
A GEOMETRIC APPROACH TO SECOND-ORDER DIFFERENTIABILITY

OF CONVEX FUNCTIONS

Abstract. We show a new, elementary and geometric proof of the classical Alexandrov theorem

about the second order differentiability of convex functions. We also show new proofs of recent

results about Lusin approximation of convex functions and convex bodies by C
1,1 convex functions

and convex bodies.

1. Introduction

The aim of this paper is to provide a new, elementary and geometric proof of the following
classical theorem of Alexandrov [1]. For a history of the theorem and a list of known proofs,
see [9].

Theorem 1.1. If f : Rn → R is convex, then it is differentiable a.e. and at almost every point
where f is differentiable, there is a symmetric matrix denoted by D2f(x) such that

lim
y→x

f(y)− f(x)−Df(x)(y − x)− 1
2(y − x)TD2f(x)(y − x)

|y − x|2 = 0. (1)

Our proof is so simple and geometric in nature that its concept can be described in just a few
sentences. All notation used in the Introduction will be explained in Section 2.

Consider the set W (¶), the union of all closed balls of radius ¶ > 0 contained in the epigraph
of f . The set W (¶) is convex and it is the epigraph of a convex function g. Clearly, g g f . Using
elementary and geometric arguments we show that if ¶ > 0 is sufficiently small, then the set W (¶)
touches the graph of f along a set that is large in the sense of measure. More precisely, for every
R > 0 and every ε > 0, there is ¶ > 0 such that

|{x ∈ Bn(0, R) : f(x) ̸= g(x)}| < ε.

Since the convex set W (¶) is the union of balls of fixed radius, it is well known and easy to prove

that the boundary of W (¶) is of class C1,1
loc , and hence g ∈ C1,1

loc , i.e., the gradient of g is locally

Lipschitz continuous. Since g ∈ C1,1
loc , it follows from the Rademacher theorem that g is twice

differentiable almost everywhere in the classical sense. Now it remains to observe that at almost
all points x such that f(x) = g(x), f is twice differentiable in the sense of (1). Namely, this is
true whenever x is a density point of the set {f = g} and g is twice differentiable at x. In that
case (1) is satisfied with D2f(x) := D2g(x).

There is also a second version of the Alexandrov theorem which says that the subdifferential
∂f is differentiable a.e.

Theorem 1.2. If f : Rn → R is convex, then for all x ∈ R
n where f is twice differentiable as in

(1), we have

lim
y→x

sup
σy∈∂f(y)

|Ãy −Df(x)−D2f(x)(y − x)|
|y − x| = 0. (2)
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2 DIFFERENTIABILITY OF CONVEX FUNCTIONS

The usual way to prove Theorem 1.1 is to show Theorem 1.2 first and conclude Theorem 1.1
from it. In our approach we will prove Theorem 1.1 directly and we will conclude Theorem 1.2
as a corollary.

The argument described above also leads to new and elementary proofs of the following recent
results [5, Theorem 1.4, Corollary 1.7, Theorem 1.12 and Corollary 1.13].

Theorem 1.3. Let f : Rn → R be a convex function. Then, for every measurable set A ¢ R
n

of finite Lebesgue measure, and for every ε > 0, there exists a convex function g ∈ C1,1(Rn) such
that

|{x ∈ A : f(x) ̸= g(x)}| < ε.

Theorem 1.4. Let K be a convex body in R
n. Then for every ε > 0, there is a convex body

W ¢ K, such that ∂W ∈ C1,1 and

Hn−1(∂K△∂W ) < ε.

In fact, there is ¶o > 0 such that for every ¶ ∈ (0, ¶o), the set W defined as the union of all closed
balls of radius ¶ that are contained in K satisfies the claim of the theorem.

A convex body is a compact convex set K ¢ R
n with non-empty interior. Notation A△B stands

for the symmetric difference of the sets A and B, that is, A△B := (A \ B) ∪ (B \ A), and Hs

denotes the s-dimensional Hausdorff measure.

Theorem 1.5. Let f : Rn → R be a convex function, and assume that f ̸∈ C1,1
loc (R

n). Then the
following conditions are equivalent:

(1) For every ε > 0 there exists a convex function g ∈ C1,1
loc (R

n) such that

|{x ∈ R
n : f(x) ̸= g(x)}| < ε.

(2) The function f is essentially coercive.

Moreover, if f is essentially coercive, we can find g satisfying g g f .

We call a convex function f : Rn → R essentially coercive if there exists a linear function
ℓ : Rn → R such that lim|x|→∞ (f(x)− ℓ(x)) = ∞; this is equivalent to saying that the epigraph
of f does not contain lines, see [7, Theorem 1.11]. Here and in what follows by a line we mean a
set isometric to R so half-line is not a line.

Theorem 1.6. Let S be a convex hypersurface of R
n, and assume that S is not of class C1,1

loc .
Then the following assertions are equivalent:

(1) For every ε > 0 there exists a convex hypersurface Sε of R
n of class C1,1

loc such that
Hn−1 (S△Sε) < ε.

(2) S does not contain any line.

We call the boundary ∂W of a closed convex set W with nonempty interior (not necessarily

bounded) a convex hypersurface, and we say that it is of class C1,1
loc if it is locally a graph of a C1,1

function (if the set W is unbounded, we will say that W is an unbounded convex body).

Remark 1.7. It follows from the proof that if S = ∂W , where W is a (possibly unbounded) convex
body that contains no lines, then there exists a (possibly unbounded) convex body Wε ¢ W such

that Sε := ∂Wε ∈ C1,1
loc

and Hn−1 (S△Sε) < ε.
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From Theorem 1.6 we will also deduce the following new generalization of Theorem 1.5 for
convex functions defined on arbitrary open convex subsets of Rn.

