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ABSTRACT 
In recent years, inkjet 3D printing has rapidly gained 

prominence as a disruptive fabrication technique that has 
witnessed ever-increasing demand in the fields of biomedicine, 
metal manufacturing, electronics, and functional material 
production. This innovative approach involves precise 
deposition of controlled amounts of material onto a moving 
substrate through a nozzle, achieving impressive sub-millimeter 
scale resolution by leveraging the concepts of micro-droplet 
deposition. However, the dynamic nature of the process 
introduces significant challenges related to consistency and 
quality control, especially in terms of reproducibility and 
repeatability. The key input parameters governing this process, 
such as pressure, voltage, jetting frequency, and duty cycle, are 
interrelated, entailing the identification of optimal settings in 
order to realize high-quality jetting. At present, the data 
collection heavily relies on image-based methods which are 
inherently slow and often fail to encompass the entirety of the 
data, making it difficult to determine the relation between the 
input parameters and jet characteristics. To address this 
multidimensional difficulty, we developed a unique approach 
based on light-beam field interruption to collect critical jet data 
at high speeds. This novel approach collects both temporal and 
spatial information on droplet evolution, making it a vital tool 
for enhancing our ability to attain high accuracy and control in 
inkjet 3D printing. To illustrate the efficacy of our approach, we 
model the extracted features derived from the process 
parameters and the extracted data to predict the droplet jetting 
behavior and droplet size. Specifically, a decision tree classifier 
is used to predict the jetting behavior and discern between 
“ideal” and “non-ideal” jetting behaviors. Simultaneously, a 
linear regression model was employed to predict the droplet size 

within the “ideal jetting” class based on the interplay of process 
parameters and the extracted features. The results emphasize the 
system’s accuracy in capturing the droplet behavior and size 
using our light-beam field interference sensing module. 
Furthermore, these findings establish a crucial foundation for 
the implementation of real-time feedback control loop in the 
inkjet printing process, promising advancements in adaptability 
and precision. 

Keywords: Inkjet Printing, Opto-coupler based Sensing, Latin 
Hypercube Sampling, Linear Regression 

1. INTRODUCTION
Additive manufacturing (AM) is a disruptive manufacturing

technology that has garnered increasing attention in recent years 
and is changing the way we fabricate intricate products. It offers 
the potential for mass customization, can accommodate novel 
and unconventional materials, and promotes sustainability. 
Various AM techniques like digital light projection (DLP), 
stereolithography (SLA), inkjet printing (IJP), direct ink writing 
(DIW), and fused deposition modeling (FDM) have found 
successful adaptations in various applications. Notably, IJP 
stands out due to its scalability, non-contact nature, cost-
effectiveness, ability to incorporate diverse functional materials, 
and high resolution [1]. Originally associated with graphics and 
the newspaper industry, IJP has evolved over the past few 
decades to find applications in a variety of fields ranging from 
electronics, healthcare, energy, optics, biomedicine, and sensors 
[2, 3]. 

IJP possesses a unique ability to precisely dispense 
controlled picolitre droplets of material, with digital control 
enabling easy modulation of the output during operation. IJP 
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operates on the general principle of quasi-adiabatic volumetric 
reduction of the chamber achieved through pulsating input to 
deposit-controlled amounts of liquid. This chamber-volume 
reduction can be facilitated by thermal bubble, piezo diaphragm, 
or solenoid valve. Solenoid valves are gaining popularity due to 
their low cost and high durability. Amongst the various jetting 
modes, Drop-on-demand (DOD) is particularly preferred for its 
ability to achieve high resolution [4]. Droplet formation in DOD 
is affected by many factors like material properties, jetting 
conditions, and ambient conditions, making the deposition 
consistency quite challenging. While the ambient conditions and 
the material properties remain fixed during jetting, dynamic 
adjustments to the jetting parameters can contribute to stable and 
optimized jetting behavior. Input duty cycle, voltage, pressure, 
and jetting frequency are the key contributors in determining jet 
stability [4, 5]. 

Numerous research efforts have been attempted to 
comprehend the underlying mechanisms of droplet evolution and 
tackle the quality control challenges in IJP. These efforts can 
broadly be categorized into physics-based and data-driven 
approaches. Physics-based models include computational fluid 
dynamic analysis to measure the dynamic changes in the material 
properties that influence droplet formation [6, 7]. While these 
models are capable of offering insights about the process, they 
are computationally expensive, inherently approximate, and 
struggle to account for the ambient conditions and deviation in 
input parameters. Moreover, they can accommodate only a 
limited number of parameters to avoid modeling complexity thus 
limiting the comprehensiveness in understanding the jetting 
behavior. On the other hand, experimental sensing methods 
provide precise information and insights into the jetting process 
thus having an edge over the theory-based models. 

