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correctors for three dimensional random elliptic media
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ABSTRACT
We are interested in numerical algorithms for computing the electrical
!eld generated by a charge distribution localized on scale ! in an in!nite
heterogeneous medium, in a situation where the medium is only known
in a box of diameter L ! ! around the support of the charge. We
propose a boundary condition that with overwhelming probability is
(near) optimal with respect to scaling in terms of ! and L, in the setting
where the medium is a sample from a stationary ensemble with a !nite
range of dependence (set to be unity and with the assumption that
! ! 1). The boundary condition is motivated by quantitative stochas-
tic homogenization that allows for a multipole expansion. This work
extends, the algorithm in which is optimal in two dimension, and thus
we need to take quadrupoles, next to dipoles, into account. This in turn
relies on stochastic estimates of second-order, next to !rst-order, cor-
rectors. These estimates are provided for !nite range ensembles under
consideration, based on an extension of the semi-group approach of
Gloria and Otto.
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1. Introduction and main results

Consider a conducting medium as described by a symmetric λ-uniform coe!cient "eld a =
a(x) in d-dimensional space, that is, for any x, ξ ∈ Rd

λ|ξ |2 ≤ ξ · a(x)ξ ≤ |ξ |2. (1)

Consider a localized charge distribution that is overall neutral, as described by a compactly
supported dipole density g. Let us give a sense to its characteristic scale ! by assuming that it
is of the form

g(x) = ĝ( x
!

) (2)

for some su!ciently smooth ĝ supported in the unit ball. We are interested in the "eld ∇u
the charge generates, which is the decaying solution of the elliptic divergence-form equation

∇ · (a∇u + g) = 0 in Rd. (3)
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In this paper, we address the following question: Suppose we only know the medium a
in some box Q2L := (−2L, 2L)d, to what precision may we infer the value of ∇u? What is a
practical algorithm to retrieve it? Heuristically, one expects ∇u(x) to decay as a dipole, i.e., like
( !
|x| )

d, thus we expect that changing the coe!cient "eld a outside the box Q2L will a#ect ∇u
to order ( !

L )d, and imposing homogeneous Dirichlet conditions on ∂QL would do no worse
– and this would be the end of the story and the paper.

In this paper, however, we consider a more speci"c situation, namely when a is sampled
from a stationary ensemble 〈·〉, which puts us into the context of stochastic homogenization.
More precisely, we shall assume that 〈·〉 is of "nite range, which we set to be unity without
loss of generality. This means that for two sets D and D′ ⊂ Rd with distance larger than 1,
the restrictions a|D and a|D′ are independent. What information may we retrieve in this case?
Consider again changing the coe!cient "eld outside Q2L (now with L ! 1) but keeping the
statistical ensemble, heuristically, we expect that due to stochastic cancellations, the impact
on ∇u reduces to 1√

Ld ( !
L )d. Indeed, the additional attenuation factor 1√

Ld comes from the
Central Limit Theorem (CLT) scaling involving the square root of the relevant volume, non-
dimensionalized by the correlation length. In fact, this precision on inferring the value of
∇u cannot be improved, as the following lower bound on the variance of ∇u from previous
work [2], conditioned on the restriction a|Q2L , shows, which we expect to hold for generic
ensembles.

Theorem 1.1. [2, Theorem 2] There exists a stationary, unit-range ensemble 〈·〉 supported on
a’s satisfying (1) with the following property: Consider the solution u of (3), where g is of the
form (2) for some ! and ĝ, then there exists a radius R such that for any ω = 1

Rd ω̂( x
R ) for some

su!ciently smooth ω̂ supported in1 B1 with
´

ω̂ = 1,
〈∣∣
ˆ

ω∇u − 〈
ˆ

ω∇u | a|Q2L〉
∣∣2〉 1

2 + 1
C ( !

L )d( 1
L )

d
2 provided L

C + ! + C.

Here the radius R and the constant C depend only on the ensemble, ĝ, and ω̂.

In [2], a practical algorithm, that saturates this scaling for d = 2, was proposed and
analyzed. The error of such an algorithm is O(( !

L )d( 1
L )1−) in any dimension. In this paper, we

tackle the more physically relevant case of d = 3, which requires a substantial modi"cation
of the algorithm and its analysis.

We will propose a deterministic algorithm, Algorithm 1, that involves the realization a only
in terms of its restriction a|Q2L . The algorithm saturates the lower bound of Theorem 1.1 in
terms of scaling. More speci"cally, by solving a couple of auxiliary boundary value problems
with homogeneous Dirichlet boundary conditions on Q2L, Q 7

4 L, and Q 3
2 L, this algorithm

constructs Dirichlet boundary data uL on ∂QL, which in turn de"nes u(L), the output of the
algorithm, by solving

−∇ · a∇u(L) = ∇ · g in QL, u(L) = uL on ∂QL. (4)
For L, !, R ! 1 and with overwhelming probability, this algorithm saturates the lower bound
of Theorem 1.1, with the little caveat that the CLT exponent, 3

2 for d = 3, has to be replaced
by β < 3

2 . Part of the probabilistic nature of the statement is contained in the random radius

1Throughout this work we use BR to denote the ball {|x| ≤ R}.
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r∗∗, which can be interpreted as the scale from which onwards stochastic homogenization is
e#ective.

Theorem 1.2. Let d = 3 and 〈·〉 be a stationary, unit-range ensemble supported on a’s satisfying
(1). Let g be of the form (2) for some ! and ĝ, let u denote the solution of (3), and u(L) be the
output of Algorithm 1 for some L + !. Then for any β < 3

2 , there exists a random radius r∗∗
such that conditioning on ! + r∗∗, with probability at least 1 − exp(−L1/C), we have for any
R ∈ [r∗∗, L],2

Ä  
BR

|∇(u(L) − u)|2
ä 1

2 ≤ C( !

L )d( r∗∗
L )β provided L

C + ! + C.

Moreover, the radius r∗∗ satis"es
〈

exp(rβ
∗∗)

〉 ≤ C. (5)
Here C denotes a constant that depends only on λ, ĝ, β and ω̂ appearing in Theorem 1.1.

We believe that with some additional work, it is possible to derive an “a posteriori” style
result similar to [2], that is, we could de"ne some computable r(L)

∗∗ that plays the same role as
r∗∗ in Theorem 1.2. We also comment here that Theorem 1.2 holds with any β < 2 for d + 4,
and the algorithm is thus also near-optimal when d = 4. Obtaining the optimal algorithm for
d + 5 requires computing correctors of order three or higher and we do not discuss it here.

Before we further discuss ideas of Algorithm 1 and the proof of the theorem, let us "rst
compare our result with the previous work [2]. A main di#erence lies in the introduction
of the functions ψ

(L)
T and the corresponding coe!cients c(L)

T , which are approximations of
second-order correctors and quadrupoles that will be introduced below. These are available
for d > 2 and indeed necessary for the algorithm to (almost) reach the CLT-scaling β < 3

2 .
This aspect of di#erence will be discussed in more details in Section 2.1. A more technical
di#erence is that Algorithm 1 uses a di#erent approximation φ

(L)
T of the "rst-order corrector

φ, compare (6) to [2, (18)]. The di#erence lies in the massive term 1
T φ

(L)
T . The reason of such

change is discussed in Section 2.2.

Algorithm 1 Optimal algorithm for the approximate solution u(L) in QL

1: For β ∈ (1, 3
2 ) set ε = 3

2 −β and T = L2(1−ε). For i = 1, . . . , d, solve for the approximate
"rst-order corrector φ

(L)
i,T :

1
T φ

(L)
i,T − ∇ · a∇φ

(L)
i,T = ∇ · aei in Q2L, φ

(L)
i,T = 0 on ∂Q2L. (6)

2: Calculate the approximate homogenized coe!cients via

a(L)
h ei =

ˆ
ωq(L)

i,T , (7)

where
q(L)

i,T := a(ei + ∇φ
(L)
i,T ) (8)

and ω(x) = 1
Ld ω̂( x

L ) with ω̂ as in Theorem 1.1.

2Here
ffl

denotes spatial average.
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3: Find ũ(L)
h on ∂QL:

ũ(L)
h = G(L)

h ∗ (∇ · g)=
ˆ

dyG(L)
h (x − y)∇ · g(y), (9)

where G(L)
h (x) := 1

4π
∣∣∣(a(L)

h )−1/2x
∣∣∣

is the Green function for the constant-coe!cient operator

−∇ · a(L)
h ∇ .

4: Solve for approximate "rst-order $ux correctors σ
(L)
i,T = {σ (L)

ijk,T}j,k:

1
T σ

(L)
ijk,T − ,σ

(L)
ijk,T = ∂jq(L)

ik,T − ∂kq(L)
ij,T in Q 7

4 L, σ
(L)
ijk,T = 0 on ∂Q 7

4 L. (10)

5: Solve for approximate second-order correctors ψ
(L)
ij,T :

1
T ψ

(L)
ij,T − ∇ · a∇ψ

(L)
ij,T = ∇ · (φ(L)

i,T a − σ
(L)
i,T )ej in Q 3

2 L, ψ
(L)
ij,T = 0 on ∂Q 3

2 L. (11)

6: For the indices

(i, j) ∈ J = {(1, 2), (1, 3), (2, 3), (2, 2), (3, 3)}, (12)

calculate

c(L)
ij,T = −

ˆ
g · ∇

Ä 3∑

k=1
φ

(L)
k,T∂kv(L)

h,ij + (2 − δij)(ψ (L)
ij,T −

a(L)
hij

a(L)
h11

ψ
(L)
11,T)

ä
, (13)

where v(L)
h,ij denote the a(L)

h -harmonic polynomials

v(L)
h,ij = (1 − 1

2
δij)(xixj −

a(L)
hij

a(L)
h11

x2
1). (14)

7: Obtain u(L)
h as

u(L)
h = ũ(L)

h +
3∑

i=1
(
ˆ

g · ∇φ
(L)
i,T )∂iG(L)

h +
∑

(i,j)∈J
c(L)

ij,T∂ijG(L)
h . (15)

8: Solve for u(L) (here and for the rest of the paper we adopt Einstein’s summation conven-
tion for repeated indices):

−∇ · a∇u(L) = ∇ · g in QL, u(L) = (1 + φ
(L)
i,T ∂i + ψ

(L)
ij,T∂ij)u(L)

h on ∂QL. (16)

Related works

Quantitative stochastic homogenization, which dates back to Yurinskii [4], has been inten-
sively studied during the past decade. Naddaf and Spencer [5, 6] introduced the notion of
spectral-gap inequality and captured the CLT-type optimal scaling in stochastic homogeniza-
tion under the condition of small ellipticity contrast, which is removed in [7–9] for discrete
coe!cients. The spectral-gap inequality is then re"ned to logarithmic Sobolev inequality in
[10] and further generalized to ensembles with potentially thick correlation tails in [11, 12].
Another approach by Armstrong and Smart [13], Armstrong, Kuusi and Mourrat [14, 15]
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uses a variational approach and obtain similar results. See [16] for a nice monograph. The
Gaussianity of the energy of the solution was "rst identi"ed by Nolen [17], and has been
extended to homogenized coe!cients by Gloria and Nolen [18], both for the representative
volume element method. The covariance structure of correctors have been studied in [19],
based on the annealed Green’s function estimates in [10]. This is extended to study the
$uctuation of homogenization error in [20]. Scaling limit of the correctors have been studied
in [21]. Second-order correctors have been studied in [22, 23]. Correctors of higher order
have been constructed in [24] up to order of -d

2 . with suboptimal error estimate in two-scale
expansion, which is improved to be optimal in [25]. Higher-order correctors up to order d
were recently constructed in [26] using a distributional formulation. In a perturbative regime,
it is possible to de"ne homogenized coe!cients up to order 2d [27] by using a breakthrough
result of Bourgain [28], in its re"ned form established in [29].

Developing e!cient numerical algorithms has been a major motivation behind the study
of quantitative stochastic homogenization, see e.g., the review [30]. Let us just mention a
few directions here: Quantitative error estimates for computation of e#ective coe!cients in
stochastic homogenization have been studied in [31–34], where strategies using di#erent
boundary conditions or massive terms have been studied. Representative volume method,
a popular approach used by engineers, are systematically analyzed in [35, 36]. Iterative
multigrid methods have been studied in [37–39]. There have also been abundant research
in numerical homogenization where the coe!cients do not necessarily arise from random
setting. An approach using an embedded corrector problem for approximating homogenized
coe!cients has been considered in [40]. Variance reduction methods have been developed
in [41, 42]. Multiscale "nite element methods have been developed in [43, 44] and extended
in [45], see [46] for a review. Heterogeneous multiscale methods have been developed and
studied in [47, 48] and many other works, see [49, 50] for reviews. In [51] they proposed
a method that aims at recovering local oscillations by solving a local problem using the
approximate solution of the homogenized equation as its boundary condition. Localized
orthogonal decomposition approaches have been studied in [52, 53]. Relationship between
numerical homogenization and Bayesian inference have been investigated in [54, 55].

2. Ideas behind the algorithm

2.1. Correctors, homogenized coe!cients and "uxes, e#ective multipoles

Let us recall the standard "rst-order correctors φi, which play a central role in homogenization
theory [56, 57]. For each direction i = 1, . . . , d, the "rst-order corrector φi is de"ned such
that xi + φi is a-harmonic3:

−∇ · a(ei + ∇φi) = 0. (17)

Provided the ensemble is stationary and ergodic, the operator −∇ ·a∇ homogenizes on large
scale to −∇ · ah∇ , with the constant and deterministic homogenized coe!cient ah given by

ahei := 〈qi〉 = lim
L↑∞

 
BL

qi where qi := a(ei + ∇φi). (18)

3See below for a uniqueness argument.
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Given ah, we de"ne ũh to be the solution of the homogenized equation
−∇ · ah∇ũh = ∇ · g. (19)

The $ux corrector σ , introduced in [12] in the setting of stochastic homogenization (see
earlier ideas in periodic homogenization in [58, Proposition 7.2]), plays a convenient role
in quantitative analysis. Since qi − ahei, which can be viewed as a (d − 1)-form, has zero
expectation and is divergence free in view of (17) and (18), there exists a (d − 2)-form, which
can be expressed as a skew-symmetric tensor "eld σi, such that

qi − ahei = ∇ · σi, (20)
where we use the convention (∇ · σi)j = ∂kσijk. Clearly σi is only determined up to a (d − 3)-
form, so that a gauge has to be chosen to make its construction unique. It is convenient to
choose

−,σijk = ∂jqik − ∂kqij = ∇ · (qikej − qijek). (21)
With the help of the σi’s one can express the homogenization error in divergence form: for any
ah-harmonic function uh, the two-scale expansion (1 + φi∂i)uh is close to being a-harmonic
in the sense of

−∇ · a∇(1 + φi∂i)uh = ∇ · (φia − σi)∇∂iuh. (22)
The functions (φ, σ ) are uniquely determined up to a random constant by requiring (∇φ, ∇σ )
to be stationary "elds (i.e. ∇φ(a(·+z), x) = ∇φ(a, x+z) for any x, z ∈ Rd) with "nite second
moments and zero mean [12, Lemma 1]. In dimension 3 under the unit-range assumption,
(φ, σ ) themselves are stationary, and have "nite stretched exponential moments [16, Theorem
4.1, Proposition 6.2], [3, Corollary 2]. Hence (φ, σ ) are uniquely determined by requiring
〈φ〉 = 〈σ 〉 = 0 (see discussions in [12]).

In dimension 3, it is well-known that enriching the two-scale expansion by second-order
correctors ψij leads to a better approximation [23]. More precisely, given an ah-harmonic
function uh, we may improve our two-scale expansion to (1 + φi∂i + ψij∂ij)uh, which is
a second-order approximation of an a-harmonic function. The characterizing property of
second-order correctors is the following equation4

−∇ · a∇ψij = ∇ · (φia − σi)ej. (23)
Equation (23) encodes the following property of the ψij’s: for an ah-harmonic quadratic
polynomial uh, (1 +φi∂i +ψij∂ij)uh is exactly a-harmonic. In practice we only need {ψij}i,j in
form of linear combinations Eijψij with coe!cients {Eij}i,j that are symmetric and satisfy the
trace condition ahijEij = 0, which is a "ve dimensional space for d = 3. Hence, it su!ces to
restrict to {ψij}(i,j)∈J , where J is the index set de"ned in Algorithm 1.

Analogously to "rst-order corrector case, we need second-order $ux correctors, which
were "rst introduced in [23] for quantitative analysis. Since by (23),

pij := a∇ψij + (φia − σi)ej (24)
is divergence free, there exist .ij = {.ijkn}k,n=1,...,d, skew-symmetric with respect to k and n,
such that

pij = ∇ · .ij. (25)

4It might be possible to construct ψ via −∇ · a(∇ψij + φiej) = ej · (qi − ahei) in order to completely avoid computing
σi . We will not discuss the details here.
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Since a is symmetric, the second-order homogenized coe!cient vanishes (see discussions in
[23, calculations on page 5] or [1, Corollary 1]). Similar to the argument for σi, .ij can be
viewed as a (d − 2)-form and is determined only up to a (d − 3)-form, and the following
choice of gauge is convenient:

−,.ijkn = ∂kpijn − ∂npijk. (26)

We learn from (23) that ∇ψij, and thus pij by (24), and ∇.ijkn by (26), can be constructed
to be stationary if and only if φi and σi are, which is the case only for d > 2. Although
. is not needed to formulate our algorithm, it will be used in our analysis to upgrade the
homogenization error (22) from "rst to second-order: for any ah-harmonic function uh,

−∇ · a∇(1 + φi∂i + ψij∂ij)uh = −∇ · (ψija − .ij)∇∂ijuh.

The second-order correctors ψ and . are not expected to be stationary, but rather to grow
at a rate a bit worse that 2 − d

2 = 1
2 away from the origin, which we capture through an

exponent β < d
2 = 3

2 that measures the amount the growth rate stays below quadratic. The
"rst-order correctors φ and σ are stationary for d > 2, but they are of course not bounded
on Rd; we capture this through an exponent / ∈ ( 1

2 , 1) that measures the amount the growth
rate below linear. Following [1, 23], we introduce the random radius r∗∗ + 1 starting from
which we have the desired growth rate:

1
r2

Ä 
Br

|(ψ , .) −
 

Br
(ψ , .)|2

ä 1
2 ≤ ( r∗∗

r )β for all r + r∗∗, (27)

and
1
r (
 

Br
|(φ, σ )|2)

1
2 ≤ ( r∗∗

r )/ for all r + r∗∗. (28)

For convenience we take / = 1 − ε and β = 3
2 − ε for the ε > 0 "xed in Algorithm 1. This

r∗∗ is the one that appears in the statement of Theorem 1.2.
As observed in [1, 59], if we solve the boundary value problem

−∇ · a∇u1 = ∇ · g in QL, u1 = (1 + φi∂i + ψij∂ij)ũh on ∂QL,

the solution has error O(( !
L )d), as it fails to capture the correct multipole behavior, which is

the far-"eld behavior generated from the intrinsic moments of the localized r.h.s. ∇ · g. We
now recall the discussions in [1] and describe the far-"eld behavior of u in order to design the
correct boundary condition on ∂QL to solve (4).

Let Xk be the space of a-harmonic functions of growth rate ≤ k, more precisely5

Xk :=
¶

u : −∇ · a∇u = 0, lim sup
R→∞

R1−k
Ä 

BR
|∇u|2

ä 1
2 < ∞

©
,

and Yk(r) be a-harmonic functions outside Br with decay rate + k + d − 2, more precisely,

Yk(r) :=
¶

u : −∇ · a∇u = 0 in Bc
r, lim sup

R→∞
Rk+(d−2)+1

Ä 1
Rd

ˆ
Bc

R

|∇u|2
ä 1

2 < ∞
©

.

5Here Bc
r := Rd\Br .
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We also use Xh
k and Yh

k (r) to denote similar spaces with ah in place of a in the de"nition of
Xk and Yk(r), respectively. The spaces Xk and Yk(r) are related through the bilinear form: for
u ∈ Yk(r) and v ∈ Xk,

(u, v)a := −
ˆ

∇η · (va∇u − ua∇v), (29)

where the cuto# function η ≡ 1 in Br and η ≡ 0 in Bc
2r. Note that the value of the integral

does not depend on the choice of η since va∇u − ua∇v is divergence-free outside of Br. We
use (uh, vh)ah to denote the bilinear form similarly de"ned as (29) with ah in place of a. In
the case of a constant coe!cient ah, the spaces Xh

k and Yh
k (r) are well-understood: Xh

k is the
"nite-dimensional linear space spanned by ah-harmonic polynomials of degree at most k,
while Yh

k (r) is the in"nite-dimensional linear space spanned by k-th or higher derivatives of
Gh, the Green’s function of −∇ · ah∇ . In the language of electrostatics, the quotient spaces
Yh

1 (r)/Yh
2 (r) and Yh

2 (r)/Yh
3 (r) are spanned by "rst and second derivatives of Gh respectively,

and thus represent dipoles and quadrupoles. As shown in [1, Proposition 5], similar to the
pairing (·, ·)ah providing an isomorphism between Yh

1 (r)/Yh
3 (r) and (Xh

2/Xh
0 )∗, (·, ·)a provides

an isomorphism between Y1(r)/Y3(r) and (X2/X0)∗. For Liouville principles which describe
the equivalence between spaces Xh

k and Xk, see also [14, 22].
By [1, Lemma 4], we know that u ∈ Y1(!). Therefore, by [1, Theorem 2], under the

assumptions (27) and (28), for ! + r∗∗, there exists a uh ∈ Yh
1 (!), uniquely de"ned up to

an element in Yh
3 (!) by

(u, v)a = (uh, vh)ah , for any vh ∈ Xh
2 where v := (1 + φi∂i + ψij∂ij)vh ∈ X2, (30)

that captures the e#ective multipole behavior of u. The condition ! + r∗∗, which corresponds
to ! + r(L)

∗∗ in Theorem 1.2, can be understood as a condition ensuring that the right-hand
side g (whose characteristic scale is !) is smooth, in the sense that it does not vary on too small
scales, as is usually required for right-hand sides in homogenization. We state a modi"cation
of this result in the following Proposition 2.1.

