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ARNOLD’S VARIATIONAL PRINCIPLE AND
ITS APPLICATION TO THE STABILITY OF PLANAR VORTICES

THIERRY GALLAY AND VLADIMIR SVERAK

We consider variational principles related to V. I. Arnold’s stability criteria for steady-state solutions of
the two-dimensional incompressible Euler equation. Our goal is to investigate under which conditions the
quadratic forms defined by the second variation of the associated functionals can be used in the stability
analysis, both for the Euler evolution and for the Navier—Stokes equation at low viscosity. In particular,
we revisit the classical example of Oseen’s vortex, providing a new stability proof with stronger geometric
flavor. Our analysis involves a fairly detailed functional-analytic study of the inviscid case, which may be
of independent interest, and a careful investigation of the influence of the viscous term in the particular
example of the Gaussian vortex.

1. Introduction

We investigate the applicability of V. I. Arnold’s geometric methods to certain stability problems related
to Navier—Stokes vortices at high Reynolds number. Our main goal is a “proof of concept” that such
applications are possible, at least in simple cases, even though much of the geometric structure behind the
inviscid stability analysis does not survive the addition of the viscosity term. In particular, we give a new
proof of a known result concerning the stability of Oseen’s vortex as a steady state of the Navier—Stokes
equation in self-similar variables. We expect that the approach we advertise here will be useful to tackle
stability problems involving solutions that are less symmetric and less explicit than the classical Oseen
vortex. In such cases one may not have good alternative methods for proving stability in the presence of
viscosity. Our investigation leads to a detailed study of the quadratic forms naturally arising in Arnold’s
approach. Some of their functional-analytic properties, which are established in the course of our analysis,
may be of independent interest.

1A. A finite-dimensional model. Following the seminal paper [Arnold 1965], we first illustrate the issues
we want to address in a model situation where the “phase space” is finite-dimensional. We consider the
ordinary differential equation

x=b(k), xeR", (1-1)

where b is a smooth vector field in R"”. Let us assume that f, g1,..., gn : R* — R are (sufficiently
smooth) conserved quantities for the evolution (1-1), with m < n. This means

f/()b(x)=0 and gi(x)b(x)=0, xeR", j=1,...,m, (1-2)
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where we adopt the standard notation f’(x) for the linear form given by the first derivative of f at x. The
situation we have ultimately in mind is somewhat more specific: it corresponds to the case where the
phase space R”" is equipped with a Poisson bracket { -, - }, where system (1-1) is of the form

.?.Cz{f,X}, (1'3)

and where g1, ..., g, are Casimir functions. The Poisson structure is of course important in many
respects, but for our arguments here it does not play a big role. We can therefore proceed in the general
context of (1-1) and (1-2).

Forany c = (cy,...,cn) € R™, letus define X, ={x e R": g1(x) =c1, ..., gn(x) = cn}. We assume
that, for some ¢ € R™, the function f attains a nondegenerate local maximum on X, at some point x € X,
and that the derivatives g (X), ..., g,,(x) are linearly independent. The stationarity condition at x gives
the linear relation

m
1@ = 2gi (%) =0 (1-4)
j=1
for some Lagrange multipliers A1, ..., A,, € R. Moreover, the second-order differential! of the function flx.

(the restriction of f to X.) at x is given by the restriction to the tangent space 75 X of the quadratic form
m

Q=f"(®) - rgl @), (1-5)
j=1

where we denote by f”(x) the quadratic form given by the Hessian of f at x, and similarly for
g{ (%), ..., gn(x). Our nondegeneracy assumption means that the restriction of the form Q to Tz X. is
strictly negative definite. Now, let B = b’(x) be the n x n matrix corresponding to the linearization
of (1-1) at the point x, which is a steady state by construction [Arnold 1965]. If we differentiate twice the
relations (1-2) and use (1-4) together with b(x) = 0, we see that the evolution defined by the linearized
equation £ = BE leaves the form Q invariant. In other words,

%Q(é,f;‘)=Q(B$,§)+Q(S,B§)=O for all £ € R". (1-6)

The above structure® gives various options for the stability analysis of the equilibrium X of (1-1),
depending on the index of the quadratic form Q in (1-5). Our assumptions readily imply that x is stable
in the sense of Lyapunov with respect to perturbations on the invariant submanifold X .. Moreover, since
a neighborhood of x in R" is foliated by submanifolds of this form for nearby values of the parameter
c=(cy,...,Ccm), one can show that x is in fact Lyapunov stable with respect to small unconstrained
perturbations [Arnold 1965]. The perspective changes qualitatively if we add to the vector field » in
(1-1) a small “dissipative” term, with the effect that the quantities f and g1, ..., g, are no longer exactly

I'We recall that the second-order differential of a function on a manifold is intrinsically defined at the points where the
first-order differential vanishes.

ZPointed out in [Arnold 1965] in the form we use here, although in the finite-dimensional case these ideas go back to the
founders of the analytical mechanics.
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conserved under the modified evolution. This is in the spirit of what we intend to do in the infinite-
dimensional case, when we consider the Navier—Stokes equation as a perturbation of the Euler equation.
Since the evolution no longer takes place on the manifolds X, the argument above leading to unconstrained
Lyapunov stability is not applicable anymore. However, in good situations, stability can still be obtained
if the quadratic form Q in (1-5) happens to be negative definite not just on 73 X., but on larger subspaces
as well, for instance on the whole space R". This is, roughly speaking, the idea we shall pursue in the
infinite-dimensional case, to study the stability of vortex-like solutions of the Navier—Stokes equation.

To conclude with the (unmodified) evolution (1-1), we emphasize that the problem of determining
the index of the form (1-5) is also very natural from the viewpoint of the usual constrained optimization
theory. Clearly, the “Lagrange function”

LE)=f@) =Y 1gi(x), xeR, (1-7)
j=l1
when considered on the whole space R”, has a critical point at x (and a local maximum at x when
restricted to X,). The form Q will be strictly negative definite? in the whole space R" if and only if £
has a nondegenerate unconstrained maximum at x. As is explained in Section 2D, this is related to the
concavity of the function
(cly.-sem)—> M(cq, ..., cp) = sup f(x). (1-8)

xeX,
1B. Arnold’s geometric view of the two-dimensional incompressible Euler equation. V. 1. Arnold
[1966b; 19664a] (see also [Arnold and Khesin 1998]) carried out the analogue of the above calculations in
an infinite-dimensional setting to handle in particular the two-dimensional incompressible Euler equation
d;,w+u - Vo =0, where u denotes the velocity of the fluid and w = curl u is the associated vorticity. In
this case the evolution is generated by the Hamiltonian function, which represents the kinetic energy of
the fluid, and the constraints are given by the Casimir functionals

G¢(w)=/ D (w(x))dx, (1-9)
Q

where  C R? is the fluid domain and ® is an “arbitrary” function on R. The idea of maximizing or
minimizing the energy on the set of vorticities satisfying suitable constraints has been widely used since
then to study the stability of steady-state solutions of the two-dimensional Euler equations and related
fluid models; see [Arnold and Khesin 1998; Burton 2005; Cao et al. 2019].

Let us briefly recall the setup relevant for our goals here, making the similarities with the finite-
dimensional case as transparent as possible. Our main objects will be the following:

(1) The phase space P = {w: R* — (0, 00) : w is smooth and decays “sufficiently fast” at co}. This is
our infinite-dimensional replacement for the manifold R" in the finite-dimensional model. We restrict
ourselves to positive vorticity distributions defined on = R?, because this is the appropriate framework
to study the stability of radially symmetric vortices in the whole plane. Admittedly, the definition above

30ur use of the terms “positive definite” and “negative definite” allows for vanishing along some directions. When this is not
the case, we speak of strictly positive definite or strictly negative definite forms.
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is somewhat vague, but it serves only as a motivation and our results will be independent of the vague
parts of the definitions. There is a natural Poisson structure on 2 that is relevant for the Euler equation,
see Section A5, but here we only need some of its Casimir functionals (to be specified now).

(2) The Casimir functionals, which play the role of the constraints g; in the finite-dimensional example.
These are linear combinations of elementary functionals of the form

h(a,w):l{a)>a}|=/ x(wx)—a)dx, a>0, (1-10)
R2

where x = 1(0,o0) is the indicator function of (0, co). Here and in what follows, we denote by |S| the
Lebesgue measure of any (Borel) set S C R2. Due to our assumptions on the vorticities in &, the functions
a — h(a, w) are finite and nonincreasing on (0, co). In general, they do not have to be continuous in a
but they will have this property in the examples considered later. Similarly, the functionals w — h(a, ®)
may in general not be differentiable in every direction, but they will be in our examples. It is useful to
single out the quantity

Mo(a)):/ w(x) dx:/ooh(a,a))da, (1I-11)
R2 0

which will be referred to as the “mass” of the vorticity distribution w € .

(3) The orbits defined for any w € P by
Op ={weP:h(a,w)=h(a,w) for all a € (0, 00)}. (1-12)

These subsets of the phase space are the analogues of the manifolds X. defined by the constraints and
can be considered as a measure-theoretical replacement for the symplectic leaves

@gDiﬁ= {weP:w=wo¢ for some ¢ € SDiff} C O,

where SDiff denotes the group of area-preserving diffeomorphisms in R?. In contrast to @g)Diff, the orbit O
does not carry any topological information about @, since w € O as soon as @ is a measure-preserving
rearrangement of @.

(4) The Hamiltonian (or energy functional) £ : # — R, given by
1 1
E(w) = ——/ Y (x)w(x)dy = ——/ / log |x — y|w(x) @(y) dx dy, (1-13)
2 R2 4 RrR2 JR2
where ¥ = A~!w is the stream function defined by
1
Vo =5 [ doglr—ylamdy. reR (1-14)
T Jr2

This is an analogue of the function f in the finite-dimensional example. Note that the usual kinetic energy
defined by % fRZ |u|2 dx, where u = Vlw, is infinite for w € . However, both definitions of the energy
coincide when fW wdx = 0, which is the case for instance if w is the difference of two vorticities in
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with the same mass. It is also worth observing that the functional E is not invariant under the scaling
transformation o (x) — @™ (x) := A*w(Ax) when Mo = [, @ dx # 0. In fact, one can easily check that

* M}
E(w ):E(w)+—4 log) forall A > 0.
T

(5) The conserved quantities induced by Euclidean symmetries. These are the first-order moments M, M»
and the symmetric second-order moment / defined by

Mj(a))zf xjo(x)dx, j=1,2, I(w):/ |x|2a)(x)dx. (1-15)
R2 R2

Note that M, M, are associated to the translational symmetry, via Noether’s theorem, and / to the
rotational symmetry.

With these definitions, the Euler equation can be written in the form 0,0 = {E (w), w}, where {-, -}
denotes the Poisson bracket on &; see Section AS. Any steady state @ € P is a critical point of the
Hamiltonian E on the orbit ©. Stability can be inferred when the restriction of the energy E to O has a
strict local extremum at @. In what follows, we focus on the maximizers of the energy, which correspond
to radially symmetric vortices.

1C. The constrained maximization of the energy in . Under our assumptions, it is easy to determine
the maximizers of the Hamiltonian E under the constraints given by the functions & (a, w) for a € (0, 00).
Indeed, for any w € &, the orbit O, contains a unique element »* that is radially symmetric and
nonincreasing in the radial direction; this is the symmetric decreasing rearrangement of w [Lieb and
Loss 1997]. The Riesz’s rearrangement inequality then shows that E(w) < E(»*) for all w € O+, with
equality if and only if w is a translate of w*; see [Carlen and Loss 1992, Lemma 2]. Of course o™ is a
stationary solution of the Euler equation, which represents a radially symmetric vortex with nonincreasing
vorticity profile. Our main focus here will be on the analogue of the quadratic form (1-5) for the steady
state @ = w™.
First, the analogue of the Lagrange function (1-7) is

E(w) — /OOA(a)h(a, w)da = E(w) — /OOA(a)</ X (w(x)—a) dx> da,
0 0 R2

where the quantities A(a) for a € (0, 0o0) can be thought of as the Lagrange multipliers. The role of the
discrete index j in (1-7) is now played by the continuous parameter a > 0. Defining*

N

o0
<I>(s)=—/ A(a)x(s—a)da:—/ A(a)da, s>0, (1-16)
0 0
we see that the Lagrange function can also be expressed as

F(a)):E(a))—l—/ P(wx))dx, wel. (1-17)
IRZ

4The reason for the minus sign in (1-16) will become clear later.



686 THIERRY GALLAY AND VLADIMIR SVERAK

This quantity will be referred to later as the “free energy” of the vorticity distribution w, a terminology
that will be discussed in Section 1D below.

Next, the analogue of the stationarity condition (1-4) at @ = w* is F’(@) = 0, where the linear form
n+> F’(@)n is defined for all n € TP by

F'@n = fR (@@, F0)= 5o /R log [x =y () dy.

Stationarity is thus equivalent to the relation ¥ (x) = ®(&(x)) for all x € R%. Finally the analogue of
(1-5) is the quadratic form n — F”(®)[n, n], where

F”@)[mn]z/ (—pn+ @"(@)n?) dx, w(X)zzif log |x — y| n(y) dy.
R2 JT R2

Using the relation V&(x) = ®"(w(x))Vaw(x), the second variation can be rewritten in the form

Vi Vi
F"(@)[n, n] :/ (—(pn+ —Vl% 772) dx =2E(n) +/ —l/_/ n* dx, (1-18)
R2 w r2 Vo

which is well known from Arnold’s work. Note that the ratio Vi//V@ is meaningful only when the
vector V(x) is nonzero and colinear with Vi (x) for almost all x € R2. This condition is obviously
satisfied for all radially symmetric vortices with strictly decreasing vorticity profile.

