THE LOCAL-GLOBAL CONJECTURE FOR APOLLONIAN CIRCLE PACKINGS IS
FALSE
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ABSTRACT. In a primitive integral Apollonian circle packing, the curvatures that appear must fall into one of
six or eight residue classes modulo 24. The local-global conjecture states that every sufficiently large integer
in one of these residue classes will appear as a curvature in the packing. We prove that this conjecture is false
for many packings, by proving that certain quadratic and quartic families are missed. The new obstructions
are a property of the thin Apollonian group (and not its Zariski closure), and are a result of quadratic
and quartic reciprocity, reminiscent of a Brauer-Manin obstruction. Based on computational evidence, we
formulate a new conjecture.

CONTENTS
0. Authors’ note 1
1. Introduction 1
2. Precise statement of the results 4
3. Residue classes and quadratic forms 6
4. Quadratic obstructions 8
5.  Quartic obstructions 11
6. Computations 16
Appendix A. Additional tables and figures 17
References 19

0. AUTHORS’ NOTE

The published version of this article differs slightly from this version. A few proofs, minor results, tables,
and figures were either shortened or removed for publication. In particular, a few labelled statements in this
version are not present. Any such differences are noted in parentheticals, and generally labelled with capital
letters (2.A) instead of numbers (2.6).

1. INTRODUCTION

Apollonian circle packings (Figure 1) have served as a quintessential example in the study of thin groups,
alongside problems such as Zaremba’s conjecture for continued fractions (see [Kon13]). The central conjecture
is that “thin orbits” in Z, such as orbits of a thin group like the Apollonian group (defined below), satisfy a
local-global property, namely that they are subject to certain congruence restrictions (local), but otherwise
should admit all sufficiently large integers (global). The Apollonian local-global conjecture is due to Graham-
Lagarias-Mallows-Wilks-Yan [GLM*03] and Fuchs-Sanden [FS11]. Existing lower bounds for the number of
integers appearing as curvatures rely on analytic methods, quadratic forms, and the spectral theory of graphs.
This has culminated in the theorem of Bourgain and Kontorovich that amongst the admissible curvatures
for an Apollonian circle packing (those values not obstructed by congruence conditions), a set of density one
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does appear [BK14]. In this paper, we demonstrate that, for infinitely many (and perhaps most, in a suitable
sense) Apollonian circle packings, the local-global conjecture is nevertheless false.

The new obstruction rules out certain power families (such as n?) as curvatures in certain packings. It
has its source in quadratic and quartic reciprocity, making it reminiscent of a Brauer-Manin obstruction.
However, it is strictly a phenomenon of the thin group; its Zariski closure has no such obstruction.

1.1. Apollonian circle packings. A theorem often attributed to Apollonius of Perga states that, given
three mutually tangent circles in the plane, there are exactly two ways to draw a fourth circle tangent to the
first three. Starting with three such circles, we can add in the two solutions of Apollonius (sometimes called
Soddy circles after an ode by the famous chemist), obtaining five. New triples appear, and by continuing
this process, one obtains a fractal called an Apollonian circle packing (Figure 1).

F1cure 1. Circles of curvature < 15000 in the Apollonian circle packing corresponding to
(—23,48,49,52). The local-global conjecture is false for every residue class modulo 24 in this
packing.



Any solution to Apollonius’ problem produces four mutually tangent circles. A Descartes quadruple is a
quadruple of four real numbers (a, b, ¢, d) satisfying the Descartes equation (a+b+c+d)? = 2(a®+b*+c*+d?),
a+b+c+d > 0. Given any Descartes quadruple, there exist four mutually tangent circles in the plane
with those curvatures (straight lines are included as circles of curvature zero, and a negative curvatures
represents a swap of orientation, placing the point at infinity in the interior). In particular, a Descartes
quadruple generates a unique Apollonian circle packing up to rigid motions (whereas an Apollonian circle
packing contains many Descartes quadruples). For background, see [GLM™03].

A simple but remarkable consequence of the Descartes equation is that if a, b, ¢, d € Z, then all curvatures
in the packing are integral. Call such a configuration, and the packing it generates, integral, and if we
furthermore have ged(a, b, ¢,d) = 1, call both primitive. We frequently describe packings by the quadruple
containing the four smallest curvatures, called the root quadruple.

1.2. The set of curvatures of an Apollonian circle packing. For the rest of this paper, A will denote
a primitive Apollonian circle packing. The study of the curvatures in A was first addressed in [GLM™'03,
Section 6] as the “Strong Density Conjecture.” Later revised by Fuchs and Sanden in [FS11], it has come to
be known as the “local-global conjecture” or “local-global principle.” Call a positive curvature ¢ missing in
A if curvatures equivalent to ¢ (mod 24) appear in A but ¢ does not.

Conjecture 1.1 ([GLM103, FS11]). The number of missing curvatures in A is finite.

As evidence toward the conjecture, the Hausdorff dimension of the Apollonian fractal dictates that in
primitive packings, multiplicities increase as curvatures increase (see [FS11] for data). The current best
known result toward the conjecture is due to Bourgain and Kontorovich.

Theorem 1.2 ([BK14]). The number of missing curvatures up to N is at most O(N'*=") for some effectively
computable n > 0.

In this paper, we prove that Conjecture 1.1 is false for many packings.

Theorem 1.3. There exist infinitely many primitive Apollonian circle packings for which the number of
missing curvatures up to N is Q(V'N). In particular, the local-global conjecture is false for these packings.

More precisely (Theorem 2.4), certain quadratic and quartic families of curvatures (of the form ux? and
uz? for a fixed integer u) are missing from some packings.

While Conjecture 1.1 is false in general, it may still hold for some packings. Otherwise, we can account
for the quadratic and quartic obstructions, and ask if the remaining set of missing curvatures is now finite.

Definition 1.4. Define the sporadic set S4 to be the set of missing curvatures that do not lie in one of the
quadratic or quartic obstruction classes described in Theorem 2.4.

We propose a replacement for Conjecture 1.1.
Conjecture 1.5. The set S4 is finite.

Using C and PARI/GP [PAR23], we computed the sporadic set intersected with [1, N] for various packings
A and bounds N in the range [10'°,102] (see GitHub repositories [Ric23a, Ric23b] and Section 6). The data
appears to support Conjecture 1.5.

1.3. The method of proof. To illustrate the method, we provide an example theorem.

Theorem 1.6. The Apollonian circle packing A generated by the quadruple (—3,5,8,8) has no square
curvatures.