Proposition 2.1. Consider a coe!cient "eld a on Rd satisfying (1). Suppose that there exists a
tensor ah and, for i = 1, 2, 3, a scalar "eld φi and a skew-symmetric tensor "eld σi such that
(17), (18), and (20) hold, and for i, j = 1, 2, 3, a scalar "eld ψij and a skew-symmetric tensor
"eld .ij such that (23), (24), and (25) hold. For "xed ε > 0 and / = 1− ε, β = 3

2 − ε, suppose
that there exists a radius r∗∗ such that (27) and (28) hold. Moreover, let us assume the following
convergences in distribution as R → ∞:

φi(R·) ⇀ 0
σi(R·) ⇀ 0

(
ej · σi∇φk − ej · σk∇φi

)
(R·) ⇀ 0. (31)

Let g be of the form (2) for some ! + r∗∗ and ĝ, let u be the solution of (3), and let uh ∈ Yh
1 (!)

satisfy (30). Then we have for any R + r∗∗,
Ä 1

Rd

ˆ
Bc

R

∣∣∣∇
Ä

u − (1 + φi∂i + ψij∂ij)uh
ä∣∣∣

2ä 1
2 ≤ C( !

R )d( r∗∗
R )β ,

where C is a constant depending only on d, λ, ε, and ĝ.
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Solving (4) with boundary condition uL = (1 + φi∂i + ψij∂ij)uh will indeed provide the
desired level of approximation, which resembles Step 8 of Algorithm 1 and is the statement
of Corollary 2.2. The reason we could not directly use (1 +φi∂i +ψij∂ij)uh for approximation
is that Proposition 2.1 does not hold inside Br∗∗ .

Corollary 2.2. Under the same assumptions as in Proposition 2.1, for L + ! let û be the solution
of the equation

−∇ · a∇û = ∇ · g in QL, û = (1 + φi∂i + ψij∂ij)uh on ∂QL, (32)

where uh ∈ Yh
1 (!) satis"es (30). Then we have for any R ∈ [r∗∗, L],

Ä 
BR

|∇(û − u)|2
ä 1

2 ≤ C( !

L )d( r∗∗
L )β ,

where C is a constant depending only on d, λ, ε, and ĝ.

For the purpose of Algorithm 1 we now derive the explicit expression for uh from (30). We
start with ũh de"ned in (19), which is an element of Yh

1 (!). We make the ansatz

uh = ũh + ξi∂iGh +
∑

(i,j)∈J
cij∂ijGh mod Yh

3 (!), (33)

where we recall the index set J is de"ned in (12). This ansatz is motivated by the fact that
{∂iGh}i=1,2,3 is a basis of the 3-dimensional space Yh

1 (!)/Yh
2 (!) and {∂ijGh}(i,j)∈J a basis of the

5-dimensional space Yh
2 (!)/Yh

3 (!), so that ξi∂iGh + ∑
(i,j)∈J cij∂ijGh is a general element of

Yh
1 (!)/Yh

3 (!).
By equations (3) and (19) and integration by parts, we have for all vh ∈ Xh

2 ,

(u, v)a =
ˆ

g · ∇(1 + φi∂i + ψij∂ij)vh, and (ũh, vh)ah =
ˆ

g · ∇vh. (34)

If vh ∈ Xh
0 (i.e. vh is a constant) then both expressions vanish. Moreover, comparing (34) with

(30), we obtain the following identity for the multipole correction of ũh:

(ξi∂iGh +
∑

(i,j)∈J
cij∂ijGh, vh)ah =

ˆ
g · ∇(φi∂i + ψij∂ij)vh for vh ∈ Xh

2/Xh
0 . (35)

Note that for vh ∈ Xh
2 ,

(∂iGh, vh)ah = −
ˆ

∇η · (vhah∇∂iGh − ∂iGhah∇vh) = ∂ivh(0),

and similarly (∂ijGh, vh)ah = −∂ijvh. Therefore, substituting this into (35), we obtain

ξi∂ivh(0) −
∑

(i,j)∈J
cij∂ijvh =

ˆ
g · ∇(φi∂i + ψij∂ij)vh. (36)

Thus, choosing vh = xi for i = 1, 2, 3 in (36) we obtain

ξi =
ˆ

g · ∇φi,
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which is consistent with the expression obtained in [2]. To determine the coe!cients cij, we
test (36) with 5 linearly independent ah-harmonic polynomials vh,ij that are homogeneous of
degree 2, and obtain linear equations of cij. Choosing the basis

vh,ij = (1 − 1
2
δij)(xixj − ahij

ah11
x2

1) for (i, j) ∈ J , (37)

leads to the explicit formula which highly resembles (13) in Algorithm 1

cij = −
ˆ

g · ∇
Ä
φk∂kvh,ij + (2 − δij)(ψij − ahij

ah11
ψ11)

ä
. (38)

Summing up, the function uh that captures the correct multipole behavior is given by

uh = ũh + (
ˆ

g · ∇φi)∂iGh + cij∂ijGh, (39)

with cij given by (38). This motivates Algorithm 2 to obtain an approximation û to the solution
of (3).

Algorithm 2 Idealized algorithm
1: Solve (17) for "rst-order correctors φi.
2: Determine the homogenized coe!cients ah via (18).
3: Evaluate (19) for ũh on ∂QL by ũh = Gh ∗ (∇ · g).
4: Solve (21) for "rst-order $ux correctors σijk and (23) for second-order correctors ψij.
5: Obtain uh via (39).
6: Solve (32) for û, which is the approximation we desire.

Algorithm 2 is, however, not computationally practical since several quantities like
φi, σi, ψij still require solving a whole-space problem like (17) and thus knowledge of a
realization of a outside of Q2L. Fortunately, we can replace each of these quantities in
Algorithm 2 by a computable surrogate with a small approximation error. This leads to
Algorithm 1 and the error is only a#ected by a multiplicative constant. This is a consequence of
the following Proposition 2.3, which allows us to pass from Corollary 2.2 to the error estimates
of Algorithm 1 in Theorem 1.2:

Proposition 2.3. Under the same assumptions as in Proposition 2.1, for
√

T = L1−ε + ! + r∗∗,
de"ne φ

(L)
T , σ (L)

T and ψ
(L)
T as in (6), (10), and (11). We assume they are good approximations of

φ, σ , ψ , in the sense of 6

Ä 
BR

∣∣(√T∇(φ(L)
T − φ), φ(L)

T − φ, ∇(ψ (L)
T − ψ)

)∣∣2
ä 1

2 ≤
√

T( r∗∗
L )β for R ∈ {

!, 5
4

L
}

, (40)

and

(
 

BL
|ψ (L)

T − ψ |2)
1
2 ≤ L2( r∗∗

L )β . (41)

De"ne a(L)
h as in (7), and we assume it is a good approximation of ah in the sense of

|a(L)
h − ah| ≤ ( r∗∗

L )β . (42)

6Here and for the rest of the paper the notation “(f1, f2) ! X” (when obviously X + 0) means f1 ! X and f2 ! X .
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Given ĝ, let u be de"ned as in (3) and u(L) in (16). Then we have for any R ∈ [r∗∗, L],
Ä 

BR
|∇(u(L) − u)|2

ä 1
2 ≤ C( !

L )d( r∗∗
L )β ,

with a constant C of the same type as in Theorem 1.2.

2.2. Massive approximation of correctors

We start with introducing the notations for this section and beyond. Given a length scale
R > 0, we de"ne the exponential averaging function

ηR(x) := cd
Rd exp(− |x|

R )

with the constant cd such that
´

Rd ηR(x) dx = 1. We also de"ne the Gaussian

GR(x) := 1
(2πR2) d

2
exp(− |x|2

2R2 ).

For any function f , we use

fR := f ∗ GR (43)

to denote the convolution of f with GR. For any s > 0, we de"ne the following norm for a
random variable F that quanti"es its tail:

‖F‖s := inf
¶

M + 0 :
〈

exp
(

( |F|
M +c)s)〉−exp(cs) ≤ 1

©
with c =






Ä1 − s
s

ä 1
s s ∈ (0, 1),

0 otherwise.
(44)

Here the constant c is chosen such that the function [0, ∞) 4 x 5→ exp
(

(x + c)s) − exp(cs)
is convex, which by Jensen’s inequality makes ‖·‖s a norm. Therefore, if ‖F‖s < ∞, then
〈exp(r|F|s̃)〉 < ∞ for r < 1

‖F‖s
and s̃ ∈ (0, s].

We now illustrate why we may expect φ
(L)
T and ψ

(L)
T to be good approximations of φ and

ψ in the sense of (40). Let φT satisfy the equation
1
T φT − ∇ · a(e + ∇φT) = 0. (45)

The massive corrector φT , which was "rst considered in the early works of [4, 57] and then
[7, 8, 60], is an approximation of φ that has the advantage of being de"ned deterministically
and it is automatically stationary. Indeed, in the class

sup
x

 
B1(x)

(φ2
T + |∇φT |2) < ∞

there exists a unique solution to (45). The massive corrector serves as the bridge between φ

and φ
(L)
T , and we will show its closeness to both of them. The following Proposition 2.4 shows

that if we choose the length scale
√

T to be close to L, then the estimates (40) on φ − φT hold
with high probability.
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Proposition 2.4. For d + 3 and
√

T + 1, we have7

∥∥(
ˆ

η√
T |

√
T∇(φT − φ)|2)

1
2
∥∥

2− !
√

T− 1
2 . (46)

Moreover, there exists a random radius r∗ with

‖r∗‖d ! 1, (47)

and such that for all R > 0, we have8

∥∥∥I(R + r∗)(
ˆ

ηR|(
√

T∇(φT − φ), φT − φ
)|2)

1
2
∥∥∥

2−
!

√
T− 1

2 . (48)

Remark 2.5. For d > 4, the approximation error (48) saturates at
√

T−1. A better approxima-
tion which has error

√
T1− d

2 is given in [3, Theorem 3] and arises from iterated Richardson
extrapolation of φT . We expect a similar strategy to work in the optimal approximation of
higher order correctors.

Remark 2.6. The quantity r∗, also known as the minimal radius, is the smallest scale on which
the elliptic and parabolic C0,1-estimates (See Lemma D.1) hold. Large scale regularity was "rst
considered in [61] for periodic homogenization (see also the monograph [62]), and [12, 13]
introduced the random variable r∗ in the stochastic setting. For any "xed δ ∈ (0, 1) we de"ne
r∗ as in [3]9:

r∗ = r∗(0) := inf
¶

r + 1 | ∀R + r, 1
R
Ä 

BR
|(φ, σ ) −

 
BR

(φ, σ )|2
ä 1

2 ≤ δ
©

. (49)

Comparing the above (49) with (28), we observe r∗∗ + r∗. The stochastic estimate (47) is
proved in [3, Corollary 6]. For slightly di#erent de"nitions of r∗ under various probabilistic
settings, we refer to [13, Theorem 1.1] and [12, Theorem 1] for corresponding stochastic
estimates.

On the other hand, φT near the origin can be well-approximated by a function that only
depends on a through its restriction to the "nite domain QL, which is exactly achieved
by the function φ

(L)
T de"ned in (6). Though the Dirichlet boundary conditions break the

stationarity of φ
(L)
T , deterministic methods are su!cient to prove that the di#erence φT −φ

(L)
T

is sub-algebraically small in
√

T
L for

√
T 7 L. The exact statement of this is deferred to

Proposition 2.9.
As a comparison, if we consider the Dirichlet approximation as [2, (18)]

−∇ · a∇φ
(L)
i = ∇ · aei in Q2L, φ

(L)
i = 0 on ∂Q2L,

then it is unclear if one could prove anything stronger than what is proved in [2]
Ä 

QL
|∇(φ(L) − φ)|2

ä 1
2 ! L−1,

7We use “‖F‖s− ! X” hereafter to denote for any s′ ∈ (0, s), ‖F‖s′ !s′ X .
8Hereafter we use I to denote indicator (characteristic) functions.
9Note that the de!nitions in [12, 13] are slightly di"erent.
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which is the desired scaling for d = 2 but insu!cient for the CLT scaling required in (40) for
d = 3. The bottleneck is that φ(L) is not stationary and it is thus unclear how probabilistic
tools can be applied here. While one may use appropriate oversampling techniques to obtain
desirable approximations using φ(L), in this work we opt for our approximation φ

(L)
T in (6)

since we could prove the required approximation bounds and it is not more numerically
di!cult to compute than φ(L).

Equipped with estimates on φ we may derive estimates for the approximation of homoge-
nized coe!cients ah. In analogy to (18) we introduce the modi"ed $ux

qT := a(e + ∇φT). (50)

For any smooth weight function ω(x) supported in the unit ball satisfying
´

Rd ω = 1, and
rescaled as ωL(x) = 1

Ld ω( x
L ),

´
ωLqT is a good approximation of ah, which establishes that

the assumption (42) of Proposition 2.3 holds with high probability:

Lemma 2.7. Let L +
√

T + 1. Then for d + 3 we have

‖ahei −
ˆ

ωLqi,T‖2− !
√

T− 3
2 . (51)

Using the same procedure, we can also approximate the "rst-order $ux corrector σ and
the second-order corrector ψ using their massive counterparts, denoted as σT and ψT
respectively, which are de"ned by the equations

1
T σijk,T − ,σijk,T = ∇ · (qik,Tej − qij,Tek), (52)
1
T ψij,T − ∇ · a∇ψij,T = ∇ · (φi,Ta − σi,T)ej. (53)

Similar to φT , both σT and ψT are well-de"ned stationary "elds, and can be approximated
by functions that only depend on a through a|Q2L , which are σ

(L)
T and ψ

(L)
T de"ned in (10)

and (11), respectively. The following proposition gives estimates on ψT , establishing that the
assumptions (40) and (41) hold with high probability.

Proposition 2.8. Let r∗ be the same random radius as de"ned in Proposition 2.4. Then for d + 3
and

√
T + 1, R > 0,

∥∥∥∥∥I(R + r∗)
Åˆ

ηR|ψT |2
ã 1

2
∥∥∥∥∥

1−
!

√
T

1
2 , (54)

∥∥∥∥∥I(R + r∗)
Åˆ

ηR|∇(ψ − ψT)|2
ã 1

2
∥∥∥∥∥

1−
!

√
T− 1

2 . (55)

The massive correctors φT and ψT can both be approximated by functions that depend on a
only through its restriction to a "nite domain, with an error smaller than any power of

√
T

L
for

√
T 7 L, which is the result of the following Proposition 2.9:
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Proposition 2.9. Let L +
√

T + 1. Let φ
(L)
T , σ (L)

T and ψ
(L)
T be de"ned through (6), (10) and

(11), then for any p < ∞,
Ñ 

Q 7
4 L

∣∣∣
Ä√

T∇(φT − φ
(L)
T ), φT − φ

(L)
T

ä∣∣∣
2
é 1

2

!p

Ç√
T

L

åp
, (56)

Ñ 
Q 5

4 L

∣∣∣
Ä√

T∇(ψT − ψ
(L)
T ), ψT − ψ

(L)
T

ä∣∣∣
2
é 1

2

!p
√

T
Ç√

T
L

åp
. (57)

The reason we cannot prove (56) with Q2L is that the Dirichlet boundary conditions
generate a boundary layer where φT may be dramatically di#erent from φ

(L)
T . Therefore near

∂Q2L, φ(L)
T is not trustworthy and should not be used for the computation of σ

(L)
T , which is the

reason why in Algorithm 1 the domain of computation shrinks when computing σ
(L)
T and, for

the same reason, shrinks further for ψ
(L)
T .

We "nally present Proposition 2.10, which is the main ingredient of the proof for the
stochastic estimate on r∗∗ in (5), and, together with the estimate (47) on r∗, bounds the
probability of the event r∗∗ + R for any large R:

Proposition 2.10. Let r∗ be the same random radius as de"ned in Proposition 2.4, and denote
(∇ψ , ∇.)R as the convolution of the two functions (∇ψ , ∇.) with the Gaussian kernel GR as
in (43), then for d + 3 and R + 1,

∥∥I(R + r∗)
( 

BR
|∇(ψ , .)|2)

1
2
∥∥

1− ! 1, (58)

‖I(R + r∗)
(∇ψ , ∇.

)
R‖1− ! R1− d

2 . (59)

3. Numerical example

For the numerical test, we will consider a discrete elliptic equation10 on Z3, so that we do
not need to worry about error due to discretization. To set up the elliptic problem, we say the
points x, y ∈ Z3 are neighbors if ‖x − y‖!1 = 1, and draw an edge between x and y if they are
neighbors. Denote B as the set of (undirected) edges, {e1, e2, e3} as the canonical basis in Z3,
and (ae)e∈B as the random "eld. The discrete gradient is de"ned as

∇f (x) = (f (x + e1) − f (x), f (x + e2) − f (x), f (x + e3) − f (x))

10We remark here why we consider the discrete equation in our numerical example. Our theoretical result holds
without spatial discretization, and we do not assume any smoothness on a, so we may without loss of generality
assume correlation length equal to 1. Unfortunately, computations in 3D are di#cult, since to apply the !nite
di"erence (or any standard numerical) scheme, if we divide each side of the cube into N smaller intervals, then we have
O(N3) grid points, thus solving the full equation would require prohibitive memory. In practice, this can be resolved
by using multigrid algorithms or using a supercomputer, but we do not plan to do that as neither is the purpose of
this work. Such limitation in computational resources signi!cantly restrict our choice of discretization and correlation
lengths in our numerical tests. As a compromise, we solve discrete problems in our numerical example and hence
both correlation and discretization lengths equal to unity.
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and the divergence of F = (F1, F2, F3) is de"ned as

∇ · F(x) =
3∑

i=1
(Fi(x) − Fi(x − ei)).

The discrete equation we consider, with the above notations, is still in the form

−∇ · a∇u = ∇ · g.

The coe!cient "eld a = ae on edges e ∈ B are i.i.d. random matrices with values Id and
9 Id with probability 1/2 each. For the right hand side, we take some function f (x) compactly
supported in the box {−1, 0, 1}3 with average zero, so that there exists some vector valued
function g(x) such that f = ∇ · g for a function g supported in the slightly larger box Q2.

We compare Algorithm 1 with three other algorithms:

1. Solving the equation (4) with zero Dirichlet boundary condition.
2. Solving the equation (4) with modi"ed correctors but without dipole or quadruple correc-

tions, i.e., the boundary condition given by

u(L)
nc = (1 + φ

(L)
i,T ∂i + ψ

(L)
ij,T∂ij)ũ(L)

h on ∂QL. (60)

3. Solving the equation (4) with boundary condition corrected up to "rst-order correctors
and dipoles, which is the algorithm proposed in [2]:

u(L)
dp = (1 + φ

(L)
k,T∂k)

(
ũ(L)

h + (
ˆ

g · ∇φ
(L)
i,T )∂iG(L)

h
)

on ∂QL. (61)

We compare the numerical rate of supQL/2 |∇(u(2L) − u(L))| and plot it for various L for
all four algorithms. We would comment here that while our analysis is for the gradient
averaged over a region, for simplicity we only compare the gradient at a single point. From
Figure 1 we can observe that the Dirichlet algorithm and the no multipole algorithm both
have convergence rates of O(L−3), the dipole algorithm has a convergence rate of O(L−4)
while the proposed algorithm achieves O(L−4.5) convergence rate, which are consistent with
our theoretical results.

Figure 1. Numerical convergence rate of supQL/2 |∇u(2L)−∇u(L)| for the proposed Algorithm 1, an algorithm with zero Dirichlet
boundary condition, an algorithm without multipole corrections (de!ned in (60)), and an algorithm with only dipole corrections
(de!ned in (61)). The two !gures correspond to two independent realizations of the random media and the same r.h.s.
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Figure 2. L2-averages of φ and "uctuations of ψ . The two !gures correspond to independent realizations of the random media.

We also numerically compute (
ffl

Qr
|φ(L)

T |2) 1
2 and (

ffl
Qr

|ψ (L)
T −

ffl
Qr

ψ
(L)
T |2) 1

2 for a variety of r.
Figure 2 indicates that the quantities (

ffl
Qr

|φ(L)
T |2) 1

2 and 1√
r (
ffl

Qr
|ψ (L)

T −
ffl

Qr
ψ

(L)
T |2) 1

2 are almost
constants for all r, which is consistent with their growth estimates (28) and (27). The "gure
also indicates numerically that r∗∗ should be of order 1.

4. Strategy of the proof

4.1. Parabolic semigroup representation of correctors and "uxes

Our approach is based on the semigroup framework developed in [3], see also [16, Chapter
9]. The central objects we study are the operators S(t) and S(t) related to −∇ · a∇ .

De!nition 4.1. The linear operators S(t) and S(t) are de"ned as follows: for an arbitrary
vector "eld g, let v solve the parabolic equation

∂tv − ∇ · a∇v = 0 for t > 0, v(t = 0) = ∇ · g,

then

S(t)g := v(t), and S(t)g := g + a
ˆ t

0
dτ∇v(τ ). (62)

We also de"ne the operator S̄(t) similarly to S(t) with a replaced by constant coe!cient Id,
and Sh(t) similarly to S(t) with a replaced by ah.

Roughly speaking, S(t)g is the $ux accumulated from time 0 to t with initial condition
∇ · g. As opposed to S(t), S(t), which is the same as the operator S0→t de"ned in [3], does
satisfy the semigroup property [3, Lemma 2]

S(t1)S(t2)g = S(t1 + t2)g. (63)

Since the solution of the standard heat equation is the convolution of the initial condition
with the heat kernel, which coincides with G√

t , S̄ can be rewritten as

S̄(t)g = (∇ · g)√t
(43)= G√

t ∗ (∇ · g). (64)

The semigroup operators S(t) and S̄(t) are essential since all correctors and their massive
approximations can be represented using these operators, which is the building block for the
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estimates of correctors and $uxes in Propositions 2.4–2.9. More precisely, these operators pro-
vide a resolution of the correctors in terms of quantities of controlled locality and amplitude.
Below in Remark 4.2 we collect the semigroup representation formulas for all correctors and
$uxes. Here for simplicity of notation, we omit the indices, and introduce the vector product
notation × so that σ =

´∞
0 dt0S̄(t0) × q stands for σijk =

´∞
0 dt0S̄(t0)(qikej − qijek).

