C2-LUSIN APPROXIMATION OF STRONGLY CONVEX FUNCTIONS

DANIEL AZAGRA, MARJORIE DRAKE, AND PIOTR HAJLASZ

ABSTRACT. We prove that if v : R™ — R is strongly convex, then for every € > 0 there is
a strongly convex function v € C?(R") such that [{u # v}| < € and ||u — v]|» < €.

1. INTRODUCTION

It has been known for at least thirty years, that convex functions have the C?-Lusin
property, meaning that if u : R®™ — R is convex, then for every £ > 0, there is a function
v € C?(R") such that |[{u # v}| < ¢, see [1, 11, 13|. Here |A| denotes the Lebesgue measure
of A. We also say that v is a Lusin approzimation of u.

In fact, this result is not particularly difficult. Using Alexandrov’s theorem about the
second order diffierentiability of u, one can show that there is a closed set E contained in
the set where u is twice differentiable, with the complement of small measure, |[R™\ E| < ¢,
and such that the functions (u|z, Du|g, D*u|g) satisfy the assumptions of the C*-Whitney
extension theorem. Since however, the Whitney extension theorem does not preserve
convexity, the resulting function v € C?(R") that approximates v in the Lusin sense is
not convex. In fact, in general, one cannot find such convex v € C?(R™). Here is an easy
counterexample: If u : R? — R, u(z,y) = |z|, then the only convexr function v : R* — R
such that |{u # v}| < o0, is v = w. For this and other examples, see [5]. In all the
examples the problem is caused by the fact that the graph of u contains a line, see [4,
Theorem 1.8|, [5, Proposition 1.10].

The problem of approximating a convex function by C?-convex functions in the Lusin
sense has remained unresolved since the nineties. It was natural to expect a positive an-
swer in the case of strongly convex functions or, more generally, locally strongly convex
functions. The motivation for considering this class of functions partly stems from the
celebrated work of Greene and Wu [15], who proved that locally strongly convex functions
on Riemannian manifolds (referred to as strictly conver by Greene and Wu) can be uni-
formly approximated by C'*° locally strongly convex functions. However, it is essential to
emphasize that the methods employed by Greene and Wu offer no insight into the problem
of Lusin approximation and, in fact, play no role in our paper.
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Recall that a function u : U — R is strongly convez, where U C R™ is open and convex,
if there exists n > 0 such that u(z) — Z|z|* is convex. In this case, we say that u is n-
strongly convex. Moreover, u is locally strongly convexr whenever, for every x € U, there
exists 7, > 0 such that the restriction of u to B(x,r,) C U is strongly convex. Note that
strongly convex functions cannot contain lines on their graphs because they are coercive,
i.e., u(z) = oo as |x| — oo. This excludes the counterexamples discussed above.

The main result of the paper is as follows.

Theorem 1.1. Let U C R"™ be open and convex, and u : U — R be locally strongly convex.
Then for every e, > 0 and for every continuous function € : U — (0, 1] there is a locally
strongly convez function v € C*(U), such that

(a) {x € U : u(x) #v(x)}] < &o;
(b) |u(z) —v(z)| < e(z) for allz € U;
(c) H" (GuAG,) < &,.

Also, if u is n-strongly convex on U, then for every 1 € (0,m) there exists such a function
v which is n-strongly convex on U.

Here, H" denotes Hausdorff n-dimensional measure, G, stands for the graph of a function
u, and AAB is the symmetric difference of the sets A and B, that is, AAB := (A\ B) U
(B\ A).

The next result is an immediate consequence of Theorem 1.1.

Corollary 1.2. Let u : R® — R be n-strongly convex. Then for every € > 0 and every
0 <7 <mn, there is an 1j-strongly convez function v € C*(R"), such that

Hzx e R": u(z) #v(x)}| <e and |u—v|w <e.

Let us mention a related result that was proved in |5, Theorem 1.12]:

Theorem 1.3. If u : R® — R is conver and coercive, then for every ¢ > 0, there is a
convex function v € CoH(R™) such that |{z € R™ : u(z) # v(z)}| < e.

loc

C’llo’i is the class of functions with locally Lipschitz continuous gradient. In fact due to the
counterexamples mentioned above, the coercivity assumption cannot really be removed: it
was proved in [5], that the existence of Lusin approximation by convex C’llo’i functions as
in Theorem 1.3 is equivalent to essential coercivity of w. This along with other results in
[5] and [4, Theorem 1.9] provide a complete answer to the problem of Lusin approximation

1,1 :
by convex C*! and C,;, functions.

To the best of our knowledge Theorem 1.3 was the first result in the literature towards
a positive answer to the question about Lusin approximation by convex functions.

The original proof of Theorem 1.3 was rather difficult and it was based on a character-
ization of Cp2}-convex Whitney jets [2, Theorem 1.3]. However, no results are known for
the C%-convex Whitney jets.
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A much simpler and more geometric proof of Theorem 1.3 was obtained in [4]. There are
many geometric conditions that imply C'! regularity of a convex function. For example
it is known that a compact convex body W (i.e. a compact convex set with non-empty
interior) has boundary of class C*' if and only if there is v > 0 such that W is the union
of closed balls of radius r. This result was used in a simple proof of Theorem 1.3 presented
in [4]. However, we are not aware of any simple geometric conditions that would imply
that a convex function is of class C?.

No methods like those available for C!-convex functions that were used in [5, 4] are
available for C?-convex functions. That makes Theorem 1.1 much more difficult.

In fact our proof of Theorem 1.1 relies on Theorem 1.3 in an essential way. It allows us
to assume early in the proof that u € Cﬁ)’i. Then the main work is focused on showing

how to upgrade from Cﬁ)’i to C2. This argument is new and unrelated to methods used in

the proof of Theorem 1.3.

We say that a subset W of R" is a locally strongly convex body if W is closed and convex,
with nonempty interior, and W can be locally represented (up to a suitable rotation) as
the graph of a strongly convex function. See [20] for other equivalent characterizations of
locally strongly convex bodies.

Theorem 1.4. Let W C R™ be a locally strongly convezr body (not necessarily compact),
e >0, and the set V. O OW be open. There exists a C* locally strongly convex body Wy
such that H" H(OW.v A OW) < & and OW.y C V. Moreover, if W is compact, then Wy

18 compact as well.

If W is unbounded, then after a suitable rotation, 0WW can be represented as a graph of
a locally strongly convex function [6] and the result follows from Theorem 1.1. However,
if W is compact, the result is more difficult. It was shown in [4, 5| how to prove a related
CY! approximation of convex bodies from Theorem 1.3. The main idea was to apply
Theorem 1.3 to the Minkowski functional of W. One can prove that if W is a compact
locally strongly convex body, and pyy is the Minkowski functional of T, then 2, is strongly
convex. Then, a suitable adaptation of methods in [4, 5] along with Theorem 1.1 yield
Theorem 1.4. Details of the proof are, however, quite technical and they will be published
elsewhere.

