Communications in Partial Differential Equations

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/Ipde20

©

Taylor & Francis

Taylor & Francis Group

Optimal artificial boundary conditions based on
second-order correctors for three dimensional
random elliptic media

Jianfeng Lu, Felix Otto & Lihan Wang

To cite this article: Jianfeng Lu, Felix Otto & Lihan Wang (2024) Optimal artificial
boundary conditions based on second-order correctors for three dimensional random
elliptic media, Communications in Partial Differential Equations, 49:7-8, 609-670, DOI:
10.1080/03605302.2024.2374568

To link to this article: https://doi.org/10.1080/03605302.2024.2374568

% Published online: 17 Jul 2024.

\]
C;/ Submit your article to this journal (&

||I| Article views: 79

A
& View related articles &'

@ View Crossmark data (&'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=lpde20


https://www.tandfonline.com/journals/lpde20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03605302.2024.2374568
https://doi.org/10.1080/03605302.2024.2374568
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2024.2374568?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2024.2374568?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2024.2374568&domain=pdf&date_stamp=17%20Jul%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2024.2374568&domain=pdf&date_stamp=17%20Jul%202024
https://www.tandfonline.com/action/journalInformation?journalCode=lpde20

Taylor & Francis

Taylor & Francis Group

2024, VOL. 49, NOS. 7-8, 609-670

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e
https://doi.org/10.1080/03605302.2024.2374568

‘ '.) Check for updates ‘

Optimal artificial boundary conditions based on second-order
correctors for three dimensional random elliptic media

Jianfeng Lu, Felix Otto, and Lihan Wang

Mathematics Department, Duke University, Durham, NC, USA; Max Planck Institute for Mathematics in the
Sciences, Leipzig, Germany; Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA,
USA

ABSTRACT ARTICLE HISTORY
We are interested in numerical algorithms for computing the electrical Received 4 June 2022
field generated by a charge distribution localized on scale £ in aninfinite ~ Accepted 26 June 2024
heterogeneous medium, in a situation where the medium is only known
in a box of diameter L > _6 around _the support of the charg_e.. We Stochastic homogenization:
propose a boundary condition that with overwhelming probability is artificial boundary condition;
(near) optimal with respect to scaling in terms of £ and L, in the setting correctors; multipoles;
where the medium is a sample from a stationary ensemble with a finite random media

range of dependence (set to be unity and with the assumption that

£ > 1). The boundary condition is motivated by quantitative stochas-

tic homogenization that allows for a multipole expansion. This work

extends, the algorithm in which is optimal in two dimension, and thus

we need to take quadrupoles, next to dipoles, into account. This in turn

relies on stochastic estimates of second-order, next to first-order, cor-

rectors. These estimates are provided for finite range ensembles under

consideration, based on an extension of the semi-group approach of

Gloria and Otto.

KEYWORDS

1. Introduction and main results

Consider a conducting medium as described by a symmetric A-uniform coefficient field a =
a(x) in d-dimensional space, that is, for any x, & € R4

MEPP < £-a(xE < |&]% (1)

Consider a localized charge distribution that is overall neutral, as described by a compactly
supported dipole density g. Let us give a sense to its characteristic scale £ by assuming that it
is of the form

g(x) = g(’g) @)

for some sufficiently smooth g supported in the unit ball. We are interested in the field Vu
the charge generates, which is the decaying solution of the elliptic divergence-form equation

V-(@Vu+g) =0 in R, (3)
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In this paper, we address the following question: Suppose we only know the medium a
in some box Q. := (—2L,2L)%, to what precision may we infer the value of Vu? What is a
practical algorithm to retrieve it? Heuristically, one expects Vu(x) to decay as a dipole, i.e., like
(I%I)d’ thus we expect that changing the coefficient field a outside the box Q,;, will affect Vu
to order (%)d, and imposing homogeneous Dirichlet conditions on dQ, would do no worse
- and this would be the end of the story and the paper.

In this paper, however, we consider a more specific situation, namely when a is sampled
from a stationary ensemble (-), which puts us into the context of stochastic homogenization.
More precisely, we shall assume that (-) is of finite range, which we set to be unity without
loss of generality. This means that for two sets D and D' C R? with distance larger than 1,
the restrictions a|p and a|p are independent. What information may we retrieve in this case?
Consider again changing the coefficient field outside Q7 (now with L >> 1) but keeping the
statistical ensemble, heuristically, we expect that due to stochastic cancellations, the impact
on Vu reduces to ﬁ(%)d. Indeed, the additional attenuation factor \/% comes from the
Central Limit Theorem (CLT) scaling involving the square root of the relevant volume, non-
dimensionalized by the correlation length. In fact, this precision on inferring the value of
Vu cannot be improved, as the following lower bound on the variance of Vu from previous
work [2], conditioned on the restriction aq,,, shows, which we expect to hold for generic
ensembles.

Theorem 1.1. [2, Theorem 2] There exists a stationary, unit-range ensemble (-) supported on
a’s satisfying (1) with the following property: Consider the solution u of (3), where g is of the
form (2) for some € and g, then there exists a radius R such that for any @ = ﬁd)(%)for some

sufficiently smooth & supported in' By with [ & = 1,
2 L 1 /¢ 1.4 .
<| /a)Vu - (/qu | a|QZL)| >2 > E(Z)d(f)2 provided
Here the radius R and the constant C depend only on the ensemble, g, and @.

>{>C.

Ol =

In [2], a practical algorithm, that saturates this scaling for d = 2, was proposed and
analyzed. The error of such an algorithm is O((%)d (%)1_) in any dimension. In this paper, we
tackle the more physically relevant case of d = 3, which requires a substantial modification
of the algorithm and its analysis.

We will propose a deterministic algorithm, Algorithm 1, that involves the realization a only
in terms of its restriction a|q,, . The algorithm saturates the lower bound of Theorem 1.1 in
terms of scaling. More specifically, by solving a couple of auxiliary boundary value problems
with homogeneous Dirichlet boundary conditions on Qay, Q% > and Q% 1> this algorithm

constructs Dirichlet boundary data uy on dQr, which in turn defines uD) the output of the
algorithm, by solving

—V.avull = v -gin Qp, ull) = ur on 9Qy. (4)
For L, ¢, R > 1 and with overwhelming probability, this algorithm saturates the lower bound

of Theorem 1.1, with the little caveat that the CLT exponent, % for d = 3, has to be replaced
by 8 < % Part of the probabilistic nature of the statement is contained in the random radius

'Throughout this work we use Bg to denote the ball {|x| < R}.
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T4%> Which can be interpreted as the scale from which onwards stochastic homogenization is
effective.

Theorem 1.2. Letd = 3 and (-) be a stationary, unit-range ensemble supported on a’s satisfying
(1). Let g be of the form (2) for some £ and g, let u denote the solution of (3), and u'l) be the
output of Algorithm 1 for some L > {. Then for any § < %, there exists a random radius 1.
such that conditioning on £ > t., with probability at least 1 — exp(—Ll/C), we have for any
R € [rys L]’Z

1 L L
(+ 1ve® —wP)? < U provided ~ = €= C.
Br L L C
Moreover, the radius 1. satisfies
(exp(rfy)) < C. (5)

Here C denotes a constant that depends only on A, g, B and & appearing in Theorem 1.1.

We believe that with some additional work, it is possible to derive an “a posteriori” style
result similar to [2], that is, we could define some computable L that plays the same role as
t4x in Theorem 1.2. We also comment here that Theorem 1.2 holds with any 8 < 2 ford > 4,
and the algorithm is thus also near-optimal when d = 4. Obtaining the optimal algorithm for

d > 5 requires computing correctors of order three or higher and we do not discuss it here.

Before we further discuss ideas of Algorithm 1 and the proof of the theorem, let us first
compare our result with the previous work [2]. A main difference lies in the introduction
of the functions 1/f(TL) and the corresponding coefficients C(TL), which are approximations of
second-order correctors and quadrupoles that will be introduced below. These are available
for d > 2 and indeed necessary for the algorithm to (almost) reach the CLT-scaling 8 < %
This aspect of difference will be discussed in more details in Section 2.1. A more technical
difference is that Algorithm 1 uses a different approximation ¢(TL ) of the first-order corrector

¢, compare (6) to [2, (18)]. The difference lies in the massive term %qb(TL). The reason of such
change is discussed in Section 2.2.

Algorithm 1 Optimal algorithm for the approximate solution u!) in Qr

1: For B8 € (1, %) sete = % —Band T = 121=¢) Fori=1,...,d, solve for the approximate

first-order corrector ¢I.(I‘T):

1
?¢§f~T’ ~V-aVe =V -ae inQu, ¢ =0 ondQy. (6)
2. Calculate the approximate homogenized coefficients via
azL)ei = / qu,L), (7)
where
@ . ale: + VoD
dir = a(e; + ¢i,T) (8)

and w(x) = L—ldc?)(%) with @ as in Theorem 1.1.

2Here f denotes spatial average.
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3: Find ft;,L) on 0Qy:

i) =65 (V9= [ &GP - )¥ g0 ©)
where G (x) := ———~— is the Green function for the constant-coefficient operator
h 477‘(11;[“)*1/29:‘
-V a;lL)V.
4: Solve for approximate first-order flux correctors UiELT) = {O',-;-I];)T}j,k:
Lo () () @) . 0
ik T — Aoyor = 9qy r — %y in QZL’ Oy = 0 on 8Q§L- (10)

5. Solve for approximate second-order correctors wl] -

w,]T Veavy =V ¢fa—ole inQy, Y =00n0Qy. (1)
6: For the indices

(l’]) € \7 = {(1) 2)) (1> 3)’ (2) 3)) (27 2), (37 3)}) (12)

calculate
o)
L L L L L
&1 = / g V(Zqﬁ”av;;ﬂz—aij)(w}j} —2uitn), ()

ahu
where Vhi (1) denote the a L) _harmonic polynomials

(L)

1 ay;
v =0- 59 ) — (L’f) ). (14)
A1
7. Obtain u;lL) as
D= gt +Z(/g VDG + Y ;G (15)
(i)eT

8: Solve for ul) (here and for the rest of the paper we adopt Einstein’s summation conven-
tion for repeated indices):

—V.avull = v -gin Qr, ul = 1+ ¢ 8 + w;L%B,J)u;L) on 9Q)y. (16)

Related works

Quantitative stochastic homogenization, which dates back to Yurinskii [4], has been inten-
sively studied during the past decade. Naddaf and Spencer [5, 6] introduced the notion of
spectral-gap inequality and captured the CLT-type optimal scaling in stochastic homogeniza-
tion under the condition of small ellipticity contrast, which is removed in [7-9] for discrete
coeflicients. The spectral-gap inequality is then refined to logarithmic Sobolev inequality in
[10] and further generalized to ensembles with potentially thick correlation tails in [11, 12].
Another approach by Armstrong and Smart [13], Armstrong, Kuusi and Mourrat [14, 15]
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uses a variational approach and obtain similar results. See [16] for a nice monograph. The
Gaussianity of the energy of the solution was first identified by Nolen [17], and has been
extended to homogenized coeflicients by Gloria and Nolen [18], both for the representative
volume element method. The covariance structure of correctors have been studied in [19],
based on the annealed Green’s function estimates in [10]. This is extended to study the
fluctuation of homogenization error in [20]. Scaling limit of the correctors have been studied
n [21]. Second-order correctors have been studied in [22, 23]. Correctors of higher order
have been constructed in [24] up to order of (%1 with suboptimal error estimate in two-scale
expansion, which is improved to be optimal in [25]. Higher-order correctors up to order d
were recently constructed in [26] using a distributional formulation. In a perturbative regime,
it is possible to define homogenized coefficients up to order 2d [27] by using a breakthrough
result of Bourgain [28], in its refined form established in [29].

Developing efficient numerical algorithms has been a major motivation behind the study
of quantitative stochastic homogenization, see e.g., the review [30]. Let us just mention a
few directions here: Quantitative error estimates for computation of effective coeflicients in
stochastic homogenization have been studied in [31-34], where strategies using different
boundary conditions or massive terms have been studied. Representative volume method,
a popular approach used by engineers, are systematically analyzed in [35, 36]. Iterative
multigrid methods have been studied in [37-39]. There have also been abundant research
in numerical homogenization where the coefficients do not necessarily arise from random
setting. An approach using an embedded corrector problem for approximating homogenized
coeflicients has been considered in [40]. Variance reduction methods have been developed
in [41, 42]. Multiscale finite element methods have been developed in [43, 44] and extended
in [45], see [46] for a review. Heterogeneous multiscale methods have been developed and
studied in [47, 48] and many other works, see [49, 50] for reviews. In [51] they proposed
a method that aims at recovering local oscillations by solving a local problem using the
approximate solution of the homogenized equation as its boundary condition. Localized
orthogonal decomposition approaches have been studied in [52, 53]. Relationship between
numerical homogenization and Bayesian inference have been investigated in [54, 55].

2. Ideas behind the algorithm
2.1. Correctors, homogenized coefficients and fluxes, effective multipoles

Let us recall the standard first-order correctors ¢;, which play a central role in homogenization
theory [56, 57]. For each direction i = 1,...,d, the first-order corrector ¢; is defined such
that x; + ¢; is a-harmonic>:

—V -a(e;+ Vg;) = 0. (17)
Provided the ensemble is stationary and ergodic, the operator —V -aV homogenizes on large

scale to —V - g5V, with the constant and deterministic homogenized coeflicient aj, given by

ape; := (qi) = LhTI;lO qi where gq;:=a(e; + V¢;). (18)
Br

3See below for a uniqueness argument.
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Given ay,, we define 7, to be the solution of the homogenized equation
~V.-ayViy, =V -g. (19)

The flux corrector o, introduced in [12] in the setting of stochastic homogenization (see
earlier ideas in periodic homogenization in [58, Proposition 7.2]), plays a convenient role
in quantitative analysis. Since q; — ape;, which can be viewed as a (d — 1)-form, has zero
expectation and is divergence free in view of (17) and (18), there exists a (d — 2)-form, which
can be expressed as a skew-symmetric tensor field o;, such that

qi — ane; =V - 0j, (20)

where we use the convention (V - 0;); = 9k0ijr. Cleatly o; is only determined up to a (d — 3)-
form, so that a gauge has to be chosen to make its construction unique. It is convenient to
choose

—Aoji = 0jqik — 0kqij = V - (qikej — gijex)- 1)
With the help of the o;’s one can express the homogenization error in divergence form: for any

ap-harmonic function uy, the two-scale expansion (1 + ¢;0;)uy, is close to being a-harmonic
in the sense of

=V -aV(Q1 + ¢;0)uy =V - (p;a — 0;)Vojuy,. (22)

The functions (¢, o) are uniquely determined up to a random constant by requiring (V¢, Vo)
to be stationary fields (i.e. Vg (a(-+2),x) = V¢(a,x+2z) foranyx,z € R?) with finite second
moments and zero mean [12, Lemma 1]. In dimension 3 under the unit-range assumption,
(¢, o) themselves are stationary, and have finite stretched exponential moments [16, Theorem
4.1, Proposition 6.2], [3, Corollary 2]. Hence (¢, o) are uniquely determined by requiring
(¢) = (o) = 0 (see discussions in [12]).

In dimension 3, it is well-known that enriching the two-scale expansion by second-order
correctors ;i leads to a better approximation [23]. More precisely, given an aj,-harmonic
function uj,, we may improve our two-scale expansion to (1 + ¢;0; + v;;0;;)up, which is
a second-order approximation of an a-harmonic function. The characterizing property of
second-order correctors is the following equation*

-V. avw,-j =V. ((ﬁﬂl — o,-)ej. (23)
Equation (23) encodes the following property of the v;s: for an ay-harmonic quadratic
polynomial uy, (1 + ¢;9; + i9;j)uy, is exactly a-harmonic. In practice we only need {1;};; in
form of linear combinations Ej;1;; with coefficients {E;;};; that are symmetric and satisfy the
trace condition ay,;Ej; = 0, which is a five dimensional space for d = 3. Hence, it suffices to
restrict to {jj}(ije7> where J is the index set defined in Algorithm 1.