Data-driven methods have been explored by numerous 
researchers to gain a holistic understanding of the droplet jetting 
process. In particular, in-situ data collection has proven effective 
as it provides a direct measurement of the fluid flow patterns 
without the need for approximation. Vision-based approaches for 
in-situ monitoring and data collection have been instrumental in 
enhancing the quality of inkjet printing. Imaging systems are 
being utilized to monitor the droplet formation process and study 
the pinch-off behavior, which is critical in understanding the jet 
stability [8]. Predictive models have also been developed to 
determine droplet velocity and volumes using ensemble learning 
techniques. However, these models rely on static images which 
fails to capture the temporal information about the droplet 
evolution. To address these limitations, researchers resorted to 
using video data of the droplet ejection process to gain a 
comprehensive understanding of the fluid flow patterns [8, 9]. 
Compared to the static images, video data can reflect the motion 
of the flow patterns better and temporal information can 
significantly contribute to the motion of the observed droplet and 
its transformation. 

While vision-based systems offer numerous benefits, they 
are inherently slow and computationally expensive to analyze. 
The inherent nature of the image-capturing paradigms cannot 
completely capture the fast and dynamic droplet ejection and 

evolution process. To capture the data corresponding to each 
pulse, they capture the data at subsequent timeframes that might 
not correspond to the same droplet. These systems also assume 
that droplet jetting behavior remains consistent and periodic for 
a specific set of parameters, making them less suitable for 
addressing non-periodicity in the jetting. Moreover, video data 
collection is limited by the camera specifications. Given the 
high-frequency jetting, collecting each frame is either not 
possible or requires expensive high-speed cameras. Field-of-
view limitations further restrict the amount of collected data. To 
overcome these limitations, Wang et al. proposed data collection 
using light-beam field interactions, eliminating the inherent 
system latency, and enabling true in-situ data collection [10]. 

Building upon this concept, we introduce 0-DUS (Zero-
Dimensional Ultrafast Sensing), as a low-latency sensing 
modality that works on the principle of light beam field sensing 
to generate time-series data corresponding to the droplet 
evolution. This system is capable of capturing data at extreme 
speeds, thus affording the ability to collect information about 
each individual droplet. Our previous research has demonstrated 
effective ways of mapping the time-series data to image data and 
the process of extracting insights about the speed, shape, size, 
and stability. The focus of this research is to utilize the time-
series data to analyze jetting behavior and develop predictive 
models that establish a relation between input parameters and 
droplet characteristics. Each droplet passing through the light 
beam field generates a voltage spike corresponding to its size, 
facilitating a more precise and comprehensive understanding of 
the inkjet printing process. After acquiring the time-series data, 
extraction of the key features allows for a comprehensive 
characterization of the jetting behaviors. Besides, integration 
with machine learning techniques allows the classification of the 
jet into “ideal” and “non-ideal” jetting, discerning scenarios with 
and without the presence of satellite droplets. Further, predictive 
modeling of the droplet characteristics like size based on the 
process parameters lays a solid foundation for a perspective 
dynamic real-time process control, promising heightened 
precision and efficacy in inkjet printing. 

2. EXPERIMENTAL SETUP 
The novelty and efficacy of our sensing modality lies in both 

hardware robustness and meticulous calibration. The effective 
integration of solenoid-valve based jetting system coupled with 
opto-coupler sensors ensures precise data capture. Calibration 
enhances reliability and this synergy ensures accurate data 
acquisition and mapping of the sensor data to tangible droplet 
characteristics. 

2.1 System Hardware 
The system hardware is structured around two primary 

systems: the jetting system and the sensory system. We have 
employed a solenoid-valve based material jetting system. In this 
system the solenoid operated valve responds to the applied input 
voltage and its function is directly influenced by the magnitude 
of the applied voltage. Additionally, the amount of material 
dispensed during each pulse is modulated by the applied pressure 
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and depends on the jetting frequency. The solenoid-valve based 
material jetting system ensures precise and controlled dispensing 
of material, with the operational parameters closely linked to the 
applied pressure, duty-cycle, and the jetting frequency. All the 
experiments were carried out using deionized water as the liquid 
medium for data collection simplicity. 