Except for Theorem 1.3 recalled in the Introduction, we use a convention that the names
“Theorem” and “Proposition” are reserved for new results, while well-known results and
results of technical character are called “Lemma”. “Corollary” will be used for both new
and known results, but it will be clear from the context which corollaries are new results.

The paper is structured as follows. In Section 2 we outline the main idea of the proof
of Theorem 1.1. In Section 3 we collect technical tools that are needed in the proof of
Theorem 1.1. The results are carefully stated and provide ready to use tools. The reader
might browse though this section quickly and focus on reading Section 4 that is devoted
to the proof of Theorem 1.1. This should give them a motivation for detailed reading of
Section 3 that otherwise, is a collection of unrelated results.
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1.1. Notation. The L norm will be denoted by ||ull,z = ([ |ulP dz)"/P. We will also
write || - ||, if the choice of E is obvious. The same convention applies to p = oo and Sobolev
norms discussed below. L} (€2), where @ C R" is open, denotes the space of functions
that belong to LP(B) on every ball B whose closure is contained in 2, B € ). Similar
notation applies to Sobolev spaces discussed below. Lebesgue measure of a set E will be
denoted by |E|. The integral average over a ball will be denoted by the barred integral
fpudr :=|B|™" [, udz. The Lipschitz constant of a function u will be denoted by Lip(u).
The scalar product on R™ will be denoted by (u,v). By writing u,, = u we will mean that
u, converges uniformly to u. E¢:= R"\ E will denote the complement of a set E. By
V"u we will denote the vector whose components are all partial derivatives D%u, |a| = m.
|A| := \/tr(ATA) will stand for the Hilbert-Schmidt norm of a matrix A. C' will denote a
generic constant and its value may change from line to line. By writing C' = C'(n,m) we
indicate that the constant depends on parameters n and m only. N will denote the set of
positive integers.

2. OUTLINE OF THE PROOF OF THEOREM 1.1

In this section we describe the main ideas in the proof of Theorem 1.1. Throughout the
following discussion, we use ¢ to represent a small positive constant; its value may vary
from one line to another. Since we focus on clarity in this overview, some of the details
may be oversimplified.

We begin with the special case that is stated in Lemma 4.1: If u : R" — R is strongly
convez, then there is a strongly conver v € C*(R™) such that |{u # v}| < e.

As a consequence of Theorem 1.3, we may assume that v € C!(R"), and hence, u
belongs to any Sobolev spaces VV@?(R") for 1 < p < 0. In Proposition 3.12, we decompose
R™ into annuli where we approximate u by its convolution; we patch these approximations

together with a smooth partition of unity to produce a strongly convex function u €
C>=(R") satisfying u —u € W (R") and ||u — ulj21 < .

The function @ need not agree with u, but we can use the small magnitude of ||u—1||2 to
prove there exists w € C*(R™) with small seminorm ||V?w||s satisfying [{w # u—u}| < e.
Then we have v := w+u € C?, a strongly convex function by Lemma 3.8, and |{v # u}| =
{w # u — u}| < e. Finding w is tricky:

First, let 4 := u — u € W*(R"), so ||il21 < e. Pointwise inequalities from [8, 9] (see
Corollary 3.15) imply that

la(y) — (@) — Diz)(y — )| | |Dily) — D

ly — | ly — |

where Mg is the Hardy-Littlewood maximal function. We choose A > 0 large enough that
Ey\ = {M|V%u| < A} satisfies |R"\ Ey| <e.

Then 4 restricted to E satisfies the assumptions of the W2*-Whitney extension theorem
(Lemma 3.16); thus, there exists w € W2 (R") C C*'(R") satisfying w|g, = |g,, and

{w # a}| < [R"\ Ey| <e.

U < oMV (@) + MV ().
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We let ¢ := 1w+ € Cl. Even though © has the same regularity as u, we have |{0 # u}| =
[{w # u — u}| < e. Further, we are able to use our control of ||i]s1, to control ||V,
and in a delicate iterative procedure (carefully explained in the proof of Proposition 3.20),
we produce a series of C™ functions that converge in the W° norm to a function w that
has small seminorm ||V?w||, and satisfies that [{w # u — u}| < e. In particular, the
function w € C?, because functions in the closure of C* in the W2 norm are of class C2.

By letting v := w + u be our approximation for u, we complete the proof of Lemma 4.1.

In Theorem 1.1, we extend this result to approximation of locally strongly convex func-
tions on a convex domain U, where in addition to the Lusin property (a) we have the
uniform approximation (b) ((c) follows easily from (a) and the local Lipschitz continuity
of convex functions). This adds another layer of difficulty. We represent U as the union of
an increasing sequence of convex bodies

By C int(Cy) C Cp C int(Byy), UB.=U.
k=1

Using Corollary 3.6, we extend u from By \ C_1 to a strongly convex function uy, : R™ — R.
Then, we approximate each uy by a strongly convex function by, € C?*(R™) using Lemma 4.1.
We glue the functions hj using the smooth maxima described in Lemma 3.11, so that the
resulting function v € C%(Q) equals hy on By \ Cj_;. This function v satisfies (a)-(c) of
Theorem 1.1.

3. PRELIMINARIES FOR THE PROOF OF THEOREM 1.1

3.1. Smooth and Sobolev functions. Let 2 C R™ be open, m € N, and 1 < p < o0.

C™(€) is the space of functions on 2 that are continuously m-times differentiable and
Cs°(Q) is the space of compactly supported smooth functions. C™!(Q) is the subspace
of C™(§2) consisting of functions u such that the derivatives D*u, |a| = m, are Lipschitz

. 1 . . . .
continuous on 2, and C2 () is the space of functions whose derivatives of order m are

locally Lipschitz continuous in €.

We will use only standard facts from the theory of Sobolev spaces. For more details and
proofs of results listed here, see e.g. [12].

Wm™P(Q)) is the Sobolev spaces of functions whose weak derivatives satisfy

[ullmpe == Z [ D%ul|p,0 < oo
|ao| <m
As explained above, for a measurable set E C  we will write

lallmps =D D%

laf<m

p,E-

However, ||D?ul|, will be the L? norm of |D?u| i.e., ||D?ull, = 1 =2 [Deuf?) 2],
Clearly, || D*ull, < [lullz.
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If Q C R" is convex, then W™>(Q) c C™ 11(Q). Indeed, convexity of { implies that
Wh>°(Q) coincides with the space of bounded Lipschitz continuous functions on € and
hence if u € W™>=(Q), and |a| = m — 1, then D € WH>(Q) is Lipschitz continuous.

Note that W™>(Q) N C™(Q) is a closed subspace of W">(Q). Indeed, if {uy}r C
Wmee N C™(Q) is a Cauchy sequence with respect to the norm || - |00, all derivatives
D®uy, |a| < m converge uniformly on 2 and hence the limiting function belongs to C™ ().