Theorem 1.8. Let U ¢ R
n be open and convex, and let f : U → R be a convex function, such

that f ̸∈ C1,1
loc (U). Then, the following statements are equivalent:

(1) For every ε > 0 there exists a convex function g ∈ C1,1
loc (U) such that

|{x ∈ U : f(x) ̸= g(x)}| < ε. (3)

(2) The graph of f does not contain any line of Rn+1.

Moreover, if the graph of f contains no lines, we can find g satisfying g g f .

Remark 1.9. It was recently proved in [4] that if f : U → R is locally strongly convex, then
there is a locally strongly convex function g ∈ C2(U) that satisfies (3) (and other estimates). The
proof is however, much more difficult.

The original proofs of Theorems 1.3, 1.4 and 1.5 used the Whitney extension theorem for convex
functions [6, 8, 3], and the Alexandrov Theorem 1.1. Our proofs presented here are elementary
and avoid these tools. As explained above, the proofs are based on a simple geometric idea that
is also used in our proof of Alexandrov’s theorem.

We will prove Theorem 1.4 first and we will use it as a main tool in the proofs of Theorems 1.1
and 1.3. Indeed, the brief description of the proof of Theorem 1.1 presented above is based on
the approximation of the epigraph of f by the convex set W (¶) of class C1,1

loc and this is strictly
related to Theorem 1.4.

Except Section 7, our exposition is elementary and self-contained. We have made an effort to
make it accessible to anyone with basic knowledge of real analysis, and no knowledge in convex
analysis is required.

The paper is structured as follows. In Section 2 we fix notation and recall basic definitions and
facts needed to understand the paper. All results mentioned in this section are well known. In
Section 3 we prove Theorem 1.4 and then we use it to prove Corollary 3.10 which is a version of
Theorem 1.3. This corollary will play a central role in the proofs of Theorems 1.1, 1.3 and 1.5.
Theorems 1.1 and 1.3 are proved in Sections 4 and 6 respectively. In Section 5 we prove Theo-
rem 1.2 as a direct consequence of Theorem 1.1. This proof is independent of all other sections of
the paper and it can be read independently. In Section 7 we present the proofs of Theorems 1.5,
1.6, and 1.8.

We made an effort to make different parts of the paper as independent as possible. Section 3
is needed in Sections 4, 6 and 7, but the content in Sections 4, 6 and 7 of the paper stands alone
and is not dependent on one another. Similarly Section 5 is independent of any other part of the
paper.

2. Preliminaries

In this brief section we will explain notation and basic facts needed in the paper. This section
will also clarify necessary prerequisites. By no means the definitions and facts presented here are
detailed. The reader may find missing details in standard textbooks.

Balls in R
n are denoted by B(x, r) or Bn(x, r). The unit sphere in R

n that is centered at the
origin is denoted by S

n−1. The interior of a set A is denoted by intA. An interval in R
n with
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endpoints x, y ∈ R
n is denoted by [x, y]. The scalar product of vectors u, v ∈ R

n is denoted by
ïu, vð.

The Lebesgue measure of A ¢ R
n is denoted by |A|. We say that x ∈ R

n is a density point of a

measurable set A ¢ R
n if |A∩B(x,r)|

|B(x,r)| → 1 as r → 0+. It follows from the Lebesgue differentiation

theorem that almost all points x ∈ A are density points of A.

The Hausdorff measure is denoted by Hs. It follows from the definition that if f is L-Lipschitz,
then Hs(f(A)) f LsHs(A). If A ¢ R

n, ¼ > 0 and ¼A = {¼x : x ∈ A} is the dilation of A by the
factor ¼, then Hs(¼A) = ¼sHs(A). Hn coincides with the Lebesgue measure in R

n.

We say that f ∈ C1,1(U) (f ∈ C1,1
loc (U)), if U ¢ R

n is open, f ∈ C1(U), and Df is Lipschitz
(locally Lipschitz) continuous on U . If f ∈ C1,1(Bn(0, R)), then it follows that

|f(y)− f(x)−Df(x)(y − x)| f M |y − x|2 for all x, y ∈ Bn(0, R), (4)

where M is the Lipschitz constant of Df . Indeed, we can write f(y) − f(x) = Df(À)(y − x) for

some À ∈ [x, y] and (4) follows. This inequality implies that if f ∈ C1,1
loc (U), where U ¢ R

n is
open, then

f(y) = f(x) +Df(x)(y − x) +O(|y − x|2) for all x, y ∈ U. (5)

We say that the boundary of a bounded domain U ¢ R
n is of class C1,1 if it is locally a graph of

a C1,1 function.

We use notation ∇f(x) for the gradient vector while Df(x) is the linear derivative. With this
notation we have Df(x)v = ï∇f(x), vð.

If W ¢ R
n is a closed convex set, then it is easy to see that for every x ∈ R

n, there is a unique
point denoted by ÃW (x) such that

ÃW (x) ∈ W and |x− ÃW (x)| = dist(x,W ). (6)

Clearly, if x ̸∈ W , then ÃW (x) ∈ ∂W . The next result is well known see e.g., [11, Proposition 3.1.3]
or [16, Theorem 1.2.1].

Lemma 2.1. ÃW : Rn → W is 1-Lipschitz.

