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Abstract. We prove that if u : Rn → R is strongly convex, then for every ε > 0 there is
a strongly convex function v ∈ C2(Rn) such that |{u ̸= v}| < ε and ∥u− v∥∞ < ε.

1. Introduction

It has been known for at least thirty years, that convex functions have the C2-Lusin
property, meaning that if u : Rn → R is convex, then for every ε > 0, there is a function
v ∈ C2(Rn) such that |{u ̸= v}| < ε, see [1, 11, 13]. Here |A| denotes the Lebesgue measure
of A. We also say that v is a Lusin approximation of u.

In fact, this result is not particularly difficult. Using Alexandrov’s theorem about the
second order diffierentiability of u, one can show that there is a closed set E contained in
the set where u is twice differentiable, with the complement of small measure, |Rn \E| < ε,
and such that the functions (u|E, Du|E, D

2u|E) satisfy the assumptions of the C2-Whitney
extension theorem. Since however, the Whitney extension theorem does not preserve
convexity, the resulting function v ∈ C2(Rn) that approximates u in the Lusin sense is
not convex. In fact, in general, one cannot find such convex v ∈ C2(Rn). Here is an easy
counterexample: If u : R2 → R, u(x, y) = |x|, then the only convex function v : R2 → R

such that |{u ̸= v}| < ∞, is v = u. For this and other examples, see [5]. In all the
examples the problem is caused by the fact that the graph of u contains a line, see [4,
Theorem 1.8], [5, Proposition 1.10].

The problem of approximating a convex function by C2-convex functions in the Lusin
sense has remained unresolved since the nineties. It was natural to expect a positive an-
swer in the case of strongly convex functions or, more generally, locally strongly convex
functions. The motivation for considering this class of functions partly stems from the
celebrated work of Greene and Wu [15], who proved that locally strongly convex functions
on Riemannian manifolds (referred to as strictly convex by Greene and Wu) can be uni-
formly approximated by C∞ locally strongly convex functions. However, it is essential to
emphasize that the methods employed by Greene and Wu offer no insight into the problem
of Lusin approximation and, in fact, play no role in our paper.
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Recall that a function u : U → R is strongly convex, where U ¦ R
n is open and convex,

if there exists η > 0 such that u(x) − η
2
|x|2 is convex. In this case, we say that u is η-

strongly convex. Moreover, u is locally strongly convex whenever, for every x ∈ U , there
exists rx > 0 such that the restriction of u to B(x, rx) ¢ U is strongly convex. Note that
strongly convex functions cannot contain lines on their graphs because they are coercive,
i.e., u(x) → ∞ as |x| → ∞. This excludes the counterexamples discussed above.

The main result of the paper is as follows.

Theorem 1.1. Let U ¦ R
n be open and convex, and u : U → R be locally strongly convex.

Then for every εo > 0 and for every continuous function ε : U → (0, 1] there is a locally
strongly convex function v ∈ C2(U), such that

(a) |{x ∈ U : u(x) ̸= v(x)}| < εo;
(b) |u(x)− v(x)| < ε(x) for all x ∈ U ;
(c) Hn (Gu△Gv) < εo.

Also, if u is η-strongly convex on U , then for every η̃ ∈ (0, η) there exists such a function
v which is η̃-strongly convex on U .

Here, Hn denotes Hausdorff n-dimensional measure, Gu stands for the graph of a function
u, and A△B is the symmetric difference of the sets A and B, that is, A△B := (A \ B) ∪
(B \ A).

The next result is an immediate consequence of Theorem 1.1.

Corollary 1.2. Let u : Rn → R be η-strongly convex. Then for every ε > 0 and every
0 < η̃ < η, there is an η̃-strongly convex function v ∈ C2(Rn), such that

|{x ∈ R
n : u(x) ̸= v(x)}| < ε and ∥u− v∥∞ < ε.

Let us mention a related result that was proved in [5, Theorem 1.12]:

Theorem 1.3. If u : Rn → R is convex and coercive, then for every ε > 0, there is a
convex function v ∈ C1,1

loc (R
n) such that |{x ∈ R

n : u(x) ̸= v(x)}| < ε.

C1,1
loc is the class of functions with locally Lipschitz continuous gradient. In fact due to the

counterexamples mentioned above, the coercivity assumption cannot really be removed: it
was proved in [5], that the existence of Lusin approximation by convex C1,1

loc functions as
in Theorem 1.3 is equivalent to essential coercivity of u. This along with other results in
[5] and [4, Theorem 1.9] provide a complete answer to the problem of Lusin approximation
by convex C1,1 and C1,1

loc functions.

To the best of our knowledge Theorem 1.3 was the first result in the literature towards
a positive answer to the question about Lusin approximation by convex functions.

The original proof of Theorem 1.3 was rather difficult and it was based on a character-
ization of C1,1

loc -convex Whitney jets [2, Theorem 1.3]. However, no results are known for
the C2-convex Whitney jets.
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A much simpler and more geometric proof of Theorem 1.3 was obtained in [4]. There are
many geometric conditions that imply C1,1 regularity of a convex function. For example
it is known that a compact convex body W (i.e. a compact convex set with non-empty
interior) has boundary of class C1,1 if and only if there is r > 0 such that W is the union
of closed balls of radius r. This result was used in a simple proof of Theorem 1.3 presented
in [4]. However, we are not aware of any simple geometric conditions that would imply
that a convex function is of class C2.

No methods like those available for C1,1-convex functions that were used in [5, 4] are
available for C2-convex functions. That makes Theorem 1.1 much more difficult.

In fact our proof of Theorem 1.1 relies on Theorem 1.3 in an essential way. It allows us
to assume early in the proof that u ∈ C1,1

loc . Then the main work is focused on showing

how to upgrade from C1,1
loc to C2. This argument is new and unrelated to methods used in

the proof of Theorem 1.3.

We say that a subset W of Rn is a locally strongly convex body if W is closed and convex,
with nonempty interior, and ∂W can be locally represented (up to a suitable rotation) as
the graph of a strongly convex function. See [20] for other equivalent characterizations of
locally strongly convex bodies.

Theorem 1.4. Let W ¢ R
n be a locally strongly convex body (not necessarily compact),

ε > 0, and the set V £ ∂W be open. There exists a C2 locally strongly convex body Wε,V

such that Hn−1(∂Wε,V△ ∂W ) < ε and ∂Wε,V ¢ V . Moreover, if W is compact, then Wε,V

is compact as well.

If W is unbounded, then after a suitable rotation, ∂W can be represented as a graph of
a locally strongly convex function [6] and the result follows from Theorem 1.1. However,
if W is compact, the result is more difficult. It was shown in [4, 5] how to prove a related
C1,1 approximation of convex bodies from Theorem 1.3. The main idea was to apply
Theorem 1.3 to the Minkowski functional of W . One can prove that if W is a compact
locally strongly convex body, and µW is the Minkowski functional ofW , then µ2

W is strongly
convex. Then, a suitable adaptation of methods in [4, 5] along with Theorem 1.1 yield
Theorem 1.4. Details of the proof are, however, quite technical and they will be published
elsewhere.

Except for Theorem 1.3 recalled in the Introduction, we use a convention that the names
“Theorem” and “Proposition” are reserved for new results, while well-known results and
results of technical character are called “Lemma”. “Corollary” will be used for both new
and known results, but it will be clear from the context which corollaries are new results.

The paper is structured as follows. In Section 2 we outline the main idea of the proof
of Theorem 1.1. In Section 3 we collect technical tools that are needed in the proof of
Theorem 1.1. The results are carefully stated and provide ready to use tools. The reader
might browse though this section quickly and focus on reading Section 4 that is devoted
to the proof of Theorem 1.1. This should give them a motivation for detailed reading of
Section 3 that otherwise, is a collection of unrelated results.
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1.1. Notation. The Lp norm will be denoted by ∥u∥p,E = (
∫
E
|u|p dx)1/p. We will also

write ∥·∥p if the choice of E is obvious. The same convention applies to p = ∞ and Sobolev
norms discussed below. Lp

loc(Ω), where Ω ¢ R
n is open, denotes the space of functions

that belong to Lp(B) on every ball B whose closure is contained in Ω, B ò Ω. Similar
notation applies to Sobolev spaces discussed below. Lebesgue measure of a set E will be
denoted by |E|. The integral average over a ball will be denoted by the barred integral∫
B
u dx := |B|−1

∫
B
u dx. The Lipschitz constant of a function u will be denoted by Lip(u).

