Q. Based on the results established in [28], our results on
the R-SVGF and the time-discretized R-SVGF can be interpreted as follows. Before
we proceed, we point out a subtle fact. To establish existence and uniqueness later
in Sect. 5 we assume that the kernel is bounded, which is not satisfied by the linear
kernel. However, based on an explicit calculation, existence and uniqueness results
were shown for the linear kernel in [28].

R-SVGF: If ρ0 = N (0,/0), then note that we have for all t ≥ 0, ρt = N (0,/t ),
γt = 1/2, )1,t + 1 + ‖/t‖2F and ‖J (ρt , γt )‖L2(ρt ) =

∥∥∥Q−1 − /−1
t

∥∥∥
F
. It follows

from [28, Equation 9] that

d
dt

/t = 2
(
(1 − ν)/t + ν Id

)−1
/t −

(
(1 − ν)/t + ν Id

)−1
/2

t Q
−1

− Q−1((1 − ν)/t + ν Id
)−1

/2
t .

Further assuming that /0Q = Q/0, there exists an orthonormal matrix P such
that we have Q = Pᵀdiag{q1, · · · , qd}P and /t = Pᵀdiag{(1(t), · · · , (d(t)}P
with q1 ≥ q2 ≥ · · · ≥ qd . According to [28, page 45], we also have that ) = qd ,
‖/t − Q‖ = O

(
exp(− 2t

(1−ν)q1+ν )
)
and

)1,t + 1+ O
( d∑

i=1

(
qi + exp(− 2t

(1 − ν)qi + ν
)
)2
)
,

‖J (ρt , γt )‖2L2(ρt )
= O

(
d∑

i=1

(i (0)
− 2ν

(1−ν)qi+ν q
−4+ 2ν

(1−ν)qi+ν

i ((i (0) − qi )2e
− 4t

(1−ν)qi+ν

)

.
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Our convergence result in Theorem 4, hence translates as

KL(ρT |π) + e−2(1−ν)−1)TKL(ρ0|π)

+
∫ T

0
ν(1 − ν)−2 ‖I(ρt , γt )‖2Ld

2 (ρt )
e2(1−ν)−1)(t−T )dt

= e−2(1−ν)−1qdTKL(ρ0|π)

+ O
(

ν(1 − ν)−2T exp
(

−min
⎫

4
(1 − ν)q1 + ν

,
2qd
1 − ν

⎬
T
))

,

for T ∈ (0,∞). The first term in the above bound indicates the exponential con-
vergence of the R-SVGF and the convergence rate is proportional to 1/(1 − ν). The
second term characterizes the bias between ρT and π . For any fixed values of T , the
bias term vanishes as ν → 0. Therefore, in order to obtain an optimal upper bound
on KL(ρT |π), there is a trade-off between choosing large ν (i.e., ν → 1) and small ν
(i.e., ν → 0), which depends on T and eigenvalues of /0 and Q.

Time-discretized R-SVGF: Note that if ρ0 = N (0, S0), then for all n ≥ 0, ρn =
N (0, Sn), γn = 1/2. Rn = ‖J (ρn, γn)‖L2(ρn) =

∥∥Q−1 − S−1
n

∥∥
F and I (ρn|π) =

trace(Sn(Q−1 − S−1
n )ᵀ(Q−1 − S−1

n )), where (Sn)n≥0 is updated as:

Sn+1 − Sn = hn+1
(
(1 − νn+1)Sn + νn+1 Id

)−1
(S−1

n − Q−1)S2n

hn+1Sn
(
(1 − νn+1)Sn + νn+1 Id

)−1
(S−1

n − Q−1)Sn

+ h2n+1
(
(1 − νn+1)Sn + νn+1 Id

)−1
(S−1

n − Q−1)S3n

× (S−1
n − Q−1)

(
(1 − νn+1)Sn + νn+1 Id

)−1
. (26)

Since ∇1k(x, y) = y, the RKHS norm of ∇1k(x, y) is obtained as follows

‖∇1k(x, y)‖2Hd
k
=

d∑

i=1

〈yi , yi 〉Hk =
d∑

i=1

∂i∂i+dk(y, y) = d.

Therefore, we have γn = 1/2, B =
√
d and Sn + (1 − νn+1)

−2 for all n ≥ 0. Now,
the convergence result in Theorem 6 translates as:

KL(ρn|π) + KL(ρ0|π)0n
i=1

(
1 − qd

2(1 − νi )
hi

⎜
,

where for all i ≥ 1,

νi

1 − νi
+ trace(Si−1(Q−1 − S−1

i−1)
ᵀ(Q−1 − S−1

i−1))

2
∥∥∥Q−1 − S−1

i−1

∥∥∥
2

F

,
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hi + min





1 − νi

q1
,
2(1 − νi )

qd
,

2(1 − νi )√
d
∥∥∥Q−1 − S−1

i−1

∥∥∥
F

,
νi

2d





.

We now show that such a choice of {νi , hi }i≥1 exists. Assuming QS0 = S0Q, there
exists an orthonormal matrix P such that Q = Pᵀdiag{q1, · · · , qd}P and Si =
Pᵀdiag{(1,i , · · · , (d,i }P with q1 ≥ q2 ≥ · · · ≥ qd . Then, (26) implies that for any
k = 1, · · · , d,

q−1
k (k,i+1 =

(
1+ hi+1((1 − νi+1)(k,i + νi+1)

−1(1 − q−1
k (k,i )

)2q−1
k (k,i .

Now, we pick

hi+1 = δmin
k

(
(1 − νi+1)(k,i + νi+1

)
, νi

1−νi
= trace(Si−1(Q−1−S−1

i−1)
ᵀ(Q−1−S−1

i−1))

2
∥∥∥Q−1−S−1

i−1

∥∥∥
2

F

,

(27)

with δ ∈ (0, 1/2). According to [28, Theorem 3.10], if q−1
k (k,0 ∈ [uδ, 1/3+ 1/(3δ)]

for all k = 1, · · · , d, we have ‖Si − Q‖2 + e−iδ ‖S0 − Q‖. Here uδ is the smaller
root of f :

δ(u) = 1− δ with fδ(x) = (1+ δ(1− x))2x . According to the convergence
of Si and the fact that

‖Si−1‖2
∥∥∥Q−1 − S−1

i−1

∥∥∥
2

F
≥ trace(Si−1(Q−1 − S−1

i−1)
ᵀ(Q−1 − S−1

i−1))

≥
∥∥∥S−1

i−1

∥∥∥
−1

2

∥∥∥Q−1 − S−1
i−1

∥∥∥
2

F
,

we have that {νi }i≥1 and {1−νi }i≥1 have uniform positive lower bounds, i.e., inf i νi >
0 and inf i 1 − νi > 0. Therefore, we can further choose

δ = inf
i






(
(1 − νi )‖S−1

i−1‖
−1
2 + νi

)−1 min{ 1 − νi
q1

,
2(1 − νi )

qd
,

2(1 − νi )√
d
∥∥∥Q−1 − S−1

i−1

∥∥∥
F

,
νi
2d

}





> 0,

where the positivity of the third term follows from the fact that

∥∥∥Q−1 − S−1
i−1

∥∥∥
F

+
∥∥∥Q−1

∥∥∥
2

∥∥∥S−1
i−1

∥∥∥
2
‖Q − Si−1‖F .

Therefore, we have shown that there exists δ ∈ (0, 1/2) such that {νi , hi }i≥1 defined
in (27) satisfies the assumptions in Theorem 6 and inf i hi > 0.

Last, we discuss the iteration complexity under the choice of {νi , hi }i≥1 in (27).
According to Remark 9, KL(ρn|π) + , if n satisfies

n∑

i=1

hi
1 − νi

≥ 2
qd

log
KL(ρ0|π)

,
.
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Since inf i hi > 0 and inf i 1 − νi > 0, we obtain n = O(log(KL(ρ0|π)/,)).

5 Existence and Uniqueness

The existence and uniqueness of the SVGF was studied in [30]. Motivated by their
approach, in this sectionwe study the existence anduniqueness of solutions to (7) under
appropriate assumptions. Our main difficulty is in handling the non-linear operator(
(1 − ν)Tk,µ + ν I

)−1 Tk,µ in the R-SVGF.
We first introduce the definition of weak solutions to (7). We restrict the initial

conditions in the probability measure space PV which is defined as

PV :=
⎫
ρ ∈ P : ‖ρ‖PV

:=
∫

Rd
(1+ V (x))dρ(x) < ∞

⎬
,

where, in this section, with a slight overload of notations, we use P to denote the
set of all probability measures on Rd . We emphasize here that that PV is a space of
probability measures because the weak solutions do not necessarily have densities
even if the target measure and the initial measure has a density; see [30] for additional
details. We say that a measure-valued function ρ ∈ C([0,∞),PV ) is a weak solution
to (7) with initial condition ρ0 ∈ PV if

sup
t∈[0,T ]

‖ρt‖PV
< ∞, ∀ T > 0,

and
∫ ∞

0

∫

Rd
(∂tφ(t, x)+ ∇φ(t, x) ·U [ρt ](x))dρt (x)dt +

∫

Rd
φ(0, x)dρ0(x) = 0,

for all φ ∈ C∞
0 ([0,∞)×Rd) andU [ρ] := −

(
(1 − ν)ιk,ρι∗k,ρ + ν I

⎜−1
ιk,ρι∗k,ρ(∇ log

ρ
π ).

In order to study the existence of weak solutions, we consider the characteristic
flow (see, for example, [32] and [30, Definition 3.1]) induced by (7), which is written
as






d
dt

1(t, x, ρ0) = −Dν,ρt∇ log
ρt

π
(1(t, x, ρ0)),

ρt = (1(t, ·, ρ0))#ρ0,
1(0, x, ρ0) = x,

(28)

whereDν,ρt =
(
(1 − ν)ιk,ρt ι

∗
k,ρt + ν I

⎜−1
ιk,ρt ι

∗
k,ρt for all t > 0. Here, the expression

ρt = 1(t, ·, ρ0)#ρ0 means that the measure ρt is the push-forward measure of ρ0
under the map x → 1(t, x, ρ0). We think of {X(t, ·, ρ0)}t≥0,ρ0 as a family of maps
from Rd to Rd parameterized by t and ρ0. The existence and uniqueness of the weak
solutions of (7) is equivalent to the existence and uniqueness of solutions to (28). In
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Theorem 7, we first prove that themean field characteristic flow in (28) is well-defined.
To do so, we also require the following additional assumptions on the kernel and the
potential functions.

Assumption K1 The kernel k : Rd × Rd → R is symmetric, positive definite and
fourth continuously differentiable in both variables with bounded derivatives up to
fourth order. More explicitly, we assume

(1) ‖k‖∞ := supx∈Rd
√
k(x, x) < ∞

(2) ‖∇k‖∞ := supx,y∈Rd |∇1k(x, y)| = supx,y∈Rd |∇2k(x, y)| < ∞
(3) ‖∇1 · ∇2k‖∞ := supx,y∈Rd |∇x · ∇yk(x, y)| < ∞.
(4)

∥∥∇2k
∥∥

∞ := supx,y∈Rd

∥∥∇2
x k(x, y)

∥∥
2 < ∞.