The convex hull of a set A ¢ R
n (defined as the intersection of all convex sets containing

A, or equivalently, as the set of all convex combinations of points of A) is denoted by co(A).
Every closed and convex set W ¢ R

n is the intersection of all closed half-spaces that contain
W . In fact, for every x ∈ ∂W there is a half-space Hx such that W ¢ Hx and x ∈ Tx ∩ W ,
where Tx = ∂Hx. The hyperplane Tx is called a hyperplane supporting W at x. Thus for every
x ∈ ∂W , there is a hyperplane supporting W at x, but such a hyperplane is not necessarily
unique. This implies that if U ¢ R

n is open and convex and f : U → R is convex, then for
every x ∈ U there is v ∈ R

n such that f(y) g f(x) + ïv, y − xð for all y ∈ U . Indeed, on
the right hand side we have an equation of the supporting hyperplane of the convex epigraph
epi(f) = {(x, y) ∈ U ×R : x ∈ U, y g f(x)}. The set of all such v is denoted by ∂f(x) and called
the subdifferential of f at x. Thus ∂f(x) ̸= ∅ for any x ∈ U . If in addition f is differentiable
at xo, then ∂f(xo) = {∇f(xo)} i.e., f(y) g f(xo) + Df(xo)(y − xo) meaning that the tangent
hyperplane to the graph of f at xo is the unique hyperplane supporting the epigraph of f at
(xo, f(xo)). Convex functions are locally Lipschitz continuous and hence they are differentiable
a.e. by the Rademacher theorem, so ∂f(x) = {∇f(x)} for almost all x ∈ U . In fact we will prove
the a.e. differentiability of convex functions directly and without any reference to the Rademacher
theorem, see Corollary 3.6 and Remark 3.7, but we will need the Rademacher theorem in the proof
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of Theorem 1.1, because we will need to know that the gradient of a convex function g ∈ C1,1 is
differentiable a.e.

3. Proof of Theorem 1.4

We will precede the proof with auxiliary results.

For a convex body K ¢ R
n and r > 0 we define the inner parallel convex body by

Kr := {x ∈ K : dist(x, ∂K) g r}.
Lemma 3.1. Kr is convex for any r > 0.

Proof. Let x, y ∈ Kr. We need to show that [x, y] ¢ Kr. Clearly, B(x, r), B(y, r) ¢ K and
for any z ∈ [x, y], B(z, r) ¢ co(B(x, r) ∪ B(y, r)) ¢ K, so dist(z, ∂K) g r, z ∈ Kr, and hence
[x, y] ¢ Kr. □

Let ro = supx∈K dist(x, ∂K). Clearly Kr = ∅ for r > ro. Kro ̸= ∅, but it has empty interior.
However, for r ∈ (0, ro), Kr has non-empty interior, so Kr is a convex body only for r ∈ (0, ro).

For a convex body K and r > 0 we also define

K(r) :=
⋃

{B(x, r) : B(x, r) ¢ K}. (7)

It is easy to see that K(r) is convex and compact (it can be empty). Moreover, if K contains a
ball of radius ro, then for any r ∈ (0, ro], K(r) has non-empty interior and hence K(r) is a convex
body.

Lemma 3.2. If a convex body K contains a ball of radius ro, then for all r ∈ (0, ro), Kr is a
convex body, and

Hn−1(∂Kr) f Hn−1(∂K ∩ ∂K(r)). (8)

Proof. Clearly, for r ∈ (0, ro), Kr has non-empty interior, so it is a convex body by Lemma 3.1.
Observe that (see (6))

ÃKr
(∂K ∩ ∂K(r)) = ∂Kr. (9)

Indeed, if z ∈ ∂Kr, then there is x ∈ ∂K, such that |x− z| = r. Therefore, x ∈ B(z, r) ¢ K, and
hence x ∈ K(r). Thus, x ∈ ∂K ∩ ∂K(r), |x− z| = r g dist(x,Kr), and hence z = ÃKr

(x). Now,
(8) follows from (9) and the fact that ÃKr

is 1-Lipschitz (Lemma 2.1). □

The next beautiful result is due to McMullen [15]. While it can be concluded from Alexandrov’s
theorem, we present here a direct and surprisingly elementary proof which is a small modifica-
tion of McMullen’s argument. In fact, Lemma 3.3 will play an important role in our proof of
Alexandrov’s theorem.

Lemma 3.3. If K ¢ R
n is a convex body, then limr→0+ Hn−1(∂K \ ∂K(r)) = 0.

Remark 3.4. Lemma 3.3 has the following geometric interpretation: for almost all x ∈ ∂K,
there is a closed ball B ¢ K touching the boundary of K at x, i.e., x ∈ B.

Proof. Without loss of generality we may assume that B(0, ro) ¢ K. If r ∈ (0, ro), then 0 belongs
to the interior of Kr. For ¼ > 0 we define

¼Kr := {¼z : z ∈ Kr},
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that is, ¼Kr is a dilation of Kr. For r ∈ (0, ro), let

¼(r) := inf{¼ > 0 : K ¢ ¼Kr}.
Clearly, K ¢ ¼(r)Kr. It is easy to see that the function r 7→ ¼(r) is non-decreasing and ¼(r) → 1
as r → 0+. Indeed, for any ε > 0, (1 + ε)−1K ¢ intK, and hence ¶ := dist((1 + ε)−1K, ∂K) > 0,
so for all r ∈ (0, ¶]

(1 + ε)−1K ¢ Kr, i.e., K ¢ (1 + ε)Kr.

In other words 1 f ¼(r) f 1 + ε for all 0 < r f ¶ proving that ¼(r) → 1 as r → 0+.

It is easy to see that ÃK(∂(¼(r)Kr)) = ∂K (see (6)). Indeed, if x ∈ ∂K and ¿(x) is the
outer unit normal vector to a supporting hyperplane of K at x, then there is t g 0 such that
z := x + t¿(x) ∈ ∂(¼(r)Kr) and it easily follows that ÃK(z) = x. Since ÃK is 1-Lipschitz and it
maps ∂(¼(r)Kr) onto ∂K, we have that

Hn−1(∂K) f Hn−1(∂(¼(r)Kr)) = ¼(r)n−1Hn−1(∂Kr) f ¼(r)n−1Hn−1(∂K ∩ ∂K(r))

f ¼(r)n−1Hn−1(∂K) → Hn−1(∂K) as r → 0+.