Remark 4.2. The correctors φ, σ , ψ , . and their massive approximations φT , ψT can be
represented as follows

φ =
ˆ ∞

0
dtS(t)ae, (65)

φT =
ˆ ∞

0
dt exp(− t

T )S(t)ae, (66)

σ =
ˆ ∞

0
dt0S̄(t0) × q, (67)

∇ψ =
ˆ ∞

0
dt0

ˆ ∞

0
dt1∇S(t0)(aS(t1)ae − S̄(t1) × ae)

−
ˆ ∞

0
dt0

ˆ ∞

0
dt1

ˆ ∞

0
dt2∇S(t0)S̄(t1) × a∇S(t2)ae, (68)

ψT =
ˆ ∞

0
dt0 exp(− t0

T )
ˆ ∞

0
dt1 exp(− t1

T )S(t0)(aS(t1)ae − S̄(t1) × ae)

−
ˆ ∞

0
dt0 exp(− t0

T )
ˆ ∞

0
dt1 exp(− t1

T )
ˆ ∞

0
dt2 exp(− t2

T )S(t0)S̄(t1) × a∇S(t2)ae,

(69)

∇. =
ˆ ∞

0
dt ∇S̄(t) × (a∇ψ + (aφ − σ )e). (70)

We would like to comment here that (68) and (70) are formulated on the level of
gradients, since only ∇(ψ , .) are well-de"ned stationary random "elds. To show the algebraic
equivalence of the quantities, it su!ces to show the r.h.s. of the equations satisfy the same
elliptic equations as their counterparts on the l.h.s. The core argument we need is, suppose a
function wT has the representation

wT =
ˆ ∞

0
dt exp(− t

T )S(t)g, (71)

then it satis"es the massive equation 1
T wT − ∇ · a∇wT = ∇ · g. Indeed,

−∇ · a∇wT = −
ˆ ∞

0
dt exp(− t

T )∇ · a∇S(t)g = −
ˆ ∞

0
dt exp(− t

T )∂tS(t)g

= S(0)g +
ˆ ∞

0
dt
(
∂t exp(− t

T )
)

S(t)g = ∇ · g − 1
T wT .

Similarly, if w has the representation

w =
ˆ ∞

0
S(t)g dt, (72)
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then w satis"es −∇ · a∇w = ∇ · g. In particular, we obtain for a = Id, the function

w =
ˆ ∞

0
dt(∇ · g)√t . (73)

satis"es −,w = ∇ · g. Choosing g = ae in (71) and (72) and we obtain the representations
(66) for φT and (65) for φ, respectively, and choosing g = q in (73) yields (67) for σ . The
representations for (∇ψ , ψT , ∇.) can be derived by applying the above arguments iteratively
and we will not write the details here. To rigorously obtain the equivalences, in view of
uniqueness of stationary correctors, it su!ces to show that the r.h.s. integrals converge and
therefore represent stationary functions, which is done in the proofs of (86) for (φ, σ ) and
(58), (54) for (∇ψ , ∇. , ψT) (such result for φT is classic).

4.2. CLT-cancellations and propagation of locality

The next important notion is the so-called “relative approximate locality”.

De!nition 4.3. Let p > d
2 be "xed, and let g and ḡ denote two stationary random "elds. We

say g is approximately local on scale r + 1 relative to ḡ if, for two realizations a and ã satisfying
a = ã in B2R for some R + r,

(
 

BR
|g(a) − g(ã)|2)

1
2 ≤ ( r

R )p
ˆ

ηR
(

ḡ(a) + ḡ(ã)
)

. (74)

Roughly speaking, the random "eld g|BR “essentially depends on a only through a|Br up to
an error term ( r

R )pḡ”. This locality is at the basis of a CLT scaling, see Lemma C.1.
In order to estimate higher-order correctors and their $uxes, it is important to estimate

the operator S(T) acting on arbitrary g. More precisely, we extend the results in [3] on
approximate locality from the special and obviously local initial data ae to more general
initial data g that are only approximately local. Our goal is to derive stochastic bounds and
approximate locality properties for (S(T)g, ∇S(T)g, S(T)g), given g approximately local on
scale r0 + 1 relative to ḡ. In addition, while ae is obviously bounded, we only assume
stochastic integrability of g and ḡ, in the sense of controlling ‖g‖s and ‖ḡ‖s for some 0 < s ≤ 2.

In the range
√

T ≤ r0, S(T)g does not bene"t from stochastic cancellations through
parabolic propagation of g. Therefore we can do no better than the following consequence
of a deterministic estimate (see Lemma B.2)

∥∥∥
Äˆ

ηr0

∣∣(T∇S(T)g,
√

TS(T)g, S(T)g
)∣∣2

ä 1
2
∥∥∥

s
! ‖(

ˆ
ηr0 |g|2)

1
2 ‖s. (75)

The scenario is more subtle in the regime
√

T + r0. While S(T)g now bene"ts from stochastic
cancellations, for which the ratio of the locality scale r0 of g and the parabolic scale

√
T

matters, it also su#ers an increase of the locality scale to
√

T, as well as a loss of stochastic
integrability to 2s

s+2−. The "rst and third aspects are captured by Proposition 4.4, the second
by Proposition 4.6.
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Proposition 4.4. Suppose g and ḡ satisfy (74) for r0 + 1. Then for all R + 1, T + 0, we have11

∥∥∥
Ä
S(T)g − 〈S(T)g〉,

ˆ T

0
dt∇S(t)g

ä
R

∥∥∥ 2s
s+2 −

! ( r0
R )

d
2
Ä
‖(
ˆ

ηr0 |g|2)
1
2 ‖s + ‖ḡ‖s

ä
(76)

and
∥∥∥
Äˆ

η√
T
∣∣(T∇S(T)g,

√
TS(T)g

)∣∣2
ä 1

2
∥∥∥ 2s

s+2 −
! (1 ∧ r0√

T
)

d
2
Ä
‖(
ˆ

ηr0 |g|2)
1
2 ‖s + ‖ḡ‖s

ä
. (77)

Remark 4.5. The same estimates hold with S replaced by S̄, with stochastic integrability
improved from 2s

s+2− to s, see [3, Lemma 16].

Proposition 4.6. Suppose g and ḡ satisfy (74) for r0 + 1. For all T + 0,
(T∇S(T)g,

√
TS(T)g, S(T)g) is approximately local on scale r0∨

√
T relative to some stationary

Ḡ with

‖Ḡ‖s0 ! (1 ∧ r0√
T

)
d
2
Ä
‖(
ˆ

ηr0 |g|2)
1
2 ‖s + ‖ḡ‖s

ä
. (78)

Here s0 = 2s
s+2− when

√
T > r0 and s0 = s when

√
T ≤ r0.

Propositions 4.4 and 4.6 tell us that if initially ‖(
´

ηr0 |g|2) 1
2 ‖s and ‖ḡ‖s have the same

upper bound, then so will ‖(
´

η(r0∨
√

T)|(T∇S(T)g,
√

TS(T)g, S(T)g)|2) 1
2 ‖ 2s

s+2 − and ‖Ḡ‖ 2s
s+2 −,

so that we can essentially “sweep under the rug” the quantity quantifying the locality since it
has the same size as the original quantity. This is convenient for estimating multiple time
integrals.

In particular, for g = ae, in which case we may set r0 = 1, ḡ = 0 and s = ∞, we
recover the following stochastic estimates on S(t)ae proved in [3], which are special cases
of Propositions 4.4 and 4.6.

Lemma 4.7. [3, Corollary 4] For all T + 0,
∥∥∥
(ˆ

η√
T |(T∇S(T)ae,

√
TS(T)ae

)|2)
1
2
∥∥∥

2−
! (1 ∧ 1√

T
)

d
2 . (79)

Moreover, (T∇S(T)ae, Ta∇S(T)ae,
√

TS(T)ae, S(T)ae) is approximately local on scale 1 ∨
√

T
relative to some stationary ḡ with

‖ḡ‖2− ! (1 ∧ 1√
T

)
d
2 . (80)

With Lemma 4.7 and the representations (65), (66) of φ and φT , we see why φT is a good
approximation of φ: in the range t ! T, the contribution of S(t)ae to φT is exponentially
small, and the locality of S(t)ae in conjunction with the "nite range condition on a make the
contribution to φ small as well, which (almost) matches the bound (40); in the range t ! T,
we can use 1 − exp(− t

T ) ! t
T and the stochastic decay estimates of S(t)ae to control φT − φ,

which matches (40) in spatial dimension 3 as well. This is the main intuition behind the proof
of Proposition 2.4. We use the same strategy to prove that ψT is a good approximation of ψ ,

11Here we use r1 ∨ r2 and r1 ∧ r2 to denote max{r1, r2} and min{r1, r2}, respectively.
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where we again divide the representation of ψT − ψ into several regimes depending on the
relationship between the ti’s.

Another motivation of introducing the semigroup framework comes from deriving
stochastic estimates for ψ , . , and r∗∗ in our "nite range setting. For ensembles that satisfy a
logarithmic Sobolev inequality, these estimates are already established in [23], while similar
estimates are absent in our setting of "nite range dependence (as a side note, contrary to
intuition, ensembles that satisfy "nite range dependence may not satisfy an LSI, see [63,
example a%er Theorem 6]). The semigroup framework will be our main tool for establishing
stochastic bounds on ψ , . (see Proposition 2.8 for its precise statement), which eventually
leads to the stochastic estimates on r∗∗, c.f. (5).

We would also comment here that the representation of (ψ , .) involves two instances of
the random S(t), losing stochastic integrability twice, which is the reason why we only obtain
the stochastic integrability of 2s

s+2
∣∣
s=2− = 1−. For the same reason, we would expect the k-th

order corrector (when dimension d + 2k − 1) to have stochastic integrability 2
k−.

4.3. Other technical lemmas

We continue with presenting auxiliary lemmas for the proof of Proposition 4.4. In order to
capitalize in stochastic cancellations as in the proof of [3, Theorem 1], for which we divide
into dyadic scales and apply the CLT-estimate Lemma C.1 to

(
S(T)−Sh( T

2 )S( T
2 )
)

g, we need
the following approximate locality result.

Lemma 4.8. For
√

T + r0,
(
S(T) − Sh( T

2 )S( T
2 )
)

g is approximately local on scale
√

T relative
to F̄ + ( r0√

T ) d
2 ḡ, where

F̄ :=
 T

0
dt(

√
t√
T

)
d
2

 √
t

0
dr( r√

t
)

d
2 |(S(t)g − 〈S(t)g〉)r|. (81)

We also need some auxiliary estimates of (φ, σ , q) to prove Proposition 4.4, which are listed
in the following Lemma 4.9. The "rst two results are proven in [3] while the latter three are
not explicitly stated in [3] since they involve stationary (φ, σ , q), so we provide a proof for
them.

Lemma 4.9. Let d + 3, r∗ be the random radius de"ned in Proposition 2.4, then for any R + 1,

[3, Corollary1] ‖(∇φ, ∇σ , q − 〈q〉, S(t)ae − 〈S(t)ae〉)R‖2− ! R− d
2 , (82)

[3, Corollary4] ‖(
ˆ

ηR|∇φ|2)
1
2 ‖2− ! 1, (83)

‖(φ, σ )R‖2− ! R1− d
2 , (84)

∥∥I(R + r∗)(aφ − 〈aφ〉)R
∥∥

2− ! R1− d
2 . (85)

∥∥(
ˆ

ηR|(φ, σ )|2)
1
2
∥∥

2− ! 1, (86)
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We conclude with two technical lemmas which facilitate the proof of Proposition 2.8.
The "rst lemma acts like a combination of Lemma B.2 (with g replaced by aS(t1)g) and
Corollary D.2.

Lemma 4.10. For any R > 0, t1 + t0 > 0,

∥∥∥I(R + r∗)
Äˆ

ηR
∣∣
ˆ t0

0
dτ∇S(τ )aS(t1)g

∣∣2
ä 1

2
∥∥∥

2−

!
∥∥∥I(R ∨ √

t1 + r∗)
Äˆ

ηR∨√
t1

(|√t1∇S( t1
2

)g|2 + |S( t1
2

)g|2)
ä 1

2
∥∥∥

2−
. (87)

The second lemma deals with estimating the triple integral term of ψT , see (69), in the regime
t2 < t1. The goal is to utilize the bounds on S(t)ae, i.e. Lemma 4.9.

Lemma 4.11. For T + 1, t3 + t1 > 0,

∥∥
ˆ t1

0
dt2

(
1 − exp(− t3 + t2

T )
)(√

t1∇S̄(t1) × a∇S(t2)ae, S̄(t1) × a∇S(t2)ae
)∥∥

2−

! (1 ∧ t3
T ) 1√

t1
(1 ∧ 1√

t1
)

d
2 , (88)

∥∥
ˆ t1

0
dt2 exp(− t2

T )(
√

t1∇S̄(t1) × a∇S(t2)ae, S̄(t1) × a∇S(t2)ae)
∥∥

2− ! 1√
t1

(1 ∧ 1√
t1

)
d
2 .

(89)

Moreover,
´ t1

0 dt2(1 − exp(− t3+t2
T ))S̄(t1) × a∇S(t2)ae is approximately local on scale 1 ∨ √

t1
relative to some stationary ḡ with

‖ḡ‖2− ! (1 ∧ t3
T ) 1√

t1
(1 ∧ 1√

t1
)

d
2 . (90)

5. Proofs

5.1. Proof of Theorem 1.2

Step 1: Stochastic estimates of r∗∗. The idea of the proof is based on [64, Theorem 1 (ii)]. Our
goal is to estimate the “failure probability” 〈I(r∗∗ + R0)〉 for an arbitrary R0. We separate the
event r∗∗ + R0 into three possible scenarios. The "rst scenario to leave out is r∗ + √

R0 which
has probability at most exp(− 1

C R
3
2
0 ), as r∗ has stochastic integrability d (47). For the rest of

the proof we assume r∗ ≤ √
R0 ≤ R0.

Next we look at the failure probability due to "rst-order correctors (φ, σ ). We recall (28)
which de"nes the constraint on r∗∗ coming from (φ, σ ). By (86) in Lemma 4.9, which we
reformulate in terms of boxes instead of balls, we have for all R + 1,

∥∥∥∥(
 

QR
|(φ, σ )|2)

1
2

∥∥∥∥
2−

! 1,
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so that by Chebyshev’s inequality, we have12

¨
I
Ä

(
 

QR
|(φ, σ )|2)

1
2 + R1−/R/

0
ä∂

=
¨

I
Ä

exp
(

(
 

QR
|(φ, σ )|2)

2−
2
) + exp

(
(R1−/R/

0 )2−)ä∂

! exp
Ä
− 1

C (R1−/R/
0 )2−ä.

Here the second line uses the third expression of the norm ‖·‖s in (A1). Therefore if r∗∗ + R0
because of the “failure” of "rst-order correctors, which means that there must be some R + R0
(which we may assume to be dyadic) such that

(
 

QR
|(φ, σ )|2)

1
2 + R1−/R/

0 ,

the probability is dominated by13

∑

R+R0
dyadic

exp
Ä
− 1

C (R1−/R/
0 )2−ä ∼ exp(− 1

C R2−
0 ),

where we used / < 1.
We now look at the failure probability due to second-order correctors. We "rst argue that

it is enough to prove for any R + 1,
∥∥∥I(

√
R + r∗)

Ä 
BR

∣∣(ψ , .) −
 

BR
(ψ , .)

∣∣2ä 1
2
∥∥∥

1−
! R

1
2 . (91)

Indeed, if (91) holds true, then we can bound the failure probability using Chebyshev
inequality:

∑

R+R0
dyadic

¨
I
Ä( 

BR

∣∣(ψ , .) −
 

BR
(ψ , .)

∣∣2) 1
2 + Rβ

0 R2−β
ä

I(
√

R0 + r∗)
∂

!
∑

R+R0
dyadic

exp
Ä
−(Rβ

0 R2−β

cR 1
2

)1−ä ∼ exp(− 1
C R

3
2 −
0 ),

where we used β < 3
2 . To prove (91), we again divide into dyadic series and use (58) and (59)

in Proposition 2.8. We will abuse notation and use fr to denote
ffl

Qr
f , as [3, Lemma 13, Step

4] shows its equivalence to f ∗ Gr under stochastic norm ‖·‖.
∥∥∥I(

√
R + r∗)

Ä 
BR

∣∣(ψ , .) −
 

BR
(ψ , .)

∣∣2ä 1
2
∥∥∥

1−

≤
∥∥∥∥I(

√
R + r∗)

ÅÄ 
BR

∣∣(ψ , .) − (ψ , .)r∗
∣∣2ä 1

2 +
∑

R/2+r+r∗
dyadic

Ä 
BR

∣∣(ψ , .)r − (ψ , .)2r
∣∣2ä 1

2
ã∥∥∥∥

1−

≤
∥∥∥I(

√
R + r∗)

Ä 
BR

∣∣(ψ , .) − (ψ , .)r∗
∣∣2ä 1

2
∥∥∥

1−

12Here and for the rest of the paper X ! exp(−Rs−) denotes for any s0 ∈ (0, s), X !s0 exp(−Rs0 ).
13Here ∼ means both ! and " hold.
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+
∑

R/2+r+1
dyadic

∥∥∥I(r + r∗)
Ä 

BR

∣∣(ψ , .)r − (ψ , .)2r
∣∣2ä 1

2
∥∥∥

1−

!
∥∥I(

√
R + r∗)r∗

(ˆ
ηR|∇(ψ , .)

∣∣2) 1
2
∥∥

1− +
∑

R/2+r+1
dyadic

∥∥∥I(r + r∗)r
(ˆ

ηR
∣∣∇(ψ , .)r

∣∣2ä 1
2
∥∥∥

1−

≤
√

R
∥∥I(

√
R + r∗)

(ˆ
ηR|∇(ψ , .)

∣∣2) 1
2
∥∥

1− +
∑

R/2+r+1
dyadic

r
∥∥∥I(r + r∗)∇(ψ , .)r

∥∥∥
1−

(58),(59)
!

√
R +

∑

R/2+r+1
dyadic

√
r !

√
R.

Here in the third inequality we used the Poincaré inequality in convolution (see [3, (201)]):
for any R " r0, ˆ

ηR(f − fr)2 ! r2
ˆ

ηR|∇f |2. (92)

This establishes 〈I(r∗∗ + R0)〉 ! exp(− 1
C R

3
2 −
0 ) for any R0 + 1, which is equivalent to (5).

Step 2: Estimation of failure probabilities. The plan is to pass from the deterministic estimate
Proposition 2.3 to the probabilistic statement Theorem 1.2, and estimate the probability for
the assumptions (40)–(42) in the Proposition to hold. We would like to comment that the rest
of the assumptions in Proposition 2.3 are standard, and, thanks to our "nite range assumption,
hold with probability 1 (see Section 2.1 for the standard properties of correctors and r∗∗, and
[1, Corollary 1] for an argument of (31)).

The starting point is the stochastic bounds that are established on stationary approxima-
tions of these quantities (i.e., the quantities without L in superscripts), namely Proposition 2.4,
Lemma 2.7, and Proposition 2.8. Therefore, to estimate the “failure probability” of |ahei −´

ωqi,T |, we use a Chebyshev inequality as well as (51) (notice that r∗∗ + 1):
¨

I
(|ahei −

ˆ
ωqi,T | + ( r∗∗

L )β
)∂ ≤ 〈I(|ahei −

ˆ
ωqi,T | + L−β)〉

! exp
(− 1

C (LβT− 3
4 )2−) = exp(− 1

C Lε−).
(93)

We may also replace qi,T with q(L)
i,T in the above (93), since by the deterministic Proposition 2.9,

we can estimate

|
ˆ

ω(qi,T − q(L)
i,T )| (8),(18)= |

ˆ
ωa∇(φi,T − φ

(L)
i,T )|

! (
ˆ

ω2)
1
2
(ˆ

QL
|∇(φi,T − φ

(L)
i,T )|2)

1
2

(56)
! (

√
T

L )p,

which is much smaller than L−β for
√

T = L1−ε and p su!ciently large. This shows
¨

I
(|ahei −

ˆ
ωq(L)

i,T | + ( r∗∗
L )β

)∂
! exp(− 1

C Lε−).
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The failure probability for the terms in (40) will be estimated slightly di#erently as they
involve r∗. We take

(ffl
B!

|∇(ψ (L)
T − ψ)|2)

1
2 as an example since it is among the terms that

have the worst stochastic integrability. Again by Chebyshev inequality, we obtain
¨

I
Ä( 

B!

|∇(ψT −ψ)|2)
1
2 +

√
T( 1

L )β
ä

I(! + r∗)
∂(55)
! exp

Ä
− 1

C (LβT− 3
4 )1−ä = exp(− 1

C L
ε
2 −),

which, in view of (57) and r∗∗ + r∗, can be changed to
¨

I
Ä( 

B!

|∇(ψ (L)
T − ψ)|2)

1
2 +

√
T( 1

L )β
ä

I(! + r∗)
∂
! exp(− 1

C L
ε
2 −).

We now remove the constraint ! + r∗ using Bayes’ formula
¨

I
Ä( 

B!

|∇(ψ (L)
T − ψ)|2)

1
2 +

√
T( r∗∗

L )β
ä∣∣∣! + r∗∗

∂

≤
¨

I
Ä( 

B!

|∇(ψ (L)
T − ψ)|2)

1
2 +

√
T( 1

L )β
ä∣∣∣! + r∗∗

∂

=
¨

I
Ä(ffl

B!
|∇(ψ (L)

T − ψ)|2)
1
2 +

√
T( 1

L )β
ä

I(! + r∗∗)
∂

〈I(! + r∗∗)〉

≤
¨

I
Ä(ffl

B!
|∇(ψ (L)

T − ψ)|2)
1
2 +

√
T( 1

L )β
ä

I(! + r∗)
∂

〈I(! + r∗∗)〉
(5)
!

exp(− 1
C L ε

2 −)
1 − exp(− 1

C !
3
2 −)

.

We take ! to be reasonably large and independent of L, T, β so that 1 − exp(− 1
C!

3
2 −) + 1

2 .
Since the probability of all failure events can be estimated as such, we derive the total failure
probability estimate as desired.

Finally for the failure probability for (41), we "rst obtain by Chebyshev inequality
¨

I
Ä( 

BL
ψ2

T
) 1

2 + T( 1
L )β

ä
I(L + r∗)

∂(54)
! exp(− 1

C L
ε
2 −),

which, in view of (99) and (57), as well as r∗∗ + r∗, can be changed to
¨

I
Ä( 

BL
|ψ (L)

T − ψ)|2)
1
2 + L2( r∗∗

L )β
ä

I(L + r∗∗)
∂
! exp(− 1

C L
ε
2 −),

and we again "nish the proof by dropping the constraint L + r∗∗ using Bayes’ formula.

5.2. Proof of Proposition 2.1

By [1, Theorem 2], for uh that satis"es (30), we have

sup
R+r∗∗

( R
r∗∗

)d+β
Ä 1

Rd

ˆ
Bc

R

|∇(
u − (1 + φi∂i + ψij∂ij)uh

)|2
ä 1

2 ! sup
R+r∗∗

( R
r∗∗

)d( 1
Rd

ˆ
Bc

R

|∇u|2)
1
2 .

