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Abstract

The reproducibility of scientific articles is central to the advance-

ment of science. Despite this importance, evaluating reproducibil-

ity remains challenging due to the scarcity of ground truth data.

Predictive models can address this limitation by streamlining the

tedious evaluation process. Typically, a paper’s reproducibility is

inferred based on the availability of artifacts such as code, data,

or supplemental information, often without extensive empirical

investigation. To address these issues, we utilized artifacts of papers

as fundamental units to develop a novel, dual-spectrum framework

that focuses on author-centric and external-agent perspectives. We

used the author-centric spectrum, followed by the external-agent

spectrum, to guide a structured, model-based approach to quan-

tify and assess reproducibility. We explored the interdependencies

between different factors influencing reproducibility and found

that linguistic features such as readability and lexical diversity are

strongly correlated with papers achieving the highest statuses on

both spectrums. Our work provides a model-driven pathway for

evaluating the reproducibility of scientific research.

CCS Concepts

· Computing methodologies→ Machine learning; Model devel-

opment and analysis; · Information systems → Information

retrieval; Data extraction and integration; · Applied comput-

ing → Digital libraries and archives.
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1 Introduction

The abundance of open-source libraries, version control frame-

works, and publicly-available, archived datasets has made it easier

than ever to ensure transparency in the scientific process. How-

ever, this increased attention on research reproducibility [16, 23]

has not necessarily driven the scholarly community to implement

more transparent measures to make their work fully reproducible.

Instead, an inverse phenomenon is observed: surveys indicate that

scientists often believe many scholarly articles are irreproducible

[4], a sentiment that spans multiple fields [12].

Given the existing perception, it is crucial to develop a data-

driven approach that can establish trust in the reproducibility of

scientific papers. The reproducibility of research papers is a com-

plex issue [3, 8]. For example, consider a computational paper that

researchers fail to reproduce despite the publicly available code and

data, possibly due to the unavailability of specific libraries used in

the original code. Such a paper should not be categorized alongside

those that made no effort to ensure reproducibility. Therefore, re-

producibility should be viewed as a spectrum rather than a binary

classification. By acknowledging varying degrees of reproducibility,

we can elevate trust across the board and help identify common fac-

tors that contribute to reproducible research. This refined approach

reduces the collective burden on conferences, journals, publishers,

and the research community at large.

The initial step in constructing a reproducibility spectrum is

collecting existing ground truth about signals that indicate repro-

ducible work. This can include meta-studies confirming the repro-

ducibility of existing research [31], citations where methodologies

have been re-implemented [22], and reproducibility challenges

hosted by premier conferences [2, 7, 18, 25]. While these serve as

proxy measures for reproducibility, establishing definitive ground

truth for the reproducibility of scholarly work is challenging and
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limited to a few sources. For example, conferences such as OOP-

SLA, PLDI, and ISSTA have conducted reproducibility reviews [5]

to formally evaluate software artifacts and data. The practice of

evaluating artifacts was first established at SIGMOD 2008 [6, 24],

and various sub-disciplines within the Association for Comput-

ing Machinery (ACM) have since adopted similar policies to audit

artifacts. Collecting signals from these efforts was fundamental

for establishing the ACM badging process. In this process, a paper

may receive badges such as Artifacts Available, Artifacts Evaluated-

Reusable, and Results Reproduced. This policy acknowledges the

researchers’ efforts and incentivizes reproducibility.

While efforts like ACM Badging encourage the creation of repro-

ducible research, the current system places a significant burden on

the committees that evaluate artifact availability and reproducibil-

ity. However, the specific procedures for awarding reproducibility

badges can vary across venues. Moreover, much of the literature

on estimating and understanding reproducibility has relied on tra-

ditional modeling [32] and cohort-based statistical analysis [26].

While valuable, these approaches cannot scale effectively ś assis-

tance of automated systems such as predictive models is needed.

In this paper, we present a predictive modeling study utilizing a

novel joint spectrum on reproducibility. This spectrum consists of

an author-centric framework (𝐴) and an external-agent framework

(𝐸). The author-centric framework identifies efforts made by au-

thors to enhance the transparency and accessibility of their papers

and is composed of three categories. The external-agent framework

characterizes the success of external reviewers’ efforts to reproduce

a paper and is composed of four categories.

In summary, our contributions are: First, we present a novel

approach to characterize reproducible research. Second, we analyze

various features extracted from the text and metadata of papers to

understand their relevance to reproducibility. Finally, we build an

interpretable model for predicting how reproducible a paper might

be. Unlike the current ad-hoc method of assigning subjective scores

by reviewers, our approach is more systematic and data-driven.

We acknowledge the ethical and moral implications of utilizing

a predictive model to assist in evaluating the quality and repro-

ducibility of research papers. However, our goal in this study is

to provide empirical evidence to support the use of such models

and to identify crucial aspects influencing a paper’s reproducibil-

ity assessment. We envision that the results of these models will

complement and support reviewers in navigating the landscape of

reproducible research rather than replacing human judgment. The

code, methods, and artifacts for our study are publicly available at

the following link: 1.