We also define W™(Q) := W™HQ) N W™>(Q). Thus u € W™(Q) if D € LP(2) for
all 1 < p < oo and all |a] < m. Indeed, this is a direct consequence of an elementary fact
that L' N L>® C LP for all 1 < p < 0.

3.2. Mollifiers. By a mollifier we will mean a compactly supported smooth function ¢ €
C5°(B(0,1)) such that ¢ > 0 and [, ¢ dz = 1. Then for e > 0 we set ¢.(x) = e "p(z/e).
The following facts are well known and easy to prove.

If uw e W™P(R"™), then u. := . x u € C*°(R"™) satisfy

u = tellmpy =5 0 i 1<p< oo (1)
and
[tellmp < [Jullmy if 1 <p < oo (2)

It is also easy to show that || D?u.|s < ||D*t|so-

3.3. Convex functions. For a function u : U — R defined on an open and convex set
U CR" and z € U, we define the subdifferential Ou(z) as the set of all v € R™ such that
u(y) > u(x) + (v,y —x) for all y € U. If A C U, then we write Ju(A) =, , Ou(x).

T€EA

It is well known that u is convex if and only if Ju(x) # @ for all x € U.
The next result is an easy exercise.

Lemma 3.1. Let u : U — R be a convexr function defined on an open and convex set
UCR" IfG €U is open, then suPgeay () 1€l < Lip(ula).

We will also need the following results.

Lemma 3.2. Let U C R"™ be open and convex, and u; : U — R be a sequence of convex
functions. Assume that the sequence (u;) converges pointwise on a dense subset of U.
Then there is a convex function u : U — R such that u; = u converges uniformly on every
compact subset of U.

For a proof, see [18, Theorem 10.8|.

Lemma 3.3. Let U C R” be open and convex, u : U — R™ be a convexr function, and
A, B C U be compact convex bodies such that A C int(B). Then,

Mpg(u) — mp(u)
dist(0A,0B)

where Mp(u) := max,ep u(x), and mg(u) ;= minge g u(zx).

(3)

Lip(uja) <
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Proof. Let z,y € A, x # y. Without loss of generality, we may assume that u(y) > u(zx).
Then, there exists z € 0B such that y belongs to the segment with the endpoints = and z,
and we have
uly) —ulz) _ u(z) —u(z) _ Mp(u) —mp(u)
ly — x| |z —xz| — dist(0A,0B) ’

implying (3). O

<

3.4. Strongly convex functions. Let U C R" be open and convex. We say that a
function v : U — R is n-strongly convexr, where n > 0 is a constant, if the function
u(xz) — 2|x|* is convex. A function is strongly convez if it is n-strongly convex for some
n > 0.

Lemma 3.4. Let u : U — R be a convexr function defined on an open and convex set
U CR™. Then u is n-strongly convez if and only if
n
u(y) = u(z) + (& y — =) + Sly —af’ (4)
for all x,y € U and & € Ju(x).

Proof. Let v(x) = u(z) — 4|x|* and note that (4) is equivalent to

v(y) 2 v(@) + (€ —nz,y — x). ()
To prove the implication <, let u : U — R be convex and satisfy (4) or equivalently (5).
This implies that £ —nx € dv(z) so dv(x) # @ for all x € U, and hence v is convex i.e., u
is m-strongly convex. It remains to prove the implication =-. Let u : U — R be n-strongly
convex, let x,y € U and let £ € du(x). We need to prove (4) or equivalently, (5). Let
z € U. Subtracting the identity

A2 = Sl + e,z — @) + 3]z — af
from the inequality u(z) > u(z) + (£, 2 — x), yields

1

5 z— x| (6)

v(z) > v(x) +(§ —nx, 2 —x) —

The function
h(z) = v(z) = (€ —nr, 2 — 1)
is convex and (6) is equivalent to
h(z) > hz) — g|z — . (7)
For t € (0,1), let z = + t(y — «). Then (7) and convexity of h yield
thy) + (1 = )h(x) = hiz + 1ty - 2)) = h(z) = JJt(y — )P

ie, h(z) — h(y) < tily — x>, Letting t — 0% gives h(y) > h(z), which is precisely
inequality (5). O

Remark 3.5. The above proof of (<) also shows that if (4) holds for all z,y € U and
some & € Ou(x), then u is n-strongly convex, and therefore, by the proof of (=), (4) is
also true for all £ € du(x).
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As a corollary we obtain a result about the minimal n-strongly convex extension from a
compact set.

Corollary 3.6. Let u : U — R be an n-strongly convex function defined on an open and
convex set U C R™. If K C U is compact, then the function u : R™ — R defined by

L B N e
u(x) == zeK,zlgau(z) {u(z) + (&, x—2) + 2|:1: 2| } (8)

1s n-strongly convex, and such that

(a) u(z) = u(x) for all z € K,
(b) u(z) <wu(z) for allz € U.

Proof. 1t follows from Lemma 3.1 and Lemma 3.3 that Ou(K) is bounded. This implies
that @(z) is finite for every x € R™. The function u(x) — 2||? is convex as the supremum
of a collection of affine functions so u is n-strongly convex. Finally, Lemma 3.4 implies
that u(x) > u(x) for all x € U which is (b), and taking z = x € K and any &, € du(z) in
(8) yields u(z) > u(z) for x € K so u(x) = u(zx) for all x € K which is (a). O

3.5. Smooth strongly convex functions. Note that if u € C?(U), then u is n-strongly
convex if and only if

D?u(x) > n for all z € R",
meaning that

D)= Y =T () > ol for all € € B )
iy=1 "t

Lemma 3.7. Let u : R® — R be conver and u. := ux* @, where ¢ is a mollifier and £ > 0.
Then

(a) u. is conver,
(b) If w is n-strongly convez, then u. is n-strongly convez too.

Proof. (a) Multiplying the inequality u((tx + (1 —t)y) — 2) < tu(x — 2) + (1 — t)u(y — 2),
t € [0,1], by p.(z) and integrating over R™ yields u.(tx + (1 —t)y) < tu(x) 4+ (1 —t)u:(y).
(b) Suppose first that u € C*°(R™) is n-strongly convex. Then (9) is satisfied and hence
' D*ug = (€7 D*ug) * g > nle*.
This proves n-strong convexity of u. in the smooth case.
In particular, if g(x) = Z|x|?, then
&' D?g.€ > nlef.

Assume now that wu is any n-strongly convex function. Then (u — g). = u. — g. is convex
by (a) and hence

5TD2(U8 —9:)§ >0, 5TD2uef > 5TD2955 > 77|§|2'

This proves n-strong convexity of u. in the general case. 0
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Lemma 3.8. If u: R" — R is n-strongly convez, 0 <7 < n, and f € C*(R"™) satisfies
nmax |[D° flleo < =1,
then u + f is n-strongly convez.