(5) ‖∇1∇2k(x, y)‖∞ := supx,y∈Rd

∥∥∇x∇yk(x, y)
∥∥
2 < ∞.

(6)
∥∥∇2(∇1 · ∇2k)

∥∥
∞ := supx,y∈Rd

∥∥∇2
x (∇x · ∇yk(x, y))

∥∥
2 < ∞.

(7) ‖∇1∇2(∇1 · ∇2k)‖∞ := supx,y∈Rd

∥∥∇x∇y(∇x · ∇yk(x, y))
∥∥
2 < ∞.

(8)
∥∥∇2

1 · ∇2
2k

∥∥
∞ := supx,y∈Rd

∑d
i, j=1 |∂xi ∂x j ∂yi ∂y j k(x, y)| < ∞.

We emphasize here that [30] required that the kernel is radial for their analysis.
However, our analysis does not require this assumption. A classical example of a
kernel satisfying the above conditions is the Gaussian kernel.

Assumption V1 The potential function V : Rd → R satisfies

(1) V ∈ C2(Rd), V ≥ 0 and V (x) → +∞ as |x | → +∞.
(2) For any α,β > 0, there exists a constant Cα,β > 0 such that if |y| + α|x | + β,

then

(1+ |x |)(|∇V (y)| +
∥∥∥∇2V (y)

∥∥∥
2
) + Cα,β(1+ V (x)).

(3) V is gradient Lipschitz with parameter LV , i.e., for all x ∈ Rd ,
∥∥∇2V (x)

∥∥
2 + LV .

To present our result, we define the set of functions

Y :=
{

u ∈ C(Rd;Rd)| sup
x∈Rd

|u(x) − x | < ∞
}

,

which is a complete metric space with the uniformmetric dY (u, v) = supx∈Rd |u(x)−
v(x)|.
Theorem 7 Let k satisfy Assumption K1, V satisfy Assumption V1 and ρ0 ∈ PV .

(i) For any T > 0, there exists a unique solution 1(·, ·, ρ0) ∈ C1([0, T ]; Y ) to (28).
Moreover, the measure ρt = 1(t, ·, ρ0)#ρ0 satisfies

‖ρt‖PV
+ ‖ρ0‖PV

exp(C1,0ν
−1/2 ‖k‖∞ KL(ρ0|π)1/2t1/2).

(ii) For any ρ0 ∈ PV , there is a unique ρ ∈ C([0,∞);PV ) which is a weak solution
to (7). Moreover, for all t ≥ 0,

‖ρt‖PV
+ ‖ρ0‖PV

exp(C1,0ν
−1/2 ‖k‖∞ KL(ρ0|π)1/2t1/2).
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Remark 11 In Theorem 7, we introduce an upper bound to thePV -norm of the solution
to (7) for any ν ∈ (0, 1]. A similar result is established for the case of SVGF, i.e.,
when ν = 1 in [30, Theorem 2.4]. In comparison to [30, Theorem 2.4], our result
requires that the initial KL-divergence to the target is bounded. Furthermore, if we set
ν = 1 in our result, we do not end up recovering their result. When ν = 1, there is an
explicit integral formula to D1,ρt∇ log ρt

π which is leveraged in [30] for their proof.
For ν ∈ (0, 1), due to the absence of an explicit representation, we get the result in
Theorem 7 by carefully analyzing the quantity Dν,ρt (∇ log ρt

π ) along with the decay
of KL-divergence property introduced in Proposition 4.

Proof of Theorem 7 Our proof leverages the approach of [30, Theorem 3.2] for the
case of SVGF. In comparison to [30], we handle various difficulties arising with the
non-linear operator in R-SVGF. We first prove claim (i) based on the following two
steps. Claim (ii) follows directly from claim (i) and [46, Theorem 5.34].
Step 1 (Local well-posedness): Fix r > 0 and define

Yr :=
{

u ∈ Y | sup
x∈Rd

|u(x) − x | + r

}

. (29)

We will prove that there exists T0 > 0 such that (28) has a unique solution 1(t, x, ρ0)
in the set Sr = C([0, T0]; Yr ) which is a complete metric space with metric

dS (u, v) = sup
t∈[0,T0]

dY (u(t, ·), v(t, ·)) .

The integral formulation of (28) is

1(t, x, ρ0) = x −
∫ t

0
Dν,ρs∇ log

ρs

π
(1(s, x, ρ0))ds

= x +
∫ t

0

(
(1 − ν)ιk,ρs ι

∗
k,ρs + ν I

)−1Ey∼ρs

[−∇V (y)k(y, ·)+ ∇k(y, ·)](1(s, x, ρ0))ds. (30)

Let us define the operator F : u(t, ·) 3→ F(u)(t, ·) by

F(u)(t, x) = x +
∫ t

0

(
(1 − ν)ιk,ρu,s ι

∗
k,ρu,s + ν I

)−1Ey∼ρu,s

[−∇V (y)k(y, ·)+ ∇k(y, ·)](u(s, x))ds, (31)

where ρu,t = (u(t, ·))# ρ0. For the simplicity of notation, we will denote the map
defined in (31) by F(u)(t, x) = x −

⎟ t
0 Dν,ρu,s∇ log ρu,s

π (u(s, x))ds for any u ∈ Sr .
We now show that F is a contraction from Sr to Sr and thus has a unique fixed
point. First, we show that F maps Sr into Sr for some T0 > 0. For any u ∈ Sr ,
checking that (t, x) 3→ F(u)(t, x) is continuous is straightforward. We need to show
that supx∈Rd |F(u)(t, x) − x | + r for any u ∈ Sr .
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Note that there is an equivalent representation for Dν,ρu,s :

Dν,ρu,s = ιk,ρu,s

(
(1 − ν)ι∗k,ρu,s ιk,ρu,s + ν Id

⎜−1
ι∗k,ρu,s .

We then analyze the operators ιk,ρu,s and
(
(1 − ν)ι∗k,ρu,s ιk,ρu,s + ν Id

⎜−1
ι∗k,ρu,s respec-

tively. Since ‖k‖∞ < ∞, according to Proposition 1, ιk,ρu,s is the inclusion operator
from Hd

k to Ld
∞(Rd). The corresponding operator norm, denoted as

∥∥ιk,ρu,s
∥∥
Hd

k→Ld∞
can be bounded in the following way:

∥∥ιk,ρu,s
∥∥
Hd

k→Ld∞
:= sup

‖ f ‖Hd
k
=1

sup
x∈Rd

| f (x)|

= sup
‖ f ‖Hd

k
=1

sup
x∈Rd

|〈k(x, ·), f 〉Hk |

+ sup
x∈Rd

√
k(x, x) := ‖k‖∞ . (32)

Meanwhile, let ()i , ei )∞i=1 be the spectrum of ιk,ρu,s ι
∗
k,ρu,s with (ei )∞i=1 being an

orthonormal basis of Ld
2(ρu,s) ≡ Ran(ιk,ρu,s ι

∗
k,ρu,s ). According to Proposition 1,

(
√

)i ei )∞i=1 is an orthonormal basis ofHd
k ; see also Remark 1. Hence, we have

∥∥∥∥
(
(1 − ν)ι∗k,ρu,s ιk,ρu,s + ν Id

⎜−1
ι∗k,ρu,s∇ log

ρu,s

π

∥∥∥∥
2

Hd
k

+
∥∥∥∥
(
(1 − ν)ι∗k,ρu,s ιk,ρu,s + ν Id

⎜− 1
2
∥∥∥∥
2

Hd
k→Hd

k
∥∥∥∥
(
(1 − ν)ι∗k,ρu,s ιk,ρu,s + ν Id

⎜− 1
2
ι∗k,ρu,s∇ log

ρu,s

π

∥∥∥∥
2

Hd
k

+ ν−1 Iν,Stein(ρu,s |π). (33)

where the last inequality follows from (9) and the fact that (1−ν)ι∗k,ρu,s ιk,ρu,s is positive.
With (32) and (33), we get the following uniform bound on |Dν,ρu,s∇ log ρu,s

π (x)| for
all x ∈ Rd ,

⎭⎭⎭Dν,ρu,s∇ log
ρu,s

π
(x)

⎭⎭⎭ +
∥∥∥Dν,ρu,s∇ log

ρu,s

π

∥∥∥
Ld∞

+
∥∥ιk,ρu,s

∥∥
Hd

k→Ld∞∥∥∥∥
(
(1 − ν)ι∗k,ρu,s ιk,ρu,s + ν Id

⎜−1
ι∗k,ρu,s∇ log

ρu,s

π

∥∥∥∥
Hd

k

+ ν− 1
2 ‖k‖∞ Iν,Stein(ρu,s |π)

1
2 .
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Therefore, for all t ∈ [0, T ] and all x ∈ Rd :

|F(u)(t, x) − x | + ν− 1
2 ‖k‖∞

∫ T

0
Iν,Stein(ρu,s |π)

1
2 ds. (34)

According to Lemma 2, there exists T0 > 0 such that for all u ∈ Sr ,

∫ T0

0
Iν,Stein(ρu,t |π)

1
2 dt < ν1/2 ‖k‖−1

∞ r ,

which along with (34) implies |F(u)(t, x) − x | + r for all u ∈ Sr .
Next we show that F is a contraction on Sr . Our goal is to show that there exists
T0 > 0 and C ∈ (0, 1) such that for any u, v ∈ Sr ,

sup
t∈[0,T0]

sup
x∈Rd

|F(u)(t, x) − F(v)(t, x)| < C sup
t∈[0,T0]

sup
x∈Rd

|u(t, x) − v(t, x)|.

Let ρu,t = (u(t, ·))#ρ0, ρv,t = (v(t, ·))#ρ0, we have that

|F(u)(t, x) − F(v)(t, x)|

=
⎭⎭⎭⎭

∫ t

0
Dν,ρu,s∇ log

ρu,s

π
(u(s, x)) − Dν,ρv,s∇ log

ρv,s

π
(v(s, x)) ds

⎭⎭⎭⎭

+
⎭⎭⎭⎭

∫ t

0
Dν,ρu,s∇ log

ρu,s

π
(u(s, x)) − Dν,ρv,s∇ log

ρv,s

π
(u(s, x))ds

⎭⎭⎭⎭

+
⎭⎭⎭⎭

∫ t

0
Dν,ρv,s∇ log

ρv,s

π
(u(s, x)) − Dν,ρ2,s∇ log

ρ2,s
π

(v(s, x))ds
⎭⎭⎭⎭

+ dS(u, v)
∫ T0

0
C1(t)dt +

∫ T0

0
L(t)dt sup

t∈[0,T0]
sup
x∈Rd

|u(t, x) − v(t, x)|

= dS(u, v)
∫ T0

0
C1(t)+ L(t) dt,

where the second inequality follows from Lemma 3 and Lemma 4. Furthermore,
according to (38) and (39), there exists T0 > 0 such that

∫ T0

0
C1(t)+ L(t) dt < 1.

Therefore we have proved that there exists T0 > 0 such that F is a contraction
from Sr into Sr . According to the contraction theorem, F has a unique fixed point
1(·, ·, ρ0) ∈ Sr which solves (28). Defining ρt = (1(t, ·, ρ0))#ρ0, one sees that
1(t, x, ρ0) solves (28) in the time interval [0, T0].
Step 2 (Extension of local solution): According to (37) and (39), we can extend the
local solution beyond time T0 as long as the quantity

‖ρt‖PV
=

∫

Rd
(1+ V (1(t, x, ρ0)))dρ0(x)
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remains finite. Next we establish a bound on this quantity showing that the local
solution can be extended to any t > 0.

