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Abstract

For the incompressible Navier-Stokes equations in R® with low viscosity v > 0, we
consider the Cauchy problem with initial vorticity wg that represents an infinitely thin
vortex filament of arbitrary given strength I" supported on a circle. The vorticity field
w(x, t) of the solution is smooth at any positive time and corresponds to a vortex ring
of thickness /vt that is translated along its symmetry axis due to self-induction, an
effect anticipated by Helmholtz in 1858 and quantified by Kelvin in 1867. For small
viscosities, we show that w(x, t) is well-approximated on a large time interval by
wlin(x — a(t), t), where wiin (-, t) = exp(vt A)wy is the solution of the heat equation
with initial data wg, and a(#) is the instantaneous velocity given by Kelvin’s formula.
This gives a rigorous justification of the binormal motion for circular vortex filaments
in weakly viscous fluids. The proof relies on the construction of a precise approxi-
mate solution, using a perturbative expansion in self-similar variables. To verify the
stability of this approximation, one needs to rule out potential instabilities coming
from very large advection terms in the linearized operator. This is done by adapt-
ing V. I. Arnold’s geometric stability methods developed in the inviscid case v =0
to the slightly viscous situation. It turns out that although the geometric structures
behind Arnold’s approach are no longer preserved by the equation for v > 0, the rel-
evant quadratic forms behave well on larger subspaces than those originally used in
Arnold’s theory and interact favorably with the viscous terms.
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1 Introduction and main result

We consider the Cauchy problem for the 3d incompressible Navier-Stokes equations
in the vorticity form

do+u-Vo—w-Vu =vAw in R x (0,00), (1.1)
oli=0 = wy  in R, (1.2)

where we use the notation w (x, t) for the vorticity of the fluid, and the velocity u(x, t)
is given by the Biot-Savart law u(x, r) = (4m)~! fR3 oy, 1) A —y)|x—y|3dy.
Our focus is on the special case where the initial vorticity wg = ['é¢ is an idealized
vortex filament given by a current! of strength I' concentrated on an oriented cir-
cle C c R3. More precisely, wy is the vector-valued measure on R3 defined by the
identity

3
o) =1y [ds, (1.3)
i=1

which is assumed to hold for any continuous test function ¢ = (@1, @2, ¢3). In the
well-known analogy between fluid mechanics and electromagnetism, wg can be
thought of as an electric current of intensity I" flowing through an infinitely thin
wire represented by the circle C; the direction of the current is then given by the ori-
entation of the circle and the sign of I". Vortex filaments were already considered in
the classical 1858 paper of Helmholtz [41] which deals with the inviscid case v =0
corresponding to the Euler equation. Helmholtz argued that a circular vortex filament
of zero thickness would move with infinite speed along its symmetry axis. In 1867
Kelvin [47] established the following formula for the speed of a vortex ring of small
but finite thickness d > 0 and radius ro > d

r 8ro
V& log 20 — ), 1.4
4m0<°g d ) 14

where C € R is a dimensionless constant that depends on the distribution of vorticity
inside a cross section of the ring. If the distribution is uniform, which is probably the
assumption made by Kelvin, the relevant value is C = %, see [46, §163].

In the viscous case v > 0, the solution originating from the singular filament
wp = '8¢ becomes smooth for any positive time ¢ > 0 and is expected to repre-
sent a viscous vortex ring of thickness proportional to 4/vt, as long as that quantity
is small compared to the radius rg of the ring, see Fig. 1. Based on Kelvin’s formula
one anticipates that the vortex ring will move at the (time-dependent) speed (1.4) with
d = /vt and C corresponding to a Gaussian distribution of vorticity inside the core.
To the best of our knowledge, the relevant value of the constant C was first deter-
mined by Saffman in [56]. The computation gives C = 3 log(2) + %(1 — YE), Where

"Here the term current can be understood in its heuristic meaning but also in the technical meaning of the
geometric measure theory, such as in [25].
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x thickness ~ Vvt

Vv

t=0 t>0

Fig. 1 An illustration our main result. Starting from a vortex filament supported on an oriented circle C,
the solution of the Navier-Stokes equation evolves into a viscous vortex ring of thickness proportional to
/vt which moves along the symmetry axis at a speed V given by the Kelvin-Saffman formula (1.5). In the
right picture, the vortex lines are circles that fill the depicted solid torus, whereas the curly arrows denote
the trajectories of the fluid particles

¥E A~ 0.5772... is Euler’s constant.” We will refer to the formula

v = —— (1og 2~ 31002 - L =y (1.5)
Tamrg \ B 2 BT TRV T '

as the Kelvin-Saffman formula for the speed of a viscous vortex ring.

When the initial circle C is parametrized by (rgcos8, rosiné, 0) for 6 € [0, 2r],
with the orientation in the direction of increasing 6, the translational motion will be
in the positive direction along the x3-axis if I' > 0.

It is proved in [34] that the Cauchy problem (1.1), (1.2) with wg = I'6¢ has a
unique solution in natural classes of axisymmetric fields. The main result of the
present paper, Theorem 1.1 below, describes the precise behavior of that solution in
the low viscosity regime where the circulation Reynolds number Re :=T"/v is large.
Our description is valid on a time interval whose length is intermediate between the
advection time and the diffusion time, defined respectively as

2 2
¥, T,

Tady = 2, Tait = 2. (1.6)
r v

Note that Tyqy < Tgif when Re > 1. The leading term in our approximation is exactly
the one suggested by the Kelvin-Saffman formula together with the simplest diffusion
heuristics: The ring diffuses according to the linear heat equation, and translates with
speed (1.5) along its symmetry axis. Denoting by wiin (x, ) the solution of the heat
equation d;w = vAw with initial condition w|;=o = wo = ['d¢c, and defining ||n| =
Im/rll L1 (r3), where r = r(x) is the distance from x to the symmetry axis, we can
state our main result as follows.

Theorem 1.1 There exist dimensionless constants K > 0, Ry > 0, and o € (0, %)
such that, for all T' > 0, all ro > 0, and all v > 0 satisfying Re :=I'/v > Ry, the
following holds. If wy = T' 6c where C is an oriented circle of radius ry, the unique

2Fraenkel’s paper [27] contains formulae that can be used to obtain the same result. Tung and Ting in [57]
also give a formula for C of a similar nature, which however needs a small correction.
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278 T. Gallay, V. Sverak

axisymmetric solution @ of the Cauchy problem (1.1), (1.2) established in [34] can
be expressed for t € (0, Tyqy Re?) as

w(x,1) = wiin(x —a(t),1) + weor(x,1),
) \/ﬁ 1-30
with  ||weor(-, || < KT (?> , (1.7)

where a(t) describes the translation of the ring along its symmetry axis according
to the Kelvin-Saffman formula (1.5). Specifically, if C = {(rocos8, rosind,0); 6 €
[0, 2]} is oriented positively, one has a(t) = (0,0, az(t)) where az(t) = f(; V(s)ds
and V is given by (1.5).

An extended version of our result, including a more precise approximate solution
and a much stronger control of the correction term, is formulated as Theorem 2.6
below, after the necessary notation has been introduced in Sect. 2. In particular, the
exponent 1 — 3¢ in (1.7) can be improved to 1 if we take into account higher-order
corrections to the Kelvin-Saffman formula.

In Theorem 1.1, the constants K and R are large, whereas the exponent o > 0
is taken small. We conjecture that an approximation result of the form (1.7) remains
valid on longer time scales of order TadvRe(’/ with ¢’ close to 1, but we have no
proof so far. In view of (1.4), the advection time T,qy can be interpreted as the time
needed for a vortex ring of circulation I" and small (but not infinitesimal) aspect ratio
d/ro to travel over a distance comparable to its radius rg. In contrast, the diffusion
time Tgif = TagvRe is the time at which the diffusion length /vt becomes equal to
the radius 7o, so that the vortex ring structure is essentially lost. The assumption that
Re >> 1 means that the vortex ring can travel along its symmetry axis over a very long
distance, compared to its radius g, before being destroyed by diffusion. In particular,
on the time scale T = T,qy Re’ where Theorem 1.1 provides a rigorous control we
find, using (1.5) and (1.6),

T o . o /
o= [ Vo = e (ke ) + ).

for some constant C’. Obviously the quantity in the right-hand side grows boundlessly
as Re — +o00, even in the limiting case where 0 =0 and T = T,qy.

It is instructive to compare the situation for vortex rings with the case of a rec-
tilinear filament, where the vorticity is initially concentrated on a straight line £ in
IR3. Let us denote this initial vorticity field by wy = I'8¢. In that case the solution of
the full vorticity equation is given by @ (-, t) = I'e”’2 8, because the nonlinear terms
vanish identically due to symmetries when evaluated on the solution of the heat equa-
tion d;w = vAw. Although the evolution of the velocity and the vorticity fields does
not look very dramatic, the fluid particles in the vicinity of £ do move at very large
speeds when vt is small, and the inertial forces in the fluid are therefore significant.
However, these forces are exactly balanced by the pressure gradient.

