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Abstract
We present a nonapproximate computational method for generating 𝐺-optimal
designs in response surface methodology (RSM) settings using Gloptipoly, a
global polynomial optimizer. Traditional approaches use a grid approximation
for computing a candidate design’s𝐺-score. Gloptipoly can find the global opti-
mum of high-order polynomials thusmaking it suitable for computing a design’s𝐺-score, that is, itsmaximumscaled prediction variance,which, for second-order
models, is a quartic polynomial function of the experimental factors. We demon-
strate the efficacy and performance of our method through comprehensive
application to well-published examples, and illustrate, for the first time, its appli-
cation to generating𝐺-optimal designs supportingmodels of order greater than 2.
This work represents the first non-approximate computational approach to solv-
ing the𝐺-optimal design problem. This advancement opens new possibilities for
finding 𝐺-optimal designs beyond second-order RSM models.

KEYWORDS𝐺-optimal design, Gloptipoly, polynomial optimization, response surface methodology
1 INTRODUCTION

Generating optimal experimental designs that enable precise prediction in untested areas of the design space is a critical
component of response surface methodology (RSM).1 𝐺-optimal designs, that is, those that minimize the model’s maxi-
mum prediction variance, are thus attractive at the optimization stage of RSM. However, finding these designs remains a
complicated technical challenge and continues to stimulate research. The most efficacious methods utilize a grid approx-
imation to compute the 𝐺-score of a candidate design, leading to potential inaccuracies. We present a novel approach to
generating 𝐺-optimal designs by utilizing Gloptipoly,2,3 a sophisticated measure-theoretic global polynomial optimizer,
to compute the 𝐺-score of a candidate design without error. Thus, we propose the first nonapproximate computational
approach to generating 𝐺-optimal designs.
Borkowski first proposed 𝐺-optimal RSM designs for 𝐾 = 1, 2, 3 experimental factors and seven experiment sizes (i.e.,

experimental runs denoted 𝑁) per 𝐾, generated by a genetic algorithm (GA).4 This catalog of candidate 𝐺-optimal
designs has evolved into a benchmark validation data set for comparing algorithm performance and resulting 𝐺-optimal
designs over two decades of research. Rodriguez et al. applied the coordinate exchange (CEXCH) algorithm to replicate
Borkowski’s designs and extended it to 𝐾 = 4, 5 factors with three run sizes each. Additionally, they compared the predic-
tion variance properties of 𝐺-optimal and 𝐼-optimal designs and recommended 𝐼-optimal designs to practitioners due to
lower computational cost and complexity. Saleh and Pan introduced a clustering-based CEXCH algorithm to reduce com-
puting costs.5 Hernandez and Nachtsheim proposed using continuous 𝐼𝜆-optimal designs as a starting point for finding
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highly efficient𝐺-optimal designs, significantly reducing computational costs compared toGA andCEXCH, and extended
their approach to two new 𝐾 = 4, 5 factor design scenarios.6 Walsh and Borkowski adapted particle swarm optimization
(PSO) to the 𝐺-optimal design problem, finding it as cost-efficient as Hernandez and Nachtsheim’s approach but exhibit-
ing a high probability of generating a highly efficient design in a single algorithm run,7 thereby mitigating the need to
run the search algorithm several hundreds or thousands of times as suggested by several authors.8 Further, in several
cases, PSO produced new, improved 𝐺-optimal designs, thereby updating the catalog of candidate 𝐺-optimal designs and
establishing PSO as the state-of-the-art for this problem.
The computational cost and complexity of finding𝐺-optimal designs stems from the structure of the𝐺-criterion, which

is defined as the maximum prediction variance of the model supported by the candidate design. Calculating the 𝐺-score
for a candidate design requires an optimization calculation.1,8 The literature presents two approaches. One approach uses
a gradient-based optimization method to compute the 𝐺-score, as seen in ref. [9]. However, the 𝐺-criterion function is
not convex, so local optima entrapment, resulting in an incorrect 𝐺-score for the candidate design, is highly likely.10 Mis-
scoring a candidate design via this method can significantly hinder the search for the optimal design.7,9 In the second
approach, the symmetry of the prediction variance surface, for a second-order model, is exploited and a grid approach
is applied to approximate the 𝐺-score of a candidate design.4,6,7 The 5𝐾 grid is defined as {−1,−0.5, 0, 0.5, 1}𝐾 , and the
candidate design’s prediction variance is computed at each of the 5𝐾 grid points, then the maximum of those evaluated
prediction variances is returned as the candidate’s𝐺-score. Under the second-order model (RSM scenarios) this approach
has been demonstrated to enable cost-efficient generation of 𝐺-optimal designs where the 𝐺-efficiencies of the resulting
designs are subject to small error, typically within 1 unit on the𝐺-efficiency scale.7While the grid approximation has been
successful in generating optimal designs for the second-order model, it is currently unknown whether such a grid would
enable 𝐺-optimal designs to search for higher-order models.
In this context, our research leverages Gloptipoly, a MATLAB-based implementation of the method of semi-definite