1D. Overview of our results. We are now able to describe more precisely the results of this paper.
We consider a general family of radially symmetric vortices @ € & with vorticity profile satisfying
Hypotheses 2.1 below. Typical examples are the “algebraic vortex” @(x) = (1 +|x|?) ™, where k > 1is a
parameter, and the Oseen vortex for which w(x) = e P/4

1D1. Arnold’s quadratic forms with and without constraints. In Section 2, we study in detail the quadratic
form (1-18) associated with the second variation of the Lagrange function (1-17) at the steady state w € P,
paying some attention to the functional-analytic questions. First of all, while we know from the constrained
maximization result that the restriction of that form to the tangent space 7;0,; is negative, it is not clear
if this restriction is strictly negative definite, and if so in which function space. Our first main result is
Theorem 2.5, where we show that, if two neutral directions corresponding to translational symmetry
are disregarded, the restriction to 73O of the quadratic form (1-18) is indeed strictly negative in an
appropriate weighted L? space. The proof ultimately relies on a variant of the Krein—Rutman theorem.

We next investigate the index of the quadratic form (1-18) on a much larger subspace, corresponding
to perturbations n € TP satisfying fRz n(x) dx = 0. In other words, we relax all constraints given by the
Casimir functions (1-10), except for the mass My defined in (1-11), which is still supposed to be constant.
A priori there is no reason why the form (1-18) should be negative definite in this larger sense, and indeed
Theorem 2.8 shows that this is not always the case. More precisely, we show that negativity holds in
the large sense if and only if the optimal constant in some weighted Hardy inequality (where the weight
function depends on the vorticity profile @) is smaller than 1. While that condition is not easy to check in
general, we deduce from Corollary 2.11 that it is fulfilled at least for the Oseen vortex, as well as for the
algebraic vortex @(x) = (1 + |x|>) 7 if « > 2.



ARNOLD’S VARIATIONAL PRINCIPLE AND ITS APPLICATION TO THE STABILITY OF PLANAR VORTICES 687

Although the mass constraint is rather natural, one may wonder if, for some vorticity profiles, the
quadratic form (1-18) can be negative definite for all perturbations n € T;%®; this question is briefly
discussed in Section 2C. Finally, in Section 2D, we give a fairly explicit expression of the energy E (@)
in terms of the constraints A (a, ) for all a > 0; see Proposition 2.18. One obtains in this way an
infinite-dimensional analogue of the quantity M(cy, ..., ¢,) defined in (1-8). Among other things, we
justify our claim that the index of the quadratic form (1-5) is related to the concavity of the function (1-8)
(which is a well-known fact), and we discuss a similar link in the infinite-dimensional case.

As an aside, we mention here that the stability of radially symmetric vortices for the two-dimensional
Euler equations can also be studied using other conserved quantities, such as the second-order symmetric
moment / defined in (1-15); see, e.g., [Marchioro and Pulvirenti 1994, Chapter 3].

1D2. The global maximizers of the free energy. Let ¥ be the stream function associated with the radially
symmetric vortex . We have seen that the analogue of the Lagrange function (1-7) is given by the “free
energy” (1-17), where the function @ is defined, up to an additive constant, by the relation V(x) =P (o(x)).
The appellation “free energy” is partially justified by a (loose) analogy of formula (1-17) with the classical
thermodynamical expression for the free energy

F=U-TS. (1-19)

Here U is the internal energy (of a suitable system), T is the temperature, and S is the entropy. In (1-17),
the energy E is analogous to U, the integral fRZ @ (w(x)) dx is analogous to S, and one can argue that it is
reasonable to take 7= —1. Of course, 7" has nothing to do with the real temperature of the fluid, but should
roughly be thought of as the statistical mechanics temperature of our system in the sense of [Onsager 1949].
We have not attempted to make this connection rigorous, which would take us in a different direction.

In Section 3, we consider vortices @ which are global maximizers of the free energy F (w) for all w € &
satisfying |, g @dx = fRz o dx. Such equilibria can be expected to have strong stability properties, and
may be useful for other purposes too. Using a direct approach, in the sense of the calculus of variations,
we prove the existence of global maximizers under fairly general assumptions on the function ®; see
Theorem 3.4. However, we do not have any efficient method to determine if a given vortex o is a global
maximizer or not. A necessary condition is of course that the quadratic form (1-18) be negative on
perturbations n with zero mean, see Theorem 2.8, but there is no reason to believe that this is sufficient.
Numerical evidence indicates that the Oseen vortex is a global maximizer, and so are the algebraic
vortices @(x) = (1 + |x|?) ™ for x > 2. In the particular case k¥ = 2, maximality can be deduced from the
logarithmic Hardy-Littlewood—Sobolev inequality

//log : a)(x)a)(y)dxdyfl/ w(x)log(w(x))—i—m, (1-20)
rRJr2 X — Yl 2 Jre 2

which holds for all w € & with My(w) = 1; see [Carlen and Loss 1992]. We mention that (1-20) is related
to Onofri’s sharp version [1982] of the Moser—Trudinger inequality.

1D3. The effect of viscosity: application to Oseen vortices. In Section 4, we consider the stability of the
Gaussian vortex under the evolution defined by the Navier—Stokes equation d;® + u - Vo = vAw, where
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v > 0 is the viscosity parameter. More precisely, we show that the quadratic form (1-18) can be used to
give an alternative proof of the local stability results established in [Gallay and Wayne 2005]. We believe
that a proof relying on the second variation of the energy is of some interest, because the analogue of the
form (1-18) can be defined for more complicated vortex structures as well, whereas the simpler approach
in [Gallay and Wayne 2005] may be more difficult to adapt.

The addition of the viscous term results in important new issues: the radial vortices are no longer steady
states and the orbits (1-12) are no longer invariant under the evolution, so that much of the geometric
picture underlying the Euler equation is destroyed. The first problem is settled by introducing self-similar
variables and restricting ourselves to Oseen’s vortex, which is a stationary solution of the Navier—Stokes
equation in these new coordinates. Thanks to Theorem 2.8 and Corollary 2.11, the quadratic form (1-18)
is positive definite for all perturbations with zero mean. This form is invariant under the evolution defined
by the linearized Euler equation at the vortex, but not under the Navier—Stokes evolution due to the
viscous term and the nonlinearity. The effect of viscosity is measured by a second quadratic form, which
happens to have a favorable sign; see Theorem 4.2. We do not know if this is just a lucky coincidence, or
if there are deeper reasons behind that. In any event, this nice structure allows us to recover the local
stability result of [Gallay and Wayne 2005], except for a slight difference in the choice of the function
space; see Theorem 4.5. Again, we emphasize that the functional setting used in that work relies in an
essential way on the radial symmetry of Oseen’s vortex, through the existence of conserved quantities
such as the moment / in (1-15), whereas our new approach can, at least in principle, be adapted to more
general situations, where other methods do not work.

2. The second variation of the energy

In this section we study the coercivity, on various subspaces, of the quadratic form (1-18) which represents
the second variation of the free energy (1-17) at a radially symmetric vortex w € . We assume that
@(x) = ws(|x]) for all x € R? and that the vorticity profile w, : [0, +00) > Ris a C? function with the
following properties:

Hypotheses 2.1. The vorticity profile w, € C*([0, +00)) satisfies
(1) @4(0) >0, w,(0) =0, and }(0) <O,
(2) w,(r) <0 forallr >0, and w.(r) - 0asr — 400,
(3) there exist C > 0 and B > 2 such that |, (r)| < C(1 +r) P forallr > 0.

It follows in particular from (2) and (3) that w,(r) = — f roo w/ (s) ds, so that

0 <wy(r) <

o¢]
for all 0 d 0 d . 2-1
EE orall r > an </(; rwy(r)dr < oo 2-1)

Let & be the stream function associated with @ as in (1-14). We have xﬁ(x) = ¥« (|x|), where the stream
profile v, : [0, +00) — R satisfies

vl (r) + %1//;(1’) = w,(r); hence V. (r) = % /r swy(s)ds forall r > 0. (2-2)
0
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We introduce the weight function A : [0, +00) — R defined by A(0) = —w,(0)/ (2w} (0)) and

A=t _ 1 /rsa)*(s)ds, r>0. (2-3)
w,(r) ro,(r) Jo
Hypotheses 2.1 ensure that A € CY([0, +00)) N C1((0, +00)). Moreover, there exists a constant C > 0
such that A(r) > C(1 +r)? for all r > 0.
Let A : R — (0, 0o) be the radially symmetric extension of A to R2, namely A (x) = A(|x|) for all
x € R%. We introduce the weighted L? space X defined by

X = {a) e L*R?) : ol = /Rz A @) |w(x)* dx < oo}, (2-4)

so that w € X if and only if 4'/?>w € L?(R?). Our assumptions ensure that 7 ~! € L'(R?), and using
Holder’s inequality we easily deduce that X < L!(R?). We also consider the closed subspaces X| C

Xo C X defined by
on{a)eX:/ w(x)dx:O},
R2

(2-5)
X1={a)eX0:/ —a)(x)dx_Ofor]_l 2}
Rr2 |x|

We observe that, for any w € X, the energy E () introduced in (1-13) is well-defined. This a consequence
of the following classical estimate, whose proof is reproduced in Section A1l for the reader’s convenience.

Proposition 2.2. Assume that w € L'(R?) satisfies

/W lo(x)| log(1+ |x]|)dx <oco and /W | (x)] log(l + Ia)(x)l) dx < oo. (2-6)
Then the last member in (1-13) is well-defined, and the energy E (w) satisfies the bound
|E(w)] = Cllell L (/ |l (x)] 10g(2+IXI)dX+/ lw(x)| log, |” (”L)| dX), (2-7)
where log, (a) = max(log(a), 0). If, moreover, fIR2 w(x)dx =0, then E(w) = 5 fRZ |u|?> dx, where
) =Vhyw = [ % () dy, xR -9

Since any w € X obviously satisfies (2-6), we can consider the quadratic form J on X defined by
J(@) = Lol} — E(), or explicitly

J(co):%/ﬂq{zﬂ(x)a)(x)zdx-i—%/R2 /R210g|x—y|a)(x)a)(y)dxdy, weX. (2-9)

In the particular case where w € X, namely when o has zero average over R?, Proposition 2.2 gives the
alternative expression

J (@) = % /R 2<ﬂ<x>w<x)2 —lu)Hdx, e Xo, (2-10)
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where u is the velocity field associated with @ via the Biot—Savart formula (2-8). In view of (1-18)
and (2-3), we have J = —%F "(@), where F" (@) is the second variation of the free energy (1-17) at the
equilibrium o. It is clear that X is the largest function space on which this second variation is well-defined.

Our main goal in this section is to study the positivity and coercivity properties of the quadratic form J
on the spaces X, X, and X defined in (2-4), (2-5). To formulate our results, it is useful to take the

decomposition X = X, @ X, where

X ={w € X : w is radially symmetric}, 2-11)

and X is the orthogonal complement of X, in the Hilbert space X. Referring to the geometric picture
of Section 1B, we consider XrlS as the rangent space to the orbit O at @. This interpretation can be
formally justified as follows: if @ € X is smooth, the tangent space 7;©; is spanned by vorticities
of the form v - Vo, where v is a (smooth and localized) divergence-free vector field, and using polar
coordinates as in Section 2A below one verifies that such vorticities are indeed orthogonal in X to all
radially symmetric functions. A contrario, since there is a one-to-one correspondence in  between
orbits and symmetric decreasing rearrangements, it is clear that any radially symmetric perturbation of
the equilibrium o is transverse to the orbit O;.

It is easy to verify that J (w1 +wy) = J (w1) + J (w2) when w1 € X5 and @y € X
of J to X;s and X:- can be studied separately. We first consider the tangent space X:- in Section 2A, and
postpone the study of radially symmetric perturbations (with zero or nonzero mass) to Sections 2B and 2C.

1

5> S0 that the restrictions

Remark 2.3. Differentiating the first equality in (2-2), we see that the function ¢ = v, satisfies

L

A(r)qb(r), r >0, (2-12)

(Lod)(r) i= =9 () = 19/ (r) + ~56(1) =

where A(r) > C(1+r)P. Since ¢ > 0, Sturm—Liouville theory asserts that ;. = 1 is the lowest eigenvalue of
the (generalized) eigenvalue problem Lo¢ = wA~ g on R, with boundary conditions ¢ (0) = ¢ (4+00) =0;
see [Coddington and Levinson 1955; Hartman 1964]. This observation will be used later.

Remark 2.4. Hypotheses 2.1 are sufficient for our results to hold, but can be relaxed in several ways. In
particular, we can consider vortices that are not smooth at the origin, but the assumption that / (r) <0
for all » > 0 seems essential. This excludes vortices with compact support from our considerations, but
as our motivation comes from applications to the Navier—Stokes equations, Hypotheses 2.1 are good
enough for our purposes here. Of course, extensions of the theory that would include compactly supported
vortices might be relevant in other situations and can probably be constructed, although they may require
additional work.

2A. Positivity of the quadratic form J on X .