When the rectilinear filament is bent into a vortex ring (as already considered
in Helmholtz’s 1858 paper), the inertial forces are no longer in balance and the
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Vanishing viscosity limit for axisymmetric vortex rings 279

ring has to move. To achieve a relatively smooth motion, the bent vortex has to be
“well-prepared” so that the inertial forces generated by the fast-moving fluid particles
are still mostly canceled and do not generate fast oscillations. The initial condition
wo = I'éc has the advantage of letting the equation to adjust the vorticity field into
a well-prepared state without trying to achieve this “by hand”. Quite remarkably,
this adjustment is made in exactly such a way that the oscillations are avoided.? The
largest inertial forces still cancel and the situation remains somewhat close to the rec-
tilinear case with only two significant differences: (a) some motion of the ring along
its axis of rotational symmetry is needed to balance the forces, but the speed of this
motion is much lower than the speed of the fast particles in the fluid; (b) once the
thickness of the ring becomes comparable to its radius, new effects (not discussed in
this work) appear.

Theorem 2.6 can be compared with a result by Brunelli and Marchioro [9], where
the authors consider general axisymmetric vorticities that are initially supported in a
torus of major radius ro > 0 and minor radius 0 < pg < ro. Under certain technical
assumptions, they show that the solution of the Navier-Stokes equations remains es-
sentially concentrated in a thin torus which moves along the symmetry axis according
to Kelvin’s law. If the vortex strength I" is kept fixed, the solution is under control on
a time interval of length T log(ro/ o) ", which therefore shrinks to zero as pg — 0.
Also, the authors assume that the viscosity satisfies vT < ,og (up to a logarithmic cor-
rection), so that the viscous effects can be treated perturbatively. In the same spirit,
the case of several vortex rings with a common symmetry axis was recently consid-
ered in [11], see also [7, 12] for similar results in the inviscid case. Our Theorem 2.6
is restricted to specific initial data, which correspond to pg = 0, but it provides a more
precise control of the solution on a much longer time scale, and the diffusive effects
are not treated perturbatively.

1.1 Main ideas of the proof of Theorem 1.1

Our analysis starts with the construction of a precise approximation of the solution
w(x,t). This is achieved by writing the solution in suitable self-similar coordinates
that capture well the singular behavior of the solution at r = 0 through explicit rescal-
ings of a smooth “profile” n that can be thought of as a perturbation of a suitable
Gaussian 9. The perturbed profile n is expressed as an asymptotic series in the time-
dependent parameter € = /vt /7, with 7 = 7(t) denoting the instantaneous radius of
the ring. To achieve a precision that is sufficient for our purposes, we need an expan-
sion up to the fourth order: n =no + €ny + 62772 + 63173 + 647]4 ~+ Necor- The profiles
n; with j > 1 are obtained by inverting operators containing the small parameter
8 =1/Re=v/T, and in that sense we really deal with a two-parameter expansion.
As far as we know, this is somewhat different from other expansions in the literature,
such as [14, 31, 56]. A one-parameter formal expansion in € would treat § as ~ €2,
in view of the relation 72¢2 = § I' r. Keeping both parameters makes it easier to cover
the regimes when € and § are not really comparable, as is the case for very small and
very large times. For the sake of completeness, we mention that the vorticity profiles

3In the related situation of interacting vortices in R2, this was already observed in [32].
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n; for j > 1 can also depend on log €. That phenomenon is well known, and the lead-
ing term in the speed of the ring is precisely related to choosing a moving coordinate
system in which the terms with loge in 1 are eliminated.

The main difficulty in the proof of Theorem 1.1, however, is not in the computation
of an approximate solution, but in showing that the true solution remains close to this
approximation on a large time interval. This requires fairly strong stability properties
for the linearization of the vorticity equation at the approximate solution, which is
very singular in the low viscosity regime. When the initial condition corresponds
to a finite number of parallel rectilinear vortices, a stability analysis was carried on
in [32] by using suitable weighted L? spaces adapted to the specific features of the
rectilinear vortices with Gaussian profiles. In the vortex ring case the nonlinearity of
the equations starts affecting the formal expansions earlier and it is unclear whether
the setup in [32] can be used to show that the vortex ring will not disintegrate on
time-scales approaching zero as v — 0. A recent important work [6] extends some of
the 2d methods for proving stability to a relevant 3d situation, but the length of the
time interval over which the solution is under control may approach 0 as v tends to
ZEero.

In physical flows and numerical experiments one observes a remarkable degree
of stability of vortex rings as well as signs of instabilities with respect to non-
axisymmetric perturbations, see for example [53, 59]. At a rigorous mathematical
level the stability issues have not been well understood. In fact, when I'/v is not
small, not only the stability, but even the uniqueness of the solutions of the Cauchy
problem above with wg = I" §¢ (and also with wy = I" §¢) is open in classes of solu-
tions that do not share the symmetry of the initial data.

In the 1960s, V. 1. Arnold suggested a variational method for proving stability of
steady solutions to Euler’s equation based on a geometric insight that can be summa-
rized as follows, using the Hamiltonian setup of [50]:

(a) The incompressible Euler equation can be viewed as a Poisson system with a
Hamiltonian function given by the usual kinetic energy.

(b) The steady states are critical points of the energy on the symplectic leaves.
The latter coincide with the coadjoint orbits, called just orbits in what follows, of
the group of the volume-preserving diffeomorphisms of the fluid domain acting by
push-forward on the vorticity fields.

(c) When the critical point is a local maximum or a local minimum on an orbit,
the corresponding steady state should be stable.

These ideas fit into a broader family of methods used for proving stability of so-
lutions of Hamiltonian systems by invoking extremality properties of a conserved
quantity under constraints given by other conserved quantities. For example, a circu-
lar planetary orbit in the three-dimensional Kepler problem is stable because it min-
imizes energy for a given angular momentum.* In the applications to vortex rings, it
is natural to restrict the analysis to axisymmetric flows with no swirl, which means
that the velocity field is invariant under rotations about a symmetry axis and under
reflection across any plane containing that axis.

Arnold’s method has found many applications to Euler flows in 2d (see, for exam-
ple, [4]), and has also been invoked in the work of Benjamin [8] on inviscid vortex

41t is well-known that this is no longer the case in dimension four and higher [40].
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rings that is directly relevant for our purposes here. Although some arguments in [8]
may not be fully rigorous, they provide important suggestions for investigating sta-
bility of inviscid vortex rings in the class of axisymmetric solutions. In a different
direction, the conservation of energy, impulse, and vortex strength has been used to
control the evolution of a general class of concentrated solutions of the Euler equa-
tions describing vortex rings, see for example [7, 12].

There is voluminous literature on the stationary vortex ring solutions of the Euler
equation, starting with the explicit solution of Hill [43], see e.g. [1, 2, 5, 10, 15-18,
23, 27-30, 54, 55]. Many of these works rely in one way or another on variational
aspects of the underlying PDEs that have connections to the work of Arnold and Ben-
jamin, albeit in an indirect way. Roughly speaking, if we compare Arnold’s setup to
the maximization of a function f(x) under constraints g;(x) = c¢;, one can compare
some of the variational approaches in the references above to searching for critical
points of f(x) —X1g1(x) — -+ — Ay gm (x) when the Lagrange multipliers Aq, ..., Ay,
are given. Readers interested in related links can find more details in [35].

In our asymptotic expansions of the solutions of (1.1), (1.2) inviscid vortex ring
solutions can also be discerned. For each fixed time ¢ > 0 the third-order expansion in
our parameter € = /vt /F* is a good approximation of an inviscid vortex ring, at least
in the limiting case where our second parameter § = v/ I" is taken equal to zero. A
part of our stability analysis can be thus understood in terms of the stability properties
of this ring, see Remark 2.3 and Sect. 3.8 for more details.

If one wishes to apply Arnold’s ideas to the solutions of (1.1), (1.2), there appears
to be a non-trivial obstacle: The viscous flows do not preserve the geometric struc-
tures that are at the basis of Arnold’s considerations and the influence of the viscosity
is too large to treat the viscous terms perturbatively. At first this may seem to be a
serious problem: If the preservation of the orbits and the Hamiltonian nature of the
equations are violated beyond the reach of the perturbative approach (such as [9, 11]),
can the geometric structure relying on maximization of the energy on symplectic
leaves be helpful? In our previous work [35] we showed, in a much simpler situation,
that the answer to this question can be positive. It turns out that the quadratic forms
coming up in Arnold’s stability analysis, although originally envisaged as quadratic
forms on the tangent spaces to the orbits, are often well-behaved on much larger sub-
spaces. This point can still be conceptually explained by the geometry of the Euler
equation. What we find more surprising is that Arnold’s forms also have favorable
behavior with respect to the dissipative term generated by the viscosity. We can show
this by direct calculation, but we do not have a good conceptual explanation of this
fortuitous circumstance. In the paper [35] we showed that the above ideas can be used
to prove the stability of the rectilinear vortex solution (in self-similar variables) with
respect to perturbations for which the vorticity field stays parallel to the original vor-
tex line. This result has been established previously by a different method [37]. The
new proof in [35] can be thought of as a proof of concept that the ideas of Arnold can
be applied even in the presence of viscosity. The application to vortex rings presented
here is more complicated, but we are not aware of any simpler approach in that case.