Analogously to first-order corrector case, we need second-order flux correctors, which
were first introduced in [23] for quantitative analysis. Since by (23),

pij = aVyi; + (¢ia — oi)e; (24)

is divergence free, there exist Wj; = {Wjjkn}kn=1,....d» Skew-symmetric with respect to k and n,
such that

pij = V. \I-‘,'j. (25)

4It might be possible to construct ¥ via —V - a(Vij + ¢ie)) = € - (qj — ape;) in order to completely avoid computing
oj. We will not discuss the details here.
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Since a is symmetric, the second-order homogenized coefficient vanishes (see discussions in
[23, calculations on page 5] or [1, Corollary 1]). Similar to the argument for o;, W;; can be
viewed as a (d — 2)-form and is determined only up to a (d — 3)-form, and the following
choice of gauge is convenient:

_A"pijkn = akpijn - 8nPijk- (26)

We learn from (23) that Vy;, and thus p;; by (24), and VWi, by (26), can be constructed
to be stationary if and only if ¢; and o; are, which is the case only for d > 2. Although
W is not needed to formulate our algorithm, it will be used in our analysis to upgrade the
homogenization error (22) from first to second-order: for any a,-harmonic function u,

=V .-avV(Q1 + ¢;0; + lﬁijajj)uh =-V. (w,-ja — \IJ,-j)Valjuh.

The second-order correctors ¥ and W are not expected to be stationary, but rather to grow
d 1

at a rate a bit worse that 2 — 7 = 5 away from the origin, which we capture through an
exponent 8 < g = % that measures the amount the growth rate stays below quadratic. The

first-order correctors ¢ and o are stationary for d > 2, but they are of course not bounded
on RY; we capture this through an exponent « € (%, 1) that measures the amount the growth
rate below linear. Following [1, 23], we introduce the random radius 7. > 1 starting from
which we have the desired growth rate:

S 1w~ f @) < B forallr 2 @7)
T B, B, r
and
L 1@ = () forallr = (28)
By

For convenience we takex =1 — ¢ and 8 = % — ¢ for the ¢ > 0 fixed in Algorithm 1. This
T+« 18 the one that appears in the statement of Theorem 1.2.

As observed in [1, 59], if we solve the boundary value problem
—V.aVu; =V .ginQy, u; = (14 ¢;0; + wl]azj)ﬂh on 0Q)y,

the solution has error O((%)d), as it fails to capture the correct multipole behavior, which is
the far-field behavior generated from the intrinsic moments of the localized rh.s. V - g. We
now recall the discussions in [1] and describe the far-field behavior of u in order to design the
correct boundary condition on dQy, to solve (4).

Let X be the space of a-harmonic functions of growth rate < k, more precisely”
1
Xy = {u : =V .aVu =0, lim supRl_k(][ |Vu|2) ? < oo},
R—o0 Bgr

and Yi(r) be a-harmonic functions outside B, with decay rate > k + d — 2, more precisely,

1 1
Yi(r) := {u : =V .aVu=0inB;, lim sukaJ“(d*z)Jrl (ﬁ |Vu|2) ? < oo}
BC

R—o00 R

SHere BS := RY\B;.
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We also use X,i‘ and Y]i‘(r) to denote similar spaces with aj, in place of a in the definition of
X and Y(r), respectively. The spaces Xj and Yy (r) are related through the bilinear form: for
u € Yi(r)and v € Xi,

(U, v)g == — / V1 - (vaVu — uaVv), (29)

where the cutoff function # = 1 in B, and n = 0 in BY,. Note that the value of the integral
does not depend on the choice of 1 since vaVu — uaVv is divergence-free outside of B,. We
use (U, Vi)g, to denote the bilinear form similarly defined as (29) with ay, in place of a. In
the case of a constant coefficient ay,, the spaces Xl}(‘ and Y,i‘(r) are well-understood: X,’z is the
finite-dimensional linear space spanned by aj,-harmonic polynomials of degree at most k,
while Y]i'(r) is the infinite-dimensional linear space spanned by k-th or higher derivatives of
Gy, the Green’s function of —V - a;, V. In the language of electrostatics, the quotient spaces
Y{“(r) / Yé’(r) and Yé’(r) / Yé‘(r) are spanned by first and second derivatives of Gy, respectively,
and thus represent dipoles and quadrupoles. As shown in [1, Proposition 5], similar to the
pairing (-, -)4, providing an isomorphism between Y{'(r) / Yg‘(r) and (Xé‘ /Xg)*, (+, ) provides
an isomorphism between Y (r)/Y3(r) and (X2/Xo)*. For Liouville principles which describe
the equivalence between spaces X,]j and X, see also [14, 22].

By [1, Lemma 4], we know that u € Y;(£). Therefore, by [1, Theorem 2], under the
assumptions (27) and (28), for £ > 1., there exists a uy, € Y{1(£), uniquely defined up to
an element in Yg’(ﬁ) by

(u,v)a = (Up, Vi)ay,, foranyvy, € Xg where v := (1 + ¢;0; + ¥;j0;)vi, € Xa, (30)

that captures the effective multipole behavior of u. The condition £ > 7., which corresponds
to £ > %) in Theorem 1.2, can be understood as a condition ensuring that the right-hand
side g (whose characteristic scale is £) is smooth, in the sense that it does not vary on too small
scales, as is usually required for right-hand sides in homogenization. We state a modification

of this result in the following Proposition 2.1.

Proposition 2.1. Consider a coefficient field a on R® satisfying (1). Suppose that there exists a
tensor ay, and, for i = 1,2,3, a scalar field ¢; and a skew-symmetric tensor field o; such that
(17), (18), and (20) hold, and for i,j = 1,2, 3, a scalar field Vij and a skew-symmetric tensor
field Wj; such that (23), (24), and (25) hold. For fixede > Oanda = 1—¢,8 = % — &, suppose
that there exists a radius 1y such that (27) and (28) hold. Moreovet, let us assume the following
convergences in distribution as R — oo:

¢i(R) = 0
O’i(R-) —0
(¢ -0V — ej - ox Vi) (R:) — 0. (31)

Let g be of the form (2) for some £ > r. and g, let u be the solution of (3), and let uy, € Y{’(Z)
satisfy (30). Then we have for any R > tyy,

1
]

where C is a constant depending only on d, A, €, and g.

1

V(1= (1 + ¢30; + i) \2)7 < c(%)d(%*)ﬂ,
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Solving (4) with boundary condition uy = (1 + ¢;9; + ¥9;))up will indeed provide the
desired level of approximation, which resembles Step 8 of Algorithm 1 and is the statement
of Corollary 2.2. The reason we could not directly use (1 + ¢;0; + ¥;;d;;)up, for approximation
is that Proposition 2.1 does not hold inside B

Ve *

Corollary 2.2. Under the same assumptions as in Proposition 2.1, for L > £ let i1 be the solution
of the equation

—V.-aVu=V.ginQy, i = (14 ¢;0; + ¥ijd;j)up on dQy, (32)

where uy, € Y?(Z) satisfies (30). Then we have for any R € [y, L],

(f, e wP)* = cy ey,

where C is a constant depending only on d, A, €, and g.

For the purpose of Algorithm 1 we now derive the explicit expression for u, from (30). We
start with 7, defined in (19), which is an element of Y{l(ﬂ). We make the ansatz

up =+ &Gy + Y c;dGy,  mod Y4 (L), (33)
(i)ed
where we recall the index set J is defined in (12). This ansatz is motivated by the fact that
{0;Gp}i=1,,3 is a basis of the 3-dimensional space Y{‘(K) / Yé’(ﬂ) and {0;;Gn} ed @ basis of the
5-dimensional space Yf(ﬁ)/Yé’(ﬁ), so that £;0;Gj, + Z(i,j)ej ¢;j0;jGy, is a general element of
Y1)/ Y5(0).
By equations (3) and (19) and integration by parts, we have for all v, € X,

(1, v)0 = / g~ V(L + @id; + wydy)ve and (i vi)a, = / ¢V (34)

Ifv, € Xé‘ (i.e. vy, is a constant) then both expressions vanish. Moreover, comparing (34) with
(30), we obtain the following identity for the multipole correction of #,:

EDGh+ Y €id5Ghr Vi)a, = / g - V($id; + Vydg)vy for vy € X3/Xp.  (35)
(ij)eg

Note that for v, € X",
(0iGhs Vi)ay, = — / Vn - (vhap VoG, — 0iGrapVvy) = 0;vp(0),
and similarly (0;jGp, v)a, = —0jjvh. Therefore, substituting this into (35), we obtain
&i0ivn(0) — Z ¢ij0ijvn = /g - V(¢i0; + ¥ij0i) v (36)
(if)eT

Thus, choosing vj, = x; for i = 1,2, 3 in (36) we obtain

gi:/g'V(pi’
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which is consistent with the expression obtained in [2]. To determine the coefficients c;;, we
test (36) with 5 linearly independent aj,-harmonic polynomials v, ;; that are homogeneous of
degree 2, and obtain linear equations of ¢;;. Choosing the basis

1 Ahij 5 ..
vhij = (1 — =8;)(xixj — ——x7) for (i,j) € J, (37)
2 an11
leads to the explicit formula which highly resembles (13) in Algorithm 1
Ahij
== [ &V (@dkuny + @ = 8w = = g). (38)
11
Summing up, the function uy, that captures the correct multipole behavior is given by
up = up + (/g' V$:1)0;Gp, + ¢ij9;iGp, (39)

with ¢;; given by (38). This motivates Algorithm 2 to obtain an approximation i to the solution
of (3).

Algorithm 2 Idealized algorithm

Solve (17) for first-order correctors ¢;.

Determine the homogenized coefficients ay, via (18).

Evaluate (19) for #, on dQr by tt, = G, * (V - g).

Solve (21) for first-order flux correctors ojjx and (23) for second-order correctors ;.
Obtain uy, via (39).

Solve (32) for i1, which is the approximation we desire.

A U o

Algorithm 2 is, however, not computationally practical since several quantities like
®i,0i, Yj; still require solving a whole-space problem like (17) and thus knowledge of a
realization of a outside of Q. Fortunately, we can replace each of these quantities in
Algorithm 2 by a computable surrogate with a small approximation error. This leads to
Algorithm 1 and the error is only affected by a multiplicative constant. This is a consequence of
the following Proposition 2.3, which allows us to pass from Corollary 2.2 to the error estimates
of Algorithm 1 in Theorem 1.2:

Proposition 2.3. Under the same assumptions as in Proposition 2.1, for /T = L' ™8 > £ > 1,4,
define ¢(TL), 0’7(~L) and W(TL) as in (6), (10), and (11). We assume they are good approximations of
¢, 0, Y, in the sense of6

(

and

(VIV@E - 9).0 — 6.V —p)[')" = VI(EY forRe {6, ZL}, (40)

|
Br

L 1 ¥
(f Wy’ —vP? <2 (41)
B, L
Define a,(f“) as in (7), and we assume it is a good approximation of ay, in the sense of

.
ay) —anl = (5. (42)

SHere and for the rest of the paper the notation “(f1, f,) < X" (when obviously X > 0) meansf; < Xandf, < X.
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Given g, let u be defined as in (3) and uD) in (16). Then we have for any R € [y, L],
(][ v —wP)* < ey,
By SR AR

with a constant C of the same type as in Theorem 1.2.

2.2. Massive approximation of correctors

We start with introducing the notations for this section and beyond. Given a length scale
R > 0, we define the exponential averaging function

i eXP(—m)

X) = —
nr(¥) = 3 R

with the constant c; such that fRd nr(x) dx = 1. We also define the Gaussian
1
Gr(x) == —— exp(—=—3)-
2

For any function f, we use

fr:=f*Gr (43)

to denote the convolution of f with Gg. For any s > 0, we define the following norm for a
random variable F that quantifies its tail:

1—sy\1
IFlls :== inf{M >0: <exp((ﬂ+c)s)>—exp(cs) < 1} with ¢ = s ) s€ O,
M .
0 otherwise.
(44)

Here the constant ¢ is chosen such that the function [0, 00) > x > exp ((x + c)s) — exp(c’)
is convex, which by Jensen’s inequality makes |-||s a norm. Therefore, if |F||; < oo, then
1

(exp(rIFlg)) <ooforr < T and s € (0, s].

We now illustrate why we may expect ¢(TL ) and w(TL) to be good approximations of ¢ and
¥ in the sense of (40). Let ¢ satisfy the equation

%qu —V -a(e+ Vér) = 0. (45)

The massive corrector ¢, which was first considered in the early works of [4, 57] and then
[7, 8, 60], is an approximation of ¢ that has the advantage of being defined deterministically
and it is automatically stationary. Indeed, in the class

supf (93 + |Vor|*) < 00
By (x)

X

there exists a unique solution to (45). The massive corrector serves as the bridge between ¢
and ¢(TL ), and we will show its closeness to both of them. The following Proposition 2.4 shows

that if we choose the length scale /T to be close to L, then the estimates (40) on ¢ — ¢7 hold
with high probability.
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Proposition 2.4. Ford > 3 and VT > 1, we have’

H(/ 1NV — 9D, < VT

1
z, (46)
Moreover, there exists a random radius r with

Irella < 1, (47)

and such that for all R > 0, we have®

1R = ([l (VY @1 = 0101 - )], VT (18)

-1
Remark 2.5. Ford > 4, the approximation error (48) saturates at /T . A better approxima-
d

1—
tion which has error /T ? is given in [3, Theorem 3] and arises from iterated Richardson
extrapolation of ¢7. We expect a similar strategy to work in the optimal approximation of
higher order correctors.

Remark 2.6. The quantity r,, also known as the minimal radius, is the smallest scale on which
the elliptic and parabolic C*! -estimates (See Lemma D.1) hold. Large scale regularity was first
considered in [61] for periodic homogenization (see also the monograph [62]), and [12, 13]
introduced the random variable r,, in the stochastic setting. For any fixed § € (0, 1) we define
7« asin [3]%:

. 1 3
Ty = 15(0) 1= 1nf{r >1|VR>r, E(]éR [(p,0) — ]iR(qj,g)P) < 8}. (49)

Comparing the above (49) with (28), we observe 7 > r,. The stochastic estimate (47) is
proved in [3, Corollary 6]. For slightly different definitions of r, under various probabilistic
settings, we refer to [13, Theorem 1.1] and [12, Theorem 1] for corresponding stochastic
estimates.

On the other hand, ¢ near the origin can be well-approximated by a function that only
depends on a through its restriction to the finite domain Qr, which is exactly achieved

by the function qb(TL ) defined in (6). Though the Dirichlet boundary conditions break the
stationarity of ¢(TL ), deterministic methods are sufficient to prove that the difference ¢ — ¢(TL)

is sub-algebraically small in ‘/TT for /T < L. The exact statement of this is deferred to
Proposition 2.9.

As a comparison, if we consider the Dirichlet approximation as [2, (18)]
—V-avep? =V .ae; inQy, ¢ =0 0ndQu

then it is unclear if one could prove anything stronger than what is proved in [2]

(]é VoW - p))* L7,

"We use “||F|ls— < X"hereafter to denote forany s’ € (0,s), IFlly ¢ X.
8Hereafter we use / to denote indicator (characteristic) functions.
°Note that the definitions in [12, 13] are slightly different.
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which is the desired scaling for d = 2 but insufficient for the CLT scaling required in (40) for
d = 3. The bottleneck is that ") is not stationary and it is thus unclear how probabilistic
tools can be applied here. While one may use appropriate oversampling techniques to obtain
desirable approximations using ¢, in this work we opt for our approximation ¢(TL) in (6)
since we could prove the required approximation bounds and it is not more numerically
difficult to compute than ¢&).

Equipped with estimates on ¢ we may derive estimates for the approximation of homoge-
nized coeflicients aj. In analogy to (18) we introduce the modified flux

qr = ale + Vér). (50)

For any smooth weight function w(x) supported in the unit ball satisfying [ps @ = 1, and
rescaled as wy(x) = Lidw(%), f wrqr is a good approximation of ay,, which establishes that
the assumption (42) of Proposition 2.3 holds with high probability:

Lemma 2.7. Let L > /T > 1. Then for d > 3 we have

3

lanei — / orgirlh ST 2. (51)

Using the same procedure, we can also approximate the first-order flux corrector o and
the second-order corrector i using their massive counterparts, denoted as o and ¥
respectively, which are defined by the equations

1
T OkT ~ Adijk,r = V - (qik,r€j — gij,Tek)> (52)
1
?‘ﬁij,T —V-aViiir =V - (¢ira — oir)ej. (53)

Similar to ¢, both o7 and Y1 are well-defined stationary fields, and can be approximated

by functions that only depend on a through a|q,,, which are 07(~L) and w(TL) defined in (10)
and (11), respectively. The following proposition gives estimates on 7, establishing that the
assumptions (40) and (41) hold with high probability.