Therefore, Hn−1(∂K∩∂K(r)) → Hn−1(∂K), as r → 0+. This completes the proof of Lemma 3.3.
□

Lemma 3.5. Let f, g : Bn(0, R) → R be convex functions. If g ∈ C1,1, f f g and f(x) = g(x)
for some x ∈ Bn(0, R), then f is differentiable at x, Df(x) = Dg(x) and

f(y) = f(x) +Df(x)(y − x) +O(|y − x|2). (10)

Proof. If v ∈ ∂f(x), then clearly, v ∈ ∂g(x) and hence v = ∇g(x). Therefore, the result follows
from the estimate

f(x) + ï∇g(x), y − xð f f(y) f g(y) = f(x) + ï∇g(x), y − xð+O(|y − x|2),
where in the last equality we used (5) and the fact that g(x) = f(x). □

Corollary 3.6. If f : Rn → R is convex, then it is differentiable a.e. Moreover

f(y) = f(x) +Df(x)(y − x) +O(|y − x|2) for almost all x ∈ R
n. (11)

Proof. Since the boundary of a ball is parameterized by a smooth convex function, Lemma 3.5
implies (11) whenever there is a ball in the epigraph of f that touches the graph of f at (x, f(x))
and it follows from Lemma 3.3 that it is true for almost all x. □

Remark 3.7. Note that the proof of Corollary 3.6 does not use Rademacher’s theorem. Moreover,
the estimate (11), is stronger than the a.e. differentiability of f that would follow from an
application of Rademacher’s theorem. We will not need Corollary 3.6 in this paper.

The following result, was proven in a more general form in the unpublished work [14, Theorem 1,
p. 32]. It is also mentioned without any proof or reference in [13]. Although a detailed proof can
be found in [10, Proposition 2.4.3], the origin of the result is not referenced in this work.

Lemma 3.8. A convex body W has C1,1 boundary if and only if there is r > 0 such that W =
W (r).

Remark 3.9. In other words a convex body W has boundary of class C1,1 if and only if there is
r > 0 such that W is the union of closed balls of radius r.
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We will only prove the implication from right to left, that is we will prove that if W = W (r),
then ∂W is of class C1,1. This is the only implication that we need in the proof of Theorem 1.4.
For the proof of the implication from left to right, see [10, Proposition 2.4.3]. We will present two
proofs. The first proof is sketched only and it uses the implicit function theorem. The second one
is detailed and it does not use the implicit function theorem.

First proof. It is very elementary and easy to prove that if K ¢ R
n is compact, then the function

d2K(x) = dist(x,K)2 is differentiable and ∇d2K(x) = 2(x − ÃK(x)), see [11, p. 181]. Since the
function ÃK is Lipschitz by Lemma 2.1, we have that d2K ∈ C1,1 and all points in R

n \ K are
regular so for t > 0, {x : dist(x,K) = t} = (d2K)−1(t2) is a C1,1-submanifold of Rn and hence it
is locally a graph of a C1,1 function by the implicit function theorem. It remains to observe that
∂W (r) = {x ∈ R

n : dist(x,Wr) = r}. □

Second proof. Thus, we assume that for each p ∈ ∂W there is h(p) ∈ W such that p ∈ B(h(p), r) ¢
W . It follows that the hyperplane Tp tangent to the ball B(h(p), r) at p is the unique hyperplane
supporting W at p.

Note that dist(h(p), ∂W ) = r implies that h(p) ∈ Wr, so |p − h(p)| = r = dist(p,Wr), and
hence h(p) = ÃWr

(p) (see (6)).

The inner unit normal vector to Tp is given by

¿(p) =
h(p)− p

r
=

ÃWr
(p)− p

r

and Lemma 2.1 implies that the function ¿ : ∂W → S
n−1 is Lipschitz continuous:

|¿(p)− ¿(q)| f |ÃWr
(p)− ÃWr

(q)|+ |p− q|
r

f 2

r
|p− q|.

This in turn, implies that the boundary ∂W is of class C1,1. Indeed, choose any point po ∈ ∂W and
choose a Euclidean coordinate system (x1, . . . , xn) = (x′, xn) such that po = 0 and Tpo = {xn = 0}.
Then ∂W in a neighborhood U = Bn−1(0, r2) of po = 0 is a graph of a function xn = f(x′)
i.e., p(x′) := (x′, f(x′)) ∈ ∂W . Since for x′ ∈ U , the graph of f lies above Tp(x′) and below

B(h(p(x′)), r), it follows from geometric considerations (as in the proof of Corollary 3.6) that f
is differentiable at x′ and Tp(x′) is the tangent hyperplane to the graph of f at p(x′). Note also
that |∇f | f M on U for some M > 0, because the tangent hyperplane to the graph of f cannot
intersect with B(h(0), r). It remains to show that ∇f is Lipschitz continuous in U .

The inner unit normal vector in terms of ∇f is given by

¿(p(x′)) =
(−∇f(x′), 1)√
1 + |∇f(x′)|2

, so Ã(¿(p(x′)) =
−∇f(x′)√
1 + |∇f(x′)|2

,

where Ã : Rn → R
n−1, Ã(x′, xn) = x′ is the orthogonal projection. Since Ψ(Φ(z)) = z for all

z ∈ R
n−1, where Ψ(z) = −z/

√
1− |z|2 and Φ(z) = −z/

√
1 + |z|2, it follows that

∇f(x′) = Ψ

(
−∇f(x′)√
1 + |∇f(x′)|2

)
= Ψ(Ã(¿(x′, f(x′)))) for x′ ∈ U .

This proves Lipschitz continuity of ∇f in U , as a composition of Lipschitz functions. The only
issue could be the Lipschitz continuity of Ψ: it is a smooth function defined for |z| < 1, but it is
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unbounded. However, this does not cause any problems here, because
∣∣∣∣∣

−∇f(x′)√
1 + |∇f(x′)|2

∣∣∣∣∣ f
M√

1 +M2
< 1.