relaxations of nonconvex global optimization problems, to directly compute the 𝐺-score of a candidate design without
relying on grid approximations. Gloptipoly is capable of finding global optima of high-order polynomials, thus making
it particularly suitable for computing the 𝐺-score of a candidate design as the 𝐺-criterion is equivalently viewed as the
maximum of a quartic polynomial function of the experimental factors under the second-order RSM model.2,3,11–13 By
removing the grid approximation, our approach eliminates any associated errors in computing a candidate’s 𝐺-score,
leading to more accurate and reliable optimal designs. Our approach not only improves the precision of 𝐺-optimal design
generation but also opens new possibilities for extending the search to higher-order RSMmodels. Through comprehensive
case studies, we demonstrate the efficacy of our approach and compare results to those previously published.
We present our notation and formulation of the𝐺-optimal design problem in Section 2, and illustrate that the𝐺-score is

a polynomial function of the experimental factors. In Section 3we provide proof of concept that Gloptipoly can calculate
the 𝐺-score of a candidate design without error by applying it to score the current best-known 𝐺-optimal RSM designs
for 𝐾 = 1 to 5 experimental factors as in Walsh and Borkowski.7 In Section 4 we explore two algorithms, the Nelder–
Mead simplex (NMS) algorithm and PSO, to search the space of candidate matrices while utilizing Gloptipoly to score
candidate designs suggested by these algorithms. In Section 5we extend thismethodology to generating𝐺-optimal designs
for models beyond the second-order polynomial. Last, we provide concluding remarks and suggestions for future research
in Section 6.

2 𝑮-OPTIMAL DESIGN FOR RSM SCENARIOS

2.1 Small exact response surface designs

We consider the second-order linearmodel under standard assumptions. Let𝑁 represent the number of design points (i.e.,
number of affordable experimental runs) and𝐾 represent the number of experimental factors.1 The row-vector 𝐱′ ∶ 1 × 𝐾
represents a design point (i.e., single experimental run on 𝐾 factors). Experimental factors are assumed scaled to range[−1, 1] and so the design space is the  = [−1, 1]𝐾 hypercube.1,8 The goal of optimal experimental design is to distribute
the 𝑁 design points 𝐱′𝑖 , 𝑖 = 1,… ,𝑁 over  in some optimal configuration.
Matrix 𝐗 of dimension 𝑁 × 𝐾 represents the exact (as opposed to continuous) design matrix. The result of an optimal

design search is to populate thismatrixwith factor settings that are optimal under the experimenter’s objectives. Therefore,
to find the optimal design, one must search over the space of candidate matrices which is a𝑁𝐾-dimensional hypercube,7
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HANSEN et al. 3

that is,

𝐗 ∈ 𝑁⨉
𝑗=1  = 𝑁⨉

𝑗=1[−1, 1]𝐾 = [−1, 1]𝑁𝐾 = 𝑁 . (1)

We assume the second-order linear model which has 𝑝 = (𝐾+22 )
parameters. This model is commonly written in scalar

form as

𝑦 = 𝛽0 + 𝐾∑
𝑖=1 𝛽𝑖𝑥𝑖 +

𝐾−1∑
𝑖=1

𝐾∑
𝑗=𝑖+1 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 +

𝐾∑
𝑖=1 𝛽𝑖𝑖𝑥2𝑖 + 𝜖.

Matrix 𝐅(𝐗) of dimension 𝑁 × 𝑝 represents the model matrix with rows given by the expansion vector 𝐟 ′(𝐱′𝑖) =(1 𝑥𝑖1 … 𝑥𝑖2 𝑥𝑖1𝑥𝑖2 … 𝑥𝑖(𝐾−1)𝑥𝑖𝐾 𝑥2𝑖1 … 𝑥2𝑖𝐾). We abbreviate the model matrix as 𝐅, with the understand-
ing that it is always a function of the design matrix 𝐗.7 Then, the response surface model becomes a linear model of𝐲 = 𝐅𝜷 + 𝝐, where we assume 𝝐 ∼ 𝑁(𝟎,𝜎2𝐈𝑁) and 𝑁 denotes the 𝑁-dimensional multivariate normal distribution.
The ordinary least squares estimator of 𝜷 is 𝜷 = (𝐅′𝐅)−1𝐅′𝐲 which has variance Var(𝜷) = 𝜎2(𝐅′𝐅)−1. The total informa-
tion matrix for 𝜷, specifically 𝐌(𝐗) = 𝐅′𝐅, plays an important role in the optimal design of experiments—all optimal
design objective functions are functions of this matrix.8
The quality of a candidate design𝐗 ∈ 𝑁 is measured by an optimality criterion defined by the practitioner. The space

of candidate matrices 𝑁 is explored via an additional optimization algorithm in an effort to find the ‘“best,” or optimal,
design. Thus, an exact optimal design problem is defined by three components7: (1) the number of design points 𝑁 that
can be afforded in the experiment, (2) the structure of the model one wishes to fit (here the second-order model), and (3)
the criterion which defines an optimal design, as a function of𝐌(𝐗). In the next subsection, we define the 𝐺-criterion,
the 𝐺-optimal design, and several efficiency measures commonly used to evaluate candidate designs.
2.2 𝑮-Optimal design

The 𝐺-optimal design minimizes the model’s maximum prediction variance (i.e., the worst-case scenario) over design
space  . At any point of prediction 𝐱′ ∈  the model’s mean prediction variance is

Var(𝑦̂(𝐱′)) = 𝜎2𝐟 ′(𝐱′)(𝐅′𝐅)−1𝐟 (𝐱′).
The scaled prediction variance (SPV) removes the scale parameter 𝜎2 and re-scales to 𝑁 by multiplying by the factor𝑁∕𝜎2.7 Thus, for candidate design 𝐗, SPV is defined as