2 Background and Related work

Researchers from the University of Arizona [10, 11] analyzed data

on computer systems research in an attempt to measure and under-

stand reproducibility. Although these efforts didn’t generate a con-

clusive hypothesis, they were instrumental in initiating a process

to observe the willingness of computer science researchers to share

code and data. Examining the conflicting attitudes of researchers

towards reproducibility [4] provided insights into the frequency

of successful and unsuccessful replications at both individual and

1https://github.com/reproducibilityproject/NLRR/

disciplinary levels. The scholarly community acknowledged the

reproducibility crisis, and there has been momentum for initiatives

such as creating a manifesto on reproducibility [21] and estimating

reproducibility rates [9].

Reproducibility has been formalized and recognized by various

players involved in the scholarly publication process such as pub-

lishers, conferences, and peer reviewers. This recognition led to

the establishment of funding programs such as DARPA’s SCORE

(Systematizing Confidence in Open Research and Evidence), which

encourages researchers to develop assessment strategies to measure

replication and reproduction efforts that are central to the scientific

process. Additionally, many organizations introduced reproducibil-

ity checklists, most prominently ACM’s rollout of Artifact Review

and Badging 2 to address reproducibility and enhance research

integrity across computational disciplines.

Literature that aligns with our goals for measuring and estimat-

ing reproducibility includes terminology papers [12, 14, 15, 28],

statistical studies quantifying factors influencing reproducibility

[26, 33], and predictive modeling studies [27, 29, 30, 32].While these

studies set an appropriate foundation, they fall short in one or more

aspects to be considered conclusive in identifying reproducible

works preemptively. These limitations include:

(1) Lack of comprehensive methodology: Most quantitative

studies on reproducibility approach the analysis from a single

perspective, often relying on correlations, statistical tests, pre-

dictive models, or user surveys. Identifying the reproducibility

of a paper requires a comprehensive methodology capable of

detecting a wide range of signals.

(2) Potential impact on unseen data: Understanding the repro-

ducibility of scholarly works requires high standards of data

curation. Given the limited number of works verified as re-

producible, generalization becomes a challenge. It is crucial to

outline the broader impact and limitations of the quantitative

analysis on unseen data to validate the findings effectively.

(3) Optimal balance on subjective vs. objective attributes: Fac-

tors such as field of study, discipline, and venue significantly

influence the structure of scientific research and the method-

ologies used in experiments. It is essential to strike an optimal

balance between subjective and objective features when analyz-

ing the causes of reproducible outcomes to ensure that findings

about reproducibility are generalizable.

Given the significant challenges in gathering data on repro-

ducibility, especially in computational science, our current study

can serve as a primer for discussions on this topic. Building on

related works [1, 26, 32], our study provides a comprehensive mod-

eling approach to identify crucial aspects of papers that can predict

whether it would be reproducible.

3 Building the Dataset

Our goal is to create a dataset that can be quantitatively analyzed

in relation to artifacts and reproducibility. To achieve this, we col-

lected papers from the ACM Digital Library because it is a singular

comprehensive source with detailed information about the artifacts

and reproducibility of scholarly articles. The ACM introduced the

2https://www.acm.org/publications/policies/artifact-review-badging
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Artifact Reviewing and Badging policy, which assigns badges to in-

dicate when publications have been successfully reproduced. These

badges include:

(1) Artifacts Available: Assigned when papers include artifacts

that have been made permanently retrievable.

(2) Artifacts Evaluated and Functional or Artifacts Evaluated

and Reusable: Assigned when the artifacts have been reviewed

and audited.

(3) Results Reproduced: Given when the primary findings of the

publication have been validated and independently verified in a

later investigation by a person or group other than the authors

without the use of author-supplied artifacts.

3.1 Data Collection

Our data collection process involved the following steps:

(1) Using the ACM digital library advanced search endpoint 3 to

list all scholarly articles in the ACM full-text collection that

have received the Results Reproduced badge.

(2) Conducting separate searches using the same ACM digital li-

brary advanced search endpoint for articles with each of the

following badges: Artifacts Available, Artifacts Evaluated and

Functional, and Artifacts Evaluated and Reusable.

(3) Identifying the venues of articles with the “Results Reproducedž

badge, and collecting unbadged articles from the same venues

that were published in the same respective issue/year.

This resulted in an initial collection of just over three thousand

badged articles. To maintain relevance, we included only papers

published between 2016 and 2023, aligning with the timeframe

when the ACM Badging policy was implemented. By filtering the

samples based on full-text availability and publication date, we fi-

nalized a dataset of 2,659 articles. These articles were categorized as

either Artifacts Available, Artifacts Evaluated & Functional, Artifacts

Evaluated & Reusable, Results Reproduced, or Unbadged. Unbadged

refers to papers from the same venues and years as Results Repro-

duced papers that were manually collected and included because

the authors chose not to submit them for artifact & reproducibility

evaluation.