 
FIGURE 1 (a) SCHEMATIC OF SOLENOID-BASED INKJET 
PRINTING SETUP AND (c) OPTOCOUPLER-BASED 
MONITORING SYSTEM (AS SHOWN IN ZOOMED-IN VIEW), 
AND (b) TIME-SERIES VOLTAGE RESPONSE CORRESPONDING 
TO A MAIN DROPLET AND A SATELLITE DROPLET 
PERIODICALLY PASSING THROUGH THE LIGHT-BEAM FIELD. 

The second component of the hardware system is the 
sensory system, responsible for capturing vital information about 
the jetting droplet. While image-based systems are 
conventionally employed for this purpose, we have presented a 
novel opto-coupler based system as shown in FIGURE 1. The 
opto-coupler system operates on the principle of light beam field 
interactions and adeptly detects the droplets as they traverse 
through the light beam field, generating a time-series voltage 
profile as depicted in FIGURE 1 (b). Opto-couplers have a huge 
advantage over regular cameras in that they operate at much 
faster rates. This inherent speed advantage enables real-time data 
capture, allowing for quick modifications and feedback. This 
quick reaction time is critical for ensuring consistent print 
quality. Opto-couplers are also extremely sensitive to changes in 
light intensity, allowing for the detection of small changes in 
inkjet droplet behavior. This increased sensitivity allows for the 
detection of abnormalities and deviations that may otherwise go 
undetected by standard camera inspection. While cameras 
generate a large amount of visual data that need lengthy 
processing, opto-couplers give a more streamlined option by 
delivering simple time-series voltage data. This not only 
minimizes computational effort but also speeds up data analysis. 
Our careful examination of the obtained time-series signal using 
opto-couplers offered useful insights into the properties of 

ejected droplets, enhancing our understanding of the printing 
process, and greatly contributing to the success of our research.  

 
FIGURE 2 (a) TIME-SERIES SIGNAL AS OBTAINED FROM THE 
OPTO-COUPLER SENSOR (IN BLUE) AND THE 
CORRESPONDING DENOISED DATA (IN RED) WITH PEAKS 
REPRESENTING THE INTRUDING DROPLETS, AND (b) 
JETTING AS OBSERVED FROM THE CAMERA 

2.2 System Calibration 
Sensor calibration was a crucial step in building the novel 

anomaly detection system capable of in-situ monitoring. A data 
driven approach was employed for calibrating the light field 
spreading, revealing a Gaussian spread pattern. The proposed 
sensing modality works on the principle of light beam field 
blocking, where the amount of light being blocked determines 
the output voltage. Calibration of the voltage-size correlation 
involved using intruder objects of different sizes, uncovering a 
saturated voltage reading beyond a certain size due to limitations 
in the beam size.  

Assuming that the droplet reaches terminal velocity and that 
the light distribution is uniform in all directions, we safely adopt 
1D Gaussian representation for determining the size. The 
location-dependent light spreading led us to an approximating 
cumulative distribution function of the 1D Gaussian using a 
sigmoid function given by 

 𝒚 = 𝒂 +  
𝒃

𝟏 + 𝒆−𝒄∙𝒙 
(1) 

where 𝑦 represents the voltage response corresponding to the 
size of the intruding object (𝑥), and 𝑎, 𝑏, and 𝑐 are the curve 
fitting parameters as shown in FIGURE 3. These parameters are 
adjustable to optimize the fit to collected data. Upon analysis, the 
collected data indicated that, when voltage is measured in volts 
and size in millimeters, the curve fitting parameters were 
determined as follows: a = 0.618, b = 1.23, and c = 3.45. 

Equation (1) was used for droplet size determination, 
considering the non-linear relation between voltage and the 
amount of light blockage. Validation of the size as determined by 
Equation (1) and the corresponding image data reveal a root 
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mean squared error of less than 2%, thus ensuring a high 
prediction accuracy. For the subsequent analysis only the voltage 
signal data was utilized, streamlining the analytical process. 

 
FIGURE 3 APPROXIMATED CURVE REPRESENTING THE 
SIZE-VOLTAGE DEPENDENCE FOR THE DROPLET 

3. DATA COLLECTION AND ANALYSIS 
Data collection was performed as two tasks each 

contributing to the comprehensive understanding of the droplet 
jetting behavior. The first step involved thorough data 
acquisition, where the system adeptly captured time-series data 
corresponding to droplet ejection in response to varying input 
parameter combinations. The second step focused on the in-
depth analysis of the captured droplet data by extracting 
meaningful insights such as droplet size and number of droplets 
from the time-series voltage data. 

3.1 Construction of DOE Table 
A kind of design of experiment (DOE) method, Latin 

hypercube sampling (LHS), is used for the data collection. LHS 
hierarchically samples from a multidimensional distribution 
making it more efficient than random sampling [11]. Table 1 
summarizes the range of the process parameters. In total, 50 
different parameter combinations are generated. Three 
repetitions of each experimental setup were performed to ensure 
robustness of the results. 