Thus, it su!ces to prove that, for every R + r∗∗,

R
d
2 (
ˆ

Bc
R

|∇u|2)
1
2 ! !d.
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For r∗∗ ≤ R ≤ 2!, the proof is a standard energy estimate:

R
d
2 (
ˆ

Bc
R

|∇u|2)
1
2 ≤ R

d
2 (
ˆ

|∇u|2)
1
2

(3)
! R

d
2 (
ˆ

B!

|g|2)
1
2 ≤ R

d
2 !

d
2 ! !d.

The proof for R + 2! uses [1, Lemma 4 (c)]: since u ∈ Y1(l),

( 1
Rd

ˆ
Bc

R

|∇u|2)
1
2 ! ( !

R )d( 1
!d

ˆ
Bc

!

|∇u|2)
1
2 ! ( !

R )d!− d
2 (
ˆ

|∇u|2)
1
2

(3)
! !

d
2

Rd (
ˆ

|g|2)
1
2 ! ( !

R )d.

5.3. Proof of Corollary 2.2

De"ne w = û − u and wD = (1 + φi∂i + ψij∂ij)uh − u, then

−∇ · a∇w = 0 in QL, w = wD on ∂QL. (94)

Since w is a-harmonic, by (D3) (note that r∗∗ + r∗), 
QR

|∇w|2 !
 

QL
|∇w|2 for r∗∗ ≤ R ≤ L. (95)

Thus, it su!ces to prove

(
ˆ

QL
|∇w|2)

1
2 ! (

ˆ
Q2L−QL

|∇wD|2)
1
2 , (96)

as (95) and (96) together with Proposition 2.1 yield Corollary 2.2.
By rescaling, we may without loss of generality assume L = 1, and we can further assume´

Q2−Q1
wD = 0 as the expressions in both sides of (96) are invariant through the subtraction

of constants. This allows us to de"ne an extension w̄D of wD on Q2 such that w̄D = wD on Q1
and (using Poincaré inequality)

(
ˆ

Q2
|∇w̄D|2)

1
2 ! (

ˆ
Q2−Q1

|∇wD|2)
1
2 . (97)

Hence (94) can be reformulated as

−∇ · a∇(w − w̄D) = ∇ · a∇w̄D in Q1, w − w̄D = 0 on ∂Q1.

Now (96) follows from the standard energy estimate (
´

Q1
|∇(w − w̄D)|2) 1

2 ! (
´

Q1
|∇w̄D|2) 1

2 ,
triangle inequality and (97).

5.4. Proof of Proposition 2.3

The proof largely resembles that of [2, Proposition 1]. We divide the proof into four steps.
Step 1: We upgrade (27) and show a seemingly stronger condition

1
r2 (

 
Br

|(ψ , .) −
 

Br∗∗
(ψ , .)|2)

1
2 ≤ ( r∗∗

r )β for all r + r∗∗. (98)

What separates (98) from (27) is

|
 

Br
(ψ , .) −

 
Br∗∗

(ψ , .)| ! r2( r∗∗
r )β for r + r∗∗.



634 J. LU, F. OTTO, AND L. WANG

To prove this, we apply dyadic decomposition, and (since β < 2) reduce this to

|
 

Br
(ψ , .) −

 
Br′

(ψ , .)| ! r2( r∗∗
r )β for 2r′ + r + r′ + r∗∗,

which, by triangle inequality, is a consequence of (27). Hence, as (ψ , .) are de"ned up to a
constant, we may assume

1
r2 (

 
Br

|(ψ , .)|2)
1
2 ! ( r∗∗

r )β for all r + r∗∗. (99)

For the rest of this proof, by a scaling argument we may without loss of generality assume
! = 1.
Step 2: We compare ũ(L)

h , de"ned in (9) which satis"es −∇ · a(L)
h ∇ũ(L)

h = ∇ · g, with ũh, the
solution of (19), and claim that

|∇(ũ(L)
h − ũh)| + L|∇2(ũ(L)

h − ũh)| + L2|∇3(ũ(L)
h − ũh)| ! ( 1

L )d( r∗∗
L )β on Qc

L. (100)

To prove (100), we use that the support of g is contained in B1. It is well known that
|∇nGh(x)| ! |x|2−d−n for any multi-index n. Using the representation formula,

ũh = Gh ∗ ∇ · g = ∇Gh ∗ g
for |x| ! 1, and standard Schauder theory for |x| ! 1 (here we use the regularity of g ∈ C2,γ ),
we obtain for all x,

|ũh(x)| ! 1
(1 + |x|)d−1 , |∇ũh(x)| ! 1

(1 + |x|)d ,

|∇2ũh(x)| ! 1
(1 + |x|)d+1 , |∇3ũh(x)| ! 1

(1 + |x|)d+2 ,
(101)

and

sup
0<|y|≤1

|∇3ũh(x + y) − ∇3ũh(x)|
|y|γ ! 1

(1 + |x|)d+2 . (102)

Next we consider w = ũ(L)
h − ũh, which satis"es the equation

−∇ · a(L)
h ∇w = ∇ · (a(L)

h − ah)∇ũh.

Similarly we have the representation

w = G(L)
h ∗ ∇ · (a(L)

h − ah)∇ũh = ∇G(L)
h ∗ (a(L)

h − ah)∇ũh.

Therefore, using (101) and (102), again we appeal to representation formula and standard
Schauder theory and derive

|∇w(x)| ! |a(L)
h − ah|

1
(1 + |x|)d

(42)
! ( r∗∗

L )β 1
(1 + |x|)d ,

|∇2w(x)| ! |a(L)
h − ah|

1
(1 + |x|)d+1

(42)
! ( r∗∗

L )β 1
(1 + |x|)d+1 ,

|∇3w(x)| ! |a(L)
h − ah|

1
(1 + |x|)d+2

(42)
! ( r∗∗

L )β 1
(1 + |x|)d+2 ,

which is exactly (100).
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Step 3: We compare u(L)
h and uh de"ned in (15) and (39) and claim

|∇(u(L)
h − uh)| + L|∇2(u(L)

h − uh)| + L2|∇3(u(L)
h − uh)| ! ( 1

L )d( r∗∗
L )β on Qc

L (103)

and

|∇u(L)
h | + L|∇2u(L)

h | + L2|∇3u(L)
h | ! ( 1

L )d on Qc
L. (104)

To this purpose, we de"ne

ξi :=
ˆ

∇g · φi and ξ
(L)
i,T :=

ˆ
g · ∇φ

(L)
i,T . (105)

In view of (100), it su!ces to control the dipole and quadrupole terms:

|∇(ξ (L)
i,T ∂iG(L)

h − ξi∂iGh)| + L|∇2(ξ (L)
i,T ∂iG(L)

h − ξi∂iGh)|

+L2|∇3(ξ (L)
i,T ∂iG(L)

h − ξi∂iGh)| ! ( 1
L )d( r∗∗

L )β
(106)

and
|∇(c(L)

ij,T∂ijG(L)
h − cij∂ijGh)| + L|∇2(c(L)

ij,T∂ijG(L)
h − cij∂ijGh)|

+L2|∇3(c(L)
ij,T∂ijG(L)

h − cij∂ijGh)| ! ( 1
L )d( r∗∗

L )β , both on Qc
L.

(107)

We have some obvious estimates for constant coe!cient Green’s functions:

|∇2G(L)
h | + L|∇3G(L)

h | + L2|∇4G(L)
h | + L3|∇5G(L)

h | ! ( 1
L )d on Qc

L,

and
|∇2(G(L)

h − Gh)| + L|∇3(G(L)
h − Gh)| + L2|∇4(G(L)

h − Gh)| + L3|∇5(G(L)
h − Gh)|

! |a(L)
h − ah|(

1
L )d

(42)
! ( 1

L )d( r∗∗
L )β on Qc

L.

Hence, recalling the de"nitions of cij and c(L)
ij,T , c.f. (38) and (13), it su!ces to show

|ξ | ! 1 and |cij| ! 1 (108)
and

|ξ (L)
T − ξ | ! ( r∗∗

L )β and 1
L |c(L)

ij,T − cij| ! ( r∗∗
L )β . (109)

The arguments of (108) and (109) for ξ and ξ
(L)
T are straightforward:

|ξ | = |
ˆ

φ∇ · g| ! (
 

B1
φ2)

1
2

(28)
! 1,

and

|ξ (L)
T − ξ | = |

ˆ
g · ∇(φ(L)

T − φ)| ! (
 

B1
|∇(φ(L)

T − φ)|2)
1
2

(40)
! ( r∗∗

L )β .

We now prove (108) for cij. By the growth condition (27) of ψ for r = 1, we have

|
ˆ

ψ∇ · g| = |
ˆ

(ψ −
 

B1
ψ)∇ · g| ! (

 
B1

|ψ −
 

B1
ψ |2)

1
2 ! 1. (110)
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Moreover, since ∂kvh,ij, de"ned in (37), is a polynomial homogeneous of order 1, we have
|∂kvh,ij(x)| ! 1 and |∇∂kvh,ij(x)| ! 1 for x ∈ B1, (111)

thus

|
ˆ

φk∂kvh,ij∇ · g| ! (
 

B1
(φk∂kvh,ij)2)

1
2 ! (

 
B1

φ2
k )

1
2

(28)
! 1. (112)

Combining (110) and (112) we established (108) for cij.
The proof of (109) for |c(L)

T − c| is more complicated. Recalling the de"nitions of cij and
c(L)

ij,T , c.f. (38) and (13), we may write |c(L)
T − c| := |

´
4 · g| and decompose 4 into di#erent

terms:
4ij = (∂kvh,ij − ∂kv(L)

h,ij)∇φk + ∂kv(L)
h,ij∇(φk − φ

(L)
k,T) + φk∇(∂kvh,ij − ∂kv(L)

h,ij)

+ (φk − φ
(L)
k,T)∇∂kv(L)

h,ij + (2 − δij)∇(ψij − ψ
(L)
ij,T) + (2 − δij)(

ahij
ah11

−
a(L)

hij

a(L)
h11

)∇ψ11.

Since xi +φi is a-harmonic, we can use Caccioppoli’s estimate and the growth condition (28)
on φ to derive

(
 

BR
|∇φ|2)

1
2 ! 1 + 1

R (
 

B2R
φ2)

1
2 ! 1 + ( r∗∗

R )/ ! 1, for R + r∗∗. (113)

Using the same argument as (113) for ψ , we obtain

(
 

BR
|∇ψ |2)

1
2

(23)
! 1

R (
 

B2R
|ψ −

 
B2R

ψ |2)
1
2 + (

 
B2R

|(φ, σ )|2)
1
2

(27),(28)
! R( r∗∗

R )β + R( r∗∗
R )/ ! R for R + r∗∗.

(114)

Since ∂kvh,ij and ∂kv(L)
h,ij (de"ned in (14)) are two polynomials that are homogeneous of order

1, and their coe!cients di#er by |a(L)
h − ah|, which by (42) is bounded by ( r∗∗

L )β , we have

|∂kvh,ij − ∂kv(L)
h,ij| ! ( r∗∗

L )β and |∇(∂kvh,ij − ∂kv(L)
h,ij)| ! ( r∗∗

L )β on B1. (115)

Therefore combine (115) and (111) we obtain
|∂kv(L)

h,ij(x)| ! 1 and |∇∂kv(L)
h,ij(x)| ! 1 on B1. (116)

We are now ready to estimate

|c(L)
T − c| = |

ˆ
4 · g| ! (

 
B1

|4|2)
1
2 ,

For the "rst term of 4 we use (115) and (113); the second term uses (116) and (40); the third
term is controlled by (115) and (28); the fourth term can be estimated using (116) and (40);
the "%h term can be bounded above by (40); "nally the six term is controlled by (42) as well
as (114). This "nishes the proof of (109).
Step 4: Conclusion. We "nally compare u(L) de"ned through (16) with û de"ned through
Corollary 2.2 and claim that

(
 

BR
|∇(u(L) − û)|2)

1
2 ! ( 1

L )d( r∗∗
L )β for L + R + r∗∗.
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By Corollary 2.2 this leads to the conclusion of the proposition. The di#erence w := u(L) − û
satis"es

−∇ · a∇w = 0 in QL, w = wD on ∂QL

where wD := (1 +φ
(L)
i,T ∂i +ψ

(L)
ij,T∂ij)u(L)

h − (1 +φi∂i +ψij∂ij)uh. By (a slight adaptation of) the
argument (96) we have

(
 

QL
|∇w|2)

1
2 ! (

 
Q 5

4 L−QL
|∇wD|2)

1
2 .

Hence by (95) it su!ces to show

(
 

Q 5
4 L−QL

|∇wD|2)
1
2 ! ( 1

L )d( r∗∗
L )β .

We break down wD into eight parts, prove an estimate for each of these, and use a triangle
inequality to get our desired result:

∇wD = ∂i(u(L)
h − uh)(ei + ∇φi) + φi∇∂i(u(L)

h − uh) + ∂iu(L)
h ∇(φ(L)

i,T − φi)

+ (φ(L)
i,T − φi)∇∂iu(L)

h + ∂ij(u(L)
h − uh)∇ψij + ψij∇∂ij(u(L)

h − uh)

+ ∂iju(L)
h ∇(ψ (L)

ij,T − ψij) + (ψ (L)
ij,T − ψij)∇∂iju(L)

h .
The "rst estimate follows from (113) and (103). The second estimate follows from (103) and
(28). The third and the fourth come from (40) and (104). The "%h term is bounded due to
(103) and (114). The sixth term is controlled by (103) and (99). The seventh term is good
thanks to (104) and (40). Finally the eighth term is controlled by (104) and (41).

5.5. Proof of Proposition 2.4

Step 1: proof of (48). We will omit the proof for the second term since their proofs are identical.
Thanks to the decomposition of φ (65) and φT (66), it su!ces to prove

∥∥∥I(R + r∗)
Äˆ

ηR
∣∣
ˆ ∞

0
dt
(

1 − exp(− t
T )

)∇S(t)ae
∣∣2
ä 1

2
∥∥∥

2−
! T− 3

4 .

The proof is direct using (D11) and Lemma 4.7:ˆ ∞

0
dt(1 − exp(− t

T ))
∥∥∥I(R + r∗)

Äˆ
ηR

∣∣∇S(t)ae
∣∣2
ä 1

2
∥∥∥

2−
(D11)
!

ˆ ∞

0
dt(1 ∧ t

T )
∥∥∥
Äˆ

η√
t
∣∣∇S( t

2
)ae

∣∣2
ä 1

2
∥∥∥

2−
(79)
!

ˆ ∞

0
dt(1 ∧ t

T ) 1
t (1 ∧ 1√

t
)

d
2

d+3∼ T− 3
4 .

Step 2: proof of (46). Similar to Step 1, we need to show
∥∥∥
Äˆ

η√
T
∣∣
ˆ ∞

0
dt
Ä

1 − exp(− t
T )

ä
∇S(t)ae

∣∣2
ä 1

2
∥∥∥

2−
! T− 3

4 .

For the range t ∈ (0, T) we have as above
∥∥∥
Äˆ

η√
T

∣∣
ˆ T

0
dt
Ä

1 − exp(− t
T )

ä
∇S(t)ae

∣∣2ä 1
2
∥∥∥

2−
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!
ˆ T

0
dt
(

1 − exp(− t
T )

)∥∥(
ˆ

η√
T |∇S(t)ae|2)

1
2
∥∥

2−
(79),d+3
! T− 3

4 .

For the range t ∈ (T, ∞), we divide the integral into dyadic intervals (2kT, 2k+1T) and use
the Meyers’ inequality [3, Lemma 7] in form of

Äˆ
η√

T

ˆ 2k+1T

2kT
dt|∇S(t)ae|2

ä 1
2 ! (

√
2k+1T√

T
)

d
2 −γ

Äˆ
η√

2k+1T

ˆ 2k+1T

2k−1T
dt|∇S(t)ae|2

ä 1
2 ,

(117)
where γ = γ (d, λ) > 0. We then use the third characterization of the norm ‖ · ‖s in (A1) and
the stochastic estimate (79) to obtain
∥∥∥
Äˆ

η√
2k+1T

ˆ 2k+1T

2k−1T
dt|∇S(t)ae|2

ä 1
2
∥∥∥

2−
(A1)∼

∥∥∥
ˆ

η√
2k+1T

ˆ 2k+1T

2k−1T
dt|∇S(t)ae|2

∥∥∥
1
2

1−

≤
Äˆ 2k+1T

2k−1T
dt

∥∥∥
ˆ

η√
2k+1T |∇S(t)ae|2

∥∥∥
1−

ä 1
2

(A1)∼
Äˆ 2k+1T

2k−1T
dt

∥∥∥
(ˆ

η√
2k+1T |∇S(t)ae|2)

1
2
∥∥∥

2

2−

ä 1
2

(79)
! (

ˆ 2k+1T

2k−1T
dtt−2− d

2 )
1
2 ∼ (2k−1T)−

1
2 − d

4 .

With the above two estimates we are ready to "nish the proof:
∥∥∥
Äˆ

η√
T |
ˆ ∞

T
dt
(

1 − exp(− t
T )

)∇S(t)ae|2
ä 1

2
∥∥∥

2−

!
∞∑

k=0

∥∥∥
Äˆ

η√
T |
ˆ 2k+1T

2kT
dt
(

1 − exp(− t
T )

)∇S(t)ae|2
ä 1

2
∥∥∥

2−

!
∞∑

k=0

Äˆ 2k+1T

2kT
dt
(

1 − exp(− t
T )

)2ä 1
2
∥∥∥
Äˆ

η√
T

ˆ 2k+1T

2kT
dt|∇S(t)ae|2

ä 1
2
∥∥∥

2−

(117)
!

∞∑

k=0
(2kT)

1
2 2

k+1
2 ( d

2 −γ )
∥∥∥
Äˆ

η√
2k+1T

ˆ 2k+1T

2k−1T
dt|∇S(t)ae|2

ä 1
2
∥∥∥

2−

!
∞∑

k=0
(2kT)

1
2 2

k+1
2 ( d

2 −γ )(2k−1T)−
1
2 − d

4 ! T− d
4 .

5.6. Proof of Lemma 2.7

Substituting the de"nition (18) into (82), where we may change the convolution kernel from
Gaussian to any Schwartz function with the same scale and preserve the CLT-scaling (see [3,
Lemma 13, Step 4]), and choosing R = L, we obtain

‖ahei −
ˆ

ωLqi‖2− ! L− 3
2 .
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The rest of the proof follows from a Cauchy-Schwarz, q − qT = a∇(φ − φT), and
Proposition 2.4, (46), as well as (A7):

‖
ˆ

ωL(q−qT)‖2− ≤ (
ˆ

ωL)
1
2 ‖(

ˆ
ωL|q−qT |2)

1
2 ‖2− ! ‖(

ˆ
ηL|∇(φ−φT)|2)

1
2 ‖2− !

√
T− 3

2 .

With a triangle inequality we arrive at ‖ahei −
´

ωLqi,T‖2− !
√

T− 3
2 .

5.7. Proof of Propositions 2.8 and 2.10

We will focus on the proof of (55) with full details and discuss the other estimates a%erwards.
We recall the decomposition formulas (68), (69) for ψ and ψT and write at least formally

ψ − ψT =
ˆ ∞

0
dt0

ˆ ∞

0
dt1(1 − exp(− t0 + t1

T ))S(t0)(aS(t1)ae − S̄(t1) × ae)
︸ ︷︷ ︸

double integral term

−
ˆ ∞

0
dt0

ˆ ∞

0
dt1

ˆ ∞

0
dt2(1 − exp(− t0 + t1 + t2

T ))S(t0)S̄(t1) × a∇S(t2)ae
︸ ︷︷ ︸

triple integral term

. (118)

The strategy is to divide these integrals into several regimes depending on the ordering of
t0, t1, t2, then estimate the layers one-by-one, using either the deterministic Lemma B.2 when
the time variable in question is not the largest, or the stochastic Propositions 4.4 and 4.6 and
Lemma 4.7 when the time variable being estimated is the largest of all remaining variable, with
Corollary D.2 being used to adjust the averaging scales whenever necessary. As we mentioned
in Remark 4.2, our proof actually "rst shows that the integrals of (68)–(70) satisfy the desired
bounds (58), (54), which guarantee that the integrals are stationary functions, and hence must
correspond to correctors thanks to their algebraic equivalence and uniqueness of stationary
correctors.
Proof of (55). We divide the estimates into two parts, one for the double integral term, the
other for the triple integral term.
Step 1: estimates for the double integral term. We only estimate the term with S(t0)aS(t1)ae
since the estimates for the other term are identical. We divide the double integral into two
regimes: t0 > t1 and t1 > t0.
Case 1.1: t0 > t1. The main ingredient we use in this case is (77) with g = √

t1aS(t1)ae which
by Lemma 4.7 is approximately local on scale 1 ∨ √

t1 with stochastic integrability 2−, so
applying the variable-coe!cient semigroup S( t0

2 ) will lead to the CLT factor ( 1∨√
t1

1∨√t0
) d

2 with a
loss of stochastic integrability to 1−:

‖I(R + r∗)(
ˆ

ηR|
ˆ ∞

0
dt0

ˆ t0

0
dt1(1 − exp(− t0 + t1

T ))∇S(t0)aS(t1)ae|2)
1
2 ‖1−

≤
ˆ ∞

0
dt0

ˆ t0

0
dt1(1 − exp(− t0 + t1

T ))‖I(R + r∗)(
ˆ

ηR|∇S(t0)aS(t1)ae|2)
1
2 ‖1−

(D11)
!

ˆ ∞

0
dt0(1 ∧ t0

T )
ˆ t0

0
dt1‖(

ˆ
ηR∨√t0 |∇S( t0

2
)aS(t1)ae|2)

1
2 ‖1−

(77)
!

ˆ ∞

0
dt0

1
t0

(1 ∧ t0
T )

ˆ t0

0
dt1( 1 ∨ √

t1
1 ∨ √t0

)
d
2

1√
t1

Ä
‖(
ˆ

η√
t1 |

√
t1S(t1)ae|2)

1
2 ‖2− + ‖ḡ‖2−

ä
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(79),(80)
!

ˆ ∞

0
dt0

1
t0

(1 ∧ 1√t0
)

d
2 (1 ∧ t0

T )
ˆ t0

0
dt1(1 ∨ √

t1)
d
2

1√
t1

(1 ∧ 1√
t1

)
d
2

d+3
! T− 1

4 .

Case 1.2: t1 > t0. Before we start the proof, we present here a general integration by parts
formula in time which will be used repeatedly herea%er: for any t, t3, T + 0,ˆ t

0
dτ (1 − exp(−τ + t3

T ))S(τ )g = (1 − exp(− t + t3
T ))

ˆ t

0
dτS(τ )g

− 1
T exp(− t3

T )
ˆ t

0
dt′ exp(− t′

T )
ˆ t′

0
dτS(τ )g.