Proposition 2.8. Let r, be the same random radius as defined in Proposition 2.4. Then ford > 3
1
< VT, (54)

and /T > 1,R > 0,
1
2 2
IR > 1) (/nRhm )
1_

1R =) ( / MRV — wmz);

_1
<VT 2. (55)
1—
The massive correctors ¢ and 1 can both be approximated by functions that depend on a

only through its restriction to a finite domain, with an error smaller than any power of 4
for /T < L, which is the result of the following Proposition 2.9:
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Proposition 2.9. Let L > VT > 1. Let ¢(TL),07(~L) and W(TL) be defined through (6), (10) and
(11), then for any p < oo,

f
f

The reason we cannot prove (56) with Q,y is that the Dirichlet boundary conditions

=

T p
(ﬁv(¢T—¢(TL)),¢T—¢(T”)\2 S (‘%) , (56)

7
Ll

T p
(ﬁv(wT—w‘TL)),wT—wé”)]Z < ﬁ(%) . (57)

5
L

generate a boundary layer where ¢ may be dramatically different from d)(TL ). Therefore near
0QyL, qb(TL ) is not trustworthy and should not be used for the computation of 0‘7(~L), which is the
reason why in Algorithm 1 the domain of computation shrinks when computing 0‘7(~L) and, for

the same reason, shrinks further for W(TL).

We finally present Proposition 2.10, which is the main ingredient of the proof for the
stochastic estimate on 7. in (5), and, together with the estimate (47) on ry, bounds the
probability of the event 7, > R for any large R:

Proposition 2.10. Let r, be the same random radius as defined in Proposition 2.4, and denote
(Vifr, V)R as the convolution of the two functions (Vir, VW) with the Gaussian kernel Gg as
in (43), then ford > 3 and R > 1,

1R = ’*)(7{; VW) <1, (58)

IR > ) (Y, V) - S RS (59)

R”l—

3. Numerical example

For the numerical test, we will consider a discrete elliptic equation'® on Z3, so that we do
not need to worry about error due to discretization. To set up the elliptic problem, we say the
points x, y € Z* are neighbors if |x — y||¢, = 1, and draw an edge between x and y if they are
neighbors. Denote B as the set of (undirected) edges, {e;, 2, e3} as the canonical basis in 73,
and (a.)cep as the random field. The discrete gradient is defined as

Vi(x) = (f(x +e1) — f(x),f(x + e2) — f(x), f(x + e3) — f(x))

1%We remark here why we consider the discrete equation in our numerical example. Our theoretical result holds
without spatial discretization, and we do not assume any smoothness on a, so we may without loss of generality
assume correlation length equal to 1. Unfortunately, computations in 3D are difficult, since to apply the finite
difference (or any standard numerical) scheme, if we divide each side of the cube into N smaller intervals, then we have
O(N3) grid points, thus solving the full equation would require prohibitive memory. In practice, this can be resolved
by using multigrid algorithms or using a supercomputer, but we do not plan to do that as neither is the purpose of
this work. Such limitation in computational resources significantly restrict our choice of discretization and correlation
lengths in our numerical tests. As a compromise, we solve discrete problems in our numerical example and hence
both correlation and discretization lengths equal to unity.
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and the divergence of F = (Fy, Fy, F3) is defined as
3
V- F(x) =) (Fi(x) — Fi(x — e)).
i=1
The discrete equation we consider, with the above notations, is still in the form

—-V.-aVu=V_.g.

The coefficient field a = 4, on edges e € B are i.i.d. random matrices with values Id and

9 Id with probability 1/2 each. For the right hand side, we take some function f(x) compactly

supported in the box {—1,0, 1) with average zero, so that there exists some vector valued

function g(x) such that f = V - g for a function g supported in the slightly larger box Q».
We compare Algorithm 1 with three other algorithms:

1. Solving the equation (4) with zero Dirichlet boundary condition.
2. Solving the equation (4) with modified correctors but without dipole or quadruple correc-
tions, i.e., the boundary condition given by

”5112) =1+ ¢,(LT) 0 + W%%Bij)ﬁ;lm on Q. (60)

3. Solving the equation (4) with boundary condition corrected up to first-order correctors
and dipoles, which is the algorithm proposed in [2]:

ufi? = (1 + p00) (i) + (/g - VoiDaiGH) onaQy. (61)

We compare the numerical rate of supq, » V(D — uD)| and plot it for various L for
all four algorithms. We would comment here that while our analysis is for the gradient
averaged over a region, for simplicity we only compare the gradient at a single point. From
Figure 1 we can observe that the Dirichlet algorithm and the no multipole algorithm both
have convergence rates of O(L™3), the dipole algorithm has a convergence rate of O(L™)
while the proposed algorithm achieves O(L ™) convergence rate, which are consistent with
our theoretical results.

IV = Vu® | (g, ) vl - Vul gy )

102 10 ‘
—e—full alg ——full alg
—e— Dirichlet —e—Dirichlet
o[ no pole ] 0F no pole
10 Dipole only 10 Dipole only
- - -slope -4.5 - - -slope -4.5
Bxs - = ~slope -3 Bxs - - -slope -3
253350 I 2FS33s
10 “\:;:\ slope -4 10 Rl - - -slope -4
R TS~
4 < 4 s
10 10
10 Tl 10®
108 a4 10t JREK
10710 ! : : . 10710 . . . .
4 8 16 [ 32 64 128 4 8 16 L 32 64 128

Figure 1. Numerical convergence rate ofsupQL/2 |Vu(2L) —VU(L)| for the proposed Algorithm 1, an algorithm with zero Dirichlet

boundary condition, an algorithm without multipole corrections (defined in (60)), and an algorithm with only dipole corrections
(defined in (61)). The two figures correspond to two independent realizations of the random media and the same r.h.s.
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Figure 2. Lz—averages of ¢ and fluctuations of 1. The two figures correspond to independent realizations of the random media.

We also numerically compute ( er |¢(TL) |2)% and ( er |1/f(TL) — er W(TL) |2)% for a variety of .
Figure 2 indicates that the quantities ( er |¢(TL ) |2)% and \/i;( er IW(TL) — er w(TL) |2)% are almost

constants for all 7, which is consistent with their growth estimates (28) and (27). The figure
also indicates numerically that 7. should be of order 1.

4. Strategy of the proof
4.1. Parabolic semigroup representation of correctors and fluxes
Our approach is based on the semigroup framework developed in [3], see also [16, Chapter
9]. The central objects we study are the operators S(¢) and S(¢) related to —V - aV.
Definition 4.1. The linear operators S(¢) and S(t) are defined as follows: for an arbitrary
vector field g, let v solve the parabolic equation

ov—V-aVy=0fort>0, v(t=0)=V-g,

then
t
S(t)g :=v(t), and S(t)g:=g+ a/ dt V(7). (62)
0

We also define the operator S(¢) similarly to S(¢) with a replaced by constant coefficient Id,
and S"(t) similarly to S(t) with a replaced by a.

Roughly speaking, S(#)g is the flux accumulated from time 0 to ¢ with initial condition
V - g. As opposed to S(¢), S(t), which is the same as the operator Sy_,; defined in [3], does
satisfy the semigroup property [3, Lemma 2]

S(t1)S(h)g = St + ©)g. (63)

Since the solution of the standard heat equation is the convolution of the initial condition
with the heat kernel, which coincides with G , S can be rewritten as

St = (V-0 ;2 Gx(V-g). (64)

The semigroup operators S(¢) and S(¢) are essential since all correctors and their massive
approximations can be represented using these operators, which is the building block for the
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estimates of correctors and fluxes in Propositions 2.4-2.9. More precisely, these operators pro-
vide a resolution of the correctors in terms of quantities of controlled locality and amplitude.
Below in Remark 4.2 we collect the semigroup representation formulas for all correctors and
fluxes. Here for simplicity of notation, we omit the indices, and introduce the vector product
notation x so thato = fooo dtoS(to) x q stands for oijk = fooo dtoS(to)(qikej — gijex)-

Remark 4.2. The correctors ¢, 0, ¥, ¥ and their massive approximations ¢, ¥ can be
represented as follows

¢ = /00 dtS(t)ae, (65)
0
¢r = /OO dt eXp(—i)S(t)ae, (66)
0 T
o= /oo dtoS(to) % g, (67)
0

Vi = /OO dty /OO dt; VS(tg)(aS(t1)ae — 3(1’1) X ae)
0 0
— /OO dty /OO dt /OO dtzVS(to)S(tl) x aVS(ty)ae, (68)
0 0 0
Yr = /oo dto exp(—%o) /oo dn exp(—%)S(to)(aS(tl)ae — 8(t1) x ae)
0 0
- /oo dto exp(—t—o) /OO dt; exp(—t—l)/oo dt, exp(—t—z)S(to)g(tl) x aVS(ty)ae,
0 T Jo T Jo T
(69)

o0
VU = / dt VS(t) x (aVy + (ap — o)e). (70)
0
We would like to comment here that (68) and (70) are formulated on the level of
gradients, since only V (v, ) are well-defined stationary random fields. To show the algebraic
equivalence of the quantities, it suffices to show the r.h.s. of the equations satisfy the same

elliptic equations as their counterparts on the Lh.s. The core argument we need is, suppose a
function wr has the representation

wr = /OO dt exp(—%)S(t)g, (71)
0

1
then it satisfies the massive equation ?WT — V.aVwr =V . g Indeed,

(o.¢]

o t t
-V - aVwr = —/ dtexp(—?)v -aVS(t)g = —/ dtexp(—?)atS(t)g
0 0

= S(0)g + / dt (d, exp(—%))&r)g =V.g— %WT.
0

Similarly, if w has the representation

w= /00 S(t)g dt, (72)
0
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then w satisfies —V - aVw = V . g. In particular, we obtain for a = Id, the function

w= /0 de(V ~g)ﬂ. (73)

satisfies —Aw = V - g. Choosing ¢ = ae in (71) and (72) and we obtain the representations
(66) for ¢ and (65) for ¢, respectively, and choosing g = ¢ in (73) yields (67) for o. The
representations for (Vir, Y, VW) can be derived by applying the above arguments iteratively
and we will not write the details here. To rigorously obtain the equivalences, in view of
uniqueness of stationary correctors, it suffices to show that the r.h.s. integrals converge and
therefore represent stationary functions, which is done in the proofs of (86) for (¢, o) and
(58), (54) for (Vir, VW, 1) (such result for ¢ is classic).

4.2. CLT-cancellations and propagation of locality

The next important notion is the so-called “relative approximate locality”.

Definition 4.3. Letp > %i be fixed, and let ¢ and g denote two stationary random fields. We
say g is approximately local on scale r > 1 relative to g if, for two realizations a and a satisfying
a = ain Byg for some R > r,

(7[ g@) ~ S@P)F = (5 / 1 (5(a) + 5@). (74)
Br

Roughly speaking, the random field g|p, “essentially depends on a only through a|g, up to
an error term ()Pg”. This locality is at the basis of a CLT scaling, see Lemma C.1.

In order to estimate higher-order correctors and their fluxes, it is important to estimate
the operator S(T) acting on arbitrary g. More precisely, we extend the results in [3] on
approximate locality from the special and obviously local initial data ge to more general
initial data g that are only approximately local. Our goal is to derive stochastic bounds and
approximate locality properties for (S(T)g, VS(T)g, S(T)g), given g approximately local on
scale rp > 1 relative to g. In addition, while ae is obviously bounded, we only assume
stochastic integrability of g and g, in the sense of controlling || g||s and ||g]|s for some 0 < s < 2.

In the range VT < S(T)g does not benefit from stochastic cancellations through
parabolic propagation of g. Therefore we can do no better than the following consequence
of a deterministic estimate (see Lemma B.2)

|([ 1ol (19, VTS S0g) )| 1 male? 75)

The scenario is more subtle in the regime VT > ry. While S(T) ¢ now benefits from stochastic
cancellations, for which the ratio of the locality scale 7y of g and the parabolic scale /T
matters, it also suffers an increase of the locality scale to /T, as well as a loss of stochastic
integrability to 5—2}—_52 —. The first and third aspects are captured by Proposition 4.4, the second
by Proposition 4.6.
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Proposition 4.4. Suppose g and g satisfy (74) for ro > 1. Then forallR > 1, T > 0, we have'!

| (s(rg - (s()g), /0 Carvsiog),

SO e igl) oo

s+2

and

H (/”f|(TVS(T)g,fS(T)g)| )é

ro . d 1 —
» 5(1Aﬁ)z(n(/nro|g|2)z||s+||g||s). (77)

s+2

Remark 4.5. The same estimates hold with S replaced by S, with stochastic integrability
improved from — tos, see [3, Lemma 16].

Proposition 4.6. Suppose g and g satisfy (74) for o > 1. For all T > 0,
(TVS(T)g, VTS(T) g, S(T)g) is approximately local on scale ry v T relative to some stationary
G with

1Gllg < (1A %)? (¢ / Miolgl?)2 s + 13- (78)

Here sy = Si—sz— when /T > 1y and sy = s when /T < 1.

Propositions 4.4 and 4.6 tell us that if initially ||(f Nro |g|2)% ls and ||g]ls have the same
upper bound, then so will ||(f U(,Ovﬁﬂ(TVS(T)g, \/TS(T)g,S(T)g)Iz)% ||S%_ and ||G||S%_,
so that we can essentially “sweep under the rug” the quantity quantifying the locality since it
has the same size as the original quantity. This is convenient for estimating multiple time
integrals.

In particular, for ¢ = ae, in which case we may setrp = 1,g¢ = 0Oand s = oo, we
recover the following stochastic estimates on S(t)ae proved in [3], which are special cases
of Propositions 4.4 and 4.6.

Lemma 4.7. [3, Corollary 4] Forall T > 0,

K /nfl (TVS(T)ae, VTS(Tae)P) | < (1 A —=)f. (79)

2— JT
Moreover, (TVS(T)ae, TaVS(T)ae, ~/TS(T)ae, S(T)ae) is approximately local on scale 1 v JT
relative to some stationary g with

1
Izl < (A ﬁﬁ. (80)

With Lemma 4.7 and the representations (65), (66) of ¢ and ¢, we see why ¢ is a good
approximation of ¢: in the range ¢ > T, the contribution of S(¢)ae to ¢ is exponentially
small, and the locality of S(f)ae in conjunction with the finite range condition on a make the
contribution to ¢ small as well, which (almost) matches the bound (40); in the range t < T,
we can use 1 — exp(—%) < % and the stochastic decay estimates of S(t)ae to control ¢ — ¢,
which matches (40) in spatial dimension 3 as well. This is the main intuition behind the proof
of Proposition 2.4. We use the same strategy to prove that {1 is a good approximation of v,

"Here we use rq V ry and r1 A ry to denote max{rq, ro} and min{ry, r,}, respectively.
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where we again divide the representation of ¥ — ¥ into several regimes depending on the
relationship between the #;’s.

Another motivation of introducing the semigroup framework comes from deriving
stochastic estimates for v, ¥, and 7, in our finite range setting. For ensembles that satisfy a
logarithmic Sobolev inequality, these estimates are already established in [23], while similar
estimates are absent in our setting of finite range dependence (as a side note, contrary to
intuition, ensembles that satisfy finite range dependence may not satisfy an LSI, see [63,
example after Theorem 6]). The semigroup framework will be our main tool for establishing
stochastic bounds on ¥, ¥ (see Proposition 2.8 for its precise statement), which eventually
leads to the stochastic estimates on 7y, c.f. (5).

We would also comment here that the representation of (1, V) involves two instances of
the random S(¢), losing stochastic integrability twice, which is the reason why we only obtain
the stochastic integrability of s-ZTSz ‘522_ = 1—. For the same reason, we would expect the k-th
order corrector (when dimension d > 2k — 1) to have stochastic integrability %—.

4.3. Other technical lemmas

We continue with presenting auxiliary lemmas for the proof of Proposition 4.4. In order to
capitalize in stochastic cancellations as in the proof of [3, Theorem 1], for which we divide
into dyadic scales and apply the CLT-estimate Lemma C.1 to (S ()-8 h(%)S (%)) g, weneed
the following approximate locality result.

Lemma 4.8. For /T > r, (8(T) - Sh(g)S (%)) g is approximately local on scale /T relative
toF + (&—%)?g, where

- T NN rod
F:= di(—)2 dr(—)2|(S — (S sl
]ﬁ ) ]ﬁ () 1S(0g ~ (SO (81)

We also need some auxiliary estimates of (¢, o, q) to prove Proposition 4.4, which are listed
in the following Lemma 4.9. The first two results are proven in [3] while the latter three are
not explicitly stated in [3] since they involve stationary (¢, o, q), so we provide a proof for
them.