∂t

∫

Rd
(1+ V (1(t, x, ρ0))) ρ0(dx)

= −
∫

Rd

〈
∇V (1(t, x, ρ0)),Dν,ρt∇ log

ρt

π
(1(t, x, ρ0))

〉
dρ0(x)

= −
〈
∇V , ιk,ρt

(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜−1
ι∗k,ρt∇ log

ρt

π

〉

Ld
2 (ρt )

= −
〈
ι∗k,ρt∇V ,

(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜−1
ι∗k,ρt∇ log

ρt

π

〉

Hd
k

+
∥∥∥ι∗k,ρt∇V

∥∥∥
Hd

k

∥∥∥∥
(
(1 − ν)ι∗k,ρt ιk,ρt + ν Id

⎜−1
ι∗k,ρt∇ log

ρt

π

∥∥∥∥
Hd

k

,

where

∥∥∥ι∗k,ρt ∇V
∥∥∥
2

Hd
k
=

〈
∇V , ιk,ρι∗k,ρt ∇V

〉

Ld2 (ρt )

=
∫

Rd

∫

Rd
k(y, z) 〈∇V (y),∇V (z)〉 dρt (y)dρt (z)

=
∫

Rd

∫

Rd
k(1(t, y, ρ0),1(t, z, ρ0)) 〈∇V (1(t, y, ρ0)),∇V (1(t, z, ρ0))〉 dρ0(y)dρ0(z)

+ ‖k‖2∞
(∫

Rd
|∇V (1(t, y, ρ0))|dρ0(y)

)2

+ ‖k‖2∞ C2
1,0 ‖ρt‖2PV

,

where the last inequality follows from Assumption V1. Therefore,

∂t ‖ρt‖PV
+ C1,0 ‖k‖∞ ‖ρt‖PV

∥∥∥((1 − ν)ι∗k,ρt ιk,ρt + ν Id)−1ι∗k,ρt∇ log
ρt

π

∥∥∥
Hd

k

+ C1,0 ‖k‖∞ ν− 1
2 Iν,Stein(ρt |π)

1
2 ‖ρt‖PV

,

where the last inequality follows from (33). It follows from Gronwall’s inequality that

‖ρt‖PV
+ ‖ρ0‖PV

exp
(
C1,0ν

− 1
2 ‖k‖∞

∫ t

0
Iν,Stein(ρs |π)

1
2 ds

)

+ ‖ρ0‖PV
exp



C1,0ν
− 1

2 ‖k‖∞

√

t
∫ t

0
Iν,Stein(ρs |π)ds





+ ‖ρ0‖PV
exp

(
C1,0ν

− 1
2 ‖k‖∞

√
tKL(ρ0|π)

⎜
, (35)

where the second inequality follows from Jensen’s inequality and the last inequality
follows from (15). With this bound, we can iterate the argument to extend the local
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solution defined on [0, T0]×Rd to all of [0,∞)×Rd , so that (35) holds for all t > 0.
Finally,1(·, x, ρ0) has continuous first order derivative due to the integral formulation
in (30), Assumption K1 and Assumption V1. The proof is thus complete.

Lemma 2 Let ρ0 ∈ PV and suppose the assumptions in Theorem 7 hold. Then, for
any , > 0, there exists a constant T > 0 such that for all u ∈ Sr and t ∈ [0, T ], with
ρu,t = u(t, ·)#ρ0, we have

∫ T

0
Iν,Stein(ρu,t |π)

1
2 dt < ,. (36)

Proof of Lemma 2 According to Proposition 2, the regularized kernelized Stein dis-
crepancy can be written as

S(ρu,t |π)2 =
(
Ex∼ρu,t

[
trace(Aπφ∗

ρu,t ,π
(x))

]⎜2

=
∥∥∥∥
(
(1 − ν)ι∗k,ρu,t ιk,ρu,t + ν Id

⎜− 1
2
ι∗k,ρu,t∇ log

ρu,t

π

∥∥∥∥
2

Hd
k

=
〈
ι∗k,ρu,t∇ log

ρu,t

π
,
(
(1 − ν)ι∗k,ρu,t ιk,ρu,t + ν Id

⎜−1
ι∗k,ρu,t∇ log

ρu,t

π

〉

Hd
k

= Iν,Stein(ρu,t ,π).

Meanwhile, since ρu,t = u(t, ·)#ρ0 with u ∈ Sr , for any Rd -valued random vector X ,
u(t, X) ∼ ρu,t and |u(t, X) − X | + r almost surely. Therefore,

W1(ρu,t ,π) + W1(ρ0, ρu,t )+W1(ρ0,π)

= inf
X∼ρ0,Y∼ρu,t

E [|X − Y |]+W1(ρ0,π) + r +W1(ρ0,π),

whereW1 is theWasserstein-1 distance defined in Sect. 1.3. Next, we upper bound the
regularized kernelized Stein discrepancy by the Wasserstein-1 distance. According to
[22, Lemma 18], for any general vector field φ ∈ Hd

k , we have

⎭⎭Ex∼ρu,t [trace(Aπφ(x))]
⎭⎭ + (M0(φ)M1(∇V )+ M2(φ)d)W1(ρu,t ,π)

+
√
2M0(φ)M1(φ)Ex∼π

[
|∇V (x)|2

]
W1(ρu,t ,π),

where for any g : Rd → Rd and g ∈ C1(Rd),

M0(g) := sup
x∈Rd

|g(x)|, M1(g) := sup
x ==y

|g(x) − g(y)|
|x − y| , M2(g) := sup

x ==y

‖∇g(x) − ∇g(y)‖2
|x − y| .

For any φ ∈ Hd
k and φ = [φ1, · · · ,φd ]T , according to [42, Lemma 4.34],

sup
x∈Rd

|Dαφi (x)| = sup
x∈Rd

⎭⎭Dα 〈φi , k(x, ·)〉Hk

⎭⎭ + ‖φi‖Hd
k
sup
x∈Rd

|Dα
1 D

α
2 k(x, x)|

1
2 .
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Therefore,

M0(φ) = sup
x∈Rd

√√√√
d∑

i=1

φi (x)2 +
√∑

i=1

‖φi‖2Hk
sup
x∈Rd

k(x, x) = ‖k‖∞ ‖φ‖Hd
k
,

M1(φ) = sup
x ==y

√∑d
i=1 (φi (x) − φi (y))2

|x − y| +

√√√√
d∑

i=1

sup
x∈Rd

|∇φi (x)|2

+

√√√√√
d∑

i=1

d∑

j=1

‖φi‖2Hk
sup
x∈Rd

D
e j
1 D

e j
2 k(x, x) =

(

sup
x∈Rd

trace (∇1∇2k(x, x))

) 1
2

‖φ‖Hd
k

+ ‖∇1 · ∇2k‖
1
2∞ ‖φ‖Hd

k
,

M2(φ) = sup
x ==y

‖∇φ(x) − ∇φ(y)‖2
|x − y| + sup

x ==y

‖∇φ(x) − ∇φ(y)‖F
|x − y|

+

√√√√√
d∑

i, j=1

sup
x ==y

|∂ jφi (x) − ∂ jφi (y)|2
|x − y|2

+

√√√√√
d∑

i, j,l=1

sup
x∈Rd

D
e j+el
1 D

e j+el
2 k(x, x) ‖φi‖2Hk

+
∥∥∥∇2

1 · ∇2
2 k

∥∥∥
1
2

∞
‖φ‖Hd

k
.

According to Assumption V1, M1(∇V ) = LV and Ex∼π

[
|∇V (x)|2

]
+ C1,0 ‖π‖PV .

Therefore,

⎭⎭Ex∼ρu,t [trace(Aπφ(x))]
⎭⎭ +

(
‖k‖∞ LV +

∥∥∥∇2
1 · ∇2

2 k
∥∥∥
1
2

∞
d

)
‖φ‖Hd

k
(W1(ρ0,π)+ r)

+
√

2 ‖k‖∞ ‖∇1 · ∇2k‖
1
2∞ C1,0 ‖π‖PV (W1(ρ0,π)+ r) ‖φ‖Hd

k
.

Note thatφ∗
k,ρu,t satisfies that ν

∥∥∥φ∗
k,ρu,t

∥∥∥
2

Hd
k

+(1−ν)
∥∥∥φ∗

k,ρu,t

∥∥∥
Ld
2 (ρu,t )

d
+ 1. Therefore,

∥∥∥φ∗
k,ρu,t

∥∥∥
Hd

k

+ ν−1/2,

and

Iν,Stein(ρu,t |π)
1
2 = S(ρu,t ,π) =

⎭⎭⎭Ex∼ρu,t

[
trace(Aπφ∗

k,ρu,t (x))
]⎭⎭⎭

+ ν− 1
2

(
‖k‖∞ LV +

∥∥∥∇2
1 · ∇2

2k
∥∥∥

1
2

∞
d
)
(W1(ρ0,π)+ r)

+ ν− 1
2

√

2 ‖k‖∞ ‖∇1 · ∇2k‖
1
2∞ C1,0 ‖π‖PV (W1(ρ0,π)+ r).
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Since the upper bound is independent of the choice of u(t, ·) ∈ Sr and the time variable
t , for any , > 0, we can choose a small enough T such that (36) holds.