To conclude this section, we mention a recent important work by Dévila, Del Pino,
Musso, and Wei [22], where the authors rigorously establish “leapfrogging” of invis-
cid vortex rings. The construction uses “gluing methods” that were previously devel-
oped in [21] to study the interaction of vortices in the plane. The approach shares
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similarities with ours, as it relies on the construction of accurate approximate solu-
tions and their stability analysis. The stability part also uses an Arnold-type energy
functional, although the connection to Arnold’s geometric viewpoint is not explicit.
In the inviscid case, the expansion parameter € > 0 does not need to change during
the motion, and the solution is controlled on a time interval of size T/|loge€|. This
is shorter than in Theorem 1.1, but our result is restricted to a single vortex ring, and
uses viscous effects. One expects the viscosity to have a stabilizing role, but its inter-
action with the geometric structures of Arnold requires a careful analysis. One needs
to show that the solutions will stay “coherent” for a sufficiently long time and the
viscous effects will not be enhanced too much by the high velocities inside and near
the ring.

Another description of the leapfrogging motion of vortex rings, in a different pa-
rameter regime, can be found in [13].

1.2 Comments on the local induction approximation for general filaments

The problem studied in this paper can be considered as a special case of the viscous
version of the local induction approximation conjecture. In the setup considered here
the conjecture could be formulated as follows: if we replace the circle C be a general
smooth closed curve and consider the Cauchy problem (1.1), (1.2) with wp = I'dc,
the motion of the filament C should still be determined essentially by two effects: the
diffusion, which transforms the filament into a vortex tube of thickness d () ~ /vt
at time ¢, and the advection by the self-induced velocity field. The latter is described
by a geometric equation that represents an extension of Kelvin’s formula to general
smooth curves, and was derived by Da Rios [20] in 1906:

r 8r
V=~ (— log —)b. (1.8)

Here V is the vector representing the local velocity of the filament, b denotes the
local binormal vector, r is the local radius of the curvature, and d denotes the local
thickness of the filament. (All these quantities may be time- and position-dependent.)
In the limit v — O the approximation should be valid until the geometric evolution of
the curve by the binormal flow leads to a self-intersection. For general initial curves C
the time of the first self-intersection may be approaching zero as v approaches zero.
The first significant step towards this general case, a local-in time well-posedness re-
sult for a fixed v > 0, was obtained in [6]. Some formal computations related to the
conjecture are presented in [14] and we also refer the reader to the important condi-
tional result in [44]. Our result can be viewed as a proof of the viscous formulation
of the conjecture in the special case where the curve C is a circle.

For a general smooth curve C and a sufficiently small Reynolds number I' /v, the
Cauchy problem (1.1), (1.2) is globally well-posed as first shown in [39] by a pertur-
bation analysis, see also [45] for a more general result in the same spirit. Accurate
calculations in the recent noteworthy preprint [26] suggest that even in these pertur-
bative regimes the motion by the local induction approximation can still be discerned,
although its effect is small and the distance traveled by the ring due to the velocity
field (1.8) seems to be quite shorter than its thickness.
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The general case of the local induction approximation conjecture for the setup con-
sidered in this paper seems to be difficult. In fact, it is unclear whether the strongest
version of the conjecture is valid even for small perturbations of the circle, as the
perturbed filaments may perhaps become unstable to general 3d perturbations before
possible self-intersections. For example, the instabilities studied in [53, 59] may be
relevant.

2 Preliminaries and sketch of the proof

In this section we introduce the notation that is necessary to formulate our result
in its stronger form, and we give a pretty detailed sketch of the overall proof. The
construction of the approximate solution will be performed in Sect. 3, and the stability
analysis in Sect. 4. Technical calculations are postponed to Appendix A and B.

2.1 Formulation of the problem in cylindrical coordinates

In a suitable Cartesian coordinate system, the circle of radius ro > 0 which represents
the support of the initial vorticity (1.3) is given by C = {(rocos8, rosinf,0); 6 €
[0, 27]}. Due to the symmetries of the problem, it is natural to introduce the standard
cylindrical coordinates (r, 6, z) defined by x; = rcos6, xo = rsinf, x3 = z and to
restrict our attention to velocity and vorticity fields of the form

u(x, 1) = up(r,z, e +u:(r,z, ez, w(x,1) = wy(r,z, e, 2.0

where e, eg, e, denote unit vectors in the radial, azimuthal, and vertical directions,
respectively. In the usual terminology, we thus consider axisymmetric flows with no
swirl, see [49]. Due to the incompressibility condition div u := r 1o, (ruy) + 0;(u;) =
0, the velocity components u,, u, can be expressed in terms of the Stokes stream
function v

1 1
ur = ==Y, u; = — 0,y . 2.2
r r

With this notation the vorticity formulation of the Navier-Stokes equation (1.1) be-
comes

drwp + {w, %] - v[(af + 02wy + a%] , 2.3)

where {-, -} is the Poisson bracket defined by {y, ¢} = 0,¢¥ 3,¢ — 9,¢ 9,¢. Equa-
tion (2.3) is to be solved in the domain Q = {(r, z) € R?2 | r > 0}. The smoothness of
the fields in the original variables imposes the “boundary conditions” wy(r, z,1) =
r¢(ryz, t)y and Y (r, z,t) = rz\ll(r, z,t) near r =0, where ¢ and W can be extended to
smooth functions on R? x R that are even functions of r.

The Stokes stream function can be represented in terms of the vorticity wy =
0,u, — oru; by the Biot-Savart law

=2 ey
Y(rz) = i/dﬁF(” " +e-2) >a)e(f,2)dfd2, 2.4)
21 Jo rr
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where F : (0, co) — R is defined by

P _/"'/2 1 —2sin®
s) = s>0. (2.5)

,/sm ¥ +s/4

Formula (2.4) provides a solution to the equation

r 02
a%—if=m,am

curl curl (f eg) = wypey ot equivalently, — 8r(
r r r

which is familiar in magnetostatics, see for example [52, §701]. The same expression
can also be found in the classical book [46, §161]. It is well-known (and not hard to
check) that

1 —240(s1 0,
F()_{ng 4+ O(slogs) ass— @7

25372 +O(S_5/2) as § — 0.

Since we wish to solve the Cauchy problem (1.1), (1.2) with initial data wg = I'd¢,
we assume that the vorticity wg in (2.1) satisfies the initial condition

we‘ = ['é(,0) 5 (2.8)

where 8(,,,;,) denotes the Dirac mass at the location (rg, zo) € £2. Our starting point is
the following global well-posedness result for the vorticity equation (2.3) with such
initial data.

Theorem 2.1 [34] For any T > 0, any v > 0, and any (rg, zo) € 2, the axisymmetric
vorticity equation (2.3) has a unique global mild solution wg € C°((0, 00), L' () N
L%°(2)) such that

sup ||a)9(t)||L|(Q) < oo, and wyg(t)drdz—T 8¢,y ast—0. 2.9)

t>0

Moreover there exists a constant C > 0, depending only on the ratio I' /v, such that

r (r= ro>2+< —20) Vvt 70
wy(r, 2, 1) — e drdz < cr X% o @—+Q,zm
/;2‘ 6( ) 4 vt ro o8 vt ( )

whenever t € (0, Tgit), where Tgit = r& /v.

Here and in what follows, it is understood that L'() = L (2, dr dz), and simi-
larly for the other Lebesgue spaces. Theorem 2.1 establishes the existence of a four-
dimensional family of vortex ring solutions to (2.3) parametrized by the circulation
I' > 0, the viscosity v > 0, the initial radius ro > 0, and the initial vertical position
20 € R. Due to translation invariance in the vertical direction, we may assume without
loss of generality that zo = 0, and we can also take ro = 1 by rescaling the space vari-
ables. Then a rescaling of time allows us to change the values of both v and I", while
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keeping the ratio I'/v fixed. Therefore, up to symmetries, the viscous vortex ring
solutions we consider here form a one-parameter family indexed by the circulation
Reynolds number Re :=T"/v.

The uniqueness of the vortex ring solution under the minimal assumptions (2.9)
is discussed in some detail in [34], so we concentrate here on the short-time estimate
(2.10), which is of limited use despite appearances. For a fixed value of the Reynolds
number Re = I' /v, the right-hand side of (2.10) is small whenever ¢t < Tgif, which
means that the solution of (2.3) with initial data (2.8) is well approximated by a
Gaussian vortex ring of thickness proportional to +/vt, located a the initial position
(ro, z0) € 2. However, since the constant C depends on the Reynolds number in a
very bad way, estimate (2.10) gives no information on the solution at a fixed time
t > 0 in the low viscosity regime v — 0. This limitation is not surprising: due to the
translational motion along the vertical axis predicted by the Kelvin-Saffman formula
(1.5), the vortex ring at time ¢ > 0 is actually located at a new position which is rather
far from the initial one if v is small.