The distribution of badges and the overlap between categories

are illustrated in Fig. 1. Interestingly, many badged articles have

multiple badge combinations. Fig. 1 shows that articles with the

badgesArtifacts Available, andArtifacts Evaluated & Functional have

the largest intersection with 786 articles. In contrast, only 2 articles

have all the badges. Furthermore, most reproducible articles tend

to overlap with the Artifacts Available and Artifacts Evaluated &

Functional categories. Noticeably, the Unbadged set has the highest

unique category count, with 373 articles.

4 Reproducibility Spectrum

We introduce a joint spectrum for evaluating reproducibility in

scientific papers as illustrated in Fig. 2. This spectrum is a result of

a data-driven, iterative development process. Initially, our concept

of the reproducibility spectrum categorized works as reproducible

or non-reproducible. However, this simplistic approach failed to

capture the nuances of scientific papers, as highlighted in Fig. 1.

3https://dl.acm.org/search/advanced
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Figure 1: Visualization of badge category overlaps for the

scholarly articles in our dataset.
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Figure 2: Joint framework to assess reproducibility levels in

scientific papers.

Our data collection showed a much more complex landscape with

interesting sub-categories of papers. This process revealed the im-

portance of artifacts as a critical unit for assessing reproducibility.

We finally constructed a version of the spectrum that is composed

of an author-centric framework and an external agent framework.

The author-centric framework focuses on the quality and availabil-

ity of artifacts provided by the authors. It recognizes the varying

degrees of effort authors put into making their work reproducible.

The external-agent framework captures the external validation of

a paper’s reproducibility based on the available artifacts. By sep-

arating these aspects, we were able to represent the multifaceted

nature of reproducibility in scientific publications.

4.1 Author-Centric Framework

The author-centric framework broadly captures the varying degrees

of effort and commitment authors invest to facilitate reproducibility.

The labels within this framework includes Ai:
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• APWA: Papers without artifacts

• APUNX: Papers with unvalidated artifacts

• APAX Paperswith validated artifacts that are permanently archived

The key difference between APUNX and APAX is that APAX in-

cludes validation of the archived artifacts. While APUNX may in-

clude artifacts that are either archival or non-archival, the crucial

difference between it andAPAX is that they are not validated. There-

fore, papers with validated artifacts that are permanently archived

are considered the highest standard on our spectrum since they

represent papers where authors took the most proactive measures

to facilitate reproducibility evaluations.

We used the ACM badge (or the absence of one) to assign labels

in the author-centric framework as follows:

• 𝐴𝑃𝑊𝐴: For all unbadged papers.

• 𝐴𝑃𝑈𝑁𝑋 : For papers with either the Artifacts Available or Artifacts

Evaluated & Functional badge.

• 𝐴𝑃𝐴𝑋 : For papers with the Artifacts Evaluated & Reusable badge,

indicating the highest effort towards permanently archiving the

paper’s artifacts.

4.2 External Agent Framework

The external-agent framework presents the reproducibility evalu-

ation status of a paper based on the information available for an

independent team to assess and validate the original study’s find-

ings. This framework categorizes papers into the following units

𝐸𝑖 on the spectrum:

• ENR: Papers that cannot be reproduced

• EAR: Papers awaiting-reproducibility

• ERe: Reproduced papers

• ER: Reproducible papers

There are several points to notice. First, 𝐸𝑁𝑅 papers lack any

artifacts or supplemental information necessary for initiating re-

producibility evaluation. Second, papers that are classified as Repro-

duced 𝐸𝑅𝑒 or Reproducible 𝐸𝑅 have obtained their status through

voluntary submission of artifacts to an evaluation committee. There

is an important distinction between papers labeled 𝐸𝑅𝑒 and those

labeled 𝐸𝑅 , which is based on the archival nature of the artifacts

and the reproducibility status. If a paper has 𝐴𝑃𝐴𝑋 ∩ 𝐸𝑅𝑒 , then it is

considered 𝐸𝑅 . In contrast, if a paper has been reproduced by any

independent team, the assumption of its reproducibility status cap-

tured by 𝐸𝑅𝑒 is based on trust in the independent team’s evaluation.

In the external-agent framework, we assign labels as follows:

• 𝐸𝑁𝑅 : For all unbadged papers that cannot be reproduced due to

a lack of available artifacts.

• 𝐸𝐴𝑅 : For papers that have artifacts but that have not yet been

reproduced.

• 𝐸𝑅𝑒 : For Results Reproduced papers that do not have permanently

archived artifacts.

• 𝐸𝑅 : For papers that have both the Results Reproduced badge and

the Artifacts Evaluated & Reusable badge.

Moving toward the rightmost end of either spectrum reflects a

higher level of effort by the authors. At the same time, the ACM

badges have interesting intersections as shown in Fig. 1. Specifi-

cally, a paper with a “Results Reproducedž badge need not have the

artifacts available.