Lemma 3 Under the assumptions in Theorem 7, let Sr = C([0, T ]; Yr )with Yr defined
in (29). Then for any t ∈ [0, T ], there exists L(t) > 0 such that for any u ∈ Sr , for all
x, y ∈ Rd and t ∈ [0, T ],

⎭⎭⎭Dν,ρu,t∇ log
ρu,t

π
(x) − Dν,ρu,t∇ log

ρu,t

π
(y)

⎭⎭⎭ + L(t)|x − y|, (37)

where for all t ∈ [0, T ], ρu,t = (u(t, ·))#ρ0 and

L(t) = ν− 1
2

(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥

∞

⎜ 1
2
Iν,Stein(ρu,t |π)

1
2 . (38)

Proof of Lemma 3 Since Dν,ρu,t = ιk,ρu,t

(
(1 − ν)ι∗k,ρu,t ιk,ρu,t + ν Id

⎜−1
ι∗k,ρu,t and

ιk,ρu,t is the inclusion operator,

⎭⎭⎭Dν,ρu,t∇ log
ρu,t

π
(x) − Dν,ρu,t∇ log

ρu,t

π
(y)

⎭⎭⎭

=
⎭⎭⎭⎭
(
(1 − ν)ι∗k,ρu,t ιk,ρu,t + ν Id

⎜−1
ι∗k,ρu,t∇ log

ρu,t

π
(x)

−
(
(1 − ν)ι∗k,ρu,t ιk,ρu,t + ν Id

⎜−1
ι∗k,ρu,t∇ log

ρu,t

π
(y)

⎭⎭⎭⎭

=
⎭⎭⎭⎭⎭

〈
k(x, ·) − k(y, ·),

(
(1 − ν)ι∗k,ρu,t ιk,ρu,t + ν Id

⎜−1
ι∗k,ρu,t∇ log

ρu,t

π

〉

Hk

⎭⎭⎭⎭⎭

+ ‖k(x, ·) − k(y, ·)‖Hk

∥∥∥∥
(
(1 − ν)ι∗k,ρu,t ιk,ρu,t + ν Id

⎜−1
ι∗k,ρu,t∇ log

ρu,t

π

∥∥∥∥
Hd

k

+ ν− 1
2 Iν,Stein(ρu,t |π)

1
2 ‖k(x, ·) − k(y, ·)‖Hd

k
,

where the second identity follows from the reproducing property and the last inequality
follows from (33). Furthermore, we can write

‖k(x, ·) − k(y, ·)‖2Hd
k
= k(x, x) − 2k(x, y)+ k(y, y)

+
(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥

∞

⎜
|x − y|2,

where thefirst identity follows from theRKHSproperty and the second identity follows
from Taylor expansion and Assumption K1. Therefore, (37) holds with L(t) defined
in (38).
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Lemma 4 Under the assumptions in Theorem 7, let Sr = C([0, T ]; Yr )with Yr defined
in (29). Then for any t ∈ [0, T ], there exists C1(t) > 0 such that for any u, v ∈ Sr ,

sup
x∈Rd

⎭⎭⎭Dν,ρu,t∇ log
ρu,t

π
(x) − Dν,ρv,t∇ log

ρv,t

π
(x)

⎭⎭⎭ + C1(t)dS(u, v), (39)

where for all t ∈ [0, T ], ρu,t = (u(t, ·))#ρ0, ρv,t = (v(t, ·))#ρ0 and

C1(t) = 2ν− 3
2 (1 − ν) ‖k‖2∞

(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥

∞

⎜ 1
2 ‖∇k‖∞ Iν,Stein(ρu,t |π)

1
2 + ν−1Lr ‖k‖∞ , (40)

with Lr being defined in (44).

Proof of Lemma 4 With the facts thatDν,µ = ιk,µ(ι
∗
k,µιk,µ + ν I )−1ι∗k,µ and ιk,µ is the

inclusion operator we get,

⎭⎭⎭Dν,ρu,t ∇ log
ρu,t

π
(x) − Dν,ρv,t ∇ log

ρv,t

π
(x)

⎭⎭⎭

=
⎭⎭⎭⎭
(
(1 − ν)ι∗k,ρu,t ιk,ρu,t + ν I

⎜−1
ι∗k,ρu,t ∇ log

ρu,t

π
(x)

−
(
(1 − ν)ι∗k,ρv,t ιk,ρv,t + ν I

⎜−1
ι∗k,ρv,t ∇ log

ρv,t

π
(x)

⎭⎭⎭⎭

+
⎭⎭⎭⎭

((
(1 − ν)ι∗k,ρu,t ιk,ρu,t + ν I

⎜−1
−

(
(1 − ν)ι∗k,ρv,t ιk,ρv,t + ν I

⎜−1
)

ι∗k,ρu,t ∇ log
ρu,t

π
(x)

⎭⎭⎭⎭

+
⎭⎭⎭⎭
(
(1 − ν)ι∗k,ρv,t ιk,ρv,t + ν I

⎜−1 (
ι∗k,ρu,t ∇ log

ρu,t

π
(x) − ι∗k,ρv,t ∇ log

ρv,t

π
(x)

⎜⎭⎭⎭⎭ .

We then turn to study the two terms in the upper bound separately.
First term: Note that, we have

⎭⎭⎭⎭

((
(1 − ν)ι∗k,ρu,t ιk,ρu,t + ν I

⎜−1
−

(
(1 − ν)ι∗k,ρv,t ιk,ρv,t + ν I

⎜−1
)

ι∗k,ρu,t ∇ log
ρu,t

π
(x)

⎭⎭⎭⎭

=
⎭⎭⎭⎭ιk,ρu,t

(
(1 − ν)ι∗k,ρv,t ιk,ρv,t + ν I

⎜−1 (
(1 − ν)ι∗k,ρv,t ιk,ρv,t − (1 − ν)ι∗k,ρu,t ιk,ρu,t

⎜

×
(
(1 − ν)ι∗k,ρu,t ιk,ρu,t + ν I

⎜−1
ι∗k,ρu,t ∇ log

ρu,t

π
(x)

⎭⎭⎭⎭

+
∥∥∥ιk,ρu,t

∥∥∥
Hd

k→Ld∞

∥∥∥∥
(
(1 − ν)ι∗k,ρv,t ιk,ρv,t + ν I

⎜−1
∥∥∥∥
Hd

k→Hd
k

(1 − ν)
∥∥∥ι∗k,ρv,t ιk,ρv,t − ι∗k,ρu,t ιk,ρu,t

∥∥∥
Hd

k→Hd
k

×
∥∥∥∥
(
(1 − ν)ι∗k,ρu,t ιk,ρu,t + ν I

⎜−1
ι∗k,ρu,t ∇ log

ρu,t

π

∥∥∥∥
Hd

k

+ ‖k‖∞ ν−1(1 − ν)ν− 1
2 Iν,Stein(ρu,t |π)

1
2

× sup
‖φ‖Hd

k
=1

〈∫

Rd
k(·, x)φ(x)(dρu,t (x) − dρv,t (x)),

〉
.
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〈
.

∫

Rd
k(·, y)φ(y)(dρu,t (y) − dρv,t (y))

〉 1
2

Hd
k

+ 2ν− 3
2 (1 − ν) ‖k‖2∞

(
3
∥∥∥∇2k

∥∥∥∞
+ 2 ‖∇1∇2k‖∞

⎜ 1
2 Iν,Stein(ρu,t |π)

1
2 dS(u, v). (41)

As we are bounding the function value by its Ld
∞ norm, the second step allows the

function to be in the space of Ld
∞, without which we think of the function as belonging

to the RKHS. The second inequality follows from (32) and (33). The last inequality
follows from the fact that

〈∫

Rd
k(·, x)φ(x)(dρu,t (x) − dρv,t (x)),

∫

Rd
k(·, y)φ(y)(dρu,t (y) − dρv,t (y))

〉 1
2

Hd
k

=
(

sup
‖φ‖Hd

k
=1

∫

Rd

∫

Rd

〈
k (u(t, x), ·)φ (u(t, x)) − k (v(t, x), ·)φ (v(t, x)) ,

k (u(t, y), ·)φ (u(t, y)) − k (v(t, y), ·)φ (v(t, y))
〉

Hd
k

dρ0(x)dρ0(y)
) 1

2

+ sup
‖φ‖Hd

k
=1

∫

Rd
‖k (u(t, x), ·)φ (u(t, x)) − k (v(t, x), ·)φ (v(t, x))‖Hd

k
dρ0(x)

+ sup
‖φ‖Hd

k
=1

∫

Rd
‖(k (u(t, x), ·) − k (v(t, x), ·))φ (u(t, x))‖Hd

k
dρ0(x)

+ sup
‖φ‖Hd

k
=1

∫

Rd
‖k (v(t, x), ·) (φ (u(t, x)) − φ (v(t, x)))‖Hd

k
dρ0(x)

= sup
‖φ‖Hd

k
=1

∫

Rd
‖(k (u(t, x), ·) − k (v(t, x), ·))‖Hk

⎭⎭〈φ(·), k (u (t, x) , ·)〉Hk

⎭⎭ dρ0(x)

+ sup
‖φ‖Hd

k
=1

∫

Rd
‖k (v(t, x), ·)‖Hk

⎭⎭〈φ(·), k (u(t, x), ·) − k (v(t, x), ·)〉Hk

⎭⎭ dρ0(x)

+ sup
‖φ‖Hd

k
=1

∫

Rd
‖(k (u(t, x), ·) − k (v(t, x), ·))‖Hk

‖φ‖Hd
k
‖k (u (t, x) , ·)‖Hk dρ0(x)

+ sup
‖φ‖Hd

k
=1

∫

Rd
‖k (v(t, x), ·)‖Hk

‖φ‖Hd
k
‖k (u(t, x), ·) − k (v(t, x), ·)‖Hk dρ0(x)

= sup
x∈Rd

(√
k (u(t, x), u(t, x))+ k (v(t, x), v(t, x)) − 2k (u(t, x), v(t, x))

×
(√

k (u(t, x), u(t, x))+
√
k (v(t, x), v(t, x))

⎜⎜

+ 2 ‖k‖∞
(
3
∥∥∥∇2k

∥∥∥
∞

+ 2 ‖∇1∇2k‖∞
⎜ 1

2
dS(u, v),
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where the first identity follows from the definitions of ρu,t and ρv,t and change of
variable. The second inequality holds due to the symmetry in x and y. The second
identity follows from the reproducing property of the RKHS. The last identity follows
from the fact that ‖k(x, ·)‖Hk = √

k(x, x) for all x and the last inequality follows
from Assumption K1 and Taylor expansion on both variables in k up to second order.
Second term: Note that we have

⎭⎭⎭⎭
(
(1 − ν)ι∗k,ρv,t ιk,ρv,t + ν I

⎜−1 (
ι∗k,ρu,t∇ log

ρu,t

π
(x) − ι∗k,ρv,t∇ log

ρv,t

π
(x)

⎜⎭⎭⎭⎭

=
⎭⎭⎭⎭ιk,ρv,t

(
(1 − ν)ι∗k,ρv,t ιk,ρv,t + ν I

⎜−1 (
ι∗k,ρu,t∇ log

ρu,t

π
(x) − ι∗k,ρv,t∇ log

ρv,t

π
(x)

⎜⎭⎭⎭⎭

+
∥∥ιk,ρv,t

∥∥
Hd

k→Ld∞

∥∥∥∥
(
(1 − ν)ι∗k,ρv,t ιk,ρv,t + ν I

⎜−1
∥∥∥∥
Hd

k→Hd
k∥∥∥ι∗k,ρu,t∇ log

ρu,t

π
− ι∗k,ρv,t∇ log

ρv,t

π

∥∥∥
Hd

k

+ ‖k‖∞ ν−1
∥∥∥ι∗k,ρu,t∇ log

ρu,t

π
− ι∗k,ρv,t∇ log

ρv,t

π

∥∥∥
Hd

k

,

where the last inequality follows from (32) and for all x ∈ Rd ,

ι∗k,ρu,t ∇ log
ρu,t

π
(x) − ι∗k,ρv,t ∇ log

ρv,t

π
(x)

=
∫

Rd
k(x, y)∇ log

ρu,t

π
(y)dρu,t (y) −

∫

Rd
k(x, y)∇ log

ρv,t

π
dρv,t (y)

=
∫

Rd
(k(x, y)∇V (y) − ∇2k(x, y)) dρu,t (y) −

∫

Rd
(k(x, y)∇V (y) − ∇2k(x, y)) dρv,t (y)

=
∫

Rd
(k(x, u(t, y))∇V (u(t, y)) − k(x, v(t, y))∇V (v(t, y))) dρ0(y)

−
∫

Rd
(∇2k(x, u(t, y)) − ∇2k(x, v(t, y))) dρ0(y).