Proof. Fix C € A of curvature n. All curvatures in A are 0,1 (mod 4) by the congruence obstruction
classification in Proposition 2.1. It is well-known that the curvatures of the family of circles tangent to
C are the values properly represented (i.e. ged(x,y) = 1) by a translated quadratic form fe(z,y) — n of
discriminant —4n? (Section 3.2). Modulo n, the form fc becomes degenerate, being equivalent to Ax? for
some coefficient A. Since the numerator of the Kronecker symbol (5) is invariant up to multiplication by
squares and translation by n, the invertible values of f¢ reside in a single multiplicative coset of the squares
(more detail is provided in Proposition 4.1). We can therefore define the symbol x2(C) to be the unique

non-zero value of the Kronecker symbol (%) as ¢ ranges over the curvatures of the circles tangent to C.
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Let C1,C2 € A be tangent, having non-zero coprime curvatures a and b respectively. Using quadratic
reciprocity of the Kronecker symbol,
a b
axa(@) = (3) (=) =1
x2(Cix2(C2) = (7 ) | -
In particular, x2(C1) = x2(C2).

It can be shown that any two circles in A are connected by a path of consecutively coprime curvatures
(Corollary 4.7). Therefore, x2(C) is independent of the choice of circle C € A, and we have defined x2(A).
Using the root quadruple, we compute

8
e = (3) =1

We conclude that if there exists a circle C of square curvature in A, it would give x2(.A) = 1, a contradiction.
Therefore there do not exist square curvatures in A. O

For general quadratic obstructions, we must modify the definition of x2(C) for technical reasons. The
quartic obstructions are not dissimilar in spirit: instead of studying the quadratic form of tangent curvatures,
we study the associated fractional ideal of Z[i], a perspective espoused in [Stal8b].

1.4. Reciprocity obstructions in thin groups. Call the quadratic and quartic obstructions found in this
paper reciprocity obstructions. These are a feature of the orbit of the Apollonian group (i.e. all Descartes
quadruples in a fixed packing), and not the orbit of the larger Zariski closure, which is an orthogonal group
of transformations preserving the Descartes equation (the Zariski closure was found in [Fucl1]). Indeed, the
super-Apollonian group lies between both groups, and an orbit contains all primitive integral Apollonian
circle packings (see [GLM™06]), which contain all integers. Sarnak also remarked on the lack of a spin group
obstruction for the Descartes form in [Sarll, p. 301-302].

In the more general setting of thin groups, some orbits may not have reciprocity obstructions, or even
congruence obstructions. For example, in [Kon13], it is shown that there are no congruence obstructions for
Zaremba’s conjecture. Furthermore, in [Kon19], it is shown that the local-global conjecture does hold for
Soddy sphere packings. Despite this, one expects other instances of thin groups or semigroups to produce
reciprocity obstructions; another example is studied in the follow-up paper [RS24].

Acknowledgements. The authors are grateful to the Department of Mathematics at the University of
Colorado Boulder for sponsoring the Research Experience for Undergraduates and Graduates in Summer
2023, which led to this project. (These obstructions were first observed in the context of another problem;
see Corollary 2.7.) We are also grateful to Alex Kontorovich, Peter Sarnak, Richard Evan Schwartz and the
anonymous reviewers for feedback on an earlier version of this paper, and to Arjun Gandhi, Ilyas Salhi, and
Matthew Litman.

2. PRECISE STATEMENT OF THE RESULTS

Proposition 2.1. Let R(A) be the set of residues modulo 24 of the curvatures in A. Then R(A) is one of
six possible sets, labelled by a type as follows:

Type R(A)
6,1) 0,1,4,9,12,16
(6,5) 0,5,8,12,20, 21

(6,13) | 0,4,12,13,16,21
(6,17) 0,8,9,12,17,20
(8,7) | 3,6,7,10,15,18,19,22
(8,11) | 2,3,6,11,14, 15, 18, 23

The set R(.A) is called the admissible set of the packing. The type (x, k) denotes that R(.A) has cardinality
x, and the smallest positive residue in R(A) coprime’ to 24 is k.

11t is helpful later to have an invertible residue on hand, e.g. proof of Proposition 4.10.
4



Definition 2.2. Let Sy, := {und :n € Z}, u,d > 0. We say that the set Sy, forms a reciprocity obstruction
to A if infinitely many elements of Sy, are admissible in A modulo 24, and yet no element of Sg, appears
as a curvature in A. If d = 2, we call it a quadratic obstruction, and if d = 4, it is a quartic obstruction.

It is clear that if there exists a reciprocity obstruction for A, then the local-global conjecture 1.1 cannot
hold for A, and more specifically, for any of the admissible residue classes intersecting S ..
We will show that there exists a function

X2 : {circles in A} — {£1},
which is constant across A. In particular, this gives a well defined value for y2(A). Furthermore, there exists
a function
X4 : {circles in a packing A of type (6,1) or (6,17)} — {1,¢,—1,—i},
which satisfies x4(C)? = x2(C), and is also constant across a packing, defining y4(A).
The value of xs determines the quadratic obstructions, and x4 the quartic ones. Full definitions come in
Sections 4.1 and 5.2, but in the simplest cases, x2(A) = (2) for any coprime pair of curvatures a and b of

tangent circles in A. The definition of x4 relies on a finer invariant using the quartic residue symbol. The
constancy across a packing follows from quadratic and quartic reciprocity.

Definition 2.3. The (extended) type of A is either the triple (z,k, x2) or (x,k, x2,Xx4), where A has type
(z,k) and corresponding values of x3 (and x4, if relevant).

Theorem 2.4. The type of A implies the existence of certain quadratic and quartic obstructions, as described
by the following table (which also includes the list of residues modulo 24 where Conjecture 1.1 is false, and
those where it is still open):

Type Quadratic Obstructions | Quartic Obstructions 1.1 false 1.1 open
(6,1,1,1) 0,1,4,9,12,16
(6,1,1,—-1) n* 4n* 9n*, 36n* 0,1,4,9,12,16

(6,1,—1) n?,2n?,3n?, 6n? 0,1,4,9,12,16

(6,5,1) 2n?, 3n? 0,8,12 5,20,21
(6,5,—1) n?, 6n> 0,12 5,8,20,21
(6,13,1) 2n?, 6n? 0 4,12,13,16,21
(6,13, —1) n?, 3n? 0,4,12,16 13,21
(6,17,1,1) 3n?, 6n? 9In?, 36n* 0,9,12 8,17,20
(6,17,1,-1) 3n?, 6n> n*, 4nt 0,9,12 8,17,20
(6,17, —1) n?, 2n? 0,8,9,12 17,20
(8,7,1) 3n?, 6n? 3,6 7,10,15,18,19, 22
(8,7,-1) 2n? 18 3,6,7,10,15,19,22
(8,11,1) 2,3,6,11,14,15,18,23
(8,11,-1) 2n2,3n2, 6n? 2,3,6,18 11,14,15,23

Remark 2.A (not in published version). The intersection of quadratic and quartic obstructions with a
residue class can be described by adding a condition on n. For example, the obstruction 2n? in type (6,17, —1)
intersects the class 8 (mod 24) as 2(6n & 2)2, and the class 0 (mod 24) as 2(6n)2.