Theorem 2.5. Under Hypotheses 2.1, the quadratic form J defined by (2-10) is nonnegative on the
space XrJ‘S C Xo. Moreover, there exists a constant y > 0 such that

J(a))zgf AX)w((x)*dx  forall o e X:nX,. (2-13)
R2
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Proof. We introduce polar coordinates (r, #) in R, and given any w € X;- we use the Fourier decomposition

w(rcos(), rsin(d)) = Zwk(r)e“‘@, r>0, 0 eR/(2n7), (2-14)
k#0

where the sum runs over all nonzero integers k € Z \ {0}. By Parseval’s relation we have

/ A () (x)* dx =27 Z /OOA(F) |y (r)|* r dr,
R 0

k£0
00 (2-15)
/ |u()c)|2 dx = / (—Afla))(x) w(x)dx =21 Z/ Bilwi1(r) wi(r) rdr,
R2 R2 k2070

where By is the integral operator on the half-line R defined by the formula
B L™ i (C,5) d 0 2-16
( k[f])(”)—m/o m1n<E,;> f(s)sds, r>0. (2-16)

Note that g = B[ f] is the unique solution of the ODE
" 1, k>

—g (r)— -8 (r+ r—zg(r) =f(@r), r=>0, (2-17)

which is regular at the origin and converges to zero at infinity.
In view of (2-15), the proof of Theorem 2.5 reduces to the study of the one-dimensional inequality

/(; (Bk[f])(r)f(r)rdrickfo AW f )P rdr, (2-18)

which depends on the angular Fourier parameter k € Z \ {0}. More precisely, the quadratic form J is
nonnegative on X:- if and only if, for all k # 0, inequality (2-18) holds with some constant Cx < 1. In
addition, we have the lower bound (2-13) on the subspace X;- N X if and only if inequality (2-18) holds
with a better constant Cy < 1—y for all k #0, assuming when |k| =1 that f satisfies the additional condition

/mf(r)rdrzo. (2-19)
0

It remains to establish inequality (2-18) for all k € Z\ {0}. We obviously have the pointwise bound
[(Be[fD ()| < (Bell f11) (r), so that we can restrict ourselves to nonnegative functions f. Moreover the op-
erator By preserves positivity, and an inspection of the formula (2-16) reveals that 0 < B[ f] < k|~ ' B1[f]
if £ > 0. As a consequence, to show that J is nonnegative on X,

(2-18) in the particular case where |k| = 1 and f > 0. Setting h = A'/? f, we write that inequality in the

it is sufficient to prove inequality

equivalent form

/oo(ﬁl [A])(r) h(r)rdr < Cy /ooh(r)2 rdr, (2-20)
0

0
where Bi[h] = A~'/2B,[A~1/2h]. The following assertions play a crucial role in our argument:

Claim 1: The operator El is self-adjoint and compact in the (real) space Y = LZ(IR+, rdr).
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Indeed, take i € Y with ||k|y <1, and define f = A~'/2h, g = B,[ 1= AY2B,[h]. Applying (2-16)
with |k| = 1, we see that

g(r) = 217 /O AGs) V2 h(s)s?ds+ &

2/ A@) 2 h(s)ds, r>0,

r

and using Holder’s inequality we deduce

- 1/2 S 1/2
lg(r)| < {%(/ A(s)_1s3ds> +%</ A(s)_ls_lds> }Hh”y. (2-21)
0 r

As A(r) > C(1+r)? with B > 2, the right-hand side of (2-21) is uniformly bounded, so that ||g||z~ < C
for some universal constant C. It also follows from (2-21) that g(r) - 0 as r — 0 and r — +o00. On
the other hand, since g satisfies the ODE (2-17) with k = 1 and f = A~!/2h, a standard energy estimate
yields the bound

00 2 00
/'(ﬁvﬂ+g“))ﬂr=/'gv»um*”hvwdrfMﬂmwA*”mwmyfc. (2:22)
0 0

2

In view of (2-21) and (2-22), the Fréchet—Kolmogorov theorem [Reed and Simon 1978, Theorem XII1.66]
implies that the function Bi[h]=A"1/2 g lies in a compact set of Y, so that the operator B, is compact.
To prove that El is self-adjoint, we take &1, hp € Y and observe that

gl(r)gz(i”))
—2 r
p

A(Emmmmvwmzﬂ GWMWH— dr,

where g; = Bi[A~Y2h;] for j = 1, 2. This expression is clearly a symmetric function of (k, 7).
&j j J p y asy

Claim 2: The spectral radius of El isequal to 1, and A =1 is a simple eigenvalue of §1.

To see that, we first observe that A = 1 is an eigenvalue of B, with a positive eigenfunction. Indeed,
using (2-2), it is straightforward to verify that the function g = v satisfies the ODE (2-17) with k = 1
and f = —a/,. This shows that Bj[—w/] = ¥.; hence defining h = A~!/2yy/ = — A0/ we conclude
that §1 [A] = h. On the other hand, assume that A > 0 is an eigenvalue of El, with eigenfunction 4 € Y.
Defining f = A~Y2], we see that B[ f1=AAf, so that the function g = B[ f] satisfies the generalized
eigenvalue problem
g(r)

m, r > 0, (2—23)

y 1, 1
=8 ) —=-g )+ 58r)=pn
r r
with the boundary conditions g(0) = g(4+00) =0, where u = 1/A, We already observed that © =1 is
the lowest eigenvalue of (2-23); see Remark 2.3. It follows that A = 1 is the largest eigenvalue of the
integral operator B, whose spectral radius is therefore equal to 1. The argument above also shows that
all positive eigenvalues of B are simple, because (2-23) is a second-order differential equation.

It is now a simple task to conclude the proof of Theorem 2.5. Claims 1 and 2 imply the validity
of inequality (2-20) with C; = 1. We deduce that (2-18) holds for |k| = 1 with C; = 1, and (since
By < |k|~'By) for |k| > 2 with C; < 1/|k|. This shows that the quadratic form J is nonnegative on Xé.
On the other hand, if we assume that w € X }S N X1, the function f = w4 satisfies condition (2-19), which
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means that 1 = A'/2 f is orthogonal in Y to the one-dimensional subspace Y, spanned by the positive
function y = A~Y/2. It is clear that YOL does not contain any positive function, and in particular does
not include the principal eigenfunction g = —A!/ 2a)fk of the operator By. So, applying Lemma 4.7 and
Remark 4.8 below, we deduce that 1 — By > 0 on Y-, which means that inequality (2-20) holds on YOL
with some constant C| < 1. Taking into account the other values of k, for which C; < 1/[k| < 1 we
conclude that estimate (2-13) holds with y = min (% 1-Cy). O

Remark 2.6. The Krein—Rutman theorem [Deimling 1985, Theorem 19.2] asserts that the spectral
radius of the compact and positivity-preserving operator By is an eigenvalue with positive eigenfunction.
However, since the cone of positive functions has empty interior in ¥, we cannot apply Theorem 19.3 in
[Deimling 1985] to conclude that By has a unique eigenvalue with positive eigenfunction, which is thus
equal to the spectral radius. For this reason, we prefer invoking Sturm-Liouville theory to prove that 1 is
the largest eigenvalue of B,.

Remark 2.7. If 8 > 4 in Hypotheses 2.1, the conclusion of Theorem 2.5 remains valid, with the same
proof, if the subspace X is replaced by

Ilz{weXo:/ xjw(x)dx:Oforjzl,Z}. (2-24)
R2
This possibility will be used in Section 4.

2B. Positivity of the quadratic form J on XsN Xy. The quadratic form J is not necessarily positive
when considered on the subspace X5 N X, which consists of radially symmetric functions with zero
mean. This question is related to the optimal constant in the weighted Hardy inequality
o0 o0
/ rer ¥ <cy / Ao Y, (2:25)
0 r 0 r

where f : [0, +00) — R is an absolutely continuous function with f(0) = f(+o00) = 0. Weighted Hardy
inequalities are extensively studied in the literature; see, e.g., [Mazya 2011, Section 1.3.2]. In particular,
it is known that (2-25) holds for some constant Cy > 0 if and only if the positive function A satisfies

1 r o0
lim sup <10g —) f > ds <oo and limsuplog(r) > ds < oo. (2-26)
r—0 r) Jo A(s) r—>-+00 r AG)

Both conditions in (2-26) are fulfilled in our case, since A(r) > C(1 +r)? for some 8 > 2.

Theorem 2.8. Under Hypotheses 2.1, the quadratic form J defined by (2-10) is coercive on X s N X if
and only if Hardy’s inequality (2-25) holds for some Cy < 1. In that case we have

J(w) > g / AX)w(x)>dx  forall w € XrsN X, (2-27)
R2
where y =1 — Cyg.

Proof. Given w € X5 N X, we write w(x) = wp(|x]) and we consider the stream function ¥y defined (up
to an irrelevant additive constant) by

%(’”)Zl/ Swo(s)dSZ—l/ swo(s)ds, r>0.
r 0 r »
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Defining f(r) = rx//(/) (r), we see that f is absolutely continuous on R with f(0) = f(400) =0. Moreover
we have wo(r) = f'(r)/r and ug(r) := 1#6(r) = f(r)/r by construction. Finally the assumption that
wo € Xy N X ensures that A/?wq and u belong to the space ¥ = L2(|R+, r dr). We thus have

o]

J() =7 f (A —uor) rdr = / (A F0? = FP) (2-28)
0 0

and using (2-25) we conclude that (2-27) holds with y =1 — Cy. This proves that the quadratic form J
is coercive on X s N X if Cy < 1. Conversely, if (2-27) holds for some y > 0, it follows from (2-28) that
inequality (2-25) is valid with Cy =1 —y. g

As is well known, the optimal constant in Hardy’s inequality (2-25) is related to the lowest eigenvalue
of a self-adjoint operator. A convenient way of seeing this is to apply the change of variables r = e,
h(x) = f(e*), B(x) = e~ 2* A(e*), which transforms (2-25) into the equivalent inequality

f h(x)*dx < Cy / B(x)h'(x)* dx. (2-29)
R R
The integral in the right-hand side of (2-29) defines a closed quadratic form on the Hilbert space H = L?(R),
with dense domain D = {h € H : B'/?h’ € H}. Let

B: DB) — H, hr— —0x(B(x)dih),

be the self-adjoint operator in H associated with the quadratic form (2-29) by Friedrich’s representation
theorem [Kato 1966]. Since B(x) > O for all x € R we know that B is positive, and using the fact that
x?B(x)~! — 0 as |x| — oo itis easy to verify that B has compact resolvent in H, and hence purely discrete
spectrum. The optimal constant in Cy in (2-29) is precisely the inverse of the lowest eigenvalue of B:

Cy= max{)ﬁ1 : A € spec(B)}. (2-30)

By Sturm-Liouville theory, if = Cg,l is the lowest eigenvalue of B, there exists a positive eigenfunction
h € D(B) such that B2 = wh. Setting h(x) = f(e*), we see that f is a positive solution of the ODE

_ar(@arf(r)) YA (2-31)

satisfying the boundary conditions f(0) = f(4+o00) = 0. Moreover fooo A(r)f’ (r)? dr/r < oo by con-
struction. It is not easy to guess from (2-31) whether u is smaller or larger than 1, but under additional

assumptions on the vortex profile it is possible to make another change of variables which puts (2-31)
into a form that allows for a comparison with (2-12).

Lemma 2.9. If the function A in (2-3) satisfies

A€ C3([0, +00)) and Sup(A(r)—}—A/(r)z)/oo * s <o (2-32)
| T Tran ) ) Aw P T

then the function g : [0, +00) — R defined by g(r) = A(r)'/? f(r)/r is a solution of the ODE

1 1
—g"(r) = —g' (") + 58N + V(Ng(r) = ——g(r), (2-33)
r r A(r)
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with boundary conditions g(0) = g(4+00) = 0, where
/! 1 / / 1
V(r)=x"(r)— ~X N+ X' and x(r) = 5 log(A(r)). (2-34)

Proof. Since f satisfies (2-31), a direct calculation shows that g(r) := A(r)'/2f(r)/r is a solution
of (2-33), where the potential V is defined by (2-34). As for the boundary conditions, we recall that
JoZ A(r) f'(r)?dr/r < 0o hence [~ | f'(r)|dr < oo. As f(r) = [y f'(s)ds, we have

VG YA V2o , ads)'?
r 5?(/0 AG) ds) (/0 AL ?> = 0

which shows that g(r) — 0 as r — 0. Similarly, since f(r) = — froo f'(s) ds, we have

lg(r)| < AN (/oo > ds)l/2 /Oo A@) f/(5)? ds v — 50
- r - A®S) p s ro+oo

thanks to (2-32). O

Remark 2.10. The same arguments show that r?g'(ry = 0asr — 0and g’(r) — 0 as r — +o00, at least
along appropriate sequences.

Let L be the differential operator defined by
1 1
L=Lo+V=~8~-8+—5+V(), (2-35)
r r

where L( was introduced in (2-12). We know from (2-33) that Lg = uA~!g, where u = C 1_{1 and g is the
positive function defined in Lemma 2.9. On the other hand, we observed in Remark 2.3 that Lo¢ = A7lg,
where ¢ = v, is also a positive function vanishing at the origin and at infinity. Using Sturm-Liouville
theory, we easily deduce the following useful criterion:

Corollary 2.11. Under assumptions (2-32), if the function V defined by (2-34) does not change sign, the
optimal constant in Hardy’s inequality (2-25) satisfies Cy < 1if V > 0,and Cyg > 1 if V <0; moreover,
Cy = 1onlyif V is identically zero.