Therefore, we have

∥∥∥ι∗k,ρu,t∇ log
ρu,t

π
− ι∗k,ρv,t∇ log

ρv,t

π

∥∥∥
Hd

k

+
∫

Rd

(
‖k(·, u(t, y))∇V (u(t, y)) − k(·, v(t, y))∇V (v(t, y))‖Hd

k

+ ‖∇2k(·, u(t, y)) − ∇2k(·, v(t, y))‖Hd
k

)
dρ0(y).

For simplicity, in the following calculations, we denote u(t, y) and v(t, y) as u and v
respectively. We will bound ‖k(·, u)∇V (u) − k(·, v)∇V (v)‖Hd

k
and ‖∇2k(·, u) − ∇2k(·, v)‖Hd

k
respectively. Note that we have
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‖k(·, u)∇V (u) − k(·, v)∇V (v)‖2Hd
k

= 〈k(·, u)∇V (u) − k(·, v)∇V (v), k(·, u)∇V (u) − k(·, v)∇V (v)〉Hd
k

= |∇V (u)|2k(u, u) − 2 〈∇V (u),∇V (v)〉 k(u, v)+ |∇V (v)|2k(v, v)
+ |〈∇V (u) − ∇V (v),∇V (u)k(u, u) − ∇V (v)k(v, v)〉|
+ |〈∇V (u),∇V (v)〉 (k(u, u)+ k(v, v) − 2k(u, v))| ,

where

|〈∇V (u) − ∇V (v),∇V (u)k(u, u) − ∇V (v)k(v, v)〉|
+ |∇V (u) − ∇V (v)|2 k(u, u)+ |∇V (u) − ∇V (v)| |∇V (v)| |k(u, u) − k(v, v)|
+ C2

1,r (1+ V (y))2dST (u, v)
2k(u, u)+ C2

1,r (1+ V (y))2dS(u, v) |k(u, u) − k(v, v)|
+ C2

1,r (1+ V (y))2dS(u, v)2 ‖k‖2∞ + 2C2
1,r ‖∇k‖∞ (1+ V (y))2dS(u, v)2.

The second inequality follows from Assumption V1 and the last inequality follows
from Assumption K1 and Taylor expansion on both variables in k up to first order.
And, we also have

|〈∇V (u),∇V (v)〉 (k(u, u)+ k(v, v) − 2k(u, v))|
+ C2

1,r (1+ V (y))2 |k(u, u)+ k(v, v) − 2k(u, v)|
+ C2

1,r (1+ V (y))2
(
3
∥∥∥∇2k

∥∥∥
∞

+ 2 ‖∇1∇2k‖∞
⎜
dS(u, v)2,

where the first inequality follows from Assumption V1 and the last inequality follows
from Assumption K1 and Taylor expansion on both variables in k up to second order.
With the above two inequalities, we have

‖k(·, u(t, y))∇V (u(t, y)) − k(·, v(t, y))∇V (v(t, y))‖Hd
k

+ C1,r

(
‖k‖∞ + 2‖∇k‖∞

1
2 + 3

∥∥∥∇2k
∥∥∥

∞

1
2 + 2‖∇1∇2k‖∞

1
2

)
dS(u, v)(1+ V (y)).

(42)

Observe that, for all x, y ∈ Rd

〈∇2k(·, x),∇2k(·, y)〉Hd
k
= ∇1 · ∇2〈k(·, x), k(·, y)〉Hd

k

= ∇1 · ∇2k(x, y).

If we denote the function ∇1 · ∇2k = D1,2k where D1,2k is symmetric since k is
symmetric, we get

‖∇2k(·, u) − ∇2k(·, v)‖2Hd
k
= D1,2k(u, u)+ D1,2k(v, v) − 2D1,2k(u, v)

+
(
2
∥∥∥∇2(D1,2k)

∥∥∥
∞

+
∥∥∇1∇2(D1,2k)

∥∥
∞
⎜
dS(u, v)2.
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where the inequality follows fromTaylor expansion on both variables of D1,2k. There-
fore,

‖∇2k(·, u) − ∇2k(·, v)‖Hd
k

+
(
2
∥∥∥∇2(D1,2k)

∥∥∥
1
2

∞
+

∥∥∇1∇2(D1,2k)
∥∥ 1

2
∞

)
dS(u, v).

(43)

According to (42) and (43), we get

∥∥∥ι∗k,ρu,t∇ log
ρu,t

π
− ι∗k,ρv,t∇ log

ρv,t

π

∥∥∥
Hd

k

+ Lrds(u, v)

with

Lr = C1,r ‖ρ0‖PV

(
‖k‖∞ + 2‖∇k‖∞

1
2 + 3

∥∥∥∇2k
∥∥∥

∞

1
2 + 2‖∇1∇2k‖∞

1
2

)

+ 2
∥∥∥∇2(D1,2k)

∥∥∥
∞

1
2 +

∥∥∇1∇2(D1,2k)
∥∥

∞
1
2 .

(44)

Therefore, the second term is bounded as

⎭⎭⎭⎭
(
(1 − ν)ι∗k,ρv,t ιk,ρv,t + ν I

⎜−1 (
ι∗k,ρu,t∇ log

ρu,t

π
(x) − ι∗k,ρv,t∇ log

ρv,t

π
(x)

⎜⎭⎭⎭⎭

+ ν−1Lr ‖k‖∞ dS(u, v). (45)

The Lemma is proved based on (41) and (45).

6 Stability

In this section, we prove a stability estimate for the weak solutions to (7). To do this,
we introduce a space of probability measures onRd and assumptions on V as follows,

Pp :=
⎫
ρ ∈ P : ‖ρ‖Pp :=

∫

Rd
|x |pρ(x)dx < ∞

⎬
,

where P denotes the set of all probability measures on Rd .

Assumption V2 In addition to Assumption V1, there exists a constant CV > 0
and q > 1 such that |∇V (x)|q + CV (1 + V (x)) for all x ∈ Rd and
supθ∈[0,1]

∥∥∇2V (θx + (1 − θ)y)
∥∥q
2 + CV (1+ V (x)+ V (y)).

Theorem 8 Let V satisfy Assumption V2 with q ∈ (1,∞) and k satisfy Assumption
K1. Let p be the conjugate of q, i.e., p−1 + q−1 = 1. Let ρ1, ρ2 ∈ Pp be two initial
probability measures satisfying ‖ρi‖Pp + R for some constant R > 0 and i = 1, 2.
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Let ρ1,t and ρ2,t be the associated weak solution to (7). Then given any T > 0, there
exists a constant C > 0 depending on k, V , q, ν, ρ1, ρ2 such that,

sup
t∈[0,T ]

Wp(ρ1,t , ρ2,t ) + CWp(ρ1, ρ2).

More explicitly, the constant C is given by

C = exp
(

ν−1 ‖k‖∞ C(T , k, V , ν, ρ1, ρ2, q)T ++ν− 1
2
(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥∞

⎜ 1
2

√
KL(ρ2|π)T

1
2

+ 2ν− 3
2 (1 − ν) ‖k‖2∞

(
2
∥∥∥∇1∇2k + 3

∥∥∥∇2k
∥∥∥∞

∥∥∥
∞

⎜ 1
2 √

KL(ρ1|π)T
1
2

)
, (46)

where C(T , k, V , ν, ρ1, ρ2, q) is defined in (56).

Before we prove Theorem 8, we introduce the following corollary to Theorem 8.

Corollary 1 Suppose the assumptions in Theorem 8 hold. Let ρ1 ∈ Pp and ρN
1 be the

empirical measure formed from N samples from ρ1. Then for any T > 0,

sup
t∈[0,T ]

Wp(ρ1,t , ρ
N
1,t ) → 0, as N → ∞,

where ρ1,t and ρN
1,t are the unique weak solutions to (7) with initial conditions ρ1 and

ρN
1 respectively.

Since Wp(ρ
N
1 , ρ1) → 0 as N → ∞, Corollary 1 follows directly from Theorem 8.

Non-asymptotic bounds on supt∈[0,T ]Wp(ρ1,t , ρ
N
1,t ) that are non-uniform in time T

(i.e., for T < ∞) in terms of N can also be obtained based on Theorem 8 and the
convergence of empirical measures in Wp [20, 49]. We leave that to the interested
reader.

Remark 12 If we focus on the dependency on ν and T in (46), we have

C + C : exp
(
ν−1T exp

(
C :ν− 1

2 T
1
2

⎜
+ ν− 3

2 (1 − ν)T
1
2 + ν− 1

2 T
1
2

⎜

where C : is a constant independent of ν and T . In particular, the stability constant
blows up when ν → 0, i.e. the smaller is ν, the larger is the Wp distance between
ρ1,t and ρN

1,t in Corollary 1. Therefore, if we choose smaller ν in the finite-particle
algorithm, the R-SVGD, we will need more particles (larger N ) in order to get the
comparable iteration complexities.

The proof of Theorem 8 is inspired by that of [30, Theorem 2.7] which in turn
is motivated by the Dobrushin’s coupling argument (see, for example, [18] and [32,
Theorem 1.4.1]). In the following proof, we mainly highlight the parts of our proof
that are different from the proof of [30, Theorem 2.7].

123



Foundations of Computational Mathematics

Proof (Proof of Theorem8)First, underAssumptionV2, there exists a constantC0 > 0
such that V (x) + C0(1 + |x |p) for all x ∈ Rd . Therefore, Pp ⊂ PV and ‖ρi‖PV

+
C(R) < ∞ for i = 1, 2. By Theorem 7, the weak solutions take the form

ρi,t = (1(t, ·, ρi ))#ρi , i = 1, 2

where 1(·, ·, ρi ) solves (28) with ρ0 = ρi . Let ρ1,2 be a coupling measure between
ρ1 and ρ2. Notice that, according to conditions in Theorem 8, p > 1. Define φ(x) =
1
p |x |p and observe that p > 1. We have that φ is continuously differentiable on Rd

with

|∇φ(x)| = |x |p−1, for all x ∈ Rd .