Our goal in this paper is to replace (2.10) by an improved estimate of the form

_ =)+ =z(1)?
vt

r vt
/‘wg(r,z,t)— e ar |drdz < Kl"—v,
Q 4 vt

ro

@2.11)

for t € (0, Toay Re?), where the constant K is now independent of the Reynolds num-
ber, if Re > 1. Comparing with (2.10), we observe that (2.11) is valid up to the
intermediate time T,qy Re?, for some o € (0, %), which is shorter than Tyif = T,qy Re.
But the main difference is that (2.11) compares the solution wg (7, z, t) to a vortex ring
located at a time-dependent position (¥ (t), z(t)), which has to be determined. As we
shall see, we can take 7(¢), z(¢) to be continuous functions of time which are smooth
for ¢+ > 0 and satisfy 7(0) = ro, z(0) = z9. Moreover

4;0 (1oe ?lo +0)(1+0(0? +)). @12

F(t) = O(i>, (1) =
ro
where €(t) = /vt /7 (1), D = %log(Z) + %()/E — 1), and § = v/ I". The first relation in
(2.12) implies that 7(¢) = rg (1 +0O(e (t)z)), which means that the change in the radius
of the vortex ring over the time interval under consideration is much smaller than
the diffusion length /vz. The second equality coincides with the Kelvin-Saffman
formula (1.5), up to higher order corrections.

2.2 Self-similar variables

From now on, we fix the circulation I > 0 and the position (rg, 0) € Q2 of the ini-
tial filament, and we consider the vortex ring solution given by Theorem 2.1, in the
regime where the viscosity v > 0 is small. In view of the approximation formula
(2.11), which is our objective, it is natural to make the following self-similar Ansatz
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for the axisymmetric vorticity and the associated Stokes stream function

r (r—f(t) Z_Z(t),t),

w(r,z,1) = il N o1y
Yz = TR0 (- :/")_f” : Z:/i_f) 1),

where the time-dependent position (7(¢), z(¢)) € 2 has to be determined. We intro-
duce the important notation

v e—ﬂ R_r—f(t) Z_Z—Z(t)
r’ TON - St N

The evolution equation for the rescaled vorticity n(R, Z, t) is found to be

tat'?+€{¢v l—i-%} —\/g(;aieﬁ—i-z;azn) = En-l-aR(lj_ZR), (2.15)

where {¢, x} = 0rpdzx — 027¢ drx is the Poisson bracket in the new variables
(R, Z), and L is the Fokker-Planck operator

S =

(2.14)

1
L= a§+a§+§(RaR+zaz)+1. (2.16)
Equation (2.15) is to be solved in the time-dependent domain
Qe = {(R.Z) eR?|1+€R >0}, (2.17)

with the Dirichlet boundary condition n(—1/€, Z,t) =0 forall (Z,7) e R x R.
As in [34], it is useful to introduce the velocity field U = (Ug, Uz) defined by

dz¢ U Or$

Ur = — , = ,
k 14+€R z 14+€R

(2.18)

in terms of which the nonlinearity in (2.15) reads {qb, H%} = OR (UR n) +
dz(Uz n). The stream function ¢ in (2.15) satisfies the elliptic equation

R} ) ¢

=8U—8UE—8< — ,
1 ZER k=2 R1+6R 1+¢€R

(R, Z) € Qe, (2.19)

with boundary conditions ¢ (—1/€, Z,t) = 0rdp(—1/€, Z,t) =0 forall (Z,1) e R x
R, . Using (2.4), we easily obtain the representation formula [34]

1
¢>(R,Z)=—/ (1+€R)(14+€R")
2 Qe

< L (R—R)* +(Z2-2')?
T (+eR)(1+€R)

)n(R’, ZYdR' dZ’, (2.20)
where F is as in (2.5). In what follows we write ¢ = BS€[5] when (2.20) holds.
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The quantities introduced in (2.14) are all dimensionless. The first one is the in-
verse Reynolds number § > 0, a fixed parameter that is assumed to be small. The
second one is the time-dependent aspect ratio € > 0, which appears in the evolution
equation (2.15), in the definition of the domain (2.17), and in the Biot-Savart for-
mula (2.20). Finally, the variables R, Z are self-similar coordinates centered at the
time-dependent location (7(¢), Z(¢)) and normalized according to the size /vt of the
vortex core. Note that the rescaled functions n, ¢ defined in (2.13) are also dimen-
sionless.

Remark 2.2 Recalling that § = v/ T and Tpgy = rg/ I', we observe that

p_v g _ 8B 2.21)
"3 F(t)z Tagv F(t)2 Tagv '

as long as the ratio rp/r(¢) remains close to unity, which will always be the case
thanks to (2.12). It follows in particular that €2 is comparable to § whenever 7 is
comparable to T,qy. Our goal is to control the solution of (2.3) when ¢ < T,q,6 7 for
some o € (0, %), and on that interval it follows from (2.21) that 2 <sl-o,

2.3 Approximate solution

The first important step in our analysis is the construction of an approximate solution
of (2.15) with initial data

1
(R, Z) = e KT (R Z) e Q=R (2.22)
TT

The associated stream function satisfies — Ag¢pg = 19, where Ag = 812e —I—B%. As 1o, ¢o
are both radially symmetric, it is clear that {¢o, 70} = 0, and the Gaussian profile
(2.22) has the property that £Lng = 0. Since € = 0 when r = 0 in view of (2.14), we
conclude that equation (2.15) is satisfied at initial time if 5 is given by (2.22).

For ¢t > 0, we construct our approximate solution as a power series in the time-
dependent parameter € = /vt /F, the coefficients of which depend on the small pa-
rameter 4. To this end, we multiply both sides of (2.15) by § and rewrite the equation
in the equivalent form

518, + {d) 0 }— e—f(?aRn+Zazn) - 5[£n+aR<

"1+er] T )] (2.23)

14+€R

This equation is defined on the time-dependent domain €2, but expanding the factors
(1 4+ €R)~! in powers of € we get at each order a relation that can be solved in the
whole plane Qg = R?. The corresponding approximation for the stream function ¢ is
obtained in a self-consistent way by expanding the integrand in (2.20) in powers of €,
and integrating order by order over the whole plane R?. As is shown in Sect. 3, this
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results in an asymptotic expansion of the form

M
Napp(R, Z, 1) = Z €" (R, Z, Be)

m=0

; (2.24)
Pupp(R, Z,1) = Y " du(R, Z, Be),

m=0

where the dependence of the profiles 7, and ¢,, on B¢ :=log(l/€) is polynomial.
The profiles also depend on the small parameter §, but to make the notation lighter
this dependence is not indicated explicitly. The velocity of the vortex center is not
known a priori, but can be approximated in a similar way as a power series in €

. M—-1 . . M—-1 .
FO) =Y €"in(Be), ) =) € Zn(Bo), (2.25)
m=0 m=0

where the quantities ?m (Be), Em (B¢) depend on § and are polynomials in Sc. As will
be explained below, the quantity z,(f) in (2.25) is only an initial approximation of the
vertical speed of the vortex ring; the final approximation z(¢) will be obtained from
it by a small adjustment. It is perhaps worth emphasizing that, throughout the paper,
the point (7 (¢), z(¢)) is not necessarily the exact center of our vortex. Rather, it is its
suitably chosen approximation.

The outcome of the analysis carried out in Sect. 3 below is that, if we want our
expansions (2.24), (2.25) to hold uniformly with respect to the parameter § in the limit
where § — 0, there is a unique choice of the profiles 1,,, ¢,, and of the velocities f’m,
Zm such that

a) Both members of (2.23) agree up to order O(eM 1y modulo powers of B;

b) The point (7 (¢), z+(t)) € L is the center of the vorticity (2.13) when 1 = nypp.

The integer M in (2.24), (2.25) determines the accuracy of our approximate so-
lution. It turns out that M = 4 will be sufficient for our purposes. The velocities
F(1), Z4(t) given by (2.25) are found to satisfy estimate (2.12) with § = 0.