□

Proof of Theorem 1.4. Let K ¢ R
n be a convex body. According to Lemma 3.3, for every ε > 0

there is ¶o > 0 such that for any ¶ ∈ (0, ¶o), Hn−1(∂K \ ∂K(¶)) < ε/2. Since K(¶) ¢ K, it is
easy to see that ÃK(δ)(∂K) = ∂K(¶), so ÃK(δ)(∂K \ ∂K(¶)) = ∂K(¶) \ ∂K and Lemma 2.1 yields

Hn−1(∂K(¶)\∂K) f Hn−1(∂K \∂K(¶)). Therefore, Hn−1(∂K△∂K(¶)) < ε. Since the boundary
of K(¶) is of class C1,1 by Lemma 3.8, W := K(¶) satisfies the claim of the theorem. □

The next result is a direct consequence of Theorem 1.4 and it is a version of Theorem 1.3. We
will use Corollary 3.10 in the proofs of Theorems 1.1, 1.3, and 1.5.

Corollary 3.10. Let f : Rn → R be a convex function. Then for every R > 0 and ε > 0, there
is a convex function g ∈ C1,1(Bn(0, R)) such that g g f and

|{x ∈ Bn(0, R) : f(x) ̸= g(x)}| < ε. (12)

Proof. Let M := supBn(0,2R) f(x) and define

W := {(x, y) ∈ Bn(0, 2R)× R : f(x) f y f M + 2R}.
That is, W is an (n + 1)-dimensional convex body bounded by the graph of f , the cylinder
∂Bn(0, 2R)× R and the hyperplane y = M + 2R. According to Lemma 3.3, there is ¶ < R such
that

Hn(∂W \ ∂W (¶)) < ε.

Since W (¶) is the union of closed balls of radius ¶ < R that are contained in W , it follows that

Bn(0, 2R)× {M +R} ¢ W (¶),

i.e., the intersection of W (¶) with the hyperplane y = M + R is an n-dimensional closed ball of
radius 2R. Thus, if Ã : Rn+1 → R

n is the orthogonal projection, Ã(W (¶)) = Bn(0, 2R), and hence
for x ∈ Bn(0, 2R), we can define

g(x) := inf{y : (x, y) ∈ W (¶)}.

That is, the function g : Bn(0, 2R) → R parametrizes the bottom part of the boundary of W (¶).

According to Lemma 3.8, the boundary of W (¶) is of class C1,1 so g ∈ C1,1
loc (B

n(0, 2R)) and hence
g is a convex function in C1,1(Bn(0, R)). Since W (¶) is contained in W and hence in the epigraph
of f , it follows that g g f .

Observe that

{x ∈ Bn(0, R) : f(x) ̸= g(x)} ¢ Ã(∂W \ ∂W (¶))

and hence

|{x ∈ Bn(0, R) : f(x) ̸= g(x)}| f |Ã(∂W \ ∂W (¶))| f Hn(∂W \ ∂W (¶)) < ε,

because the orthogonal projection does not increase the Hausdorff measure and Hn coincides with
the Lebesgue measure in R

n. □
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4. Proof of Theorem 1.1

Lemma 4.1. Suppose that f, g : Bn(0, R) → R are convex, f f g and g ∈ C1,1(Bn(0, R)). Then
for almost all xo ∈ {f = g} we have

f(x) = f(xo) +Df(xo)(x− xo) +
1

2
(x− xo)

TD2g(xo)(x− xo) + o(|x− xo|2). (13)

Remark 4.2. Note that D2g(xo) in (13) is not a typo. Also, we do not need the assumption
that g is convex or C1,1. With a small modification, the proof works under the assumption that
f f g ∈ C1 and Dg is differentiable at xo.

Proof. It follows from Lemma 3.5 that f is differentiable at every point of the set {f = g} and that
Df = Dg in {f = g}. Since Dg is Lipschitz continuous, Dg is differentiable a.e. by Rademacher’s
theorem. Therefore, it suffices to prove the result whenever xo ∈ {f = g} is a density point of
that set and Dg is differentiable at xo.

To simplify notation, without loss of generality, we may assume that xo = 0, and we need to
prove that

f(x)− f(0)−Df(0)x− 1

2
xTD2g(0)x = o(|x|2).

Since f(0) = g(0) and Df(0) = Dg(0), the left hand side equals

(f(x)− g(x)) +

(
g(x)− g(0)−Dg(0)x− 1

2
xTD2g(0)x

)
= (f(x)− g(x)) + o(|x|2).

We used here the fact that g is twice differentiable at 0 (Taylor’s theorem with the Peano remain-
der). Thus it remains to show that g(x)− f(x) = o(|x|2).

Since 0 is a density point of the set {f = g}, for any x we can find y ∈ {f = g} such that
|x− y| = o(|x|). For if not, there is ε > 0 and xk → 0 such that B(xk, ε|xk|) ∩ {f = g} = ∅ and
that contradicts the fact that 0 is a density point of {f = g}.

Clearly, f(y) = g(y) and Df(y) = Dg(y) by Lemma 3.5. Therefore,

f(x) g f(y) +Df(y)(x− y) = g(y) +Dg(y)(x− y),

where the inequality is a consequence of convexity of f . Since f f g, the above inequality and
(4) yield

0 f g(x)− f(x) f g(x)− g(y)−Dg(y)(x− y) f M |x− y|2 = o(|x|2).
The proof is complete. □

Proof of Theorem 1.1. Let f : Rn → R be convex. Let R > 0 and ε > 0 and let g be as in
Corollary 3.10. It follows from Lemma 4.1 that for almost all x ∈ {f = g}, (1) is satisfied with
D2f(x) := D2g(x). Hence (1) holds true in B(0, R) outside a set of measure less than ε. Since it
is true for any R > 0 and ε > 0, it follows that (1) is satisfied almost everywhere. □

5. Proof of Theorem 1.2

If f is twice differentiable at 0 as in (1), then we have

f(x) = f(0) +Df(0)x+
1

2
xTD2f(0)x+R(x) = f(0) +Df(0)x+ ïAx, xð+R(x),
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where A = 1
2D

2f(0) and R(x) = o(|x|2). Note that

a(r) := sup
0<|x|f2r

|R(x)|
|x|2 → 0 as r → 0+.

