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ABSTRACT

In recent years, inkjet 3D printing has rapidly gained
prominence as a disruptive fabrication technique that has
witnessed ever-increasing demand in the fields of biomedicine,
metal manufacturing, electronics, and functional material
production. This innovative approach involves precise
deposition of controlled amounts of material onto a moving
substrate through a nozzle, achieving impressive sub-millimeter
scale resolution by leveraging the concepts of micro-droplet
deposition. However, the dynamic nature of the process
introduces significant challenges related to consistency and
quality control, especially in terms of reproducibility and
repeatability. The key input parameters governing this process,
such as pressure, voltage, jetting frequency, and duty cycle, are
interrelated, entailing the identification of optimal settings in
order to realize high-quality jetting. At present, the data
collection heavily relies on image-based methods which are
inherently slow and often fail to encompass the entirety of the
data, making it difficult to determine the relation between the
input parameters and jet characteristics. To address this
multidimensional difficulty, we developed a unique approach
based on light-beam field interruption to collect critical jet data
at high speeds. This novel approach collects both temporal and
spatial information on droplet evolution, making it a vital tool
for enhancing our ability to attain high accuracy and control in
inkjet 3D printing. To illustrate the efficacy of our approach, we
model the extracted features derived from the process
parameters and the extracted data to predict the droplet jetting
behavior and droplet size. Specifically, a decision tree classifier
is used to predict the jetting behavior and discern between
“ideal” and “non-ideal” jetting behaviors. Simultaneously, a
linear regression model was employed to predict the droplet size
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within the “ideal jetting” class based on the interplay of process
parameters and the extracted features. The results emphasize the
system s accuracy in capturing the droplet behavior and size
using our light-beam field interference sensing module.
Furthermore, these findings establish a crucial foundation for
the implementation of real-time feedback control loop in the
inkjet printing process, promising advancements in adaptability
and precision.
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1. INTRODUCTION

Additive manufacturing (AM) is a disruptive manufacturing
technology that has garnered increasing attention in recent years
and is changing the way we fabricate intricate products. It offers
the potential for mass customization, can accommodate novel
and unconventional materials, and promotes sustainability.
Various AM techniques like digital light projection (DLP),
stereolithography (SLA), inkjet printing (IJP), direct ink writing
(DIW), and fused deposition modeling (FDM) have found
successful adaptations in various applications. Notably, 1JP
stands out due to its scalability, non-contact nature, cost-
effectiveness, ability to incorporate diverse functional materials,
and high resolution [1]. Originally associated with graphics and
the newspaper industry, IJP has evolved over the past few
decades to find applications in a variety of fields ranging from
electronics, healthcare, energy, optics, biomedicine, and sensors
[2, 3].

IJP possesses a unique ability to precisely dispense
controlled picolitre droplets of material, with digital control
enabling easy modulation of the output during operation. 1JP
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operates on the general principle of quasi-adiabatic volumetric
reduction of the chamber achieved through pulsating input to
deposit-controlled amounts of liquid. This chamber-volume
reduction can be facilitated by thermal bubble, piezo diaphragm,
or solenoid valve. Solenoid valves are gaining popularity due to
their low cost and high durability. Amongst the various jetting
modes, Drop-on-demand (DOD) is particularly preferred for its
ability to achieve high resolution [4]. Droplet formation in DOD
is affected by many factors like material properties, jetting
conditions, and ambient conditions, making the deposition
consistency quite challenging. While the ambient conditions and
the material properties remain fixed during jetting, dynamic
adjustments to the jetting parameters can contribute to stable and
optimized jetting behavior. Input duty cycle, voltage, pressure,
and jetting frequency are the key contributors in determining jet
stability [4, 5].

Numerous research efforts have been attempted to
comprehend the underlying mechanisms of droplet evolution and
tackle the quality control challenges in IJP. These efforts can
broadly be categorized into physics-based and data-driven
approaches. Physics-based models include computational fluid
dynamic analysis to measure the dynamic changes in the material
properties that influence droplet formation [6, 7]. While these
models are capable of offering insights about the process, they
are computationally expensive, inherently approximate, and
struggle to account for the ambient conditions and deviation in
input parameters. Moreover, they can accommodate only a
limited number of parameters to avoid modeling complexity thus
limiting the comprehensiveness in understanding the jetting
behavior. On the other hand, experimental sensing methods
provide precise information and insights into the jetting process
thus having an edge over the theory-based models.