SPV(𝐱′|𝐗) ∶= 𝑁𝐟 ′(𝐱′)(𝐅′𝐅)−1𝐟 (𝐱′). (2)

The 𝐺-score of a candidate design 𝐗 is the maximum scaled prediction variance over all points of prediction 𝐱′ ∈ 
𝐺(𝐗) ∶= max𝐱′∈ SPV(𝐱′|𝐗). (3)

Equation 3, thus, shows that for a fixed candidate design 𝐗, scoring the candidate on the 𝐺 optimal criterion is itself an
optimization problem. The 𝐺-optimal design matrix𝐗∗ is the matrix that minimizes, overall design matrices𝐗 ∈ 𝑁 , the
maximum SPV

𝐗∗ ∶= argmin𝐗∈𝑁 𝐺(𝐗)
= argmin𝐗∈𝑁 max𝐱′∈ SPV(𝐱′|𝐗). (4)
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4 HANSEN et al.

Equation 4 shows that finding the 𝐺-optimal design is a minimax problem. This optimization has proved notoriously
difficult to solve because neither of the inner and outer optimizations required to compute𝐗∗ are convex in large part due
to the expansion of the design matrix into model matrix 𝐅.4,6,9
The General Equivalence Theorem of refs. [14–16] demonstrates that the lower bound on 𝐺(𝐗) is

𝐺(𝐗) = max𝐱′∈ SPV(𝐱′) ≥ 𝑝. (5)

That is, the smallest value that the maximum scaled prediction variance of a candidate design 𝐗 can be is 𝑝, the number
of parameters. This yields a way to verify if a proposed exact 𝐺-optimal design is globally optimal; however, not all design
scenarios have the globally𝐺-optimal designs thatwill achieve this lower bound. Further, if design𝐗∗ is globally𝐺-optimal
and achieves the result in Equation 5, then for this design SPV(𝐱′|𝐗) = 𝑝 at all diagonals of the hat matrix 𝐅(𝐅′𝐅)−1𝐅′ and
SPV(𝐱′|𝐗) ≤ 𝑝 at all other points of prediction 𝐱′ ∈  .1 It is customary to exploit this fact and score candidate designs on
the 𝐺-efficiency scale,

𝐺eff(𝐗) = 100 𝑝𝐺(𝐗) , (6)

in order to gauge the quality of a candidate design 𝐗 (larger 𝐺eff on this scale implies a better design). Lastly, the relative
efficiency of two candidate designs may be computed as

𝐺releff(𝐗1,𝐗2) = 100𝐺eff(𝐗1)𝐺eff(𝐗2) . (7)

2.3 Previously studied design scenarios

In Table 1weprovide a description of all exact𝐺-optimal design scenarios discussed in the literature to date by authors.4–7,9
We will study several of these design scenarios via the application of Gloptipoly in subsequent sections.

2.4 SPV as a polynomial function of the experimental factors

In this section, we provide a simple 𝐾 = 1, 𝑁 = 3 mathematical example to illustrate that the SPV function of a second-
order linear model is a quartic polynomial. Generally, denote the corresponding candidate design as

𝐗 = ⎡
⎢
⎢⎣

𝑎𝑏𝑐
⎤
⎥
⎥⎦

where we have one-factor 𝑥 with levels 𝑎, 𝑏, 𝑐. The corresponding model matrix (under the second-order RSM model) is

𝐅 = ⎡
⎢
⎢⎣

1 𝑎 𝑎21 𝑏 𝑏21 𝑐 𝑐2
⎤
⎥
⎥⎦
.

From this model matrix, (and without loss of generality) denote the inverse of the model-information matrix as

(𝐅′𝐅)−1 = ⎡
⎢
⎢⎣

𝑓11 𝑓12 𝑓13𝑓21 𝑓22 𝑓23𝑓31 𝑓32 𝑓33
⎤
⎥
⎥⎦
.

Then we may use the inverse information matrix to compute the SPV under design 𝐗 at arbitrary design point 𝑥 ∈[−1, 1] as
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HANSEN et al. 5

TABLE 1 Summary of design scenarios, algorithms, and authors who have addressed the exact 𝐺-optimal design problem for the
second-order RSM model in the last 20 years.𝑲 ∶Number of
experimental
factors

𝑵 ∶Number of
experimental runs Algorithm Authors

1
3, 4, 5, 6, 7, 8, 9 GA Borkowski𝐺(𝐼𝜆)-CEXCH Hernandez and Nachtsheim

PSO Walsh and Borkowski

2

6, 7, 8, 9, 10, 11, 12 GA Borkowski
CEXCH Rodriquez et al.
cCEA (𝑁 = 7 to 12) Saleh and Pan
PSO Walsh and Borkowski

3

10, 11, 12, 13, 14, 15, 16 GA Borkowski
CEXCH Rodriquez et al.
cCEA (𝑁 = 11 to 16) Saleh and Pan
PSO Walsh and Borkowski

4

15, 20, 24 CEXCH Rodriguez et al.
cCEA (𝑁 = 24) Saleh and Pan
PSO Walsh and Borkowski

16 cCEA Saleh and Pan
17 𝐺(𝐼𝜆)-CEXCH Hernandez and Nachtsheim

PSO Walsh and Borkowski

5

21, 26, 30 CEXCH Rodriquez et al.
cCEA (𝑁 = 26) Saleh and Pan
PSO Walsh and Borkowski

23 𝐺(𝐼𝜆)-CEXCH Hernandez and Nachtsheim
PSO Walsh and Borkowski

Abbreviations: CEXCH, coordinate exchange; GA, genetic algorithm; PSO, particle swarm optimization; RSM, response surface methodology.