Proof. The following elementary estimate
[t D*f ol < (n—n)v®, veER,

implies that the function f(x) + ”%ﬁ |z|? is convex. Therefore,

() + 7)) = Lal? = (uta) = o) + (72) + T )

s convex. O

3.6. C! approximation of strongly convex functions. We say that a function u :
R™ — R is coercive if

lim u(x) = oo.
|z|—o00

Note that strongly convex functions are coercive. Indeed, convex functions are bounded
from below by affine functions (supporting hyperplanes) and hence strongly convex func-
tions are bounded from below by quadratic functions.

The following result is a straightforward consequence of [5, Theorem 1.12]. For a geo-
metric and a much simpler proof, see [4].

Lemma 3.9. Ifu: R" — R is convex and coercive, then for every e > 0, there is a convex

function v e CULR™) such that' |{z € R™ : u(x) # v(z)}| < e.

loc

Corollary 3.10. If u : R" — R s n-strongly convex, then for every 0 < n < n and
every € > 0, there is a n-strongly convex function v € Cﬁj’cl(Rn), such that v > u and
Hr e R™: u(z) #v(x)} <e.

Proof. The function w(z) = u(z) — (17/2)|x|? is strongly convex and hence coercive. Ap-
plying Lemma 3.9 to that function yields a convex function v € C’ﬁ)’cl satisfying v > w and
{u # v}| < €. Therefore, v =0 + (77/2)|z|* satisfies the claim of the corollary. O

3.7. Smooth maximum. The material of this subsection is based on [3|. The maximum
of two convex functions max{u,v} = (u + v + |u — v|)/2 is convex, but not necessarily
differentiable, even if u,v € C*°. The next construction provides a modified notion of the
maximum that preserves smoothness and convexity.

For any constant > 0, we define
r+y+0(z—vy)

5 )
where 0§ = 05: R — (0,00) is a C* function such that 6(t) = |¢| if and only if |t| > §, and
0 is convex and symmetric. It follows that M; : R?> — R is convex.

M(g(l',y) = (xay) €R27

TAlthough the proof of [5] implicitly yields v > w, this useful additional property is explicitly stated and
proved in [4].
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For functions u,v: U C R™ — R, we define the smooth mazimum of u and v by
My(u,v) U =R, My(u,0)(x) = Ms(u(z), o(w)). (10)

We will need the following properties of the smooth maximum. For this and other prop-
erties, see |3, Section 2].

Lemma 3.11. Let U C R"™ be open and convex and let u,v: U — R be convex functions.
For every 6 > 0, the function Ms(u,v): U — R is conver and satisfies

(a) If u,v € C*(U), then Ms(u,v) € C*(U).

(b) Ms(u,v)(z) = u(x) if u(zx) > v(x) + 0, and Ms(u,v)(z) = v(z) if v(z) > u(x) + 4.
(¢) max{u,v} < Ms(u,v) < max{u,v}+ /2.

(d) If u,v are n-strongly convex for some n > 0, then Ms(u,v) is n-strongly conver.

Proof. 1t is not difficult to show that the partial derivatives of Ms(z, y) are non-negative and
hence Mjs(z,y) is non-decreasing in x and in y, see |3, Lemma 2(viii)]. This easily implies
convexity of Ms(u,v). Properties (a)-(c) follow immediately from the definition of My(z,y).
It remains to prove property (d). If u,v are n-strongly convex, and h(x) = (n/2)|z|?, then
Ms(u,v) —h = Ms(u — h,v — h) is convex, so Ms(u,v) is n-strongly convex. O

3.8. Smooth approximation of strongly convex functions.

Proposition 3.12. Let u € VV@’?(R”), n < p < oo, be n-strongly convex. Then for every

e>0,0<n<mn, and 1 < q < p, there exists an 1n-strongly convezx function v € C*(R")
such that ||u — vz 4rn < €.

Proof. Let ¢; € C§°((i — 1,i + 1)), i = 0,1,2,... be such that Y2 ¢;(t) = 1 for all
t € [0,00). Then the functions 6; € C3°(R™), 0;(z) = 1;(|x|) form a partition of unity on
R™. The function 6, is supported in B(0, 1), while the functions 6; for ¢ > 1 are supported
in the annuli {i — 1 < |z| <7+ 1}.

Let Ag = B(0,1),and A; = {i — 1 < |z| <i+ 1} fori > 1, so supp; C A;.

Fix a mollifier ¢ and let us := u* ;. Note that for every 4, |[u—us||2p 4, = 0asd — 07,
and hence
|lw — us|2,4,4, = O as 0 — 0, (11)

1p
oc’

by Hélder’s inequality. Since u is continuous and Du € W F', p > n, is continuous by the

Sobolev embedding theorem, we have that for every ¢,
|u — ts)|oo,a, + |D(u — us)||ooa, =0 asd —0F. (12)
Fixe>0,0<np<nand1l<qg<np.

Let A = {0;}32, be a sequence of positive numbers §; > 0, and define

oo
Up = E Oius,.
i=0

We will prove that with a suitable choice of A, the function v := ua has the required
properties.
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We say that A < A" = {6/}, if 6; < J; for all i. We say that a property holds for all
sufficiently small A, if there is A’ such that the property holds for all A < A/.

Clearly ua € C*(R") for every A. Next, we show that there is A’ such that
|lu—ual2qrs <e  forall A <A (13)

Using (11) we can conclude that

lv — uallqen < Z 16 (u

provided A is sufficiently small. The estimate for the gradlent is similar:

1D (w = us)lgze < D 1 Dbilloclu —

=0

¢, A <8/3

provided A is sufficiently small.

To estimate the second order derivatives we will use the following convenient notation
for the product rule. If a = [a;]?; and b = [b;]!,, then the tensor product of the vectors
is the n X n matrix defined by a ® b := [a;b;]7';,_,. With this notation, the product rule for
the second order derivatives on R" takes the form of

D*(fg) = gD*f+ Df @ Dg+ Dg® Df + fD?g.
Thus the Hilbert-Schmidt norm of D?(fg) satisfies
[D*(fo)l < gl |D*f| +2|Df||Dg| + | f]| D%l
and hence,

1D (u — ua) gz

> £
<3 (192 = s la, + 21 D8l cll Dt = 5o, + 1D = w5 ) < 5,
=0

provided A is sufficiently small. This proves (13) and it remains to show that ua is
n-strongly convex for all sufficiently small A.