The scalar product on R
n will be denoted by ïu, vð. By writing un ⇒ u we will mean that

un converges uniformly to u. Ec := R
n \ E will denote the complement of a set E. By

∇mu we will denote the vector whose components are all partial derivatives Dαu, |α| = m.

|A| :=
√

tr(ATA) will stand for the Hilbert-Schmidt norm of a matrix A. C will denote a
generic constant and its value may change from line to line. By writing C = C(n,m) we
indicate that the constant depends on parameters n and m only. N will denote the set of
positive integers.

2. Outline of the proof of Theorem 1.1

In this section we describe the main ideas in the proof of Theorem 1.1. Throughout the
following discussion, we use ε to represent a small positive constant; its value may vary
from one line to another. Since we focus on clarity in this overview, some of the details
may be oversimplified.

We begin with the special case that is stated in Lemma 4.1: If u : Rn → R is strongly
convex, then there is a strongly convex v ∈ C2(Rn) such that |{u ̸= v}| < ε.

As a consequence of Theorem 1.3, we may assume that u ∈ C1,1
loc (R

n), and hence, u

belongs to any Sobolev spaces W 2,p
loc (R

n) for 1 f p f ∞. In Proposition 3.12, we decompose
R

n into annuli where we approximate u by its convolution; we patch these approximations
together with a smooth partition of unity to produce a strongly convex function ũ ∈
C∞(Rn) satisfying u− ũ ∈ W 2,1(Rn) and ∥u− ũ∥2,1 < ε.

The function ũ need not agree with u, but we can use the small magnitude of ∥u−ũ∥2,1 to
prove there exists w ∈ C2(Rn) with small seminorm ∥∇2w∥∞ satisfying |{w ̸= u− ũ}| < ε.
Then we have v := w+ ũ ∈ C2, a strongly convex function by Lemma 3.8, and |{v ̸= u}| =
|{w ̸= u− ũ}| < ε. Finding w is tricky:

First, let û := u − ũ ∈ W 2,1(Rn), so ∥û∥2,1 < ε. Pointwise inequalities from [8, 9] (see
Corollary 3.15) imply that

|û(y)− û(x)−Dû(x)(y − x)|

|y − x|2
+

|Dû(y)−Dû(x)|

|y − x|
f C

(
M|∇2û|(x) +M|∇2û|(y)

)
,

where Mg is the Hardy-Littlewood maximal function. We choose λ > 0 large enough that

Eλ := {M|∇2û| f λ} satisfies |Rn \ Eλ| < ε.

Then û restricted to Eλ satisfies the assumptions of the W 2,∞-Whitney extension theorem
(Lemma 3.16); thus, there exists ŵ ∈ W 2,∞(Rn) ¢ C1,1(Rn) satisfying ŵ|Eλ

= û|Eλ
, and

|{ŵ ̸= û}| f |Rn \ Eλ| < ε.
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We let v̂ := ŵ+ ũ ∈ C1,1
loc . Even though v̂ has the same regularity as u, we have |{v̂ ̸= u}| =

|{ŵ ̸= u− ũ}| < ε. Further, we are able to use our control of ∥û∥2,1, to control ∥∇2ŵ∥∞,
and in a delicate iterative procedure (carefully explained in the proof of Proposition 3.20),
we produce a series of C∞ functions that converge in the W 2,∞ norm to a function w that
has small seminorm ∥∇2w∥∞ and satisfies that |{w ̸= u − ũ}| < ε. In particular, the
function w ∈ C2, because functions in the closure of C∞ in the W 2,∞ norm are of class C2.
By letting v := w + ũ be our approximation for u, we complete the proof of Lemma 4.1.

In Theorem 1.1, we extend this result to approximation of locally strongly convex func-
tions on a convex domain U , where in addition to the Lusin property (a) we have the
uniform approximation (b) ((c) follows easily from (a) and the local Lipschitz continuity
of convex functions). This adds another layer of difficulty. We represent U as the union of
an increasing sequence of convex bodies

Bk ¢ int(Ck) ¢ Ck ¢ int(Bk+1),
∞⋃

k=1

Bk = U.

Using Corollary 3.6, we extend u from Bk\Ck−1 to a strongly convex function uk : R
n → R.

Then, we approximate each uk by a strongly convex function hk ∈ C2(Rn) using Lemma 4.1.
We glue the functions hk using the smooth maxima described in Lemma 3.11, so that the
resulting function v ∈ C2(Ω) equals hk on Bk \ Ck−1. This function v satisfies (a)-(c) of
Theorem 1.1.

3. Preliminaries for the proof of Theorem 1.1

3.1. Smooth and Sobolev functions. Let Ω ¢ R
n be open, m ∈ N, and 1 f p f ∞.

Cm(Ω) is the space of functions on Ω that are continuously m-times differentiable and
C∞

0 (Ω) is the space of compactly supported smooth functions. Cm,1(Ω) is the subspace
of Cm(Ω) consisting of functions u such that the derivatives Dαu, |α| = m, are Lipschitz
continuous on Ω, and Cm,1

loc (Ω) is the space of functions whose derivatives of order m are
locally Lipschitz continuous in Ω.

We will use only standard facts from the theory of Sobolev spaces. For more details and
proofs of results listed here, see e.g. [12].

Wm,p(Ω) is the Sobolev spaces of functions whose weak derivatives satisfy

∥u∥m,p,Ω :=
∑

|α|fm

∥Dαu∥p,Ω <∞.

As explained above, for a measurable set E ¢ Ω we will write

∥u∥m,p,E :=
∑

|α|fm

∥Dαu∥p,E.

However, ∥D2u∥p will be the Lp norm of |D2u| i.e., ∥D2u∥p = ∥(
∑

|α|=2 |D
αu|2)1/2∥p.

Clearly, ∥D2u∥p f ∥u∥2,p.
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If Ω ¢ R
n is convex, then Wm,∞(Ω) ¢ Cm−1,1(Ω). Indeed, convexity of Ω implies that

W 1,∞(Ω) coincides with the space of bounded Lipschitz continuous functions on Ω and
hence if u ∈ Wm,∞(Ω), and |α| = m− 1, then Dαu ∈ W 1,∞(Ω) is Lipschitz continuous.

Note that Wm,∞(Ω) ∩ Cm(Ω) is a closed subspace of Wm,∞(Ω). Indeed, if {uk}k ¢
Wm,∞ ∩ Cm(Ω) is a Cauchy sequence with respect to the norm ∥ · ∥m,∞, all derivatives
Dαuk, |α| f m converge uniformly on Ω and hence the limiting function belongs to Cm(Ω).

We also define Wm(Ω) := Wm,1(Ω) ∩Wm,∞(Ω). Thus u ∈ Wm(Ω) if Dαu ∈ Lp(Ω) for
all 1 f p f ∞ and all |α| f m. Indeed, this is a direct consequence of an elementary fact
that L1 ∩ L∞ ¢ Lp for all 1 f p f ∞.

3.2. Mollifiers. By a mollifier we will mean a compactly supported smooth function ϕ ∈
C∞

0 (B(0, 1)) such that ϕ g 0 and
∫
Rn ϕdx = 1. Then for ε > 0 we set ϕε(x) = ε−nϕ(x/ε).

The following facts are well known and easy to prove.

If u ∈ Wm,p(Rn), then uε := ϕε ∗ u ∈ C∞(Rn) satisfy

∥u− uε∥m,p
ε→0+
−→ 0 if 1 f p <∞ (1)

and

∥uε∥m,p f ∥u∥m,p if 1 f p f ∞. (2)

It is also easy to show that ∥D2uε∥∞ f ∥D2u∥∞.