𝑆𝑃𝑉(𝐱′|𝐗) = 3 × [1 𝑥 𝑥2] ⎡⎢⎢⎣
𝑓11 𝑓12 𝑓13𝑓21 𝑓22 𝑓23𝑓31 𝑓32 𝑓33

⎤
⎥
⎥⎦

⎡
⎢
⎢⎣

1𝑥𝑥2
⎤
⎥
⎥⎦
.

= 3 × [𝑓11 + 𝑓21𝑥 + 𝑓31𝑥2 𝑓12 + 𝑓22𝑥 + 𝑓32𝑥2 𝑓13 + 𝑓23𝑥 + 𝑓33𝑥2] ⎡⎢⎢⎣
1𝑥𝑥2
⎤
⎥
⎥⎦= 3𝑓11 + 𝑥3(𝑓21 + 𝑓12) + 𝑥23(𝑓31 + 𝑓22 + 𝑓13) + 𝑥33(𝑓32 + 𝑓23) + 𝑥43(𝑓33)

which is a fourth-order polynomial. Thus, computing the 𝐺-score of a candidate design can be formulated as optimizing
a polynomial function of the experimental factors. The polynomial coefficients (i.e., the 𝑓𝑖𝑗-terms) are functions of the
entries in the candidate design𝐗, and the optimization is over the arbitrary point 𝑥 ∈ [−1, 1]. A similar derivation for any𝐾 ≥ 2 is straightforward.
To visualize the problem, we consider the 𝐾 = 2, 𝑁 = 9 design scenario. Figure 1 contains contour plots of the SPV

surface for the 𝐺-optimal design reported by Walsh and Borkowski7 (the right panel) and a random design generated
under a multivariate uniform distribution (the left panel) (note that the SPV for this contour plot is plotted on the log
scale). The red-yellow-filled points on the graphic represent the 5𝐾 grid over which SPV is computed to approximate the
maximum. The large red “X”s indicate the true location of the maximum prediction variance.
The quartic polynomial structure over two factors for the𝐺-optimal design (left panel) is readily apparent. Further, one

can see thatwhile SPV at grid point (0,−1) is reported as this design𝐺-score, the truemaximumSPV is slightly to the left of
this point, illustrating a small error in approximating this design 𝐺-score. In the right panel, it is readily apparent that the
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6 HANSEN et al.

F IGURE 1 Side-by-side SPV-surface plots for a completely random design (left) and for the 𝐺-optimal design of ref. [7] (right). Locations
that would be sampled by the grid approximation, as in the literature,4,7 are given as yellow circles outlined in red. SPV, scaled prediction
variance.

SPV surface contains a much larger prediction variance over the design space than the 𝐺-optimal design (the color in this
graphic is on the log scale). Nonetheless one can still see the quartic polynomial structure. Further, the grid approximation
returns the SPV at point (−1, 1) and the true SPV also occurs at this location, leading to no error in computing the𝐺-score
of this candidate design.
Therefore, computing the 𝐺-score of a candidate design is precisely the optimization problem solved by Gloptipoly.

In the next section, we adapt Gloptipoly to computing a design𝐺-efficiency and score all best-known𝐺-optimal designs
reported in Walsh and Borkowski7 to (1) act as a proof-of-concept and validate that Gloptipoly can correctly score these
designs and (2) elucidate the size of error in the 𝐺-efficiency approximations for each design that results from using the5𝐾 grid approximation.
3 PROOF-OF-CONCEPT: SCORING 𝑮-OPTIMAL DESIGNS VIA GLOPTIPOLY

3.1 The generalized problem of moments: brief review of Gloptipoly’s development

Gloptipoly was developed for solving, and in more complex situations, approximating the generalized problem of
moments (GPM).11–13 GPM is a linear optimization problem with countably many constraints on the space of measures13
and of which global polynomial optimization is a special case.17 For a complete discussion of methodologies and
applications, see.18
Algorithmic development for solving GPM has been a central area of focus in the optimization research community

since the late 20th century. Hernandez-Lerma and Lasserre introduced a method of using approximation schemes to
address infinite linear programs.19 Their work demonstrates that under certain assumptions, optimal solutions to a GPM
can be approximated by finding the optimal solution to each of a sequence of finite-dimensional linear programs associ-
ated with the original problem. These are sometimes called linear program (LP) relaxations.19 Their technique takes an
infinite-dimensional linear program and discretizes it, breaking the problem up into a sequence of finite-dimensional lin-
ear programs of increasing size. They demonstrate that an accumulation point for a sequence of optimal solutions to one
of the finite-dimensional approximating programs is also an optimal solution for the original infinite-dimensional pro-
gram. This powerful result informed the theoretical development in ref. [11], which expanded the idea of finding global
polynomial optima by reducing the problem ofmoments to a sequence of convex linearmatrix inequality (LMI) problems.
There are, however, some issues with using LP relaxations to solve the GPM. Numerical instability and the absence of a
general convergence guarantee make the LP relaxation technique inappropriate for finding optima of less well-behaved
functions. To overcome these challenges, semidefinite program (SDP) relaxationswere introduced.12 SDP relaxations offer
an attractive solution for small-scale problems because they include a convergence guarantee and resolve some numerical