(119)

To estimate this case, we "rst switch the order of integration of t0 and t1 and use (119) with
τ = t0, t = t3 = t1 and g = aS(t1)ae, then appeal to Lemma 4.10 with ae playing the role
of g:
∥∥∥I(R + r∗)

Äˆ
ηR

∣∣
ˆ ∞

0
dt1

ˆ t1

0
dt0(1 − exp(− t0 + t1

T ))∇S(t0)aS(t1)ae
∣∣2
ä 1

2
∥∥∥

2−
(119)
≤

∥∥∥I(R + r∗)
Äˆ

ηR
∣∣
ˆ ∞

0
dt1(1 − exp(−2t1

T ))
ˆ t1

0
dt0∇S(t0)aS(t1)ae

∣∣2
ä 1

2
∥∥∥

2−

+
∥∥∥I(R + r∗)

Äˆ
ηR

∣∣ 1
T

ˆ ∞

0
dt1 exp(− t1

T )
ˆ t1

0
dt0 exp(− t0

T )
ˆ t0

0
dτ∇S(τ )aS(t1)ae

∣∣2
ä 1

2
∥∥∥

2−

≤
ˆ ∞

0
dt1(1 − exp(−2t1

T ))
∥∥∥I(R + r∗)

Äˆ
ηR|

ˆ t1

0
dt0∇S(t0)aS(t1)ae|2

ä 1
2
∥∥∥

2−

+ 1
T

ˆ ∞

0
dt1 exp(− t1

T )
ˆ t1

0
dt0 exp(− t0

T )
∥∥∥I(R + r∗)

Äˆ
ηR|

ˆ t0

0
dτ∇S(τ )aS(t1)ae|2

ä 1
2
∥∥∥

2−
(87)
!

ˆ ∞

0
dt1(1 ∧ t1

T )
∥∥∥
Äˆ

η√
t1

∣∣(√t1∇S( t1
2

)ae, S( t1
2

)ae
)∣∣2

ä 1
2
∥∥∥

2−
(79)
!

ˆ ∞

0
dt1(1 ∧ t1

T ) 1√
t1

(1 ∧ 1√
t1

)
d
2

d+3
! T− 1

4 .

Step 2: estimates for the triple integral term. We divide the triple integral into "ve regimes.
In particular, we use Lemma 4.10 whenever t0 < t1, and Lemma 4.11 whenever t1 > t2 (in
which case the t2 integral always stays inside the stochastic norm ‖·‖).
Case 2.1: t0 > t1 > t2. In this case, notice that

´ t1
0 dt2(1 − exp(− t0+t1+t2

T ))S̄(t1) × a∇S(t2)ae
has locality scale 1 ∨ √

t1 by Lemma 4.11 and stochastic integrability 2−, therefore, by
Proposition 4.4, applying the semigroup S(t0) will induce stochastic cancellations by a CLT-
factor ( 1∨√

t1
1∨√t0

)d with a loss of stochastic integrability to 1−:
ˆ ∞

0
dt0

ˆ t0

0
dt1

∥∥∥I(R + r∗)
Äˆ

ηR
∣∣∇S(t0)

ˆ t1

0
dt2(1 − exp(− t0 + t1 + t2

T ))S̄(t1) × a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

1−
(D11)
!

ˆ ∞

0
dt0

ˆ t0

0
dt1

∥∥∥
Äˆ

ηR∨√t0
∣∣∇S( t0

2
)
ˆ t1

0
dt2(1 − exp(− t0 + t1 + t2

T ))S̄(t1) × a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

1−
(77)
!

ˆ ∞

0
dt0

1
t0

ˆ t0

0
dt1( 1 ∨ √t1

1 ∨ √t0
)

d
2
∥∥∥
Äˆ

η√t1
∣∣
ˆ t1

0
dt2(1 − exp(− t0 + t1 + t2

T ))S̄(t1) × a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

2−
(88)
!

ˆ ∞

0
dt0

1
t0

(1 ∧ 1√t0
)

d
2
ˆ t0

0
dt1(1 ∨ √

t1)
d
2 (1 ∧ t0

T ) 1√t1
(1 ∧ 1√t1

)
d
2

d+3
! T− 1

4 .

Here the ḡ term is not necessary when using (77), thanks to Lemma 4.11, which we used for
t3 = t0 + t1 ∼ t0.
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Case 2.2: t0 > t2 > t1. Now
√

t1S̄(t1) × a∇S(t2)ae has locality scale 1 ∨ √
t2 (using

Proposition 4.6 for t1 and Lemma 4.7 for t2) and stochastic integrability 2− (using Lemma 4.7
and Remark 4.5), so Proposition 4.4 tells us that applying S(t0) on it will result in stochastic
cancellations by a CLT-factor ( 1∨√

t2
1∨√t0

)d and a loss of stochastic integrability to 1−:
ˆ ∞

0
dt0

ˆ t0

0
dt1

ˆ t0

t1
dt2(1 − exp(− t0 + t1 + t2

T ))
∥∥∥I(R + r∗)

Äˆ
ηR

∣∣∇S(t0)S̄(t1) × a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

1−
(D11)
!

ˆ ∞

0
dt0(1 ∧ t0

T )
ˆ t0

0
dt1

ˆ t0

t1
dt2

∥∥∥
Äˆ

η√t0

∣∣∇S( t0
2

)S̄(t1) × a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

1−
(77)
!

ˆ ∞

0
dt0(1 ∧ t0

T ) 1
t0

ˆ t0

0
dt1

ˆ t0

t1
dt2( 1 ∨ √t2

1 ∨ √t0
)

d
2

1√t1

×
Ä∥∥∥

Äˆ
η√

t2

∣∣√t1S̄(t1) × a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

2−
+ ‖Ḡ‖2−

ä

(B3),(78),(139)
!

ˆ ∞

0
dt0(1 ∧ t0

T ) 1
t0

ˆ t0

0
dt1

1√t1

×
ˆ t0

t1
dt2( 1 ∨ √t2

1 ∨ √t0
)

d
2

1
t2

Ä
‖(
ˆ

η√
t2 |t2∇S(t2)ae|2)

1
2 ‖2− + ‖ḡ‖2−

ä

(79),(80)
!

ˆ ∞

0
dt0(1 ∧ t0

T ) 1
t0

(1 ∧ 1√t0
)

d
2

ˆ t0

0
dt1

1√t1

ˆ t0

t1
dt2(1 ∨ √

t2)
d
2

1
t2

(1 ∧ 1√t2
)

d
2

d+3
! T− 1

4 .

Case 2.3: t2 > t0 > t1. In this case, since both t0 and t1 are small compared to the innermost
t2, we use the deterministic Lemma B.2 on both t0 and t1, and the Lipschitz estimate (D11)
and "nally Lemma 4.7 on t2:ˆ ∞

0
dt0

ˆ t0

0
dt1

ˆ ∞

t0
dt2(1 − exp(− t0 + t1 + t2

T ))
∥∥∥I(R + r∗)

Äˆ
ηR

∣∣∇S(t0)S̄(t1) × a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

2−
(D11)
!

ˆ ∞

0
dt0

ˆ t0

0
dt1

ˆ ∞

t0
dt2(1 ∧ t2

T )
∥∥∥I(R ∨ √

t0 + r∗)
Äˆ

ηR∨√t0

∣∣∇S( t0
2

)S̄(t1) × a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

2−
(B3)
!

ˆ ∞

0
dt0

1
t0

ˆ t0

0
dt1

ˆ ∞

t0
dt2(1 ∧ t2

T )
∥∥∥I(R ∨ √

t0 + r∗)
Äˆ

ηR∨√t0

∣∣S̄(t1) × a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

2−
(B3)
!

ˆ ∞

0
dt0

1
t0

ˆ t0

0
dt1

1√t1

ˆ ∞

t0
dt2(1 ∧ t2

T )
∥∥∥I(R ∨ √

t0 + r∗)
Äˆ

ηR∨√t0

∣∣∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

2−
(D11)
!

ˆ ∞

0
dt0

1√t0

ˆ ∞

t0
dt2(1 ∧ t2

T )
∥∥∥
Äˆ

η√
t2

∣∣∇S( t2
2

)ae
∣∣2
ä 1

2
∥∥∥

2−
(79)
!

ˆ ∞

0
dt0

1√t0

ˆ ∞

t0
dt2(1 ∧ t2

T ) 1
t2

(1 ∧ 1√t2
)

d
2

d+3
! T− 1

4 .

Case 2.4: t2 > t1 > t0. We start the proof by using (119) on t0 with t = t1, t3 = t1 + t2, and
g = S̄(t1) × a∇S(t2)ae,ˆ ∞

0
dt2

ˆ t2

0
dt1

∥∥∥I(R + r∗)
Äˆ

ηR
∣∣
ˆ t1

0
dt0(1 − exp(− t0 + t1 + t2

T ))∇S(t0)S̄(t1) × a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

2−
(119)
≤

ˆ ∞

0
dt2

ˆ t2

0
dt1(1 − exp(−2t1 + t2

T ))
∥∥∥I(R + r∗)

Äˆ
ηR

∣∣
ˆ t1

0
dt0∇S(t0)S̄(t1) × a∇S(t2)ae

∣∣2
ä 1

2
∥∥∥

2−

+ 1
T

ˆ ∞

0
dt2 exp(− t2

T )
ˆ t2

0
dt1 exp(− t1

T )
ˆ t1

0
dt0 exp(− t0

T )

×
∥∥∥I(R + r∗)

Äˆ
ηR

∣∣
ˆ t0

0
dτ∇S(τ )S̄(t1) × a∇S(t2)ae

∣∣2
ä 1

2
∥∥∥

2−
.
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We now state a slight modi"cation of Lemma 4.10 in the sense of
∥∥∥I(R + r∗)

Äˆ
ηR

∣∣
ˆ t0

0
dτ∇S(τ )S̄(t1)g

∣∣2
ä 1

2
∥∥∥

2−

!
∥∥∥I(R ∨ √

t1 + r∗)
Äˆ

ηR∨√
t1

(|√t1∇S̄( t1
2

)g|2 + |S̄( t1
2

)g|2)
ä 1

2
∥∥∥

2−
. (120)

In this regime we apply (120) to g = a∇S(t2)ae, so applying Lemma B.2 on t1 and "nally the
Lipschitz estimate (D11) and Lemma 4.7 on t2 yields

∥∥∥I(R + r∗)
Äˆ

ηR
∣∣
ˆ t0

0
dτ∇S(τ )S̄(t1) × a∇S(t2)ae

∣∣2
ä 1

2
∥∥∥

2−
(120)
!

∥∥∥I(R ∨ √
t1 + r∗)

Äˆ
ηR∨√

t1

(|√t1∇S̄( t1
2

) × a∇S(t2)ae|2

+ |S̄( t1
2

) × a∇S(t2)ae|2)
ä 1

2
∥∥∥

2−
(B3)
! 1√

t1

∥∥∥
Äˆ

ηR∨√
t1 |∇S(t2)ae|2

ä 1
2
∥∥∥

2−

(D11)
! 1√

t1

∥∥∥
Äˆ

η√
t2

∣∣∇S( t2
2

)ae
∣∣2
ä 1

2
∥∥∥

2−
(79)
! 1√

t1

1
t2

(1 ∧ 1√
t2

)
d
2 .

Combining all the arguments, we are able to concludeˆ ∞

0
dt2

ˆ t2

0
dt1

∥∥∥I(R + r∗)
Äˆ

ηR
∣∣
ˆ t1

0
dt0(1 − exp(− t0 + t1 + t2

T ))∇S(t0)S̄(t1)

× a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

2−

!
ˆ ∞

0
dt2(1 ∧ t2

T ) 1
t2

(1 ∧ 1√
t2

)
d
2

ˆ t2

0
dt1

1√
t1

+ 1
T

ˆ ∞

0
dt2

1
t2

(1 ∧ 1√
t2

)
d
2

ˆ t2

0
dt1

1√
t1

ˆ t1

0
dt0 exp(− t0

T )

d+3
! T− 1

4 .

Case 2.5: t1 > t0 ∨ t2. We start by using (119) on t0 as in Case 2.4:ˆ ∞

0
dt1

∥∥∥I(R + r∗)
Äˆ

ηR
∣∣
ˆ t1

0
dt0

ˆ t1

0
dt2(1 − exp(− t0 + t1 + t2

T ))∇S(t0)S̄(t1)

× a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

2−
(119)
≤

ˆ ∞

0
dt1

∥∥∥I(R + r∗)
Äˆ

ηR
∣∣
ˆ t1

0
dt0

ˆ t1

0
dt2(1 − exp(−2t1 + t2

T ))∇S(t0)S̄(t1)

× a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

2−

+ 1
T

ˆ ∞

0
dt1

ˆ t1

0
dt0 exp(− t1 + t0

T )

×
∥∥∥I(R + r∗)

Äˆ
ηR

∣∣
ˆ t1

0
dt2 exp(− t2

T )
ˆ t0

0
∇S(τ )S̄(t1) × a∇S(t2)ae

∣∣2
ä 1

2
∥∥∥

2−
.



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 643

We again continue by using (120) with g = a∇S(t2)ae, though this time we use Lemma 4.11
with t3 = 2t1 on t1, t2:

ˆ ∞

0
dt1

∥∥∥I(R + r∗)
Äˆ

ηR
∣∣
ˆ t1

0
dt0

ˆ t1

0
dt2(1 − exp(− t0 + t1 + t2

T ))∇S(t0)S̄(t1)

× a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

2−
(120)
!

ˆ ∞

0
dt1

∥∥∥
Äˆ

η√
t1

∣∣
ˆ t1

0
dt2(1 − exp(−2t1 + t2

T ))
(|√t1∇S̄( t1

2
)

× a∇S(t2)ae|2 + |S̄( t1
2

) × a∇S(t2)ae|2)
ä 1

2
∥∥∥

2−

+ 1
T

ˆ ∞

0
dt1

ˆ t1

0
dt0 exp(− t0

T )

×
∥∥∥
Äˆ

η√
t1

∣∣
ˆ t1

0
dt2 exp(− t2

T )
(|√t1∇S̄( t1

2
) × a∇S(t2)ae|2 + |S̄( t1

2
)

× a∇S(t2)ae|2)
ä 1

2
∥∥∥

2−
(88),(89)
!

ˆ ∞

0
(1 ∧ t1

T ) 1√
t1

(1 ∧ 1√
t1

)
d
2

+ 1
T

ˆ ∞

0
dt1

ˆ t1

0
dt0 exp(− t0

T ) 1√
t1

(1 ∧ 1√
t1

)
d
2

d+3
! T− 1

4 .

This "nishes the proof of (55). The estimates (58) and (54) follow by simple modi"cations
of the above argument: Indeed, notice that when any of the ti’s is larger than T, the weight
1 − exp(− t0+t1+t2

T ) is ∼ 1. If we replace the weights 1 − exp(− t0+t1+t2
T ) by 1 and repeat

the integral estimates we get (58) for ψ (the calculations are actually easier since integration
by parts on the weights are no longer needed). If we replace the weights by exp(− t0+t1+t2

T )
and remove the gradient in front of S(t0) (which will make the bound worse by

√
T) we

obtain (54).

Proof of (59) for ∇ψ . When any one of the ti’s in representation (68) is larger than R2, we can
use |fR| ! (

´
ηR|f |2) 1

2 to derive the bound R1− d
2 . For example, in the case t0 > t1 > t2 of the

triple integral in (68) (which means t0 > R2), we can estimate as
∥∥∥I(R + r∗)

Äˆ ∞

R2
dt0

ˆ t0

0
dt1

ˆ t1

0
dt2∇S(t0)S̄(t1) × a∇S(t2)ae

ä
R

∥∥∥
1−

!
ˆ ∞

R2
dt0

ˆ t0

0
dt1

∥∥∥I(R + r∗)
Äˆ

ηR
∣∣
ˆ t1

0
dt2∇S(t0)S̄(t1) × a∇S(t2)ae

∣∣2
ä 1

2
∥∥∥

1−
(D11)
!

ˆ ∞

R2
dt0

ˆ t0

0
dt1

∥∥∥
Äˆ

η√t0

∣∣
ˆ t1

0
dt2∇S( t0

2
)S̄(t1) × a∇S(t2)ae

∣∣2
ä 1

2
∥∥∥

1−
(77)
!

ˆ ∞

R2
dt0

1
t0

ˆ t0

0
dt1( 1 ∨ √

t1√t0
)

d
2

1√
t1

Ä∥∥∥
Äˆ

η√
t1

∣∣
ˆ t1

0
dt2

√
t1S̄(t1)

× a∇S(t2)ae
∣∣2
ä 1

2
∥∥∥

2−
+ ‖ḡ‖2−

ä
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!
ˆ ∞

R2
dt0

1
t0

ˆ t0

0
dt1( 1 ∨ √

t1√t0
)

d
2

1√
t1

(∥∥(
√

t1∇ × (S(t1)ae − ae))√t1

∥∥
2− + ‖ḡ‖2−

)

(82),(B3),(80)
!

ˆ ∞

R2
dt0

1
t0

ˆ t0

0
dt1( 1 ∨ √

t1√t0
)

d
2

1√
t1

(1 ∧ 1√
t1

)
d
2

d+3∼ R1− d
2 .

We may apply the same modi"cations for all other cases and obtain the same bound. Hence
we only need to consider the case when all ti’s are in (0, R2), which will be done now.

For the double integral term of ψ in (68), notice that since aS(t1)ae has locality scale 1∨√
t1

by Lemma 4.7, we can apply (76) of Proposition 4.4 with aS(t1)ae playing the role of g and
estimate

∥∥∥
Äˆ R2

0
dt0

ˆ R2

0
dt1∇S(t0)aS(t1)ae

ä
R

∥∥∥
1−

≤
ˆ R2

0
dt1

∥∥∥
Äˆ R2

0
dt0∇S(t0)aS(t1)ae

ä
R

∥∥∥
1−

(76)
!

ˆ R2

0
dt1( 1 ∨ √

t1
R )

d
2

1√
t1

(‖(
ˆ

η√
t1 |

√
t1aS(t1)ae|2)

1
2 ‖2− + ‖ḡ‖2−)

(79),(80)
! R− d

2

ˆ R2

0
dt1(1 ∨ √

t1)
d
2

1√
t1

(1 ∧ 1√
t1

)
d
2 ! R1− d

2 .

For triple integral in (68) we divide the integral into the two ranges t1 > t2 and t1 < t2. In
the regime t1 > t2, we appeal to (76) of Proposition 4.4 with g = (∇ × (S(t1)ae − ae))√t1
which has locality scale 1 ∨ √

t1 (which follows from a combination of Proposition 4.6 and
Lemma 4.7). In the regime t1 < t2, we also apply (76), this time with g = S̄(t1) × a∇S(t2)ae,
which has locality scale 1 ∨ √

t2 (again using Proposition 4.6 and Lemma 4.7).
∥∥∥
Äˆ R2

0
dt0

ˆ R2

0
dt1

ˆ R2

0
dt2∇S(t0)S̄(t1) × a∇S(t2)ae

ä
R

∥∥∥
1−

(62)
≤

ˆ R2

0
dt1

∥∥∥
Äˆ R2

0
dt0∇S(t0)(∇ × (S(t1)ae − ae))√t1

ä
R

∥∥∥
1−

+
ˆ R2

0
dt1

ˆ R2

t1
dt2

∥∥∥
Äˆ R2

0
dt0∇S(t0)S̄(t1) × a∇S(t2)ae

ä
R

∥∥∥
1−

(76)
!

ˆ R2

0
dt1( 1 ∨ √

t1
R )

d
2

1√
t1

Ä∥∥∥√
t1(∇ × (S(t1)ae − ae))√t1

∥∥∥
2−

+ ‖ḡ‖2−
ä

+
ˆ R2

0
dt1

ˆ R2

t1
dt2( 1 ∨ √

t2
R )

d
2

1√
t1

Ä∥∥∥
(ˆ

η√
t2 |

√
t1S̄(t1)

× a∇S(t2)ae|2)
1
2
∥∥∥

2−
+ ‖Ḡ‖2−

ä

(82),(B3),(80)
! R− d

2

ˆ R2

0
(1 ∨ √

t1)
d
2

1√
t1

(1 ∧ 1√
t1

)
d
2 dt1

+ R− d
2

ˆ R2

0
dt1

1√
t1

ˆ R2

t1
dt2(1 ∨ √

t2)
d
2

× 1
t2

Ä∥∥∥
(ˆ

η√
t2 |t2∇S(t2)ae|2)

1
2
∥∥∥

2−
+ ‖ḡ‖2−

ä
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(79)
! R1− d

2 + R− d
2

ˆ R2

0
dt1

1√
t1

ˆ R2

t1
dt2(1 ∨ √

t2)
d
2

1
t2

(1 ∧ 1√
t2

)
d
2 ! R1− d

2 .

Using almost identical arguments we can also establish

‖I(R + r∗)(a∇ψ − 〈a∇ψ〉)R‖1− ! R1− d
2 , (121)

the only di#erence is that whenever we use (76), we use the result for S(t)g − 〈S(t)g〉. We
thus do not write the argument here.
Proof of (58) and (59) for ∇.. The proof is based on the representation (70). For (58) we can
estimate

‖I(R + r∗)(
ˆ

ηR|∇.|2)
1
2 ‖1−

≤ ‖I(R + r∗)(
ˆ

ηR|
ˆ R2

0
dt∇S̄(t) × (a∇ψ , aφ, σ )|2)

1
2 ‖1−

+
ˆ ∞

R2
dt‖I(R + r∗)(

ˆ
ηR|∇(∇ × (a∇ψ , aφ, σ ))√t|2)

1
2 ‖1−

(B3)
! ‖I(R + r∗)(

ˆ
ηR|(a∇ψ , aφ, σ )|2)

1
2 ‖1−

+
ˆ ∞

R2
dt‖I(R + r∗)∇(∇ × (a∇ψ , aφ, σ ))√t‖1−

(58),(121),(86),(84),(85)
! 1 +

ˆ ∞

R2

√
t−2+1− d

2 dt
d+3
! 1.

The strategy for (59) is similar,

‖I(R + r∗)∇.R‖1− !
ˆ ∞

0
dt‖I(R + r∗)∇(∇ × (a∇ψ , aφ, σ ))√R2+t‖1−

(85),(84),(121)
!

ˆ ∞

0
dt
√

R2 + t
−2+1− d

2
d+3
! R1− d

2 .