Remark 2.3 1f we set § = =0, equation (2.23) reduces to

T r
[¢’1+neR —%zazns{¢_§(1+6R)2,1+’76R]=o, (2.26)
which is the relation satisfied by the vorticity n and the stream function ¢ of a station-
ary solution of the Euler equations in a frame moving with speed Zez. These are pre-
cisely the vortex rings constructed, for instance, in [1, 10, 27, 29, 30]. In that situation
the aspect ratio € > 0 is fixed and, as in (2.14), the dimensionless variables (R, Z) are
defined so that (r, z) = (7, z) + €7 (R, Z). An approximate solution of (2.26) can be
constructed in the form of a power series in €, as in (2.24), where all profiles 1, ¢,
are even functions of the variable Z € R, since this is the case for the coefficients in
(2.26) and for the initial approximation (2.22). Returning to the approximate solution
(2.24), we deduce by uniqueness that 7,pp, Papp are even functions of Z in the limit
§ — 0, and that 7 = 1= O(8) as 8 — 0.
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Remark 2.4 1In view of (2.14) and (2.25), the function €(¢) is implicitly defined by the
relation

\/W M—1 t .

pret Ft) =ro+ Z / €()" P (Bes)) ds (2.27)
€ m=0 0

which should hold when 0 < r < Tyir. As was mentioned in the previous remark, the
radial velocities 7, are small when § < 1, so that Eq. (2.27) will be easy to solve, see

Sect. 3.6.

The asymptotic approximation n,pp(R, Z, 1) is defined on the whole plane and
does not vanish on the boundary 9<2.. To obtain a valid approximate solution of
(2.15), we fix og € (0, 1) and we truncate 7,pp outside a large ball of radius € 0 by
setting

(R, Z,1) = xo(€(R*+Z*)'?) napp (R, Z, 1), s (-, 1) = BS[nu(-, )],
(2.28)
where xo : Ry — [0, 1] is a smooth function such that xo(r) =1 for r < 1 and
xo(r) =0 for r > 2. The remainder of that approximation is defined as

€M% 1 T
Rem(R.Z.1) =L a( )—t3 —-{ , }
em( ) Ny + OR 1R t 1% s Ps 1R
€r (- -
o5 (r ORTs + 54 8277*) . (2.29)

By construction this quantity depends on time only through the parameter € =
Vvt [r ().

The accuracy of our approximate solution is quantified by the following result,
which is established in Sect. 3.7 below

Proposition 2.5 Given any yo < 1 and any ys < 5, there exist a constant C > 0 such
that the remainder (2.29) satisfies

sup W RHZ/4 Rem(R, Z, 1) < C(es+€7557"), (2.30)
(R,Z)€R

whenever the parameters €, § are small enough.
2.4 Stability estimates

In our previous work [34], the evolution equation (2.15) was carefully studied in the
particular case where 7(t) = ro and z(¢#) = zo. This does not make any substantial
difference for the initial value problem at fixed viscosity, and we can thus infer from
the results of [34] that Eq. (2.15) has a unique solution 1 (R, Z, t) with initial data ng
given by (2.22). Our purpose is to show that, if the inverse Reynolds number § = v/ I’
is sufficiently small, the solution 1 (R, Z, t) remains close to the approximation (2.28)
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on a long time interval of the form (0, Tyqy6~7), for some small o > 0. We use the
decomposition

n(R,Z,t) = n«(R, Z,1) +81(R, Z, 1),
s (2.31)
¢(R, Zst) = ¢*(R’Zat)+8¢(R7Z9t)v

where ¢ = BS€[7] in the sense of (2.20). Similarly we assume that the vertical speed
of the vortex ring takes the form

Z(t) = Z.(t) + 8 2(1) (2.32)

where Z, (1) is given by (2.25) and %(t) is a small correction which is chosen so
that the perturbation 7 has vanishing first order moment in the vertical direction, see
Sect. 4.1. The equation satisfied by 7 then reads

tatﬁ+é{¢*, 7 }+1{d3 1 }+{¢3, L ]—E—F<;3Rﬁ+§*3zﬁ)

1+€R U7 1+¢€R 1+€R ST
- Eﬁ 1 Gf;_
- a( ) “Rem(R.Z.1) + —Z23,m. 233
7)+R1+€R +5 em( )+5Fzzn (2.33)

Since 1. (R, Z,0) = no(R, Z), the nonlinear evolution equation (2.33) is to be
solved with zero initial data. The solution is therefore driven by the source term
8’1Rem(R, Z,t), which is small in view of Proposition 2.5 and Remark 2.2 if
the parameter o is small enough. As long as 7 stays small, the nonlinear term
{#, (14+€R) ™7} is of course harmless. The most serious difficulty in controlling 7
using (2.33) comes from the linear terms with a large prefactor ! = I'/v. These
terms could conceivably trigger violent instabilities that might lead to strong amplifi-
cation of 7 in a short time. Our goal is to show that this scenario does not occur, due
to the special structure of the advection terms in (2.33). A similar strategy was ap-
plied in the previous work [32] devoted to the vanishing viscosity limit of interacting
vortices in the plane, but the specific estimates used there do not seem to be easily
adaptable to the present situation.

To control the time evolution of the solution of (2.33), we use the energy functional

1 1 N
Eew) =5 | We 7?dRdZ — 5 éndRAZ, (2.34)
Qe Qe

where W, : Q. — (0, +00) is a weight function that will be described below. The
first term in the right-hand side of (2.34) is a weighted L? integral of the vorticity 7,
similar to weighted enstrophies that were used for the same purposes in [32, 34, 37],
for instance. The second term is just the kinetic energy associated with the vorticity
perturbation 7, as can be seen by invoking (2.18), (2.19) and integrating by parts

1 712 12
[ bR
Qe

.
- FdRAZ = ~
2/96‘15’7 2 1+ eR

1 - .
= 5/ (IURI* +10z1*)(1 + €R)dRAZ.
o
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To construct the weight W, in (2.34), we consider three different regions
1) The inner region where p := (R*+Z2)1/2 < =91 for some small o1 > 0. Here
we choose

1
W, = cb;( il ) (2.35)
14+€eR 14+€R

where 7, is the approximate solution (2.28) and &, : (0, 4+00) — R is a smooth
function with the property that, in the region under consideration,

N«
1+¢€R

¢ — 5= (1+€R)? = 0 ) + Oes+e7), (2.36)
for some y3 < 3 that can be arbitrarily close to 3. It is not difficult to understand
intuitively why such a function should exist. Indeed, in the dimensionless variables
(2.14), the left-hand side of (2.36) is nothing but the stream function of the approxi-
mate solution 7, in a frame moving with constant speed Z* in the vertical direction,
see Remark 2.3. If we drop the remainder term O(ed + €¥?) and consider € > 0 as
a fixed parameter, Eq. (2.36) expresses a functional relation between the potential
vorticity ¢, := (1 + €R) ™5, and the stream function, which implies that 7, is a sta-
tionary solution of the Euler equation in the moving frame. This is not exactly true,
of course, but the estimate on the remainder Rem(R, Z, t) in Proposition 2.5 ensures
that the approximate solution 1, (for a fixed value of € > 0) is not far from a station-
ary solution of Euler, and in Sect. 3.8 we verify that this implies the existence of a
function &, satisfying (2.36). Moreover, an easy calculation shows that

1 4
qﬂ( i ) = (- +0©, p=VR+ZZ e,

1+€eR “\1+4+¢€R 0

2) The intermediate region where € °! < p < €7 %2, for some o, > 1. In this
area we assume that the weight is approximately constant in space, with value
W, ~ exp(e 271 /4).

3) The far field region where p > € ~°2. Here we take W, & exp(p>" /4), where
y =01/03.

The actual construction of the weight is more complicated, and ensures that W,
is Lipschitz continuous at the boundaries of the three regions under consideration,
see Sect. 4 below for details. For the moment, we just mention that our choice of
the energy functional in the inner region is related to Arnold’s variational character-
ization of the steady states of the Euler equation, as discussed in our previous work
[35]. In fact, if we suppose that 7, is a stationary solution of the axisymmetric Euler
equation in a moving frame (which not exactly true), then the functional (2.34) with
the weight (2.35) corresponds, up to a constant factor, to the second variation of the
kinetic energy on the isovortical surface, which is the family of (potential) vorticities
¢ := (1 + €R)™ 'y that are measure-preserving rearrangements of ¢, [3, 35]. Since
the kinetic energy is conserved under the inviscid dynamics, the advection terms in-
volving ! in (2.33), which originate from the linearization of Euler’s equation at
the “steady state” ¢, do not contribute to the time evolution of the functional E. In
reality ¢, is only an approximate steady state of Euler, and the cancellations alluded
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A(p) exp(p?7/4)

exp(e™291/4) T

1 2ot €90 671 €02 P
| I | | -
T T

Fig.2 When € > 0 is small, the weight W, (R, Z) entering the energy functional (2.34) is close to a piece-

wise smooth radially symmetric function, which satisfies We &~ A(p) := (4/,02)(e/’2/4 — 1) in the inner
region where p := (R2+22)1/2 < =91 When W, reaches the threshold value exp(e ~271 /4), the weight
is taken approximately constant until o = €72, and outside that region we set W, ~ exp(sz /4) with
y = 01/07. The dashed lines reflect the fact that exp(p2y /4) < We < A(p) where the implicit constants
do not depend on the parameter €. The intermediate scales e ~°0, where the truncation (2.28) occurs, and
e~ !, which is the distance from the origin to the boundary 92, are indicated for completeness

to above only occur up to correction terms of order O (€8 + €3), but this is sufficient
to cancel the dangerous factors 81 in (2.33). On the other hand, away from the inner
region, the last term in (2.34) is extremely small, so that our functional E. reduces
to a weighted enstrophy. We assume that the weight W, is approximately constant in
the intermediate region, so that the advection terms in (2.33) do not contribute to the
evolution of E,, and in the far field region the dynamics is dominated by the diffu-
sion operator £ in (2.33) so that we can just take any radially symmetric weight with
appropriate growth at infinity.