 10991638, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3660 by U

niversity A
t B

uffalo (Suny), W
iley O

nline Library on [26/10/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fqre.3660&mode=


HANSEN et al. 7

stability issues, but they have not yet been implemented to solve very large optimization problems. Note that the dimen-
sion of optimization problems we are attempting to solve, via Gloptipoly, has 𝐾 = 1, 2, 3, 4, 5. Therefore, the currently
available tools are ideal for our application here.
It should be noted that Gloptipoly is not a standalone GPM solver; rather, it converts the original problem into a

sequence of SDPs that are solved by calling an external semidefinite solver. The program SeDuMi20 is the default solver
in Gloptipoly and appears to be widely used in SDPs. Note that the software is configured to work with any other
semidefinite solver in YALIMP, a MATLAB toolbox for interfacing SDP solvers.21

3.2 Computing a candidate designs’s 𝑮-score via Gloptipoly
We first validate Gloptipoly as an appropriate tool to accurately compute the 𝐺-score of a candidate design by adapting
it to this problem and computing the 𝐺-efficiencies of the current best 𝐺-optimal designs for 𝐾 = 1, 2, 3, 4, 5 experimen-
tal factors reported in Walsh and Borkowski.7 While constituting the set of best-know designs for RSM scenarios, it is
already known that the 𝐺-scores of these designs are subject to small error.7 Table 2 contains 𝐺-efficiencies, computed as
in Equation 6. All MATLAB code used to generate the results of this paper, as well as instructions on how to implement
a reproducible example, can be found on the author’s Github page: https://github.com/HyrumHansen/thesisResearch.
Table 2 contains, for each design scenario, (1) the best known 𝐺-optimal design’s 𝐺-efficiency computed under the 5𝐾

grid approximation (2) the corresponding𝐺-efficiency computed on the same design via Gloptipoly, and (3) the absolute
difference of the two scores (i.e., the error in approximating the 𝐺-efficiency). One can see that for the majority of design
scenarios, the error in 𝐺-efficiency calculation is small, under 1% on the 𝐺-efficiency scale. Three of the design scenarios
show an appreciably larger 𝐺-score approximation error:
1. 𝐾 = 2, 𝑁 = 9, error = 2.60 efficiency units,
2. 𝐾 = 2, 𝑁 = 10, error = 1.10 efficiency units,
3. 𝐾 = 3, 𝑁 = 10, error = 1.05 efficiency units.

This suggests some room for improvement as these designs’ true 𝐺-efficiencies have been optimistically, and incorrectly,
scored. To verify this, we also scored these designs using a very dense grid 𝐱′ ∈ {−1,−0.99,−0.98, … , 0.98, 0.99, 1}𝐾 . We
found the scores reported by Gloptipoly to be in strong agreement with those reported by the dense grid SPV evaluations,
specifically, all case errors were (±0.01) on the 𝐺-efficiency scale.22
Thus, we have demonstrated that Gloptipoly is a fit-for-purpose tool for accurately computing 𝐺-scores of candidate

designs. Having established this fact, we now extend to searching the space of candidatematrices for the𝐺-optimal design
while using Gloptipoly as a component to score candidate designs. We discuss this in the next section.

4 EXPLOITING GLOPTIPOLY TO AID THE 𝑮-OPTIMAL DESIGN SEARCH

So farwe have demonstrated that Gloptipoly can accurately solve the problemof computing a candidate design’s𝐺-score,
that is, Gloptipoly can be trusted to solve Equation 3. The search for the 𝐺-optimal design is an additional optimization
process over the space of candidate matrices as expressed in Equation 4, that is, we need an additional optimizer to solve𝐗∗ = argmin𝐗∈𝑁 𝐺(𝐗)
where, at each iteration of the optimization, Gloptipolywill be called on each candidate design fed to it by this optimizer.
The task now is to learn the efficacy and computational cost of this approach. We implemented studies of two

optimization algorithms, both available in MATLAB, to search the space of candidate matrices:

1. NMS algorithm, and
2. particle swarm optimization.

NMS was chosen for this study due to its ease of implementation and ability to enforce design space constraints. In addi-
tion, it is a gradient-free method, thus having the global search capability (i.e., it is somewhat robust to entrapment at
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8 HANSEN et al.

TABLE 2 Relative efficiencies as reported by the grid approximation and Gloptipoly for all second-order design scenarios covered by ref.
[7].𝑲 ∶Number of
experimental factors

𝑵 ∶Number of
experimental runs

𝑮- efficiency via 𝟓𝑲
grid approx.