5.8. Proof of Proposition 2.9

Step 1: proof of (56). In fact, in this step we prove a more general statement: for any 1
2 ≤ r′ < r

to be speci"ed later, if FT satis"es the whole-space equation
1
T FT − ∇ · a∇FT = ∇ · g,

and F(L)
T satis"es the following equation in QrL:






1
T F(L)

T − ∇ · a∇F(L)
T = ∇ · g in QrL,

F(L)
T = 0 on ∂QrL,

(122)

then for any p < ∞,
Ä 

Qr′L

∣∣(√T∇(FT − F(L)
T ), FT − F(L)

T
)∣∣2

ä 1
2 !r,r′,p (

√
T

L )p(
ˆ

ηrL|g|2)
1
2 . (123)
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Choosing g = ae so that FT = φT , F(L)
T = φ

(L)
T , then pick r = 2, r′ = 7

4 and (123) turns into
(56).

To prove (123), we de"ne a solution operator S(L) for "nite domain: given r > 0, let v(x, t)
be the solution for






∂tv − ∇ · a∇v = 0 in QrL × (0, ∞),
v = 0 on ∂QrL × (0, ∞),
v(t = 0) = ∇ · g in QrL,

(124)

and we de"ne
S(L)(t)g := v(t).

Following the discussions which leads to (71),

F(L)
T =

ˆ ∞

0
exp(− t

T )S(L)(t)g dt.

Following the steps of [3, Lemma 1], we can show
Ä 

QrL

∣∣(t∇S(L)(t)g,
√

tS(L)(t)g
)∣∣2

ä 1
2 ! (

 
QrL

|g|2)
1
2 . (125)

Now we introduce the intermediate length scale T̃ =
√

TL. The idea is to divide the t-interval
into [0, T̃] and [T̃, ∞). In [0, T̃], exp(− t

T ) ! 1 and we use Lemma B.3 for small t, while in
the large t regime we directly use the small factor exp(− t

T ) to derive subalgebraic bound:
Ä 

Qr′L

∣∣∇(FT − F(L)
T )

∣∣2
ä 1

2

(71),(122)=
Ä 

Qr′L

∣∣∣
ˆ ∞

0
dt exp(− t

T )∇(
S(t) − S(L)(t)

)
g
∣∣∣
2ä 1

2

≤
Ä 

Qr′L

∣∣∣
ˆ T̃

0
dt exp(− t

T )∇(
S(t) − S(L)(t)

)
g
∣∣∣
2ä 1

2

+
Ä 

Qr′L

∣∣∣
ˆ ∞

T̃
dt exp(− t

T )∇(
S(t) − S(L)(t)

)
g
∣∣∣
2ä 1

2

≤ (ˆ T̃

0
dt exp(−2t

T )
) 1

2
Ä 

Qr′L

ˆ T̃

0
dt
∣∣∇(

S(t) − S(L)(t)
)

g
∣∣2
ä 1

2

+
ˆ ∞

T̃
dt exp(− t

T )
Ä 

Qr′L

∣∣∇(
S(t) − S(L)(t)

)
g
∣∣2
ä 1

2

!
√

T
Ä 

Qr′L

ˆ T̃

0
dt
∣∣∇(

S(t) − S(L)(t)
)

g
∣∣2
ä 1

2

+
ˆ ∞

T̃
dt exp(− t

T )
Ä 

Qr′L

∣∣∇(
S(t) − S(L)(t)

)
g
∣∣2
ä 1

2 .

For the "rst term, note that (S(t) − S(L)(t))g satis"es
®

∂t(S(t) − S(L)(t))g − ∇ · a∇(S(t) − S(L)(t))g = 0 in QrL × (0, ∞),
(S(0) − S(L)(0))g = 0 in QrL.

(126)
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Thus, by Lemma B.2 and a slight modi"cation of Lemma B.3 with T̃ playing the role of T and
rL, r′L replacing 2L, L, for any p < ∞,

√
T
Ä 

Qr′L

ˆ T̃

0
dt
∣∣∇(

S(t) − S(L)(t)
)

g
∣∣2
ä 1

2

(B4)
!

√
T

T̃
(
√

T̃
L )2p−1

ˆ T̃

0
dt(

√
t

√
T̃

)p
Ä 

QrL\Qr′L

∣∣(S(t) − S(L)(t))g
∣∣2
ä 1

2

! 1
√

T̃
(
√

T
L )p

ˆ T̃

0
dt(

√
t

√
T̃

)p
Ä

(
 

QrL
|S(t)g|2)

1
2 + (

 
QrL

|S(L)(t)g|2)
1
2
ä

(B3),(125)
! 1

√
T̃

(
√

T
L )p(

ˆ
ηrL|g|2)

1
2

ˆ T̃

0
dt

√
tp−1

√
T̃

p ! (
√

T
L )p(

ˆ
ηrL|g|2)

1
2 .

For the second term ˆ ∞

T̃
dt exp(− t

T )(
 

Qr′L
|∇(S(t) − S(L)(t))g|2)

1
2 ,

since exp(− t
T ) ≤ exp(− T̃

T ) !p (
√

T
L )p decays faster than any algebraic power of

√
T

L , we only
need to show that (

ffl
Qr′L

|∇(S(t)−S(L)(t))g|2 dt) 1
2 grows at most algebraically fast in L√

T . This
can be easily achieved by energy estimates:ˆ ∞

T̃
dt exp(− t

T )
Ä 

Qr′L
|∇(S(t) − S(L)(t))g|2

ä 1
2

!
ˆ ∞

T̃
dt exp(− t

T )
Ä 

Qr′L
|∇S(t)g|2 dt

ä 1
2 +

ˆ ∞

T̃
dt exp(− t

T )
Ä 

Qr′L
|∇S(L)(t)g|2 dt

ä 1
2

(125)
! L− d

2

ˆ ∞

T̃
dt exp(− t

T )
√

t
d
2
( 

Q√
t

|∇S(t)g|2 dt
) 1

2 +
ˆ ∞

T̃
dt exp(− t

T )t−1(
ˆ

ηrL|g|2)
1
2

(B3)
!

Ä
L− d

2

ˆ ∞

T̃
dt exp(− t

T )t
d
4 −1 + T

T̃
exp(− T̃

T )
ä

(
ˆ

ηrL|g|2)
1
2 ! (

√
T

L )p(
ˆ

ηrL|g|2)
1
2 .

The proof for FT − F(L)
T without gradient is identical, and now we "nish the proof of (123).

Step 2: proof of (57). As ψ ’s are de"ned through σ ’s, we need to prove the intermediate
estimate

Ä 
Q 3

2 L

∣∣(√T∇(σT − σ
(L)
T ), σT − σ

(L)
T

)∣∣2
ä 1

2 !p (
√

T
L )p. (127)

Let σ̃T be the solution of





1
T σ̃T − ,σ̃T = ∇ · (qk,Tej − qj,Tek) in Q 7

4 L,

σ̃T = 0 on ∂Q 7
4 L.

(128)

Now substitute g with qk,Tej − qj,Tek and pick r = 7
4 , r′ = 3

2 in (123), we obtain
Ä 

Q 3
2 L

∣∣(√T∇(σT − σ̃T), σT − σ̃T
)∣∣2

ä 1
2

(123)
! (

√
T

L )p(
ˆ

η 7
4 L|qT |2)

1
2

(B1)
! (

√
T

L )p.
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To "nish the proof of (127) we need to pass from σ̃T to σ
(L)
T . We subtract (128) by (10), and

appeal to the standard elliptic energy estimate

(
 

Q 3
2 L

∣∣(√T∇(σ (L)
T − σ̃T), σ (L)

T − σ̃T
)∣∣2)

1
2 !

√
T(
 

Q 7
4 L

|qT − q(L)
T |2)

1
2

!
√

T(
 

Q 7
4 L

|∇(φT − φ
(L)
T )|2)

1
2

(56)
! (

√
T

L )p.

The proof of (57) now follows from an identical argument as that of (127): pick r = 3
2 and

r′ = 5
4 in (123) and we have

Ä 
Q 5

4 L

∣∣(√T∇(ψT − ψ
(L)
T ), ψT − ψ

(L)
T

)∣∣2
ä 1

2

! (
√

T
L )p

Äˆ
η 3

2 L(φ2
T + |σT |2)

ä 1
2 +

√
T
Ä 

Q 3
2 L

(
(φT − φ

(L)
T )2 + |σT − σ

(L)
T |2)

ä 1
2

(B1),(56),(127)
!

√
T(

√
T

L )p.

5.9. Proof of Proposition 4.4

We only include the proof for S(T)g since the proof for
´ T

0 dt∇S(t)g is identical. The proof
of (76) is divided into four steps:
Step 1: Proof of (76) when

√
T ≤ r0. When r ≤ r0, using the fact that Gaussian is dominated

by exponential averaging functions, we have

r
d
2 ‖(S(T)g − 〈S(T)g〉)r‖s ! r

d
2 ‖(

ˆ
Gr|S(T)g|2)

1
2 ‖s

! r
d
2
0 ‖(

ˆ
ηr0 |S(T)g|2)

1
2 ‖s

(B3)
! r

d
2
0 ‖(

ˆ
ηr0 |g|2)

1
2 ‖s.

(129)

When r + r0, in view of Proposition 4.6 (in this regime the bounds on Ḡ only uses
Lemma B.2), we may apply Lemma C.1 to F = S(T)g − 〈S(T)g〉 and derive with the help of
(129)

sup
r+r0

r
d
2 ‖(S(T)g − 〈S(T)g〉)r‖s ! r

d
2
0
Ä
‖(
ˆ

ηr0 |g|2)
1
2 ‖s + ‖ḡ‖s

ä
. (130)

Step 2: We claim that there exists a constant C = C(λ, d) such that for any δ 7 1,

F0 := 1√
T
(ˆ

η√
T |(φ, σ ) δ

√
T

C
|2)

1
2
) ≤ δ (131)

implies
1√
T

Äˆ
η√

T |(φ, σ )|2
ä 1

2 ≤ 2δ.

Here φδ
√

T
C

denotes the convolution of φ and Gaussian G δ
√

T
C

(instead of the massive corrector).
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We "rst establish the simple Caccioppoli-type estimate

(
ˆ

η√
T |∇(φ, σ )|2)

1
2 ! 1 + 1√

T
(
ˆ

η√
T |(φ, σ )|2)

1
2 . (132)

We test (17) with η√
Tφ and obtainˆ

∇(η√
Tφ) · a∇φ = −

ˆ
∇(η√

Tφ) · ae = −
ˆ

φ∇η√
T · ae −

ˆ
η√

T∇φ · ae.

We then use |∇η√
T | ≤ 1√

T η√
T , ellipticity (1) and Young’s inequality to obtain for any ε ∈

(0, 1), ˆ
η√

T |∇φ|2 !
ˆ

η√
T∇φ · a∇φ =

ˆ
∇(η√

Tφ) · a∇φ −
ˆ

φ∇η√
T · a∇φ

!
ˆ

|φ||∇η√
T | +

ˆ
η√

T |∇φ| +
ˆ

|φ||∇η√
T ||∇φ|

! 1√
T

ˆ
η√

T |φ| +
ˆ

η√
T |∇φ| + 1√

T

ˆ
η√

T |φ||∇φ|

! ε

ˆ
η√

T |∇φ|2 + 1
ε

(1 + 1
T

ˆ
η√

Tφ2),

and we "nish the proof of (132) for φ by choosing a small ε > 0 to absorb the "rst r.h.s. term
into l.h.s. Similarly for σ we obtain from (21)ˆ

η√
T |∇σ |2 ! ε

ˆ
η√

T |∇σ |2 + 1
ε

(1 +
ˆ

η√
T |∇φ|2 + 1

T

ˆ
η√

Tσ 2)

! ε

ˆ
η√

T |∇σ |2 + 1
ε

(1 + 1
T

ˆ
η√

Tφ2 + 1
T

ˆ
η√

Tσ 2),

and we therefore "nish the proof of (132) a%er absorption.
By Poincaré inequality in convolution (92), we have for some constant C which may change

from line to line,
1√
T
(ˆ

η√
Tφ2) 1

2 ≤ 1√
T
(ˆ

η√
T |φ − φδ

√
T

C
|2)

1
2 + 1√

T
(ˆ

η√
T |φδ

√
T

C
|2)

1
2

(131)
≤ δ

C
(ˆ

η√
T |∇φ|2)

1
2 + δ

(132)
≤ δ

C + δ

C
√

T
(ˆ

η√
Tφ2) 1

2 + δ.

The term δ

C
√

T
(´

η√
T |φ|2)

1
2 can be absorbed into the l.h.s., and for C su!ciently large, we

obtain
1√
T

(
ˆ

η√
Tφ2)

1
2 ≤ 2δ.

Similarly,
1√
T

(
ˆ

η√
Tσ 2)

1
2 ≤ 1√

T
(ˆ

η√
T |σ − σδ

√
T

C
|2)

1
2 + 1√

T
(ˆ

η√
T |σδ

√
T

C
|2)

1
2

(131)
≤ δ

C
(ˆ

η√
T |∇σ |2)

1
2 + δ
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(132)
≤ δ

C
(

1 + 1√
T

(
ˆ

η√
Tφ2)

1
2 + 1√

T
(
ˆ

η√
Tσ 2)

1
2
) + δ

(131)
≤ δ

C (1 + 2δ) + δ

C
√

T
(ˆ

η√
Tσ 2) 1

2 + δ,

and we "nish the proof for Step 2 a%er absorbing δ

C
√

T (
´

η√
Tσ 2) 1

2 into l.h.s. and using δ 7 1.

Step 3: Estimation of
∣∣∣
∣∣∣
∣∣∣
(
S(T) − Sh( T

2 )S( T
2 )
)

g
∣∣∣
∣∣∣
∣∣∣ 2s

s+2 −
. Here and for the rest of the paper we

use |||·||| to denote a norm on stationary random "elds with a CLT-scaling built in:
∣∣∣∣∣∣f

∣∣∣∣∣∣
s := sup

R+1
R

d
2 ‖(f − 〈f 〉)R‖s,

The strategy is to "rst estimate R d
2 ‖(

(
S(T)−Sh( T

2 )S( T
2 )
)

g)R‖ 2s
s+2 − for R ≤

√
T and then use

Lemma C.1 for larger R.
Following the proof of Lemmas 4–6 and Proposition 1 in [3], with (φ, σ , ah) playing the role

of (φT , σT , ahT) (and thus the g there vanishes), we obtain the following deterministic estimate
of the homogenization error on the level of the $ux semigroup S(t) in a weak topology, i.e.,
there exists some possibly large p = p(λ, d) such that for all R ≤

√
T,

|F| := ( R√
T

)
d
2
∣∣(S(T)g − Sh( T

2
)S( T

2
)g
)

R
∣∣

! δ
1
p

 T
2

T
4

dt
 √

t

0
dr( r√

t
)

d
2

ˆ
η√

T
∣∣(S(t)g − 〈S(t)g〉)r

∣∣ =: δ
1
p F1,

(133)

provided
1√
T

Äˆ
η√

T |(φ, σ )|2
ä 1

2 ≤ 2δ. (134)

The key feature of (133) is that the r.h.s. F1 is of the same nature as F: it is a weak norm of the
$ux.

Using Step 2, we may replace (134) by F0 ≤ 2δ with the random variable F0 de"ned in
(131) that has the desired cancellation bound

√
T− d

2 , as we may derive from (84),

‖F0‖2− ! δ(δ
√

T)−
d
2 . (135)

We also need the following pointwise bound on F:

( R√
T

)
d
2
∣∣∣
Ä(

S(T) − Sh( T
2

)S( T
2

)
)
g
ä

R

∣∣∣ ! (
ˆ

η√
T |g|2)

1
2 . (136)

The proof is identical to [3, Lemma 15, (3)], with the only di#erence that ae is replaced by
(
´

η√
T |g|2) 1

2 , and is thus omitted.
For any s0 < 2s

s+2 , let s1 < 2 be such that 1
s0

= 1
s1

+ 1
s , by Lemma A.3 we have for R ≤

√
T

and s̃1 ∈ (s1, 2), with 2δ playing the role of δ,

‖F‖s0 ! δ
1
p ‖F1‖s0 + (

‖F0‖s̃1

δ
)

s̃1
s1 ‖F‖s

(135),(136)
! δ

1
p
√

T− d
2 sup

t≤T

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
+ (δ

√
T)−

d
2

s̃1
s1 ‖(

ˆ
η√

T |g|2)
1
2 ‖s.

(137)
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Multiply both sides by
√

T
d
2 and we obtain for R ≤

√
T,

R
d
2
∥∥(S(T)g−Sh( T

2
)S( T

2
)g
)

R
∥∥

s0
! δ

1
p sup

0≤t≤T

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
+(δ

√
T)−

d
2 ( s̃1

s1 −1)‖(
ˆ

η√
T |g|2)

1
2 ‖s.

Since s̃1 > s1, by optimizing in δ, it is clear that there exists an exponent γ > 0 such that for
all R ≤

√
T,

R
d
2
∥∥(S(T)g − Sh( T

2
)S( T

2
)g
)

R
∥∥

s0
! ( 1√

T
)γ
(

sup
t≤T

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
+ ‖(

ˆ
η√

T |g|2)
1
2 ‖s

)
.

In order to deal with the range R +
√

T, we appeal to Lemma C.1 with F = (
S(T) −

Sh( T
2 )S( T

2 )
)

g minus its expectation, and F̄ de"ned as in (81) of Lemma 4.8, such that
√

T
d
2 ‖F̄‖s0 ! sup

t≤T

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
. Using Young’s inequality for the last inequality, we get

∣∣∣∣

∣∣∣∣

∣∣∣∣(S(T) − Sh( T
2

)S( T
2

))g
∣∣∣∣

∣∣∣∣

∣∣∣∣
s0

! ( 1√
T

)γ
Ä

sup
t≤T

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
+ ‖(

ˆ
η√

T |g|2)
1
2 ‖s

ä

+
Ä

( 1√
T

)γ
(

sup
t≤T

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
+ ‖(

ˆ
η√

T |g|2)
1
2 ‖s

)ä 1
2
Ä

sup
t≤T

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
+ r

d
2
0 ‖ḡ‖s0

ä 1
2

T+1
! ( 1√

T
)

γ
2
Ä

sup
t≤T

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
+ ‖(

ˆ
η√

T |g|2)
1
2 ‖s + r

d
2
0 ‖ḡ‖s

ä
. (138)

Step 4: Conclusion of the proof by decomposing the time interval into dyadic pieces and using
the semigroup property (63) of S(t). The proof follows from [3, Theorem 1]. For any t1 + r2

0,
using [3, Lemma 16],

∣∣∣
∣∣∣
∣∣∣Sh(t)g

∣∣∣
∣∣∣
∣∣∣
s
!

∣∣∣∣∣∣g
∣∣∣∣∣∣

s for all g and s,

∣∣∣∣∣∣S(T)g
∣∣∣∣∣∣

s0
=

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
Sh(T − t1)S(t1)g +

∑

t1<t≤T
Sh(T − t)

(
S(t) − Sh( t

2
)S( t

2
)
)

g

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
s0

≤
∣∣∣
∣∣∣
∣∣∣Sh(T − t1)S(t1)g

∣∣∣
∣∣∣
∣∣∣
s0

+
∑

t1<t≤T

∣∣∣∣

∣∣∣∣

∣∣∣∣S
h(T − t)

(
S(t) − Sh( t

2
)S( t

2
)
)

g
∣∣∣∣

∣∣∣∣

∣∣∣∣
s0

!
∣∣∣∣∣∣S(t1)g

∣∣∣∣∣∣
s0

+
∑

t1<t≤T

∣∣∣∣

∣∣∣∣

∣∣∣∣S(t)g − Sh( t
2

)S( t
2

)g
∣∣∣∣

∣∣∣∣

∣∣∣∣
s0

(138)
!

∣∣∣∣∣∣S(t1)g
∣∣∣∣∣∣

s0
+

∑

t1<t≤T
( 1√

t
)

γ
2
Ä

sup
τ≤t

∣∣∣∣∣∣S(τ )g
∣∣∣∣∣∣

s0
+ ‖(

ˆ
η√

t|g|2)
1
2 ‖s + r

d
2
0 ‖ḡ‖s

ä

(A7)
!

∣∣∣∣∣∣S(t1)g
∣∣∣∣∣∣

s0
+ ( 1√

t1
)

γ
2
Ä

sup
0≤t≤T

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
+ ‖(

ˆ
η√

t1 |g|2)
1
2 ‖s + r

d
2
0 ‖ḡ‖s

ä
.

Obviously, the estimate still holds if the l.h.s. is replaced by sup
t1≤t≤T

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
. Provided t1 !

1, we may absorb sup
t1≤t≤T

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
into the l.h.s. Fixing t1 to be a large multiple of r2

0 + 1 we
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may appeal (76) for sup
0≤t≤t1

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
(which we proved in Step 1, here we used s0 ≤ s) and

end up with

sup
0≤t≤T

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
! sup

0≤t≤t1

∣∣∣∣∣∣S(t)g
∣∣∣∣∣∣

s0
+ ‖(

ˆ
η√

t1 |g|2)
1
2 ‖s + r

d
2
0 ‖ḡ‖s

(76),(A7),r0+1
! r

d
2
0 (‖(

ˆ
ηr0 |g|2)

1
2 ‖s + ‖ḡ‖s).

This "nishes the proof of (76). The proof of (77) is now immediate: we use [3, Lemma 6] to
obtain
Äˆ

η√
T |(

√
T∇S(T)g, S(T)g)|2

ä 1
2 ! 1√

T

 T

T
2

dt
 √

t

0
dr( r√

t
)

d
2

ˆ
η√

T |(S(t)g − 〈S(t)g〉)r|,

and then apply the stochastic bound (76).

5.10. Proof of Proposition 4.6

Our goal is to prove, for any a = ã in B2R for R + r0 ∨
√

T,
Ä 

BR
|(T∇(

S(T)g − S̃(T)g̃
)

,
√

T
(

S(T)g − S̃(T)g̃
)

, S(T)g − S̃(T)g̃
)|2

ä 1
2

!
( r0 ∨

√
T

R
)p
ˆ

ηR(Ḡ + ¯̃G),

where Ḡ is de"ned through

Ḡ(0) := 1√
T

ˆ T

0
dt(

√
t√
T

)
d
2 (
ˆ

η(r0∨
√

t)|S(t)g|2)
1
2 + (1 ∧ r0√

T
)

d
2 ḡ. (139)

Here g̃, S̃, S̃ , and ¯̃G are the quantities corresponding to a replaced by ã. For simplicity we
only present the estimates for S(T)g − S̃(T)g̃ since the proofs for the other two quantities are
identical.