Since Y2, 6; = 1, we have that Y ° D0; =0, Y .=  D*#; = 0 and hence
(Db; ® Du+ Du® DO; + uD?6;) = 0.
=0

Therefore,

DQUA = Z@DQU&' + ZDQZ ® D(u5z - U’) + D(u5z - U) ® DO; + Z(u5z - U’)DQGZ

=0 1=0 =0
(& J/ J/ (& J/
' N NV

AA BA CA

According to Lemma 3.7, the functions ug, are n-strongly convex and hence

AN Z e, EER™



12 AZAGRA, DRAKE, AND HAJLASZ

On the other hand (12) yields that for sufficiently small A we have

- n—1
€T Ba | < 2\€|22 D0 || oo || D (s, — 1) |loo,a, < N €17,

i=0
and
S n—1
€7 Ca €l < IEF D 11D 0iloolus, — ulloc,a, < —— I
=0
In concert, the last three estimates yield

-n — ﬁ N
€ Dua & 2 mlel? — T e — T el = el

and that completes the proof of 7-strong convexity of un. O

1
loc

3.9. Pointwise inequality. Given g € L
is defined on R"™ by

(R™), the Hardy-Littlewood maximal function

>0
B(z,r)

Mg(z) := sup ][ l9(v)] dy.

Recall that the maximal function satisfies the weak type estimate [19, p. 5]:

n

5
{z e R": Mg(x) > t}| < 7||g|\1 for all t > 0. (14)

Sobolev functions u € W;"'(Q) and their derivatives are defined almost everywhere.

In what follows we will choose representatives defined everywhere in €2 by the following
formula:

D%u(x) = limj(?p ][ D%u(y)dy, for all |a] < m and every = € Q. (15)
B(z,r)

The fact that it is indeed a representative of D%u in the class of functions equal a.e. follows
immediately from the Lebesgue differentiation theorem.

For k < m, we will denote the Taylor polynomial of u € W' () at = € Q by
@ (y B :C>a
Tru(y) == Z D u(x)T
|| <k

More generally, if {u®}|q4)<p, is a family of continuous functions on F* C R", then for [a] < m
we define

_ )8
Tru(y) = Z u‘”ﬁ(x)% forze F,yeR" and k <m — |a].
|BI<k '

For a proof of the following pointwise inequality, see [8, Theorem 3| and |9, Theorem 3.6].
In the case of smooth functions this result has already been proved in |7, Corollary 5.8].
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Lemma 3.13. Letu € VVITCI(]R") and its all derivatives be defined at every point of R™ by
(15). Then
Ju(y) — T3 "u(y)|
|z —y|™
for all z,y € R™, x # y, where the constant C' depends on n and m only.

< CMV™ul(z) + M[V™ul(y)) (16)

Remark 3.14. If u(y) = +oo or D*u(z) = £oo for some || < m — 1, we assume that
the left hand side of (16) equals +o0o so the inequality means that in that case the right
hand side equals +o0.

Applying Lemma 3.13 to D%u € I/I/I’;@_‘O‘L1

o ol <m —1, we have

Corollary 3.15. Letu € I/Vlgncl(R") and its all derivatives be defined at every point of R™
by (15). Then we have

a m—1—|al na
e Puly) = T Do (y))

la|<m—1 ‘3;‘ — y‘m*|a|

< CMV™u|(z) + MIV™ul(y)) (17)

for all z,y € R", x # y, where the constant C, depends on n and m only.

Lemma 3.13 and Corollary 3.15 provide estimates for the Taylor reminders of u and
its derivatives in terms of the maximal function. These estimates allow us to apply the
Whitney extension theorem which we formulate next. A proof of this particular statement
can be found in [19, p. 177-180].

Lemma 3.16. Let m € N and M > 0. Assume that F' C R" is a closed set and we have
a collection of continuous functions {u®}jaj<m-1 on F such that

us(y) — T2l (y))|

: < M. 18
\arlrél%z}il oo, |af§%1>ilzs,;lepF |z — y|m—lel = (18)
TFy

Then there is a function U € W™= (R") C C™ M (R™) such that D*U = u® on F and

DU _ Ténflf“ﬂDaU
U < S (1D U]+ sup 27U DU )|
z,y€R™ |z — y|m—lel
|| <m—1 :g#y

where the constant Cy, depends on n and m only, and the norms in (19) are over R™.

) < C,M, (19)

Remark 3.17. The proof of Lemma 3.16 presented in [19] is with maxy<p—1 in (19)
instead of ., ; (just like we have it in (18)), but the two quantities are clearly equiv-
alent. The reason why we used Z\a| <m_1 Was to have a nice explicit constant in the left
inequality in (19).

Remark 3.18. If m = 1, we simply have u° and (18) means that u° is bounded and
Lipschitz continuous
[u’(y) — u(2)]

sup [u’(z)| + sup < M.
zEF xy#eF |z =y
x#y

In that case the theorem says that u" can be extended to a bounded Lipschitz continuous
function on R™.
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Remark 3.19. The proof given in [19] shows the right inequality in (19), but as we will
see, the left inequality is nearly obvious. Since Zla\ cm—1 1DVl is a part of the middle
expression in (19), it suffices to concentrate on the L> norm of derivatives of order m. For
« satisfying || = m — 1 we have

|D*U(y) — D*U(x)]

"9
Yy H D‘“UH < |VDU|w = sup
i=1 >

axz‘ z,yeR™ |ZL’ - y|
Ay
DU (y) — T el pey
— sup | DU (y) Wl
2 yeR™ |z — y|mlel
Y

and the left inequality in (19) follows.

It should not be surprising now that Corollary 3.15 and Lemma 3.16 can be used to prove
that ™! functions coincide with C™ functions outside a set of small measure. This is a
theorem of Calderon and Zygmund [10] who proved it using different techniques. Several
generalizations of their result were obtained by many authors including [8, 9, 14, 17]. Tt
seems the papers [8, 9] were the first to use pointwise inequalities as in Lemma 3.13 and
Corollary 3.15 in that context. A modified approach was given by Maly and Ziemer [16,
Theorem 1.69] who proved it for m = 1 using pointwise inequalities from [8] (see [16, p.
62]). The next result is a generalization of [16, Theorem 1.69] to the case of higher order
derivatives. Recall that W™ = Wm0 Jmee,

Proposition 3.20. Let u € W™ (R™). Then, for every a > 0, there isv € W™NC™(R"),
such that

[0]lmoc < a (20)

[0llma < Cullullma (21)
n C*

[{z € R": u(z) # v(@)}] < —lullm1, (22)

where the constant C, depends on n and m only.

Proof. Let u € W™ (R"). In the first step, we will prove a weaker result, existence of a
function w € W™(R™) that has similar properties

Hw”m,oo <a (23)

[wlm1 < Collullm, (24)
n CO

[{z € R": u(z) # w(z)}| < —lullm,, (25)

where the constant C, depends on n and m only. That is, we will construct a function
with all properties required by the proposition except for the C™ regularity.

Without loss of generality, we may assume that u and its all derivatives are defined at
every point of R™ by (15).

In view of Corollary 3.15, in order to apply Lemma 3.16 with u® := D%u, we need to
restrict u to some closed set F, where maxq<m—1 |D%u| and M|V™u| are bounded by
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suitable constants. The set F' will be defined as the complement of the open set Gy U G,
defined below.