𝑮- efficiency
via Gloptipoly

Absolute
difference

1

3 100 100 0
4 82.92 82.92 0
5 80.58 80.58 0
6 100 100 0
7 91.17 91.17 0
8 89.13 89.13 0
9 100 100 0

2

6 75.03 74.39 0.64
7 80.24 80.04 0.19
8 87.94 87.94 0
9 86.63 84.03 2.60
10 87.40 86.30 1.10
11 87.07 86.66 0.41
12 88.17 88.11 0.06

3

10 71.43 70.38 1.05
11 80.51 79.54 0.97
12 83.35 83.12 0.22
13 86.46 85.81 0.64
14 89.71 89.09 0.61
15 85.99 85.77 0.22
16 85.79 85.39 0.39

4

15 71.09 70.64 0.44
17 73.90 73.66 0.24
20 80.20 79.31 0.89
24 85.95 85.85 0.10

5

21 68.67 67.84 0.83
23 73.19 72.67 0.52
26 75.31 74.84 0.47
30 76.16 75.71 0.45

Note: The grid approximation tends to slightly over-approximate the 𝐺-efficiency for a candidate design when compared to Gloptipoly, but the differ-
ence is generally marginal. For some cases, the 𝐾 = 2, 𝑁 = 9 design scenario being a notable example, the difference sufficiently pronounced to consider
switching algorithms.

local(sub)-optimal solutions). PSO was chosen because it is the current state-of-the-art for the G-optimal design problem
and MATLAB contains a library with the canonical implementations of PSO.
For the performance assessment of the NMS-Gloptipoly pairing, we implemented this approach to all 𝐾 = 1, 2, 3

experimental factor cases explored in Borkowski,4 which constitute seven experimental runs per 𝐾 for a total of 21
design scenarios. This set of problems has the greatest collection of exploration and evidence. For example, Hernandez
and Nachtsheim provided a comprehensive comparison of the performance of GA, the standard 𝐺-CEXCH,9 and their
proposed 𝐺(𝐼𝜆)-CEXCH6 in which they ran each algorithm 200 times per design scenario and published the efficacy of𝐺(𝐼𝜆)-CEXCH and 𝐺-CEXCH relative to designs produced by the GA. Further, Walsh and Borkowski7 extended this com-
parison to include an assessment of 𝐺-PSO’s efficacy. For our study, we ran NMS-Gloptipoly 500 times. In the next
section, we update the assessment of all algorithms relative to GA, including our results. All 500 × 21 = 10500 optimiza-
tion searches were run in parallel on an 18-core i9CPU, and the entire study took approximately oneweek to compute. The
implementation of Gloptipoly as an optimizer for every candidate design at every iteration of NMS no doubt adds to com-
puting costs. However, all codes were run inMATLAB (uncompiled), so the computing cost was also confounded with the
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HANSEN et al. 9

TABLE 3 Relative efficiencies of 𝐺-optimal designs for each algorithm relative to GA generated designs of ref. [4].
Design scenario Best design efficiency relative to 𝑮-GA𝑲 𝑵 𝑮-PSO 𝑮(𝑰𝝀)-CEXCH 𝑮-CEXCH 𝑮-NMS/Gloptipoly

1

3 100.0 100.0 100.0 100.0
4 100.0 96.2 98.7 100.0
5 100.0 97.0 98.7 100.0
6 100.0 100.0 100.0 100.0
7 100.0 98.8 99.7 100.0
8 100.0 94.7 99.4 100.0
9 100.0 100.0 89.4 100.0

2

6 100.3 94.1 96.5 99.0
7 100.1 95.5 97.9 98.6
8 100.0 94.7 99.7 99.2
9 100.3 95.8 97.0 97.8
10 101.7 93.2 97.5 100.3
11 101.0 97.0 94.0 100.1
12 103.9 95.1 101.2 100.3

3

10 101.6 95.4 93.1 94.3
11 104.2 96.9 92.9 97.9
12 103.8 90.3 90.7 99.6
13 103.2 99.9 92.9 94.3
14 100.5 100.0 87.6 92.0
15 102.5 100.1 98.5 94.4
16 108.1 100.2 100.1 97.4

Note: From left to right, efficiencies for the PSO of ref. [7], the 𝐺(𝐼𝜆) procedure of ref. [23] the coordinate-exchange of ref. [9], and the Nelder–Mead+ Gloptipoly
approach studied in this work.
Abbreviations: CEXCH, coordinate exchange; GA, genetic algorithm; NMS, Nelder–Mead simplex; PSO, particle swarm optimization.

choice of computing language. Further, Gloptipoly’s structure is quite different from typical optimization algorithms.
We attempted to retrieve a cost metric such as a number of iterations, but were unsuccessful in identifying a suitable ana-
log for this quantity in the Gloptipoly output. Therefore, we only report a summary of the best designs found for each
algorithm over their number of runs, 𝑛run.
4.1 Results

4.1.1 NMS-Gloptipoly results

Boxplots for all 500 runs per design scenario in Figure 2 are given to emphasize the prevalence of local optima. Naturally,
lower-dimensional problems have fewer local optima and the algorithm generally finds designs with high 𝐺-efficiency,
but as the dimension of the problem increases so does the number of local optima and hence the algorithm’s propensity to
entrapment. A comparison of the best designs found by 𝐺 −NMS∕Gloptipoly to 𝐺-PSO,7 𝐺(𝐼𝜆) − 𝐶𝐸𝑋𝐶𝐻,6 the standard
CEXCH6 and 𝐺-GA4 is provided in Table 3. 𝐺 −NMS∕Gloptipoly appears to be competitive with all algorithms but PSO.
4.1.2 PSO-Gloptipoly results

Figure 3 contains boxplot comparisons of the best solutions found by NMS-Gloptiploly (𝑛run = 500) and PSO-
Gloptipoly (𝑛run = 20). In only 4% of the number of algorithm runs, PSO returns a better design than Nelder–Mead.
Further, in several cases, the PSO-Gloptipoly has produced better designs than those reported in ref. [7]. These results
(1) underscore that PSO is an excellent match with the structure of the 𝐺-criteria and (2) while the current MATLAB
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10 HANSEN et al.