Data-driven methods have been explored by numerous
researchers to gain a holistic understanding of the droplet jetting
process. In particular, in-situ data collection has proven effective
as it provides a direct measurement of the fluid flow patterns
without the need for approximation. Vision-based approaches for
in-situ monitoring and data collection have been instrumental in
enhancing the quality of inkjet printing. Imaging systems are
being utilized to monitor the droplet formation process and study
the pinch-off behavior, which is critical in understanding the jet
stability [8]. Predictive models have also been developed to
determine droplet velocity and volumes using ensemble learning
techniques. However, these models rely on static images which
fails to capture the temporal information about the droplet
evolution. To address these limitations, researchers resorted to
using video data of the droplet ejection process to gain a
comprehensive understanding of the fluid flow patterns [8, 9].
Compared to the static images, video data can reflect the motion
of the flow patterns better and temporal information can
significantly contribute to the motion of the observed droplet and
its transformation.

While vision-based systems offer numerous benefits, they
are inherently slow and computationally expensive to analyze.
The inherent nature of the image-capturing paradigms cannot
completely capture the fast and dynamic droplet ejection and

evolution process. To capture the data corresponding to each
pulse, they capture the data at subsequent timeframes that might
not correspond to the same droplet. These systems also assume
that droplet jetting behavior remains consistent and periodic for
a specific set of parameters, making them less suitable for
addressing non-periodicity in the jetting. Moreover, video data
collection is limited by the camera specifications. Given the
high-frequency jetting, collecting each frame is either not
possible or requires expensive high-speed cameras. Field-of-
view limitations further restrict the amount of collected data. To
overcome these limitations, Wang et al. proposed data collection
using light-beam field interactions, eliminating the inherent
system latency, and enabling true in-situ data collection [10].

Building upon this concept, we introduce 0-DUS (Zero-
Dimensional Ultrafast Sensing), as a low-latency sensing
modality that works on the principle of light beam field sensing
to generate time-series data corresponding to the droplet
evolution. This system is capable of capturing data at extreme
speeds, thus affording the ability to collect information about
each individual droplet. Our previous research has demonstrated
effective ways of mapping the time-series data to image data and
the process of extracting insights about the speed, shape, size,
and stability. The focus of this research is to utilize the time-
series data to analyze jetting behavior and develop predictive
models that establish a relation between input parameters and
droplet characteristics. Each droplet passing through the light
beam field generates a voltage spike corresponding to its size,
facilitating a more precise and comprehensive understanding of
the inkjet printing process. After acquiring the time-series data,
extraction of the key features allows for a comprehensive
characterization of the jetting behaviors. Besides, integration
with machine learning techniques allows the classification of the
jetinto “ideal” and “non-ideal” jetting, discerning scenarios with
and without the presence of satellite droplets. Further, predictive
modeling of the droplet characteristics like size based on the
process parameters lays a solid foundation for a perspective
dynamic real-time process control, promising heightened
precision and efficacy in inkjet printing.

2. EXPERIMENTAL SETUP

The novelty and efficacy of our sensing modality lies in both
hardware robustness and meticulous calibration. The effective
integration of solenoid-valve based jetting system coupled with
opto-coupler sensors ensures precise data capture. Calibration
enhances reliability and this synergy ensures accurate data
acquisition and mapping of the sensor data to tangible droplet
characteristics.

2.1 System Hardware

The system hardware is structured around two primary
systems: the jetting system and the sensory system. We have
employed a solenoid-valve based material jetting system. In this
system the solenoid operated valve responds to the applied input
voltage and its function is directly influenced by the magnitude
of the applied voltage. Additionally, the amount of material
dispensed during each pulse is modulated by the applied pressure
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and depends on the jetting frequency. The solenoid-valve based
material jetting system ensures precise and controlled dispensing
of material, with the operational parameters closely linked to the
applied pressure, duty-cycle, and the jetting frequency. All the
experiments were carried out using deionized water as the liquid
medium for data collection simplicity.
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FIGURE 1 (a) SCHEMATIC OF SOLENOID-BASED INKJET
PRINTING SETUP AND (¢) OPTOCOUPLER-BASED
MONITORING SYSTEM (AS SHOWN IN ZOOMED-IN VIEW),
AND (b) TIME-SERIES VOLTAGE RESPONSE CORRESPONDING
TO A MAIN DROPLET AND A SATELLITE DROPLET
PERIODICALLY PASSING THROUGH THE LIGHT-BEAM FIELD.