3.3. Convex functions. For a function u : U → R defined on an open and convex set
U ¦ R

n and x ∈ U , we define the subdifferential ∂u(x) as the set of all v ∈ R
n such that

u(y) g u(x) + ïv, y − xð for all y ∈ U . If A ¢ U , then we write ∂u(A) =
⋃

x∈A ∂u(x).

It is well known that u is convex if and only if ∂u(x) ̸= ∅ for all x ∈ U .

The next result is an easy exercise.

Lemma 3.1. Let u : U → R be a convex function defined on an open and convex set
U ¦ R

n. If G ò U is open, then supξ∈∂u(G) |ξ| f Lip(u|G).

We will also need the following results.

Lemma 3.2. Let U ¦ R
n be open and convex, and ui : U → R be a sequence of convex

functions. Assume that the sequence (ui) converges pointwise on a dense subset of U .
Then there is a convex function u : U → R such that ui ⇒ u converges uniformly on every
compact subset of U .

For a proof, see [18, Theorem 10.8].

Lemma 3.3. Let U ¦ R
n be open and convex, u : U → R

n be a convex function, and
A,B ¢ U be compact convex bodies such that A ¢ int(B). Then,

Lip(u|A) f
MB(u)−mB(u)

dist(∂A, ∂B)
, (3)

where MB(u) := maxx∈B u(x), and mB(u) := minx∈B u(x).
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Proof. Let x, y ∈ A, x ̸= y. Without loss of generality, we may assume that u(y) g u(x).
Then, there exists z ∈ ∂B such that y belongs to the segment with the endpoints x and z,
and we have

u(y)− u(x)

|y − x|
f
u(z)− u(x)

|z − x|
f
MB(u)−mB(u)

dist(∂A, ∂B)
,

implying (3). □

3.4. Strongly convex functions. Let U ¦ R
n be open and convex. We say that a

function u : U → R is η-strongly convex, where η > 0 is a constant, if the function
u(x) − η

2
|x|2 is convex. A function is strongly convex if it is η-strongly convex for some

η > 0.

Lemma 3.4. Let u : U → R be a convex function defined on an open and convex set
U ¦ R

n. Then u is η-strongly convex if and only if

u(y) g u(x) + ïξ, y − xð+
η

2
|y − x|2 (4)

for all x, y ∈ U and ξ ∈ ∂u(x).

Proof. Let v(x) = u(x)− η
2
|x|2 and note that (4) is equivalent to

v(y) g v(x) + ïξ − ηx, y − xð. (5)

To prove the implication ⇐, let u : U → R be convex and satisfy (4) or equivalently (5).
This implies that ξ − ηx ∈ ∂v(x) so ∂v(x) ̸= ∅ for all x ∈ U , and hence v is convex i.e., u
is η-strongly convex. It remains to prove the implication ⇒. Let u : U → R be η-strongly
convex, let x, y ∈ U and let ξ ∈ ∂u(x). We need to prove (4) or equivalently, (5). Let
z ∈ U . Subtracting the identity

η

2
|z|2 =

η

2
|x|2 + ïηx, z − xð+

η

2
|z − x|2

from the inequality u(z) g u(x) + ïξ, z − xð, yields

v(z) g v(x) + ïξ − ηx, z − xð −
η

2
|z − x|2. (6)

The function

h(z) := v(z)− ïξ − ηx, z − xð

is convex and (6) is equivalent to

h(z) g h(x)−
η

2
|z − x|2. (7)

For t ∈ (0, 1), let z = x+ t(y − x). Then (7) and convexity of h yield

th(y) + (1− t)h(x) g h(x+ t(y − x)) g h(x)−
η

2
|t(y − x)|2

i.e., h(x) − h(y) f tη
2
|y − x|2. Letting t → 0+ gives h(y) g h(x), which is precisely

inequality (5). □

Remark 3.5. The above proof of (⇐) also shows that if (4) holds for all x, y ∈ U and
some ξ ∈ ∂u(x), then u is η-strongly convex, and therefore, by the proof of (⇒), (4) is
also true for all ξ ∈ ∂u(x).
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As a corollary we obtain a result about the minimal η-strongly convex extension from a
compact set.

Corollary 3.6. Let u : U → R be an η-strongly convex function defined on an open and
convex set U ¦ Rn. If K ¢ U is compact, then the function ũ : Rn → R defined by

ũ(x) := sup
z∈K,ξz∈∂u(z)

{
u(z) + ïξz, x− zð+

η

2
|x− z|2

}
(8)

is η-strongly convex, and such that

(a) ũ(x) = u(x) for all x ∈ K,
(b) ũ(x) f u(x) for all x ∈ U .

Proof. It follows from Lemma 3.1 and Lemma 3.3 that ∂u(K) is bounded. This implies
that ũ(x) is finite for every x ∈ R

n. The function ũ(x)− η
2
|x|2 is convex as the supremum

of a collection of affine functions so ũ is η-strongly convex. Finally, Lemma 3.4 implies
that u(x) g ũ(x) for all x ∈ U which is (b), and taking z = x ∈ K and any ξz ∈ ∂u(z) in
(8) yields ũ(x) g u(x) for x ∈ K so ũ(x) = u(x) for all x ∈ K which is (a). □

3.5. Smooth strongly convex functions. Note that if u ∈ C2(U), then u is η-strongly
convex if and only if

D2u(x) g η for all x ∈ R
n,

meaning that

ξTD2u(x)ξ :=
n∑

i,j=1

∂2u

∂xi∂xj
(x)ξiξj g η|ξ|2 for all x, ξ ∈ R

n. (9)

Lemma 3.7. Let u : Rn → R be convex and uε := u∗ϕε, where ϕ is a mollifier and ε > 0.
Then

(a) uε is convex,
(b) If u is η-strongly convex, then uε is η-strongly convex too.

Proof. (a) Multiplying the inequality u((tx+ (1− t)y)− z) f tu(x− z) + (1− t)u(y − z),
t ∈ [0, 1], by ϕε(z) and integrating over Rn yields uε(tx+ (1− t)y) f tuε(x) + (1− t)uε(y).

(b) Suppose first that u ∈ C∞(Rn) is η-strongly convex. Then (9) is satisfied and hence

ξTD2uεξ = (ξTD2u ξ) ∗ ϕε g η|ξ|2.

This proves η-strong convexity of uε in the smooth case.

In particular, if g(x) = η
2
|x|2, then

ξTD2gεξ g η|ξ|2.

Assume now that u is any η-strongly convex function. Then (u− g)ε = uε − gε is convex
by (a) and hence

ξTD2(uε − gε)ξ g 0, ξTD2uεξ g ξTD2gεξ g η|ξ|2.

This proves η-strong convexity of uε in the general case. □
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Lemma 3.8. If u : Rn → R is η-strongly convex, 0 < η̃ < η, and f ∈ C2(Rn) satisfies

nmax
|α|=2

∥Dαf∥∞ f η − η̃,

then u+ f is η̃-strongly convex.

Proof. The following elementary estimate

|vTD2f v| f (η − η̃)|v|2, v ∈ R
n,

implies that the function f(x) + η−η̃
2
|x|2 is convex. Therefore,

(u(x) + f(x))−
η̃

2
|x|2 =

(
u(x)−

η

2
|x|2
)
+
(
f(x) +

η − η̃

2
|x|2
)

is convex. □

3.6. C1,1 approximation of strongly convex functions. We say that a function u :
R

n → R is coercive if
lim

|x|→∞
u(x) = ∞.

Note that strongly convex functions are coercive. Indeed, convex functions are bounded
from below by affine functions (supporting hyperplanes) and hence strongly convex func-
tions are bounded from below by quadratic functions.

The following result is a straightforward consequence of [5, Theorem 1.12]. For a geo-
metric and a much simpler proof, see [4].

Lemma 3.9. If u : Rn → R is convex and coercive, then for every ε > 0, there is a convex
function v ∈ C1,1

loc (R
n) such that1 |{x ∈ R

n : u(x) ̸= v(x)}| < ε.

Corollary 3.10. If u : R
n → R is η-strongly convex, then for every 0 < η̃ < η and

every ε > 0, there is a η̃-strongly convex function v ∈ C1,1
loc (R

n), such that v g u and
|{x ∈ R

n : u(x) ̸= v(x)}| < ε.