Proof. With the notation above, we have Lo — A~'¢p =0 and
Log — A_lg =Lg— (A_1 +V)g=®R, where R =(u— 1)A_1g —Vg. (2-36)
Since rRp =r(¢p(Log) — g(Lop)) = (d/dr)(r(¢'g — g'®)), we have for r; > ry > 0 the identity

/ R(r)p(ryrdr =r(¢'(r)g(r) — &' (1))]

T (2-37)

r=ro’

Now, we let ry tend to 0 and r; to 400 along appropriate sequences, in such a way that the right-hand
side of (2-37) converges to zero. This possible, because we know that ¢ (r) = O(r) and ¢’'(r) = O(1) as
r — 0, while ¢ (r) = O(1/r) and ¢'(r) = O(1/r?) as r — +o00; moreover, the behavior of g in these
limits is given in Lemma 2.9 and Remark 2.10. We thus deduce from (2-37) that fooo Re¢r dr =0, which
is impossible if the function (R has a constant sign and is not identically zero. So, if V does not change
sign, we must have > 1if V >0 and u <1 if V <0; moreover, u = 1 is possible only if V = 0. Since
i = Cp', this gives the desired conclusion. O
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Remark 2.12. As is easily verified, the optimal constant Cy in Hardy’s inequality (2-25) is unchanged if
the function A(r) is replaced by A "2A(Ar) for some A > 0. This corresponds to a rescaling of the vortex
profile w,.

We now give two important examples where the sign of Cy — 1 can be determined.

Example 2.13 (algebraic vortex). Given « > 1, we define

1 L o
o) =T w*(r)_Z(K—l)r(l (1+r2)ff—1>' (2-38)

RAGH

wl(r)  dic(k—1)r2

We have

A(r) = 1+ — (1 +rH?).

When « = 2 (Kaufmann—Scully vortex), inequality (2-25) holds with optimal constant Cy = 1, and is
saturated for f(r) = r2/(1 +r2)2. Indeed, it is easy to verify that A(r) = (1 +r2)2/8 and V (r) =0 in that
particular case. Taking g(r) = r/(1 +r?), a direct calculation shows that Lg = A~!g, so that Cy = 1.

If « > 2, we prove in Section A2 that the potential V is positive, so that Cy < 1 by Corollary 2.11.
Finally, if 1 < « < 2, the potential V is negative, implying that Cy > 1. Summarizing, for the family of
algebraic vortices (2-38), the quadratic form J is coercive on X5 N X if and only if ¥ > 2.

Example 2.14 (Gaussian vortex). We next consider the Oseen vortex given by
2 4
w ()= Yl =Z—eTh, A = 5@ -1, (2-39)
r r

In that case too, the potential V defined in (2-34) is positive; see Section A2. By Corollary 2.11, we
conclude that Cy < 1, so that the quadratic form J is coercive on X N X(. A numerical calculation
gives the approximate value Cy =~ 0.57, so that y ~ 0.43.

Remark 2.15. In a finite-dimensional situation, one can use statements such as Theorems 2.5 and 2.8 for
showing the nonlinear Lyapunov stability of the corresponding steady solution, at least if the smoothness
class of the relevant objects is C2. More precisely, if a flow X = b(x) on a finite-dimensional manifold
preserves a C? function f which attains a nondegenerate local maximum at X, then the sets {f(x) >
f(x) — €} are invariant under the flow and for small € are well-approximated by the small balls given by
the quadratic form —%f”()?)[x — X, x —x]. A standard way to see this is to write f(x) > f(X) — € as

1
—%f”(i)[x—i,x—i]—/ A=) (f"(1=Dx+1x)— f"())[x — %, x —x]dtf <e.
0

When f” is continuous at X and x is close to X, the integral in this inequality is dominated by a small
multiple of —% f”()[x — X, x — x] and the usual Lyapunov stability statements follow. In our situation
here the set O is not a C* submanifold and the free energy functional w — E(w) + fRZ O (w(x))dx is
not of class C2. It is not hard to see directly that the expression

1
—/ /(1—t)<I>”((1—t)d)(x)—i—ta)(x))(a)(x)—a_)(x))zdtdx
R2 JO
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1
2 JRr2

invariance of the sets Uz ¢ :={w € O3 N X, : E(w) > E(w) — €} under the Euler evolution, and possibly

cannot be dominated by ®" (@) (w(x) — @(x))*>dx in a suitable way. One may still use the
also the conservation of the second-order moment / (w) defined in (1-15), to obtain Lyapunov-type
stability statements. For results in this spirit when the domain occupied by the fluid is compact, the reader
can consult [Burton 2005] and [Arnold and Khesin 1998, Section II.4]. Our situation here is somewhat
complicated by the noncompactness of our flow domain R?, but under our assumptions one still has
N c~0 Ua e = {w} (by using the uniqueness of the maximizers discussed in [Carlen and Loss 1992], for
example). This could be turned into Lyapunov-type stability statements, although not quite of the same
form as in the C? case. The important point is that there are estimates for the proximity of “almost
maximizers” to the exact maximizers, an issue that also appears in other problems, such as the stability of
the isoperimetric inequality [Fusco et al. 2008], and of the Sobolev inequality [Bianchi and Egnell 1991].

In the present work our focus is on quadratic forms, due to their applicability to the viscous case. Of
course, at the level of the linearized inviscid equation w; +u - Vw 4+ u - Vw = 0, the quadratic form J
does provide Lyapunov stability in the space X if inequality (2-25) holds with Cy < 1. We note that the
linearized analysis in other topologies can be more complicated; see for example [Bedrossian et al. 2019].

2C. The quadratic form J without mass constraint. In this short section we make a few remarks on
the index of the quadratic form (2-9) when considered on the whole space X defined by (2-4), and not
only on the subspace X given by (2-5). Our first observation is that, due to lack of scale invariance in
this context, the form J cannot be positive on X if the underlying steady state w is sharply concentrated
near the origin. To see this, we consider the rescaled vortex @, (x) = A2@(1x) and the associated weight
function A, (x) = A~ 24 (Ax); see Remark 2.12. We denote by J, the quadratic form on X corresponding
to the steady state w;, namely the form (2-9) where A is replaced by A,. If w € X and w, (x) = 2w (x),
a simple calculation shows that

M2
J(wy) = J (@) — —Llog(r), where My= f w(x) dx.
4 R2

If My # 0, it is clear that J, (w;) < 0 when A > 0 is sufficiently large, so that the quadratic form J, cannot
be positive in this regime.

Remark 2.16. The negative direction arising by such a rescaling is related to a particular choice of the unit
of length implicitly involved in the kernel % log |x|. In writing log |x|, we imply that x is dimensionless.
When x is measured in some units of length, we should write the kernel as % log(|x|/ro), where rg is a
reference length. The choice of ry does not affect the behavior of the system, and in the stability analysis
based on J it can be compensated for by adding to the quadratic form J a suitable multiple of the quantity
( fRZ w(x,t) dx)z, which is preserved by the evolution. Hence, as one can expect, the stability analysis is
independent of the choice of the reference length rg, or, equivalently, of the scaling parameter A above.

We next argue that, for any vortex @ satisfying Hypotheses 2.1, the index of the quadratic form is well-
defined in the sense that J has (at most) a finite number of negative directions. In view of Theorem 2.5, it is
sufficient to evaluate J on radially symmetric functions @ € X,5. The following expression will be useful:
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Lemma 2.17. For any w € X5, we have

J(w) = n/ooA(r)a)(r)zr dr +ﬂ/oofoo log(max(r, s))r w(r) s w(s)drds. (2-40)
0 0 JO

Proof. Here and below, with a slight abuse of notation, we consider any w € X, as a function of the
one-dimensional variable » = |x|. For such vorticities, the first integral in (2-9) obviously gives the first
term in (2-40), so it remains to establish the following expression of the energy:

E(w) = —nfwfm log(max(r, s))r w(r)sw(s)drds, e Xi. (2-41)
0 0

0

To this end, we introduce polar coordinates x = re'’, y = se’¢ to compute the right-hand side of (1-13),

and we use the identity
2w p2w ) ] 21 )
f f log re'? —se|do d; = 271/ log |re'? — s d0 = 472 log(max(r, s)). (2-42)
0o Jo 0

The formula (2-42) is well known and can be derived in many ways. For example, assuming that r is a
fixed positive number, we interpret the last integral as a function of s € C. This expression obviously
depends only on |s|, is continuous everywhere, and is analytic both inside and outside of the circle |s| =r.
Inside the circle it has to be constant and outside the circle it coincides with the potential of a point
particle of mass 27 located at the origin, which is 27 log |s|. This gives (2-42), and (2-41) follows. [

Applying the change of variables w(r) = w(r)Ar)/?, sothat w € Y = L*>(Ry, r dr) when o € X,
the formula (2-40) becomes

lJ(a)) = /Oow(r)2r dr — fw/mﬁ(r, s)Yw(r)w(s)rs drds, (2-43)
T 0 o Jo

where £(r, s) = — log(max(r, sNA®T)"2A(s)"!/2. Under Hypotheses 2.1, we have the lower bound
A(r) = C(1+r)P for some B > 2, which implies that

o0 (e.¢]
/ / k(r, s)2 rsdrds < oo.
o Jo

This means that the right-hand side of (2-43) is the quadratic form in Y associated with a self-adjoint
operator of the form 1 — K, where 1 is the identity and K is a Hilbert—-Schmidt perturbation. By
compactness, this operator has (at most) a finite number of negative eigenvalues, which means that the
index of the quadratic form J on X is well-defined.

The eigenvalues of K can also be thought of as eigenvalues of the quadratic form (2-41) with respect
to the reference form w — 7w fooo A w(r)®rdr. As is easily verified, if A is such an eigenvalue, the
corresponding eigenfunction w satisfies

—Y(r) =AA(r)w(r), where ¥ (r)= /00 log(max(r, s)) s w(s) ds. (2-44)
0

Since w(r) = ¥"(r) + (1/r)¥'(r), the first relation in (2-44) is an ordinary differential equation for the
stream function ¥ : Ry — R, to be solved with the boundary conditions

¥'(0)=0 and rgrfm(W(r) log(2r) — ¥ (2r) log(r)) =0,
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which can be deduced from the expression of i in (2-44). For the Lamb—Oseen vortex (2-39) a numerical
computation gives the largest eigenvalue A ~ (0.7127, thus suggesting that the form J is strictly positive
definite on the whole space X, in that case. In contrast, the largest eigenvalue for the algebraic vor-
tices (2-38) seems to exceed the threshold value 1, indicating that for those vortices the form J is not
positive definite without additional constraints on w.

2D. The maximal energy as a function of the constraints. In Section 1A we considered the classical prob-
lem of maximizing a function f : R” — R under a family of constraints of the form gy =cy, ..., gn =cm,
where g1,...,8n : R - R. Given ¢ = (cy,...,c,) € R™ we recall the notation X, = {x € R" :
gilx)=c1,...,8m(x) =cp}. Assuming that f reaches a nondegenerate maximum on X, at some point
x € X, where the first-order derivatives gi (%), ..., g,(x) are linearly independent, we introduced the
quadratic form Q defined by (1-5), which is the second-order differential of the Lagrange function (1-7) at x.
In the present section, we are interested in the index of the form Q on larger subspaces than 75z X.. As was
already mentioned, this question is closely related to concavity properties of the function M defined by (1-8)
or, almost equivalently, to convexity properties of the set S = {(g1(x), ..., gn(x), f(x)):x eR"} C Rm+1
near its “upper boundary”.

The situation becomes particularly transparent if we use adapted coordinates which, as it turns out,
have a fairly complete analogy in the two-dimensional Euler case. Let us assume that we can introduce
new coordinates (cy, ..., Cm, Y1, ..., Yn—m) in R"* such that, as before, cy, ..., c, are the values of
the constraints gy, ..., gn, and the additional coordinates yy, ..., y,—n are chosen so that the points
having coordinates (ci, ..., cn,0,...,0) are those where f attains its maximum on X, Writing
M(cy,...,cm) = f(c1y...,Cm,0,...,0) as in (1-8), one verifies that

oM ;
— (1, om) =4, j=1,...,m, (2-45)
dej

where Ap, ..., A, are the Lagrange multipliers introduced in (1-4). Moreover the extremality condition

on X, implies that

0
—f(cl,...,cm,O,...,O):O, k=1,...,n—m.

Yk
We infer that

(2-46)

D*f(ct, ... m,0,...,0)= ((82f/(8c,-8cj));?fj:1 0 ) ’

0 (02 f/@yrdye)y o2

where all derivatives are evaluated at the point (c1, ..., ¢y, 0, ..., 0). The first submatrix in the right-hand
side of (2-46) is precisely the Hessian of M, and the second submatrix is always negative definite, due
to our assumption that f reaches a maximum at (yq, ..., yo—m) = (0, ..., 0) for any fixed value of
1, ..., Cy. So we conclude that the quadratic form Q defined in (1-5) is negative definite at x if and only
if the Hessian of M is negative definite at (cy, ..., ¢,), where ¢; = g;(x) for j =1, ..., m.

SIna nondegenerate situation, the local existence of such a coordinate system is clear by standard arguments, but globally the
situation can, of course, be more complicated.
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Another interesting object is the function

N, ooy dm) = Suﬂ_g(f(x) —2181(X) =+ = Amgm(x))
xeR”
= Sup (M(Cl,...,cm)—)\.ICI _"‘_)\mcm)7 (2_47)
ceRm

which is the Legendre transform of M. Under appropriate assumptions, the main one being the concavity
of M, this quantity is well-defined and the relation (2-45) can be inverted (at least locally) via the formula
cjz—a—)v()»l,...,)»m), j=1,...,m. (2-48)
We now return to the infinite-dimensional framework of the two-dimensional Euler equation, with
the manifold R” replaced by the phase space % introduced in Section 1B, the function f replaced by
the energy E in (1-13), the constraints g; replaced by the Casimir functionals i (a, w) in (1-10), and the
submanifolds X, replaced by the orbits ©,, in (1-12). In that case we have
max E(w) = E(®%), (2-49)
we©;
where, as before, @* denotes the symmetric decreasing rearrangement of an element w € . As O is
characterized in terms of the functionals 4 (a, w) defined in (1-10), the energy of the maximizer @* in Oy
can also be expressed in terms of the constraint function a — h(a, @). It turns out that the representation
formula is quite explicit.