Remark 2.5. We could consider the y4 value for packings of types (6,1, —1) and (6,17, —1), but the quartic
obstructions in these cases are subsumed in the quadratic ones.

Corollary 2.6. The local-global conjecture 1.1 is false for at least one residue class in all primitive Apollonian
circle packings that are not of type (6,1,1,1) or (8,11, 1).

The exceptions where the local-global conjecture may yet hold include the strip packing (root quadruple
(0,0,1,1)), and the bug-eye packing (root quadruple (—1,2,2, 3)).
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The following corollary is the phenomenon which led to the discovery of quadratic obstructions.

Corollary 2.7. Curvatures 24m? (necessarily 0 mod 24) and 8n? with 3 { n (necessarily 8 mod 24) cannot
appear in the same primitive Apollonian circle packing, despite 0 (mod 24) and 8 (mod 24) being simulta-
neously admissible in packings of type (6,5) or (6,17).

Remark 2.8. Apollonian circle packings have been generalized in a variety of ways. In [Stal8a], K-
Apollonian packings were defined for each imaginary quadratic field K, where the Q(i)-Apollonian case
is the subject of this paper. It is quite possible that quadratic obstructions occur in these packings, which
share many features with the present case. The existence of quartic obstructions is less likely, as it arises
because K = Q(¢). The family of packings studied in [FSZ19] are also governed by quadratic forms (this was
the essential feature needed for the positive density results of that paper), and include the K-Apollonian
packings; these are likely subject to quadratic obstructions as well. It would also be interesting to ask the
same question about an even wider class of packings studied by Kapovich and Kontorovich [KK23].

In Section 3, we cover background. Quadratic obstructions are addressed in Section 4, and quartic ob-
structions in Section 5. Computational evidence to support Conjecture 1.5 is found in Section 6.

3. RESIDUE CLASSES AND QUADRATIC FORMS

Consider a Descartes quadruple (a, b, ¢, d) contained in an Apollonian circle packing. The act of swapping
the i*? circle to obtain the other solution described by Apollonius is called a move, and is denoted S;. In
terms of the quadruples, S corresponds to

Sy :(a,b,e,d) = (2b+2¢+ 2d — a, b, ¢, d).

Analogous equations for Sy to Sy hold. It is possible to move between every pair of Descartes quadruples in a
fixed circle packing via a finite sequence of these moves (up to a permutation of the entries of the quadruples).
The classical Apollonian group is generated by these four moves as transformations in the orthogonal group
preserving the Descartes form (which has signature (3,1)).

3.1. Residue classes. In [GLM 03], Graham-Lagarias-Mallows-Wilks-Yan determined the list of possible
residues modulo 12 in A. In her Ph.D. thesis [Fucl0], Fuchs proved that there are in fact restrictions modulo
24 and that this is the “best possible.” The complete list of obstructions modulo 24 are found in Proposition
2.1, which is proven in this section.

Proposition 3.1. Consider tangent circles in A with curvatures a,b. Then a + b # 3,6,7 (mod 8). In
particular, if A has type (8,k) and a,b are odd, then one is 3 (mod 8) and the other is 7 (mod 8).

Proof. Assume otherwise. Then the odd part of a 4+ b is 3 (mod 4), so there exists a prime p = 3 (mod 4)
with v, (a + b) odd, where v, represents the p-adic valuation. Rearranging the Descartes equation gives

(a—b)2+(c—d)?=2(a+b)(c+d).
Since the left hand side is a sum of two squares that is a multiple of p = 3 (mod 4), it follows that p | a—b, c—d,

and v,(LHS) is even. Therefore v,(c + d) is odd, hence p | ¢ + d as well. Thus p | a, b, ¢, d, so the quadruple
is not primitive, a contradiction. The final part follows immediately. O

Rather than work modulo 24, we consider modulo 3 and 8 separately.

Lemma 3.A (not in published version). The set of Descartes quadruples in A taken modulo 3 is one of the
following two sets:

(a) {all permutations of (0,0,1,1) and (0,1,1,1)};

(b) {all permutations of (0,0,2,2) and (0,2,2,2)}.

Proof. By dividing into cases based on the number of curvatures that are multiples of 3, a straightforward
computation shows the claimed sets are the only solutions to Descartes’s equation modulo 3. By considering
the moves S7 to Sy, we see that they fall into the two classes. O

Lemma 3.B (not in published version). The set of Descartes quadruples in A taken modulo 8 is one of the
following three sets:



(a) {all permutations of (0,0,1,1),(0,4,1,1) and (4,4,1,1)};
(b) {all permutations of (0,0, 5,5),(0,4,5,5), and (4,4,5,5)};
(c) {all permutations of (2,2,3,7),(2,6,3,7), and (6,6,3,7)}.

Proof. Let (a,b,c,d) be a Descartes quadruple in A. Considering the Descartes equation modulo 2, there
is an even count of odd numbers amongst a, b, ¢, d. This cannot be zero (due to primitivity), and it cannot
be four, as otherwise (a + b + ¢ + d)?> = 8 (mod 16). Therefore, there are always two odd and two even
curvatures, so without loss of generality, assume that ¢, d are odd and a,b are even.

Assume ¢ = 1 (mod 4). By Proposition 3.1, « = b = 0 (mod 4). In turn, this implies d = 1 (mod 4)
and d = ¢ (mod 8). This gives the quadruples listed in (a) and (b), and by applying S; through S, and
permutations, we see them fall into the two classes.

Otherwise, ¢ = 3 (mod 4), which analogously implies ¢ = b = 2 (mod 4), d = 3 (mod 4), and ¢ # d
(mod 8). This gives the quadruples in (c¢), and again, the moves S; to Sy and permutations show that they
form one class. O

Remark 3.C (not in published version). A finer version of this question is to fix a Descartes quadruple
(a,b,c,d) and ask which quadruples modulo n are obtainable from a sequence of the moves S; to Sy (i.e.
ignoring permutations). Lemma 3.A remains valid, but Lemma 3.B changes slightly. Each of the modulo 8
sets partitions into the six subsets where the even and odd curvatures remain in fixed places.

A consequence of Lemmas 3.A and 3.B is that
e R(A) (mod 3) = {0,1} or {0,2};
e R(A) (mod 8) ={0,1,4} or {0,4,5} or {2,3,6,7}.
The Chinese remainder theorem gives six ways to combine these into a congruence set modulo 24, resulting
in the sets listed in Proposition 2.1. For each of the six sets, there do exist primitive packings with those
admissible sets. It remains to show that the Chinese remainder theorem holds for curvatures.