Lemma4.9. Let d > 3, r, be the random radius defined in Proposition 2.4, then for any R > 1,

[3, Corollary1] (Ve Vo,q — (q), S(tae — (S(Hae)) glo- SR2,  (82)
[3, Corollary4] I / MRIVOP) e <1, (83)
()l < RS, (84)
JIR = r.)(ag — (ad)r],_ S RS (85)

||(/nR|<¢,o>|2)5H2_ <1, (86)
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We conclude with two technical lemmas which facilitate the proof of Proposition 2.8.

The first lemma acts like a combination of Lemma B.2 (with g replaced by aS(t;)g) and
Corollary D.2.

Lemma 4.10. ForanyR > 0,t; > tp > 0,

HI(R > r*)(/ 71R|/0t0 drVS(r)aS(tl)gf)%
N HI(R\/ \/E = T*)(/ nRvﬁ(|ﬁvs(%)g|2 + |S(%)g|2))%

(87)

The second lemma deals with estimating the triple integral term of ¥/, see (69), in the regime
t, < t1. The goal is to utilize the bounds on S(t)ae, i.e. Lemma 4.9.

Lemma4.11. ForT > 1,t3 > t; > 0,

H/ dt; (1 — exp(— s _’7: tz )) (VHVS(t1) x aVS(t2)ae, S(t1) x aVS(t2)ae) ||2

5(1/\—)T(1/\T 7, (88)

”/ dt, exp(——)(fVS(tl) x aVS(ty)ae, S(t;) x aVS(l‘z)ae)”2 < «/_ «/_ (
89)

Moreover, fotl dt, (1 — exp(—#))g(tl) x aVS(ty)ae is approximately local on scale 1 v \/t;
relative to some stationary g with

t3. 1 1 g
lgll2— < (IA?)\/E \/E : (90)

5. Proofs
5.1. Proof of Theorem 1.2

Step 1: Stochastic estimates of .. The idea of the proof is based on [64, Theorem 1 (ii)]. Our
goal is to estimate the “failure probability” (I(r«« > Ro)) for an arbitrary Ry. We separate the
event 1y, > Ry into three possible scenarios. The first scenario to leave out is 7, > /Rg which

3
has probability at most exp(—(ljRg ), as 1y has stochastic integrability d (47). For the rest of
the proof we assume 7, < +/Ro < Ro.
Next we look at the failure probability due to first-order correctors (¢, o). We recall (28)
which defines the constraint on 7., coming from (¢, o). By (86) in Lemma 4.9, which we
reformulate in terms of boxes instead of balls, we have forall R > 1,

!
H(]é @t

<1

>
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so that by Chebyshev’s inequality, we have!?
1((7{2 (@.0)P)} = RIRE)) = <I(eXp((]é 6,0 = exp((RIRE)))
R R
I _
S CXP(—E(R1 “R3) )

Here the second line uses the third expression of the norm ||-||s in (A1). Therefore if 7.« > Ro
because of the “failure” of first-order correctors, which means that there must be some R > Ry
(which we may assume to be dyadic) such that

(@0} = R-exg,
Qr
the probability is dominated by'?
1, _ I,
> exp(—(RITURET) ~ exp(— Ry ),

R>Ry
dyadic
where we used o < 1.
We now look at the failure probability due to second-order correctors. We first argue that
it is enough to prove for any R > 1,

HI(\/ﬁ > r*)(]iR|(x/f, v) — ][BR(I//’ \p)|2)%

Indeed, if (91) holds true, then we can bound the failure probability using Chebyshev
inequality:

5 R2. (91)

][ ) - ][(w WP = BRI/ = )

R>R
dyadlc

Bp2—p 3
< Z exp( KR )1_) fvexp(—éRé ),

R>Ry
dyadic

where we used 8 < % To prove (91), we again divide into dyadic series and use (58) and (59)
in Proposition 2.8. We will abuse notation and use f; to denote er f,as [3, Lemma 13, Step
4] shows its equivalence to f * G, under stochastic norm ||-|.

Hz(«/ﬁ > r*)(]{gJ(l//,\I/) — ]iR(llj,\p)|2)2

I(VR > r*)((][B (¥, ¥) — (¥, ),
R

7 2\3
N Y (][BR|(x/f,W)r—(x/f,\v>2r|) )

R/2>r>r1y
dyadic

1—

1
2)5

S E r*)(]ﬁRw, W)~ (W),

2Here and for the rest of the paper X < exp(—R*~) denotes for any sg € (0,s), X Sso exp(—R0).
3Here ~ means both < and 2 hold.
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b Y o= ][ W), — (0 )

“ladic’
SRz ([ av@ o)+ 5 iz ror( [ v )’
R/2>r>1
dyadic
< VRIWR = ([ metvo )+ 5 ez roven |
R/2>r>1
dyadic

Y R+ Y JrsVR

R/2>r>1
dyadic

Here in the third inequality we used the Poincaré inequality in convolution (see [3, (201)]):
for any R 2 1y,

/ Rl —f)? < P / nRIVFP (92)

3_
This establishes (I(ryx > Ro)) < exp(—%Ré ) for any Ry > 1, which is equivalent to (5).

Step 2: Estimation of failure probabilities. The plan is to pass from the deterministic estimate
Proposition 2.3 to the probabilistic statement Theorem 1.2, and estimate the probability for
the assumptions (40)-(42) in the Proposition to hold. We would like to comment that the rest
of the assumptions in Proposition 2.3 are standard, and, thanks to our finite range assumption,
hold with probability 1 (see Section 2.1 for the standard properties of correctors and .., and
[1, Corollary 1] for an argument of (31)).

The starting point is the stochastic bounds that are established on stationary approxima-
tions of these quantities (i.e., the quantities without L in superscripts), namely Proposition 2.4,
Lemma 2.7, and Proposition 2.8. Therefore, to estimate the “failure probability” of |ane; —
f qi |, we use a Chebyshev inequality as well as (51) (notice that 7, > 1):

(I(lane; — / wgir| > (’*T*)ﬂ)> < (I(lanei — / wgir| = LP))
(93)
< exp(—é(UsT—%)z_) = exp(—ELs_).

We may also replace g;, 7 with ql(LT) in the above (93), since by the deterministic Proposition 2.9,
we can estimate

8),(18
|/w(q,T gy Ol )|/ V(i — )
6) ﬁ
S| W@ —olDP) £ CL,
Q L
which is much smaller than L=# for /T = L'~¢ and p sufficiently large. This shows

Kk 1 _
<I(|ahei— /wquT)I > (%)‘3)> S exp(—ELs ).
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The failure probability for the terms in (40) will be estimated slightly differently as they

1
involve r,. We take ( fB[ |V(1ﬁ(TL) — 1,0)|2) 2 as an example since it is among the terms that
have the worst stochastic integrability. Again by Chebyshev inequality, we obtain

1 (53) 1 3 1 .
I((]é IV@r=)P)? = VT(; >ﬂ) (t= 1)) S exp(—5 WP T7H)!7) = exp(= 5127,
which, in view of (57) and . > 14, can be changed to
1 1 1 «_
<I((7[Be VP~ 9IP)} = VTP )IE 2 ) S expl—LE),

We now remove the constraint £ > r, using Bayes” formula

1((][ VP = P)E = VIEDE) e 2 )
][ VP —P)E = VTP e = r)

{((fs, V@ = ) )2 > VTP = 1,0))
(I(€ > 144))
- (((F, 1P = p)R)? = VTHP)IE = 1))
- (I(€ = 144))
®) exp(=¢L27)

- exp(—éZ%_).

We take £ to be reasonably large and independent of L, T, B so that 1 — exp(—lE%*) > %
Since the probability of all failure events can be estimated as such, we derive the total failure

probability estimate as desired.
Finally for the failure probability for (41), we first obtain by Chebyshev inequality

1 (54) .
1((]iL U = TP 2 R) S expl(—gLE),

which, in view of (99) and (57), as well as 7.« > 1, can be changed to

1

][ |‘/f 1/’)| 2 (r*—*)ﬁ)I(L > r**)> < exp(—éL%_),

and we again finish the proof by dropping the constraint L > r,. using Bayes’ formula. [

5.2. Proof of Proposition 2.1
By [1, Theorem 2], for uy, that satisfies (30), we have

1 R 1 1
sup (— )d+ﬂ( / IV (1 — (1 + gids + Ydyu) ) < sup (—)* —d/ IVul?)2.
R>ry Tk Re B Rer Tex R BS

Thus, it suffices to prove that, for every R > 1,

RE([ IVuP)i < el
By
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For ryx < R < 2¢, the proof is a standard energy estimate:

RS’(/ VuP) <R ?/w )2<Rz(/ g2} < RS <
5,

The proof for R > 2¢ uses [1, Lemma 4 (c)]: since u € Y;(I),

Rd/|Vu|)2<( /|V|)z< (ydp-1 (/|Vu|)z<Rd(/|g| ¥ (g

&_

—_

O
5.3. Proof of Corollary 2.2
Define w = &t — uand wp = (1 + ¢;9; + ¥;jd;;)u, — u, then
-V .-aVw =0 inQy, w=wp onoaQr. (94)
Since w is a-harmonic, by (D3) (note that 7., > 1),
][ |Vwl|? < |IVw|?> forrsy <R <L. (95)
Qr QL
Thus, it suffices to prove
([ 1vw?? S IVwp[?)z, (96)

QL Qr—Qr

as (95) and (96) together with Proposition 2.1 yield Corollary 2.2.

By rescaling, we may without loss of generality assume L = 1, and we can further assume
f Q-q, WD = 0 as the expressions in both sides of (96) are invariant through the subtraction
of constants. This allows us to define an extension wp of wp on Q; such that wp = wp on Q
and (using Poincaré inequality)

IVip[2)? < ( IVwp[?)2. (97)
Q Q—Q
Hence (94) can be reformulated as

—V-aV(w—wp)=V-aVwpinQ;, w—wp =0 onaQ;.
Now (96) follows from the standard energy estimate (le |V(w— WD)|2)% < (le |Vﬁ/D|2)%,
triangle inequality and (97).
5.4. Proof of Proposition 2.3

The proof largely resembles that of [2, Proposition 1]. We divide the proof into four steps.
Step 1: We upgrade (27) and show a seemingly stronger condition

1
—(][ (¥, W) —][ W )2)2 < (P2 forallr > 1. (98)
1’2 B, By, r

What separates (98) from (27) is

|][(x/mv>—][ (b, W)| < (2 )ﬂ for r > ru.
B, By,
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To prove this, we apply dyadic decomposition, and (since 8 < 2) reduce this to
F w0 f @IS for 2 2z 2
B, B, r

which, by triangle inequality, is a consequence of (27). Hence, as (v, V) are defined up to a
constant, we may assume

—(f 0P £ P forallr 2 .. (99)

For the rest of this proof, by a scaling argument we may without loss of generality assume
L=1

Step 2: We compare ”h , defined in (9) which satisfies —
solution of (19), and claim that

(L)Vu(L) = V - g, with iy, the

V@ — )+ LIV @E® — )l + 1V aEd - )l < (; )d< Y onQS.  (100)

To prove (100), we use that the support of g is contained in B. It is well known that
IV'Gr(x)| < |x|2~4=" for any multi-index n. Using the representation formula,
up=GpxV-g=VGyxg

for |x| > 1, and standard Schauder theory for |x| < 1 (here we use the regularity of g € C>7),
we obtain for all x,

1
< Vi) S —»
0| S VIS Ty (101)
V2~ < S — V3~ < D — T
[V (x)] S (1 + [x)*1 IVIun(l S (1 + |x[)d+2
and
sup [V2iin(x+y) = Vil _ ! (102)
0<[yl<1 Iylr T e

Next we consider w = L?ZL) — iy, which satisfies the equation

—V-aPVw =V (@ - ay)Viy,
Similarly we have the representation
w= G,(QL) *V - (a;L) —ap)Viy, = VG;L) * (a;L) — ap)Viiy,.

Therefore, using (101) and (102), again we appeal to representation formula and standard
Schauder theory and derive

), 1
V)| < al? — ap|——— < (ﬁ) 1+ D2
| | < lay, (1 + |x])4 (1 + |x])4

(42) ¢ 1
V2w(x)| < a(L) apl ey S ()
| ( )| | |(1+|x|)d+l ~ ( ) (1+|x|)d+l

42) & 1
Vw@)| < laf — apl ———— < (Y,
VW@ S 10 = anl s S (0

which is exactly (100).
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Step 3: We compare u;lL) and uy, defined in (15) and (39) and claim

VD — )l + LV2E — )l + L1936 — an)] S (Y on
and
Vi |+ L2+ 21950 S (5 on Q.
To this purpose, we define
b= [ Vg o and 6= [ vall.
In view of (100), it suffices to control the dipole and quadrupole terms:
IVER 3G — &3:Gy)| + LIVAER 3G — £:8,Gy)
AV ERIGY - 509Gl £ (Y
and
|V(cf]L)Ta,JG“’ ciid5Gn)| + L|V2(cff)Ta,,G(” ¢;idiiGn)|
VA (105G — il S (7 )d( *)%, both on Q5.
We have some obvious estimates for constant coeﬂiaent Green’s functions:
IV2GP| + LIVAGP | + LA VAGE | + L2 1V°GY| < (%)d on Q,
and

IVA(GH = G| + LIVA(GY — Gyl + LA VAGE - Gh)|+L3|V GP -

.
<lap — ah|(z)d 2 yi=yp on

L
Hence, recalling the definitions of ¢;; and cz(]L)T, c.f. (38) and (13), it suffices to show
€] S 1 and [¢;] S'1
and

(L) Viexe 1 (L) Vsexe
& — &1 S () and Zler— gl S ().

The arguments of (108) and (109) for £ and S;L) are straightforward:

1 (28)
&1 = I/¢v g|<(][¢ LRSS

1(40) *x
g = I/g-V(¢(TL)—¢)I 5(7[3 VD — gyt < (2298,

and

L
We now prove (108) for c;;. By the growth condition (27) of ¥ for r = 1, we have

I/wV-g|=|/(1/f— Fovegsof w-f uptse

Gn)|

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)
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Moreover, since dkvy,j;, defined in (37), is a polynomial homogeneous of order 1, we have
|0kVh,ij(0)| S 1 and |Vogvp;i(x)| S 1 forx € By, (111)
thus

1 1 (28)
| / ¢kam,ﬁvg|§<]£ @)t S (f DS L (112)

Combining (110) and (112) we established (108) for c;;.

The proof of (109) for |CTL clis more complicated. Recalling the definitions of ¢;; and
1(]LT’ c.f. (38) and (13), we may write |CT —c| = |f E - g| and decompose E into different

terms:

Eij = (Okvn,ij 3kvh ,])V¢k + 8th ,]V(¢k - ¢ ) + ¢V (kvn,ij akV;(f,;)

2D

@ = VIS + Q= 0V — U + 2= 8 f’;f) V1.

A1
Since x; + ¢; is a-harmonic, we can use Caccioppoli’s estimate and the growth condition (28)
on ¢ to derive

(f IVol? )2<1+—( ¢)2<1+( ) <1, for R > rew. (113)
Br R Bar
Using the same argument as (113) for ¥, we obtain
1239 1 1 1
(f VY S o W= v+ (f @02
Br R /By Bar Bar (114)
(27),(28)

Vsexe

S R(—)ﬂ-i-R( “)* < R for R > rys.

~

Since dgvp,;j and 8;{1/%. (defined in (14)) are two polynomials that are homogeneous of order

1, and their coefficients differ by |a§lL) — ap|, which by (42) is bounded by (’*—*)ﬂ we have
|9V — vyl S (— )8 and |V(3kvng — )l S (— ") onBy.  (115)
Therefore combine (115) and (11 1) we obtain
|3th,](x)| <1 and |V8kv .(x)l <1 on B;. (116)

We are now ready to estimate

L — — 1
lc‘T)—cl=|/a-g|§(][ 1EP),
B

For the first term of E we use (115) and (113); the second term uses (116) and (40); the third
term is controlled by (115) and (28); the fourth term can be estimated using (116) and (40);
the fifth term can be bounded above by (40); finally the six term is controlled by (42) as well
as (114). This finishes the proof of (109).