Table 1: Features with their respective categories.

Feature Category

Number of Algorithms (𝑋1) Structural

Number of Equations (𝑋2) Structural

Google Scholar citations (𝑋3) Scholarly

Availability of reproducibility checklist (𝑋4) Venue

Mandatory artifact submission for papers (𝑋5) Venue

Reproducibility Awards (𝑋6) Venue

Author Correspondence for Reproducibility (𝑋7) Venue

Mention of Zenodo Artifacts (𝑋8) Artifact

Mention of GitHub Code Repository (𝑋9) Artifact

Mention on Papers With Code GitHub Repository (𝑋10) Artifact

Mention on Papers With Code Datasets (𝑋11) Artifact

Mention on Papers With Code Methods (𝑋12) Artifact

Median Readability (𝑋13) Linguistic

Measure of lexical textual diversity (𝑋14) Linguistic

Availability of Funding source (𝑋15) Miscellaneous

Availability of Supplemental information (𝑋16) Miscellaneous

5 Pre-processing and Observations

Previous work [26] suggests including a wide range of both subjec-

tive and objective features to predict reproducibility, whereas the

deep learning model from [32] focuses exclusively on the represen-

tational power of full-text embeddings. We selected a combination

of Structural, Scholarly, Venue, Artifact, Linguistic, and Miscella-

neous features, as detailed in Table 1. The Structural, Scholarly,

and Linguistic features are numerical, whereas Venue and Miscella-

neous features are categorical.

The metadata for each paper was collected from the ACMDigital

Library website using a customized web scraper written in Python

using the packages Selenium4, and BeautifulSoup5. Additionally,

we gathered complete metadata for all articles in our dataset using

Allen AI’s Academic Graph API (1.0)6. We utilized a similar web

scraper to gather citations for each paper from Google Scholar,

covering citations up to the end of 2023. To gather Miscellaneous

and Venue features, we examined the individual article webpages.

Miscellaneous features include details about funding and additional

supplemental information such as videos, slides, and screen record-

ings. The Structural and Linguistic features were derived using the

full texts of the article, which were processed by passing the PDFs

through Allen AI’s Science Parse7.

“Readabilityž is a linguistic concept that measures how easily a

reader can understand a written text. It considers the complexity

of vocabulary, sentence structures, and overall text composition.

The Median Readability was calculated in two steps. First, we used

Python’s Textstat 8 package to compute various readability metrics,

including the Flesch Reading Ease Score, SMOG Index, Coleman-

Liau Index, Automated Readability Index, Dale-Chall Readability

Score, Linsear Write Formula, and Fog Scale (Gunning FOG For-

mula). Then, we calculated a weighted normalized score (ranging

from 0 to 1) using the hypothetical minimum and maximum val-

ues for all these measures and took the median. Lexical diversity,

4https://pypi.org/project/selenium/
5https://pypi.org/project/beautifulsoup4/
6https://api.semanticscholar.org/api-docs/graph
7https://pypi.org/project/science-parse-api/
8https://pypi.org/project/textstat/
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which reflects the variety and richness of the vocabulary used in a

text, was quantified using the Measure of Textual Lexical Diversity

(MTLD) [20]. As with readability, we employed the Textstat package

to calculate this measure across the full text of each document.

Feature Statistic p-value

Median Readability 0.952613 1.565888e-28

Number of Algorithms 0.554016 1.731140e-63

Number of Equations 0.244451 8.599141e-74

Google Scholar citations 0.100468 2.239210e-77

Measure of lexical textual diversity 0.855591 4.103254e-44

Table 2: Shapiro-Wilk Test for assessing the normality of

numerical features in scholarly papers.

We observed several interesting patterns building our dataset.

First, 1.76% of articles have a datasetmentioned on PapersWithCode,

and 1.01% reference a method on PapersWithCode. Additionally,

9.43% of articles have an official GitHub repository linked to the

paper on PapersWithCode. This information was gathered by cross-

referencing Arxiv IDs and paper titles with the PapersWithCode

API 9. Further textual analysis revealed that 41.03% of the articles

mention a GitHub repository in the full text (excluding the “Ref-

erencesž section). We also found that 16% of the articles reference

Zenodo in the full text, pointing to artifacts related to the study.

Moreover, 32.49% of the articles provide supplemental informa-

tion such as code, audio, or video files on the ACM Digital Library.

Finally, 50.1% of the articles mention funding sources, with the

National Science Foundation, Engineering and Physical Sciences

Research Council, and Deutsche Forschungsgemeinschaft being the

most frequently cited agencies.

Feature Statistic p-value

Median Readability 4.990988 6.862850e-03

Number of Algorithms 36.773371 1.764600e-16

Number of Equations 5.258889 5.255375e-03

Google Scholar citations 1.714010 1.803412e-01

Measure of lexical textual diversity 1.290552 2.752913e-01

Table 3: Levene’s Test for Homogeneity of Variances grouped

by the author-centric framework.