Proof. The function ũ(x) = u(x) − (η̃/2)|x|2 is strongly convex and hence coercive. Ap-
plying Lemma 3.9 to that function yields a convex function ṽ ∈ C1,1

loc satisfying ṽ g ũ and
|{ũ ̸= ṽ}| < ε. Therefore, v = ṽ + (η̃/2)|x|2 satisfies the claim of the corollary. □

3.7. Smooth maximum. The material of this subsection is based on [3]. The maximum
of two convex functions max{u, v} = (u + v + |u − v|)/2 is convex, but not necessarily
differentiable, even if u, v ∈ C∞. The next construction provides a modified notion of the
maximum that preserves smoothness and convexity.

For any constant δ > 0, we define

Mδ(x, y) :=
x+ y + θ(x− y)

2
, (x, y) ∈ R

2,

where θ = θδ : R → (0,∞) is a C∞ function such that θ(t) = |t| if and only if |t| g δ, and
θ is convex and symmetric. It follows that Mδ : R

2 → R is convex.

1Although the proof of [5] implicitly yields v g u, this useful additional property is explicitly stated and
proved in [4].
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For functions u, v : U ¦ R
n → R, we define the smooth maximum of u and v by

Mδ(u, v) : U → R, Mδ(u, v)(x) =Mδ(u(x), v(x)). (10)

We will need the following properties of the smooth maximum. For this and other prop-
erties, see [3, Section 2].

Lemma 3.11. Let U ¦ R
n be open and convex and let u, v : U → R be convex functions.

For every δ > 0, the function Mδ(u, v) : U → R is convex and satisfies

(a) If u, v ∈ C2(U), then Mδ(u, v) ∈ C2(U).
(b) Mδ(u, v)(x) = u(x) if u(x) g v(x) + δ, and Mδ(u, v)(x) = v(x) if v(x) g u(x) + δ.
(c) max{u, v} fMδ(u, v) f max{u, v}+ δ/2.
(d) If u, v are η-strongly convex for some η > 0, then Mδ(u, v) is η-strongly convex.

Proof. It is not difficult to show that the partial derivatives ofMδ(x, y) are non-negative and
hence Mδ(x, y) is non-decreasing in x and in y, see [3, Lemma 2(viii)]. This easily implies
convexity ofMδ(u, v). Properties (a)-(c) follow immediately from the definition ofMδ(x, y).
It remains to prove property (d). If u, v are η-strongly convex, and h(x) = (η/2)|x|2, then
Mδ(u, v)− h =Mδ(u− h, v − h) is convex, so Mδ(u, v) is η-strongly convex. □

3.8. Smooth approximation of strongly convex functions.

Proposition 3.12. Let u ∈ W 2,p
loc (R

n), n < p < ∞, be η-strongly convex. Then for every
ε > 0, 0 < η̃ < η, and 1 f q f p, there exists an η̃-strongly convex function v ∈ C∞(Rn)
such that ∥u− v∥2,q,Rn < ε.

Proof. Let ψi ∈ C∞
0

(
(i − 1, i + 1)

)
, i = 0, 1, 2, . . . be such that

∑∞
i=0 ψi(t) = 1 for all

t ∈ [0,∞). Then the functions θi ∈ C∞
0 (Rn), θi(x) = ψi(|x|) form a partition of unity on

R
n. The function θ0 is supported in B(0, 1), while the functions θi for i g 1 are supported

in the annuli {i− 1 < |x| < i+ 1}.

Let A0 = B(0, 1), and Ai = {i− 1 f |x| f i+ 1} for i g 1, so supp θi ¢ Ai.

Fix a mollifier ϕ and let uδ := u∗ϕδ. Note that for every i, ∥u−uδ∥2,p,Ai
→ 0 as δ → 0+,

and hence
∥u− uδ∥2,q,Ai

→ 0 as δ → 0, (11)

by Hölder’s inequality. Since u is continuous and Du ∈ W 1,p
loc , p > n, is continuous by the

Sobolev embedding theorem, we have that for every i,

∥u− uδ∥∞,Ai
+ ∥D(u− uδ)∥∞,Ai

→ 0 as δ → 0+. (12)

Fix ε > 0, 0 < η̃ < η and 1 f q f p.

Let ∆ = {δi}
∞
i=0 be a sequence of positive numbers δi > 0, and define

u∆ :=
∞∑

i=0

θiuδi .

We will prove that with a suitable choice of ∆, the function v := u∆ has the required
properties.
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We say that ∆ f ∆′ = {δ′i}
∞
i=0, if δi f δ′i for all i. We say that a property holds for all

sufficiently small ∆, if there is ∆′ such that the property holds for all ∆ f ∆′.

Clearly u∆ ∈ C∞(Rn) for every ∆. Next, we show that there is ∆′ such that

∥u− u∆∥2,q,Rn < ε for all ∆ f ∆′. (13)

Using (11) we can conclude that

∥u− u∆∥q,Rn f

∞∑

i=0

∥θi(u− uδi)∥q,Rn f

∞∑

i=0

∥u− uδi∥q,Ai
< ε/3,

provided ∆ is sufficiently small. The estimate for the gradient is similar:

∥D(u− u∆)∥q,Rn f
∞∑

i=0

∥Dθi∥∞∥u− uδi∥q,Ai
+

∞∑

i=0

∥D(u− uδi)∥q,Ai
< ε/3,

provided ∆ is sufficiently small.

To estimate the second order derivatives we will use the following convenient notation
for the product rule. If a = [ai]

n
i=1 and b = [bi]

n
i=1, then the tensor product of the vectors

is the n× n matrix defined by a¹ b := [aibj]
n
i,j=1. With this notation, the product rule for

the second order derivatives on R
n takes the form of

D2(fg) = gD2f +Df ¹Dg +Dg ¹Df + fD2g.

Thus the Hilbert-Schmidt norm of D2(fg) satisfies

|D2(fg)| f |g| |D2f |+ 2|Df | |Dg|+ |f | |D2g|

and hence,

∥D2(u− u∆)∥q,Rn

f

∞∑

i=0

(
∥D2(u− uδi)∥q,Ai

+ 2∥Dθi∥∞∥D(u− uδi)∥q,Ai
+ ∥D2θi∥∞∥u− uδi∥q,Ai

)
<
ε

3
,

provided ∆ is sufficiently small. This proves (13) and it remains to show that u∆ is
η̃-strongly convex for all sufficiently small ∆.

Since
∑∞

i=0 θi = 1, we have that
∑∞

i=0Dθi = 0,
∑∞

i=0D
2θi = 0 and hence

∞∑

i=0

(
Dθi ¹Du+Du¹Dθi + uD2θi

)
= 0.

Therefore,

D2u∆ =
∞∑

i=0

θiD
2uδi

︸ ︷︷ ︸
A∆

+
∞∑

i=0

Dθi ¹D(uδi − u) +D(uδi − u)¹Dθi

︸ ︷︷ ︸
B∆

+
∞∑

i=0

(uδi − u)D2θi

︸ ︷︷ ︸
C∆

According to Lemma 3.7, the functions uδi are η-strongly convex and hence

ξTA∆ξ g η|ξ|2, ξ ∈ R
n.
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On the other hand (12) yields that for sufficiently small ∆ we have

|ξTB∆ ξ| f 2|ξ|2
∞∑

i=0

∥Dθi∥∞∥D(uδi − u)∥∞,Ai
f
η − η̃

2
|ξ|2,

and

|ξTC∆ ξ| f |ξ|2
∞∑

i=0

∥D2θi∥∞∥uδi − u∥∞,Ai
f
η − η̃

2
|ξ|2.

In concert, the last three estimates yield

ξTD2u∆ ξ g η|ξ|2 −
η − η̃

2
|ξ|2 −

η − η̃

2
|ξ|2 = η̃|ξ|2,

and that completes the proof of η̃-strong convexity of u∆. □

3.9. Pointwise inequality. Given g ∈ L1
loc(R

n), the Hardy-Littlewood maximal function
is defined on R

n by

Mg(x) := sup
r>0

∫

B(x,r)

|g(y)| dy.