We decompose S(T)g − S̃(T)g̃ as S(T)g − S̃(T)g̃ = w1(T) + w2(T), where w1, w2 satisfy
the following equations:

∂tw1 − ∇ · a∇w1 = ∇ · ((ã − a)∇S̃(T)g̃
)

, w1(t = 0) = ∇ ·
Ä

I(Bc
2R)(g − g̃)

ä

and

∂tw2 − ∇ · a∇w2 = 0, w2(t = 0) = ∇ ·
Ä

I(B2R)(g − g̃)
ä

.

Since a = ã in B2R, w1 satis"es the assumptions of Lemma B.3, and hence
Ä 

BR

∣∣√Tw1(T)
∣∣2ä 1

2 ! 1√
T

(
√

T
R )p

ˆ T

0
dt(

√
t√
T

)p(
 

B2R\BR
w2

1(t))
1
2 .

In order to estimate the r.h.s. we write w1(T) = S(T)g − S̃(T)g̃ −w2(T) and apply the triangle
inequality, the "rst contribution

1√
T

(
√

T
R )p

ˆ T

0
dt(

√
t√
T

)p(
 

B2R\BR
|S(t)g|2)

1
2
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is controlled by the "rst term of Ḡ using [3, (204)]. The second contribution is controlled the
same way. For the third term, 1√

T (
√

T
R )p ´ T

0 (
√

t√
T )p(

ffl
B2R\BR

w2
2(t)) 1

2 dt, we use Lemma B.2:

1√
T

(
√

T
R )p

ˆ T

0
dt(

√
t√
T

)p(
 

B2R\BR
w2

2(t))
1
2 ! 1√

T
(
√

T
R )p

ˆ T

0
dt(

√
t√
T

)p 1√
t
(
 

B2R
|g − g̃|2)

1
2 .

By assumption (74), the r.h.s. ! (
√

T
R )p( r0

R )p ´ ηR(ḡ + ¯̃g), which is controlled by the second
term of Ḡ.

We are le% with (
ffl

BR
|
√

Tw2(T)|2) 1
2 . By Lemma B.2 we have

(
 

BR
|
√

Tw2(T)|2)
1
2 ! (

 
B2R

|g − g̃|2)
1
2 .

Again by locality assumption (74), the above is controlled by the second term of Ḡ. The
bound (78) is a direct consequence of Proposition 4.4 for

√
T + r0 and (75) (which only

uses Lemma B.2) for
√

T ≤ r0.

5.11. Proof of Lemma 4.8

We "rst reduce the problem to estimating (
ffl

BR
|S(T)g − S̃(T)g̃|2) 1

2 as the di#erence of the
other term Sh( T

2 )(S( T
2 )g − S̃( T

2 )g̃) can be estimated similarly. Here we recall that g̃, S̃ and
S̃ are the quantities correspond to ã in place of a. Following the proof of Proposition 4.6, we
can show for a = ã in B2R with R + r0 ∨

√
T,

( 
BR

|S(T)g − S̃(T)g̃|2)
1
2 !

( 
BR

|g − g̃|2)
1
2 + ( 

BR
|
ˆ T

0
dt
(
a∇S(t)g − ã∇S̃(t)g̃

)|2)
1
2

(74)
! ( r0

R )p
ˆ

ηR(ḡ + ¯̃g) +
Ä 

BR

∣∣
ˆ T

0
dt∇(S(t)g − S̃(t)g̃)

∣∣2ä 1
2

! 1√
T

(
√

T
R )p

ˆ T

0
dt( t

T )p(
 

B2R\BR
|S(t)g|2)

1
2 + ( r0

R )p
ˆ

ηRḡ

+ 1√
T

(
√

T
R )p

ˆ T

0
dt( t

T )p(
 

B2R\BR
|S̃(t)g̃|2)

1
2 + ( r0

R )p
ˆ

ηR ¯̃g.

To "nish the proof we have one more step

1√
T

(
√

T
R )p

ˆ T

0
dt( t

T )p(
 

B2R\BR
|S(t)g|2)

1
2 ! (

√
T

R )p
ˆ

ηRF̄(a),

which can be shown as in the proof of [3, Lemma 12].

5.12. Proof of Lemma 4.9

We only need to establish (84), (85), and (86). Throughout the proof of this lemma we use
φR := φ ∗ GR to denote the convolution of φ and the Gaussian GR (not to be confused with
φT), and similarly σR. We "rst address (84). For the φ part, we use (73) in form of

φ =
ˆ ∞

0
dt(−,φ)√t .



654 J. LU, F. OTTO, AND L. WANG

Therefore

‖φR‖2− = ‖(
ˆ ∞

0
dt(−,φ)√t

)
R‖2−

≤
ˆ ∞

0
dt‖(−,φ)√t+R2‖2− ≤

ˆ ∞

0
dt 1√

t + R2
‖(∇φ)√

t+R2
2

‖2−

(82)
!

ˆ ∞

0
dt
√

t + R2−1− d
2

d+3
! R1− d

2 .

For σ part we use decomposition (67) and appeal to the bound (82) on q:

‖σR‖ = ‖(
ˆ ∞

0
dt(∇ × q)√t)R‖2− ≤

ˆ ∞

0
dt‖(∇ × q)√t+R2‖2−

(82)
!

ˆ ∞

0
dt
√

t + R2−1− d
2

d+3
! R1− d

2 .

We now turn to (85). It is slightly di#erent from the above proof of (84) since the starting
point is the semigroup decomposition (65):

‖I(R + r∗)(aφ − 〈aφ〉)R‖2− ≤
ˆ ∞

0
dt‖I(R + r∗)(aS(t)ae − 〈aS(t)ae〉)R‖2−.

For the range
√

t ≤ R, in view of Lemma 4.7 which ensures that aS(t)ae is local on scale
1 ∨ √

t, we use Lemma C.1 on aS(t)ae − 〈aS(t)ae〉, then a Cauchy-Schwarz and the fact that
Gaussian kernel is dominated by exponential kernel, and "nally Lemma 4.7 to obtain

ˆ R2

0
dt‖(aS(t)ae − 〈aS(t)ae〉)R‖2−

(C1)
!

ˆ R2

0
dt( 1 ∨ √

t
R )

d
2

1√
t
Ä

sup
r≤1∨√

t
( r

1 ∨ √
t
)

d
2 ‖

√
t(aS(t)ae)r‖2− + ‖ḡ‖2−

ä

!
ˆ R2

0
dt( 1 ∨ √

t
R )

d
2

1√
t
Ä
‖(
ˆ

η(1∨√
t)|

√
taS(t)ae|2)

1
2 ‖2− + ‖ḡ‖2−

ä

(79),(80)
! R− d

2

ˆ R2

0
dt(1 ∨

√
t)

d
2

1√
t
(1 ∧ 1√

t
)

d
2 ∼ R1− d

2 .

For the range
√

t + R, we directly use the exponential kernel to control the Gaussian kernel,
then appeal to (D12) and Lemma 4.7:

ˆ ∞

R2
dt‖I(R + r∗)(aS(t)ae − 〈aS(t)ae〉)R‖2−

!
ˆ ∞

R2
dt‖I(R + r∗)(

ˆ
ηR|S(t)ae|2)

1
2 ‖2−

(D12)
!

ˆ ∞

R2
dt‖(

ˆ
η√

t|S( t
2

)ae|2)
1
2 ‖2−

(79)
!

ˆ ∞

R2
dt

√
t−1− d

2 d+3∼ R1− d
2 .
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We "nally prove (86). The φ part uses Poincaré inequality in convolution (92), and (84)
for r = 1,

‖(
ˆ

ηR|φ|2)
1
2 ‖2− ! ‖(

ˆ
ηR|φ − φ1|2)

1
2 ‖2− + ‖(

ˆ
ηR|φ1|2)

1
2 ‖2−

! ‖(
ˆ

ηR|∇φ|2)
1
2 ‖2− + ‖φ1‖2−

(83),(84)
! 1.

For σ part, we again use decomposition (67)

‖(
ˆ

ηR|σ |2)
1
2 ‖2− = ‖(

ˆ
ηR|

ˆ ∞

0
dt(∇ × q)√t|2)

1
2 ‖2−

! ‖(
ˆ

ηR|
ˆ 1

0
dtS̄(t) × q|2)

1
2 ‖2− +

ˆ ∞

1
dt‖(

 
BR

|(∇ × q)√t|2)
1
2 ‖2−

(B3)
! ‖(

ˆ
ηR|q|2)

1
2 ‖2− +

ˆ ∞

1
dt‖(∇ × q)√t‖2−

(82),(83)
! 1 +

ˆ ∞

1
dt

√
t−1− d

2
d+3
! 1.

5.13. Proof of Lemma 4.10

If R + √t0, the argument is direct:

‖I(R + r∗)(
ˆ

ηR|
ˆ t0

0
dτ∇S(τ )aS(t1)g|2)

1
2 ‖2−

(B3)
! ‖I(R + r∗)(

ˆ
ηR|S(t1)g|2)

1
2 ‖2−

(D12)
! ‖I(R ∨ √

t1 + r∗)(
ˆ

ηR∨√
t1 |S( t1

2
)g|2)

1
2 ‖2−.

We now assume
√t0 + R. The starting point is the following: let u satisfy the equation

−∇ · a(∇u + g) = f ,
then we have

sup
r∈[r∗,R]

ˆ
ηr|∇u|2 !

ˆ
ηR|∇u|2 + sup

r∈[r∗,R]

ˆ
ηr
Ä
|g|2 + R2|∇g|2 + R2f 2

ä
. (140)

By a slight modi"cation of [12, Corollary 3] as well as Poincaré inequality we have

sup
r∈[r∗,R]

 
Br

|∇u + g|2 !
 

BR
|∇u + g|2 + sup

r∈[r∗,R]

R2

r2

 
Br

|g −
 

Br
g|2 + R2 sup

r∈[r∗,R]

 
Br

f 2

!
 

BR
|∇u + g|2 + R2 sup

r∈[r∗,R]

 
Br

(|∇g|2 + f 2).

(141)
The proof of (140) then follows from post-processing from

ffl
Br

to
´

ηr (see the proof of
Lemma D.1 for the argument) and a simple triangle inequality. Now, since the function
w :=

´ t0
0 dτS(τ )aS(t1)g satis"es the elliptic equation

−∇ · a(∇w + S(t1)g) = −S(t0)aS(t1)g,
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using (140) with
√t0, S(t1)g, −S(t0)aS(t1)g playing the roles of R, g, f respectively, as well as

Corollary D.2, we obtain

‖I(R + r∗)(
ˆ

ηR|
ˆ t0

0
dτ∇S(τ )aS(t1)g|2)

1
2 ‖2−

(140)
! ‖I(

√
t0 + r∗)(

ˆ
η√t0 |

ˆ t0

0
dτ∇S(τ )aS(t1)g|2)

1
2 ‖2−

+ ‖ sup
r∈[r∗,

√t0]
(
ˆ

ηr|S(t1)g|2)
1
2 ‖2−

+ √
t0‖ sup

r∈[r∗,
√t0]

(
ˆ

ηr|∇S(t1)g|2)
1
2 ‖2−

+ √
t0‖I(

√
t0 + r∗) sup

r∈[r∗,
√t0]

(
ˆ

ηr|S(t0)aS(t1)g|2)
1
2 ‖2−

(D9),(D10)
! ‖I(

√
t0 + r∗)(

ˆ
η√t0 |

ˆ t0

0
dτ∇S(τ )aS(t1)g|2)

1
2 ‖2−

+ ‖I(
√

t1 + r∗)(
ˆ

η√
t1 |S( t1

2
)g|2)

1
2 ‖2−

+ √
t0‖I(

√
t1 + r∗)(

ˆ
η√

t1 |∇S( t1
2

)g|2)
1
2 ‖2−

+ √
t0‖I(

√
t0 + r∗)(

ˆ
η√t0 |S( t0

2
)aS(t1)g|2)

1
2 ‖2−

(B3)
! ‖I(

√
t0 + r∗)(

ˆ
η√t0 |S(t1)g|2)

1
2 ‖2− + ‖I(

√
t1 + r∗)(

ˆ
η√

t1 |S( t1
2

)g|2)
1
2 ‖2−

+ √
t0‖I(

√
t1 + r∗)(

ˆ
η√

t1 |∇S( t1
2

)g|2)
1
2 ‖2−

(D12)
! ‖I(

√
t1 + r∗)(

ˆ
η√

t1 |S( t1
2

)g|2)
1
2 ‖2− + √

t0‖I(
√

t1 + r∗)(
ˆ

η√
t1 |∇S( t1

2
)g|2)

1
2 ‖2−.

5.14. Proof of Lemma 4.11

We "rst prove (88). The starting point is to show for R + 1

‖(ae − 〈ae〉)R‖2− ! R− d
2 . (142)

The proof uses (C2) for ae − 〈ae〉 that is mean-zero and exactly local on scale r = 1:

‖(ae − 〈ae〉)R‖2−
(C2)
! (

ˆ
G2

R)
1
2 ‖ae − 〈ae〉‖2− ! R− d

2 .

The next step is to prove for t2 ≤ t1,

‖∇ × (S(t2)ae − ae)√t1‖2− ! 1√
t1

(1 ∧ 1√
t1

)
d
2 . (143)
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If t1 ≤ 1 the proof is completely deterministic. Using a Cauchy-Schwarz and that the Gaussian
kernel can be dominated by exponential kernel and Lemma B.2 we obtain

‖∇ × (S(t2)ae − ae)√t1‖2− ! 1√
t1

‖(a
ˆ t2

0
dτ∇S(τ )ae)√t1/2‖2−

! 1√
t1

∥∥∥
Äˆ

η√t1
2

∣∣a
ˆ t2

0
dτ∇S(τ )ae

∣∣2
ä 1

2
∥∥∥

2−
! 1√

t1
.

In the case t1 + 1 the proof follows from (82):

‖∇ × (S(t2)ae)√t1‖2− = ‖∇ × (S(t2)ae − 〈S(t2)ae〉)√t1‖2−
(82)
!

√
t1

−1− d
2 ,

and we prove (143) using a triangle inequality and (142). We are now ready to prove (88).
For simplicity we only prove estimates for the second term as the proof for the other term is
identical. Using integration by parts (119),

ˆ t1

0
dt2(1 − exp(− t3 + t2

T ))S̄(t1) × a∇S(t2)ae

= (1 − exp(− t3 + t1
T ))

ˆ t1

0
dt2S̄(t1) × a∇S(t2)ae

− 1
T exp(− t3

T )
ˆ t1

0
dt2 exp(− t2

T )
ˆ t2

0
dτ S̄(t1) × a∇S(τ )ae

(62),(64)= (1 − exp(− t3 + t1
T ))∇ × (S(t1)ae − ae)√t1

− 1
T exp(− t3

T )
ˆ t1

0
dt2 exp(− t2

T )∇ × (S(t2)ae − ae)√t1 .

Therefore using (82) and t3 + t1,
∥∥
ˆ t1

0
dt2

(
1 − exp(− t3 + t2

T )
)

S̄(t1) × a∇S(t2)ae
∥∥

2−

≤ (1 − exp(− t3 + t1
T ))‖(∇ × (S(t1)ae − ae))√t1‖2−

+ 1
T exp(− t3

T )
ˆ t1

0
dt2 exp(− t2

T )‖(∇ × (S(t2)ae − ae))√t1‖2−

(143)
! (1 ∧ t2

T ) 1√
t1

(1 ∧ 1√
t1

)
d
2 + exp(− t3

T )(1 ∧ t2
T ) 1√

t1
(1 ∧ 1√

t1
)

d
2

! (1 ∧ t2
T ) 1√

t1
(1 ∧ 1√

t1
)

d
2 .

The proof of (89) is similar, again we only write down the proof for the second term:
∥∥
ˆ t1

0
dt2 exp(− t2

T )S̄(t1) × a∇S(t2)ae
∥∥

2−

≤ exp(− t1
T )‖(∇ × (S(t1)ae − ae))√t1‖2−

+ 1
T

ˆ t1

0
dt2 exp(− t2

T )‖(∇ × (S(t2)ae − ae))√t1‖2−
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(143)
! 1√

t1
(1 ∧ 1√

t1
)

d
2 + (1 ∧ t2

T ) 1√
t1

(1 ∧ 1√
t1

)
d
2

! 1√
t1

(1 ∧ 1√
t1

)
d
2 .

For the proof of approximate locality (90), in view of Proposition 4.6 applied to S̄(t1), it
su!ces to prove that

´ t1
0 dt2(1 − exp(− t3+t2

T ))a∇S(t2)ae is approximately local on scale 1 ∨
√

t1 relative to some stationary ḡ0 with ‖ḡ0‖2− ! (1 ∧ t3
T )(1 ∧ 1√

t1
) d

2 . Now suppose a = ã in
B2R for some R + 1 ∨ √

t1, notice that S(t)ae − S̃(t)ãe satis"es the conditions of Lemma B.3,
we can estimate
Ä 

BR

∣∣
ˆ t1

0
dt2(1 − exp(− t3 + t2

T ))∇(S(t2)ae − S̃(t2)ãe)
∣∣2
ä 1

2

≤
ˆ t1

0
dt2(1 − exp(− t3 + t2

T ))
Ä 

BR

∣∣∇(S(t2)ae − S̃(t2)ãe)
∣∣2
ä 1

2

(B4)
! 1

R

ˆ t1

0
dt2(1 ∧ t3

T )(
√

t2
R )p+2

 t2

0
dτ (

√
τ√
t2

)p
Ä 

B2R\BR
(S(τ )ae − S̃(τ )ae)2

ä 1
2

! 1
Rp+3 (1 ∧ t3

T )
ˆ t1

0
dττ

p
2
Ä( 

B2R\BR
|S(τ )ae|2)

1
2 + ( 

B2R\BR
|S̃(τ )ae|2)

1
2
äˆ t1

τ
dt2

∼ 1
R (1 ∧ t3

T )(
√

t1
R )2( 1 ∨ √

t1
R )p

ˆ t1

0
dτ (

√
τ

1 ∨ √
t1

)p
Ä( 

B2R\BR
|S(τ )ae|2)

1
2

+ ( 
B2R\BR

|S̃(τ )ae|2)
1
2
ä

.

Now using the fact that R + 1 ∨ √
t1, as well as [3, (204)], we derive that

´ t1
0 dt2(1 −

exp(− t3+t2
T ))a∇S(t2)ae is approximately local on scale 1 ∨ √

t1 relative to some stationary
ḡ0 with

ḡ0(0) := 1
1 ∨ √

t1
(1 ∧ t3

T )
ˆ t1

0
dτ (

√
τ

1 ∨ √
t1

)p(
ˆ

η√
τ |S(τ )ae|2)

1
2 ,

and we "nish the proof a%er applying Lemma 4.7 on ḡ0.
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A. Properties of stochastic norm ‖ · ‖s

In this section we collect properties of the stochastic norm ‖ · ‖s de"ned in (44). The "rst
lemma presents two other equivalent formulations that are convenient for this work.

Lemma A.1. [65, Lemma 3.7] For any s ∈ (0, 2] and the corresponding c de"ned in (44),

‖F‖s ∼s sup
m∈N

〈|F|m〉 1
m

m 1
s

∼s inf
{

M > 0 : log〈exp
(

( |F|
M )s)〉 ≤ 1

}
. (A1)

Proof We "rst state the following auxiliary result that will be used later: there exist constants
c0, c1 > 0 such that for all positive integers k,

(c0k)k ≤ k! ≤ (c1k)k. (A2)

Our proof consists of three steps, with each one showing one expression of (A1) being
dominated by another.
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Step 1: middle ! le%. If ‖F‖s ≤ 1, or equivalently
〈exp

(
(|F| + c)s)〉 ≤ 1 + exp(cs),

then we will show there exists a constant C, only depending on s, such that 〈|F|m〉 1
m ≤ Cm 1

s

for all m + 1. By the Chebyshev inequality,
〈I(|F| > λ)〉 ≤ exp(−(λ + c)s)〈exp((|F| + c)s)〉 ≤ (1 + exp(cs)) exp(−λs).

Therefore, using the formula for non-negative random variable F

〈ϕ(F)〉 = ϕ(0) +
ˆ ∞

0
〈I(F + λ)〉ϕ′(λ) dλ (A3)

with ϕ(x) = xm and a change of variables λ̃ := λs,

〈|F|m〉
(A3)
≤ m(1 + exp(cs))

ˆ ∞

0
λm−1 exp(−λs) dλ ≤ m(1 + exp(cs))

s

ˆ ∞

0
λ̃

m
s −1e−λ̃ dλ̃

= m(1 + exp(cs))
s 6( m

s ).

Taking the m-th root and using the asymptotics of the Gamma function 6( m
s ) ! √

m( m
se ) m

s ,
we obtain as desired 〈|F|m〉 1

m ≤ Cm 1
s using m 1

m ! 1.
Step 2: le% ! right. Suppose 〈exp(|F|s)〉 ≤ e, then for any constant M,

〈I( |F|
M + c > λ)〉 = 〈I(|F| > M(λ − c))〉 ≤

®
1 0 < λ < c
exp

(
1 − Ms(λ − c)s) λ + c,

and therefore using again (A3) with ϕ(x) = exp(xs),

〈exp
(

( |F|
M + c)s)〉

(A3)
≤ 1 +

ˆ c

0
sλs−1 exp(λs) dλ + e

ˆ ∞

c
sλs−1 exp(λs) exp

(−Ms(λ − c)s) dλ

≤ exp(cs) + e
ˆ ∞

c
sλs−1 exp(λs) exp

(−Ms(λ − c)s) dλ.

The above integrand decreases to zero pointwise as M tends to in"nity, and is obviously
integrable for M > 1, thus the integral also converges to zero. Hence for some su!ciently
large M > 1 only depending on s, 〈exp

(
( |F|

M + c)s)〉 ≤ exp(cs) + 1, which is equivalent to
‖F‖s ≤ 1.
Step 3: right ! middle. This direction of the proof uses the algebraic moments of random
variables to construct the stretched exponential norm (44). If

〈|F|m〉 1
m

m1/s ≤ 1, ∀m ∈ N, (A4)

then, let k0 be the largest integer such that k0s < 1. In the range k + k0 + 1, which means
ks + 1, for some large C to be chosen later,

∞∑

k=k0+1

〈|F|ks〉
Cksk!

(A4)
≤

∞∑

k=k0+1

(ks)k

Cksk!
(A2)
≤

∞∑

k=k0+1

sk

Cksck
0

=
( s

Csc0
)k0+1

1 − s
Csc0

≤ s
Csc0 − s .