Moreover,

|R(x)| f a
( |x|

2

)
|x|2 f a(|x|)|x|2.

Proof of Theorem 1.2. Let f be twice differentiable at x as in (1). We need to prove (2). Without
loss of generality we may assume that x = 0, and hence we need to prove that

lim
x→0

Ãx −Df(0)−D2f(0)x

|x| = 0 for any Ãx ∈ ∂f(x).

For x, y ̸= 0, we have

f(x) = f(0) +Df(0)x+ ïAx, xð+R(x), f(y) = f(0) +Df(0)y + ïAy, yð+R(y).

Since f(x) + ïÃx, y − xð f f(y), we have

ïÃx, y − xð f f(y)− f(x) = Df(0)(y − x) + ïA(x+ y), y − xð+R(y)−R(x).

We used here the fact that A is symmetric and hence ïAx, yð = ïAy, xð. Let

y = x+ w, where w =
√

a(|x|) |x|z, |z| = 1.

Then

ïÃx, wð f Df(0)w + ïA(2x+ w), wð+R(y)−R(x),

ïÃx −Df(0)− 2Ax,wð f ïAw,wð+R(y)−R(x).

If |x| is sufficiently small, then a(|x|) f 1 and hence |w| f |x|, so |y| f 2|x|. Therefore,

|R(y)| f a
( |y|
2

)
|y|2 f 4a(|x|)|x|2, |R(y)−R(x)| f 5a(|x|)|x|2.

Taking the supremum over all z with |z| = 1 we get

|Ãx −Df(0)− 2Ax|
√
a(|x|)|x| f |A|a(|x|)|x|2 + 5a(|x|)|x|2,

and hence
|Ãx −Df(0)− 2Ax|

|x| f (|A|+ 5)
√

a(|x|) → 0 as x → 0.

Since 2A = D2f(0), the result follows. □

6. Proof of Theorem 1.3

One of the differences between Corollary 3.10 and Theorem 1.3 is that the function g in Corol-
lary 3.10 is defined on the ball Bn(0, R) only and the main step in the proof of Theorem 1.3 will
be to show that the function g can be extended from a ball Bn(0, R − ¶) to a convex function
of class C1,1(Rn). We will do it by gluing the function g with a quadratic function of the form
a|x|2 − b and we need to know how to glue convex functions while maintaining their smoothness.

The maximum of two convex functions

max{u, v} =
u+ v + |u− v|

2

is convex, but even if u, v ∈ C∞, the maximum max{u, v} need not be C1. To overcome this
difficulty, we will use the so called smooth maximum that was introduced in [2].
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Let ¹ ∈ C∞(R) be such that ¹(t) = |t| if and only if |t| g 1, ¹ is convex, ¹(t) = ¹(−t) for all t,
and 1-Lipschitz.

It easily follows that ¹(t) > 0 for all t and |¹′(t)| < 1 if and only if |t| < 1. Then, we define the
smooth maximum function M : R2 → R as,

M(x, y) :=
x+ y + ¹(x− y)

2
.

It is easy to see that M is smooth, convex and

M(x, y) = max{x, y} whenever |x− y| g 1. (14)

It is also not difficult to prove that M(x, y) is non-decreasing in x and y, because partial derivatives
of M are non-negative, see [2, Lemma 2.1(viii)]. This observation and convexity of M yield (see
[2, Proposition 2.2(i)])

Lemma 6.1. If u, v : U → R are convex functions defined in an open convex set U ¢ R
n, then

M(u, v) : U → R is convex.

It is also obvious that if u, v ∈ C1,1
loc (U), then M(u, v) ∈ C1,1

loc (U).

We will use the smooth maximum to prove the following extension result.

Proposition 6.2. Let h ∈ C1,1
loc (B

n(0, R)) be a convex function. Then, for every r ∈ (0, R), there
is a convex function H ∈ C1,1(Rn), such that

H(x) = h(x) whenever |x| f r. (15)

Remark 6.3. If h ∈ Ck, k ∈ N ∪ {∞}, then H ∈ Ck(Rn). The proof remains the same.

Proof. Choose Ä ∈ (r,R) and let

m := inf
|x|fr

h, M := sup
|x|=ρ

h.

Then, we can find a, b > 0 such that the function q(x) := a|x|2 − b satisfies

q(x) < m− 1 if |x| f r (16)

q(x) > M + 1 if |x| = Ä, (17)

and we define

H(x) :=

{
M(h(x), q(x)) if |x| f Ä,

q(x) if |x| > Ä.

It follows from (16) that h(x) > q(x) + 1 if |x| f r, so by (14), we have H(x) = M(h(x), q(x)) =
h(x) if |x| f r and the condition (15) is satisfied. It follows from (17) that there is ε > 0 such that
q(x) > h(x) + 1 if Ä f |x| f Ä+ ε and hence by (14), M(h(x), q(x)) = q(x) when Ä f |x| f Ä+ ε.

Therefore, the convex functions q(x) ∈ C1,1(Rn) and M(h(x), q(x)) ∈ C1,1
loc (B

n(0, R)) coincide in

the annulus Ä f |x| f Ä+ ε and hence H is convex in R
n with H ∈ C1,1

loc (R
n). Since H = q ∈ C1,1

outside the compact ball Bn(0, Ä), it follows that H ∈ C1,1(Rn). □

Proof of Theorem 1.3. Let R > 0 be such that |A \Bn(0, R)| < ε/2. According to Corollary 3.10
there is a convex function g̃ ∈ C1,1(Bn(0, 2R)) such that

|{x ∈ Bn(0, 2R) : f(x) ̸= g̃(x)}| < ε

2
.
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Now, Proposition 6.2 yields a convex function g ∈ C1,1(Rn) such that g(x) = g̃(x) for x ∈ Bn(0, R)
and we have

|{x ∈ A : f(x) ̸= g(x)}| f |A \Bn(0, R)|+ |{x ∈ Bn(0, R) : f(x) ̸= g̃(x)}| < ε.