Proposition 2.18. Given @ € P, we define fi(a) =7~ 'h(a, ®) = n~'|{® > a}| for any a > 0. Then
m m
E(h) == max E(w)= s f / L(fi(a), i(b))dadb + LMg, (2-50)
weP 8 0o Jo 8
h(-,w)y=mh
where m =max @, My = [ @dx =7 [ A(a) da, and
L(R, S) =—RSlogmax(R, S)—%min(R,S)z. (2-51)
Proof. Replacing @ with ©* (an operation that does not affect the function /1), we can assume that ® is
radially symmetric and nonincreasing in the radial direction. In view of (2-49), we then have &(/) = E (),

and if we consider @ as a function of the radius r = |x|, we observe that /i (a) = (&~ '(a))* wherever @ is
strictly decreasing. To compute E (@), we start from the expression (2-41), and we introduce the functions

k(r,s) = —rslogmax(r,s), K(R,S)=L(R,S)+RS.

Clearly K(R,0) =0, K(0,S) =0 for R, S > 0, and one can verify by direct calculation that K (R, S)
is twice continuously differentiable on (0, co) x (0, 00), with

82K(R S) 1 (R,S), R,§>0

,8) = —logmax(R, S), .S >0.

9R3S g

So the function (r, s) — K (r2, s?) is twice continuously differentiable on [0, co) x [0, co) and

1o
8 dras

K(rz, s2) =k(r,s).
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Integrating by parts in (2-41) and recalling that m = max ®, we can thus write

E(@):E/OO/OO i K2, s2) a(r) o (s) drds:Z/oo/OOK(r2,s2) da(r) dé(s)
8 0 0 3r8s 8 0 0

=4 " [ K (@ @) @ 0)) dads = T Ji : [ " K k@), A (b)) da db
0o Jo 0 JO

1

2 -
o Mo. (2-52)

m m
L f / L(h(a), h(b)) da db +
8 Jo Jo
where we have formally used the substitutions w(r) = a, @(s) = b. This is straightforward when o is
strictly decreasing, and the general case where ® is nonincreasing can be treated by integrating only over
the intervals where @ is strictly decreasing. O

We now make a more precise comparison with the finite-dimensional situation above. Let us assume
that @ € P is radially symmetric with 3,@(r) < O for all » > 0 and 3>@(0) < 0. To eliminate the
translational symmetries, we work with the manifold

P ={weP: My(w) = My(@), Mj(w)=0, j=1,2}, (2-53)

where My, M; are as in (1-11), (1-15). If n € X (see (2-24)) is smooth and compactly supported with
sufficiently small C? norm, then @ + 17 € P. Denoting by 7y, the projection of n onto the subspace X
defined in (2-11), we can take the quantities 4 (a, @+ ns) and ’7% =1 — 1y as the (approximate) analogues
of the coordinates c¢; and y, respectively. The analogy is not perfect, due to the stronger-than-ideal
assumptions on 7, but it is sufficient for concluding that, when @ = @*, the negative-definiteness of Arnold’s
form (1-18) on the tangent space T(;)SA’5 is strongly related to the concavity of the energy E in the variable®
h at the function ﬁ(a) = 7""h(a, ®). In some sense the expression (2-50) is “trying to be concave”,
although not quite achieving this: the function L(R, §) is separately concave, but not concave. The second
variation on the space X is given by the quadratic form which takes a function & (a) with fom E(@)da=0to

% / / (DIL(h(a), h(b))E(a)* +2D1 Dy L(k(a), A(b))E(a)é(b) + DFL(f(a), h(b))E(b)*) da db.
0 JO

Due to the separate concavity of L the first term and the third term are negative, but the second one can lead
to the form being indefinite. In view of our previous considerations, the negativity of the form is equivalent
to the validity of the Hardy inequality (2-25) with Cy <1, and it is not hard to verify directly that this is in-
deed the case. As an analogue of (2-45), we also note that the variational derivative of & with respect to £ is

188 ,
——(a)=A(a) = - (a). (2-54)
7w Sh

We will not go into the details as we will not work with this expression. The reader can also derive the
analogue of (2-48) (under appropriate assumptions).

Ot is perhaps worth recalling that E is convex in w on the subspace given by fRZ o dx = 0. However, in some regions it may
be concave in /i, at least on the subspace given by fooo h(a)da =0.
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3. Global maximization of the free energy

In the previous section we observed that some radially symmetric vortices @, including the Gaussian
vortex (2-39) and the algebraic vortex (2-38) with x > 2, are nondegenerate local maxima of the associated
free energy functional (1-17) once restricted to the manifold & defined in (2-53). This was established by
showing that the second-order differential F” (@) is strictly negative definite on the tangent space T(;,@.
We now follow a different approach, which relies on the direct method in the calculus of variations:
under appropriate assumptions on the function ® in (1-17), we show that the free energy F(w) has a
global maximum on the set of all vorticity distributions with a fixed mass M. By construction, if @
is any maximizer obtained in this way, the conclusion of Theorem 2.8 applies with y > 0, so that
Hardy’s inequality (2-25) holds with Cy < 1. Note also that, according to the discussion in Section 2D,
prescribing ® amounts to fixing the “Lagrange multipliers” in our constrained maximization problem.

We start with a preliminary result, which is probably well known. For the reader’s convenience, the
proof is reproduced in Section Al.

Proposition 3.1. Assume that f € L'(R") is nonnegative and that M := fRn f(x)dx > 0. Then
_ £
M+ | (og_lx]) f)dx SM+ | (log, 277 ) f(x)dx, 3-1)
Rﬂ R)l

M+/ (log+|x|)f(x)deM—i—/ (log f( )>f( ) dx, (3-2)
R R~
where the implicit constants only depend on the space dimension n. Moreover, if f is radially symmetric
and nonincreasing in the radial direction, then the reverse inequalities also hold.

We next specify the function space in which we shall solve our maximization problem.

Definition 3.2. Given any M > 0, we denote by X, the set of all w € L'(R?) such that w(x) > 0 for
almost all x € R and

/ wx)dx =M, / w(x)log(1l+ |x])dx < oo, f w(x)log(l +w(x))dx < oo. (3-3)
R2 R2 R2

For later use we observe that, if w € X, and if @* denotes the symmetric nonincreasing rearrangement
of w, then [ w*(x) dx = [, w(x) dx = M and

f o () log(1 + ) dx sf (0 log(1 + [x]) dx < o0,
R2 R2

/ o*(x)log(1 + w*(x))dx = / w(x)log(1+w(x))dx < oo.
R2 R2

This shows that the set X3; C L!'(R?) is invariant under the action of the symmetric nonincreasing
rearrangement.
For w € X, we consider the free energy defined by F(w) = E(w) + S(w), where

E(w) = // og a)(x)a)(y)dxdy, S(a)):/ O (w(x))dx.
R2 R2
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We have shown in Proposition 2.2 that the energy E(w) is finite for any w € X ;. Unlike in Section 2, the
function @ in the entropy term is not related here to any radially symmetric vortex, but is an arbitrary
function satisfying the following properties:

Hypotheses 3.3. The function ® : [0, +00) — R is continuous with ®(0) = 0. Moreover, there exist
constants C1 e R, Co, < M /(8r), and C3 > M /(8x) such that

<I>(a))§Cla)+C2a)logM, when w < M,
© (3-4)
<I>(a))§C1w—C3a)logM, when w > M.

Under Hypotheses 3.3, the positive part of ® satisfies @ (w) < Cw(1+]|log(w/M)|) for some constant

C > 0, and this implies in particular that the entropy S(w) is well-defined in R U {—o0} for any w € X ;.
We are now in a position to state the main result of this section.

Theorem 3.4. Fix any M > 0. Under Hypotheses 3.3, there exists o € Xy such that

F(w)=E(®)+ S(®) = sup (E(w) + S(w)).

weXy

Moreover @ can be chosen to be radially symmetric and nonincreasing in the radial direction.

The proof of Theorem 3.4 is divided into two parts. The first one consists in showing that the free
energy F' is bounded from above on X, and that there exists a maximizing sequence which is convergent
in L'(R?). We formulate this in a separate statement:

Proposition 3.5. Under Hypotheses 3.3, the free energy F = E+S is bounded from above on the space X y:

Fy = sup (E(w) + S(w)) < oo.
weXy
Moreover, there exists a maximizing sequence (w;) jeN in Xy which converges in L (R?) to some limiting
profile o = ©* € Xy as j — +00, and we have S(w) > —oo.

Proof. Our starting point is the logarithmic Hardy-Littlewood—Sobolev inequality

M M M?
E(w)+ — wlog —dx < — (1 +logm), (3-5)
87 Jr2 w 8

which holds for all w € X,;; see [Carlen and Loss 1992]. In view of (3-4), we deduce from (3-5) that

M M M w
Ew+Sw+|——-0C / wlog—dx+|C3— — / wlog — dx
8 w<M w 87 ) Josm M

2

M M M
§E(a))+C1M+—/ wlog—dx <CiM+ —(1+logm). (3-6)
8 w 8

R2
Since Cy < M /(8m) and C3 > M /(8m), this proves that Fy; < C\M + M3(1 +logm)/(8m).

Now, let (w;) jen be a sequence in Xy, such that E(w;) + S(w;) — Fy as j — +oo. If we denote
by (w;)* € Xy the symmetric nonincreasing rearrangement of w;, we know that E((w;)*) > E(w;) and
S((wj)*) = S(wj) for all j € N, so that ((w;)*)jen is a fortiori a maximizing sequence. So we assume
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henceforth that w; = (w;)*; i.e., w; is radially symmetric and nonincreasing in the radial direction. In that
case, there exists a constant Cy > 0 such that

/ wj(x)
RZ

for all j € N. Indeed, the first inequality in (3-7) follows directly from (3-6), and the second one is a

wj(x)

log

dx <Cyp and / w;(x)[log|x[|dx < Co (3-7)
R2

consequence of the first inequality and of Proposition 3.1, since w; = (w;)*.

It remains to verify that one can extract from (w;) jen a convergent subsequence in L'(R?). We recall
that w;(x) is a nonincreasing function of the radial variable |x|, which satisfies the uniform pointwise
estimate 0 < w;(x) < M/ (r]x|%); see (A-3) below. By Helly’s selection theorem [Rudin 1953], there
exists a subsequence, still denoted by (w;) jen, which converges pointwise to some limit @ : R? — Ry as
Jj — 4oo0. Itis clear that @ is radially symmetric and nonincreasing, so that @ = @*, and Fatou’s lemma
implies that fW w(x)dx < M. Using in addition (3-7), we obtain similarly

/ w(x)
R2

To prove the convergence in L'(R?) we take the decomposition, for any € € (0, 1),

tog 7 ar=Co and [ aoliog vl dx < o (3-8

/ ij(x)—c_o(x)ldx:/ ij(x)—c?)(X)ldX+/ lwj (x) —o(x)] dx, (3-9)
R2 Ac R2\A.

where A, ={x e R*:¢e < |x| <e~'}. The integral over A, converges to zero as j — 400 by the dominated
convergence theorem, and in view of (3-7), (3-8) the integral over R?\ A, is bounded by 2Cyp/|log €|
uniformly in j. It thus follows from (3-9) that

. _ 2Cy
lim sup lwj (x) —w(x)|dx < —> 0,
R lloge|

j—>4o0

which shows that w; — @ in L'(R?). In particular fRZ w(x)dx = M, so that w € X .
Finally, if we take the decomposition ® = &, — ®_, where ®, ®_ denote the positive and negative
parts of @, we have the lower bound

S(w) > —/ d_(w(x))dx > —liminf/ ®_(wj(x))dx, (3-10)
R2 j—+oo Jr2 ’
where the second inequality is again obtained by Fatou’s lemma. But we have the identity
/2 O_(wj(x))dx = /2 O, (wj(x))dx — S(wj) = /2 D (wj(x))dx + E(wj) — F(w)),
R R R

where the first two terms in the right-hand side are bounded uniformly in j by (3-7), in view of
Hypotheses 3.3 and Proposition 2.2, whereas F(w;) is bounded from below since (w;) is a maximizing
sequence for F. We conclude that the right-hand side of (3-10) is finite, so that S(w) > —oo0. O
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To conclude the proof of Theorem 3.4, it remains to show that the free energy is upper semicontinuous
along the maximizing sequence constructed in Proposition 3.5, namely

E(@) + S(@) > lim sup(E () + S(;)) = F. (3-11)

J—>+0o0
This will imply that E(®) + S(®) = Fys, which is the desired result.

Proof of Theorem 3.4. Let (w;) jen be the maximizing sequence defined in Proposition 3.5, and @ € X
be the limiting profile. Given any sufficiently large R > 0, we take the decomposition

w;(x) = wj(x) Ly <r) + @j (X) Ly > r) =: w}R(x) +w?R(x),
@(x) = @(x) 1x <) + D) Lyjxj> gy =: DR (x) + @k (x)
for all x € R%. We thus have
E(@))+ S(w)) = E(@}g) + S(@}g) + 2E(@} g, 05g) + E(@ig) + S(wig),
E(®) + S(@) = E(wk) + S(@)) +2E (o), %) + E(@%) + S(@%),

where E(w, w;) is the bilinear form associated with the energy functional:

1
Ewno) =3 [ [ toglr=ylaim e dray.
R* JR

The upper-semicontinuity property (3-11) can be deduced from the following assertions:

lim sup(E (@j) + S(@jp)) < E(@p) + S(@p), (3-12)
J—+0o0
sug(ZE(w}R, w3p) + E(@g) + S(@7g)) < 81(R) === 0. (3-13)
je
2E (@, ) + E(@F) + S(@F) = 82(R) == 0. (3-14)

Indeed, assuming that (3-12)—(3-14) hold, we obtain

limsup(E(w;) + S(@;)) — (E(@) + S(@)) < 81(R) — 82(R) =575 0.