Lemma 3.D (not in published version). Let A contain a curvature equivalent to r1 (mod 3) and another
curvature equivalent to ro (mod 8). Then there exists a curvature in A that is simultaneously equivalent to
r1 (mod 3) and ro (mod 8).

Proof. This is a special case of Lemma 4.4 of [Fucl0], and can also be proven by direct computation. ]

Interestingly, not all solutions to the Descartes equation modulo 24 lift to solutions in Z; the sum-of-
squares argument in Proposition 3.1 (essentially, an effect of quadratic reciprocity) rules some out. For
example, (0,0,1,13) is a solution modulo 24 that does not lift since 1 + 13 =6 (mod 8).

3.2. Quadratic forms. See the books by Buell [Bue89] or Cohen [Coh93] for a longer exposition on qua-
dratic forms.

Definition 3.E (not in published version). A primitive integral positive definite binary quadratic form is
a function of the form f(x,y) = Ax? + Bay + Cy?, where A, B,C € Z, gcd(A,B,C) = 1, A > 0, and
D := B? —4AC < 0. Call D the discriminant of f. The group PGL(2,Z) acts on the set of forms as follows:

(a Z) o f:= flax + by, cx + d).

C

This action preserves the discriminant, and divides the set of forms of a fixed discriminant into a finite
number of equivalence classes (the natural group structure obtained by taking PSL(2,Z) equivalence classes
does not extend to the PGL(2,Z) equivalence classes).

The connection between Descartes quadruples and quadratic forms dates to [GLM T 03] and [Sar07]. Fixing
a circle C, one can associate to it a certain quadratic form fe. Then, in particular, the circles tangent to C
have curvatures properly represented by a shift of fc.

Proposition 3.2 ([GLM™'03, Theorem 4.2]). There is a bijection between primitive integral positive definite
binary quadratic forms of discriminant —4a® and primitive Descartes quadruples containing a as the first
curvature. The map from quadruple to form is
(a,b,¢,d) = (a+b)z* + (a +b+c—d)ay + (a+ c)y?,
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and the map from form to quadruple is
Az® + By + Cy? — (a,A—a,C —a,A+C — B —a).

Given a circle C of curvature a in a primitive Apollonian circle packing, we can associate a Descartes
quadruple (a, b, ¢, d) to C, and therefore a quadratic form. The ambiguity in choosing the Descartes quadruple
exactly corresponds to taking a PGL(2, Z)—equivalence class of quadratic forms. See [GLM™03] and [Ric24,
Proposition 3.1.3].

Definition 3.3. Given C € A a circle of curvature n, define f¢ to be a quadratic form of discriminant —4n?
that corresponds to C via Proposition 3.2.

For the rest of the paper we will assume that n # 0 for convenience. The results should still hold for
n = 0, but as this only corresponds to the strip packing (0,0,1,1), it will be of no use here.

In [Sar07], Sarnak made a crucial observation relating curvatures of circles tangent to C and properly
represented values of f¢, which is a key tool for the rest of the paper.

Proposition 3.4. Let C be a circle of curvature n in A. The multiset of curvatures of circles tangent to C
in Ais {fe(z,y) —n:ged(x,y) = 1}.

4. QUADRATIC OBSTRUCTIONS

Let u € {1,2,3,6}. The strategy to prove that no element of Sz, = {uw? : w € Z} appears as a curvature
in Ais

(1) For each circle C € A, define x2(C) € {1} and demonstrate that it is an invariant of A:
(a) The value of 2 is equal for tangent circles with coprime curvatures.
(b) One can walk between any two circles via coprime tangencies.

(2) Packings with a certain x2(A) value and type cannot accommodate curvatures from Ss , amongst
circles tangent to a “large” subset of A.

(3) Every circle in A is tangent to a circle in this large subset.

4.1. Definition of y.. Let f(z,y) = Ax? + Bay + Cy? be a primitive integral positive definite binary
quadratic form of discriminant —4n? for an integer n # 0.

Proposition 4.1. There is a unique properly represented and invertible residue f(xz,y) modulo n, up to
multiplication by a square.

Denote any lift of this value to the positive integers by p(f).

Proof. If A is coprime to n, observe that
2

fay) =Aas 2 e B (mod n)
zy)=A{w+ 7y TV =A vty mod n),

hence this uniquely lies in the coset containing A. If A is not coprime to n, replace f by an appropriate
PSL(2, Z)-translate of f. O

This allows us to give a condition for numbers that are not represented by f. First, let us recall a few
basic properties of the Kronecker symbol. If a,b,n € Z=°, then

o (5 =0 )
e (2)=(2)ifa=b (mod n) and n # 2 (mod 4), or a = b (mod 4n) and n =2 (mod 4).
e (Quadratic reciprocity) Write a = 2°a° and b = 2/b° where a°,b° are odd (0° = 1 by convention).

Then o )
(5)=t0==(3).

Proposition 4.2. Let n’ = § if n = 2 (mod 4) and n’ = n otherwise. Then the Kronecker symbol (p(f))

n’

is independent of the choice of p(f) and takes values in {£1}. Furthermore, let uw? be coprime to n, where
u and w are positive integers. If (”i—{) #+ (ﬁ), then f(z,y) does not properly represent n + uw?.
8



Proof. Let p; and py be two choices for p(f). Then there exist integers s,¢ such that ged(s,n) = 1 and
p1 = 82py +tn. Since n’ # 2 (mod 4) and p1, pa > 0,

p1\ _ [($*p2+tn\  [($Pp2\  (p2
(W) N n S \n ) (ﬁ)’
p(f)

hence (7> is well-defined. As p(f) is coprime to n’, the symbol takes values in {£1}.

Finally, if f(x,y) properly represents n+uw?, we can take p(f) = u, and the result follows from above. [

By using the correspondence between circles and quadratic forms, we can now assign a sign +1 to each
circle in an Apollonian circle packing, which will dictate what quadratic obstructions must occur adjacent
to it. By Proposition 4.2, the following is well-defined.

Definition 4.3. Let C € A be a circle of curvature n, and let p = p(fc). Define

(5) ifn=0,1 (mod 4);

x2(C) = (n_/;) if n=2 (mod 4);

(2”> ifn=3 (mod 4).

n
4.2. Propagation of x3. We now show that the value x2(C) is constant (propagates) across the packing A.
Proposition 4.4. Let C1,Co € A be tangent circles with coprime curvatures. Then x2(C1) = x2(C2).