The second component of the hardware system is the
sensory system, responsible for capturing vital information about
the jetting droplet. While image-based systems are
conventionally employed for this purpose, we have presented a
novel opto-coupler based system as shown in FIGURE 1. The
opto-coupler system operates on the principle of light beam field
interactions and adeptly detects the droplets as they traverse
through the light beam field, generating a time-series voltage
profile as depicted in FIGURE 1 (b). Opto-couplers have a huge
advantage over regular cameras in that they operate at much
faster rates. This inherent speed advantage enables real-time data
capture, allowing for quick modifications and feedback. This
quick reaction time is critical for ensuring consistent print
quality. Opto-couplers are also extremely sensitive to changes in
light intensity, allowing for the detection of small changes in
inkjet droplet behavior. This increased sensitivity allows for the
detection of abnormalities and deviations that may otherwise go
undetected by standard camera inspection. While cameras
generate a large amount of visual data that need lengthy
processing, opto-couplers give a more streamlined option by
delivering simple time-series voltage data. This not only
minimizes computational effort but also speeds up data analysis.
Our careful examination of the obtained time-series signal using
opto-couplers offered useful insights into the properties of

ejected droplets, enhancing our understanding of the printing
process, and greatly contributing to the success of our research.
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FIGURE 2 (a) TIME-SERIES SIGNAL AS OBTAINED FROM THE
OPTO-COUPLER SENSOR (IN BLUE) AND THE
CORRESPONDING DENOISED DATA (IN RED) WITH PEAKS

REPRESENTING THE INTRUDING DROPLETS, AND (b)
JETTING AS OBSERVED FROM THE CAMERA

2.2 System Calibration

Sensor calibration was a crucial step in building the novel
anomaly detection system capable of in-situ monitoring. A data
driven approach was employed for calibrating the light field
spreading, revealing a Gaussian spread pattern. The proposed
sensing modality works on the principle of light beam field
blocking, where the amount of light being blocked determines
the output voltage. Calibration of the voltage-size correlation
involved using intruder objects of different sizes, uncovering a
saturated voltage reading beyond a certain size due to limitations
in the beam size.

Assuming that the droplet reaches terminal velocity and that
the light distribution is uniform in all directions, we safely adopt
1D Gaussian representation for determining the size. The
location-dependent light spreading led us to an approximating
cumulative distribution function of the 1D Gaussian using a
sigmoid function given by

()
Y=at Iy eex

where y represents the voltage response corresponding to the
size of the intruding object (x), and a, b, and c are the curve
fitting parameters as shown in FIGURE 3. These parameters are
adjustable to optimize the fit to collected data. Upon analysis, the
collected data indicated that, when voltage is measured in volts
and size in millimeters, the curve fitting parameters were
determined as follows: a=0.618, b=1.23, and ¢ = 3.45.

Equation (1) was used for droplet size determination,
considering the non-linear relation between voltage and the
amount of light blockage. Validation of the size as determined by
Equation (1) and the corresponding image data reveal a root
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mean squared error of less than 2%, thus ensuring a high
prediction accuracy. For the subsequent analysis only the voltage
signal data was utilized, streamlining the analytical process.
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FIGURE 3 APPROXIMATED CURVE REPRESENTING THE
SIZE-VOLTAGE DEPENDENCE FOR THE DROPLET

3. DATA COLLECTION AND ANALYSIS

Data collection was performed as two tasks each
contributing to the comprehensive understanding of the droplet
jetting behavior. The first step involved thorough data
acquisition, where the system adeptly captured time-series data
corresponding to droplet ejection in response to varying input
parameter combinations. The second step focused on the in-
depth analysis of the captured droplet data by extracting
meaningful insights such as droplet size and number of droplets
from the time-series voltage data.

3.1 Construction of DOE Table

A kind of design of experiment (DOE) method, Latin
hypercube sampling (LHS), is used for the data collection. LHS
hierarchically samples from a multidimensional distribution
making it more efficient than random sampling [11]. Table /
summarizes the range of the process parameters. In total, 50
different parameter combinations are generated. Three
repetitions of each experimental setup were performed to ensure
robustness of the results.