Table 1 Range of Process Parameters 
Process Parameters Min Value Max Value 

Frequency (Hz) 50 200 
Duty Cycle (%) 10 20 
Pressure (PSI) 0.5 2.5 

3.2 Data Collection and Processing 
We employed a pair of opto-couplers to capture the voltage 

data corresponding to the droplet jetting for each parameter 
setting. The recorded time-series signal, spanning a stable jet of 
10 seconds, was stored as a Excel file for further analysis. To 
ensure that the parameter combination has taken effect, an initial 
period of jetting was allowed before beginning data collection. 
This approach resulted in a substantial data set of over 40,000 
data points for each reading, where the number of pulses varied 
according to the jetting frequency. From the comprehensive 

time-series dataset, data associated with individual pulses was 
extracted which served as the basis of our analytical 
investigations. As demonstrated in FIGURE 1 (b), the interaction 
between the droplet and the light-beam field generates a 
discernible voltage spike with the height of the spike 
proportional to the interruption duration. This important 
correlation enables us to infer the size of the droplet, with taller 
spikes indicating larger droplets and smaller spikes signifying 
smaller ones. Furthermore, the number of pulses in each dataset 
is associated with the jetting frequency. Some parameter settings 
result in multiple spikes with varying sizes where the smaller 
spikes were identified as satellite droplets. 

The acquired data pertaining to individual pulses was pre-
processed to enhance the clarity of the voltage spikes. Data 
smoothening was performed to ensure accurate and reliable 
analysis of the droplet characteristics. Following the initial 
refinement, signal processing tools were employed to detect and 
isolate the individual voltage spikes within the time-series data. 
By identifying these peaks, we were able to determine the 
number of droplets ejected during the corresponding pulse. The 
analyzed data was categorized into two distinct subsets (i.e., 
“ideal jetting” and “non-ideal jetting”) based on the number of 
spikes observed within each pulse.  The first subset, designated 
as “ideal jetting” was characterized with a singular well-defined 
spike, indicating a stable and consistent jetting behavior, while 
the second subset, “not ideal jetting”, includes the cases that jet 
with satellites or no jetting. FIGURE 2 depicts a case of “non-
ideal jetting” where each pulse results in the ejection of multiple 
droplets. By linking the process parameters (i.e., pressure, duty-
cycle, and jetting frequency) to the jetting behaviors, a 
classification model was built to predict the jetting behaviors 
which lay a foundation for the droplet control in the future. The 
“ideal jetting” subset was further analyzed to determine the size 
of the droplet in consideration. Droplet size is significant in 
understanding the IJP process, providing valuable insights into 
the dynamics of fluid flow during jetting. Equation (1), which 
correlates the voltage data to droplet size, was used for predictive 
modeling. The predicted size was subsequently validated using 
image data from the camera, ensuring the accuracy and reliability 
of the predictions. USB camera (Sentech) with a strobing light 
was used to capture the image data for jetting behavior 
validation. Linear regression was used to establish a 
comprehensive relation between the predicted size and the input 
parameters like pressure, duty-cycle, and jetting frequency. The 
details about the data analysis are shown as follows. 

3.3 Machine Learning Techniques for Data Analysis 
We performed two data analysis tasks based on the 

parameters and the time-series data, the classification of the 
jetting behaviors and the regression of the droplet size within 
“ideal jetting” subset. Two machine learning techniques, 
decision tree and linear regression were used, respectively. 

3.3.1 Decision Tree 
Decision tree is a commonly used classification method that 

recursively splits a dataset into subsets based on the most 
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influential features [12]. At each node of the tree, a decision is 
made by evaluating a specific feature, and the dataset is 
partitioned accordingly. This process continues until a certain 
stopping criterion is met, such as reaching a predefined depth or 
having a minimum number of data points in a leaf node. 

3.3.2 Linear Regression 
Linear regression is a fundamental statistical and machine 

learning technique used for modeling the relationship between a 
dependent variable and one or more independent variables [12]. 
The method assumes a linear association between the variables, 
where the aim is to find the best-fit line that minimizes the 
difference between the observed and predicted values. In 
essence, linear regression quantifies how changes in the 
independent variables correlate with changes in the dependent 
variable. 

4. RESULTS 
As mentioned above, 50 experiments with different 

parameters were conducted and the corresponding time-series 
data were collected. To perform the data analysis, we first split 
the data into the training dataset and the testing dataset with the 
ratio of 70:30, then trained the classification and the regression 
model on the training dataset and tested them on the testing 
dataset. The results are shown as follows. 