Proof. Let the curvatures of C1,Cs be a, b respectively. Since ged(a +b,a) = ged(a+b,b) = 1, by Proposition
3.2 we can take p(fe,) = a+ b= p(fe,) (noting that a +b > 0).
First, assume the packing has type (6, k). Then a,b = 0,1 (mod 4), with at least one being odd. Therefore

wena@ = () () = (D (2) -1

by quadratic reciprocity. This implies that x2(C1) = x2(C2), as claimed.
Otherwise, the packing has type (8, k), and we make two cases. If both a and b are odd, by Proposition 3.1
we can assume ¢ = 3 (mod 8) and b =7 (mod 8). Thus

e = (222) (252) = (3) (3) (§) = -nen =1

where we used the fact that ab =5 (mod 8) and quadratic reciprocity.
Finally, assume that a is odd and b is even, necessarily 2 (mod 4). We write b = 20’ and compute

wer= (£12) (572 () (3)- () () ) - e

completing the proof. O

4.3. Coprime curvatures. The following lemma is a straightforward consequence of Proposition 3.2.

Lemma 4.5. Let (a,b,c,d) be a Descartes quadruple, where curvatures a,b correspond to circles Cq,Ca
respectively. The curvatures of the family of circles tangent to both C; and Cy are parameterized by

f(@)=(a+b2*—(a+b+tc—dr+ec, z€Z

Proof. The relevant family of curvatures is given by applying powers of S4S5 to the initial quadruple. A
two-tailed induction yields

(8153)"(a,b, £(0), f(1)) = (a,b, f(2k), f(2k + 1)), ke,
giving the result. O

Using this family, we can add in extra circles in a tangency walk to ensure coprimality.
9



Lemma 4.6. Let C1,Cy € A be tangent circles of respective curvatures a,b. Then there exists a circle C' that
is tangent to both C; and Co whose curvature is coprime to both C1 and Cs.

Proof. Tt suffices to show that for every prime p | ab, the function f(z) of Lemma 4.5 takes a value coprime
to p. Since primitive Descartes quadruples contain two odd and two even numbers, the result follows for
p=2.If p > 2, a quadratic polynomial will completely vanish modulo p only if its coefficients vanish. This
implies p | a,b, ¢, d, a contradiction in a primitive packing. O

The following corollary is an immediate consequence of Lemma 4.6.

Corollary 4.7. Let C,C' € A. Then there exists a path of tangent circles from C to C' where consecutive
circles have coprime curvature.

The invariance of x2(C) follows directly from Proposition 4.4 and Corollary 4.7.

Corollary 4.8. The value of x2 is constant across all circles in a fized primitive Apollonian circle packing
A. Denote this value by x2(A).

Before proving the sets of quadratic obstructions, we have one final coprimality lemma.
Lemma 4.9. Let C have curvature n. Then there exists a circle tangent to C with curvature coprime to 6n.

Proof. By considering the possible Descartes quadruples modulo 2 and 3, it can be shown that C is tangent
to a circle ¢’ with curvature m where 6 | nm. The result now follows from Lemma 4.6. O

4.4. Quadratic obstructions. For each type of packing, we can assemble the above results to determine
which values of u and yo produce quadratic obstructions.

Proposition 4.10. Let A have type (6,k). Then the following quadratic obstructions occur, as a function
of type and x2(A):

Type | x2(A) | Quadratic obstructions
6,1) | 1
-1 n2,2n2,3n?, 6n?
(6, 5) 1 2n2, 3n?
-1 n?, 6n?
(6, 13) 1 2n?, 6n2
-1 n?,3n?
(6, 17) 1 3n?, 6n2
-1 n?,2n?

Proof. Assume that a circle of curvature uw? appears in a packing A of type (6,k). By Lemma 4.9, it is
tangent to a circle C with curvature n coprime to 6uw?, hence n = k (mod 24). By Proposition 4.2, the
existence of the curvature uw? tangent to C implies that

£)~(42) -van

using Definition 4.3 and Corollary 4.8. By quadratic reciprocity,

b o2 [ (25)] ()
1 1 1
5 -1 -1
13 -1 1
17 1 -1
These values give the claimed table. O
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The (6, k) entries in the table of Theorem 2.4 are filled in by intersecting the quadratic obstructions with
the possible residue classes. Note that not listing a value of u as a quadratic obstruction in the table does not
imply that it cannot be an obstruction, only that this proof method does not rule it out. The completeness
of these lists is discussed in Section 6.

Proposition 4.11. Let A have type (8,k). Then the following quadratic obstructions occur, as a function
of type and x2(A):

Type | x2(A) | Quadratic obstructions
(8,7) 1 3n?, 6n2

-1 2n?
8, 11) | 1

-1 2n2,3n2, 6n>

Proof. Repeat the proof of Proposition 4.10: assume that a circle of curvature uw? appears in .A. Then there
exists a circle of curvature n coprime to 6uw? that is tangent to our starting circle. Thus

()= () - (3w

giving x2(A) = (2¢). By quadratic reciprocity,

k (mod 24) | (2) | (2)
7 HE
11 1] 1
19 1] 4
23 HE

First, assume u = 2. Then x2(A) = 1, giving the conditions.

Next, take u = 3. The only admissible residue class with elements of the form 3w? is 3 (mod 24), so we
can assume that w is odd. If the packing has type (8,7), we divide in two cases.

If n =7 (mod 24), then x2(A) = (£) = —1. The other possibility is n = 19 (mod 24). In this case the
two circles under consideration have curvatures which are 3 (mod 8), in contradiction to Proposition 3.1.

For packing type (8,11), a similar argument works. The case n = 11 (mod 24) is ruled out by Proposition
3.1, and n = 23 (mod 24) implies x2(A) = (£) = 1.

The final case is u = 6. Then y3(A) = (3 ), and the conclusion follows from quadratic reciprocity. O

n

Remark 4.12. It is reasonable to ask if the results in this section can be extended to other values of u. The
proof will work for larger values of u that have no prime divisors other than 2 or 3, but these obstructions
are already contained in those with « | 6. If u has a prime divisor p > 5, then the Kronecker symbol (%) is
not uniquely determined from n (mod 24). It will rule out uw? from appearing tangent to a subset of the
circles in A, but this is not enough to cover the entire packing. Interestingly, this suggests that there may
be “partial” obstructions: quadratic families whose members appear less frequently than other curvatures of
the same general size.

5. QUARTIC OBSTRUCTIONS

The proof strategy in this section is similar to the quadratic case, where we define an invariant on the
circles in the packing, and show that this forbids certain curvatures. The main difference is the quartic
restrictions will only apply to two types of packings, and the propagation of the invariant comes down to
quartic reciprocity for Z[i].

11



5.1. Quartic reciprocity. We recall the main definitions and results of quartic reciprocity; see Chapter 6
of [Lem00] for a longer exposition.