Recall that the maximal function satisfies the weak type estimate [19, p. 5]:

|{x ∈ R
n : Mg(x) > t}| f

5n

t
∥g∥1 for all t > 0. (14)

Sobolev functions u ∈ Wm,1
loc (Ω) and their derivatives are defined almost everywhere.

In what follows we will choose representatives defined everywhere in Ω by the following
formula:

Dαu(x) := lim sup
r→0

∫

B(x,r)

Dαu(y) dy, for all |α| f m and every x ∈ Ω. (15)

The fact that it is indeed a representative of Dαu in the class of functions equal a.e. follows
immediately from the Lebesgue differentiation theorem.

For k f m, we will denote the Taylor polynomial of u ∈ Wm,1
loc (Ω) at x ∈ Ω by

T k
xu(y) :=

∑

|α|fk

Dαu(x)
(y − x)α

α!
.

More generally, if {uα}|α|fm is a family of continuous functions on F ¢ R
n, then for |α| f m

we define

T k
xu

α(y) :=
∑

|β|fk

uα+β(x)
(y − x)β

β!
for x ∈ F , y ∈ R

n and k f m− |α|.

For a proof of the following pointwise inequality, see [8, Theorem 3] and [9, Theorem 3.6].
In the case of smooth functions this result has already been proved in [7, Corollary 5.8].
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Lemma 3.13. Let u ∈ Wm,1
loc (Rn) and its all derivatives be defined at every point of Rn by

(15). Then
|u(y)− Tm−1

x u(y)|

|x− y|m
f C(M|∇mu|(x) +M|∇mu|(y)) (16)

for all x, y ∈ R
n, x ̸= y, where the constant C depends on n and m only.

Remark 3.14. If u(y) = ±∞ or Dαu(x) = ±∞ for some |α| f m − 1, we assume that
the left hand side of (16) equals +∞ so the inequality means that in that case the right
hand side equals +∞.

Applying Lemma 3.13 to Dαu ∈ W
m−|α|,1
loc , |α| f m− 1, we have

Corollary 3.15. Let u ∈ Wm,1
loc (Rn) and its all derivatives be defined at every point of Rn

by (15). Then we have

max
|α|fm−1

|Dαu(y)− T
m−1−|α|
x Dαu(y)|

|x− y|m−|α|
f Cp(M|∇mu|(x) +M|∇mu|(y)) (17)

for all x, y ∈ R
n, x ̸= y, where the constant Cp depends on n and m only.

Lemma 3.13 and Corollary 3.15 provide estimates for the Taylor reminders of u and
its derivatives in terms of the maximal function. These estimates allow us to apply the
Whitney extension theorem which we formulate next. A proof of this particular statement
can be found in [19, p. 177–180].

Lemma 3.16. Let m ∈ N and M > 0. Assume that F ¢ R
n is a closed set and we have

a collection of continuous functions {uα}|α|fm−1 on F such that

max
|α|fm−1

∥uα∥∞,F + max
|α|fm−1

sup
x,y∈F
x ̸=y

|uα(y)− T
m−1−|α|
x uα(y)|

|x− y|m−|α|
fM. (18)

Then there is a function U ∈ Wm,∞(Rn) ¢ Cm−1,1(Rn) such that DαU = uα on F and

n−1∥U∥m,∞ f
∑

|α|fm−1

(
∥DαU∥∞ + sup

x,y∈Rn

x ̸=y

|DαU(y)− T
m−1−|α|
x DαU(y)|

|x− y|m−|α|

)
f CwM, (19)

where the constant Cw depends on n and m only, and the norms in (19) are over R
n.

Remark 3.17. The proof of Lemma 3.16 presented in [19] is with max|α|fm−1 in (19)
instead of

∑
|α|fm−1 (just like we have it in (18)), but the two quantities are clearly equiv-

alent. The reason why we used
∑

|α|fm−1 was to have a nice explicit constant in the left

inequality in (19).

Remark 3.18. If m = 1, we simply have u0 and (18) means that u0 is bounded and
Lipschitz continuous

sup
x∈F

|u0(x)|+ sup
x,y∈F
x ̸=y

|u0(y)− u0(x)|

|x− y|
fM.

In that case the theorem says that u0 can be extended to a bounded Lipschitz continuous
function on R

n.
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Remark 3.19. The proof given in [19] shows the right inequality in (19), but as we will
see, the left inequality is nearly obvious. Since

∑
|α|fm−1 ∥D

αU∥∞ is a part of the middle

expression in (19), it suffices to concentrate on the L∞ norm of derivatives of order m. For
α satisfying |α| = m− 1 we have

n−1

n∑

i=1

∥∥∥
∂

∂xi
DαU

∥∥∥
∞

f ∥∇DαU∥∞ = sup
x,y∈Rn

x ̸=y

|DαU(y)−DαU(x)|

|x− y|

= sup
x,y∈Rn

x ̸=y

|DαU(y)− T
m−1−|α|
x DαU(y)|

|x− y|m−|α|
,

and the left inequality in (19) follows.

It should not be surprising now that Corollary 3.15 and Lemma 3.16 can be used to prove
that Wm,1 functions coincide with Cm functions outside a set of small measure. This is a
theorem of Calderón and Zygmund [10] who proved it using different techniques. Several
generalizations of their result were obtained by many authors including [8, 9, 14, 17]. It
seems the papers [8, 9] were the first to use pointwise inequalities as in Lemma 3.13 and
Corollary 3.15 in that context. A modified approach was given by Malý and Ziemer [16,
Theorem 1.69] who proved it for m = 1 using pointwise inequalities from [8] (see [16, p.
62]). The next result is a generalization of [16, Theorem 1.69] to the case of higher order
derivatives. Recall that Wm = Wm,1 ∩Wm,∞.

Proposition 3.20. Let u ∈ Wm,1(Rn). Then, for every a > 0, there is v ∈ Wm∩Cm(Rn),
such that

∥v∥m,∞ f a (20)

∥v∥m,1 f C∗∥u∥m,1 (21)

|{x ∈ R
n : u(x) ̸= v(x)}| f

C∗

a
∥u∥m,1, (22)

where the constant C∗ depends on n and m only.

Proof. Let u ∈ Wm,1(Rn). In the first step, we will prove a weaker result, existence of a
function w ∈ Wm(Rn) that has similar properties

∥w∥m,∞ f a (23)

∥w∥m,1 f Co∥u∥m,1 (24)

|{x ∈ R
n : u(x) ̸= w(x)}| f

Co

a
∥u∥m,1, (25)

where the constant Co depends on n and m only. That is, we will construct a function
with all properties required by the proposition except for the Cm regularity.

Without loss of generality, we may assume that u and its all derivatives are defined at
every point of Rn by (15).

In view of Corollary 3.15, in order to apply Lemma 3.16 with uα := Dαu, we need to
restrict u to some closed set F , where max|α|fm−1 |D

αu| and M|∇mu| are bounded by
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suitable constants. The set F will be defined as the complement of the open set G0 ∪ G1

defined below.

Recall that the constants Cp and Cw from Corollary 3.15 and Lemma 3.16 depend on n
and m only. We define

G̃0 :=
{
x ∈ R

n : max
|α|fm−1

|Dαu(x)| >
a

2nCw

}
,

G1 :=
{
x ∈ R

n : M|∇mu|(x) >
a

4nCpCw

}
.

Chebyshev’s inequality and the weak type estimate for the maximal function (14) yield

|G̃0| f
2nCw

a
∥u∥m,1 and |G1| f 5n

4nCpCw

a
∥u∥m,1,

Note that the set G1 is open, but G̃0 not necessarily. Let G0 be an open set such that

G̃0 ¢ G0 and

|G0| f
4nCw

a
∥u∥m,1.

Let G := G0 ∪G1 and F = Gc. Then

|G| f 4nCw(1 + 5nCp)
1

a
∥u∥m,1. (26)

If x ∈ F , then we have inequalities opposite to those in the definition of the sets G̃0 and
G1, which combined with (17) yield

max
|α|fm−1

sup
x∈F

|Dαu(x)|+ max
|α|fm−1

sup
x,y∈F
x ̸=y

|Dαu(y)− T
m−1−|α|
x Dαu(y)|

|x− y|m−|α|

f
a

2nCw

+ 2Cp
a

4nCpCw

=
a

nCw

.