A technical difficulty inherent to our approach is the fact that the functional E¢
is not coercive, unless the perturbed vorticity 7 satisfies some moment conditions.
The problem comes from the inner region, where the last term in (2.34) plays an
important role. The results established in [35, Sect. 2] indicate that E. is positive
definite provided 7 has zero mean and vanishing first order moments with respect to
the space variables R, Z. In practice this means that, in addition to the information
provided by the energy E., we must control the integral and the first order moments of
the perturbed vorticity 7. It turns out that [ 77dR dZ is always extremely small, of the
order of O(exp(—c/e?)) for some ¢ > 0. The radial moment JR7dRdZ may take
larger values, but can be controlled using the conservation of the total impulse of the
vortex ring. Finally, we choose the correction z(¢) of the vertical speed (2.32) in such
a way that f ZndRdZ =0, see Sect. 4.1 below for further details. This correction
thus plays the role of a “modulation parameter”, see [51, 58] for a similar idea in the
context of the stability analysis of solitary waves.

Disregarding these technical questions for the moment, we briefly indicate how
the argument is concluded. If we differentiate £, with respect to time, and use the
evolution equation (2.33) together with the estimate (2.30) on the source term, we
obtain after lengthy calculations a differential inequality of the form

2ys
(EL0) < —a B+ + 5 ). 1€ T ™), 2.37)
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for some positive constants c1, ¢;. Here we assume that €23 « 82 so that the source
term in (2.37) is small. Since €* < 8!~ by Remark 2.2, this is the case provided
o <1 —2/y3, which is possible if o < 1/3 and y3 is close enough to 3. Integrating
(2.37) with initial condition E¢(0) =0, we find

e2vs
En) 2 es(@+55). 1O Tund ™), 2.38)
and using in addition the bounds on the moments of 7 that are obtained by a different
argument we arrive at an estimate of the form §||7(f)|| x, < c(€d + €?3), where X is
the weighted L? space equipped with the norm

1/2
Iillx, = </Q We(R,Z)Iﬁ(R,Z)FdeZ) . (2.39)

This space depends on time through the parameter € > 0, but we recall that the weight
function satisfies a uniform lower bound of the form W¢(R, Z) 2, exp(pzy /4), see
Fig. 2.

The main result of this paper can now be formulated as follows

Theorem 2.6 For any y3 € (2, 3), there exist constants K > 0, §o > 0, and o € (0, %)
such that, for all " > 0, all ro > 0, and all v > 0 satisfying 6 :== v/ " < &, the follow-
ing holds. There exist continuous functions r(t), z(t) which are smooth for positive
times and satisfy (2.12) with r(0) = ro, 2(0) = 0 such that the unique solution n of
(2.15) with initial data (2.22) satisfies

In(®) —ne@llx, < K(€8+€7), t € (0, Tagyd™7), (2.40)
where € = /vt /7 (t) and 1 is the approximate solution defined by (2.24), (2.28).

We recall that estimate (2.12) for the radial velocity F implies that 7 () = ro(l +
(’)(62)) meaning that the major radius of the vortex ring remains essentially constant
on the time interval (0, Tpgyd ™ ") As for the vertical velocity, it is glven by (2.32)
where the approximate speed Z, defined in (2.25) and the correction Z satisfy

2.
*

<log1+v)(1+0(62)), i = EO((G-{-%)IOgé—I—S). (2.41)

4n 0 70

This gives the announced formula (2.12) for the full velocity z = Z, + 8z,

It is not difficult to verify that Theorem 2.6 implies Theorem 1.1, see Sect. 4.9
for details. Here we just show how to derive estimate (2.11), which is essentially a
reformulation of (1.7). By construction, our approximate solution satisfies the esti-
mate ||74(t) — nollx, = O(e), where 19 is the Gaussian function (2.22). Moreover,
the lower bound W, (R, Z) > exp(p?? /4) implies that X, < L'(,) uniformly in €.
It thus follows from (2.40) that

1) = moll 1@y = €1 (In@) =0 Olla + 0.0 = mollx, ) < Cae,
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for any t € (0, Tagy6~7), and returning to the original variables we arrive at estimate
(2.11).

Remark 2.7 1t follows from (2.24) and (2.40) that the solution of (2.15) satisfies
N(R,Z,1) = no(R.Z) +en (R, Z) + €’ ma(R, Z, B) + O(8 +€7),  (2.42)

where the remainder term is estimated in the topology of X as € — 0. Here 7y is the
Gaussian function (2.22), and the vorticity profiles 1, 1, are explicitly constructed in
Sect. 3. Since § < €2 except for very small times, see Remark 2.2, we see that (2.42)
determines the shape of the vortex core up to third order in €.

3 Construction of the approximate solution

In this section we construct perturbatively an approximate solution of (2.23) such that
the corresponding remainder satisfies (2.30). Approximations of vortex rings with
varying degrees of accuracy were obtained by many authors, and typically rely on
matched asymptotics expansions where the inner core of the vortex and the outer
region are considered separately, see [24, 27, 28, 42, 47] in the inviscid case and [14,
31, 57] in the viscous case. Here we rather follow the direct approach introduced in
[32] for interacting vortices in the plane, which does not rely on matched asymptotics
techniques.

3.1 Expansion of the Biot-Savart formula
Our first task is to compute an accurate asymptotic expansion of the function F(s)
defined by (2.5) in the limit where s — 0. This can be done by expressing F in terms

of elliptic integrals, a procedure initiated in the early references [41, 52].

Lemma 3.1 For 0 <s < 4 we have the power series representation

F(s) = log( )ZAms T ZBms G.1)

where A,,, By, are real numbers. Moreover

Ag=1. Aj=—. A 15
o=—1, 1= 7, 2= " T~
16 1024 32)
By—-2. Bi—_ . pB— ol
0= TS PIT T P2 T o0s

Proof If s > 0and k =2/4/5s +4 € (0, 1), it is straightforward to verify that

72 )
F(s) —/ A-2sin’y o 2-k K(k)—%E(k), (3.3)

,/sm 1//~|—s/4 k
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where K (k), E (k) are the complete elliptic integrals with modulus

/2
K k) = / d6, E(k):/ V1—k2sin?60do.
0

1 — k2 sin?

We are interested in the limit where s — 0, namely £ — 1. Introducing the comple-
mentary modulus k = +/1 — k%, we have the power series expansions (see [19])

K (k) = Za2 2m<10g +2b>
(3.4)

2m+1 1
E(k) =1+ 22 ™ (log by by ).

where ap = 1, bp =log(2), and

2m—1 —1)¢
o m—lOg(2)+Z( D) , m e N*.
=1

am =

N =
W

Combining (3.3), (3.4), we obtain a representation of the form

F(s) = L’CZK(/C) _ #E(k)
V1«2 V1—«2

log( )i K iDmkzm, (3.5)

which converges for 0 < k¥ < 1. Moreover, a direct calculation shows that

Co=1 C—3 C—33 Dy=-2 D—3 Dy = ik (3.6)
0o=1, 1_4» 2_64’ 0= ) 1= 41 2= 128 .

Ask?=s /(s + 4), the right-hand side of (3.5) can be written in the form (3.1), and
using (3.6) we see that the first coefficients satisfy (3.2). Il

Remark 3.2 Various asymptotic expansions of the stream function given by the Biot-
Savart law (2.4) can be found in the literature [24, 31, 42, 46, 57], and are easily
recovered using Lemma 3.1.

We next consider the rescaled Biot-Savart formula (2.20), which can be written in
the equivalent form

1
¢(R,Z) = 2—/ Ke(R,Z;R',Z)n(R',Z)dR' dZ’, 3.7
T Qe
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where

2 N2
K. = (1+6R)(1+6R/)F(L),

(14+€R)(14+€R/) (3.8)
D? = (R—R)*+(z-7))*.
To simplify the notations below, we define
B = logé, L(R,Z:R, 7)) = log<%). (3.9)

Lemma3.3 Forany (R, Z), (R, Z') € R®> with (R, Z) # (R, Z') and any sufficiently
small € > 0, we have the expansion

Ke=(Be+L)Y " P+ Y € On, (3.10)

m=0 m=0

where Py(R,Z; R',Z"), On(R, Z; R', Z") are homogeneous polynomials of degree
m in the three variables R, R', and Z — Z'. Moreover
Py=1 Qo=-2
Pi=3(R+R) Qi1=—3(R+R) (3.11)
Py=f(R=R?+3(Z—-2)  0=L(R*+R?— D%

Proof 1If (R, Z), (R’, Z') are as in the statement, we take € > 0 small enough so that

€2p?