The Gaussian integers Z[i] form a unique factorization domain, with units being {1,4, —1, —i}. For a =
a + bi € Z[i], denote the norm of a by N(a) := a? + b*. We call a odd if N(«) is odd, and even otherwise.
An even « is necessarily divisible by 1 + 4.

Definition 5.1. If a = a + bi € Z[i] is odd, call it primary if @« = 1 (mod 2 + 2¢). This is equivalent to
(a,b) = (1,0),(3,2) (mod 4).

If « is odd, then exactly one associate «, ia, —c, —icx of « is primary.

Definition 5.2. The quartic residue symbol [%} takes in two coprime elements «, 8 € Z[i] with 8 odd, and

outputs a power of i. Let m be an odd prime of Z[i]. If « is coprime to 7, define [¢] to be the unique power
of 7 that satisfies

{%} S (mod 7).

Extend the quartic residue symbol multiplicatively in the denominator:

o — [g} Rl SN e
U T -+ T wl |7 | | 7o T |’
where [2] =1 for any unit u € Z[i].

The basic properties of this symbol and the statement of quartic reciprocity are summarized next, following
[Lem00].

Proposition 5.3. [Lem00, Propositions 4.1, 6.8] The quartic residue symbol satisfies the following properties:

a) If ag, o € Z[i] with arag coprime to an odd 8 € Zli, then {%} = {%] {%}

b) If ay, a9, B € Z[i] satisfy a1 = ag (mod ), ay and B are coprime, and B is odd, then [%} = % .

¢) If a,b € Z are coprime integers with b odd, then [%} =1.

Proposition 5.4. [Lem00, Theorem 6.9] Let a = a + bi be primary. Then

l:l:l l—a |:1:| b |:1+’L:| La—b—b2—1 |:2:| . =b
—_ =17 2 s _ =1 s =1 4 R — =17 2 ,
« o [0 o

If B € Z[i] is relatively prime to a and primary, then

-coe )

In particular, if either a or B is an odd primary integer, then [%} = [é}

[e%

5.2. Definition of x4. Let C be a circle of curvature n. As we have seen, it is associated to [fc], a
PGL(2, Z)—equivalence class of quadratic forms of discriminant —4n?. By using the bijection between qua-
dratic forms and fractional ideals, we obtain from fe a unique homothety class of lattices [A], for some
A C QJi]. Up to multiplication by a unit, there is”* a unique representative Ac of [A] that lies inside Z[i] with
covolume n and conductor n (definition below) [Stal8b, Proposition 5.1]. The values of fe are exactly the
norms of the elements of A¢. By considering the elements of A¢, instead of only their norms, we can recover
finer information than just quadratic residuosity: we can access quartic residuosity. This is the key insight
in defining x4.

In general, any rank-2 lattice A C Z[i] has an order, ord(A) := {\ € Z[i] : AA C A}, which is an order
of Q(7), not necessarily maximal. By the conductor of A, we will mean the conductor of this order, which
is a positive integer. The following can be proven by observing that A is locally principal, or by choosing a
Hermite basis for A, which will have one element in ord(A).

2The cited proposition is more general, but it is only in the case of class number one that this is true of every homothety
class.
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Proposition 5.5. [Stal8b, Proposition 6.3] Let n be a positive integer. Let A C Z[i] be a lattice of covolume
n and conductor n, and define

Sa :={B € A: B is coprime to n}.
Then the image of Sy in (Z[i]/nZ[i))* /(Z/nZ)* consists of a single element.

Definition 5.6. Let A be of type (6,1) or (6,17), and let C be a circle of non-zero curvature n in A,
necessarily satisfying n = 0,1,4 (mod 8). Suppose C corresponds to a lattice A¢ C Z[i] of covolume n and
conductor n. Let 8 = a+bi € Sy, US;a., where J is chosen to be primary if n is even. Write n = 2°n’ where
n' is odd. Define x4(C) as

(—1)be/4 [%] ifn=0 (mod 8);
x4(C) := {%} ifn=1 (mod 8);
(=) [ﬁ] ifn=4 (mod 8).

n’ n’
Proposition 5.7. There exists a choice of B satisfying all requirements, and x4 is well-defined, independent
of this choice, and lies in {1,i,—1,—1i}.

Proof. First, the set Sp, U S;a. is uniquely determined by C. If n is odd and 3,8’ are two choices, then
by Proposition 5.5 we have 3 = i*(uf + ) for k = 0,1, an integer u coprime to n, and § € nZ[i]. Using
Propositions 5.3 and 5.4 (and recalling that n = 1 (mod 8)), we compute

C1-E - =R -
2)- (4 [=-(2)- B -]
n n n n nl|n n

Next, assume n is even, hence a multiple of 4. Pick an arbitrary 5 € Sj,, which is necessarily odd. By
replacing it with an associate, we can assume it is primary, which proves that a choice of 3 is possible.

As before, assume that two valid choices are 3, ', so that 3’ = i*(uB + §) for some integer k = 0,1,
integer u coprime to n, and § € nZ[i]. Also write 8 = a + bi and 5’ = o’ + b'i.

If £k = 1, then b and &’ have opposite parity, a contradiction to them being primary. Therefore k = 0, so
B = uf + 6. In particular, as n’ is an odd integer, the analogous computation to Equation 5.1 still holds,
SO [g—:] = [%} It remains to check that the extra factors in the definition of x4 in the even case are also
independent.

If n =4 (mod 8), the extra factor is (:71), which does not depend on f.

If n =0 (mod 8), the extra factor is (—1)**/4, which depends on b. We must verify that b = 0 (mod 4),
so that the exponent of be/4 is integral. Assuming this is true, and using that 8 | 6 and w is odd, we have
b =ub=0b (mod 8), which completes the proof.

To prove that b = 0 (mod 4), note that a? + b?> = N(B) is a value properly represented by fe(z,y). If
b# 0 (mod 4), then a®> +b*> =5 (mod 8), hence fc(x,y) — n properly represents a number that is 5—0=5
(mod 8), i.e. A contains a curvature of this form. However, we are in a packing of type either (6,1) or (6,17),
where all odd curvatures are 1 (mod 8), a contradiction. O

5.3. Propagation of x4. Assume A is of type (6,1) or (6,17). In order to relate the x4 values of tangent
circles, we need a value of 8 that works for both.

Proposition 5.8. Let C1,Ca € A be tangent circles of coprime curvatures ny,ne. Then there exists B € 7Z]i]
such that N(B) = ni +ns and 8 is a valid choice in Definition 5.6 for both C1 and Cs.