Step 4: Conclusion. We finally compare u(1) defined through (16) with # defined through
Corollary 2.2 and claim that

1
(F IV@® — )2 < (HEDE forL > R > 1y
Br L L
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By Corollary 2.2 this leads to the conclusion of the proposition. The difference w := u®™ — &
satisfies

-V. an:O inQr, w=wponaQy

where wp = (1+ gb 8 + Wg T ,])uzL) — (1 + ¢i0; + ij0;)up. By (a slight adaptation of) the
argument (96) we have

(f VW) < ( Vwpl?)2.
Q Q%L_QL
Hence by (95) it suffices to show
( VwoP)? £ (7 >d<r** y.
Q%L*QL

We break down wp into eight parts, prove an estimate for each of these, and use a triangle
inequality to get our desired result:

Vi = 9w, — up)(ei + v¢~) + ¢Na'(u,ﬁ” — ) + 0, V({7 — )
+ (¢.( — ¢V + 3y(ua) — )V + V() — up)

By, V Wiy — Vi) + Wiy — V) V.
The first estimate follows from (113) and (103). The second estimate follows from (103) and
(28). The third and the fourth come from (40) and (104). The fifth term is bounded due to
(103) and (114). The sixth term is controlled by (103) and (99). The seventh term is good
thanks to (104) and (40). Finally the eighth term is controlled by (104) and (41). O

5.5. Proof of Proposition 2.4

Step 1: proof of (48). We will omit the proof for the second term since their proofs are identical.
Thanks to the decomposition of ¢ (65) and ¢ (66), it suffices to prove

HI(R > r*)(/ nR| /OOO dr(1 - exp(_%))VS(t)aeyz)%

The proof is direct using (D11) and Lemma 4.7:

/ dt(1 —exp(——))HI(R >, (/nR|VS(t)ae| )%
(Dll 1
/ a1 A )| /W\VS( ael*)* |

(79) 4 d>. S
< dt(1 A ) (1/\—)’ 1,
A 7

Step 2: proof of (46). Similar to Step 1, we need to show

| (/ T /ooo (1 - exp(_%))vS(t)ae‘z)%

For the range ¢ € (0, T) we have as above

(ol st on iy

<Ti.

<7
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(79),d>3

T t
< [ at = e |(f nrivsoaer) |, < 1

For the range t € (T, oc), we divide the integral into dyadic intervals (25T, 2¥*1T) and use
the Meyers’ inequality [3, Lemma 7] in form of

2RHIT 1 /R IT 2T 1
2
/n\/»/ dt|VS(t)ae| )2 ( Wi Y2~ 7’(/17 THT/zk—IT dt|VS(t)ae| )2,

(117)
where y = y(d, X) > 0. We then use the third characterization of the norm || - || in (A1) and
the stochastic estimate (79) to obtain

EN[Y

ok+1p

H (/ ’wsz/ dt|VS(t)ae|2)%

(Al) 2k+1T 1
2
N H/n WHT/ dt|VS(t)ae|2H

< ([ ] [ nrivsiouet], )’

k— T
@Ay, 2T 1 !
0 (7w v
(79) ok+1
< (/ A2 9)7 ~ k1),

2k=1T

With the above two estimates we are ready to finish the proof:

H(/ nﬁ'/;o dt(l‘exp(—i))vsu)aelz)% .

o0 2k+1T ¢ R %
< ZH / dt(l - exp(—?))VS(t)ael ) ~

00 2"+1T Sk+1 1
§ / l—exp(——)) ) ” /nﬁ/sz dtIVS(t)ae|2)2

k)32 56 - dt|VS(t)ael* :
Z H(/"«/W/Z,HT VS(E)acl?)

k=
ad k+l ) k—1 1 d _
<Y e TE eIt < T

5.6. Proof of Lemma 2.7

Substituting the definition (18) into (82), where we may change the convolution kernel from
Gaussian to any Schwartz function with the same scale and preserve the CLT-scaling (see [3,
Lemma 13, Step 4]), and choosing R = L, we obtain

_3
||ah€i—/qui||2— SLe.
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The rest of the proof follows from a Cauchy-Schwarz, ¢ — qr = aV(¢ — ¢r), and
Proposition 2.4, (46), as well as (A7):

1 1 1 _3

1 [ orta-ani- = ([ o0t [ oula=ar? - 0 miv@-enP - < VT
_3

With a triangle inequality we arrive at ||aye; — [ wrgirll— S VT 2. O

5.7. Proof of Propositions 2.8 and 2.10

We will focus on the proof of (55) with full details and discuss the other estimates afterwards.
We recall the decomposition formulas (68), (69) for ¢ and v and write at least formally

Uy = /OOO do /Ooo dtr (1 — exp(=2 ; 13\S(t0)(@S(t1)ae — S(t1) x ae)

double integral term

o o0 oo t t t _
_ / do / dt, / dt2(1—exp(—$))suo)3(tl) x avS(t)ae. (118)
0 0 0

triple integral term

The strategy is to divide these integrals into several regimes depending on the ordering of
to, t1, t2, then estimate the layers one-by-one, using either the deterministic Lemma B.2 when
the time variable in question is not the largest, or the stochastic Propositions 4.4 and 4.6 and
Lemma 4.7 when the time variable being estimated is the largest of all remaining variable, with
Corollary D.2 being used to adjust the averaging scales whenever necessary. As we mentioned
in Remark 4.2, our proof actually first shows that the integrals of (68)-(70) satisfy the desired
bounds (58), (54), which guarantee that the integrals are stationary functions, and hence must
correspond to correctors thanks to their algebraic equivalence and uniqueness of stationary
correctors.

Proof of (55). We divide the estimates into two parts, one for the double integral term, the
other for the triple integral term.

Step 1: estimates for the double integral term. We only estimate the term with S(tp)aS(¢)ae
since the estimates for the other term are identical. We divide the double integral into two
regimes: fo > t; and t; > fo.

Case 1.1: ty > t;. The main ingredient we use in this case is (77) with ¢ = /t;aS(t;)ae which
by Lemma 4.7 is approximately local on scale 1 Vv /f; with stochastic integrability 2—, so

IVt .
1v¢5)2 with a

applying the variable-coeflicient semigroup S(%") will lead to the CLT factor (
loss of stochastic integrability to 1—:

[e%e] to 1
1R = £)( / - / dto / dt (1~ exp(— T VS(ap)ast el 1
0 0

o0 to 1
< /0 dto /0 (1 — exp(~ "L NIIR = r)( / nRIVS(to)aS(ty)ael?) 11

(D11) o0 to to to 1
S [ dna ) [T ani [ el VSCDaseac
0 0

A S L I RV
N / dto—(l/\—o)/ dty( ‘/_1)
0 to T Jo 1\/\/t_0

1

NG

[SIEW

(0 [ gzl VSteael) o + g1 )
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(79),

~

AN

(80)/°°d Laadan ) [ anay vyt Laa iS r
to—(1 A —)3 /\—/ HAV VAT ——(1 A —)2 < T4,
0 i T Jo RN RN

Case 1.2: t; > ty. Before we start the proof, we present here a general integration by parts
formula in time which will be used repeatedly hereafter: for any ¢, ¢35, T > 0,

t
/ drz(
0

(r)g=(

, (119)
_ (—“)/t ar (—t/)/t drS(r)
T exp(— | exp(—= ; g.

To estimate this case, we first switch the order of integration of ty and #; and use (119) with

T = ty, t = t3 = t; and ¢ = aS(t1)ae, then appeal to Lemma 4.10 with ae playing the role
of g:

o0 t 1
Jicw= v ([ onl [ an [ttt - expt=" ) S aasteac’) |,

iz ([l [ ana- exp(—Q» [ awvsiasiac)’
0 T Jo

00 t to 1

+ HI(Rz r*)(/nR{%/o d exp(—%)/ﬂ dto exp(—%o)/o drVS(z)as(t)ae|’)

o0 2 11 1
< [ ant - eIz ro( [ el [ dvstasieact)’

+ l/Oo dt; ex (—t—l)/tl dtg ex (—t—O)HI(R > )(/ I/to dtVS(t)aS(t )aelz)%H
T/, 1 €Xp T 0 €Xp T = T NR A 1 5

(87) oo H 1
< dtl(l/\?)H(/nf‘ NARE S ae s ae) )7
@9) oo o1 1 a4 923 1

< dtiAA =)—1Q A —=)2 < T71,

~l T T yR

Step 2: estimates for the triple integral term. We divide the triple integral into five regimes.
In particular, we use Lemma 4.10 whenever #y < t;, and Lemma 4.11 whenever t; > £, (in
which case the 1, integral always stays inside the stochastic norm ||-]|).

Case 2.1: ty > t; > t. In this case, notice that fotl de (1 — exp(—w))g(tl) x aVS(t;)ae
has locality scale 1 v /f; by Lemma 4.11 and stochastic integrability 2—, therefore, by
Proposition 4.4, applying the semigroup S(#p) will induce stochastic cancellations by a CLT-
lvf )d

factor (17°72)" with aloss of stochastic integrability to 1—:

ot 't 1
/0 dtg/o dor 1w = r*)(/nR|VS(t0)/Ol a1 — exp(~ AT R)S(01) x avStiacl) |

T -

(D11) foo to £ t o+t +b - 1
S /O dfo/o dtl“(/nRvﬂ|vs(£)/ dtz(l—exp(—%))sm)xavsuz)ae|2)2”1_

a7 o 1t 1v /A d o+t +t - ni

< — — DT T 2

S [ oy | anGoYD 1| /n ﬁ|/ diz(1 = exp(— 22 )S(01) x aVS(eacl”) |
(89)

1 1 1 4
< [Tantan Ly / dt (1 ZAA=)——=0A—=)2
S oto(A ) RV LIPN. f( f
Here the g term is not necessary when using (77), thanks to Lemma 4.11, which we used for
t3 =ty + t1 ~ 1.

d=3
ST

i
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Case 2.2: ty > t, > t1. Now /f1S(t1) x aVS(t2)ae has locality scale 1 Vv /%, (using
Proposition 4.6 for t; and Lemma 4.7 for ;) and stochastic integrability 2— (using Lemma 4.7
and Remark 4.5), so Proposition 4.4 tells us that applying S(#p) on it will result in stochastic
1\/«/5 )d

cancellations by a CLT-factor (5 and a loss of stochastic integrability to 1—:

fo fo to+t1+t - i
/0 dto/o dty dtz(l—exp(—%))uz(zzz r*)(/ nR|VS(t0)S(t1) x aVS(tr)ae|*)?
51

(D<11) o0 to to to to .- 2 %
< /0 dto(l/\?)/o dy /tl iz (/nm)VS(E)S(tl) x avs(i)ae|”)
(77) poo 1 to to 1
< / dto(lAt—O)—/ dty [ dio( v“F)

Jo T 10 Jo Jt

1vJih Vi
< (] / 'WNH%) x aVS(tz)ae}z)f

(B3), (78) (139)
/ ditp(1 /\ t / dt 1

_+1Gll2-)

fo 1vf
< [ an ll(/n 1129S(t2)ael?)} — + gl
JH lvf \/7 £ )
(79),(80) fo. 1 1 4 [t to 41 1 4923
< dig(1A =)—(1 A —)2 dt dbr(1vJ/H)2—0 A —)2 < T %,
< /0 sanDran—ot 1f P an0v vt an 2ot

Case 2.3: t; > to > t1. In this case, since both ty and #; are small compared to the innermost
t,, we use the deterministic Lemma B.2 on both ¢y and ¢;, and the Lipschitz estimate (D11)
and finally Lemma 4.7 on t,:

fo o0 fo+1t i
/ dto/ dy [ de( —exp(—w))HI(R> r*)(/ 1R |VS()S(t1) x aVS(i)acl?)? |
to

(D11) to 1
2 0.\ 2 2
< /O dto/o an | dtz(l/\?)HI(R\/«/»to > r*)(/nRvm‘VS(E)S(tl) x avs(tael*) |

(B3) o] 1 to 00 t _ 2 %
< / dto—/ dty /to dtz(l/\?)HI(Rv\/ﬂz r*)</nRvm|S(t1) x aVS(tr)ae|?)

(B3) to 1 1
dto— [ dt T ant A 2w VS(t :
< [Ty [ lﬁ [~ an0 Dl v 2 ([ | See)?
(Dll) t ) %
/ o= FTAION )H /nﬁ]VS(E)ae| )|,
9 b1 1 ad
1 IA—)2 < T 4.
/ dto dtz( A T)tz( /\\/5)2 < 3

Case_2.4: ty > t; > ty. We start the proof by using (119) on ty with t =}, 13 = t; + 2, and
= S(t1) x aVS(ty)ae,

g o+t +t - 1
/ dtz/ dtl‘I(R>r* /nRI dto(1 — exp(— %))Vs(to)s(tl)xaVS(tz)ae|2)z ,

(119) 2t +t
< /0 d | ® 401 — exp(= 24 e ) HGE| / e | / dtOVS<to)S<t1)xavsaz)ae\)

—l—l d fa d " d
- t -= t e t ——
T/o 2 exp( T)/o 1 exp( T) A 0 exp( T)

to _ 2 %
x 1R = r*)</ nR|/0 drVS()3(11) x aVS(ir)ae|?)
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We now state a slight modification of Lemma 4.10 in the sense of
fo _ ) 1
[tz r( el [ drvsosiengP)*

0

t t !
S @ v i = ([ g (WVRVSCgE + 5ChgR))* - (120

In this regime we apply (120) to g = aVS(t2)ae, so applying Lemma B.2 on ¢; and finally the
Lipschitz estimate (D11) and Lemma 4.7 on ¢, yields

HI(R > 1) ( / | / " drvsosn) x aVS(tz)a€|2)%

(120

HI(R v Vi r*)(/ nRWH(WEvS(%) X aVS(t,)ael?

+152) % avS(tael?) )

(B3 1 (D11) 1 t ) 1
2\ 2 3
H /URvﬁ|V5(f2)a€| ) Hz_,S EH (/nﬁ|VS(E)ae| )
(79)
< il(l )
Vit v

Combining all the arguments, we are able to conclude

Iy " dn 1w = [ el [ " a1 — exp( I 90050

1
X aVS(tz)ae|2) :

o0 t 1 1 4 (B 1
< dt (1/\—)—(1/\—)2/ dt; —
/0 2 1\/—

/ dtz— g/ dtl\/_/ dtoexp(——

Case 2.5: ] > ty V t. We start by using (119) on t; as in Case 2.4:

o0 h h to+t +t .
| anfiezro( [l [ an [ e - exp- 202 vstSe)
0 0 0

2/\\v

1
X aVS(tz)ae|2) 2

(119) [©° f h +
5/ dtIHI(Rzr*)(/m/ dto [ dis(1 — exp(— 22 vs )3t
0 0 0
1
X aVS(tz)ae|2) :

2—
1 [ h ti+to
= dt dt, —
+ 7 /o 1 /0 0 exp( T )

o o [ a5 s s
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We again continue by using (120) with g = aV S(t2)ae, though this time we use Lemma 4.11
with t3 = 2t; on 11, fy:

00 51 t1
/ df HI(R > r*)(/ nR|/ dto/ de (1 — eXP(_M))VS(tO)S(h)
0 0 0

1
X aVS(tz)ae|2> :

(120) 51 2t + ¢
S [ an ([l [ - ep- 2 (vAvEEH

x aVS(ty)ael® + |S(%) x avS(t)ael))* H

1 o0 f to
— dt dt ——
+ T/o 1/0 0 exp( T)

h _ _
([l [ e VRS x aTSeael + 15)

1
X aVS(tz)ae|2)> : H2

(88),(89) t1
S / (1A~
0 7 f f

/ dtl/t1 dtg exp(— T «/_ \/1_)

This finishes the proof of (55). The estimates (58) and (54) follow by simple modifications
of the above argument: Indeed, notice that when any of the t;’s is larger than T, the weight
1— exp(—w) is ~ 1. If we replace the weights 1 — exp(—w) by 1 and repeat
the integral estimates we get (58) for ¥ (the calculations are actually easier since integration
by parts on the weights are no longer needed). If we replace the weights by exp(—w)

d>3 1
< T4,

[STEW

and remove the gradient in front of S(tp) (which will make the bound worse by JT) we
obtain (54).