To see this, note that as p > 1, for any x == 0, ∇φ(x) = |x |p−2x and |∇φ(x)| =
|x |p−1. At x = 0, by definition, we have ∇φ(0) = 0. Since p > 1, ∇φ(x) is
continuous. Then, we start from estimating the derivative of φ in the time variable,
for which we have

∂tφ(1(t, x1, ρ1) − 1(t, x2, ρ2))

= −∇φ(1(t, x1, ρ1) − 1(t, x2, ρ2))(
Dν,ρ1,t∇ log

ρ1,t

π
(1(t, x1, ρ1)) − Dν,ρ2,t∇ log

ρ2,t

π
(1(t, x2, ρ2))

⎜
.

The next step is to estimate

⎭⎭⎭Dν,ρ1,t∇ log
ρ1,t

π
(1(t, x1, ρ1)) − Dν,ρ2,t∇ log

ρ2,t

π
(1(t, x2, ρ2))

⎭⎭⎭ .

Note that

Dν,ρ1,t∇ log
ρ1,t

π
(1(t, x1, ρ1)) − Dν,ρ2,t∇ log

ρ2,t

π
(1(t, x2, ρ2)) := I1 + I2,

where

I1 := Dν,ρ1,t∇ log
ρ1,t

π
(1(t, x1, ρ1)) − Dν,ρ2,t∇ log

ρ2,t

π
(1(t, x1, ρ1)),

I2 := Dν,ρ2,t∇ log
ρ2,t

π
(1(t, x1, ρ1)) − Dν,ρ2,t∇ log

ρ2,t

π
(1(t, x2, ρ2)).

According to Proposition 5, we have

|−∇φ(1(t, x1, ρ1) − 1(t, x2, ρ2)) · I1|

+ 2ν− 3
2 (1 − ν) ‖k‖2∞

(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥

∞

⎜ 1
2

Iν,Stein(ρ1,t |π)
1
2 |1(t, x1, ρ1) − 1(t, x2, ρ2)|p−1
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×
(∫

Rd
|1(t, y1, ρ1) − 1(t, y2, ρ2)|ρ1,2(dy1, dy2)

)

+ ν−1 ‖k‖∞ C(t, k, V , ν, ρ1, ρ2, q)|1(t, x1, ρ1) − 1(t, x2, ρ2)|p−1

×
(∫

Rd×Rd
|1(t, y1, ρ1) − 1(t, y2, ρ2)|pρ1,2(dy1, dy2)

)1/p

and

|−∇φ(1(t, x1, ρ1) − 1(t, x2, ρ2)) · I2|

+ ν− 1
2
(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥∞

⎜ 1
2 Iν,Stein(ρ2,t |π)

1
2 |1(t, x1, ρ1) − 1(t, x2, ρ2)|p .

Now, defining

Dp(ρ
1,2)(s) :=

(∫

Rd×Rd
|1(s, y1, ρ1) − 1(s, y2, ρ2)|pρ1,2(dy1, dy2)

)1/p
,

we have, for any t ∈ [0, T ] that

φ(1(t, x1, ρ1) − 1(t, x2, ρ2))

+ ν− 1
2

(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥

∞

⎜ 1
2

∫ t

0
Iν,Stein(ρ2,s |π)

1
2 |1(s, x1, ρ1) − 1(s, x2, ρ2)|pds

+ φ(x1 − x2)+ ν−1 ‖k‖∞ C(T , k, V , ν, ρ1, ρ2, q)
∫ t

0
|1(s, x1, ρ1) − 1(s, x2, ρ2)|p−1Dp(ρ

1,2)(s)ds

+ 2ν− 3
2 (1 − ν) ‖k‖2∞

(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥

∞

⎜ 1
2

×
∫ t

0
Iν,Stein(ρ1,s |π)

1
2 |1(s, x1, ρ1) − 1(s, x2, ρ2)|p−1Dp(ρ

1,2)(s)ds.

Integrating the above inequality w.r.t. the coupling ρ1,2, and using the fact that

∫

Rd×Rd
|1(t, x1, ρ1) − 1(t, x2, ρ2)|p−1ρ1,2(dx1, dx2) + Dp(ρ

1,2)(t)p−1,

we get

Dp(ρ
1,2)(t)p + Dp(ρ

1,2)(0)p + ν−1 ‖k‖∞ C(T , k, V , ν, ρ1, ρ2, q)
∫ t

0
Dp(ρ

1,2)(s)pds

+ 2ν− 3
2 (1 − ν) ‖k‖2∞

(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥∞

⎜ 1
2
∫ t

0
Iν,Stein(ρ1,s |π)

1
2 Dp(ρ

1,2)(s)pds
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+
(

ν− 1
2
(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥∞

⎜ 1
2

)∫ t

0
Iν,Stein(ρ2,s |π)

1
2 Dp(ρ

1,2)(s)pds.

By using Gronwall’s inequality, we further obtain

Dp(ρ
1,2)(t)p

+ Dp(ρ
1,2)(0)p exp

(
ν−1 ‖k‖∞ C(T , k, V , ν, ρ1, ρ2, q)t

⎜

× exp

(

2ν− 3
2 (1 − ν) ‖k‖2∞

(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥∞

⎜ 1
2
∫ t

0
Iν,Stein(ρ1,s |π)

1
2 ds

)

× exp

(

ν− 1
2
(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥∞

⎜ 1
2
∫ t

0
Iν,Stein(ρ2,s |π)

1
2 ds

)

+ Dp(ρ
1,2)(0)p exp

(
ν− 1

2
(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥∞

⎜ 1
2 √

KL(ρ2|π)t
1
2

+ ν−1 ‖k‖C(T , k, V , ν, ρ1, ρ2, q)t

+ 2ν− 3
2 (1 − ν) ‖k‖2∞

(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥∞

⎜ 1
2 √

KL(ρ1|π)t
1
2

)
.

Hence, we obtain

W p
p (ρ1,t , ρ2,t )

= inf
π∈4(ρ1,t ,ρ2,t )

∫

Rd×Rd
|x1 − x2|pπ(dx1, dx2) + inf

ρ1,2∈4(ρ1,ρ2)
Dp(ρ

1,2)(t)p

+ exp
(

ν−1 ‖k‖∞ C(T , k, V , ν, ρ1, ρ2, q)t

+ ν− 1
2
(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥∞

⎜ 1
2 √

KL(ρ2|π)t
1
2

+ 2ν− 3
2 (1 − ν) ‖k‖2∞

(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥∞

⎜ 1
2 √

KL(ρ1|π)t
1
2

)

inf
ρ1,2∈4(ρ1,ρ2)

Dp(ρ
1,2)(0)p

= exp
(

ν−1 ‖k‖∞ C(T , k, V , ν, ρ1, ρ2, q)t

+ ν− 1
2
(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥∞

⎜ 1
2 √

KL(ρ2|π)t
1
2

+ 2ν− 3
2 (1 − ν) ‖k‖2∞

(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥∞

⎜ 1
2 √

KL(ρ1|π)t
1
2

)
W p

p (ρ1, ρ2),

yielding the result. 56

Note that in Lemma 4, we studied perturbation bounds for (28) under two different
push-forward maps. In the next result, with the existence and uniqueness of solutions
proved in Theorem 7, we study perturbation results for (7) with two different initial
conditions.
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Proposition 5 Under the assumptions of Theorem 8, Let ρ1,2 be a probability measure
on R2d with marginals ρ1 and ρ2. Then for any x, y ∈ Rd , we have

⎭⎭⎭Dν,ρ2,t∇ log
ρ2,t

π
(x) − Dν,ρ2,t∇ log

ρ2,t

π
(y)

⎭⎭⎭

+ ν− 1
2

(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥

∞

⎜ 1
2
Iν,Stein(ρ2,t |π)

1
2 |x − y| , (47)

and
⎭⎭⎭Dν,ρ1,t∇ log

ρ1,t

π
(x) − Dν,ρ2,t∇ log

ρ2,t

π
(x)

⎭⎭⎭

+ 2ν− 3
2 (1 − ν) ‖k‖2∞

(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥

∞

⎜ 1
2
Iν,Stein(ρ1,t |π)

1
2

×
∫

Rd
|1(t, x1, ρ1) − 1(t, x2, ρ2)|ρ1,2(dx1, dx2)

+ ν−1 ‖k‖∞ C(t, k, V , ν, ρ1, ρ2, q)
(∫

Rd×Rd
|1(t, y1, ρ1) − 1(t, y2, ρ2)|p ρ1,2(dy1, dy2)

)1/p

, (48)

where C(t, k, V , ν, ρ1, ρ2, q) is given in (56).

Proof of Proposition 5 First, we prove (47). For any x, y ∈ Rd ,

⎭⎭⎭Dν,ρ2,t∇ log
ρ2,t

π
(x) − Dν,ρ2,t∇ log

ρ2,t

π
(y)

⎭⎭⎭

=
⎭⎭⎭⎭
(
(1 − ν)ι∗k,ρ2,t ιk,ρ2,t + ν Id

⎜−1
ι∗k,ρ2,t∇ log

ρ2,t

π
(x)

−
(
(1 − ν)ι∗k,ρ2,t ιk,ρ2,t + ν Id

⎜−1
ι∗k,ρ2,t∇ log

ρ2,t

π
(y)

⎭⎭⎭⎭

=
⎭⎭⎭⎭⎭

〈
k(x, ·) − k(y, ·),

(
(1 − ν)ι∗k,ρ2,t ιk,ρ2,t + ν Id

⎜−1
ι∗k,ρ2,t∇ log

ρ2,t

π
(·)

〉

Hk

⎭⎭⎭⎭⎭

+ ‖k(x, ·) − k(y, ·)‖Hk

∥∥∥∥
(
(1 − ν)ι∗k,ρ2,t ιk,ρ2,t + ν Id

⎜−1
ι∗k,ρ2,t∇ log

ρ2,t

π

∥∥∥∥
Hd

k

+ ν− 1
2 Iν,Stein(ρ2,t |π)

1
2 ‖k(x, ·) − k(y, ·)‖Hd

k

+ ν− 1
2 Iν,Stein(ρ2,t |π)

1
2

(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥

∞

⎜ 1
2 |x − y|,

where the second inequality follows from (33) and the last inequality follows from the
reproducing property and Taylor expansion. The claim in (47) then follows from the
above inequality.
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To prove (48), first we have for any x ∈ Rd ,

⎭⎭⎭Dν,ρ1,t ∇ log
ρ1,t
π

(x) − Dν,ρ2,t ∇ log
ρ2,t
π

(x)
⎭⎭⎭

+
⎭⎭⎭⎭

((
(1 − ν)ι∗k,ρ1,t ιk,ρ1,t + ν Id

⎜−1
−

(
(1 − ν)ι∗k,ρ2,t ιk,ρ2,t + ν Id

⎜−1
)