Table 1 Range of Process Parameters

Process Parameters Min Value Max Value
Frequency (Hz) 50 200
Duty Cycle (%) 10 20

Pressure (PSI) 0.5 2.5

3.2 Data Collection and Processing

We employed a pair of opto-couplers to capture the voltage
data corresponding to the droplet jetting for each parameter
setting. The recorded time-series signal, spanning a stable jet of
10 seconds, was stored as a Excel file for further analysis. To
ensure that the parameter combination has taken effect, an initial
period of jetting was allowed before beginning data collection.
This approach resulted in a substantial data set of over 40,000
data points for each reading, where the number of pulses varied
according to the jetting frequency. From the comprehensive

time-series dataset, data associated with individual pulses was
extracted which served as the basis of our analytical
investigations. As demonstrated in FIGURE 1 (b), the interaction
between the droplet and the light-beam field generates a
discernible voltage spike with the height of the spike
proportional to the interruption duration. This important
correlation enables us to infer the size of the droplet, with taller
spikes indicating larger droplets and smaller spikes signifying
smaller ones. Furthermore, the number of pulses in each dataset
is associated with the jetting frequency. Some parameter settings
result in multiple spikes with varying sizes where the smaller
spikes were identified as satellite droplets.

The acquired data pertaining to individual pulses was pre-
processed to enhance the clarity of the voltage spikes. Data
smoothening was performed to ensure accurate and reliable
analysis of the droplet characteristics. Following the initial
refinement, signal processing tools were employed to detect and
isolate the individual voltage spikes within the time-series data.
By identifying these peaks, we were able to determine the
number of droplets ejected during the corresponding pulse. The
analyzed data was categorized into two distinct subsets (i.c.,
“ideal jetting” and “non-ideal jetting”) based on the number of
spikes observed within each pulse. The first subset, designated
as “ideal jetting” was characterized with a singular well-defined
spike, indicating a stable and consistent jetting behavior, while
the second subset, “not ideal jetting”, includes the cases that jet
with satellites or no jetting. FIGURE 2 depicts a case of “non-
ideal jetting” where each pulse results in the ejection of multiple
droplets. By linking the process parameters (i.e., pressure, duty-
cycle, and jetting frequency) to the jetting behaviors, a
classification model was built to predict the jetting behaviors
which lay a foundation for the droplet control in the future. The
“ideal jetting” subset was further analyzed to determine the size
of the droplet in consideration. Droplet size is significant in
understanding the IJP process, providing valuable insights into
the dynamics of fluid flow during jetting. Equation (1), which
correlates the voltage data to droplet size, was used for predictive
modeling. The predicted size was subsequently validated using
image data from the camera, ensuring the accuracy and reliability
of the predictions. USB camera (Sentech) with a strobing light
was used to capture the image data for jetting behavior
validation. Linear regression was used to establish a
comprehensive relation between the predicted size and the input
parameters like pressure, duty-cycle, and jetting frequency. The
details about the data analysis are shown as follows.

3.3 Machine Learning Techniques for Data Analysis
We performed two data analysis tasks based on the
parameters and the time-series data, the classification of the
jetting behaviors and the regression of the droplet size within
“ideal jetting” subset. Two machine learning techniques,
decision tree and linear regression were used, respectively.

3.3.1 Decision Tree

Decision tree is a commonly used classification method that
recursively splits a dataset into subsets based on the most
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influential features [12]. At each node of the tree, a decision is
made by evaluating a specific feature, and the dataset is
partitioned accordingly. This process continues until a certain
stopping criterion is met, such as reaching a predefined depth or
having a minimum number of data points in a leaf node.

3.3.2 Linear Regression

Linear regression is a fundamental statistical and machine
learning technique used for modeling the relationship between a
dependent variable and one or more independent variables [12].
The method assumes a linear association between the variables,
where the aim is to find the best-fit line that minimizes the
difference between the observed and predicted values. In
essence, linear regression quantifies how changes in the
independent variables correlate with changes in the dependent
variable.

4. RESULTS

As mentioned above, 50 experiments with different
parameters were conducted and the corresponding time-series
data were collected. To perform the data analysis, we first split
the data into the training dataset and the testing dataset with the
ratio of 70:30, then trained the classification and the regression
model on the training dataset and tested them on the testing
dataset. The results are shown as follows.