§i= ——— <4, (3.12)
(1+€R)(1+€R’)

1
max(|R|,|R']) < -, and
€
As D # 0 by assumption, we have 0 < s < 4, so that we can apply expansion (3.1) to
the quantity F(s) in (3.8). In view of definitions (3.9) we have

8 1 1
log<$> = ﬂe+L+§log(1+eR)+Elog(l—i—eR’). (3.13)

We observe that the last two terms in (3.13), as well as the prefactor
V(1+€R)(1+€R’) in (3.8) and each monomial s™ in the series (3.1), can be ex-
panded into a power series in the three variables €R, €R’, and €(Z — Z’). Thus,
combining (3.1) and (3.8), we obtain a representation of the form (3.10), where the
first homogeneous polynomials P,,, O, are easily computed using the explicit values

(3.2). O
Remark 3.4 In what follows, with a slight abuse of notation, we denote by L the

integral operator on R? given by the kernel (3.9). For any continuous and rapidly
decreasing function 7 : R2 — R, we thus have

8
Ln)R,Z) = | 1 R, Z)dR'dZ'. (3.14
(Ln)(R, Z) /1;2 0g<\/(R_R/)2+(Z_Z/)2)n( ) (3.14)
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Similarly, we associate integral operators to the homogeneous polynomials P, O,
in (3.10), and to the functions L P, for all m € N*,

Definition 3.5 Using the notation introduced in Remark 3.4, we define for all m € N*
the linear operators

1 1
BSg=5-L, and BS,=>—(BPu+LPu+0n). (15
2 2

Note that, for m > 1, the linear operator BS,,, depends on the parameter € through
the constant factor 8. = log(1/¢€), but for simplicity this mild dependence is not indi-
cated explicitly. For convenience, we do not include the constant term S Pp + Qo =
Be — 2 in the definition of BSy, because the stream function is only defined up to an
additive constant. It is important to observe that, in (3.14) and in the corresponding
definition of the integral operators Py, Q,,, and L P,,, the integration is performed on
the whole plane R?, rather than on the half-plane 2. This is justified because these
operators will always be applied to functions that decay rapidly at infinity, so that the
integration on R? \ Q. gives a contribution of order O(¢>) as € — 0, which can be
neglected in our perturbative expansion. If 7 : R> — R is compactly supported, then
according to Lemma 3.3 the following equality holds in any bounded region of R?:

Be —2
2

o0
BS¢[n] = /Rz n(R',Z)dAR' dZ' + Z €"BS,[n], (3.16)

m=0

provided € > 0 is sufficiently small. As was already mentioned, the first term in the
right-hand side of (3.16) is a constant that can be omitted.

3.2 Function spaces and linear operators

We next introduce the function spaces in which we shall construct our approximate
solution of (2.23). These spaces consist of functions that are defined on the whole
space R?, and not just on the half-plane 2. Indeed, at each step of the approximation,
the vorticity profile n,, (R, Z, B¢) and the stream function ¢,, (R, Z, B¢) in (2.24) are
defined for all (R, Z) € R?. To simplify the writing we often denote X = (R, Z),
and we use polar coordinates (p, ¥) in R? defined by the relations R = pcos?, Z =
posintd.
Following [36, 37] we introduce the weighted L? space

Y= {n € L2(R?) ( / In(X) 12 eXP/4ax < oo} , (3.17)
R2

equipped with the scalar product (11, 72)y = fRZ N1 (X)n2(X) el XP/4 dX and the as-
sociated norm. We also introduce the differential operator £ : D(L) — ) correspond-
ing to (2.16), namely

1
En:An+§X-Vn+n,

(3.18)
neDW) = {ney|aney, X-vney},
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as well as the integro-differential operator A : D(A) — Y defined by

1
An = —({Lno.n}+{Ln.no}).
27r< ) (3.19)

ne D) = [ney|{Ln.n} ey},

where 7 is the Gaussian function (2.22) and L denotes the integral operator (3.14).
Here and in what follows the Poisson bracket is understood with respect to the
rescaled variables (R, Z), so that {¢,n} = dr¢p dzn — dz¢ dgn. We recall the fol-
lowing well-known properties

Proposition 3.6 ([36,37,48]) 1) The linear operator L is self-adjoint in ), with purely
discrete spectrum

o (L) = I—%‘n:O,l,Z,...}.

The kernel of L is one-dimensional and spanned by the Gaussian function ng. More
generally, for any n € N, the eigenspace corresponding to the eigenvalue A, = —n/2
is spanned by the n + 1 Hermite functions 3%no where a = (a1, a2) € N? and o +
ar =n.

2) The linear operator A is skew-adjoint in ), so that A* = —A. Moreover,

Ker(A) = Yo @ {B13rn0 + B20zmo | b1, B2 € R}, (3.20)

where Yo C Y is the subspace of all radially symmetric elements of ).

A crucial observation is that both operators £, A are invariant under rotations
about the origin in R2. It is therefore advantageous to decompose the space ) into a
direct sum

Y= %()yn, (3.21)

where )y C ) is as in Proposition 3.6 and, for all n > 1, the subspace ), C ) consists
of all functions n € ) such that n(p cos ¥, psin?) = a(p) cos(nt) + ax(p) sin(n)
for some ay, ap : Ry — R. Itis clear that ), 1 Y,/ if n # n’. In particular, in view of
(3.20), we have )V, € Ker(A)L for all n > 2. When n = 1, the functions dgng, dzno
belong to )| N Ker(A), and we define

Vi = Vi NKer(A)*

= {776371

/n(R,Z)RdeZ:/ n(R,Z)ZdeZ:O}. (3.22)
R2 R2

Since A is skew-adjoint, we know that Ker(A)® = Ran(A), but the image of A
is not dense in ) and, therefore, we cannot solve the equation An = f for any f €
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Ker(A)1. As is shown in [32, 38], the problem disappears if one assumes in addition
that f belongs to a smaller space such as

z - {n :R2—>R‘e|x|2/4n eS*(Rz)} c V. (3.23)

where S, (R?) denotes the space of all smooth functions which are slowly growing at
infinity. More precisely, a smooth function w : R> — R belongs to S, (RR?) if, for any
o = (a1, o) € N2, there exist C > 0 and N € N such that |0%w(X)| < C(1 + | XN
for all X € R%.

Remark 3.7 We do not need to specify the topology of the space Z, but the following
notation will be useful. If f € Z depends on a small parameter € > 0, we say that
f=0(e) in Z if, for any o = (x], ) € N2, there exist C > 0 and N € N such that

199 £(X)| < Ce(1 + | X])N e~ XP*/4 for all X € R2.

To formulate the main technical result of this section, we introduce the notation

2
(1—e ), hip) = A 0>0. (3.24)

p(p) = TR

1
2mp?
The following statement is a slight extension of [32, Lemma 4]. For the reader’s
convenience, we give a short proof of it in Sect. A.1, emphasizing the case n = 1
which was not treated in [32].

Proposition3.8 If n >2 and f €Y, N Z,orifn=1and f € Y| N Z, there ex-
ists a unique n € Y, N Z (respectively, a unique n € Y N Z) such that An = f. In
particular, if f =a(p)sin(nd), then n = w(p) cos(nd), where

_ a(p)
w(p) = h(p)Q2(p) + ———, p>0, (3.25)
ne(p)

and where Q2 : (0, 00) — R is the unique solution of the differential equation
2

4 1 / n
~2(p) =~ Q)+ (55 —h()2p) =
o o

a(p)
ng(p)’

p>0, (3.26)

such that Q(p) = O(p") as p — 0 and QL(p) = O(p™™) as p — .

Remark 3.9 As was observed in [32], if f = a(p)cos(n?}), then n = —w(p) sin(n?),
where  is still given by (3.25), (3.26). The general case where f = aj(p) cos(ni) +
az(p) sin(n?) follows by linearity.

In the construction of an approximate solution of (2.23), we shall encounter linear
equations of the form

S(k —L)n’ + An’ = f, (3.27)
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where k > 0 is fixed and the parameter § > O can be arbitrarily small. Proposition 3.6
implies that the linear operator §(k — £) + A is invertible in ), so that (3.27) has a
unique solution 1’ for any f € ). In general, the best estimate we can hope for is

_ 1
17l = |6 = £)+8) " 7]y = = Ifly- (3.28)

However, if f satisfies the assumptions of Proposition 3.8, the solution 7° admits a
regular expansion in powers of the small parameter §. More precisely

Proposition 3.10 Assume thatn >2 and f € Y, N Z,orthatn=1and f € Y, N Z.
For any fixed k > 0 and any § > 0, equation (3.27) has a unique solution n‘sl eV,
(respectively, 77‘S € y;). Moreover, for each nonzero N € N, there exists a constant
C > 0, depending only on f and N, such that

N-—1
b ma N

I H < sV, 3.29
Hn 2 Nm y = (3.29)

where the profiles 0, € Y, N Z (respectively, 1, € y; N Z) are determined by the
relations Afjg = f and Aty = (L — k) m—1 for m > 1.