: R—+400
J—+o0

It remains to verify the assertions (3-12)—(3-14) above. We recall that the functions w;, @ are radially
symmetric and nonincreasing in the radial direction. With a slight abuse of notation, we write w; (r)
instead of w;(x) when r = |x|, and similarly for @. Accordingly, using (2-41), we obtain the following
expressions for the energy of w; and w:

E(wj) = — /OO M;(r)log(r)rw;(r)dr, E(w)=— /00 M(r) log(r) r (r) dr, (3-15)
0 0
where . .
M;(r) = 271/ sw;(s)ds, M) = 271'/ sw(s)ds, r>0. (3-16)
0 0

Since w; — @ in L'(R?), we see that M i(r) — M(r) uniformly in r as j — 4+00. Moreover, since
w; € Xy satisfies (3-7), the quantity M;(r) converges to M as r — +00 uniformly in j. In particular, we
can choose R > 1 large enough so that M;(r) > M /2 for all j € N when r > R.
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To prove (3-12), we first take the decomposition

R R
E(wjg) — E(@p) = _fo (M;(r) — M(r)) log(r) rw;(r) dr —/0 M (r)log(r) r(w;(r) — o(r)) dr,

and we deduce that

R
|E(wjg) — E(@g)] < sup (IMj(r)—JVI(r)I)/O |log(r)| rew;(r)dr

0<r<R R
—|—OsupR(| log(r)| M(r)) ; rlwj(r) = o) dr —==> 0. (3-17)
<r<
Here we used the convergence of w; to @ in L'(R?), the a priori estimates (3-7), and the fact that
log(r)]VI (r) is bounded as r — 0, as a consequence of (3-8). On the other hand, since the function —® is
continuous and bounded from below, and since we integrate on the bounded domain {x € R?:|x| <R},
we can apply Fatou’s lemma to obtain
—S(J)}e) = / —®(w(x))dx < liminf/ —®(w;(x))dx = —limsup S(a)}R). (3-18)
[x|<R J7+0 Jix|<R j—+o00
Combining (3-17) and (3-18), we obtain (3-12).
We next prove (3-13). Recalling that R > 1, we first observe that

E(a)?R) =— /ROOMj(r) log(r) rw;(r)dr <0,

which means that the contribution of E (a)ﬁ z) can be disregarded since we only need an upper bound. The
other terms in (3-13) have the expressions

2E(w}R,w§R)=—M,-(R)/R log(r) rw;(r) dr, S(w%R):Zn/R @ (wj(r)) rdr.

Since w; is decreasing, we have w;(r) < M; (r)/(rrrz) < M for r > R. So, using Hypotheses 3.3, we
deduce that ®(w;) < Ciw; + Crwjlog(M/w;), where C; € R and C, < M /(8x). It follows that

oo oo

wj(r)yrdr + / Aj(r)wj(r)rdr, (3-19)

2E(0jg, wig) +S(@ip) < 27C /
R

R
where

Aj(r) =2mCsylog

M
— M;(R)log(r).
wj(r)

In view of (3-7), the first term in the right-hand side of (3-19) converges to zero uniformly in j as
R — 400, and can therefore be absorbed in the quantity §; (R). To treat the second term, we fix a positive
number o > 2 such that 4w Coa < M, and we introduce the mutually disjoints sets

I, R)y={r>=R:wj(r)=Mr™®}, I(a,R)"={r=R:wjr)<Mr ). (3-20)

As M;(R) > M /2, it follows from (3-20) that A;(r) <0 when r € I(c, R), so the last integral in (3-19)
can be restricted to the complement / (o, R)“. But on that set we have the upper bound w; (r) < Mr™¢,
where o > 2, and we easily deduce that | IRy A (r)w;j(r)r dr converges to zero as R — +00, uniformly
in j. Altogether we obtain (3-13).
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It remains to establish (3-14), which is an easy task. Indeed w is a fixed function which satisfies the
estimates (3-8), so that 2F (&)}e, wp)+E (5’%3) — 0 as R — +o0. In addition, we proved in Proposition 3.5
that the integral defining S(w) is absolutely convergent, and this implies that S (‘Z’%e) — 0as R — +o0.
We thus obtain (3-14), and the proof of Theorem 3.4 is complete. U

Example 3.6. We consider the family of algebraic vortices with parameter « > 1:

w(r)= M:2n/oora)(r)dr=L.
0

(1+r2)c’ Kk—1
The associated stream function i satisfies ¥ (r) = ¥ (0) + for ¥'(s)ds, where

o r b 1 1
b= [ oo v = g (1= )
We have ®(w) = fow ¢ (s)ds, where ¢ (w(r)) = ¥ (r). Explicitly, for a few values of «, we find

K=%2 ¥ (r) =log(1+v1+72), b () = log(l+ }/2)
20 Y =y log(1+72), $(@) = glog 1,

1 (,()1/3

)’ $(@) = g5loe ; — %5

k=3: Y@= <log(1—|—r2)— —

In all cases, we observe that

1 1 M
$(w) =P (w) ~ ———log— = —log— as w — 0.
dic(k—1) o 4nk

It follows that Hypotheses 3.3 are satisfied if and only if x > 2.

Example 3.7. We next consider the Gaussian vortex w(r) = e/ 4 where M = 47 . In that case we have
¥ (0) = 0+°° log(r)e"z/ 4dr =21log(2) — yE, so that the stream function satisfies

r2 —S2/4 I"2
1//(r)=1//(0)+[ ;(1—6 )ds =210g(2) — ye + Ein 7))
0

S S (_1)k—l Zk
E; = dr = —, e C.
() /0 ” ; Kk kS

where

We conclude that .
¢ (w) = D' (w) =210g(2) — y£ + Ein (log ;)

In particular ¢ (w) ~ loglog(1/w) as w — 0, and Hypotheses 3.3 are satisfied in that case.

We do not have much information on the maximizer @ whose existence is established in Theorem 3.4.
We expect that, if ® is as in Example 3.7, the maximizer is indeed the Gaussian vortex (2-39), but except
for numerical evidence we have no proof so far. Similarly, we believe that the algebraic vortices (2-38)
with « > 2 are global maximizers, but this is known only in the particular case x = 2, where maximality
follows from the logarithmic HLS inequality (3-5).
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The examples above also suggest that the decay rate of the maximizer w(x) as |x| — oo strongly depends
on the behavior of the function @ (s) near s = 0. Extending the techniques in the proof of Theorem 3.4, one
should be able to prove that, if ® is differentiable to the right at the origin, the corresponding maximizer @
is compactly supported. It is also worth mentioning that the entropy function ® associated with any
radially symmetric decreasing vortex @ through the relation V(x) = P (o(x)) is necessarily concave on
the range of @, whereas no concavity assumption is included in Hypotheses 3.3. This suggests that the
maximizer @ corresponding to a nonconcave function ® should be discontinuous, so that its range does
not include the intervals where ® does not coincide with its concave hull.

4. Stability of viscous vortices

In this final section, we give a new proof of the nonlinear stability of the Oseen vortices, which are
self-similar solutions of the Navier—Stokes equations in R?. Our approach relies on the functional-analytic
tools developed in Section 2, in connection with Arnold’s variational principle, although we now consider
a dissipative equation for which the Casimir functions (1-9) are no longer conserved quantities. Let
w = w(y, v) € R denote the vorticity of the fluid at point y € R? and time 7 > 0, and let ¢ = ¢ (y, 7) € R
be the associated stream function. The vorticity formulation of the Navier—Stokes equations is

dew(y, ©) +{o, wi(y, 1) =vA(y, 1), Ad(y,7) =w(y, 1), (4-1)

where {¢, w} = V+¢- Vw is the Poisson bracket, v > 0 is the viscosity parameter, and the Laplace operator
A acts on the space variable y € R?. As in [Gallay and Wayne 2002; 2005], we introduce self-similar
variables x = y/,/vt and t = log(t/T), where T > 0 is an arbitrary time scale. More precisely, we look
for solutions of (4-1) in the form

w(y,r):%w(\/%_t,log %) d)(y,r):m/f(\/iv_t,log %) (4-2)
The evolution equation for the rescaled vorticity w is
ow(x,t) +{Y, w}(x,t) =Lw(x,t), AY(x,t)=w(x,t), (4-3)
where {, w} = V1 - Vw and L is the Fokker—Planck operator
L=A+3x-V+1 (4-4)
Let w be the vortex with Gaussian profile (2-39), namely
B(x) = %f'*'z/“, i(x) = Vi (x) = %%(1 — eI, (4-5)

It is easy to verify that L& = 0 and {1/, @} = 0. This implies that v = a@ is a stationary solution of (4-3)
for any @ € R. This family of equilibria is known to be stable with respect to perturbations in various
weighted L? spaces; see [Gallay and Wayne 2005; Gallay 2012]. We present here a new stability proof,
which may be easier to adapt to more general situations.
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4A. Nonlinear stability of Oseen vortices. Given any @ € R, we consider solutions of (4-3) of the form
w=ad+o, ¥ =a + V. The perturbation @ satisfies the modified equation

3o+, &)+ oy, @} +{¥, &) = L, (4-6)

where it is understood that the stream function 1/7 is expressed in terms of @ via the formula (1-14), so
that Ay = &. We assume henceforth that the perturbation @& satisfies the moment conditions

/cbdx:O and fx,-cbdx:O forj=1,2, 4-7)
R? R?

which are preserved under the evolution defined by (4-6). As is shown at the end of [Gallay and Wayne
2005], this hypothesis does not restrict the generality, in the sense that stability with respect to general
perturbations (with no moment conditions) can then deduced by a simple argument. As for the existence
of solutions to (4-6), we have the following standard result:

Lemma 4.1. The Cauchy problem for (4-6) is globally well-posed in the weighted L* space X defined by
(2-4), where A (x) = 4|x| 2 (e‘)“z/4 — 1), and the subspace X'y C X defined by (2-24) is invariant under
the evolution.

Proof. It is known that the vorticity equation (4-3) or (4-6) is globally well-posed in various weighted
L? spaces; see, e.g., [Gallay and Wayne 2002; Gallay 2012; 2018]. The nearly Gaussian weight .7 is
not explicitly considered in those references, but the arguments therein can be easily modified to cover
that case too. If A'/2& e L?(R?), then all moments of & are well-defined, and a direct calculation shows
that the conditions (4-7) are preserved under the evolution, so that (4-6) is globally well-posed in the
subspace 7. 0

Let @ € X1, and let & € CO([0, +00), X1) be the solution of (4-6) with initial data &y. By parabolic
regularization, we have o (-, t) € Zy := ZN X for all r > 0, where Z is the weighted Sobolev space

Z={we H' (R?) : 2w e L*(R?), A'*Vw e L*(R?)). (4-8)

For later use, we introduce the following quadratic form on Z:

0(w) =/ (A@®) Vo) > = Bx)o(x)*)dx, weZ, 4-9)
RZ
where o
1 X X -
@:1+§<Aﬂ—§-Vﬂ+ﬂ>:1+ﬂ— m (4-10)

We shall verify in Section A3 that A /2 < B <24, so that the form Q is well-defined.
The following coercivity result plays a crucial role in our argument.

Theorem 4.2. The quadratic form Q defined by (4-9) is coercive on the subspace Z| = Z N X: there
exists a constant § > 0 such that

Q(w)z(S/ AX)w(x)*dx  forallw e Z;. (4-11)
RZ
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The proof of Theorem 4.2 requires a careful analysis, which is postponed to Section 4B below. In
particular, we shall see that the quadratic form Q is not positive on the whole space Z, because it takes
negative values on a one-dimensional subspace made of radially symmetric functions. If we restrict
ourselves to functions with zero mean, the form Q is nonnegative but vanishes on a two-dimensional
subspace due to translation invariance. Therefore, all moment conditions (4-7) are necessary to establish
the coercivity of Q.