4.1 Classification Results

FIGURE 4 (a) shows the confusion matrix on the testing
dataset when using the features extracted from the time-series
data to perform the jetting behaviors classification. We can
observe that the accuracy is 98% for all the classes i.e. “no
jetting”, “ideal jetting” and “non-ideal jetting”. This is because
the features are the number of peaks and the voltage values, and
the jetting behaviors have a strong correlation with the number
of peaks. The classification results when using the process
parameters are shown in FIGURE 4 (b). It can be seen that the
accuracy is good for all the classes i.e. “no jetting”, “ideal
jetting” and “non-ideal jetting”, suggesting the feasibility of
controlling the jetting behaviors through the process parameters
and opto-couplers output using machine learning techniques. In
future work, we will further capture the relationship of process
parameters and opto-coupler data during process control.
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FIGURE 4 THE CONFUSION MATRIX ON THE TESTING
DATASET FOR THE CLASSIFICATION OF JETTING BEHAVIORS
BASED ON (A) FEATURES EXTRACTED FROM THE TIME-

SERIES DATA (I.LE., THE NUMBER OF PEAKS AND THE
VOLTAGE VALUES) AND (B) PROCESS PARAMETERS (LE.,
PRESSURE, DUTY-CYCLE, AND JETTING FREQUENCY).

4.2 Regression Results
Since only the droplet size for the “ideal jetting” is of

interest, we only built a linear regression model using the data
from the “ideal jetting” class. After eliminating outliers, 61 data
points were used. FIGURE 5 (a) shows the regression results
when using the process parameters (i.e., pressure, duty-cycle,
and jetting frequency) as well as the voltage values as the
predictors. The R? and the root mean square error (RMSE) are
0.85 and 0.03 mm, respectively. These results demonstrate the
effectiveness of predicting the droplet size based on the process
parameters and the voltage values. The regression results when
only using the process parameters as the predictors are shown in
FIGURE 5 (b). The corresponding R? and RMSE are 0.56 and
0.051 mm, respectively. We can observe that by involving the
voltage value as a predictor, the regression model has a better
performance in terms of R2. This phenomenon happens since the
total dataset is small and adding voltage value as an additional
predictor benefits the model. In the future, more experiments will
be conducted, and more data will be collected under “ideal
jetting”. Besides, the real droplet size will be obtained by using
image data captured by the camera to validate the correlation
between the droplet size and the voltage value, and the regression
model.
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FIGURE 5 THE REGRESSION RESULTS ON THE TESTING
DATASET FOR THE PREDICTION OF THE DROPLET SIZE
WITHIN “IDEAL JETTING”. (A) THE PREDICTORS ARE THE
PROCESS PARAMETERS (L.E., PRESSURE, DUTY-CYCLE, AND
JETTING FREQUENCY) AND THE VOLTAGE VALUES. (B) THE
PREDICTORS ARE ONLY THE PROCESS PARAMETERS

5. CONCLUSION AND FUTURE WORK

This work presents a novel sensing modality for dynamic
drop-on-demand inkjet printing. Our investigation is centered
around harnessing the high precision and rapid response of the
light-beam field interference as a means of gaining valuable
insights into droplet evolution and jetting characteristics in
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response to the variation in the input parameters. The paper has
explored two directions; firstly, it has successfully implemented
a decision tree based classifier to categorize the jetting behavior
into “no jetting”, “ideal jetting” and “non-ideal jetting” classes
and furthermore has employed linear regression for predicting
the droplet size. The results suggest the effectiveness of using
the input parameters and the features extracted from the time-
series data in predicting the jetting behaviors and the droplet size.
Besides, the results also demonstrate the high accuracy of
capturing the jetting characteristics using the developed sensing
modality, which holds the promise of online real-time control in
inkjet printing process.

The current work is in its nascent stages, paving the way for
subsequent advancements in inkjet printing process control. Our
next steps would focus on establishing a deterministic relation
between various process parameters and their impact on opto-
coupler time-series data and overall jetting characteristics. This
pursuit aims at uncovering the various interdependencies that
govern the printing dynamics. Further explorations will delve
into high-speed feature extraction from the real-time process
data in conjunction with the predictive models. This holistic
approach holds great promise in achieving closed-loop control,
where dynamic adjustments can be made in real time based on
the evolving printing conditions.

ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge the
support from the National Science Foundation (NSF) through the
award FM-2134409 and CMMI-1846863.

REFERENCES

L. Alaman, J., et al., Inkjet printing of functional materials
for optical and photonic applications. Materials, 2016.
9(11): p. 910.

2. Sun, J., et al., Recent advances in controlling the

depositing morphologies of inkjet droplets. ACS
applied materials & interfaces, 2015. 7(51): p. 28086-
28099.

3. Azizi Machekposhti, S., S. Mohaved, and R.J. Narayan,
Inkjet dispensing technologies: recent advances for
novel drug discovery. Expert opinion on drug discovery,
2019. 14(2): p. 101-113.

4. Lee, T.-M., et al., Drop-on-demand solder droplet
Jetting system for fabricating microstructure. 1EEE
Transactions on Electronics Packaging Manufacturing,
2008. 31(3): p. 202-210.

5. Huang, J., et al., Unsupervised learning for the droplet
evolution  prediction  and  process  dynamics
understanding  in  inkjet  printing.  Additive
Manufacturing, 2020. 35: p. 101197.

6. Huang, J., et al. Spatiotemporal Fusion Network for the
Droplet Behavior Recognition in Inkjet Printing. in
International Manufacturing Science and Engineering
Conference. 2020. American Society of Mechanical
Engineers.

10.

I1.

12.

Wang, T., C. Zhou, and W. Xu, Online droplet
monitoring in inkjet 3D printing using catadioptric
stereo system. 1ISE Transactions, 2019. 51(2): p. 153-
167.

Segura, L.J., et al., Online droplet anomaly detection
from streaming videos in inkjet printing. Additive
Manufacturing, 2021. 38: p. 101835.

Li, Z., et al., Multiclass reinforced active learning for
droplet pinch-off behaviors identification in inkjet
printing. Journal of Manufacturing Science and
Engineering, 2023. 145(7): p. 071002.

Wang, A., et al. Luban: Low-cost and in-situ droplet
micro-sensing for inkjet 3d printing quality assurance.
in Proceedings of the 15th ACM conference on
embedded network sensor systems. 2017.

McKay, M.D. Latin hypercube sampling as a tool in
uncertainty analysis of computer models. in
Proceedings of the 24th conference on Winter
simulation. 1992.

Hastie, T., et al., The elements of statistical learning:
data mining, inference, and prediction. Vol. 2. 2009:
Springer.

Copyright © 2024 by ASME

d"€G€0€ L -¥20ZoasW-2G0. 10} 00A/80729€2/.G0V L 0L LOOA/00L88/7202DTSIN/4Pd-sBulpeaooid/o3SIN/Bi0 awse uonos|j0djebipawse//:dpy w

USY0) Bseo; Jp!

7 uo Jasn I e1b1089 JO AU Aq DOVESZSIDIrodmwznDeNYeYyZ-AXegbZAT L) HZNMHISPANXIXSIMONIXUSbIMYMOAId: VvV v YsIDlZ-aHole:



	1. INTRODUCTION
	2. EXPERIMENTAL SETUP
	The novelty and efficacy of our sensing modality lies in both hardware robustness and meticulous calibration. The effective integration of solenoid-valve based jetting system coupled with opto-coupler sensors ensures precise data capture. Calibration ...
	2.1 System Hardware

	3. DATA COLLECTION AND ANALYSIS
	3.1 Construction of DOE Table
	3.2 Data Collection and Processing
	3.3 Machine Learning Techniques for Data Analysis
	We performed two data analysis tasks based on the parameters and the time-series data, the classification of the jetting behaviors and the regression of the droplet size within “ideal jetting” subset. Two machine learning techniques, decision tree and...
	3.3.1 Decision Tree
	3.3.2 Linear Regression
	Linear regression is a fundamental statistical and machine learning technique used for modeling the relationship between a dependent variable and one or more independent variables [12]. The method assumes a linear association between the variables, wh...

	4.1 Classification Results
	FIGURE 4 (a) shows the confusion matrix on the testing dataset when using the features extracted from the time-series data to perform the jetting behaviors classification. We can observe that the accuracy is 98% for all the classes i.e. “no jetting”, ...
	4.2 Regression Results