ι∗k,ρ1,t ∇ log
ρ1,t
π

(x)
⎭⎭⎭⎭

+
⎭⎭⎭⎭
(
(1 − ν)ι∗k,ρ2,t ιk,ρ2,t + ν Id

⎜−1 (
ι∗k,ρ1,t ∇ log

ρ1,t
π

(x) − ι∗k,ρ2,t ∇ log
ρ2,t
π

(x)
⎜⎭⎭⎭⎭ . (49)

Next we bound the two terms on the right-hand side of (49).
First term: we have

⎭⎭⎭⎭

((
(1 − ν)ι∗k,ρ1,t ιk,ρ1,t + ν Id

⎜−1
−

(
(1 − ν)ι∗k,ρ2,t ιk,ρ2,t + ν Id

⎜−1
)

ι∗k,ρ1,t ∇ log
ρ1,t
π

(x)
⎭⎭⎭⎭

=
⎭⎭⎭⎭ιk,ρ1,t

(
(1 − ν)ι∗k,ρ2,t ιk,ρ2,t + ν I

⎜−1 (
(1 − ν)ι∗k,ρ2,t ιk,ρ2,t − (1 − ν)ι∗k,ρ1,t ιk,ρ1,t

⎜

×
(
(1 − ν)ι∗k,ρ1,t ιk,ρ1,t + ν I

⎜−1
ι∗k,ρ1,t ∇ log

ρ1,t
π

(x)
⎭⎭⎭⎭

+
∥∥∥ιk,ρ1,t

∥∥∥
Hd

k→Ld∞

∥∥∥∥
(
(1 − ν)ι∗k,ρ2,t ιk,ρ2,t + ν I

⎜−1
∥∥∥∥
Hd

k→Hd
k

(1 − ν)
∥∥∥ι∗k,ρ2,t ιk,ρ2,t − ι∗k,ρ1,t ιk,ρ1,t

∥∥∥
Hd

k→Hd
k

×
∥∥∥∥
(
(1 − ν)ι∗k,ρ1,t ιk,ρ1,t + ν I

⎜−1
ι∗k,ρ1,t ∇ log

ρ1,t
π

∥∥∥∥
Hd

k

+ ‖k‖∞ ν− 3
2 (1 − ν)Iν,Stein(ρ1,t |π)

1
2

sup
‖φ‖Hd

k
=1

〈∫

Rd
k(·, x)φ(x)(dρ1,t (x) − dρ2,t (x)),

∫

Rd
k(·, y)φ(y)(dρ1,t (y) − dρ2,t (y))

〉 1
2

Hd
k

,

and

sup
‖φ‖Hd

k
=1

〈∫

Rd
k(·, x)φ(x)(dρ1,t (x) − dρ2,t (x)),

〉
.

〈
.

∫

Rd
k(·, y)φ(y)(dρ1,t (y) − dρ2,t (y))

〉 1
2

Hd
k

=
(

sup
‖φ‖Hd

k
=1

∫

Rd×Rd

∫

Rd×Rd

〈
k (1(t, x1, ρ1), ·)φ (1(t, x1, ρ1))

− k (1(t, x2, ρ2), ·)φ (1(t, x2, ρ2)) ,

k (1(t, y1, ρ1), ·)φ (1(t, y1, ρ1)) − k (1(t, y2, ρ2), ·)φ (1(t, y2, ρ2))
〉

Hd
k

ρ1,2(dx1, dx2)ρ
1,2(dy1, y2)

) 1
2

+
∫

Rd

∫

Rd
‖k (1(t, x1, ρ1), ·)φ (1(t, x1, ρ1))−k (1(t, x2, ρ2), ·)φ (1(t, x2, ρ2))‖Hd

k
ρ1,2(dx1, dx2)
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+ 2 ‖k‖∞
(
2 ‖∇1∇2k‖∞ + 3

∥∥∥∇2k
∥∥∥∞

⎜ 1
2

∫

Rd×Rd
|1(t, x1, ρ1) − 1(t, x2, ρ2)|ρ1,2(dx1, dx2).

Second term: we have
⎭⎭⎭⎭
(
(1 − ν)ι∗k,ρ2,t ιk,ρ2,t + ν I

⎜−1 (
ι∗k,ρ1,t∇ log

ρ1,t

π
(x) − ι∗k,ρ2,t∇ log

ρ2,t

π
(x)

⎜⎭⎭⎭⎭

=
⎭⎭⎭⎭ιk,ρ2,t

(
(1 − ν)ι∗k,ρ2,t ιk,ρ2,t + ν I

⎜−1 (
ι∗k,ρ1,t∇ log

ρ1,t

π
(x) − ι∗k,ρ2,t∇ log

ρ2,t

π
(x)

⎜⎭⎭⎭⎭

+
∥∥ιk,ρ2,t

∥∥
Hd

k→Ld∞

∥∥∥∥
(
(1 − ν)ι∗k,ρ2,t ιk,ρ2,t + ν I

⎜−1
∥∥∥∥
Hd

k→Hd
k∥∥∥ι∗k,ρ1,t∇ log

ρ1,t

π
− ι∗k,ρ2,t∇ log

ρ2,t

π

∥∥∥
Hd

k

+ ‖k‖∞ ν−1
∥∥∥ι∗k,ρ1,t∇ log

ρ1,t

π
− ι∗k,ρ2,t∇ log

ρ2,t

π

∥∥∥
Hd

k

.

For the factor
∥∥∥ι∗k,ρ1,t∇ log ρ1,t

π − ι∗k,ρ2,t∇ log ρ2,t
π

∥∥∥
Hd

k

, notice that

ι∗k,ρ1,t∇ log
ρ1,t

π
(x) − ι∗k,ρ2,t∇ log

ρ2,t

π
(x)

=
∫

Rd
k(x, y)∇ log

ρ1,t

π
(y)dρ1,t (y) −

∫

Rd
k(x, y)∇ log

ρ2,t

π
dρ2,t (y)

=
∫

Rd
(k(x, y)∇V (y) − ∇2k(x, y)) dρ1,t (y)

−
∫

Rd
(k(x, y)∇V (y) − ∇2k(x, y)) dρ2,t (y)

=
∫

Rd×Rd
(k(x,1(t, y1, ρ1))∇V (1(t, y1, ρ1))

−k(x,1(t, y2, ρ2))∇V (1(t, y2, ρ2))) dρ1,2(dy1, dy2)

−
∫

Rd×Rd
(∇2k(x,1(t, y1, ρ1)) − ∇2k(x,1(t, y2, ρ2))) dρ1,2(dy1, dy2),

and we get
∥∥∥ι∗k,ρ1,t ∇ log

ρ1,t

π
− ι∗k,ρ2,t ∇ log

ρ2,t

π

∥∥∥
Hd

k

+
∫

Rd×Rd
‖k(·,1(t, y1, ρ1))∇V (1(t, y1, ρ1)) − k(·,1(t, y2, ρ2))∇V (1(t, y2, ρ2))‖Hd

k
dρ1,2(dy1, dy2)

+
∫

Rd×Rd
‖∇2k(·,1(t, y1, ρ1)) − ∇2k(·,1(t, y2, ρ2))‖Hd

k
dρ1,2(dy1, dy2). (50)

For simplicity, we denote 1(t, y1, ρ1),1(t, y2, ρ2) as 11 and 12 respectively in the
following calculations. We will bound the two integrals in (50) separately.
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For the first integral in (50), we have

‖k(·,11)∇V (11) − k(·,12)∇V (12)‖2Hd
k

= 〈k(·,11)∇V (11) − k(·,12)∇V (12), k(·,11)∇V (11) − k(·,12)∇V (12)〉Hd
k

= |∇V (11)|2k(11,11) − 2 〈∇V (11),∇V (12)〉 k(11,12)+ |∇V (12)|2k(12,12)

+ | 〈∇V (11) − ∇V (12),∇V (11)k(11,11) − ∇V (12)k(12,12)〉 |
+ | 〈∇V (11),∇V (12)〉 (k(11,11)+ k(12,12) − 2k(11,12)) |,

where

|〈∇V (11) − ∇V (12),∇V (11)k(11,11) − ∇V (12)k(12,12)〉|
+ |∇V (11) − ∇V (12)|2k(11,11)+ |∇V (11)

− ∇V (12)||∇V (12)||k(11,11) − k(12,12)|

+ sup
θ∈[0,1]

∥∥∥∇2(θ11 + (1 − θ)12)
∥∥∥
2

2
|11 − 12|2 ‖k‖2∞

+ sup
θ∈[0,1]

∥∥∥∇2(θ11 + (1 − θ)12)
∥∥∥
2
|11 − 12||∇V (12)||k(11,11) − k(12,12)|

+ C2/q
V (1+ V (11)+ V (12))

2/q ‖k‖2∞ |11 − 12|2

+ C1/q
V (1+ V (11)+ V (12))

1/qC1/q
V (1+ V (12))

1/q ‖∇k‖∞ |11 − 12|2

+ C2/q
V

(
‖k‖2∞ + ‖∇k‖∞

⎜
(1+ V (11)+ V (12))

2/q |11 − 12|2. (51)

The third inequality follows from Assumption V2 and the last inequality follows
from Assumption K1 and Taylor expansion on both variables in k up to first order.
Furthermore, we have

|〈∇V (11),∇V (12)〉 (k(11,11)+ k(12,12) − 2k(11,12))|
+ C2/q

V (1+ V (11))
1/q(1+ V (12))

1/q |k(11,11)+ k(12,12) − 2k(11,12)|
+ C2/q

V (1+ V (11))
1/q(1+ V (12))

1/q
(
3
∥∥∥∇2k

∥∥∥
∞

+ 2 ‖∇1∇2k‖∞
⎜
|11 − 12|2,

(52)

where the first inequality follows from Assumption V2 and the last inequality follows
from Assumption K1 and Taylor expansion on both variables in k up to second order.