6 Statistical tests

The foundation of our predictive modeling study is based on a sta-

tistical analysis of the numerical featuresX outlined in Table 1. This

analysis involved conducting tests for normalization and variance

of groups using the Shapiro-Wilk test and Levene’s test, followed

by a significance test using the Kruskal-Wallis test. Together, these

tests ensure the statistical robustness of our feature set by verifying

the assumptions of normality and homogeneity of variance, which

are important for selecting appropriate predictive models. Addi-

tionally, these tests assisted us in discerning significant differences

in features observed in both frameworks across different groups

of scholarly papers. Finally, these tests guided our choices to pick

predictive models that are well-suited to the data distribution.

9https://paperswithcode.com/api/v1/docs/

Feature Statistic p-value

Median Readability 4.153057 6.039707e-03

Number of Algorithms 29.537040 8.830013e-19

Number of Equations 6.959335 1.158253e-04

Google Scholar citations 4.195924 5.690491e-03

Measure of lexical textual diversity 0.283903 8.370575e-01

Table 4: Levene’s Test for Homogeneity of Variances grouped

by the external-agent framework.

The results of the Shapiro-Wilk test for assessing the normality

of distributions and Levene’s test for evaluating variance across

groups are presented in Tables 2 to 4. The Shapiro-Wilk test results

indicate that the 𝑝 values from Table 2 are < 0.05, and we reject

the null hypothesis that these features are normally distributed.

This is an important observation to guide our choices in selecting

predictive models such as Random Forest and Decision Trees. Tree-

based models perform well in utilizing non-normal features with

inequalities in variance when predicting the target variable. This

can be evidenced from our results when comparing models built

with the feature setX both in Table 7, and Table 8. Additionally, this

suggests that parametric models like Multi-layer Perceptrons or

Logistic Regression would only be advantageous if feature scaling

is applied (Xscaled) to normalize the features.

Feature Statistic p-value

Median Readability 693.261011 2.885920e-151

Number of Algorithms 43.248067 4.062576e-10

Number of Equations 15.267781 4.837751e-04

Google Scholar citations 35.751811 1.724221e-08

Measure of lexical textual diversity 94.078257 3.725342e-21

Table 5: Kruskal-Wallis test on the author-centric framework.

The results from Levene’s test for homogeneity of variances in

the author-centric framework Table 3, and the external-agent frame-

work Table 4 indicate that all features, except lexical diversity, show

statistically significant differences in the non-homogenous nature

of features across groups. The significant results from Levene’s test

in both frameworks for several features (particularly readability,

algorithms, and equations) suggest that these features differ not just

in their average values but also in their variability among different

categories of papers. This could have implications for how these

features influence the artifact and reproducibility assessments in

scholarly papers in our dataset.

Feature Statistic p-value

Median Readability 697.771459 6.386612e-151

Number of Algorithms 54.607980 8.324174e-12

Number of Equations 28.063838 3.521685e-06

Google Scholar citations 142.053160 1.363764e-30

Measure of lexical textual diversity 108.002775 2.952022e-23

Table 6: Kruskal-Wallis test on external-agent framework.

Weused significance tests such as the Kruskal-Wallis test tomake

statistical inferences about the variability of feature values across
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papers grouped by the author-centric and external-agent frame-

works. Since our numerical features are not normally distributed, it

is suitable to use a non-parametric test like Kruskal-Wallis. The re-

sults from Table 5 and Table 6 indicate significant differences for all

the numerical features across groups of papers in both frameworks.

The low 𝑝 values (< 0.05) suggest that these features are valuable

for predictive models, as their variability can help distinguish pa-

pers from different parts of the spectrum. In summary, these results

support our intuition that structural, linguistic, and scholarly fea-

tures are useful for predicting artifact quality and reproducibility

assessment status.

7 Predictive Models

Our goal is to build interpretable predictive models to estimate

the reproducibility of scientific research. We develop two distinct

multi-class predictive models, 𝜙𝑎𝑢𝑡ℎ𝑜𝑟 and 𝜙𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 , to predict

the label (e.g., 𝐸𝑅 ) of a paper in the author-centric and external-

agent frameworks.We experimented with several predictive models.

The results from the Shapiro test in Table 2 indicated that tree-

based models such as Gradient Boosting, AdaBoost, Random Forest,

and Decision Tree algorithms were more suitable. Non-parametric

models such as Logistic Regression and Neural Networks were also

used after applying a simple feature scaling technique using the

mean and standard deviation.

The remarkable effectiveness of feature representations from

large language model embeddings cannot be overstated. By using

document representations from text-embedding models such as

Davinci from OpenAI, and SPECTER and Longformer from AllenAI,

we can capture the full semantic context of scholarly texts. Since

scholarly documents often exceed the maximum sequence length

allowed by these models, we split the documents and took the

average of the embeddings as the final representation. We used two

models for these representations: 1. A VanillaNN, which is a linear

classifier, and 2. An MLP (multi-layer perceptron) with a hidden

layer.