Proof. The orbit of the extended real line R under the Mobius transformations PSL(2,Z[i]) is a collection
of circles in the extended complex plan ([A:, called the Schmidt arrangement [Stal8b, Definition 1.1]. After
a scaling by 2, the curvatures of all circles in the arrangement are integers [Stal8b, Proposition 3.7]. The
scaled Schmidt arrangement coincides with the Apollonian super-packing of [GLM'06], and contains, up to
the symmetries of the arrangement, exactly one copy of every primitive Apollonian circle packing ([GLM06,
Theorem 6.2] and [Stal8a, Theorem 1.3]). In this way, the packing A can be given a definite location in C,
and its tangency points can be described as elements of Q(i) C C.
13



Let C € A of curvature n inside the Schmidt arrangement be the image of R under the Mébius trans-
formation (g :;’) Proposition 4.6 of [Stal8b] describes the set of tangency points of C with the circles of A
which it touches, namely

n.o(n o 2l
(i ()= )z ()7
The lattice of denominators $Z+0Z then coincides with A¢ [Stal8b, Theorem 4.7]. In particular, we can write
fe(z,y) = N(zB + yd), so that the circle tangent to C at point = (3) +y (7 ) has curvature N(z8 + yd) — n
[Stal8b, Proposition 4.6].

Hence, if we consider tangent circles C; and Cs of curvatures nq, and no respectively, then we obtain two
lattices A¢, and Ac, which share an element /3, namely the denominator of the shared tangency point. In
particular, N(8) = ny + na.

Finally, the lattice A¢ associated to a circle C is defined only up to unit multiple, which allows for us to
arrange for § to be primary if necessary. O

Proposition 5.9. Let C1,Co € A be tangent circles of coprime curvature. Then x4(C1) = xa(Ca).

Proof. Let ny and ny be the curvatures of C; and Cy respectively. Since A has type (6,1) or (6,17), ny,ng =
0,1, or 4 (mod 8). Take a 8 as promised by Proposition 5.8, and assume that n; is odd. If ny is also odd,
then N(8) = ny + na = 2 (mod 8), hence 8 = (1 +¢)8’, with 8’ odd. By replacing 8 with an associate, we
can assume that 5’ = a + bi is primary. We compute

o BB - 1)
As ny +ny = N(B) = 83, we have ny = —ny (mod B'). Thus

nm-lo|— -1 [—1] .-l ! izl oy, ma—l
=[] - [F][2] e [2] e

n2
In order to conclude that x4(C1) = x4(C2), we must have “L=1 + b — 22=1 =0 (mod 4), i.e.
(5.2) ny—ng+4b=0 (mod 16).

If ny = ny (mod 16), then 2(a?+b%) = ny +ne = 2 (mod 16), hence a®+b> = 1 (mod 8). In particular, 4 | b
(recall that ' is primary), and Equation 5.2 follows. Otherwise, ny = ns + 8 (mod 16), so 2(a® + b?) = 10
(mod 16), and a* +b? =5 (mod 8). This implies that b =2 (mod 4), and again Equation 5.2 is true.

If no is even, then § = a + bi is primary by assumption. We compute

- [3]- 3] [ B4

14
where the last equality follows from [_74} = [%} = 1. We now separate into the cases no = 0 or 4 (mod 8).

If no =0 mod 8, write ny = 2°n}, with nf odd, and

R R = R S R [

where the sign of the + depends on n), modulo 4. As in the proof of Proposition 5.7, we have 4 | b, hence

[%] =¥ = 1, so the + sign does not matter. We also compute

2] - (o) -

hence the terms cancel and x4(C2) = x4(C1).
Finally, assume ny =4 (mod 8), so nhy = ny/4. If ny, =1 (mod 4), then

wer= () 2] 4] v
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as desired. Otherwise, ny, =3 (mod 4) and

= () 3]~ [ - [P -

Since a? + b? = n; +ny =5 (mod 8), we have b =2 (mod 4), so —i® = 1, completing the proof. O

Corollary 4.7 and Proposition 5.9 combine to give the following corollary.

Corollary 5.10. The value of x4 is constant across all circles in a packing A of type (6,1) or (6,17). Denote
this value by x4(A).

5.4. Quartic obstructions.

Proposition 5.11. Then the following quartic obstructions occur, as a function of type and x4(A):

Type x4(A) | Quartic obstructions
(6, 1) 1
—1,4,—1 n* 4n* 9Int, 36n*
(6, 17) 1 9Int, 36n*
-1 n4, 4n*
i, —1 n* 4n* 9In*, 36n*

Proof. Let u € {1,4,9,36}, and assume that a circle C of curvature n = uw? appears in A for some positive
integer w. Let ny be the curvature of a circle C’ tangent to C that is coprime to n. Let 8 be chosen as in
Proposition 5.8 for the circles C and C’.

If n=0 (mod 8), then 2 | w, hence n = 2°n’ with n’ odd and 2 | e. Thus

4] re=14

1 y =y

O = =0
5] iru=9.36

Clearly {ﬂ = 1, which gives the result for u = 1,4. For u = 9,36, we have n =0 (mod 24). Let 5 = a + bi.

Since 3 is prime in Z[i],

2
[g} =p'=(a+0bi)* =a* +b* + (a®b — ab®)i  (mod 3).

Then a® + b2 = n + na = na (mod 3). If the type of A is (6,1), then a® +b? =1 (mod 3), so exactly one of
(a,b) is 0 (mod 3). In either case, a* + b* + (a®b — ab®)i = 1 (mod 3), so x4(C) = 1. If the type is (6,17),
then a? + b2 =2 (mod 3), so a®> = b* =1 (mod 3). Thus
a* + b 4 (a®b — ab®)i = (a2)2 + (b2)2 +ab(a®> —bv*)i=2=—-1 (mod 3),
s0 x4(C) = —1, again agreeing with the table.
Next, assume n = 1 (mod 8). If u = 1, we have x4(C) = [ 5 } = 1. Otherwise © = 9, and in fact n = 9

w?

E

2
(mod 24). Then x4(C) = {32%] = é} , from whence the analysis proceeds exactly as for n = 0 (mod 8).
= 4 (mod 8), which allows v = 4,36. If u = 4, then n’ is an odd fourth power, so

Finally, take n
2

x4(C) = (34) [ﬁ] = 1. If u = 36, then n’ = 9t*, so x4(C) = {é} ; proceed as for n =0 (mod 8). O
) ) 3|

n’ n’
There is a nice relationship between y4(A) and x2(A).
Proposition 5.12. y4(A)? = x2(A).
Proof. Let C be a circle of odd curvature n in A. Choose a circle C' tangent to C of coprime curvature

2
ng, and choose B as in Proposition 5.8 for circles C and C’. Then x4(C)? = [é] . Let (—) also denote

n
15



the quadratic residue symbol for Z[i]; it follows that x4(C)? = (g) By [Lem00, Proposition 4.2iii)], we

have (g) = (%), with the second Kronecker symbol taken over Z. Since N(8) = n + nq, we can take
p(fe) = n + ng, proving that x4(C)? = x2(C). As Y2 and x4 are constant across A, the result follows. O

6. COMPUTATIONS

In order to support Conjecture 1.5, code to compute the missing curvatures was written with a combination
of C and PARI/GP [PAR23]. This code (alongside other methods to compute with Apollonian circle packings)
can be found in the GitHub repository [Ric23al.