It follows from this estimate that the functions uα := Dαu|F are continuous.

Applying Lemma 3.16 we get w := U ∈ Wm,∞(Rn) satisfying ∥w∥m,∞ f a which is (23).
Since u = w in the complement of G, inequality (26) yields

|{x ∈ R
n : u(x) ̸= w(x)}| f |G| f

C(n,m)

a
∥u∥m,1

which is (25). Finally (24) follows from the estimate

∥w∥m,1 =
∑

|α|fm

(∥Dαw∥1,G + ∥Dαw∥1,Gc) f ∥w∥m,∞|G|+ ∥u∥m,1 f C(n,m)∥u∥m,1.

In the second to last inequality we used the fact that w = u in Gc, and in the last inequality
we used (23) and (26). This completes the construction of a function w with properties
(23), (24) and (25).

Now we are ready to complete the proof of the proposition.

Using the construction above (with a replaced by 2−1a), we can find w1 ∈ Wm(Rn) such
that

∥w1∥m,∞ f 2−1a, ∥w1∥m,1 f Co∥u∥m,1, (27)
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| {x ∈ R
n : u(x) ̸= w1(x)}︸ ︷︷ ︸

:=E1

| f 2Co a
−1∥u∥m,1. (28)

Let ϕ be a mollifier as in Section 3.2. Then according to (1) and (2), there is ε > 0 such
that

v1 := ϕε ∗ w1 and u1 := w1 − v1 (29)

satisfy

∥v1∥m,∞ = ∥ϕε ∗ w1∥m,∞ f ∥w1∥m,∞ f 2−1a, (30)

∥v1∥m,1 = ∥ϕε ∗ w1∥m,1 f ∥w1∥m,1 f Co∥u∥m,1, (31)

∥u1∥m,1 = ∥w1 − ϕε ∗ w1∥m,1 f 4−1∥u∥m,1, (32)

∥u1∥∞ f ∥w1∥∞ + ∥v1∥∞ f a. (33)

The function v1 is C∞ smooth and it satisfies (30) and (31) which yield v1 ∈ Wm ∩
C∞(Rm), (20) and (21), but the problem is that v1 need not coincide with u on a set of
positive measure. On the other hand

v1 + u1 = u in Ec
1

by (29) and (28), but the ‘correcting term’ u1 is not smooth. It belongs to Wm,1, but it
has much smaller Wm,1 norm than u, see (32). The idea is to apply the above procedure
to u1 in place of u and find v2, u2, and E2, so that v2 + u2 = u1 in Ec

2 and hence

v1 + v2 + u2 = v1 + u1 = u in Ec
1 ∩ E

c
2.

Continuing this procedure, we will have

uk +
k∑

i=1

vi = u in
k⋂

i=1

Ec
i .

It will follow from the estimates that the series
∑∞

i=1 vi will converge to a function v ∈
Wm ∩ Cm(Rn), and uk will converge uniformly to zero, so v = u in

⋂∞
i=1E

c
i . That will

complete the proof.

The sequence of functions and sets will be constructed by induction. We already con-
structed the functions v1 ∈ Wm ∩ C∞, u1 ∈ Wm,1 and the set E1. Suppose now that for
some k ∈ N we have functions {vi}

k
i=1 ¢ Wm ∩ C∞(Rn), {ui}

k
i=1 ¢ Wm,1(Rn), and sets

{Ei}
k
i=1 such that for i = 1, 2, . . . , k we have

∥vi∥m,∞ f 2−ia, (34)

∥vi∥m,1 f 4−i+1Co∥u∥m,1, (35)

∥uk∥m,1 f 4−k∥u∥m,1, (36)

∥uk∥∞ f 2−k+1a, (37)

uk +
k∑

i=1

vi = u in
k⋂

i=1

Ec
i , (38)

|Ei| f 2−i+2Coa
−1∥u∥m,1. (39)

We already verified these conditions for k = 1.
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Now we will construct vk+1, uk+1 and Ek+1 and we will verify conditions (34)–(39).

Applying the construction of w satisfying (23), (24), (25) to uk and 2−(k+1)a (instead of
u and a), we find wk+1 ∈ Wm(Rn) such that

∥wk+1∥m,∞ f 2−(k+1)a, ∥wk+1∥m,1 f Co∥uk∥m,1 f 4−k Co∥u∥m,1,

| {x ∈ R
n : uk(x) ̸= wk+1(x)}︸ ︷︷ ︸

:=Ek+1

| f 2k+1Co a
−1∥uk∥m,1 f 2−(k+1)+2Coa

−1∥u∥m,1

which proves (39) for i = k + 1.

Now there is ε > 0 (perhaps different than the one before), such that

vk+1 = ϕε ∗ wk+1 and uk+1 = wk+1 − vk+1

satisfy

∥vk+1∥m,∞ f ∥wk+1∥m,∞ f 2−(k+1) a,

∥vk+1∥m,1 f ∥wk+1∥m,1 f 4−(k+1)+1Co∥u∥m,1,

∥uk+1∥m,1 = ∥wk+1 − ϕε ∗ wk+1∥m,1 f 4−(k+1)∥u∥m,1,

∥uk+1∥∞ f ∥wk+1∥∞ + ∥vk+1∥∞ f 2−(k+1)+1 a.

This proves (34), (35), (36) and (37) for i = k + 1. It remains to prove (38) for i = k + 1.

Since uk+1 + vk+1 = wk+1 and wk+1 = uk in Ec
k+1, (38) yields

uk+1 +
k+1∑

i=1

vi = wk+1 +
k∑

i=1

vi = uk +
k∑

i=1

vi = u in
k+1⋂

i=1

Ec
i .

which proves (38) for k + 1.

The proof of (34)–(39) for all k ∈ N is complete and we are ready to complete the proof
of the proposition.

Consider the series v :=
∑∞

i=1 vi. It follows from (34) and (35) that the series converges
both in Wm,∞ and Wm,1, so v ∈ Wm(Rn) satisfies

∥v∥m,∞ f a and ∥v∥m,1 f
4

3
Co∥u∥m,1. (40)

Since this is a series of smooth functions and Wm,∞ ∩ Cm(Rn) is a closed subspace of
Wm,∞(Rn), it follows that

v ∈ Wm ∩ Cm(Rn). (41)

Finally, (37) and (38) show that the series converges uniformly to u on
⋂∞

i=1E
c
i , so v = u

in that set and hence (39) yields

|{x ∈ R
n : u(x) ̸= v(x)}| f

∣∣∣
∞⋃

i=1

Ei

∣∣∣ f 4Coa
−1∥u∥m,1. (42)

Now the proposition follows from (40), (41) and (42) with C∗ = 4Co. The proof is complete.
□
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4. Proof of Theorem 1.1

First, we will prove a special case of the result.

Lemma 4.1. Let u : Rn → R be η-strongly convex. Then for every ε > 0 and every
0 < η̃ < η, there is an η̃-strongly convex function v ∈ C2(Rn), such that

|{x ∈ R
n : u(x) ̸= v(x)}| < ε.

Proof. We claim it is enough to prove the result for η-strongly convex functions in W 2,p
loc (R

n)
for n < p <∞. Indeed, the general case can be concluded then as follows:

Suppose the result holds for functions in W 2,p
loc (R

n) for n < p < ∞. Let u : Rn → R be
η-strongly convex, and fix ε > 0 and 0 < η̃ < η. Let η′ ∈ (η̃, η). We apply Corollary 3.10 to
produce u′ ∈ C1,1

loc that it η′-strongly convex and satisfies |{u′ ̸= u}| < ε/2. In particular,

u′ ∈ W 2,p
loc for any n < p < ∞. Then, we apply the assumed result to u′, ε/2 > 0, and

η̃ ∈ (0, η′), producing v ∈ C2 that is η̃-strongly convex and satisfies |{u′ ̸= v}| < ε/2, and
thus |{u ̸= v}| < ε.