7.1 Results for Author-Centric Framework

We evaluate the effectiveness of our predictive models for the

author-centric framework labels using classification metrics such

as accuracy and F1 scores. The results are presented in Table 7. As

mentioned in Section 4, the 𝜙𝑎𝑢𝑡ℎ𝑜𝑟 models predict one of three

labels: 𝐴𝑃𝑊𝐴 (papers without artifacts), 𝐴𝑃𝑈𝑁𝑋 (papers with ar-

tifacts that aren’t permanently archived), and 𝐴𝑃𝐴𝑋 (papers with

artifacts that are permanently archived). While it might seem that

extracting artifact locations from paper texts would make a pre-

dictive model unnecessary, our experiments show that features

designed to extract such information are not the best predictors.

This highlights that predicting artifact availability or quality is a

more challenging task than it appears.

The tree-based models, including Gradient Boosting, AdaBoost,

Random Forest, andDecision Tree, demonstrate strong performance

on the original feature set X, with accuracy scores ranging from

78% to 83% and macro-averaged F1 scores between 66 % and 74 %.

These results demonstrate the effectiveness of machine learning

algorithms in distinguishing between papers with different levels of

artifact availability, which is a critical aspect of reproducibility. In

particular, the high F1 scores for 𝐴𝑃𝑈𝑁𝑋 and 𝐴𝑃𝑊𝐴 indicate that

these models are able to accurately differentiate between papers

with andwithout permanently archived artifacts. On the other hand,

non-parametric models like Logistic Regression and VanillaNN

applied to the scaled feature set Xscaled show relatively weaker

performance, which may be attributed to the loss of information

during feature scaling. Finally, models leveraging text embeddings

show promising results, particularly the MLP model with the ADA-

002 embeddings, which achieves an accuracy score of 85% and a

macro-averaged F1 score of 77%.

7.2 Results for External-Agent Framework

The results for models predicting the external agent framework la-

bels are presented in Table 8. As mentioned in Section 4, the models

here predict one of four labels: 𝐸𝑁𝑅 (papers that cannot be re-

produced), 𝐸𝐴𝑅 (papers awaiting reproducibility), 𝐸𝑅𝑒 (reproduced

papers), and 𝐸𝑅 (reproducible papers). Overall, the best-performing

model is anMLP that uses Longformer embeddings, which achieved

the highest accuracy of 79%, along with comparably high F1 overall

scores, and individual class-specific scores. However, parametric

models that used scaled features Xscaled demonstrated minimal

predictive advantage of representational learning models.

The tree-based models, such as Gradient Boosting, Random For-

est, and Decision Tree, continued to perform well with accuracy

scores ranging from 69% to 75% and macro-averaged F1 scores

between 67% and 72%. Although these models are effective in dis-

tinguishing between papers that cannot be reproduced (𝐸𝑁𝑅 ) and

papers awaiting reproducibility (𝐸𝐴𝑅 ), improvements are needed

in predicting reproduced 𝐸𝑅𝑒 and reproducible 𝐸𝑅 papers. The key

takeaway from Table 8 is the superior performance of models us-

ing embeddings (Xemb), particularly those based on Longformer

and ADA-002, compared to both basic models (X) and those using

scaled features (Xscaled). Although this suggests that the semantic

understanding provided by these embeddings is crucial in discern-

ing subtle differences in paper statuses related to reproducibility,

further investigation about reliability and robustness in predictions

is necessary to fully understand model confidence (Section 7.4).

7.3 Important features for 𝜙𝑎𝑢𝑡ℎ𝑜𝑟 and 𝜙𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
One of the contributions of this study is the identification of fea-

tures that correlate well with the reproducibility of a paper. As

shown in Table 7 and Table 8, the Random Forest model consis-

tently performs best in terms of both accuracy and overall F1 score

across both frameworks. As a result, we selected this model for fur-

ther analysis in the feature importance study. We collected the Gini

impurity importance for all features in the Random Forest model

(in both frameworks) and ranked them in Fig. 3. Linguistic mea-

sures such as readability and lexical diversity strongly influence the

predictive outcomes of the models. Intuitively, clarity in language

and thoroughness in explaining concepts (modeled through read-

ability and lexical diversity features) should neither be correlated

with the quality of artifacts nor should it affect the reproducibility

status of a paper. However, the influence of these features on the

predictive models, especially Random Forest, suggests otherwise.