Recall that the constants C), and C,, from Corollary 3.15 and Lemma 3.16 depend on n
and m only. We define

Go = {x e R": max |D%(z)| > - },

la|<m—1 2nCly,
a
Gy = { R"™: m > —}
1 T € M|V u|(x) .G
Chebyshev’s inequality and the weak type estimate for the maximal function (14) yield
~ 2nC,, . 4AnC,C.,
|Go| < ullmand |G| < 5" === [ullm1,

Note that the set G is open, but éo not necessarily. Let GGy be an open set such that
GO C GO and

4nC',
Col < 2
Let G := Gy UG, and F = G°. Then
1
€] < 4nCul1 +5'Cy) [l (26)

If x € F, then we have inequalities opposite to those in the definition of the sets éo and
(1, which combined with (17) yield

Do . T;m—l—|a|Da
max sup |D%(x)| + max sup [ D%u(y) u(y)|
la]<m—1 zeF la]<m—1 x’y;F |z — y|m—lal
T#yY

a a a
20 _ .
2mCy P InCCy

It follows from this estimate that the functions u® := D%u|p are continuous.

<

Applying Lemma 3.16 we get w := U € W™ (R") satisfying ||w/||m,.o < a which is (23).
Since u = w in the complement of G, inequality (26) yields

n,m)

fz €R": (o) 2 w(@) < [l s

[elfom1
which is (25). Finally (24) follows from the estimate
lwllma = (D0l + 1D*wlli.6) < [wllmool Gl + fetllm < Ol m)uflm,r.

lo|<m
In the second to last inequality we used the fact that w = v in G, and in the last inequality
we used (23) and (26). This completes the construction of a function w with properties

(23), (24) and (25).
Now we are ready to complete the proof of the proposition.

Using the construction above (with a replaced by 271a), we can find w; € W™(R") such
that
lwillmee <27%a, Jwillma < Colltllmt, (27)
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|;{1: eR™: u(x) # wl(x)];] <2C,a M |ul|m1- (28)

=F

Let ¢ be a mollifier as in Section 3.2. Then according to (1) and (2), there is € > 0 such
that

V1 1= P kW and Uy 1= wi — Uy (29)
satisfy
[V llm,c0 = [l0e * Wi [lmc0 < W1 lm,co < 27"a, (30)
[01llm,1 = ll@e * willm < [Jwillma < Collullm,i, (31)
[1llmy = lwi = @e * willmay < 47 atllm,1, (32)
[ur][oo < [lwrloo + [J01]loc < a. (33)

The function vy is C* smooth and it satisfies (30) and (31) which yield v; € W™ N
C*(R™), (20) and (21), but the problem is that v; need not coincide with u on a set of
positive measure. On the other hand

vy +u =u in Ef

by (29) and (28), but the ‘correcting term’ u; is not smooth. It belongs to W™! but it
has much smaller W™! norm than u, see (32). The idea is to apply the above procedure
to uy in place of uw and find vq, uy, and Es, so that ve + us = u; in S and hence

v +vatuy=v1+u =u in EYNEY.

Continuing this procedure, we will have

k k
up + E v; =u in ﬂ E?.
i=1 i=1

It will follow from the estimates that the series Y .-, v; will converge to a function v €
W™ N C™(R"™), and wuy, will converge uniformly to zero, so v = w in (-, Ef. That will
complete the proof.

The sequence of functions and sets will be constructed by induction. We already con-
structed the functions v; € W™ N C*®, u; € W™! and the set E;. Suppose now that for
some k € N we have functions {v;}¥_;, € W™ N C*®(R"), {u;}f_, € W™(R"), and sets
{E;}¥_, such that for i = 1,2,..., k we have

il m,00 < 27", (34)
[il[m,1 < 47 Collu]|n,1, (35)
ekl lma < 475l .1, (36)
[uglloo <275 a, (37)

k k

uy + Z v;=u in ﬂ E¢, (38)
i=1 i=1

Bl <277 Coa luflma- (39)

We already verified these conditions for k£ = 1.
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Now we will construct vyy1, ugr1 and Eyy; and we will verify conditions (34)—(39).

Applying the construction of w satisfying (23), (24), (25) to uj, and 2~ +1q (instead of
w and a), we find w1, € W™ (R") such that

lwisillmee <275 a, wkgallma < Collukllmy < 47 Colltflm,,

|;{a: € R™: u(z) # wkﬂ(x)ﬂ < 2Oy a7 Jug | < 9~ (k+1)+2 Coa Ml ma

=Er41

which proves (39) for i = k + 1.

Now there is € > 0 (perhaps different than the one before), such that

Vgl = Pe * Wiy and  Uppr = Wpp1 — Vg

satisfy

V41 [ms00 < | Witt][myo0 < 9~ (k+1)

Vk+1|lm,1 > [|WEk+1|[m,1 > - o||U||m,1,
[ps 1l < wps [l < 47EDHC|ful]

4—(k+1

a,

||uk+1|lm,1 = ||wk+1 — Pe ¥ wk—i—l”m,l S )HuHm,h

(k+1)+1

turtilloo < lwngilloo + [[vrsalloe <27 a.

This proves (34), (35), (36) and (37) for i = k + 1. It remains to prove (38) for i = k + 1.

Since Up41 + Vg1 = W1 and wpy1 = ug in B4, (38) yields

k+1 k k+1

k
uk+1+ E Ui:wk+1+ E V; = U + E Vi =1Uu in mEf
=1 i=1 =1 =1

which proves (38) for k + 1.

The proof of (34)—(39) for all £ € N is complete and we are ready to complete the proof
of the proposition.

Consider the series v := Y .=, v;. It follows from (34) and (35) that the series converges
both in W™ and W™ so v € W™(R") satisfies

4
[Wlimee <aand lvllmy < 5 Collullm,. (40)

Since this is a series of smooth functions and W™> N C™(R") is a closed subspace of
Wmee(R™), it follows that

veWm™ncm™R"). (41)
Finally, (37) and (38) show that the series converges uniformly to u on (;2; Ef, so v = u
in that set and hence (39) yields

{r € R : u(@) # o(@)} < | B < 4Cua™ . (42)

Now the proposition follows from (40), (41) and (42) with C\, = 4C,. The proof is complete.
0J
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4. PROOF OF THEOREM 1.1

First, we will prove a special case of the result.

Lemma 4.1. Let u : R" — R be n-strongly convex. Then for every ¢ > 0 and every
0 <7 <mn, there is an 1j-strongly convez function v € C*(R"), such that

Hx e R": u(z) Zv(x)}] <e.

Proof. We claim it is enough to prove the result for n-strongly convex functions in VVl P(R™)
for n < p < co. Indeed, the general case can be concluded then as follows:

Suppose the result holds for functions in VVlif(R”) forn < p <oo. Let u: R™ — R be
n-strongly convex, and fix e > 0 and 0 < 17 < n. Let 0y € (77,n). We apply Corollary 3.10 to
produce u € Cﬁ)i that it n'-strongly convex and satisfies [{u’ # u}| < ¢/2. In particular,

VVlif for any n < p < oo. Then, we apply the assumed result to «’, £€/2 > 0, and

ne (0 1'), producing v € C? that is 7-strongly convex and satisfies [{u’ # v}| < /2, and
thus |[{u # v}| < e.