4.1 Classification Results 
FIGURE 4 (a) shows the confusion matrix on the testing 

dataset when using the features extracted from the time-series 
data to perform the jetting behaviors classification. We can 
observe that the accuracy is 98% for all the classes i.e. “no 
jetting”, “ideal jetting” and “non-ideal jetting”. This is because 
the features are the number of peaks and the voltage values, and 
the jetting behaviors have a strong correlation with the number 
of peaks. The classification results when using the process 
parameters are shown in FIGURE 4 (b). It can be seen that the 
accuracy is good for all the classes i.e. “no jetting”, “ideal 
jetting” and “non-ideal jetting”, suggesting the feasibility of 
controlling the jetting behaviors through the process parameters 
and opto-couplers output using machine learning techniques. In 
future work, we will further capture the relationship of process 
parameters and opto-coupler data during process control. 

 
FIGURE 4 THE CONFUSION MATRIX ON THE TESTING 
DATASET FOR THE CLASSIFICATION OF JETTING BEHAVIORS 
BASED ON (A) FEATURES EXTRACTED FROM THE TIME-

SERIES DATA (I.E., THE NUMBER OF PEAKS AND THE 
VOLTAGE VALUES) AND (B) PROCESS PARAMETERS (I.E., 
PRESSURE, DUTY-CYCLE, AND JETTING FREQUENCY). 

4.2 Regression Results 
Since only the droplet size for the “ideal jetting” is of 

interest, we only built a linear regression model using the data 
from the “ideal jetting” class. After eliminating outliers, 61 data 
points were used. FIGURE 5 (a) shows the regression results 
when using the process parameters (i.e., pressure, duty-cycle, 
and jetting frequency) as well as the voltage values as the 
predictors. The R2 and the root mean square error (RMSE) are 
0.85 and 0.03 mm, respectively. These results demonstrate the 
effectiveness of predicting the droplet size based on the process 
parameters and the voltage values. The regression results when 
only using the process parameters as the predictors are shown in 
FIGURE 5 (b). The corresponding R2 and RMSE are 0.56 and 
0.051 mm, respectively. We can observe that by involving the 
voltage value as a predictor, the regression model has a better 
performance in terms of R2. This phenomenon happens since the 
total dataset is small and adding voltage value as an additional 
predictor benefits the model. In the future, more experiments will 
be conducted, and more data will be collected under “ideal 
jetting”. Besides, the real droplet size will be obtained by using 
image data captured by the camera to validate the correlation 
between the droplet size and the voltage value, and the regression 
model. 

 
FIGURE 5 THE REGRESSION RESULTS ON THE TESTING 
DATASET FOR THE PREDICTION OF THE DROPLET SIZE 
WITHIN “IDEAL JETTING”. (A) THE PREDICTORS ARE THE 
PROCESS PARAMETERS (I.E., PRESSURE, DUTY-CYCLE, AND 
JETTING FREQUENCY) AND THE VOLTAGE VALUES. (B) THE 
PREDICTORS ARE ONLY THE PROCESS PARAMETERS 

5. CONCLUSION AND FUTURE WORK 
This work presents a novel sensing modality for dynamic 

drop-on-demand inkjet printing. Our investigation is centered 
around harnessing the high precision and rapid response of the 
light-beam field interference as a means of gaining valuable 
insights into droplet evolution and jetting characteristics in 
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response to the variation in the input parameters. The paper has 
explored two directions; firstly, it has successfully implemented 
a decision tree based classifier to categorize the jetting behavior 
into “no jetting”, “ideal jetting” and “non-ideal jetting” classes 
and furthermore has employed linear regression for predicting 
the droplet size. The results suggest the effectiveness of using 
the input parameters and the features extracted from the time-
series data in predicting the jetting behaviors and the droplet size. 
Besides, the results also demonstrate the high accuracy of 
capturing the jetting characteristics using the developed sensing 
modality, which holds the promise of online real-time control in 
inkjet printing process. 

The current work is in its nascent stages, paving the way for 
subsequent advancements in inkjet printing process control. Our 
next steps would focus on establishing a deterministic relation 
between various process parameters and their impact on opto-
coupler time-series data and overall jetting characteristics. This 
pursuit aims at uncovering the various interdependencies that 
govern the printing dynamics. Further explorations will delve 
into high-speed feature extraction from the real-time process 
data in conjunction with the predictive models. This holistic 
approach holds great promise in achieving closed-loop control, 
where dynamic adjustments can be made in real time based on 
the evolving printing conditions.  
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