This surprising finding has also been observed in previous studies

[13, 17, 19].
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Model 𝐴𝑐𝑐 𝐹1 (𝐴𝑃𝑊𝐴 ) 𝐹1 (𝐴𝑃𝑈𝑁𝑋 ) 𝐹1 (𝐴𝑃𝐴𝑋 ) 𝐹1 (𝑚𝑎𝑐𝑟𝑜𝑎𝑣𝑔) 𝐹1 (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑎𝑣𝑔)

X

Gradient Boosting 0.83 0.82 0.89 0.52 0.74 0.82

AdaBoost 0.78 0.77 0.86 0.34 0.66 0.76

Random Forest 0.83 0.75 0.90 0.57 0.74 0.82

Decision Tree 0.79 0.74 0.87 0.53 0.71 0.79

Xscaled

Logistic Regression 0.71 0.14 0.84 0.37 0.45 0.66

VanillaNN 0.78 0.66 0.86 0.54 0.69 0.78

Xemb

SimpleNN - Xemb(ADA-002) 0.80 0.76 0.86 0.36 0.67 0.77

SimpleNN - Xemb(SPECTER) 0.68 0.32 0.83 0.26 0.47 0.65

SimpleNN - Xemb(Longformer) 0.83 0.97 0.89 0.08 0.65 0.67

MLP - Xemb(ADA-002) 0.81 0.83 0.88 0.51 0.74 0.81

MLP - Xemb(SPECTER) 0.68 0.29 0.82 0.33 0.48 0.66

MLP - Xemb(Longformer) 0.85 0.97 0.90 0.43 0.77 0.83

Table 7: Evaluation metrics for models predicting the author-centric framework labels.

Model 𝐴𝑐𝑐 𝐹1 (𝐸𝑁𝑅 ) 𝐹1 (𝐸𝐴𝑅 ) 𝐹1 (𝐸𝑅𝑒 ) 𝐹1 (𝐸𝑅 ) 𝐹1 (𝑚𝑎𝑐𝑟𝑜𝑎𝑣𝑔) 𝐹1 (𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑎𝑣𝑔)

X

Gradient Boosting 0.73 0.81 0.78 0.60 0.66 0.71 0.73

AdaBoost 0.57 0.72 0.59 0.24 0.60 0.54 0.59

Random Forest 0.75 0.74 0.81 0.63 0.68 0.72 0.75

Decision Tree 0.69 0.77 0.76 0.57 0.58 0.67 0.69

Xscaled

Logistic Regression 0.55 0.07 0.66 0.15 0.53 0.35 0.50

VanillaNN 0.70 0.69 0.78 0.60 0.59 0.66 0.70

Xemb

SimpleNN - Xemb(ADA-002) 0.75 0.79 0.81 0.44 0.68 0.68 0.74

SimpleNN - Xemb(SPECTER) 0.57 0.30 0.70 0.38 0.54 0.48 0.57

SimpleNN - Xemb(Longformer) 0.73 0.97 0.77 0.13 0.59 0.62 0.70

MLP - Xemb(ADA-002) 0.74 0.83 0.81 0.52 0.63 0.70 0.74

MLP - Xemb(SPECTER) 0.54 0.35 0.68 0.40 0.47 0.47 0.55

MLP - Xemb(Longformer) 0.79 0.97 0.82 0.60 0.70 0.77 0.79

Table 8: Evaluation metrics for models predicting the external agent labels.

Among the top five features, we also observe the importance of

citations and other venue-based features in both models. Citations

act as a latent variable connecting a scholarly paper’s impact and

credibility. Highly cited papers might be considered more repro-

ducible due to peer validation, but results from [32] suggest there

is more room for introspection. The justification for having venue-

based features, such as Reproducibility Awards, is to assess if such

a variable serves the purpose of motivating authors to put more

effort into making the artifacts available and consequently volun-

tarily opting in for reproducibility evaluation. Other categorical

features that measure connections to references of supplemental

information either within a paper or external sites such as Zen-

odo, Github, and PapersWithCode appear to have relatively lower

rankings. Direct references to repositories where code and artifacts

are stored are expected to be significant, given their role in facili-

tating artifact evaluation and reproducibility. However, the lower

Gini importance suggests that additional factors are influencing

the outcomes. Further research and experimentation are needed to

uncover more latent variables within both frameworks.

7.4 Model confidence for 𝜙𝑎𝑢𝑡ℎ𝑜𝑟 and 𝜙𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
Understanding the confidence of predictive models is critical for

establishing reliability. The confidence calibration curves for our

models in are shown in Figs. 4 and 5. The bigger plots on the left

show model confidence curves with mean predicted probabilities

𝑝𝑘 =
1

𝑛𝑘

∑𝑛𝑘
𝑖=1 𝑝𝑖𝑘 on the 𝑥 axis, and fraction of positives observed

through an indicator function I(𝑦𝑡𝑒𝑠𝑡,𝑖 = 𝑘) on the y-axis, which

evaluates whether the predicted category 𝑘 aligns with the actual

category of each paper. In other words, these plots visualize the frac-

tion of papers correctly identifiedwithin each category as a function

of the predicted probabilities, allowing us to assess the calibration

of the models across different categories of papers. The smaller

plots on the right side of the confidence curves are histograms that

show the overall distribution of predictive probabilities for each

category of papers. These plots are useful for understanding the

distribution of confidence the models have in their predictions.