Proof of (59) for Vi/. When any one of the ¢s in representation (68) is larger than R?, we can

1 d
use |fr] S (f NR [flz)f to derive the bound R'~2. For example, in the case ty > t; > t, of the
triple integral in (68) (which means ty > R?), we can estimate as

00 fo f ~
HI(Rz r)( /R - dn /0 dt /O A6, VS(t0)3(11) x aVS(tz)ae)Rul

N /R:o dto / ' dy ”I(R > 1) ( / nR| / tl dt; VS(t0)S(t1) x aVS(fz)“dz)% Hl_

Dll

/RZ dto/ e /nﬂ/ dtZVS( %)S(t1) x aVS(tr)ae|’)? H
(77) 1\/\/_ d
</ dtog/o dn(— 2 H /nf|/ dt>V/AiS(1)

X aVS(tg)aelz)%

+12l-)
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00 1 to f d
5/}22 o | d (2 \/_ zf(u(fvx<S<t1)ae—ae>>f||2,+||g||2)

(82),(B3),(80) 1 [t
< / d dt; ( f
R2

% Jo NN AN

We may apply the same modifications for all other cases and obtain the same bound. Hence
we only need to consider the case when all #;s are in (0, R?), which will be done now.

For the double integral term of v in (68), notice that since aS(t1 )ae has locality scale 1V ./t
by Lemma 4.7, we can apply (76) of Proposition 4.4 with aS(t;)ae playing the role of g and
estimate

R2 R2
(( /0 dt /0 dtIVS(to)aS(tl)ae)RHF

R? R?
< /0 dtlﬂ ( / dtOVS(to)aS(tl)ae)RHk
(76) R |
A" (s )=l / m|\/ﬁas<t1>ae|2>f||z_+||g||2_)

(79)<,(80) d R? ( \/_) ( ) d < 1
2 tl 1 V 2 — 1 N ——)2 ~

For triple integral in (68) we divide the 1ntegra1 into the tworanges t; > fp and f; < t. In
the regime t; > t,, we appeal to (76) of Proposition 4.4 with g = (V x (S(t1)ae — ae)) N
which has locality scale 1 v /f; (which follows from a combination of Proposition 4.6 and
Lemma 4.7). In the regime t; < t,, we also apply (76), this time with ¢ = S(t1) x aVS(ty)ae,
which has locality scale 1 v /#, (again using Proposition 4.6 and Lemma 4.7).

R2 R? R _
H(/O dto/0 dtl/o dtzVS(fo)S(tl)X“VS(tZ)“e)Rﬂl_

(62)

< /OR dt; H (/OR dtoVS(1)(V x (S(t1)ae — ae))ﬁ)RHl

\ U

1 1 dd>3 Rl_%.

Lz

~

R2 R2 R? _
+/ dt1/ dtz” (/ digVS(t9)S(t1) x aVS(tz)ae)RHl_
76) / dfl(l ! f ‘

R? f d -
+ [ an i “and! raa ([ /an«/ES(tl)

_+1Gl-)

13l )

1
X aVS(tz)aelz) 2

(82),(B3),(80) 4
2

RZ
< R~ 1 2 1
N O(V«/H)\/—(/\\/—

d R 1 R’ d
R-z/ d“T/ dtr(1 v V/i)?
(| nuainvstmack)?] |+ igie-)

2 dty
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(79) d

RZ
1
< R“2 4+ R™ z/ dt — / dtz(lvf)l—(lA—)Z gRl—i
\/_ \/_
Using almost identical arguments we can also establish

IR = 1)@V — (aVy)rli- S RS, (121)

the only difference is that whenever we use (76), we use the result for S(t)g — (S(t)g). We
thus do not write the argument here.

Proof of (58) and (59) for VW. The proof is based on the representation (70). For (58) we can
estimate

IR = 1) / MRl VW)
R? .
< IR = £.)( / - / V(D) x @V ag, o)D)
0
+ [ ARz ) [ 907 x @99 0.0 ) -
(83) 1
< R > )| nrl@Vy,ap,0)H)2 |-

+ /RZ dt|I(R = r)V(V x (aV{,a¢,0)) fll1-

(58),(121),(86),(84),(85) ©  __,.,_d d=3
< 1+ [ JETTTRar< 1
RZ

The strategy for (59) is similar,

oo
IR = r ) VWe(1- < / dtlI(R = r)V(V x (aVY, ap, 0)) sprpylli-
0

(85),(84),(121)

0o —241-9d>3 d
< / dt\/R2 +t > <RI
0

5.8. Proof of Proposition 2.9

Step 1: proof of (56). In fact, in this step we prove a more general statement: for any % <r<r
to be specified later, if Fr satisfies the whole-space equation

1
?FT—V-QVFT:V-g,

and F(TL ) satisfies the following equation in Q,:

1
PP _v.avFY =v.g inQu

(122)
F(TL) =0 on 0Q,,

then for any p < oo,
1

3 T 1
(]é (VT — B Fr— B ) 50y [l a2
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Choosing ¢ = ae so that Fr = ¢T,F§~L) = ¢§~L), then pickr = 2,7 = % and (123) turns into
(56).

To prove (123), we define a solution operator S for finite domain: given r > 0, let v(x, )
be the solution for

0v—V-aVy=0 inQ, x (0,00),
v=20 on 9Q,1 x (0,00), (124)
Wit=0)=V.g in Q,1,
and we define
SB(t)g == wu(t).

Following the discussions which leads to (71),
o0
t
FP = / exp(—=)SP(1)g dt.
0 T
Following the steps of [3, Lemma 1], we can show

(][ |(tVS(L)(f)g,«/fS(L)(t)g)}2)%S(][ ). (125)
QL QrL

Now we introduce the intermediate length scale T = /TL. The idea is to divide the t-interval
into [0, T] and [T, o0). In [0, T], exp(—%) < 1 and we use Lemma B.3 for small ¢, while in
the large  regime we directly use the small factor exp(—#) to derive subalgebraic bound:

(f, Iver =)’

(71),122) (][
Qr/L

T 1
< (]{z/L/o dtexp(—%)V(S(t)—S(L)(t))g‘z)z

+(][Qm
T . T 1
5(/0 dtexp(—¥))2(]ém/0 dt| v (st) — sP()g|*)?

o.¢] t
dt exp(—— v (s(t) — sSP(0)g|?
+/T texpl T)(]{Q,w} ( “ (t))g| )

T s
gﬁ(]éﬂ/o dt|v (st — sP()g|*)?

+/T dtexp(—%)(]ér/L}V(S(t) —S(I‘)(l‘))g|2>2-

For the first term, note that (S(t) — S&) (t))g satisfies

3(S(t) — SB(t)g — V - aV(S(t) — SP(t))g =0 in Q. x (0,00),
(8(0) — sW(0))g =0 in Q.

o ot ECYIRWEY:
/0 dtexp(—)V () — SV 0)g] )

t

o0 2 %
/T dtexp(— )V (S() = SP(1)g]")

[T

(126)
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Thus, by Lemma B.2 and a slight modification of Lemma B.3 with T playing the role of T and
rL,7'L replacing 2L, L, for any p < oo,

T 1

ﬁ(ﬁ, / di[V(s(t) = s w)gl)?
®) T T, (T Vi 23
<T_2P 1/ dt—p][ St—S(L)t 2
S FEDE ) ) ( Q,L\o,@'( (t) — sP(e)g|*)

VT, (T Vi ! !

5—(—>P/ a( YLy (][ 1S() |2)z+<][ ISP (0g?)?

\/> L 0 ﬁ ( QL g QrL g )
(B3)2125) 1

TP T s
(N 2y3 ;N Y 2y2
< ﬁ(L>(/an|g|)/0dtﬁPS(L)(/nrugn.

For the second term
o0 t
ﬁ dteXp(——)(][ V() — SD g,
i T Jq,,

since exp(— ) < exp(— ;) (‘F)P decays faster than any algebraic power of ‘F, we only

need to show that ( fQ |V(S(t) ENOIO)) gl2 dt)2 p grows at most algebraically fast in This
can be easily achieved by energy estimates:

/Too dtexp(__) (f IV(S(t) — S(L)(t))g|2)%

/ dtexp(——) ][ |VS(t)g|? dt / dtexp(——) ][ |VS(L)(t)g|2dt)%

(125)

< LT 2/ dtexp(——)\/—2 (][ IVS(t)gI dt / dtexp(——)t 1(/ an|g| )2
Qi

t

f

T T 1 T 1
5 (L—§/T dtexp(—%)t%_l —f—?exp(—?))(/mlglz)l s(T)P(/ nlgl)z.

The proof for Fr — F(TL ) without gradient is identical, and now we finish the proof of (123).

Step 2: proof of (57). As y’s are defined through o’s, we need to prove the intermediate
estimate

2 T
(f, 1(/T%0r oo~ o))} 5, . 127

Let o1 be the solution of

(128)

1. ~ .
70T~ Aor =V - (qrrej — gjrer) in Q7
or=20 on dQz;.
4
Now substitute g with gi Te; — gj rex and pick r = ;71, r = § in (123), we obtain

1(12 I(Bl) T
(]é |(VTVer=an.or—ar)[’)* 5 <£)P( nyglar)? < (%)P.

3
5L
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To finish the proof of (127) we need to pass from 6 to 07(~ ). We subtract (128) by (10), and
appeal to the standard elliptic energy estimate
(F |(VIVEY — 61,00 — 7))} <f<][ — PPy
Q3 Q7
2 4
160 /T
SVT(F  [Vigr — 7)) < (C).
Q 7 L

The proof of (57) now follows from an identical argument as that of (127): pick r = % and
r = % in (123) and we have

(]é VTV — ) pr — o))
< (%T)P(/n;L(qs% +lorP)* + V( ]é ((br — 6P + o7 — ofPP))*

(B1),(56).(127) T
< ﬁ(%)ﬂ

5.9. Proof of Proposition 4.4
We only include the proof for S(T)g since the proof for fOT dtVS(t)g is identical. The proof
of (76) is divided into four steps:

Step I: Proof of (76) when JT < ro. When r < 7, using the fact that Gaussian is dominated
by exponential averaging functions, we have

1S — (STl < i / GS(T)gD) s
(129)

d
(§||(/nro|S(T)g| )2 ||s ~ 7’0 ||(/77ro|g| 2 ;.

When r > 1y, in view of Proposition 4.6 (in this regime the bounds on G only uses
Lemma B.2), we may apply Lemma C.1 to F = S(T)g — (S(T)g) and derive with the help of
(129)

d 1
sup 7 [[(S(Tg — (S(Dgells < 5 (I / Mrolg1)2 s + 11Z1s). (130)

r=r0

Step 2: We claim that there exists a constant C = C(A, d) such that for any § < 1,

1
Fo = ﬁ(/nﬁwm%ﬂz)

BI—

) <8 (131)
implies

%(/nﬁu«z),onz)% <28,

Here ¢ ; /7 denotes the convolution of ¢ and Gaussian G, /7 (instead of the massive corrector).
NN <
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We first establish the simple Caccioppoli-type estimate

([ gl < %(/ 1l 0) )1 (132)
We test (17) with n JIP and obtain

/V(nﬁqb)-quS:—/V(nﬁ(p)ﬁe:—/qanﬁ-ae—/nﬁV(p-ae.

We then use |V s7| < %n 7 ellipticity (1) and Youngs inequality to obtain for any ¢ €
(03 1))

/nﬁ|V¢|25/nﬁv(p.aw&=/V(nﬁ¢).av¢_/¢vnﬁ,av¢
5/|¢||V'7ﬁl+/nﬁ|V¢|+/|¢||Vnﬁ||V¢|

1 1
S T/’Iﬁ|¢|+/ﬂﬁ|v¢|+ﬁ/ﬂﬁ|¢||v¢|
/nﬂvm P /nm)

and we finish the proof of (132) for ¢ by choosmg asmall ¢ > 0 to absorb the first r.h.s. term
into Lh.s. Similarly for o we obtain from (21)

1
/nﬁWoV5e/nﬁ|w|2+g(1+/nf|w| 4L /nfc»v)

/nf|V0|+(1+ /Uf¢+ /r)fa)

and we therefore finish the proof of (132) after absorption.
By Poincaré inequality in convolution (92), we have for some constant C which may change
from line to line,

jT(/nﬂp)i jT(/nf|¢ b1 + jT(/nﬁmfF)%
< —(/and)l)

(122) é n ) (/ " )
= clegr VT
The term = (f ny7l¢l 2)

obtain

=
=

No—=

can be absorbed into the Lh.s., and for C sufficiently large, we

1 1
= / 2} <28,
JT VT
Similarly,

N\'—‘
ol —
Nl

1 2
(/77[ (/nfla Gafl %) ﬁ(/ﬁﬁl%éﬂ )
(131) §

2 E(/nﬂw)

D=
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(132

) 8 1 il 1 .
< —(1 — 2 PR 2 )
2204 (/nﬁ¢>+ﬁ</nﬁo))+
¢ 3 ) 1
—(1+23)+ / o?)? 4+,
and we finish the proof for Step 2 after absorbing ﬁT( In ﬁaz)% intoLh.s.and using § < 1.

Step 3: Estimation of )H (S(T) - Shd

, - Here and for the rest of the paper we

use |||l to denote a norm on stationary random fields with a CLT-scaling built in:

Il = s G —

The strategy is to first estimate RS II( (S(T) — Sh(%)S(%))g)RH 2 for R < +/T and then use
Lemma C.1 for larger R. "

Following the proof of Lemmas 4-6 and Proposition 1 in [3], with (¢, o, ap,) playing the role
of (¢1, o, apr) (and thus the g there vanishes), we obtain the following deterministic estimate
of the homogenization error on the level of the flux semigroup S(t) in a weak topology, i.e.,
there exists some possibly large p = p(%, d) such that for all R < /T,

(R _si sk
Fli= (27| (S(Dg = S"S(7)e)yl

L o L (133)
P][ dt][ dr( 7 )2 /nﬁ|(8(t)g— (S(t)g))r| =:46?Fy,
provided
—= ([ nurle.or)" <2 (134

The key feature of (133) is that the r.h.s. F; is of the same nature as F: it is a weak norm of the
flux.
Using Step 2, we may replace (134) by Fy < 2§ with the random variable Fy defined in

_d
(131) that has the desired cancellation bound +/T 2, as we may derive from (84),

1Folla— S 8(6v/T)7". (135)
We also need the following pointwise bound on F:
G5 =" g), | 5 ([ nrlgP (136

The proof is identical to [3, Lemma 15, (3)], with the only difference that ae is replaced by
(f nﬁlglz)%, and is thus omitted.

For any sp < S+—2, let s; < 2 be such that —I— %, by Lemma A.3 we have for R < JT
and 51 € (s1,2), with 26 playing the role of 5

I oII
IEllsy S 57 IFllsy + (= )5 IF s

(135),(136)

¥ . (137)
49 4 zsu§|||s<t>g|uso+<aﬁ> S g
<
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d
Multiply both sides by A/T? and we obtain for R < +/T,
d T T 1 _ds_ 1
R (Sg=S" Syl S8 sup S, +EVD 1 [ nyrigi
<t<

Since 51 > s, by optimizing in §, it is clear that there exists an exponent y > 0 such that for

allR < /T,

d T T 1 1
RE | (S(T)g — SM)S(g)l, < (TT’V(E%’« ISl + i€ / nyrlgl?)Ils).