F IGURE 2 The top panel: Boxplots for 500 runs of Nelder–Mead on one-factor design scenarios. The best of these runs is consistently
the 𝐺-optimal design for one-factor design scenarios. The middle panel: Boxlpots for two-factor settings. A two-factor design search results in
significantly more spread when compared to the one-factor design search, likely due to an increase in the number of local optima. The bottom
panel: Boxplots for three-factor settings. The dimension of the problem starts to challenge NMS, however, the best found designs all have
relative efficiencies above 90%. NMS, Nelder–Mead simplex.
implementation does take nonnegligible computer time, the PSO-Gloptipoly approach has shown the ability to find
highly efficient 𝐺-optimal designs in a single run with large probability.
5 GENERATING 𝑮-OPTIMAL DESIGNS BEYOND THE SECOND-ORDER RSMMODEL

The order of the polynomial model being designed is a fundamental assumption in RSM, while the true nature of
the response surface is usually unknown. The second-order model is often assumed (especially in practice) as the
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HANSEN et al. 11

F IGURE 3 Boxplots for the distribution of designs by design scenario and algorithm, with efficiencies relative to the best designs of ref.
[7] for all two factor settings (top panel), and all three factor settings(bottom panel). The best design of just 20-runs of PSO surpassed the best
design of 500 runs of Nelder–Mead in nearly every case. PSO, particle swarm optimization.

second-order polynomial (with interactions) provides a fair amount of flexibility in fitting a response surface and can
model a local optimum. In some scenarios, the response surface is more complex than can be adequately modeled by a
second-order polynomial. In such cases, higher-order polynomials, such as cubic or quartic, may be necessary to capture
the true nature of the response surface.1 As Box andDraper point out: “There are situations where the second-ordermodel
is insufficient to describe the true nature of the system, especially when the response surface exhibits multiple inflection
points or complex curvatures. In such cases, fitting higher-order polynomial models provides a significantly better rep-
resentation of the experimental data and improves the accuracy of predictions”.24 Thus, higher-order models become
essential when the system under study exhibits complex interactions and nonlinearities that a second-order model can-
not capture. Such models provide a more accurate fit to the data, especially in processes where precision in optimization
is critical.1,25 Moreover, Dean et al. emphasized the practical importance of higher-order models, asserting that the use of
higher-order models is crucial in scenarios where the experimental region is highly nonlinear.26 These models improve
the ability to explore and optimize the response surface, leading to better decision-making in experimental design.26 These
insights collectively underscore the importance of higher-order models in accurately capturing and optimizing complex
response surfaces in experimental studies.
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12 HANSEN et al.

We are currently unaware of any approach that enables 𝐺-optimal design for higher-order RSMmodels. Our approach,
via Gloptipoly to calculate the 𝐺-score for a candidate design, solves this problem. In the next sections, we illustrate
proof-of-concept and explore the 𝐺-optimal designs for several higher-order model design scenarios.
5.1 Models with higher-order interaction terms

We first consider a 𝐾 = 2 experimental factor scenario with two run sizes, 𝑁 = 9, 10 under a second-order model with
interactions betweenmain-effects and quadratic terms (thus adding additional flexibility to the parabolic surface that can
be fit to the experimental data). Specifically, we assume that the true response surface should be modeled as

𝑓(𝑥1,𝑥2) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽3𝑥21 + 𝛽4𝑥22 + 𝛽5𝑥21𝑥2 + 𝛽6𝑥1𝑥22
and we seek a 𝐺-optimal design to support this model.
We also apply our approach to 𝐾 = 3 factor scenario with 𝑁 = 14, 15 runs under a similar assumed response surface

model:

𝑓(𝑥1,𝑥2,𝑥3) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3 + 𝛽23𝑥2𝑥3+ 𝛽4𝑥21 + 𝛽5𝑥22 + 𝛽6𝑥23 + 𝛽7𝑥1𝑥22 + 𝛽8𝑥21𝑥2 + 𝛽9𝑥2𝑥23.
Results will be discussed in subsequent sections.

5.2 Cubic and quartic models

We explore four design scenarios under the cubic model. First 𝐾 = 1 factor with run sizes 𝑁 = 5, 6 under model
𝑓(𝑥) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3.

And 𝐾 = 2 factor experiments with run sizes 𝑁 = 9, 10 under model
𝑓(𝑥1,𝑥2) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽3𝑥21 + 𝛽4𝑥22 + 𝛽5𝑥31 + 𝛽6𝑥32.

Lastly, we investigate two 𝐾 = 2 experimental factors with run sizes 𝑁 = 11, 12 under the quartic polynomial model
𝑓(𝑥1,𝑥2) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥21 + 𝛽4𝑥22 + 𝛽5𝑥31 + 𝛽6𝑥32 + 𝛽7𝑥41 + 𝛽8𝑥42.