Therefore, in what follows we assume that u ∈ W 2,p
loc (R

n) for some n < p < ∞, is
η-strongly convex. Without loss of generality, we may assume that

0 < ε <
η − η̃

2nC∗

,

where C∗ is the constant from Proposition 3.20.

According to Proposition 3.12, there is ũ ∈ C∞(Rn) such that ũ is (η + η̃)/2-strongly
convex and ∥u− ũ∥2,1 < ε2.

Applying Proposition 3.20 with m = 2 and a = C∗ε to u − ũ in place of u, we find
w ∈ W 2 ∩ C2(Rn) such that

∥w∥2,∞ f C∗ε <
η − η̃

2n
, (43)

∥w∥2,1 f C∗∥u− ũ∥2,1 < C∗ε
2,

∣∣∣
{
x ∈ R

n : w(x) ̸= u(x)− ũ(x)
}∣∣ f C∗

C∗ε
∥u− ũ∥2,1 < ε.

Since

ũ is
η + η̃

2
–strongly convex, 0 < η̃ <

η + η̃

2
,

and according to (43)

nmax
|α|=2

∥Dαw∥∞ f
η − η̃

2
=
η + η̃

2
− η̃,

it follows from Lemma 3.8 that v := ũ+ w is η̃-strongly convex. Clearly, v ∈ C2(Rn) and
|{v ̸= u}| = |{w ̸= u− ũ}| < ε. The proof is complete. □

Corollary 4.2. Let u : Rn → R be η-strongly convex, η̃ ∈ (0, η), and let 0 < εk → 0.
Then, there exists a sequence of η̃-strongly convex functions (vk)k∈N ¢ C2(Rn) satisfying:

(a) |{x ∈ R
n : vk(x) ̸= u(x)}| < εk for all k ∈ N;
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(b) vk ⇒ u converges uniformly on every compact subset of Rn.

Proof. Given u, η, η̃, and (εk)k∈N satisfying the hypotheses of the corollary, we apply
Lemma 4.1 to obtain a sequence of η̃-strongly convex functions (vk)k∈N ¢ C2(Rn), sat-
isfying |{x ∈ R

n : vk(x) ̸= u(x)}| < εk/2
k for all k ∈ N (and consequently (a)).

It suffices to show that vk → u almost everywhere, because then (b) will follow from
Lemma 3.2. Let Ai := {x ∈ R

n : vi(x) = u(x)}, and C :=
⋃∞

k=1

⋂∞
i=k Ai. If x ∈ C, then

x ∈
⋂∞

i=k Ai for some k and hence u(x) = vk(x) = vk+1(x) = . . ., so vi(x)
i→∞
−→ u(x). We

proved that vi(x) → u(x) for every x ∈ C and it remains to show that |Rn \ C| = 0.
Clearly, |Rn \ Ai| < εi/2

i. Since

|Rn \ C| f
∣∣∣Rn \

∞⋂

i=k

Ai

∣∣∣ =
∣∣∣

∞⋃

i=k

(Rn \ Ai)
∣∣∣ <

∞∑

i=k

εi
2i

f sup
igk

εi
k→∞
−→ 0,

we conclude that |Rn \ C| = 0. □

Proof of Theorem 1.1. Let u : U → R be locally strongly convex, εo > 0, and ε : U → (0, 1]
continuous. We fix a sequence (Bk)

∞
k=1 of compact convex bodies such that Bk ¢ int(Bk+1)

for all k ∈ N and
⋃∞

k=1Bk = U .

By assumption, for each k ∈ N, there is ηk > 0 such that u|Bk
is ηk-strongly convex; we

may assume that ηk+1 < ηk for every k.

Let

rk := min
x∈Bk+1

ε(x) for k ∈ N. (44)

Let B0 = C0 = ∅. For each k g 1, we find a compact convex body Ck such that

Bk ¢ int(Ck) ¢ Ck ¢ int(Bk+1), dist(∂Bk, ∂Ck) f
rk+1

6 Lip(u|Bk+1
)
, (45)

and

|Ck \Bk| f
εo

2k+2
√

1 + L2
k+1

, where Lk :=
2 +MBk+1

(u)−mBk+1
(u)

dist(∂Bk, ∂Bk+1)
(46)

(we are using notation from Lemma 3.3). Note that Lip(u|Bk+1
) > 0, because u|Bk+1

is
strongly convex, so we do not divide by zero in (45).

We can also assume that

Ck = {x : dist(x,Bk) f ak} (47)

for some ak > 0 so that all points on the boundary of Ck are at the equal distance to Bk.
Clearly, ak = dist(∂Bk, ∂Ck).

Note that (46) implies
∞∑

k=1

|Ck \Bk| <
εo
2
. (48)
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Then, for each k ∈ N we define uk : R
n → R by (cf. Corollary 3.6)

uk(x) := sup
y∈Bk\int(Ck−1), ξy∈∂u(y)

{
u(y) + ïξy, x− yð+

ηk+8

2
|x− y|2

}
.

The next result collects important properties of the functions uk.

Lemma 4.3. For each k ∈ N, the function uk : R
n → R satisfies:

(a) uk is ηk+8-strongly convex;
(b) uk = u on Bk \ Ck−1;
(c) uk f u on Bk+8;
(d) βk := infx∈Bk

{u(x)− uk+1(x)} > 0;
(e) δk := infx∈Bk+1\int(Ck){u(x)− uk(x)} > 0;
(f) ∥uk − u∥∞,Ck\Bk−1

f rk/3; recall that B0 = ∅.

Proof. (a), (b) and (c) follow from Corollary 3.6. To prove (d) let x ∈ Bk and y ∈
Bk+1 \ int(Ck), ξy ∈ ∂u(y). Since u is ηk+2-strongly convex on Bk+2, and x, y ∈ int(Bk+2),
Lemma 3.4 yields

u(x) g u(y) + ïξy, x− yð+
ηk+2

2
|x− y|2

g u(y) + ïξy, x− yð+
ηk+9

2
|x− y|2 +

ηk+2 − ηk+9

2
dist(∂Bk, ∂Ck)

2.

Taking the supremum over all y ∈ Bk+1 \ int(Ck) and ξy ∈ ∂u(y) gives

u(x) g uk+1(x) +
ηk+2 − ηk+9

2
dist(∂Bk, ∂Ck)

2 for all x ∈ Bk,

from which (d) follows. The proof of (e) is similar to that of (d). For x ∈ Bk+1 \ int(Ck),
y ∈ Bk \ int(Ck−1) and ξy ∈ ∂u(y), ηk+2-strong convexity of u on Bk+2 and Lemma 3.4
yield

u(x) g u(y) + ïξy, x− yð+
ηk+2

2
|x− y|2

g u(y) + ïξy, x− yð+
ηk+8

2
|x− y|2 +

ηk+2 − ηk+8

2
dist(∂Bk, ∂Ck)

2.

Taking the supremum over all y ∈ Bk \ int(Ck−1) and ξy ∈ ∂u(y) gives

u(x) g uk(x) +
ηk+2 − ηk+8

2
dist(∂Bk, ∂Ck)

2 for all x ∈ Bk+1 \ int(Ck),

from which (e) follows.

It remains to prove (f). Since u = uk on Bk \ Ck−1, we only need to consider the sets
Ck−1 \Bk−1 and Ck \Bk, when k g 2, and Ck \Bk, when k = 1.

If x ∈ Ck−1 \Bk−1, k g 2, then we can find y ∈ ∂Ck−1 ¢ Bk \ int(Ck−1) such that

|x− y| f dist(y, ∂Bk−1) = dist(∂Bk−1, ∂Ck−1) (49)
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(in the last equality we are using (47)). If ξy ∈ ∂u(y), then |ξy| f Lip(u|Bk
) by Lemma 3.1,

because y ∈ int(Bk). Property (c) of Lemma 4.3 yields

u(x) g uk(x) g u(y) + ïξy, x− yð+
ηk+8

2
|x− y|2

g u(x)− |u(y)− u(x)| − |ξy| |x− y|

g u(x)− 2 Lip(u|Bk
)|x− y| g u(x)−

rk
3
.

In the last inequality we used (49) and (45). Therefore,

∥uk − u∥∞,Ck−1\Bk−1
f
rk
3

for k g 2.