Returning to the solution @ € C 0([0, +00), X)) of (4-6), we define for all # > 0 the quantities

J(t) = %fRz (A&, )+ (x, Hax, 1) dx = J(@(1)),

o) = /R i (A()|IVa(x, 1)* = Bx)d(x, H)?) dx = Q(@(1)), (4-12)

N(t) = %/Rz{ﬂ(x), ¥ (x, D}o(x, 1) dx =: N(@(1)).
The key observation is:
Proposition 4.3. If & € C°([0, +-00), X}) is a solution of (4-6), the quantities defined in (4-12) satisfy
J'(t)=—=0@)—N() forallt>0. (4-13)

Proof. Using the evolution equation (4-6), we find

J(t) = / (A ()@ (x, 1) + P (x, 1)) 9 (x, 1) dx
R2

(4-14)
= /Rz(ﬂﬁ) + ) (LD — (P, &) — oy, &} — (¢, @}) (x, 1) dx.
We first consider the terms involving the diffusion operator £ in (4-14). We observe that
/ U (x, )Ld(x, 1) dx :/ &o(x, 1) dx (4-15)
R2 R2
because L' © = Ao + % div(x@) and
U A& dx =/ (AY)é dx =/ &% dx,
R2 R2 R?
/ ¥ div(x®) dx = —/ (AY)(x - Vi) dx = 1/ div(x|V¢ ) dx = 0.
R2 R2 2 R2
On the other hand, integrating by parts we obtain by direct calculation
/ Ax)o(x,t) Lox,t)dx = —Q(w(t)) — / o(x, 1) dx. (4-16)
R2 R2

We next compute the advection terms in (4-14), which are proportional to o. We claim that

1(®) = /Rz(ﬂcbikk;)({lﬁ,cb}%—{lf/,cb}) dx =0. (4-17)
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This identity is not surprising, as it means that the quadratic form J is invariant under the evolution
defined by the linearized Euler equation at ; see (1-6) for an analogue in the finite-dimensional case. It
can also be verified by direct calculations:

[ Aat.arar=1 [ aw.atra=1 [ 1 nata=o
RZ 2 R2 2 RZ
[ it = [ . iaa=o
R2 R2
/ﬂ@(ﬂa}{&, Y+ 01T, @) dx = /R SAN, &)+ (T, F)) dx =0,
Here we used the fact that { A, 1}} =0, because A and 1} are radially symmetric. Moreover,

ALY, &Y+, ¥} = (V) - (AVO+ Vi) =0,

by the very definition of A ; see (2-3). This proves (4-17).
Finally, integrating by parts the last term in (4-14), we find

N (&) :=/ (ﬂ&+&){xz,&)}dx=/ ﬂ@{&,@}@:%/ (A, ¥}&* dx. (4-18)
R2 R2 R2

Combining (4-14)—(4-18), we obtain the desired result. Il
To control the nonlinear term N (@), we use the following estimate.

Lemma 4.4. There exists a constant Co > 0 such that, for all ® € Z, the nonlinear term (4-18) satisfies
IN@)| < Co |25, (1A 0| 12 + | AV 2). (4-19)
Proof. We have |{A, ¥}| < C|VA||VY]| < C|x|A|V¥|; hence

IN(@)| < C/Rz x| [VY| A & dx < CllIx|| VY|l A&7,

On the other hand, using Proposition B.1 in [Gallay and Wayne 2002], Holder’s inequality and Sobolev’s
embedding theorem, we find
XVl < CU)BI 32 + 1(x)ll2) < CUA 2D 2 + A2V o) 2),
where (x) = (1 + |x|*)!/2. Combining these estimates we arrive at (4-19). Il
We are now able to state our final result:

Theorem 4.5. There exist positive constants C1, €y, and pu such that, for any o € R and any g € X
satisfying ||wollx < €0, the solution of (4-6) with initial data @y satisfies

lo@)1% < Cill@ollxe ™ forallt>0. (4-20)
Proof. If & € C°([0, +00), X1) is the solution of (4-6) with initial data @, we define

mo(t) = oM = 1A 2o® 3, ¢=0),  mi@)= A2V, (t>0).
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For the Gaussian vortex, we proved in Section 2 that Hardy’s inequality (2-25) holds for some Cy < 1.
Thus, by Theorems 2.5 and 2.8, there exists a constant y € (0, 1) such that

Lo <T@ = gmo(o), 120, (4-21)
On the other hand, by Theorem 4.2, there exists § > 0 such that
O(t) = 8mo(t) and Q1) = my(t) —2mo(t), >0, (4-22)

where the second inequality follows from the definition (4-9) and the inequality B < 2.4 . Taking a convex
combination of both estimates in (4-22), we deduce

0(t) = u(mo(t) +my (1)), >0, (4-23)

where © = §/(3 + §). Finally, it follows from Lemma 4.4 and Young’s inequality that

- 203
IN (1) < Como(t)(mo(t)"/* +mi(1)"/?) < %(mo(l) +m (1) + TOmoa)z. (4-24)

Now, as long as mo(t) < €* := u?/(8C}), we have by (4-13), (4-21), (4-23), (4-24)

J(t)=—00—N@t) < —%(ml(o Fmo(t) < —ud (@),
which implies
ymo(t) <2J(t) <2J(0)e ™ < mo(0)e ™.

As a consequence, if we assume that ||c7)o||§( =mp(0) < 63 :=ye?, we have mo(t) < €2 for all t > 0 and

estimate (4-20) holds with C; =y L. O

We briefly indicate here the meaning of our result for the Navier—Stokes equations in the original,
unscaled variables. If w = a® + &, where @ € C°([0, +00), X}) is as in Theorem 4.5, the vorticity w
defined by (4-2) satisfies, in particular, the estimate

J.

which means that w( -, t) converges to a self-similar solution with Gaussian profile as T — +00. As

o
w(y, ) — me_lylz/(‘”) dy = O "?) ast— +oo,

is shown in [Gallay 2012, Theorem 1.2], that property holds in fact for all solutions of the vorticity
equation (4-1) in L' (R?), although it is not possible to specify any decay rate in the general case. Note
that the evolution defined by (4-1) in L'(R?) preserves the total mass, so that we necessarily have
Jre w(y, 1) dy =« forall T > 0.

Remark 4.6. Except for a slight difference in the definition of the function space X, Theorem 4.5 coincides
with the well-known stability result [Gallay 2012, Proposition 4.5]. The approach originally developed by
C. E. Wayne and the first author relies on conserved quantities related to symmetries of the problem, such
as the second-order moment / (w) in (1-15). In many respects, it is simpler than ours, and it provides an
estimate of the form (4-20) with explicit constants C; and . Note also that, in the limit of large circulation
numbers || — 00, the enhanced dissipation effect due to fast rotation can be used to improve both the
decay rate of the perturbations and the size of the basin of attraction of the vortex; see [Gallay 2018].
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4B. Coercivity of the diffusive quadratic form. This section is entirely devoted to the proof of Theorem 4.2,
which is a key ingredient in Theorem 4.5. We first observe that the functions A (x), B(x) in (4-9) are
both radially symmetric, with radial profiles A(r), B(r) given by the explicit expressions

r2

, B(r):ﬁ(es(l—i—s)—l—Zs)—i—l, s=7 (4-25)

Ay =41

On can also verify that B/A is a decreasing function of r satisfying % <B@r)/A(r) < % for all » > 0; see
Section A3.

We next follow an approach similar to that in Section 2. If w € Z is decomposed in Fourier series like
in (2-14), we have

00 2
0w =22 Y [ a0 6k )P+ 5 101)F) ~ BN )P v (426)

keZ

and we observe that w € Z; if and only if
(o] o0
/ wo(r)rdr=0 and / w1 (r)r*dr =0.
0 0

Introducing the new variables wy = A'/?w; = eXwy, where x = % log(A), we obtain after straightforward

calculations
> k? 2 2
0(@) =2n2f [k P + 5 )P + W) ) b, (4-27)
keZ 0
where the potential W is defined by
W) =x" () + 25 + 2= BD Ly~ = L e 4
r A(r)y 2 2

The coercivity estimate (4-11) is thus equivalent to the inequality

00 ) 00
/ {Iw,’((r>|2 + I;—z|wk(l”)|2 + W(r)lwk(r)lz}rdr > 5/ lwi (r)[* r dr, (4-29)
0 0
which should hold for all k € Z under the conditions
[e.¢] o0
/ wo(r)e X" rdr =0 and / wii(r)e X r2dr = 0. (4-30)
0 0

For any k € Z, we denote by L; the self-adjoint operator in ¥ = L>(R., r dr) defined by

1 k?
Lig= —;Br(rarg)+r—2g+Wg. (4-31)

The domain of L; is exactly the same as for the harmonic oscillator in R?, because the potential W
defined by (4-28) satisfies

—% asr — 0,
1.2
o

W(r) > 4r’—3 forallr >0, and W(r)~ { (4-32)

asr — 00;

—
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see Section A3. Our goal is to prove the lower bound L > § in the entire space ¥ when |k| > 2, and in
the subspaces given by conditions (4-30) when £k = 0 or k = 1. We consider three cases separately.

Case 1: When |k| > 2, the desired inequality is simply obtained by comparing L with the usual harmonic
operator. Indeed, we know from (4-31), (4-32) that

Li>=0 =0+ 5+e—52 5 L (4-33)

where inequalities are between self-adjoint operators on Y. Thus Ly > % when |k| > 3, and there exists
6 > 0 such that Ly > § when |k| = 2, because the inequality in (4-32) is strict.

Case 2: When |k| = 1, the lower bound (4-33) is of no use, but it is easy to verify that L; > 0 in that case.
Indeed, we claim that L;g; = 0, where g(r) = eX ™ e~/ Since g1 is a positive function vanishing at
the origin and at infinity, this means that O is the lowest eigenvalue of Ly in ¥ when k = £1. To prove
the above claim, we first observe that, for any (smooth) function f on R, we have the identity

~ 2
Lif = e Lye" ) = =10, A%, )+ 5 AF — By, (4-34)

because this is the property we used to go from (4-26) to (4-27). On the other hand, in view of (2-2) and
(2-3), we have the identity

_%ar(rAara)*) = W, (4-35)

which holds in fact for any vorticity profile w,, if A is defined by (2-3). In the case of the Lamb—Oseen
vortex, if we differentiate the equality (4-35) with respect to r, we find that the function f = —2w/] = re=r/4

satisfies the relation
Lo asp+Lar- (A”+3A’—5A’)f=f. (4-36)
r r r 2
But A” +2A’/r —rA’/2 = B — 1 by (4-10), so combining (4-34) and (4-36) we conclude that Zkf =0
if |k| = 1, which is the desired result.

To get coercivity, we now restrict ourselves to the subspace Y; C Y of all functions g satisfying
(g, h1) =0, where h1(r) = re *"); see the second relation in (4-30). It is important to observe that /|
is not proportional to g;, so that Y; is not the orthogonal complement in Y of the eigenspace spanned
by g1. However, we have (g1, h1) = 8 % 0, which means that the closed hyperplane Y; does not contain
the eigenfunction g;. In view of Remark 4.8 below, we conclude that there exists some § > 0 such that

Ly >6onY, when |k| =1.

Case 3: Finally, we consider the radially symmetric case where k = 0. The difficulty here is that the
operator L is not positive on the entire space Y. A numerical calculation indicates that Ly has one negative
eigenvalue pg &~ —0.722, and that the next eigenvalue ©; =~ 0.615 is positive. So it is essential to use the
first relation in (4-30), and to restrict our analysis to the subspace Y, of all g € Y such that (g, h¢) =0,
where ho(r) = e X", Our strategy is to apply Lemma 4.7 below with a = —ug, b = 1, ¥ = ho/||holl,
and ¢ = go/llgoll, where gg denotes a positive function in the kernel of Ly — . Estimate (4-41) can
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be used to prove coercivity of Lg on Yy if we have good lower bounds on the eigenvalues o, ;¢ and on
the scalar product [(¢, )|, which measures the angle between the linear spaces spanned by g¢ and Ay.

We first estimate the lowest eigenvalue po. We know from the previous step that L;g; = 0. Defining
g=cg/r =ce* e"2/4, where ¢ = (2 log(2))_1/2 is a normalization factor chosen so that ||g|| = 1, we
deduce that Log = (2/r)d,g. This gives the relation

3 2 3 3 B-1
(Lo+2)g=R. where R=28,g+3¢=(3-20)se, (4-37)

where we used the identity (B —1)/A=1—A"/(rA) =1—2x'/r; see (4-10). In Section A3 below, we
show that B —1 < %A, so that R > 0. This means that the operator Lo+ % admits a positive supersolution,
and using Sturm-Liouville theory we conclude that Lo+ % > 0, so that pg > —%. Actually the function g
is a remarkably accurate quasimode, in the sense that the remainder R in (4-37) is small. The norm of R
in Y = L?(R,, r dr) can be computed explicitly; see Section A4. The result is

o0
5 . 1 _ _ -
/0 R(r)rdr= —1610g(2) (3 —log(2) —2log(m)), (4-38)
so that € := ||R||y & 0.0396. Since L is a self-adjoint operator, we deduce that L, has an eigenvalue

in the interval [—%, _?T + e]. Anticipating the fact (established below) that Ly has a unique negative

eigenvalue, we conclude that pg € [—%, —% + 6].

We next estimate the second eigenvalue w1 of Lg. It is convenient here to observe that, if g = eX f, the
relation Log = g is equivalent to the generalized eigenvalue problem Lo f = unAf, where Ly is defined
in (4-34). The second eigenvalue of that problem is characterized by the inf-sup formula

. . Lof
w1 = inf sup(R[fD(r) = sup inf(R[f])(r), where R[f]=—. (4-39)
fEF r>0 feF >0 Af
Here F denotes the class of all (smooth) functions f : [0, +00) — R such that f(0) =1, f(r) - 0 as
r — 400, and f has exactly one zero in the interval (0, 400). Our first trial functionis f(r) =e* (1 —as),
where s =72 /4 and o =1log(2) L. The value of « is chosen so that the Rayleigh quotient has no singularity:
e S(14+ 2—a)s +2as?) — (1 + (1—a)s + as?)

R r
1= 25(1 —e=*)(1 —as) T

It happens that R[ f] is a decreasing function on R, with R[ f](0) = —% 4+ o and R[ f](+00) = % In
view of (4-39), this implies that % <pu < —% +a ~ 0.69. A better approximation is obtained using

a(l —2e 1)

f)y=e7(—an)(+ps),  where f= o > el —a)’

If % < a < log(2)~!, then B > 0 and the Rayleigh quotient has no singularity in the interval (0, +00).
Taking for instance o = 1.4 gives the excellent lower bound | > 0.6.