Therefore, in what follows we assume that v € VVlif(R”) for some n < p < oo, is
n-strongly convex. Without loss of generality, we may assume that

n—n
2nC,’

where C\ is the constant from Proposition 3.20.

According to Proposition 3.12, there is u € C*°(R") such that u is (n + 77)/2-strongly
convex and |lu — @[y < 2.

Applying Proposition 3.20 with m = 2 and a = C.e to u — u in place of u, we find
w € W2N C?(R") such that

n—n
o S Che < ——, 43
oo < Cue < L (43)
[wllzy < Cullu = |2,y < C e,
’{x eR": w(x) # (z)}] <
Since _
s 2 + n—strongly convex, 0<n< HTT]
and according to (43)
it follows from Lemma 3.8 that v := U + w is 7j-strongly convex. Clearly, v € C?(R") and
{v # u}| = [{w # v — u}| < e. The proof is complete. O

Corollary 4.2. Let u : R* — R be n-strongly convez, 1 € (0,n), and let 0 < &, — 0.
Then, there exists a sequence of -strongly convex functions (vg)ren C C*(R™) satisfying:

(a) {x € R" : vp(z) # u(z)}| < g for all k € N;
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(b) v = u converges uniformly on every compact subset of R™.

Proof. Given u,n,1, and (e;)ren satisfying the hypotheses of the corollary, we apply
Lemma 4.1 to obtain a sequence of 7-strongly convex functions (vg)rey C C*(R™), sat-
isfying [{z € R"™ : vp(z) # u(x)}| < /2" for all k € N (and consequently (a)).

It suffices to show that vy — w almost everywhere, because then (b) will follow from
Lemma 3.2. Let 4; := {z € R" : v;(z) = u(z)}, and C := {J,o, oy Ai- If z € C, then
r € N2, A for some k and hence u(z) = vp(z) = vpp1(x) = ..., 50 vi(x) == u(x). We
proved that v;(z) — wu(z) for every x € C and it remains to show that |[R"\ C| = 0.
Clearly, |R™\ A;] < &;/2". Since

o
6.
< Z—z Ssupeik_)—of0,
o2 ek

ROl < R4l = [ R 4)
i=k i=k

we conclude that |R™\ C| = 0. O

Proof of Theorem 1.1. Let u : U — R be locally strongly convex, ¢, > 0, and € : U — (0, 1]
continuous. We fix a sequence (By)?2; of compact convex bodies such that By, C int(Bg1)
for all k € Nand | J,o, By =U.

By assumption, for each k € N, there is n, > 0 such that u|p, is ni-strongly convex; we
may assume that 7,1 < n for every k.

Let
rp = min e(x) for ke N. (44)

wGBk+1

Let By = Cy = @. For each k > 1, we find a compact convex body C} such that

. . . Te+1
B t(C, C t(B dist(0By, 0C;) < —————— 45
p Cint(Cy) C Ck C int(Bgy1), dist(0Bg, 0Ck) < 6Tip(uls.)’ (45)
and
|Ck \ By| < o ,  where Lj:= 2+ M3k+1 (u) —mp,,,(u) (46)
242, 14 L2, dist(0Bg, 0Bg11)

(we are using notation from Lemma 3.3). Note that Lip(u|p,,,) > 0, because u|g, , is
strongly convex, so we do not divide by zero in (45).

We can also assume that
Cr = {x : dist(z, Br) < ai} (47)

for some a; > 0 so that all points on the boundary of C} are at the equal distance to Bj.
Clearly, aj, = dist(0B, 0Cy).

Note that (46) implies
€o

Z|Ck\Bk| <5 (48)
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Then, for each k € N we define u;, : R" — R by (cf. Corollary 3.6)

un(x) = sup {u) + (€ x =)+ B — o}

YEB\INt(Cy 1), & €0u(y) 2
The next result collects important properties of the functions uy.

Lemma 4.3. For each k € N, the function uy : R™ — R satisfies:

(a) uy is Mgrs-strongly conver;

(b) u, =u on By \ Cx_1;

(¢) up < u on Byys;

(d) By = inf ep {u(x) — ups1(x)} > 0;

(e) Ok := infrep,, \ins(c){u(x) — ur(z)} > 0;
(f) lJur = vlloo,ci\Br_y < 7Tr/3; recall that By =

Proof. (a), (b) and (c) follow from Corollary 3.6. To prove (d) let x € By and y €
Bjy1 \ int(Cy), &, € Ou(y). Since u is ny4o-strongly convex on Byo, and z,y € int(Bjy2),
Lemma 3.4 yields

ule) = uly) + (& x = y) + 2w — yP
uy) + (6w — y) + Tolo —yf? + B2 ist (91, 00"

Taking the supremum over all y € By \ int(Cy) and &, € du(y) gives
w(z) > uprr () + Wdist(a&g, dCy)? for all x € By,
from which (d) follows. The proof of (e) is similar to that of (d). For # € Byyq \ int(Cy),

y € By \ int(Cy_1) and &, € Ou(y), ngyo-strong convexity of u on Bjio and Lemma 3.4
yield

u@) = uly) + (&0 —y) + = yP
> u(y) + (. x —y) + % T —yl®+ Wdist@&g, OCy)?.

Taking the supremum over all y € By, \ int(Cj_1) and &, € du(y) gives

u(z) > ug(x) + de(am, 9C,)? for all & € By \ int(Cy),
from which (e) follows.

[t remains to prove (f). Since u = ug on By \ Ck_1, we only need to consider the sets
Cr-1\ Br—1 and Cy \ By, when k > 2, and Cy \ By, when k = 1.

If v € Cp_1\ By_1, k> 2, then we can find y € 9C),_; C By \ int(Cx_1) such that

|l‘ - y| S diSt(y, 3Bk_1) = diSt(aBk_l, 8Ck_1) (49)



APPROXIMATION OF CONVEX FUNCTIONS 21

(in the last equality we are using (47)). If &, € Ju(y), then |,| < Lip(u|p,) by Lemma 3.1,
because y € int(By). Property (c) of Lemma 4.3 yields
Tk+8 |

u(z) > up(x) > uly) + (§y, r —y) + 5
> u(z) — |uly) —u(z)| — & |z — y|
Tk

> u(z) — 2 Lip(u|p, )|z —y| > u(x) — 3

T — |2

In the last inequality we used (49) and (45). Therefore,
r
”Uk - uHOO,Ckfl\kal < Ek for k > 2.