Fig. 4 suggests that in the author-centric framework, a Random

Forest model is reliable only when it predicts if papers have perma-

nently archived artifacts. Also, the mean predicted probabilities in

the range 0.2ś0.6 suggest it is not confident in predicting 𝐴𝑃𝑊𝐴 , or
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Figure 3: Most important features for predicting labels in the author-centric, and external-agent frameworks.
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Figure 4: Confidence calibration of 𝜙author Random Forest model, author-centric framework (left) and 𝜙external Random Forest

model, external-agent centric framework (right).

𝐴𝑃𝑈𝑁𝑋 . The Longformermodel (MLPwith longformer, Fig. 5) shows

a weakness in reliability compared to the Random Forest model.

It shows consistent under- or overconfidence across the author-

centric labels, especially at higher probabilities for 𝐴𝑃𝑊𝐴 . Most

importantly, Fig. 5 suggests that despite its effectiveness in evalu-

ation metrics, the Longformer model is less effective at assessing

papers without artifacts, potentially due to a lack of distinguishing

features in the embeddings.

In the external-agent framework, for papers that cannot be re-

produced (𝐸𝑁𝑅 ), we notice that Longformer model (Fig. 5) is ex-

tremely under confident, predicting lower probabilities than the

actual outcomes. Additionally, the confidence of the Longformer,

when predicting papers awaiting reproducibility (𝐸𝐴𝑅 ), or Repro-

duced (𝐸𝑅𝑒 ), or Reproducible (𝐸𝑅 ) papers, is variable, especially at

higher probabilities, suggesting slight inconsistencies in predictive

robustness, and reliability. The Random Forest model, on the other

hand (Fig. 4) shows a better alignment in predictive probabilities

against the fraction of positives for 𝐸𝑁𝑅 , 𝐸𝐴𝑅 , 𝐸𝑅𝑒 , and 𝐸𝑅 . This

suggests the Random Forest model is better when compared to an

MLP with Longformer representations, specifically when we talk

about reliability, robustness, and consistency of the labels predicted

across both frameworks. The histograms corroborate the reliability

curves, indicating that the Random forest model not only predicts

with high confidence but also aligns these predictions closely with
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Figure 5: Confidence calibration of 𝜙author Longformer-MLP model, author-centric framework (left) and 𝜙external Longformer-

MLP model, external-agent centric framework (right).

the actual outcomes, which is critical for downstream applications

using predictive models for analyzing reproducibility.

8 Conclusion & Future Work

We define a spectrum to assess the reproducibility of scientific

papers, collect a new dataset, and establish a framework for au-

tomatic prediction of the reproducibility of scientific papers. Our

work presents a thorough analysis of predictive models that in-

clude feature importance tests and confidence calibration curves.

We draw two surprising conclusions: 1. Linguistic features such

as readability and lexical diversity are strong predictors for both

the quality of artifacts mentioned in a paper and their reproducibil-

ity status, and 2. Neural nets built on text embeddings from large

language models are accurate but not robust.

This work can be improved and extended in various ways. The

predictive models can be improved, and the Neural nets can be

made more robust. The unreasonable effectiveness of linguistic fea-

tures can be investigated. Using a model or algorithmically-driven

intelligent system to reward “reproduciblež research practices, how-

ever, can be problematic, and we must have foresight in developing

an approach toward quantifying reproducibility to avoid potential

ethical problems. For example, suppose a model or system finds

that the language of a paper positively affects its likelihood to be

reproducible. It may thus penalize research simply because of the

language in which the paper is written. Similarly, a model or system

could identify institutions it associates with more reproducible re-

sults. Then, papers submitted from that institution might be labeled

by the model as reproducible, without considering their content.

Certainly, these are not outcomes we would expect or desire of

such an algorithm or model.

Code and data artifacts are critical for reproducibility evaluation,

and papers without artifacts and papers that cannot be reproduced

represent a sizeable portion of scientific literature. While it can be

argued that features such as the Number of Algorithms, Equations,

and Reproducibility checklists are aligned more toward ACM’s

Badging policy, the foundational principles of reproducibility are

universal and not exclusive to ACM. The structure of computa-

tional science adopted by most researchers involves artifacts. These

artifacts, when made available, enable other researchers to verify,

build upon, and extend the original work. This process of verifi-

cation and extension, facilitated by accessible artifacts, creates a

pathway for more generalizable findings. Utilizing our spectrum

through the author-centric and external-agent framework for a

larger multi-disciplinary study will offer valuable insights into the

broader landscape of scientific research reproducibility.

Limitations: Generalizing the findings of our study to other

disciplines is both data-intensive and challenging. While it is true

that the composition of the ACM dataset and predictive modeling

experiments cater to a specific category of computational science

papers, the heuristics used to create the joint spectrum for repro-

ducibility and the catalog of experiments we presented show a

tangible pathway for expanding the study across other scientific

disciplines. Despite the limitations, our work offers robust findings

across the experiments, affirming the importance of “readability"

for reproducibility.
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