Finally, we use the quasimode g in (4-37) and a standard perturbation argument to estimate the true
eigenfunction corresponding to the lowest eigenvalue po. We first look for a nonnormalized eigenfunction
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of the form gy = g — f, where f L go. We have

0= (Lo— 1o)go = (Lo — t0)g — (Lo — o) f = R — (ro+2)g — (Lo — 1o) f,

sothat f = (Lo— o) ! (R — (Mo + %)g), where (Lo — i9) ! denotes the partial inverse of Lo — po on its
range. The norm of that inverse is bounded by 1/d, where d = 11 — g is the spectral gap. As |[R|| =€
and |uo + %I < €, we conclude that || f|| < 2¢/d. The normalized eigenfunction is

b= _ §—f
lgoll /1= fI?

Let Y = ¢hg = e X, where ¢ = +/3/7 is a normalization factor chosen so that ||| = 1. A direct
calculation shows

A o0 2 4 ~ 1 6

(W, g) = cc/ e Prdr =2cé=— ~0.9365;
0 7\ log(2)

hence ( - ) 5

(¥, ) = vog) =W ) 206 — 25 (4-40)

VI=IfIlE d
We use Lemma 4.7 below with a = —pug < %, d=a+b=pu;—pno>1.2,and € = |R|| <0.04. In
view of (4-40), estimate (4-41) shows that there exists some 8 > 0 such that (Lf, f) > 8| f||* for all
fe¥= hé. This concludes the proof of Theorem 4.5. g
Finally, we state an elementary lemma that was used twice in the above proof.

Lemma 4.7. Let X be a Hilbert space and L : D(L) — X be a self-adjoint operator in X. We assume
that there exist ¢ € D(L) with ||¢|| =1 and a, b € R with a + b > 0 such that

(1) L¢p = —a¢, and
(i) (Lg.g) = bllg|* forall g € D(L) with g L ¢.
Then, for any v € X with ||| = 1, we have the lower bound

(Lf, f) = ((@+D)ip, v)* =) fI* forall f e D(L)with f L. (4-41)

Proof. Given f € D(L), we take the decomposition f = (f, ¢)¢ + g, so that g L ¢. Since Lp = —a¢,
we find

(Lf, f)=(Lg, g) —allf. ®)I> = bligl* —al(f, ®)1* = bl f1I* — (@+D)|(f, ¢,

where the inequality follows from (ii). We now assume that f L i and take the decomposition ¢ =
(¢, ¥)¥ + h. By Cauchy—Schwarz, we have

A O =< IFIPIRIE = 1120 = g, ¥)1P),

and combining both inequalities we arrive at (4-41). O

Remark 4.8. In the particular case where a = 0 and b > 0, the kernel of L is one-dimensional, and
inequality (4-41) implies that the quadratic form of L is strictly positive on any closed hyperplane that
does not contain the eigenfunction ¢.
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Appendix

Al. Integral inequalities involving logarithmic weights.

Proof of Proposition 3.1. Let B ={x e R" : |x| < 1} and Dy ={x e R" : f(x) < M}. To prove (3-1),

we must verify that
/ (logi)f(x)dng—l—f (l S )>f( ) dx. (A-1)
| x| R\ Dys

Let Q) ={x € By : f(x) < M|x|™/?} and Q, = {x € B; : f(x) > M|x|™"/?} Cc R"\ Dy;. We have
Bl = Ql U 92 and

/(logi)f(x)dx< / ! 1dx CM,
o L8 =M | ot
i 2 £ > £
f (log| |)f(x)dx<nfgz<l )f( ) dr < /Rn\DM(I )f( ) d:

hence (A-1) follows by adding both inequalities. We next consider (3-2), which reads

M
/ (log )f(x) dx <M +/ (log |x]) f(x) dx. (A-2)
Dy S x)

R\ B,
Let e = exp(1) and

@ =lxeDy: Fo<—M 4 =1x €Dy : 5
= reonsro s i) aisfreow 0= i)

Since ¢ — t log(1/t) is increasing on [0, e and s — log(s) is increasing on [1, +00), we have

M 1 on _
/ (logf( ))f(x)dfo/RnWlog(e(l—Hxl) )dx =CM,

f <log M )f(x)dxs / log(e(1+1x)?") £ (x) dx < CM +2n / (log x]) £ (x) dx,
Q f(x) Q

R™\B,

and (A-2) follows in the same way.
From now on, we assume that f is radially symmetric and nonincreasing in the radial direction. In
particular, we have, for all x # 0,

n.n/Z

1 / M
fydy < , whereo, = ————. (A-3)
o |X1" Jiyi<ixl oty x| "TT+n/2)

fx) =
Since  — log, (¢) is increasing, we deduce that

/ <1 flx ))f( )dx</ (10g+ 1 )f(x)dstM—i—n/ <1ogi)f(x)dx,
R\ Dy § o x| .

which is the converse of (3-1). Note that, when n < 12, the first term CM in the right-hand side can be
dropped, because «,, > 1. In a similar way, we find

1 M M
/I;{H\Bl(log |x]) f(x)dx < p /n <10gJr oenf(x)>f(x) dx < CM+/ (log I ))f(x) dx,
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which is the converse of (3-2). Again, the first term CM in the right-hand side can be dropped when
n<12. O

Proof of Proposition 2.2. Throughout the proof we assume that M := ||w|| ;.1 > 0. We take the decomposition
E(w) = E|(w) + E>(w), where

1 1 .
Ei(w) = E/Q log Hw(x)w()’) dxdy, i=1,2,

and Q) = {(x, ) e RZx R?: [x —y| < 1}, 2 ={(x,y) € R x R?: |x — y| > 1}. We have to verify that
the integrals defining the quantities £, E; are convergent under assumptions (2-6).
First of all, using inequality (A-1) above with n = 2, we obtain for all x € R?

1
/ log |a)(y)|dy§C/ (l%—logJr
ly—x|<1 lx — ¥ R?

If we multiply both sides by |w(x)| and integrate over x € R?, we thus find

lo(y)

)Iw(y)l dy.

| (¥)]

|E1(w)|§CM/ <1+10g+ )Iw(y)ldy- (A-4)
R2

On the other hand, we have log |x — y| <log(]x| + |y¥|) <log(1 + |x|) +log(1 + |y|) when |x — y| > 1.
This gives the bound

E2@)] = g [ Tl (log(1 + 1x1) +log(1+IyD) s dy

M
< 2—] () Tog(1+y]) dy. (A-5)
JT R2

Combining (A-4) and (A-5), we arrive at (2-7).

Finally, we assume that w € Cf(le) and fW w(x) dx = 0. The associated stream function ¥ € C*(R)
defined by (1-14) satisfies |{(x)| = O(lx|™Y and |u(x)| = V¥ (x)| = O(Jx|7?) as |x| — oo, so that
u € L*>(R?). This allows us to integrate by parts in the first expression (1-13) of the energy, using
the relation Ay = w, to obtain the elegant formula E(w) = % fRZ |u|> dx. By a density argument, the
conclusion remains valid for all integrable vorticities with zero average satisfying a assumptions (2-6). [

A2. Positivity of the potential V in some examples. For the algebraic vortex (2-38) withxk =14+v > 1,
the potential V defined in (2-34) has the expression

2

V() = 55 (3= 200D+ (P—1)r* =25 - §%),  where § = —— .
r<(14r?) I4+rsv—1
If v=1, then § = 1; hence V = 0. Otherwise:
e If v > 1, we have (1 +72)" > 1 +vr? for all r > 0, so that § < 1. We deduce
vy > 2= ot ), (A-6)

(14r2)2
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so that V() > 0 if 72 > 2/(v+1). In the region where > < 2/(v+1), we use the improved estimate

g vr? ] v—1 2
BGETS I > T T

r>0, (A-7)

which can be established by a direct calculation. This gives the lower bound

B (v—l)(v+1)2r4
12 ’

(v=1)r?

Y0 gy

(5v +114+ > =1Dr? (A-8)

which implies that V (r) > 0 if (v+1)r? < 2.

o If 0 < v < 1, the calculations are entirely similar, except that all inequalities in (A-6)—(A-8) are reversed.
This shows that V (r) < 0 in that case.

For the Gaussian vortex (2-39), a direct calculation shows that

Vi) 3 1+s 1/2 s/4 N r?
)= — — — 44— — — , Wheres=—.
ds 2 4 e —1 (e5—1)2 4

Using the lower bound e® — 1 > s(1 4+ s/2 + 52/6), we obtain

Vi) > ! 3 2+2)1+S+S22 (145 45)
ry>—————((3—2s+s —+—| - —+— -
= 4s (1+5/2452/6)2 276 276

1 s

_ Zmaﬂ 125 + 125> + 45 + 5% > 0.

A3. Properties of the Gaussian vortex. Given the expressions of A, B in (4-25), we first verify that the
ratio B/A is a decreasing function of . We have

BO-1_1( (7 here A(s) = ~ — — (A-9)
—_— == — )}, where =-— . -
Ay 2 4 Ve T e
Since
s_12_2s inh 22_ 22
h/(s):_(e)—se:_4eS81n (s/2)" = (s/2) <0, s>0,
sz(es _ 1)2 sz(es _ 1)2
we see that & is strictly decreasing on (0, 4-00) with A(0) = % and h(+00) = 0. We conclude that

(B —1)/A, hence also B/ A, is a decreasing function of r, and that % <B/A< %.

We next prove the lower bound (4-32) on the potential W. Since x =log(A)/2 with A as in (4-25), a
direct calculation shows that the potential W defined by (4-28) has the expression
s 1 1 s—1/2 s/4 r?

Wr)=-—-— —— — ,  where s =—.
4 2 45 es—1  (es—1)2 4

Inequality (4-32) is thus equivalent to the positivity of the function G defined by

1 s—1/2  s/4
G(s)=1——— - : 0. A-10
) 45 -1 (-2 7 (A-10)
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Ifs > %, we use the lower bound ¢* — 1 > s(1 +5/2) and obtain
S

G(s)> ——

®) 2 ey

Ifo<s < %, the third term in the right-hand side of (A-10) has the opposite sign. To estimate the

(7+4s) > 0.

denominator, we use the upper bound e* — 1 <s(1+s/2)(1 4+ s2/5), which holds for s < % This gives

(27 + 325 + 155> + 4s5%) > 0.

) 2 et G+

Ad. Computing the norm of the quasimode (4-37). In this section we compute the L? norm of the
function R defined by (4-37). We recall that g = cAl/ze_rz/“, where ¢ = (2 10g(2))_1/2, and using (A-9)

we observe that
3 B—1 1 r? 11
=———=—(1-2n{—)), whereh(s)=-— :
4 A 4 4 s e =1

It follows that

Z—L/OO — ﬁ))2 2 — ! /00 _ 21 —-s _ =25
”R”Y_16 ; (1 2h(4 g(r) rdr_1610g(2) ; (1 —2h(s)) s(e e “)ds.

Expanding (1 —2h ($))2 = 1 —4h(s) + 4h(s)?, we take the decomposition

o I, — 41, + 41
||R||§Ef R(r)zrdr:]—m, (A-11)
0 1610g(2)

where the integrals /1, I, I3 are defined and computed below.
o
1
o Evaluation of I;: L= / —(e™* —e ) ds =log(2).
0 N

¢ Evaluation of I5:

L= /‘00 @(eﬁ —e ) ds
0 S

>/ 1 * —st —s —2s
= Pl e dty(e —e )ds
- {/o <E_es—1>(eS(m)_esw)ds}dt

—foo og 2 L Y= e ntog 2 = 1~ log(2)
“Jo 81+ 24497 1+ B L)

t=0
¢ Evaluation of I5:

00 2
L= / his) (e —e ¥)ds
0

N

*(1 1 ’ oo —st —s —2s
= - — tse *dry(e™ —e ) ds
o \s e —1 0
00 00 s ,—s(1+1) —s(241) —s(2+1)
e —e ' se
= S J o Car N p— Y, 1Y Y
0 0 s e’ —1

o 24t 2
— loc=—— — — +yD3+)rdr,
/0 <0g1+z 21, TV GHD
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where 1) denotes the trigamma function [Abramowitz and Stegun 1966, Section 6.4]:

" 00 (oTSZ d2
vV =[] ——ds=-—1logl'(z), Re(z)>0.
0 1—e de

It follows that

2 2
t-+4 t-—1
I; = ;_ log(2+1) —

log(1+1) — % +1(logTY' (3+1) — (log (3 +1) :ZOO
= 41‘(7 —6log(2) — 2log(m)).

Here we used Stirling’s formula to compute an asymptotic expansion of (logI')(3 4 ¢) and its derivative
as t — +o00. Inserting the values of I, I, I3 into (A-11), we arrive at (4-38).

AS. The Poisson structure on . For two functions ¢, ¥ on R?> we use the familiar notation {¢, ¥} =
0190 — 02001 . Now, if F and @ are two functionals of &, the standard way of defining their Poisson

bracket is

(7, g}(w)z—/ a){g g}dx, (A-12)
R2

Sw’ Sw

where 8F /8w is the usual “variational derivative” of F, namely, the function on R? defined by the relation

d 8F
(ge7@ren)| = /R B ) dx
for all (smooth and compactly supported) increments 5. In particular, the variational derivative of the
energy functional (1-13) is § E /§w = —r, where i is the stream function (1-14). As an application, if @

evolves according to the Euler equation 9, + {{, w} = 0, we have for any (smooth) functional F:

d 5F 5F SE
a52”(w)=—/R2g{w,w}dxsz{%,%}wdx:{E,Qf}(w).

This is precisely the integrated form of the canonical equation d;w = {E, w}.
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