□

7. Proofs of Theorems 1.5, 1.6 and 1.8

This section is less self-contained than the others. The proof of the implication (1) ⇒ (2) in
Theorem 1.5 is easy and we will not show it here; see [5, Proposition 1.10 and Theorem 2.5]. The
implication (2) ⇒ (1) in Theorem 1.5 is equivalent to the following result.

Theorem 7.1. Let f : Rn → R be a convex function such that lim|x|→∞ f(x) = +∞. Then for

every ε > 0 there exists a convex function g : Rn → R of class C1,1
loc (R

n) such that g g f and
|{x ∈ R

n : f(x) ̸= g(x)}| < ε.

Next, we give a proof of Theorem 7.1 that greatly simplifies the one provided by [5]. Its main
ingredients are Corollary 3.10 above and the following lemma (whose elementary proof can be
found in [3, Lemma 5.3], which in turn is a refinement of the result of [12]).

Lemma 7.2. Let φ : Rn → R be a continuous function such that lim|x|→∞ φ(x) = +∞ and such
that for every R > 0 there exists CR > 0 so that for every x, h ∈ Bn(0, R) we have

φ(x+ h) + φ(x− h)− 2φ(x) f CR|h|2.
Then the function F = conv(φ) has a similar property: for every R > 0 there exists C ′

R > 0 such
that for every x, h ∈ Bn(0, R) we have

F (x+ h) + F (x− h)− 2F (x) f C ′
R|h|2.

Therefore F ∈ C1,1
loc (R

n).

Here conv(φ) denotes the convex envelope of φ, defined as the supremum of all convex functions
less than or equal to φ.

Proof of Theorem 7.1. By Corollary 3.10, for every k ∈ N we can find a convex function gk ∈
C1,1(Bn(0, 2k)) such that f f gk and

|{x ∈ Bn(0, 2k) : f(x) ̸= gk(x)}| < ε/2k.

For every k ∈ N, let ¹k : (k − 2, k + 1) → [0,∞) be a C∞ convex function such that:

(1) ¹k(t) = 0 iff k − 1 f t f k;
(2) limt→(k−2)+ ¹k(t) = +∞, and
(3) limt→(k+1)− ¹k(t) = +∞.

Define φk : Rn → (−∞,+∞] by

φk(x) = gk(x) + ¹k(|x|) if k − 2 < |x| < k + 1, and φk(x) = +∞ otherwise.

When n g 2 and k g 2, the function φk is not convex, but we do not need it to be.

Note that φk(x) = gk(x) on the annulus Ak := {x : k− 1 f |x| f k} (or ball in the special case
k = 1), and consider φ : Rn → R defined by φ(x) = infk∈N φk(x). It is clear that

f f φ on R
n, and φ f gk on Ak, for each k ∈ N,
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and in particular lim|x|→∞ φ(x) = +∞, though φ is finite everywhere. As a matter of fact, it is
easily seen that φ is locally the minimum of at most three continuous functions, and therefore it
is continuous on R

n. More precisely, for each k ∈ N we have that

φ(x) = min{φk−1(x), φk(x), φk+1(x)} for every x ∈ Ak.

Moreover, since lim|x|→k− φk−1(x) = +∞ = lim|x|→k+ φk+2(x) and φk and φk+1 are bounded and

C1,1 on a neighborhod of the sphere {x : |x| = k}, there exist some Mk, ¶k > 0 such that φ(x) =
min{φk(x), φk+1(x)} and φj(x+ h) + φj(x− h)− 2φj(x) f Mk|h|2 for all k − ¶k f |x| f k + ¶k,
|h| f ¶k, and j = k, k + 1. These inequalities easily follow from (4). This implies that

φ(x+ h) + φ(x− h)− 2φ(x) f Mk|h|2

for all k − ¶k f |x| f k + ¶k, and |h| f ¶k. Similarly, there exist M ′
k, ¶

′
k > 0 such that φ(x) =

min{φk−1(x), φk(x), φk+1(x)} and φj(x+h)+φj(x−h)−2φj(x) f M ′
k|h|2 for all k−1+¶k−1−¶′k f

|x| f k − ¶k + ¶′k, |h| f ¶′k, and j = k − 1, k, k + 1, implying that

φ(x+ h) + φ(x− h)− 2φ(x) f M ′
k|h|2

for all k− 1+ ¶k−1 − ¶′k f |x| f k− ¶k + ¶′k, and |h| f ¶′k. Since every ball is contained in a finite
union of sets Ak, these estimates imply that for every R > 0 there exist CR > 0 and ¶R > 0 so
that for every x ∈ Bn(0, R) and |h| < ¶R we have

Eh(x) := φ(x+ h) + φ(x− h)− 2φ(x) f CR|h|2. (18)

On the other hand, for ¶R f |h| f R, we obviously have Eh(x) f 4M f C̃R|h|2, where M :=

supz∈B(0,2R) φ(z) and C̃R = 4M/¶2R. So by replacing CR with max{CR, C̃R} we certainly have

φ(x+ h) + φ(x− h)− 2φ(x) f CR|h|2 for all x, h ∈ Bn(0, R). (19)

Therefore, (19) and Lemma 7.2, imply that the function g := conv(φ) is of class C1,1
loc (and it

obviously satisfies f f g f φ). Since |{x ∈ Bn(0, 2k) : f(x) ̸= gk(x)}| < ε/2k and f f g f φ f gk
on Ak, it follows that |{x ∈ Ak : f(x) ̸= g(x)}| < ε/2k for every k ∈ N, which implies that
|{x ∈ R

n : f(x) ̸= g(x)}| f ε. □

Proof of Theorem 1.6. For the proof of the implication (1)⇒(2), see [5, Corollary 1.13]. Regarding
the implication (2)⇒(1), the same proof as in [5, Corollary 1.13] gives us a (possibly unbounded)
convex body Wε with boundary Sε such that Wε =

1
t0
g−1(−∞, t0] for some t0 ∈ (1, 2) and some

convex function g ∈ C1,1
loc (R

n) such that Hn−1(S \ Sε) < ε/2, S = ∂W , and µ f g, where µ is the
Minkowski functional of W , hence Wε ¢ W .