5.3 Results

We ran NMS-Gloptipoly approach 𝑛run = 100 times on each design scenario. The distribution of run-times on our
machine is reported in Table 4. The 𝐾 = 3 scenarios show a significant increase in run time (i.e., by a factor of 10) over
the 𝐾 = 2 factor scenarios.
We now consider the best 𝐺-optimal designs found from the searches under the cubic model. In Figure 4 we visual-

ize the SPV surfaces for optimal designs produced for these same one-factor settings. The grid approximation points of
ref. [4] are presented as yellow dots with red outlines. In both cases, the max SPV is achieved when 𝑥 = 1, so the grid
approximation works just as well as Gloptipoly for the univariate case. Figure 5 contains plots of the 𝐺-optimal designs
and corresponding SPV surfaces for 𝐾 = 2, 𝑁 = 9, 10 design scenarios for (1) quadratic model, (2) quadratic model plus
interaction, and (3) cubic model quadratic for comparison. Designing for a second-order model with interaction alters
both the orientation of design points and the structure of the SPV surface of the 𝐺-optimal design in a nonnegligible way.
The SPV plots of the design under the cubic model show that SPV is a sixth-order polynomial. The structure of the SPV
surface for both nearly 𝐺 − optimal designs indicates that the 5𝐾 grid may be effective in helping generate approximate𝐺-optimal designs for cubic polynomial models, evidenced by the maximum SPV occurring close to one of the grid points
for each scenario.
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HANSEN et al. 13

TABLE 4 Table of run-times (minutes) for selected design-scenarios for higher-order models.
Model 𝑲 𝑵 Min Median Max

Higher-order interactions

2 9 25.05 25.28 25.84
2 10 23.78 23.86 25.13
3 14 192.92 194.42 194.68
3 15 192.72 193.88 194.68

Cubic

1 5 2.30 2.46 3.15
1 6 4.08 4.11 4.12
2 9 27.04 27.74 27.95
2 10 28.64 28.67 29.00

Quartic
2 11 21.49 21.77 22.03
2 12 24.54 24.56 24.84

F IGURE 4 𝑆𝑃𝑉-surfaces for the 5-run (left) and 6-run (right) best 𝐺-optimal designs found under the cubic model for 𝐾 = 1 factor. The
yellow points on these SPV surfaces represent the 5𝐾 grid used by several authors to generate 𝐺-optimal designs for the second-order model.
These graphics suggest that the 5𝐾 grid may also be effective for generating 𝐺-optimal designs for cubic models, evidenced by the maximum
SPV occurring at one of the grid points. SPV, scaled prediction variance.

We now consider the best 𝐺-optimal designs found from the searches under the quartic model. In Figure 6 we provide
the SPV plot for the most 𝐺-efficient design proposed by our algorithm for 𝐾 = 11, 12, respectively, with design-points
superimposed. Given the complexity of the SPV structure, an eighth-order polynomial is apparent. The symmetry in the
location of inflection points on these SPV surfaces suggests that the 5𝐾 gridmay be useful to approximate𝐺-optimal design
generation for fourth-order RSM models.

6 CONCLUSIONS

Research on 𝐺-optimal design has been quite active in the last two decades and our community continues to gener-
ate new insights into effectively solving this problem. To this point, generating 𝐺-optimal RSM models has remained a
challenging computational task. In this paper we addressed a core component of the difficulty of this problem – using
Gloptipoly, one can, without approximation, accurately compute the 𝐺-score for a candidate design under any poly-
nomial model. The use of Gloptipoly as a component of a search algorithm for 𝐺-optimal designs thus enables the
first nonapproximate computational method and opens new research possibilities for generating 𝐺-optimal designs for
higher-order RSM models.
We illustrated the correctness and efficacy of our approach on a wide set of design scenarios published in the literature.

We benchmarked the performance of the NMS algorithm and particle swarm optimization on a large set of previously
studied design scenarios. Nelder–Meadwith Gloptipoly performed reasonably well in finding highly efficient𝐺-optimal
designs for 𝐾 = 1, 2 factor scenarios, but its efficacy decreased as the dimension of the problem increased, and the only
solution is to run the algorithm more times in higher dimensional scenarios. Although more computationally expensive,
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14 HANSEN et al.

F IGURE 5 The yellow points on these graphs represent the 𝐺-optimal design points and illustrate how the cubic model affects design
geometry and structure of the SPV surface. (left column) SPV surface and the generated 𝐺-optimal design for (A) second-order model, (B)
second-order model with interaction term, and (C) third-order model. (right column) SPV surface and the generated 𝐺-optimal design for (A)
second-order model, (B) second-order model with interaction term, and (C) third-order model. SPV, scaled prediction variance.

the PSO/Gloptipoly approach was able to not only reproduce the current best 𝐺-optimal designs,7 but also in several
cases marginally improve on these designs in just 20 runs of the algorithm. These improvements were due in large part to
the correction of the error introduced by using the 5𝐾 grid approximation used in previous studies.4,6,7
Wealso studied several design scenarios under higher-ordermodels andwere able to generate highly𝐺-efficient designs.

This proof-of-concept opens new avenues for research on this problem. All designs generated in this study can be found
on the author’s Github site.
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HANSEN et al. 15

F IGURE 6 SPV surfaces for the quartic model in two-factors for 11 (left) and 12 (right) trials. There is no clear design-point symmetry for
either of these surfaces. SPV, scaled prediction variance.

The computational cost of our approach is somewhat expensive, which may be still tolerable for academic research but
perhaps not for practical applications. Currently, MATLAB is the only language that we found with an implementation of
Gloptipoly. Future research may include developing the algorithm in a compiled language in order to reduce runtime.
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