In order to deal with the range R > /T, we appeal to Lemma C.1 with F = (8(T) —
Sh(%)S(%)) g minus its expectation, and F defined as in (81) of Lemma 4.8, such that

d _
VT?||Fllsy < sup |HS (t)g|||50. Using Young’s inequality for the last inequality, we get
t<T

T T
H’(sm —shg)S(E))g

S0

1 1
< (" (sup ], + 1 JENTRED

+ ((5=)” (sup [[[Stoxg]l, + 1€ / nyrlg)? m))é(sup Iscgll,, + e ||g||so)%
VT i<t 0 t<T %0

T=1 1 » 2.1 4 _
S (¥ (sup g, + [ s+ 111, (138)

Step 4: Conclusion of the proof by decomposing the time interval into dyadic pieces and using
the semigroup property (63) of S(¢). The proof follows from [3, Theorem 1]. For any t; > rg,

using [3, Lemma 16], )Sh(t)gm S ’Hg}“sfor allgands,
N

t t
lsglly, = [|S"T = mStg+ Y SMT = (S - S")S())g

t1<t<T

<||ls" @ —msang|| +
t<t<T

S0

SHT = 1(S(0) - "))

S0

S(t)g — Sh(§>8<§)g

< s, + X2

h<t<T S0
(138) 1 d
< lIstgll, + > <7>%(sup Is@xell, + ¢ / nyilgl®)2 s + 73 181
h<t<T t T=t

Y

(A7) 1 v 2,1 g -
< liseell, + ()2 (Oi?ET}HS(r)gIHSO +I( / nyilg®)2lls + 1 12

Obviously, the estimate still holds if the Lh.s. is replaced by sup H|S (t)g|HSO. Provided #; >
H<t<T

1, we may absorb sup |HS (t)gH|sO into the Lh.s. Fixing # to be a large multiple of r3 > 1 we
1 <t<T



652 J. LU, F. OTTO, AND L. WANG

may appeal (76) for sup |||S (t)g|Hs0 (which we proved in Step 1, here we used sy < s) and
0<t<t

end up with

d
sup [[|S(glll,, < sup [|S@g]ll, + I / nyilg®)2 s + 13 181
0<t<T 0<t<t

(76),(A7)ro=1 d sl )
S 1o UIC] 1rlglD) 215 + g ls)-

This finishes the proof of (76). The proof of (77) is now immediate: we use [3, Lemma 6] to
obtain

([ nor/T9smgsPR) S dt][ a2 [ nrl(S(0g ~ (S0g)

and then apply the stochastic bound (76). O

5.10. Proof of Proposition 4.6

Our goal is to prove, for any a = ain Bag forR > 1y v JT,

=

(f 1(rv(scmg = 3(3), VT(S(1g = (1), S(Dg — SR )
T I,
S (%)P/m(cw),

where G is defined through

G(0) = / dt(—) [ iyt + R A(ED

Here g, S, S, and G are the quantities corresponding to a replaced by a. For simplicity we
only present the estimates for S(T)g — S(T)g since the proofs for the other two quantities are
identical. 3 ~
We decompose S(T)g — S(T)g as S(T)g — S(T)g = w1 (T) + wa(T), where wy, w; satisfy
the following equations:
dewy — V-aVwy =V - ((@— a)V8(T)3), wi(t=0)="V (I(B3)g—3))
and
dowy — V- aVwy =0, wy(t=0)= V- (I(Br)(g—2))-
Since a = a in Byg, w; satisfies the assumptions of Lemma B.3, and hence
JT, [T i :
Vi) s Y [ aard o
<]iR| | ) \/_ R 0 ﬁ Bar\Br !

In order to estimate the r.h.s. we write w(T) = S(T)g — §(T)§ —wy(T) and apply the triangle
inequality, the first contribution

1 VT T NG
— ([ a( Xy S(t)gl?
ﬁ( R )/0 (ﬁ)(BzR\BR| (t)gl)

Bo—=
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is controlled by the first term of G using [3, (204)]. The second contribution is controlled the
same way. For the third term, ﬁ(‘g)l’ fOT(Ji%)P(fBZR\BR w%(t))% dt, we use Lemma B.2:

1 VT, Vi 1 VT, (T Vi1 P!
(X d » 2 < L vTy de Xy — 3z,
ﬁ( R )/0 t(ﬁ)(BzR\BRWZ(t)) Nf( R )/0 t(ﬁ) «/?(]{sm lg —&lI")

By assumption (74), the r.hes. < (“/TT)P (%O)P f nr(g + §), which is controlled by the second
term of G. X
We are left with (fBR |v/Tw,(T)[?)2. By Lemma B.2 we have

(][ WTwa(T)P) < (][ g — &5
Br Bar

Again by locality assumption (74), the above is controlled by the second term of G. The
bound (78) is a direct consequence of Proposition 4.4 for VT > ry and (75) (which only
uses Lemma B.2) for +/T < r,. O

5.11. Proof of Lemma 4.8

We first reduce the problem to estimating ( fBR IS(T)g — S (T)§|2)% as the difference of the

other term S”( %)(8 (%)g -8 (%)g) can be estimated similarly. Here we recall that g, Sand
S are the quantities correspond to @ in place of a. Following the proof of Proposition 4.6, we
can show for @ = & in Bog with R > ro v /T,

1 1 T - 1
(f 18Mg—$MP)* < ( 1g—aP)* + ]i | /0 dt(avS(g — av3(ng) )

Br Br

T 1
Sy [marp+(f | avsog-sopP)’

JT T t 1 1o _
< L YT [ ity S(Hel2)3 + ()
S \/—( R ) /0 t(T) ( BZR\BRI (Hgl7)z +( ) /nRg

(X V4 2 _P
+[(R>/ di( )(BZR\BRw(t)gH +( )/nRg

To finish the proof we have one more step

1 ﬁp T t 1 ﬁ =
(= d _\P 2 7 < (X ,
[( R ) /0 t(T) (]1[32R\BR 1S(0)g17)2 < ( R ) /nRF(a)

which can be shown as in the proof of [3, Lemma 12]. O

5.12. ProofoflLemma 4.9

We only need to establish (84), (85), and (86). Throughout the proof of this lemma we use
¢r := ¢ * Gg to denote the convolution of ¢ and the Gaussian Gy (not to be confused with
¢71), and similarly og. We first address (84). For the ¢ part, we use (73) in form of

o= | a-aoy
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Therefore

rlla = I /0 dt(—A0) ) gl
o0 o0 1
< /0 Al=86) el = [ dt— 2 (V0) g -
(82)

00 _1_g d>3 1_d
< / dt\/t + R? < R 72,
0

For o part we use decomposition (67) and appeal to the bound (82) on g:

lorll = ||(/ dt(V x q) j)rll2— = / dt[l(V x q) srgell—
0 0
(82)

o] _1_%d23 1_d
5/ dtv/t + R? < R72.
0

We now turn to (85). It is slightly different from the above proof of (84) since the starting
point is the semigroup decomposition (65):

o0
[I(R > ry)(ap — (ad))rll2— < / dt||I(R > r4)(aS(t)ae — (aS(t)ae))rll2—.
0
For the range J/t < R, in view of Lemma 4.7 which ensures that aS(t)ae is local on scale

1V /t, we use Lemma C.1 on aS(t)ae — (aS(t)ae), then a Cauchy-Schwarz and the fact that
Gaussian kernel is dominated by exponential kernel, and finally Lemma 4.7 to obtain

RZ
/ dtl|(aS(t)ae — (aS(t)ae))g 1o
0

S S AN/
< I
N/O di( R )\[(pr\[(1 NG

R 1\/«/—4
< [ @I (1 ol Viaswael ) o + g1a- )

)2 [Vt(aS(t)ae) - + 1312- )

79,80) R2 d d d
< Rz/ dt(1vﬂ)7—(1A—)i ~R!"2
0 Vit

For the range v/t > R, we directly use the exponential kernel to control the Gaussian kernel,
then appeal to (D12) and Lemma 4.7:

/ IR = r)(@S(Bae — (@S(Hae)rlls-
R2

< /R AR = ) S(ac)}

Rl S(L)ae?)3
— 2
< [t npisae)t -

(79) foo _1-4 4>3 d
< dty/t 2 'R R,
R2
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We finally prove (86). The ¢ part uses Poincaré inequality in convolution (92), and (84)
forr=1,

||(/nR|¢|2)% o < ||(/ Rl — 117 - + ||(/ nRI$12)2 12—

(83),(84)

1
S II(/ nRIVO) 2 - + d1l- S 1.

For o part, we again use decomposition (67)

I nalo - = 1 nR|/O 49 x g) ;1) o

1 1 o0 1
S el [ a5 < g+ [t 17 x a4 -
0 1 Br
(B3)

o0
1
< I 77R|q|2)2||2—+/ dt(V % @) il
1

(82),(83) |_dd=3

m —
< 1+/ vt 25 L
1

O
5.13. ProofofLemma4.10
If R > \/to, the argument is direct:
to 1
Rz (el [ drvstoastg?
0
(B3) -
< IR = ([ nais(e)g) -
(D12) t 1
S MRV VA 2 ) e S
We now assume 4/fy > R. The starting point is the following: let u satisfy the equation
-V .-a(Vu+g) =1,
then we have
sup / e Vul® < / nrIVul® + sup / ne(Ig” + RIVgI> + Rf?).  (140)
re[rwR] re[r«R]
By a slight modification of [12, Corollary 3] as well as Poincaré inequality we have
R2
sup |Vu—|—g|2§][ |Vu+g|2—|— sup — |g—][ g|2—|—R2 sup ][fz
re[rs,R] 7/ By Br re[r«.R] B, B, re[rs,R] 7/ By
< |Vu +g|> + R* sup (IVgl* + 1.
Br re[ry,R] /By
(141)

The proof of (140) then follows from post-processing from fBr to [ n, (see the proof of
Lemma D.1 for the argument) and a simple triangle inequality. Now, since the function
W= Oto dtS(7)aS(t1)g satisfies the elliptic equation

=V -a(Vw + S(t1)g) = —S(to)aS(t1)g,
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using (140) with /%y, S(t1)g, —S(f0)aS(t1)g playing the roles of R, g, f respectively, as well as
Corollary D.2, we obtain

to 1
IR = £)( / ol [ drvs@uas(egl -

(140

) to 1
S Mo = r( [ 15l /0 drVS(e)aS(t g -

+1 sup (/nrls(ﬁ)glz)éllz—
]

TE[I’*,m
1
+ Vool sup ([ 0 VS(t)gl*)2 llo—
’E[f*:\/%]
1
+ Vol > 1) sup ([ 1:S(to)aS(t)gl*)? |-
r€[rs,/To]
(D9),(D10)

S iz ) g /0 " deVSastgl)} s
WA 2 1) ngISChgR -
+VRIE = ) [ V5D s
+ VR 2 1 1 IS astmg
I = r [ st a + 110 = r [ glsChg
+VRIWE 2 1 1198

(D12

) 1 1
< WA > ) / 1 1S s+ VR = r) / 1 VSCOEP I

O
5.14. Proof of Lemma 4.11
We first prove (88). The starting point is to show for R > 1
d
l(ae — (ae)rll>— < RY. (142)
The proof uses (C2) for ae — (ae) that is mean-zero and exactly local on scale r = 1:
(€2) 2.1 _d
lI(ae — (ae)rll>- < ([ Gg)2llae — (ae)[— S R™2.
The next step is to prove for t, < t1,
1 1 4
IV x (S(t2)ae — ae) sl S —=1 A —=)2. (143)

Vi Jh
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Ift; < 1the proofis completely deterministic. Using a Cauchy-Schwarz and that the Gaussian
kernel can be dominated by exponential kernel and Lemma B.2 we obtain

IV x (S(t2)ae — ae) il < —||<a / drVS(t)ae) /i ol

H /nf|/ drVS(r)ae!)

In the case t; > 1 the proof follows from (82):

S

(82) L d
IV x (S(t2)ae) sz lla— = IV x (S(t2)ae — (S(t)ae)) mllm S VB2,

and we prove (143) using a triangle inequality and (142). We are now ready to prove (88).
For simplicity we only prove estimates for the second term as the proof for the other term is
identical. Using integration by parts (119),

3+2

/ dt,(1 — exp(— N)S(t) x aVS(ty)ae

t _
dt,S(t1) x aVS(ty)ae

1 13 h [5) f2 -
-7 exp(——)/ dt, exp(—?) dzS(t1) x aVS(t)ae
0

(62264) (1 — exp(— i3 + 1

NV x (S(t1)ae — ae)f

_ %exp(—?) /O dt, exp(—?)v X (S(tr)ae — ae) sz

Therefore using (82) and t3 > 11,

t
I an
0
t3 + 5]

< (1 —exp(— T IV x (S(t1)ae — ae)) s ll2—

2 )S(tl) X aVS(tz)aeHZ_

51
+ o exp(—2) / dty exp(— 2NV x (S(tz)ac — ae) -

(143) 1 4
S (A ?)f(l A T) + eXP(——)(l A —)f(l ﬁ)z
4
Sana ?)ﬁ(l J_)z

The proof of (89) is similar, again we only write down the proof for the second term:
t fh -
||/0 dt, exp(—T)S(tl) X aVS(tz)ae”zf
t
< exp(= )V x (S(t)ae — ae)) ;-

1 [h t
+r /0 dty exp(— 2V x (S(t)ac — a0) >
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(143) 1 o) 1 g
?(1/\?) +(1IA ?—tl( _tl
g
N«/— «/_

For the proof of approximate locality (90), in view of Proposition 4.6 applied to S(;), it
suffices to prove that fot Ldt(1 — exp(—%))aVS(tz)ae is approximately local on scale 1 v

. . - . - t 1 .4 ~ .
/1 relative to some stationary go with [|goll2— < (1 A F)(1 A ﬁ)z. Now suppose a = a in

By for some R > 1V /7, notice that S(t)ae — S(¢)ae satisfies the conditions of Lemma B.3,
we can estimate

51
(]{3 ‘/o dty(1 — exp(— 3 + t2))V(S(t2)a€ — S(tz)ae)‘ )

i 3+ b ITRVINEAE
= [ a0 —ewt=220(f, [Viswae - Swyae))

BH 1 o t3 \/Ep+2 & \/—p < 2\2
S R ), A PERY L aR(f e S

1 5. [N ) 1 . 1, [h
< —010A —)/ drt?2 f 1S(7)ael*)? + f 1S(1)ae|?)2 / dt,
RPH3 (( Bar\Br ) ( Bar\Br ) ) T

5 VD 1vf JT ~
—(1 T)( R )P/ d’(lvﬁ)p((f[sm\BR |S(z)ael?)

+ (][ 1S(7)ael )%)
Bar\Br

Now using the fact that R > 1 Vv /t;, as well as [3, (204)], we derive that fotl d(1 —

exp(— t3+t2 ))aVS(t;)ae is approximately local on scale 1 v /f; relative to some stationary
go with

_ . 1 ts, [ VT 2y4
2(0) '_1vﬁ(1AT)/O df(lvﬁ)‘v(/ﬁﬁw(f)ad),

and we finish the proof after applying Lemma 4.7 on go. O
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A. Properties of stochasticnorm || - ||s

In this section we collect properties of the stochastic norm || - ||; defined in (44). The first
lemma presents two other equivalent formulations that are convenient for this work.

Lemma A.1. [65, Lemma 3.7] For any s € (0,2] and the corresponding ¢ defined in (44),

1
(|[F|™)m |Fl
|Flls ~s sup ——— ~ 1nf{M >0: log(exp((—) )) < 1}. (A1)
meN  ms M

Proof We first state the following auxiliary result that will be used later: there exist constants
co> ¢1 > 0 such that for all positive integers k,

(cok)* < k! < (c1k)k. (A2)

Our proof consists of three steps, with each one showing one expression of (Al) being
dominated by another.
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Step 1: middle < left. If || F||s < 1, or equivalently

{exp((IFI +¢))) = 1+ exp(c?),

then we will show there exists a constant C, only depending on s, such that (|F|™) O < Cm
for all m > 1. By the Chebyshev inequality,

(I(IF| > 1)) < exp(=(& + )’ )(exp((IF] + ¢)*)) = (1 + exp(c’)) exp(—1%).

Therefore, using the formula for non-negative random variable F

o0
(@(F)) = p(0) + / (I(E = 2))¢/ () d (A3)
0
with ¢(x) = x™ and a change of variables xoi= A5
(A3 *° 1 o o0 ~m by ~
(IFI"™ 5) m(1 + exp(cs))/ AL exp(—A%) da < W/ As e ™ da
0 0

_ om(l+ exp(cs))r(m)

N N

Taking the m-th root and using the asymptotics of the Gamma function F(%) < \/ﬁ(m)%,

se
1 1 1
we obtain as desired (|F|™)m < Cms usingmm < 1.

Step 2: left < right. Suppose (exp(|F|*)) < e, then for any constant M,

1('F| A) = (I(|F| > M(A —¢))) < : S
(I +e> ) = U(F| > — = exp(1—M(X—0¢)f) r=g

and therefore using again (A3) with ¢(x) = exp(x®),
|F|

(A3) C 1 s
(exp((ﬁ + C)S)) <1 +/ A exp(A%) da + e/ sA* exp(1°) exp(—M*(A — c)s) dx
0

o0
< exp(c’) + e/ sALexp(A%) exp(—Ms(A — c)s) da.
Cc

The above integrand decreases to zero pointwise as M tends to infinity, and is obviously
integrable for M > 1, thus the integral also converges to zero. Hence for some sufficiently
large M > 1 only depending on s, (exp((% + c)s)) < exp(c’) + 1, which is equivalent to
IFlls < 1.