The lower moments are controlled by the higher moments: for 1 ≤ k ≤ k0, using Jensen’s
inequality on 〈·〉, we have

〈|F|ks〉 ≤ 〈|F|(k+k0)s〉
k

k+k0 ≤ 1 + 〈|F|(k+k0)s〉.
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Therefore, using C + 1,
k0∑

k=1

〈|F|ks〉
Cksk! ≤ C−s

Ä
k0 + (2k0)!

2k0∑

k=k0+1

〈|F|ks〉
k!

ä(A4)
≤ C−s

Ä
k0 + (2k0)!

2k0∑

k=k0+1

sk

ck
0

ä
.

Thus for "xed s, c0 we may choose C su!ciently large such that

〈exp( |F|s
Cs )〉 = 1 +

∞∑

k=1

〈|F|ks〉
Cksk! ≤ 1 + C−s

Ä
k0 + (2k0)!

2k0∑

k=k0+1

sk

ck
0

ä
+ s

Csc0 − s ≤ e.

This establishes that the middle expression dominates the third one. Hence all three norms
in (A1) are indeed equivalent.

The second property of ‖ · ‖s is a “stochastic Hölder inequality”.

Lemma A.2. For s, s1, s2 > 0 with 1
s = 1

s1
+ 1

s2
,

‖F1F2‖s !s,s1,s2 ‖F1‖s1‖F2‖s2 . (A5)
Taking F2 = 1 we obtain for any s1 ≤ s2,

‖F‖s1 ! ‖F‖s2 .

Proof The proof uses the third characterization of ‖·‖s in (A1). Indeed, for any M1, M2 > 0,
by Young’s inequality and the convexity of F 5→ log〈exp(F)〉,

log
¨

exp(| F1F2
M1M2

|s)
∂

≤ log
¨

exp( s
s1

| F1
M1

|s1 + s
s2

| F2
M2

|s2 )
∂

≤ s
s1

log
¨

exp(| F1
M1

|s1 )
∂

+ s
s2

log
¨

exp(| F2
M2

|s2 )
∂

.

Pick M1 + ‖F1‖s1 and M2 + ‖F2‖s2 , so that in view of the equivalence (A1), the r.h.s. ! 1.
This means ‖F1F2‖s ! M1M2. Since M1, M2 are arbitrary, this establishes (A5).

The inequality (A5) allows us to prove the following lemma, which is a generalization of
[3, Lemma 14]. This is at the origin in the loss of stochastic integrability from s = ∞ for ae,
to s = 2− for ∇φ and to s = 1− for ∇ψ .

Lemma A.3. Suppose for some δ ∈ (0, 1] and p < ∞ and random variables F, F0, F1, we have

F0 ≤ δ <= |F| ≤ δ
1
p F1. (A6)

Then for s, s0, s1 > 0 with 1
s0

= 1
s + 1

s1
, and s̃1 + s1 we have

‖F‖s0 ! δ
1
p ‖F1‖s0 +

Ä‖F0‖s̃1

δ

ä s̃1
s1 ‖F‖s.

Proof By the triangle inequality,
‖F‖s0 ≤ ‖I(F0 ≤ δ)F‖s0 + ‖I(F0 + δ)F‖s0 .

By our two assumptions (A6) and F0 ≤ δ, ‖I(F0 ≤ δ)F‖s0 ≤ δ
1
p ‖F1‖s0 . For the control of

‖I(F0 + δ)F‖s0 , we have by Lemma A.2,
‖I(F0 + δ)F‖s0 ≤ ‖I(F0 + δ)‖s1‖F‖s.
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The "nal step is a Chebyshev inequality:

‖I(F0 + δ)‖s1 = ‖I(F0 + δ)‖
s̃1
s1
s̃1

≤
Ä‖F0‖s̃1

δ

ä s̃1
s1 .

The last property of ‖·‖s is that for a stationary random "eld f , t 5→ ‖(
´

η√
tf 2) 1

2 ‖s is
decreasing in t:

Lemma A.4. There exists a universal constant C such that for any t ≤ T and stationary random
"eld f ,

‖(
ˆ

η√
Tf 2)

1
2 ‖s ≤ C‖(

ˆ
η√

tf
2)

1
2 ‖s. (A7)

Proof The proof uses [3, (211)] and the stationarity of f :

‖(
ˆ

η√
Tf 2)

1
2 ‖s =

Ä∥∥
ˆ

η√
Tf 2∥∥ s

2

ä 1
2 ∼

Ä∥∥
ˆ

η√
T(y)

ˆ
η√

t(x − y)f 2(x) dx dy
∥∥ s

2

ä 1
2

≤
Äˆ

η√
T(y)

∥∥
ˆ

η√
t(x − y)f 2(x) dx

∥∥ s
2

dy
ä 1

2

= ‖(
ˆ

η√
tf

2)
1
2 ‖s.

B. Deterministic estimates

The next three lemmas are fundamental deterministic estimates. Lemma B.1 is a localized
energy estimate, Lemma B.2 is a semigroup estimate that resolves the behavior in the time
variable, and Lemma B.3 is a crucial approximate locality estimate, which is the main tool for
"nding the approximate locality properties of several objects. These three lemmas are proved
in [3] and we do not present their proofs here.

Lemma B.1. [3, Lemma 3] Let T > 0, and let v, f , and g be related through the elliptic equation
1
T v − ∇ · a∇v = f + ∇ · g,

then we have for all R +
√

T,ˆ
ηR|(∇v, v√

T
)|2 !

ˆ
ηR(|

√
Tf |2 + |g|2). (B1)

Let v, f , g, and v0 be related through the parabolic equation
∂tv − ∇ · a∇v = f + ∇ · g for t > 0,

v = v0 for t = 0,

then we have for all R +
√

T,

sup
t≤T

ˆ
ηRv2(t) +

ˆ T

0
dt
ˆ

ηR
∣∣(∇v(t), v(t)√

T
)
∣∣2 !

ˆ
ηRv2

0 +
ˆ T

0
dt
ˆ

ηR(|
√

Tf |2 + |g|2).

(B2)
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Lemma B.2. [3, Lemma 1] For all R +
√

T > 0 we have
ˆ

ηR|(T∇S(T)g,
√

TS(T)g, S(T)g)|2 +
ˆ

ηR
∣∣
ˆ T

0
dt(∇S(t)g, S(t)g√

T
)
∣∣2 !

ˆ
ηR|g|2. (B3)

Lemma B.3. [3, Lemma 12] For some R +
√

T consider the following parabolic equation

∂tw − ∇ · a∇w = 0 for t > 0
w = 0 for t = 0

´
in (0, T) × B2R,

then we have for any exponent p < ∞,

sup
t≤T

( 
BR

w2(t)
) 1

2 + R(
 

BR
|∇w(T)|2)

1
2 + (

 
BR

ˆ T

0
dt|∇w(t)|2)

1
2

!p (
√

T
R )p

 T

0
dt(

√
t√
T

)p(
 

B2R\BR
w2(t)

) 1
2 . (B4)

Lemma B.3 quanti"es that w
∣∣
BR×(0,T) depends very little on w

∣∣
Bc

2R×(0,T), provided R !
√

T.
In addition, the estimate can a#ord a time average that degenerates as t 7 T. The algebraic
smallness is su!cient for our purposes.

C. CLT estimates

The following Lemma C.1, which restates [3, Lemma 13], is the main probabilistic ingredient
of this paper. It turns deterministic semigroup estimates on small scales and approximate
locality properties into CLT-cancellations on large scales. The CLT-scaling typically arises
from a combination of Lemmas B.3 and C.1. We will give a proof here since the proof in [3]
is only valid when s ∈ (1, 2].

Lemma C.1. [3, Lemma 13] Let s ∈ (0, 2]. Let F and F̄ be stationary random "elds such that
〈F〉 = 0 and suppose F is approximately local on scale

√
T relative to F̄ in the sense of (74).

Then,

sup
R+

√
T

( R√
T

)
d
2 ‖FR‖s ! sup

r≤
√

T
( r√

T
)

d
2 ‖Fr‖s +

Ä
sup

r≤
√

T
( r√

T
)

d
2 ‖Fr‖s

ä1− d
2p ‖F̄‖

d
2p
s . (C1)

Proof By other parts of the proof of [3, Lemma 13] which are valid in the full range s ∈ (0, 2],
we only need to prove the following:
Suppose F is a mean-zero stationary random "eld that is exactly local on scale r + 1, in the
sense that

F(a) = F(ã) provided a = ã on Br,

then for any convolution kernel Ḡ,

‖Ḡ ∗ F‖s ! r
d
2 (
ˆ

Ḡ2)
1
2 ‖F‖s. (C2)
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The proof is inspired by [66, Lemma 2.3]. We divide the proof into three steps:
Step 1: A CLT in iid symmetric random variables.
Suppose X1, . . . , Xn are iid symmetric random variables (in other words, the law of X1 equals
to the law of −X1), then for any real numbers w1, . . . , wn, we claim

‖
n∑

i=1
wiXi‖s ! (

n∑

i=1
w2

i )
1
2 ‖X1‖s. (C3)

Without loss of generality we assume ‖X1‖s = 1. By Lemma A.1, it is su!cient to show for
any integer m + 1,

〈(
n∑

i=1
wiXi)2m〉 1

2m ≤ C(2m)
1
s (

n∑

i=1
w2

i )
1
2 .

Let c0, c1 be constants as de"ned in (A2). Since the Xi are symmetric, if we expand
〈(

∑n
i=1 wiXi)2m〉, then all odd powers of Xi will vanish, and therefore

〈(
n∑

i=1
wiXi)2m〉 =

∑

m1+···+mn=m

Ç
2m

2m1, . . . , 2mn

å n∏

i=1
〈(wiXi)2mi〉

(A1)
≤

∑

m1+···+mn=m

(2m)!∏n
i=1(2mi)!

n∏

j=1
w2mj

j
(
C(2mj)

1
s
)2mj

(A2)
≤ C2m ∑

m1+···+mn=m

c2m
1 (2m)2m

∏n
i=1 c2mi

0 (2mi)2mi

n∏

j=1
w2mj

j (2mj)
2mj

s

≤ ( Cc1
c0

)2m(2m)2m ∑

m1+···+mn=m

n∏

i=1
(2mi)2mi( 1

s −1)w2mi
i .

Let ϕ(t) = (2m)2m ∑
m1+···+mn=m

∏n
i=1(2mi)2mi(t−1)w2mi

i . A direct calculation (only using
log(2mi) ≤ log(2m)) yields the di#erential inequality

ϕ′(t) = (2m)2m ∑

m1+···+mn=m

Ä n∏

i=1
(2mi)2mi(t−1)w2mi

i
äÄ n∑

j=1
2mj log(2mj)

ä

≤ 2m log(2m)ϕ(t).

The value t = 1
2 is special as it corresponds to s = 2, since we have

ϕ( 1
2

) = (2m)2m ∑

m1+···+mn=m

n∏

i=1
(2mi)−mi w2mi

i

= (2m)m ∑

m1+···+mn=m

mm
∏n

i=1 mmi
i

n∏

j=1
w2mj

j

(A2)
≤ (2m)m ∑

m1+···+mn=m

cm
1 m!

∏n
i=1 cmi

0 mi!

n∏

j=1
w2mj

j

= (2m)m( c1
c0

)m ∑

m1+···+mn=m

Ç
m

m1, · · · , mn

å n∏

i=1
w2mi

i = (2m)m( c1
c0

)m(
n∑

i=1
w2

i )m.
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Therefore we obtain by integration for t + 1
2 (or s ≤ 2),

ϕ(t) ≤ (2m)m( c1
c0

)m(
n∑

i=1
w2

i )m exp
(

2m log(2m)(t − 1
2

)
)

= (2m)m( c1
c0

)m(
n∑

i=1
w2

i )m(2m)2m(t− 1
2 ) = (2m)2mt( c1

c0
)m(

n∑

i=1
w2

i )m.

Finally we take the 2m-th root:

〈(
n∑

i=1
wiXi)2m〉 1

2m ≤ Cc1
c0

(2m)
1
s ( c1

c0
)

1
2 (

n∑

i=1
w2

i )
1
2 .

This "nishes the proof.
Step 2: From symmetric random variables to mean-zero random variables; we claim that (C3)
holds just under the assumption that 〈X1〉 = 0.

For any X such that 〈X〉 = 0, let Y be independent of X and equal to −X in distribution.
Let µ be the distribution of X so that f 5→

´ ´
f (x − y) dµ(x) dµ(y) denotes the distribution

of X + Y , which is obviously symmetric. It remains to show
‖X + Y‖s ∼ ‖X‖s. (C4)

The “!” direction is a direct consequence of the triangle inequality. For the other direction,
notice that for any convex function f ,ˆ ˆ

f (x − y) dµ(x) dµ(y) +
ˆ

f (x −
ˆ

y dµ(y)) dµ(x) =
ˆ

f (x) dµ(x). (C5)

We apply this to f (x) = exp
(

(|x|+c)s)−exp(cs), which is convex for c de"ned in (44). Hence,
(C5) turns into the estimate ‖X + Y‖s " ‖X‖s. This su!ces to prove equivalence (C4).
Step 3: Conclusion. Without loss of generality we assume Ḡ is even, which can be removed in
view of Step 4 of the proof of [3, Lemma 13]. We divide Rd into cubes of size 3r, so that for a
"xed x ∈ [0, 3r)d, {F(3z + x)}z∈rZd are i.i.d. Therefore by stationarity, Step 2, passing to the
limit n → ∞,

‖Ḡ ∗ F‖s = ‖Ḡ ∗ F(0)‖s = ‖
ˆ

Rd
Ḡ(x)F(x) dx‖s

= ‖rd ∑

z∈rZd

 
[0,3r)d

Ḡ(x + 3z)F(x + 3z) dx‖s

! rd
 

[0,3r)d
‖

∑

z∈rZd

Ḡ(x + 3z)F(x + 3z)‖s dx

! rd
 

[0,3r)d
(
∑

z∈rZd

Ḡ2(x + 3z))
1
2 dx‖F‖s

! rd(
 

[0,3r)d

∑

z∈rZd

Ḡ2(x + 3z) dx)
1
2 ‖F‖s

= r
d
2 (
ˆ

Rd
Ḡ2)

1
2 ‖F‖s.

The rest of the proof for this lemma follows from Steps 4-6 of [3, Lemma 13].
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D. Large scale regularity for stochastic homogenization

Below we present the crucial elliptic and parabolic large scale regularity estimates on scales
larger than r∗ de"ned in (49). This slightly di#ers from [16, Theorem 8.7], [3, Corollary
6] since we use exponential averaging

´
ηR as opposed to the usual averaging

ffl
BR

. In
Theorem 1.2, we use the growth properties (27) of second-order corrector and $ux (ψ , .)
and the stochastic moment of r∗ to derive stochastic bounds of r∗∗.

Lemma D.1 (C0,1-estimate). The quantity r∗ satis"es the following:

(1) For every R + r∗ and u satisfying
∂tu − ∇ · a∇u = 0, in (−R2, 0) × Rd

we have, for every r ∈ [r∗, R],

(
 0

−r2
dt
ˆ

ηr|∇u(t)|2)
1
2 ! (

 0

−R2
dt
ˆ

ηR|∇u(t)|2)
1
2 , (D1)

( 0

−r2
dt
ˆ

ηru2(t)
) 1

2 !
( 0

−R2
dt
ˆ

ηRu2(t)
) 1

2 . (D2)

(2) [3, Corollary 6],[13, Theorem 1.2] For every R + r∗, u satisfying
−∇ · a∇u = 0 in BR,

we have, for every r ∈ [r∗, R],

(
 

Br
|∇u|2)

1
2 ! (

 
BR

|∇u|2)
1
2 . (D3)

Proof Step 1: we prove (D1) from the usual version of C0,1 estimate [16, Remark 8.8]: for any
R + r + r∗(0),

(
 

B(P)
r

|∇u|2)
1
2 ≤ C(

 
B(P)

R

|∇u|2)
1
2 where B(P)

r := (−r2, 0) × Qr. (D4)

Without loss of generality we assume r = 1 and R + 2. We "rst claim that exponential average
can be recovered from the ordinary one as follows:ˆ

ηR|∇u|2 ∼
ˆ ∞

R
dρ

ρd

Rd+1 exp(−ρ

R )
 

Bρ

|∇u|2. (D5)

Indeed, let S(ρ) = {x ∈ Rd : |x| = ρ} be the d-dimensional sphere of radius r. Then by
Fubini’s theoremˆ ∞

R
dρ

ρd

Rd+1 exp(−ρ

R )
 

Bρ

|∇u|2 ∼
ˆ ∞

R

dρ

Rd+1 exp(−ρ

R )
ˆ ρ

0
dρ′

ˆ
S(ρ′)

|∇u|2

∼
ˆ R

0

dρ′

Rd+1

ˆ
S(ρ′)

|∇u|2
ˆ ∞

R
dρ exp(−ρ

R )

+
ˆ ∞

R

dρ′

Rd+1

ˆ
S(ρ′)

|∇u|2
ˆ ∞

ρ′
dρ exp(−ρ

R )

∼
ˆ R

0

dρ′

Rd

ˆ
S(ρ′)

|∇u|2 +
ˆ ∞

R

dρ′

Rd exp(−ρ′

R )
ˆ

S(ρ′)
|∇u|2
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∼
ˆ

ηR|∇u|2.

We now prove (D1). The strategy is to divide the r integral into (1, R) where we may appeal
to (D4), and (R, ∞) where we use the faster decay of η1 compared to ηR: 0

−1
dt
ˆ

η1|∇u|2

(D5)∼
ˆ 0

−1
dt
ˆ R

1
dρρd exp(−ρ)

 
Bρ

|∇u|2 +
ˆ 0

−1
dt
ˆ ∞

R
dρρd exp(−ρ)

 
Bρ

|∇u|2

!
ˆ R

1
dρρd+2 exp(−ρ)

 0

−ρ2
dt
 

Bρ

|∇u|2 + R2
 0

−R2
dt
ˆ ∞

R
dρρd exp(−ρ)

 
Bρ

|∇u|2

(D4)
!

ˆ R

1
dρρd+2 exp(−ρ)

 0

−R2
dt
 

BR
|∇u|2 +

 0

−R2
dt
ˆ ∞

R
dρ

ρd

Rd+1 exp(−ρ

R )
 

Bρ

|∇u|2

(D5)
!

 0

−R2
dt
 

BR
|∇u|2 +

 0

−R2
dt
ˆ

ηR|∇u|2

!
 0

−R2
dt
ˆ

ηR|∇u|2.

Here the second term of the third inequality uses that Rd+3 exp(−ρ) ! exp(−ρ
R ) when ρ +

R + 2. This establishes (D1).
Step 2: proof of (D2). The proof starts from the usual version of C0,1 estimate without gradient
[16, Theorem 8.7]: for any R + r + r∗(0),

(
 

B(P)
r

|u −
 

B(P)
r

u|2)
1
2 ! r

R (
 

B(P)
R

|u −
 

B(P)
R

u|2)
1
2 . (D6)

It su!ces to prove

(
 

B(P)
r

|u|2)
1
2 ! (

 
B(P)

R

|u|2)
1
2 . (D7)

since we can then change spatial averaging from
ffl

BR
to
´

ηR using the same post-processing
argument as above.

Let ur :=
ffl

B(P)
r

u. W.l.o.g. we may assume R + 2r. Now we can replace r with 2r in (D6)
and get

(
 

B(P)
2r

|u − u2r|2)
1
2 ! r

R (
 

B(P)
R

|u − uR|2)
1
2 .

Thus we can estimate

|ur − u2r| = |
 

B(P)
r

(u − u2r)| ! (
 

B(P)
r

|u − u2r|2)
1
2

! (
 

B(P)
2r

|u − u2r|2)
1
2 ! r

R (
 

B(P)
R

|u − uR|2)
1
2 . (D8)

We now obtain (D7) by telescoping

(
 

B(P)
r

|u|2)
1
2 ! (

 
B(P)

r
|u − ur|2)

1
2 + |ur|
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(D6)
! r

R (
 

B(P)
R

|u − uR|2)
1
2 +

∑

r̃∈[r,R)
dyadic

|ur̃ − u2r̃| + |uR|

(D8)
! r

R (
 

B(P)
R

|u|2)
1
2 +

∑

r̃∈[r,R)
dyadic

r̃
R (
 

B(P)
R

|u − uR|2)
1
2 + |uR|

! (
 

B(P)
R

|u|2)
1
2 .

The following corollary is a convenient post-processing of Lemma D.1 from time intervals to
single time slices.

Corollary D.2. For any
√

t + r + r∗, we have

(
ˆ

ηr|∇S(t)g|2)
1
2 ! (

ˆ
η√

t|∇S( t
2

)g|2)
1
2 , (D9)

(
ˆ

ηr|S(t)g|2)
1
2 ! (

ˆ
η√

t|S( t
2

)g|2)
1
2 . (D10)

Proof We will only prove (D9) as the proof of (D10) is identical. The estimate uses (D1) and
the fact that the function τ 5→

´
η√

t|∇S(τ )g|2 is approximately non-increasing for any g, that
is, for any t1 ≤ t2 ≤ r2,

´
ηr|∇S(t1)g|2 !

´
ηr|∇S(t2)g|2 with the constant in ! independent

of r, t1, t2, g:

(
ˆ

ηr|∇S(t)g|2)
1
2 ! (

ˆ
ηr

 t

t−r2
dτ |∇S(τ )g|2)

1
2

(D1)
! (

ˆ
η√

t

 t

t
2

dτ |∇S(τ )g|2)
1
2

! (
ˆ

η√
t|∇S( t

2
)g|2)

1
2 .

Remark D.3. We further post-process Corollary D.2 into the following: for any t, r + 0,

‖I(r + r∗)(
ˆ

ηr|∇S(t)g|2)
1
2 ‖s ! ‖I(r ∨

√
t + r∗)(

ˆ
ηr∨√

t|∇S( t
2

)g|2)
1
2 ‖s, (D11)

‖I(r + r∗)(
ˆ

ηr|S(t)g|2)
1
2 ‖s ! ‖I(r ∨

√
t + r∗)(

ˆ
ηr∨√

t|S( t
2

)g|2)
1
2 ‖s. (D12)

The argument uses the fact that the function [0, r2) 4 t 5→
´

ηr|∇S(t)g|2 and [0, r2) 4 t 5→´
ηr|S(t)g|2 are both approximately non-increasing for any g (see the proof of [3, Lemma 3]).
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