Files containing the sporadic sets S4(N) := S4[)[1, N] for many small root quadruples can be found in
the GitHub repository [Ric23b]. In particular, for each of the 14 types listed in Theorem 2.4, we took three
small root quadruples, and computed the sporadic curvatures up to a bound N in the range [10'°,10'2]. The
bound N was chosen so that the ratio of N to the largest sporadic curvature found exceeds 10, providing
good evidence towards Conjecture 1.5. These results are summarized in the appendix, Tables A and B.

Remark 6.1. There are only five pairs of residue class and packing for which it appears that every single
positive residue in that class appears. They are the following:

e (—3,5,8,8) and 5 (mod 24);

e (—3,4,12,13) and 13 (mod 24);

e (~1,2,2,3) and 11,14,23 (mod 24).
Near misses are

e (0,0,1,1) and 1 (mod 24), which only misses the curvature 241 up to 10*°;
e (—1,2,2,3) and 2 (mod 24), which only misses the curvature 13154 up to 10%°.

Remark 6.2. An intrepid observer of the raw sporadic sets may remark that, toward the tail end, the
sporadic curvatures are disproportionately multiples of 5. In fact, they generally prefer prime divisors which
are 1 (mod 4). We speculate that this is another local phenomenon: a result of certain symmetries of the
distribution of curvatures in the orbit of quadruples modulo p =1 (mod 4) (similar to [FS11, Figures 3 and

4)).
Remark 6.A (not in published version). One particularly visually appealing way to observe the reciprocity
obstructions is to plot the successive differences of the exceptional set. Since quadratic and quartic sequences

have patternful successive differences, even a union of quadratic and quartic sequences reveals a prominent
visual pattern once the sporadic set begins to thin out. See Figure A, in the appendix.

16



APPENDIX A. ADDITIONAL TABLES AND FIGURES

TABLE A. (not in published version) S4 (V) for small packings: part 1.

Packing Type Quadratic | Quartic N |S4A(N)| | max(Sa(N)) | =~ m
(0,0,1,1) (6,1,1,1) 1010 215 1199820 8334.58
(—12,16,49,49) 10t 275276 | 5542869468 18.04
(—20, 36, 49,49) 10'2 2014815 | 55912619880 17.89
(—8,12,25,25) | (6,1,1,—1) nt, 4n?, 1010 47070 517280220 19.33
(—12,25,25,28) 9n*, 36n* 10t 238268 | 5919707820 16.89
(—15,24,40,49) 210 | 639149 | 12692531688 15.75
Y ) ) y Ly n-,n-, .
(—15,28,33,40) | (6,1,—1) 2 2n? 1010 80472 | 820523160 12.19
(—20,33,52,57) 3n?, 6n2 10t 240230 | 4127189100 24.23
(—23,40,57,60) 10t 392800 | 8689511520 11.51
T Yy ) IS n-,on .
(—4,5,20,21) (6,5,1) 2n?, 3n? 1010 3659 32084460 311.68
(—16,29, 36,45) 1010 80256 927211800 10.79
(—19, 36, 44,45) 10! 177902 | 3603790320 27.75
T, 9,0, sy T n=,on .
(—3,5,8,8) (6,5,—1) 2 6n? 10%° 676 3122880 3202.17
(—12,21,29, 32) 1010 30347 | 312225420 32.03
(—19,32,48,53) 2.5-10'0 | 168264 | 2286209460 10.94
(—3,4,12,13) (6,13,1) 2n2, 6n° 1010 731 7354464 1359.72
(—12,21,28,37) 10t 234386 | 3470731680 28.81
(—11,16, 36, 37) 1010 20748 | 226988340 44.06
(—8,13,21,24) (6,13, —1) n?,3n? 1010 5273 45348900 220.51
(—11,21,24,28) 1010 21003 176441136 56.68
(—20, 37,45, 52) 101 229356 | 4079861484 24.51
(—16,32,33,41) | (6,17,1,1) 3n2,6n% | 9n*, 36n* 1010 81777 841440840 11.88
(—7,8,56,57) 100 55057 595231740 16.80
(—16,20,81,81) 102 1075024 | 26983035480 37.06
(—4,8,9,9) (6,17,1,—1) | 3n%,6n% | n* 4n* 1010 2057 10742460 930.89
(=7,9,32,32) 1010 34916 367956840 27.18
(—15,32,32,33) 101t 585942 | 8505627180 11.76
(=7,12,17,20) | (6,17, —1) n2,2n? 1010 3744 17141220 583.39
(—12,17,41,44) 1010 31851 270186456 37.01
(—15,24,41, 44) 1010 80106 | 803343900 12.45

17




TABLE B. (not in published version) S4(N) for small packings: part 2.

Packing Type Quadratic | Quartic N [SA(N)| | max(Sa(N)) | =~ m
(=5,7,18,18) 8,7,1) | 3n2 60 1010 | 16417 | 86709570 115.33
(—6,10,15,19) 1010 24305 133977255 74.64
(—9,18,19, 22) 1010 | 14866 | 82815750 120.75
—2.3.6,7 8,7,—1 1802 1010 236 429039 93307.90
(
(—5,6,30,31) 100 19695 97583070 102.48
(—14,27,31,34) 2-10% | 99294 1643827935 12.17
(~1,2,2,3) (8,11,1) 1010 61 97287 102788.66
(=9, 14, 26, 27) 1010 | 17949 | 85926675 116.38
(~10,18, 23, 27) 1010 | 25944 | 124625694 80.24
(—6,11,14,15) | (8,11, 1) | 202, 3n2, 1010 | 3381 | 20149335 496.29
(—10, 14, 35, 39) 6n? 4-10% | 256228 | 2934238515 13.63
(—13, 23,30, 38) 1010 | 71341 | 598107510 16.72
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FIGURE A. (not in published version) Successive differences of missing curvatures in the
packing (—4,5,20,21) of type (6,5,1). Around the 5000th missing curvature, the quadratic
families 2n? and 3n? begin to predominate (the sporadic set has 3659 elements < 10'°, and
they continue to occur even past the region of this graph, but very sparsely.).
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