Step 3: right < middle. This direction of the proof uses the algebraic moments of random

variables to construct the stretched exponential norm (44). If

1
(IF|™)m
ml/s

<1, VmeN, (A4)

then, let ko be the largest integer such that kos < 1. In the range k > ko + 1, which means
ks > 1, for some large C to be chosen later,

s ksy (ag) 2 kiayy & k (e )kotl

y Phwy &y e S
S J— —_

k=ko+1 Cok! k=k0+1C © keker1 €00 1-za € —s

The lower moments are controlled by the higher moments: for 1 < k < ko, using Jensen’s
inequality on (-), we have

k
(FIRY < (-9 Bl < 1 4 (|F|Kktkolsy.
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Therefore, using C > 1,

ko ks 2ko ks 2ko k
(™) _ (IF|=)\(Ad) s
Z Cksk1 - (ko + (ZkO)' Z k! ) =C (ko + (ZkO)! Z C_k)
k=1 k=ko+1 k=ko+1 0
Thus for fixed s, cp we may choose C sufficiently large such that
2ko k
|FI* o (IFI%) s s
_ 1 h
(exp( )=1+) g S1HC (ko + ko)t Y ck) tGa s
k=1 k=ko+1 0
This establishes that the middle expression dominates the third one. Hence all three norms
in (A1) are indeed equivalent. O
The second property of || - ||5 is a “stochastic Holder inequality”.
Lemma A.2. Fors, s, s, > 0 with % = i + é
IF1F2lls Sssiso 1F1 s, 1E2 s, (A5)

Taking F, = 1 we obtain for any s; < s,
IFlls S IF]s,-

Proof The proof uses the third characterization of ||-||s in (A1). Indeed, for any M;, M, > 0,
by Young’s inequality and the convexity of F — log(exp(F )

log<exp(| | )> < log<exp( | |S1 ébﬁ; |S2)>

F,
$1 e _“ 152
< . log<e)(p(|—1 | )> + 5 10g<exp(|M2| )>.

Pick M} > ||F1|ls, and My > ||F;||s,, so that in view of the equivalence (A1), the rh.s. < 1.
This means |F1 F, || < M M;. Since My, M, are arbitrary, this establishes (A5). O

The inequality (A5) allows us to prove the following lemma, which is a generalization of
[3, Lemma 14]. This is at the origin in the loss of stochastic integrability from s = oo for ae,
tos = 2— for V¢ and to s = 1— for V.

Lemma A.3. Suppose for some $ € (0,1] and p < oo and random variables F, Fy, F1, we have

1
Fy<8 =— |F|<érF. (A6)
Then for s, so, s1 > 0 with % = % + é, and sy > s; we have
1 I Folls, \ &
1l < 87 1Fally + (=) @ IF

Proof By the triangle inequality,
[IFllsy < I(Fo < 8)Flls, + IlI(Fo = 8)Flls,-
By our two assumptions (A6) and Fy < 8, |[I(Fg < 8§)F|ls, < 51% |F1lls,- For the control of
lI(Fo = 8)F||s,> we have by Lemma A.2,
II(Fo = 8)Fllsy < II(Fo = &)lIs, IIFls-



664 J. LU, F. OTTO, AND L. WANG

The final step is a Chebyshev inequality:
s
51

& _ (IFls
I1(Fo = 8)lls, = II(Fo = 8)II5} < (Tﬂ)
O

The last property of ||-|s is that for a stationary random field f, t — [|([n \[Jz)% IIs is
decreasing in t:

Lemma A.4. There exists a universal constant C such that for any t < T and stationary random

field f,
I / 1 /afE s < CIC / W RHN (A7)

Proof The proof uses [3, (211)] and the stationarity of f:
1 b= ([ nga? )~ (I [ 1300 [ 0= axey
< (/nﬁ(y)||/n¢;(x—y)f2(x)dx

=1 [ naii

1
2
s
2

)’

B. Deterministic estimates

The next three lemmas are fundamental deterministic estimates. Lemma B.1 is a localized
energy estimate, Lemma B.2 is a semigroup estimate that resolves the behavior in the time
variable, and Lemma B.3 is a crucial approximate locality estimate, which is the main tool for
finding the approximate locality properties of several objects. These three lemmas are proved
in [3] and we do not present their proofs here.

LemmaB.1. [3,Lemma3] Let T > 0, and let v, f, and g be related through the elliptic equation
1
?V—V~aVv=f+V~g,

then we have for all R > /T,

/ nRI(W,%T)IZ < / nr(VIf 1 + 1g1%). (B1)

Let v,f, g, and vy be related through the parabolic equation
0v—V.-aVv=f+V.g fort>0,
v=wvy fort=0,

then we have for all R > JT,

T T
sup / V() + / ar / ne| Vv, ") < / nRV2 -+ / ar / nr(VTF + lgP).
t<T 0 ﬁ 0
(B2)



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 665

Lemma B.2. [3, Lemma 1] Forall R > VT > 0 we have

S(¢t
/ IRI(TVS(T)g, VTS(T)g, ST + / - / a(vs(t %g)’ / nlgP. (B3)

Lemma B.3. [3, Lemma 12] For some R > +/T consider the following parabolic equation

ow—V.aVw=0 fort>0

in (0, T) x Bag,
w=0 fort:O} (0.1) x Bz

then we have for any exponent p < 00,

1 1 T 1
2/ ) 3 TV 2) s / d 2,1
fll?(]ikw(t)) +R(]£R|VW( P +<]iR [ awwor)

VT, [T Vi
< (=) Y\ 2
Np( R : fO dt(ﬁ) (]{32R\BRW (t)) .

< (0.T) , provided R > +/T.

In addition, the estimate can afford a time average that degenerates ast < T. The algebraic
smallness is sufficient for our purposes.

=

(B4)

Lemma B.3 quantifies that w| Bx(0,T)

C. CLT estimates

The following Lemma C.1, which restates [3, Lemma 13], is the main probabilistic ingredient
of this paper. It turns deterministic semigroup estimates on small scales and approximate
locality properties into CLT-cancellations on large scales. The CLT-scaling typically arises
from a combination of Lemmas B.3 and C.1. We will give a proof here since the proof in [3]
is only valid when s € (1, 2].

Lemma C.1. [3, Lemma 13] Let s € (0,2]. Let F and F be stationary random fields such that
(F) = 0 and suppose F is approximately local on scale /T relative to F in the sense of (74).
Then,

4

_— 2 14 2P
S ( ﬁ> ||FR||sNrs§u} ( f> IFlls + (E? ( f> HIEL)PIELY. (D)

Proof By other parts of the proof of [3, Lemma 13] which are valid in the full range s € (0, 2],
we only need to prove the following:

Suppose F is a mean-zero stationary random field that is exactly local on scale r > 1, in the
sense that

F(a) = F(a) provided a = a on B,

then for any convolution kernel G,

1G* Fls < i / & IE (C2)
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The proof is inspired by [66, Lemma 2.3]. We divide the proof into three steps:

Step 1: A CLT in iid symmetric random variables.

Suppose Xi, . . ., X, are iid symmetric random variables (in other words, the law of X; equals
to the law of —X), then for any real numbers w1, . . ., w,, we claim
n n L
1D wiXils S Qw2 X s (C3)
i=1 i=1

Without loss of generality we assume || X; ||s = 1. By Lemma A.1, it is sufficient to show for
any integer m > 1,

n n
(O wixymym < cem)s (Y wh?,
i=1 i=1
Let cp,c; be constants as defined in (A2). Since the X; are symmetric, if we expand
(O w;X;)*™), then all odd powers of X; will vanish, and therefore
n

n y . §
((l:ZI WiXi)2 > = Z (2}’)’11, . ,2mn> l—[((wixi)Z )

my+--+mpy=m i=1

(AD) 2m)! 1 om 1y om

< E —_ W J(C(2m<)s) j

- ; j j
mi+--+my=m 1_[izl(zml)! j=1

(A2) 3 (2m)?m n o omj

< cm Z HW' i (2my) <

n 2m; 2m; ]
my+--+my=m Hi:l 0 ’(Zmi) = j=1

Caryy 2 . 2mi(L—1), 2m;
< (7 am)™ > JemyrmiGhwim.

my+-Amy=m i=1

Let o(t) = (2m)*™ DD H?:l(zfni)sz(t_l)wl-zmi. A direct calculation (only using
log(2m;) < log(2m)) yields the differential inequality

n

o' (t) = (2m)>™ Z (l—[(zmi)mi(t—l)wl;mi) (Xn: 2m; log(ij))

Myt my=m =1 j=1
< 2mlog(2m)e(t).
The value t = % is special as it corresponds to s = 2, since we have

QD(%) = (Zm)zm Z ﬁ(zmi)fmiwfm,-

mi+-+mp=m i=1

m™ Lo
— m § : mj
mytAmy=m L =17 =g
(A2) c'm! L om
<emm Y A W

no mi__
my+--+my=m [Ti=1 c"mi! j=1

= em"C" Y <m1,.fn.,mn)l_[w?mf=<2m>m<i—;>m<2w?)m.
i=1 i=1

Ci
0 mi+---+my=m
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Therefore we obtain by integration for t > 5 1(ors<2),

p(t) < (Zm)m )m ZW )™ exp(2mlog(2m)(t — l))

i=1

n
= (2m)™( >m<§ WA @m)? 8 = )Y Wy
o ;

i=1 i=1
Finally we take the 2m-th root:

n
(O wixiy?mym < —(2 H ) (Z W)z,
i=1
This finishes the proof.

Step 2: From symmetric random variables to mean-zero random variables; we claim that (C3)
holds just under the assumption that (X;) = 0.

For any X such that (X) = 0, let Y be independent of X and equal to —X in distribution.
Let u be the distribution of X so that f +— f f f(x —y)du(x) du(y) denotes the distribution
of X + Y, which is obviously symmetric. It remains to show

X 4 Ylls ~ 1 XIls. (C4)

The “<” direction is a direct consequence of the triangle inequality. For the other direction,
notice that for any convex function f,

[ [re-panwan = [ 16— [yauonaue = [ o e

We apply this to f(x) = exp (( ||+ c)s) —exp(c*), which is convex for ¢ defined in (44). Hence,
(C5) turns into the estimate | X + Y||s 2 || X]|s. This suffices to prove equivalence (C4).

Step 3: Conclusion. Without loss of generality we assume G is even, which can be removed in
view of Step 4 of the proof of [3, Lemma 13]. We divide R4 into cubes of size 3r, so that for a
fixed x € [0, 3r)d, {F(3z + x)},¢,74 are i.i.d. Therefore by stationarity, Step 2, passing to the
limit n — oo,

IG * Flls = |G * F(0) s = II/ G(x)F(x) dxlls

="y ][0 G(x + 32)F(x + 3z) dx||s

zerZd [0,3r)4

< rd][ | Z G(x + 3z)F(x + 32)||s dx
[0,3r)4

zerZd

SPf (Y G+ 30t i,
[0,37)4

zerZ4

- 1
< r( Y GP(x+32)dx)2 |IF|;
[0:3”)d d
zerZs

d ~2\ 1
=r2([ G)2|F|s. O
R4

The rest of the proof for this lemma follows from Steps 4-6 of [3, Lemma 13].
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D. Large scale regularity for stochastic homogenization

Below we present the crucial elliptic and parabolic large scale regularity estimates on scales
larger than r, defined in (49). This slightly differs from [16, Theorem 8.7], [3, Corollary
6] since we use exponential averaging [ nr as opposed to the usual averaging fBR‘ In
Theorem 1.2, we use the growth properties (27) of second-order corrector and flux (v, ¥)
and the stochastic moment of r,. to derive stochastic bounds of 7.

Lemma D.1 (C%!-estimate). The quantity ry satisfies the following:

(1) For every R > r, and u satisfying
atu —V-aVu=0, in(—R>0) x RY

we have, for everyre [7«, R
( dt/rmw PES A a [ avaopy, (1)

(7[_,2 dr / n(0)* < ][ dr / (1)) (D2)

(2) [3, Corollary 6],[13, Theorem 1.2] For every R > r,, u satisfying
—V -aVu = 0in Bg,

we have, for every r € [ry, R],

f Va2 < (f [VuP)e. (D3)
B, Bgr

Proof Step I: we prove (D1) from the usual version of C%! estimate [16, Remark 8.8]: for any
R >r > r4(0),

1 1
(][(P) |Vul?)2 < C(][(P) |Vu|?)2 where BY) := (—12,0) x Q. (D4)
By By

Without loss of generality we assume » = 1 and R > 2. We first claim that exponential average
can be recovered from the ordinary one as follows:

s o) pd 0 5
Vul| ~ d exp(—— Vul~. D5
/nRI I /R P par1 eXP( R)]ip| I (D5)

Indeed, let S(p) = {x € R? : |x| = p} be the d-dimensional sphere of radius r. Then by
Fubini’s theorem

0 d 00 P
p o 2 dp p / ,/ 2
d exp(—— Vu|* ~ exp(—= d Vu
/R oLy expl R)]ﬁp| | /R g e [ ap [ v
/ RAHT /S( /)IVuI/ d,oexp(——)
* dp o
+/ —/ |Vu|2/ dp exp(—=)
R ORI Jsi) o R
R d / 9] d / /
o o o
N/ —d/ |Vu|2—|—/ T exp(——) |Vul?
o R* Js) R R R Js(pr)
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~ / nrIVul?.

We now prove (D1). The strategy is to divide the r integral into (1, R) where we may appeal
to (D4), and (R, co) where we use the faster decay of n; compared to 7ng:

0
][ dt‘/qul2
—1
os) [° R d 2 0 > d 2
~ dt [ dpp®exp(—p) £ |Vul”+ dt dpp® exp(—p) £ Vul
-1 1 B, -1 R B,
R 0 0 00
S/ dppd“eXp(—p)f dt IVu|2+R2][ dt/ dppdeXP(—p)][ |Vul?
1 —p? B, —R? R Bp
Dy R d+2 0 2 0 o Pd 1Y 2
S [ awepnf af wupef [ dptewcB)f vy
1 Rz JBg —r JR R R Jp,
(D5) [0 0
< ][ dt |w|2+][ dt/nR|Vu|2
—R2 BR —R2
0
5][ df/flRIVulz-
—R2

Here the second term of the third inequality uses that RA+3 exp(—p) < exp(—%) when p >
R > 2. This establishes (D1).

Step 2: proof of (D2). The proof starts from the usual version of C%! estimate without gradient
[16, Theorem 8.7]: for any R > r > r,(0),

r 1
(7[ u=1 P} S 2(f = (D6)
o B R JpP B
V3 < 2y
(f, 1u! < (ig) ). 07

since we can then change spatial averaging from fBR to [ ngr using the same post-processing
argument as above.
Let u, := fB(p) u. Wlo.g. we may assume R > 2r. Now we can replace r with 2r in (D6)
r

2.1 r 2\ 1
(][(P) lu—uz )2 S —(][(P) lu — ugr|”)2.
BZr R BR
Thus we can estimate

N
Uy — ugr| = | ][(P)(u — Upy)| S (f(P) lu — up|")2
B B

1T 1
< (][(P lu— upl?)? < —(][ » lu — ug|?)2. (D8)
BZV) R B;{

We now obtain (D7) by telescoping

1 1
(f NuP2 S Ju—u )7 + |uyl
z® J)
T r

It suffices to prove

and get
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©6) 1 -
— _ 2 ~ ~
S R e D s+
R 7€[r,R)
dyadic

D e > TF fu— )} + gl

7€[r,R)
2.1
<, i,
BR

dyadic

O

The following corollary is a convenient post-processing of Lemma D.1 from time intervals to
single time slices.

Corollary D.2. For any Jt> 1> 1y, we have

([ nivsoghyt < ([ na1vset, (09)

=

([ niswg? < ([ n s (D10)

Proof We will only prove (D9) as the proof of (D10) is identical. The estimate uses (D1) and
the fact that the functiont — [ 7 il VS(@) g|? is approximately non-increasing for any g, that

is, forany t; < t; <12, f17r|VS(t‘1)g|2 < f 1|V S(t,)g|? with the constant in < independent
ofr,t1,t2, ¢

1 t 1
( / | VS(t)gl*)2 < ( / M ][ dr|VS(z)gl?)?
t—12

(D1) t 1
S ([t dnivsegh?
2

S ([ vt

Remark D.3. We further post-process Corollary D.2 into the following: for any ¢, > 0,
1 t 1
IT(r = r.)( / A VS(OgP) 2 Il S I(r v Vi = r)( / Nyl V(M2 s (D1D)

I1(r = r)( / DSR2l S (v VE = r)( / nrvﬁ|8(§>g|2)%||s. (D12)

The argument uses the fact that the function [0,7%) > ¢ > Ik n,/VS(t)g)* and [0,7%) > t >
f 17,|S(t)g|2 are both approximately non-increasing for any g (see the proof of [3, Lemma 3]).
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