If x ∈ Ck \ Bk, k g 1, then we can find y ∈ ∂Bk ¢ Bk \ int(Ck−1) such that |x − y| f
dist(∂Bk, ∂Ck). If ξy ∈ ∂u(y), then |ξy| f Lip(u|Bk+1

) and

u(x) g uk(x) g u(x)− |u(y)− u(x)| − |ξy| |x− y|

g u(x)− 2 Lip(u|Bk+1
)|x− y| g u(x)−

rk+1

3
.

Therefore,

∥uk − u∥∞,Ck\Bk
f
rk+1

3
f
rk
3
.

This completes the proof of (f). □

The idea of the remaining part of the proof is to use Corollary 4.2 to approximate uk near
the annulus Bk \ int(Ck−1) by globally defined strongly convex functions of class C2 and
glue these approximations using the smooth maximum method described in Lemma 3.11.

Let εk be a sequence such that

0 < εk f
1

3
min

{
min{εo, rk}

2k+2
√

1 + L2
k

, δk, βk

}
, εk+1 f εk for k ∈ N

(recall that rk and Lk were defined in (44) and (46)). In particular,
∞∑

k=1

εk <
εo
2
. (50)

Now, we use Corollary 4.2 to find an ηk+9-strongly convex function hk ∈ C2(Rn) such
that

|{x ∈ R
n : uk(x) ̸= hk(x)}| < εk (51)

and
|uk(x)− hk(x)| f εk for all x ∈ Bk+1. (52)

For k g 2, we define vk : R
n → R by (see, (10))

vk =Mεk−1
(hk−1, hk).

Lemma 4.4. For each k g 2, the function vk is in the class C2(Rn), ηk+9-strongly convex,
and satisfies:

(a) vk = hk−1 on Bk−1 \ Ck−2;
(b) vk = hk on Bk \ Ck−1.
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Proof. The fact that vk ∈ C2(Rn) and vk is ηk+9-strongly convex, follows immediately from
Lemma 3.11.

(a) For x ∈ Bk−1 \ Ck−2, (52) and Lemma 4.3 give

hk f uk + εk f u− βk−1 + εk = uk−1 − βk−1 + εk

f hk−1 + εk−1 − βk−1 + εk f hk−1 − βk−1 + 2εk−1,

hence

hk−1 − hk g βk−1 − 2εk−1 g εk−1,

and from Lemma 3.11(b) we deduce that vk =Mεk−1
(hk−1, hk) = hk−1 on Bk−1 \ Ck−2.

(b) For x ∈ Bk \ Ck−1, (52) and Lemma 4.3 give

hk−1 f uk−1 + εk−1 f u− δk−1 + εk−1 = uk − δk−1 + εk−1

f hk + εk − δk−1 + εk−1 f hk − δk−1 + 2εk−1,

hence

hk − hk−1 g δk−1 − 2εk−1 g εk−1,

and we conclude that vk =Mεk−1
(hk−1, hk) = hk on Bk \ Ck−1. □

Now, we define our function v : U → R by

v(x) = vk(x) if x ∈ Bk \ Ck−2 for some k g 2. (53)

While
⋃∞

k=2(Bk \ Ck−2) = U , consecutive annuli in the definition (53) overlap. However,
for k g 2, on the overlapping annuli we have

v = vk = vk+1 = hk on (Bk \ Ck−2) ∩ (Bk+1 \ Ck−1) = Bk \ Ck−1, (54)

showing that v is well defined on U . Moreover, since the functions vk ∈ C2(Rn) are strongly
convex and vk+1 = vk on Bk \Ck−1 for every k g 2, the function v is locally strongly convex
and of class C2(U).

Note that we have

v = hk on Bk \ Ck−1 for all k ∈ N. (55)

If k g 2, it follows from (54), and we check the case k = 1 directly from (53) and
Lemma 4.4(a).

(Remark. If all functions vk are η̃-strongly convex, then v is η̃-strongly convex; we will
need this fact in the last part of the proof.)

Observe that

U =
∞⋃

k=1

(Ck \Bk) ∪

∞⋃

k=1

(Bk \ Ck−1).
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Moreover, v = hk in Bk \ Ck−1 by (55), and u = uk in Bk \ Ck−1 by Lemma 4.3(b).
Therefore,

|{x ∈ U : v(x) ̸= u(x)}| f
∞∑

k=1

|Ck \Bk|+
∞∑

k=1

|{x ∈ Bk \ Ck−1 : hk(x) ̸= uk(x)}|

<
εo
2
+

∞∑

k=1

εk < εo.

In the last two inequalities we used (48), (51) and (50).

Thus, we constructed a locally strongly convex function v ∈ C2(U) satisfying condition
(a) in Theorem 1.1. Now we will prove (b) i.e.,we will prove that |u(x)− v(x)| < ε(x) for
all x ∈ U .

If x ∈ Bk \ Ck−1 for some k ∈ N, then Lemma 4.3(b), (55) and (52) give

|u(x)− v(x)| = |uk(x)− hk(x)| f εk < rk f ε(x).

Thus, we may assume that x ∈ Ck \ Bk for some k ∈ N. It follows from Lemma 4.3(f)
that

|u(x)− uk(x)| f
rk
3

and |u(x)− uk+1(x)| f
rk+1

3
f
rk
3
.

Also, (52) yields

|uk(x)− hk(x)| f εk <
rk
3

and |uk+1(x)− hk+1(x)| f εk+1 <
rk
3
,

so

|u(x)− hk(x)| <
2rk
3

and |u(x)− hk+1(x)| <
2rk
3
. (56)

Recall that v = vk+1 =Mεk(hk, hk+1) on Ck \Bk and hence

max{hk, hk+1} f v =Mεk(hk, hk+1) < max{hk, hk+1}+
rk
3

on Ck \Bk

by Lemma 3.11(c), because εk/2 < rk/3. Therefore, (56) gives

u(x) < hk(x) +
2rk
3

f v(x) +
2rk
3

and

u(x) > max{hk(x), hk+1(x)} −
2rk
3

> v(x)− rk,

so we have |u(x)− v(x)| < rk f ε(x). This completes the proof of part (b) of the theorem.

Now we will show (c). According to Lemma 3.3, and the definition of Lk in (46),

Lip(u|Bk
) f

MBk+1
(u)−mBk+1

(u)

dist(∂Bk, ∂Bk+1)
< Lk.

In particular |Du| f Lk almost everywhere in Bk. Recall also that

u = uk, v = hk in Bk \ Ck−1 and |{x ∈ R
n : uk(x) ̸= hk(x)}| < εk,
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see, Lemma 4.3(b), (55) and (51). Then the formula for the surface area of the graph
yields

Hn (Gu \ Gv) =

∫

{x∈U :u(x) ̸=v(x)}

√
1 + |Du(x)|2 dx

f
∞∑

k=1

∫

Ck\Bk

√
1 + L2

k+1 dx+
∞∑

k=1

∫

{x∈Bk\Ck−1:uk(x) ̸=hk(x)}

√
1 + L2

k dx

f

∞∑

k=1

√
1 + L2

k+1 |Ck \Bk|+
∞∑

k=1

√
1 + L2

k εk

<
∞∑

k=1

εo
2k+2

+
∞∑

k=1

εo
2k+2

=
εo
2
.

On the other hand, since |u(x)− v(x)| < ε(x) f 1 on U , we have

Lip(v|Bk
) f

MBk+1
(v)−mBk+1

(v)

dist(∂Bk, ∂Bk+1)
f

2 +MBk+1
(u)−mBk+1

(u)

dist(∂Bk, ∂Bk+1)
= Lk,

and then the same calculation with v in place of u in the integrand shows that

Hn (Gv \ Gu) < εo/2.

Hence, we have Hn (Gu△Gv) < εo.

Finally, in the case that u is η-strongly convex on U , given η̃ ∈ (0, η), we may find a
strictly decreasing sequence (ηk)k∈N ¢ (η̃, η) converging to η̃ so that u|Bk

is ηk-strongly
convex, and repeat the proof above in order to obtain an η̃-strongly convex function v of
class C2 with the required properties (see Remark below (55)). □
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