If v € Cy \ By, k > 1, then we can find y € 0By, C By \ int(Ck_1) such that |z — y| <
dist(0By, 0Cy). If §, € Ju(y), then || < Lip(u|p,,) and

(@) > (@) > u(w) — uly) — u(@)| — &z -y
1 T
> u(2) - 2Lip(uls, ., )|o — y| > u(e) - "5
Therefore,
Tk+1 < Tk '

ok~ ullecime < 75T <

This completes the proof of (f). O

The idea of the remaining part of the proof is to use Corollary 4.2 to approximate u; near
the annulus By \ int(Cjy,_1) by globally defined strongly convex functions of class C* and
glue these approximations using the smooth maximum method described in Lemma 3.11.

Let e, be a sequence such that

min{e,, ry}

2642, /1 + L2

(recall that r, and Ly were defined in (44) and (46)). In particular,

Y e < % (50)
k=1

1
O<5k§§min{ ,(5k,ﬁk}, Epr1 <€ forkeN

Now, we use Corollary 4.2 to find an 7, ¢-strongly convex function h; € C?(R") such
that
{zx € R" : ug(x) # hi(z)}] < e (51)
and
|ug(x) — hi(z)| < g for all z € By.;. (52)
For k > 2, we define v;, : R™ — R by (see, (10))

U = Msk,l(hkfla hk)-

Lemma 4.4. For each k > 2, the function vy is in the class C*(R™), ngyo-strongly conver,
and satisfies:

(a) v, = hg_1 on Br_1 \ Cg_2;
(b) Vg = hk on Bk \ Ok—l'
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Proof. The fact that v, € C?(R™) and vy, is ng9-strongly convex, follows immediately from
Lemma 3.11.

(a) For © € Bj_1 \ Ck_2, (52) and Lemma 4.3 give
hie <up+er Su— Br-1+ep =up—1— PBr-1 + €k
S hg-1+ep-1— Bre-1ter < hg1 — PBr-1 + 261,
hence
b1 — hg > Br—1 — 2651 2> Ek1,
and from Lemma 3.11(b) we deduce that vy = M., | (hx—1,hx) = hx—1 on Bx_1 \ Cy_o.
(b) For z € By, \ Ci_1, (52) and Lemma 4.3 give
hi—1 < up—1+ep1 <U— 01+ k-1 = U — Op—1+ Ex—1
< hp+ep— k1 +ep1 < hp — 0p1 + 261,
hence
hy — hg—1 > Op—1 — 261 > €x-1,

and we conclude that v, = M., | (hg_1,hi) = hy on By \ Ck_1. O

Now, we define our function v : U — R by
v(z) = vg(z) if © € By \ Ck_2 for some k > 2. (53)

While | J.2, (B \ Ck—2) = U, consecutive annuli in the definition (53) overlap. However,
for £ > 2, on the overlapping annuli we have

V=V = V41 = hk on (Bk \ Ok_g) N (Bk‘—i-l \ Ok—l) = Bk \ Ck:—h (54)

showing that v is well defined on U. Moreover, since the functions v, € C?(R™) are strongly

convex and v, 1 = v on By \ Cy_; for every k > 2, the function v is locally strongly convex
and of class C*(U).

Note that we have
v=~h, on By \ Cy_1 forall ke N. (55)

If £ > 2, it follows from (54), and we check the case k& = 1 directly from (53) and
Lemma 4.4(a).

(Remark. If all functions vy are 7-strongly convex, then v is 7-strongly convex; we will
need this fact in the last part of the proof.)

Observe that

= (J(C\ By) U [ J(Bi\ Ci)
k=1 k=1
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Moreover, v = hy in By \ Cx_1 by (55), and u = wy in By \ Cy_1 by Lemma 4.3(b).
Therefore,

[{z € Uto(@) #ul@)} <Y 10\ Bil + Y [{z € B\ Cior ¢ hi(2) # wi(2)}|

k=1 k=1
o0
€o
< 3 + ng < Ep-
k=1

In the last two inequalities we used (48), (51) and (50).

Thus, we constructed a locally strongly convex function v € C*(U) satisfying condition
(a) in Theorem 1.1. Now we will prove (b) i.e.,we will prove that |u(z) — v(z)| < e(x) for
all z € U.

If € By \ Ck_1 for some k € N, then Lemma 4.3(b), (55) and (52) give

lu(@) — v(@)| = |ug(z) — hi(z)| < & <7 < ().

Thus, we may assume that x € C \ By, for some k € N. It follows from Lemma 4.3(f)
that
T'k+1

Tk
3 .

lu(z) —ugp(x)] < — and  |u(z) — upgr ()] < < 3

Also, (52) yields
r r
|u(x) = hi(z)] < ex < gk and - fup41 () = higa ()] < epa < gk

SO

() — hi(z)] < 2—;’“ and |u(x) — ho (2)] < 2?)& (56)

Recall that v = vy = M., (hg, hi+1) on Ck \ By and hence
’
maX{hk, hk+1} <v= ]\45,C (hk, hk+1) < max{hk, hk+1} + gk on Ck \ B

by Lemma 3.11(c), because €x/2 < 11/3. Therefore, (56) gives

u(z) < hy(x) + % <w(x)+ %
and )
u(@) > max{hu(z). b (2)} = - > v(a) =,

so we have |u(z) —v(z)| < rp < e(x). This completes the proof of part (b) of the theorem.
Now we will show (c¢). According to Lemma 3.3, and the definition of Lj in (46),

' Mg, (u) —mp,,, (u)
L < k1 bl
ip(ulp,) < dist(0By, 0By11)

In particular |Du| < Lj almost everywhere in Bj. Recall also that

u=ug, v="hgin By \ Cx_1 and [{z € R": ux(z) # hp(x)}| < &,

< L.
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see, Lemma 4.3(b), (55) and (51). Then the formula for the surface area of the graph
yields

H" (G, \ G) = / V' 1+ |Du(x)|?dz
(z)#v(z)}

{zeU:u(x
<> / 1+ L2 do+ > / V14 L3 dx
F=1o\ By F=Lae B\ Ch 1t up () hi (2)}
<D T+ LR |G\ Bl + Y 3 /1+ Ly
k=1 k=1
N S n= o &
< Z ok+2 +Z ok+z o
k=1 k=1

On the other hand, since |u(z) — v(x)| < e(z) < 1 on U, we have

MBk+1 (U) — Mp,, (U) < 2+ MBk+1 (u) — MpB, (u)
diSt(aBk, 8Bk+1) B diSt(aBk, 8Bk+1)

Lip(v[p,) < = Ly,

and then the same calculation with v in place of u in the integrand shows that

H" (Go \ Gu) < &0/2.

Hence, we have H" (G, AG,) < &,.

Finally, in the case that u is n-strongly convex on U, given 77 € (0,7), we may find a
strictly decreasing sequence (ng)ken C (77,7) converging to 77 so that u|p, is n-strongly
convex, and repeat the proof above in order to obtain an 7-strongly convex function v of

class C? with the required properties (see Remark below (55)). O
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