Now it suffices to show that ÃWε
(S) = Sε,

1, where ÃWε
is the nearest point projection defined

in (6), because this fact and Lemma 2.1 will imply Hn−1(Sε \ S) f Hn−1(S \ Sε), and hence
Hn−1 (Sε△S) < ε.

Therefore, it remains to show that if x ∈ Sε, then there is z ∈ S such that ÃWε
(z) = x. Let ¿(x)

be the unit outward normal to Sε at x. It suffices to show that the ray Rx := {x+ t¿(x) : t g 0}
intersects S at some point z, because clearly, ÃWε

(z) = x. Suppose to the contrary that Rx

does not intersect with S i.e. Rx ¢ intW . The tangent hyperplane to Sε at x is defined by
Tx := {x + v : ïv, ¿(x)ð = 0} and clearly Sε ∩ Fx = ∅, where Fx := {x + v : ïv, ¿(x)ð > 0}
is an open half-space bounded by Tx. Since x ∈ intW , there is ¶ > 0 such that D2δ ¢ intW ,
where D2δ := {x + v ∈ Tx : |v| < 2¶} is the ball in Tx centered at x and of radius 2¶. Since
D2δ ∪Rx ¢ intW , it follows from the convexity of W that Cx ¢ intW , where Cx := {p+ t¿(x) :
p ∈ ∂Dδ, t > 0} is the side surface of a half-cylinder.

1This is very easy if W is bounded and we used this fact in the proof of Theorem 1.4.
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Since S does not contain any line, it follows that W does not contain any line (cf. the argument
at the beginning of the proof of Theorem 1.8). Therefore, for any p ∈ Rx, and any unit vector v
parallel to Tx, the lines Lp,v := {p + tv : t ∈ R} must intersect S at least at one point. Denote
all such points in S by A. Since A ¢ Fx, Fx ∩ Sε = ∅, we have that A ¢ S \ Sε. It is easy to
see that Hn−1(A) = ∞ and hence Hn−1(S \ Sε) = ∞ which is a contradiction. To show that
Hn−1(A) = ∞, note that the radial projection Ã of A onto Cx along lines Lp,v is 1-Lipschitz
and hence Hn−1(A) g Hn−1(Ã(A)). Now, for each two antipodal points in each sphere of radius
¶ in Cx that is parallel to Tx, at least one belongs to Ã(A). The mapping Φ : Cx → Cx that
maps points in Cx to antipodal points is an isometry of Cx. Hence Hn−1(Ã(A)) = Hn−1(Φ(Ã(A)).
Therefore,

2Hn−1(A) g 2Hn−1(Ã(A)) g Hn−1(Ã(A) ∪ Φ(Ã(A))) = Hn−1(Cx) = ∞.

The proof is complete. □

Proof of Theorem 1.8. If an unbounded convex body V contains a line L, then since V is closed,
it is easy to see that V contains all lines parallel to L that intersect with V . In particular ∂V is
the union of lines parallel to L.

(2)⇒(1). Let us define Vf as the closure of the epigraph of f , then Vf is an unbounded convex body
in R

n+1. Since the graph of f does not contain a line, ∂Vf does not contain any line and we may

apply Theorem 1.6 and Remark 1.7 to find a C1,1
loc

convex body W ¦ Vf such that Hn(∂Vf \∂W ) <
ε. Since the projection Ã : Rn×R → R

n is 1-Lipschitz, it follows that g(x) := inf{y : (x, y) ∈ W}
is a C1,1

loc
convex function such that g g f , |{x ∈ U : g(x) ̸= f(x)}| < ε. Note that g is finite

on all of U . Indeed, let A := {x ∈ U : g(x) < ∞}; we understand that g(x) = ∞ if the line
{(x, t) : t ∈ R} does not intersect W . The set A is convex because W is convex. If A ̸= U then,
for some x0 ∈ U , some number c and some linear function ℓ : Rn → R, we have ℓ(x0) g c g ℓ(x)
for all x ∈ A, implying that for all x ∈ U ∩ ℓ−1(c,∞) the vertical line {(x, t) : t ∈ R} does not
intersect W . But it is easy to see that the set ∂Vf ∩ {(x, t) : x ∈ U ∩ ℓ−1(c,∞)} has infinite
Hausdorff n-dimensional measure, therefore it must intersect ∂W . Hence g(x) = f(x) < ∞ for
some x ∈ U ∩ ℓ−1(c,∞), a contradiction.

(1)⇒(2). Suppose to the contrary that f satisfies (1) and that the graph of f contains a line L.
Then, as we observed above, the graph of f is the union of lines parallel to L. Thus, U is the
union of lines parallel to Ã(L) and clearly, f is affine on each such a line. Now, an argument
similar to the proof of [5, Proposition 1.10] yields that if g : U → R is a convex function such

that |{x : f(x) ̸= g(x)}| < ∞, then g = f . Hence g ̸∈ C1,1
loc , because f ̸∈ C1,1

loc and we arrive to a
contradiction with (1). □
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