From (51) and (52), we get

∫

Rd×Rd
‖k(·,1(t, y1, ρ1))∇V (1(t, y1, ρ1)) − k(·,1(t, y2, ρ2))∇V (1(t, y2, ρ2))‖Hd

k
dρ1,2(dy1, dy2)

+ C1/q
V

(
‖k‖∞ + ‖∇k‖∞

1
2 + 3

∥∥∥∇2k
∥∥∥∞

1
2 + 2‖∇1∇2k‖∞

1
2

)

×
∫

Rd×Rd
|11(t, y1, ρ1) − 1(t, y2, ρ2)|(1+ V (1(t, y1, ρ1))

123



Foundations of Computational Mathematics

+ V (1(t, y2, ρ2)))
1/qρ1,2(dy1, dy2)

+ C1/q
V

(
‖k‖∞ + ‖∇k‖∞

1
2 + 3

∥∥∥∇2k
∥∥∥∞

1
2 + 2‖∇1∇2k‖∞

1
2

)

×
(∫

Rd×Rd
|11(t, y1, ρ1) − 1(t, y2, ρ2)|pρ1,2(dy1, dy2)

)1/p

×
(∫

Rd×Rd

(
1+ V (1(t, y1, ρ1))+ V (1(t, y2, ρ2))

)
ρ1,2(dy1, dy2)

)1/q

+
(
‖ρ1‖PV exp(C1,0ν

−1/2 ‖k‖∞
√
tKL(ρ1|π))

+ ‖ρ2‖PV exp(C1,0ν
−1/2 ‖k‖∞

√
tKL(ρ2|π))

⎜1/q

× C1/q
V

(
‖k‖∞ + ‖∇k‖∞

1
2 + 3

∥∥∥∇2k
∥∥∥∞

1
2 + 2‖∇1∇2k‖∞

1
2

)

×
(∫

Rd×Rd
|11(t, y1, ρ1) − 1(t, y2, ρ2)|pρ1,2(dy1, dy2)

)1/p

+ 3C1/q
V

(
‖k‖∞ + ‖∇k‖∞

1
2 +

∥∥∥∇2k
∥∥∥∞

1
2 + ‖∇1∇2k‖∞

1
2

)(
‖ρ1‖PV + ‖ρ2‖PV

⎜1/q

× exp(C1,0ν
−1/2q−1 ‖k‖∞

√
t(KL(ρ1|π)+ KL(ρ2|π)))

×
(∫

Rd×Rd
|11(t, y1, ρ1) − 1(t, y2, ρ2)|pρ1,2(dy1, dy2)

)1/p

:= C1(k, V )
(
‖ρ1‖PV + ‖ρ2‖PV

⎜ 1
q exp

(
D1(k, ν, q) (KL(ρ1|π)+ KL(ρ2|π))

1
2 t

1
2

)

×
(∫

Rd×Rd
|11(t, y1, ρ1) − 1(t, y2, ρ2)|pρ1,2(dy1, dy2)

)1/p
. (53)

where the third inequality follows from (35).
For the second integral in (50), denoting the function∇1 ·∇2k = D1,2k, we first notice
that D1,2k is symmetric since k is symmetric. According to the above identity, we get

‖∇2k(·,11) − ∇2k(·,12)‖2Hd
k
= D1,2k(11,11)+ D1,2k(12,12) − 2D1,2k(11,12).

Applying Taylor’s series expansion on both variables of D1,2k, we get

‖∇2k(·,11) − ∇2k(·,12)‖2Hd
k

+
(
2
∥∥∥∇2(D1,2k)

∥∥∥∞
+

∥∥∇1∇2(D1,2k)
∥∥∞

⎜
|11 − 12|2.

Therefore we obtain
∫

Rd
‖∇2k(·,1(t, y1, ρ1)) − ∇2k(·,1(t, y2, ρ2))‖Hd

k
dρ1,2(dy1, dy2)

+
(
2
∥∥∥∇2(D1,2k)

∥∥∥
∞

1
2 +

∥∥∇1∇2(D1,2k)
∥∥

∞
1
2

)

∫

Rd×Rd
|1(t, y1, ρ1) − 1(t, y2, ρ2)|ρ1,2(dy1, dy2). (54)
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Based on (50), (53) and (54), we then get

∥∥∥ι∗k,ρ1,t ∇ log
ρ1,t
π

− ι∗k,ρ2,t ∇ log
ρ2,t
π

∥∥∥
Hd

k

+ C1(k, V )
(
‖ρ1‖PV + ‖ρ2‖PV

⎜ 1
q exp

(
D1(k, ν, q) (KL(ρ1|π)+ KL(ρ2|π))

1
2 t

1
2

)

(∫

Rd×Rd
|11(t, y1, ρ1) − 1(t, y2, ρ2)|pρ1,2(dy1, dy2)

)1/p

+
(

2
∥∥∥∇2(D1,2k)

∥∥∥∞

1
2 +

∥∥∇1∇2(D1,2k)
∥∥∞

1
2

)

∫

Rd×Rd
|1(t, y1, ρ1) − 1(t, y2, ρ2)|ρ1,2(dy1, dy2)

+ C(t, k, V , ν, ρ1, ρ2, q)
(∫

Rd×Rd
|11(t, y1, ρ1) − 1(t, y2, ρ2)|pρ1,2(dy1, dy2)

)1/p
, (55)

with

C(t, k, V , ν, ρ1, ρ2, q)

= C1(k, V )
(‖ρ1‖PV

+ ‖ρ2‖PV

) 1
q

exp
(
D1(k, ν, q) (KL(ρ1|π)+ KL(ρ2|π))

1
2 t

1
2

⎜
+ C2(k), (56)

where

C1(k, V ) = 3C1/q
V

(
‖k‖∞ + ‖∇k‖∞

1
2 +

∥∥∥∇2k
∥∥∥

∞

1
2 + ‖∇1∇2k‖∞

1
2

)
,

D1(k, ν, q) = C1,0ν
−1/2q−1 ‖k‖∞ ,

C2(k) = 2
∥∥∥∇2(∇1 · ∇2k)

∥∥∥
∞

1
2 + ‖∇1∇2(∇1 · ∇2k)‖∞

1
2 .

Therefore (48) follows from our estimations on the First term and Second term.

7 Space-Time Discretization: A Practical Algorithm

In this section, we introduce a practical space-time discretization to the R-SVGF
described in (28). In the algorithm, we let positive integers N and n to denote the
number of particles and (discrete) iterations. We denote by (Xi

n)
N
i=1 the position of

the N particles at the n-th step. We let X̄n := [X1
n, . . . , X

N
n ]T . For all functions

f : Rd → Rd , we define the operator Ln as

Ln f := [ f (X1
n), · · · , f (XN

n )]T .
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Fig. 1 R-SVGD for various values of the regularization parameter ν. The case of ν = 1 corresponds
to SVGD. Left, Middle and Right columns correspond respectively to h1(x) := x , h2(x) := x2 and
h3(x) := cos(.x + b). Top and bottom rows correspond respectively to log(MSE) versus number of
particles and number of iterations

The positions of the particles are then updated as

X̄n+1 = X̄n − hn+1

(
(1 − νn+1)

N
Kn + νn+1 IN

)−1



 1
N
Kn(Ln∇V ) − 1

N

N∑

j=1

Ln∇k(X j
n , ·)



 , (57)

where (hn)∞n=1 is the sequence of step-sizes, IN×N is the N × N identity matrix and
Kn ∈ RN×N is the gram matrix defined as (Kn)i j = k(Xi

n, X
j
n) for all i, j ∈ [N ].

We call the above algorithm as the Regularized SVGD algorithm. The iterates in
(57) follow from Proposition 2 and the finite-sample representations for the operators
ιk,ρ̂n ιk,ρ̂n where ρ̂n is the empirical measure of the particles at the n-th step, i.e.,
ρ̂n = ∑N

i=1 δXi
n
.

While the convergence analysis of space-time discretization of the SVGF (i.e.,
the SVGD algorithm) and the R-SVGD (i.e., the regularized SVGD algorithm) is
an interesting and challenging open question, in this section we demonstrate the
improved performance of the regularized SVGD algorithm over the SVGD algorithm
in some simulation examples. All experiments were done in MacBook Pro (2021
model). Specifically, we consider the simulation setup in [27]: We let the target π :=
(1/3)π1+ (2/3)π2, where π1 ≡ Normal(−2, 1) and π2 ≡ Normal(+2, 1), and we let
the initial distribution to beNormal(−10, 1).We now focus on numerically computing
the expectations of the form Ex∼π [hi (x)], for three cases, h1(x) := x , h2(x) := x2

and h3(x) := cos(.x + b), where . ∼ Normal(0, 1) and b ∼ Uniform([0, 2π ]).
In Fig. 1, we plot the mean-squared error in estimating the above expectations with

the regularized and unregularized SVGD algorithm. Here, the expectation is over
the initialization (and over . and b for h3). In the top row, we report the logarithm
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Table 2 Average additional per-iteration wall-clock run-time (in seconds) for R-SVGD over SVGD

N 50 100 150 200 250

ν = 0.1 0.0114 0.0343 0.0861 0.1442 0.2163

ν = 0.2 0.0099 0.0257 0.0586 0.1058 0.1899

of the mean-squared error versus the number of particles N for a fixed number of
iterations (set to 100). The corresponding average per-iteration wall-clock run times
are reported in Table 2. In the bottom row, we report the logarithm of themean-squared
error versus the number of iterations for a fixed number of particles (set to 200). For
both algorithms, we use the Gaussian kernel k(u, v) = exp

(
− 1

γ ‖u − v‖22
⎜
, where

the bandwidth parameter γ is set using the median heuristic [27]. We use the Adagrad
step-size choice for both cases, following [27]. For the choice of the regularization
parameter, we report results for various choices of ν. The case of ν = 1 corresponds
exactly to the SVGD algorithm. We notice that for small values of ν the regularized
SVGD algorithm performs better than the SVGD algorithm.

We now discuss the per-iteration complexity of regularized SVGD and standard
SVGD. SVGD requires computing the kernel matrix (which requires O(N 2) opera-
tions per-iterations) and the gradient of the potential (i.e.,∇V ).As pointed out in [27] in
Bayesian inference problems, typically, computing the gradient of the potential might
be themain bottleneck. However, this computation could easily be done in parallel due
to its finite-sum structure in Bayesian inference problems. We denote by O(Score),
the time complexity of computing/evaluating the gradient of the potential for a given
target density. On top of the above computations, each iteration of regularized SVGD
requires inverting a N × N matrix (or equivalently, solving a positive-definite linear
system of equations), which costsO(N 3) complexity.With standard implementations,
the per-iteration complexity regularized SVGD and standard SVGD are hence of order
max{O(N 3),O(Score)} and max{O(N 2),O(Score)}, respectively.

The matrix being inverted in regularized SVGD is the regularized kernel matrix
also arising in other problems like kernel ridge regression. Hence, the rich literature
on efficiently inverting kernelmatrices (under various structural assumptions) could be
leveraged in this context.Whilewe leave a detailed studyof speeding up the regularized
SVGD algorithm as future work, we conclude here two concrete methods for provably
speeding-up practical implementations of the regularized SVGD algorithms (under
structural assumptions):

• Pre-conditionedCGmethods:State-of-the-artmethods ondesigningpre-conditioners
for conjugate gradientmethods for kernel ridge regression from [17] could be lever-
aged in the context of regularizedSVGD. Inparticular, such resultsmayhelp reduce
the computational complexity of regularized SVGD to max{O(N 2),O(Score)},
matching that of SVGD.

• Randomized methods: Randomized algorithms designed in the context of kernel
ridge regression, namely Random Fourier Features [35] and sketching [52] could
also be leveraged to speed-up practical implementations of regularized SVGD.
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