Proof Assume first that n > 2. Since the space )/, is invariant under the action of both
operators £ and A, it is clear that n® € ), if f € ,. If we suppose in addition that
f € Z, Proposition 3.8 shows that there is a unique 79 € ), N Z such that Ay = f.
A direct calculation then shows that (£ — k)79 € YV, N Z, so that we can define
n1 € Yu N Z as the unique solution of A7y = (£ — «)7no. Repeating this procedure,
we construct the profiles 7,, for m =0, ..., N, and we define 7j = n® — (ﬁo + 801 +
-+ 4 8Nfy), so that

(3(/( — L) +A)ﬁ —f- (5(/( — L) +A) iamﬁm = ML — )iy (3.30)

m=0

Estimate (3.28) then gives the crude bound 7]y < C8N, which nevertheless implies
(3.29). The proof is identical if n =1 and f € Y} N Z. O

3.3 First order approximation

We now begin the construction of an approximate solution of (2.23) in the form
(2.24), (2.25). We recall that, for an exact solution, the stream function is determined
by the relation (2.20), which we write in the compact form ¢ = BS¢[n]. For our
approximate solution, we expand the Biot-Savart operator as in (3.16), omitting the
constant term in the right-hand side. We thus obtain the formal relation

00 M M
ZemBSm[Ze”‘nm] =Y €"pu+0O(eMH),
m=0 m=0

m=0
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which we assume to be satisfied order by order in €, up to order M. This leads to the
relations ¢o = BSo[no], 1 = BSo[n1] + BS1[no], and more generally

&m = BSolnm] +BSi[nnu—-11+---+BSpu—_1ln]+ BS,ulnol.- (3.31)

In particular, in view of (2.22) and (3.15), the leading order of our approximation is

1 22 1
nm&2)=Z;e“*zVﬁ $0(R, Z) = ——(Lno)(R, 2), (3.32)

T

where L is the integral operator (3.14). The stream function ¢g has the expression

4

xl_e—l

1 . [(R?*+Z7%
do(R,Z) = ¢o(0) — EElII( ) ,

where Ein(x) = /

0

dr, (3.33)

so that ¢ is radial and ¢g(R, Z) ~ —Qn)~! logp as p := (R?2 + 212 &5 400,
The value at the origin does not play a big role in our analysis, but can be computed
too, see Sect. A.2

bo(0) = 8@ | e
T 4

where yg is Euler’s constant.
Before proceeding further, we estimate the time derivative of the quantity € =
/vt /7 () introduced in (2.14). In view of (2.25), we have

e eti e e .
té=-——=-—— €" P . (3.34)
2 r 2 r
m=0
At this stage the radial velocity profiles 7, are not determined yet, but in view of
Remark 2.3 we can anticipate the fact that |7l = (T'/rg) - O(8) as 8 — 0. Since &t =
(r§/T) - O(e*) by Remark 2.2, it follows that 7(r) = ro(1 + O(e?)) and that 1é =
€/2+0() ase — 0.
With that observation in mind, we substitute the expansions (2.24), (2.25) into the
evolution equation (2.23), keeping only the terms that are exactly of order € or €f.
This gives the relation

{#1.m0} + {d0.m} +n0dz¢po — rFO(;o Irno + 20 32710)
- a[aRno + (L= Y)m - zaml]. (3.35)

To solve (3.35) we first impose the relation

. rs
rg=——, (3.36)
ro
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which ensures that the terms involving dgno cancel exactly. We also assume that n;
does not depend on S, so that 9,171 = 0 (this property will be verified later). On
the other hand, from (3.31) with m = 1 we deduce that {¢;, no} = {BSol[n1], no} +
{BS1[nol, no}, where BSg, BS| are defined in (3.15). Using (3.32) and the definition
(3.19) of the linear operator A, we thus find

1

E({Lm Mo} + {Lno,m}) + {BSi[nol. no}

{#1. 1m0} + {¢0.m}

Be —1 1
Ani +7 {P17701770}+E{LP17707770},

where in the second line we used the definition (3.15) of BS| and the fact that Q| =
— P1 in view of (3.11). Now, elementary calculations that are reproduced in Sect. A.2
show that

P —13 d ! LP —13 3.37
{1770,770}—5 zNo, an E{ 1770,n0}—5 z(bomo) - (3.37)

It follows that we can write (3.35) in the equivalent form

. —1
am+a(h—om = (22 -2

3 1
)ozno =35 @zgo)mo — 5 dodzno. (338)

Using the explicit expressions (3.32), (3.33) of the profiles ng, ¢y, it is straightfor-
ward to verify that the right-hand side of (3.38), which we denote by —R, belongs
to Y1 N Z, where ), Z are the function spaces defined in (3.21), (3.23). There-
fore, according to Proposition 3.10, the linear equation (3.38) has a unique solution
n1 € V1 for any § > 0, and that solution has a well-defined limit as § — 0 if and only
if R1 € (ker A)J-, namely if R € y;. In view of (3.22), this gives the solvability
condition fR2 R1ZdRdZ = 0, which determines uniquely the value of the constant
Zo in (3.38). The calculations are reproduced in Sect. A.2, and yield the following
expression of the vertical velocity to leading order

. r 3 1 1
%0 = m(ﬁs —1+2v>, where v = Jlog@)+ vty (339)

Here again yg = 0,5772... denotes Euler’s constant.

Remark 3.11 The formula (3.39), including the leading term B, = log(1/€) and the
correct value of the constant 2v — 1, was established by Saffman [56], see also Fuku-
moto & Moffatt [31].

We assume henceforth that 20 is given by (3.39), so that (3.38) reduces to

v

Ani+8(3— L) = 7

3 1
dzno — 3 (0z¢0)no — 3 P09z10, (3.40)

where the right-hand side —R| now belongs to J; N Z and is independent of .
Equation (3.40) is of the form (3.27), and can be solved using Proposition 3.10. For
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our purposes, it is sufficient to consider the approximate solution corresponding to
the choice N =2 in (3.29), which reads

Mm(R,Z) = Rnio(p) +38Zn1i(p), p=vVR>+72, (3.41)

where A(Rny9) = —R1 and A(Zn11) = (L — %)(R n1o). Note that n; € ' N Z,
which implies in particular that the functions 19, 711 are smooth and have a Gaus-
sian decay at infinity. The corresponding stream function ¢1 = BSp[n1] + BS1[no] is
computed in Sect. A.2 and takes the form

Be
4

where R ¢10 = BSo[R n10] and Z ¢11 = BSp[Z 111]. One can check that the functions
d10, ¢11 are smooth and decay at least like 1/ ,o2 as p — 400. Note that ¢; involves
the time-dependent term B, = log(1/¢), so that d,¢; # 0. With the choices (3.36),
(3.39), (3.41), and (3.42), the relation (3.35) is not satisfied exactly, but the difference
of both members is O(82) in the topology of Z, which is all we need.

—1 R
$1(R, Z, Be) = - R+5¢0—3R¢0+R¢>10(,0)+SZ¢>11(0), (3.42)

3.4 Second order approximation

We next compute the second order terms in the asymptotic expansion (2.24). As we
shall see, it is consistent at this stage to take

Ffi=721=0, (3.43)

so we make that assumption from now on. As before, we deduce from (3.34), (3.36),
(3.43) that 7(t) = ro (1 4+ O(e?)) and 1¢ = €/2+ O(€?) as € — 0. Substituting (2.24),
(2.25) into (2.23) and keeping only the terms involving €2 or €28, we obtain the
relation

{62, 1m0} + {¢1.m — Rno} + {do. m2 — R + R7no} — ?(% IrM + Zo 32771)

=3[ (£ = 1)+ 0r(n = Rno) = rdyma]. (3.44)

In view of (3.36), the terms involving dgn; cancel exactly. Moreover, we know from
(3.15), (3.31) that

1
o E(an + (BePi+LPi+ Q1)n + (BeP2+ LPy+ Qz)no), (3.45)

where the notations are introduced in Lemma 3.3. Recalling the definition (3.19) of
the operator A, we can thus write (3.44) in the equivalent form

An2+5(ta,nz+(1 —ﬁ)n2)+7€2 —0, (3.46)
where

1 1
Ro = ﬂ{(ﬂe —DPini+LPini,no} + E{ﬁel’zﬂo + LPyno + Qano. mo}
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+ {1 m}+ @z0mo + @zgo)m — R({1 no} +{#0. m} +20z¢0)m0)

OZO
+ 80r(Rmo) — —— 0z - (3.47)

We have the following result, whose proof is postponed to Sect. A.3

Lemma 3.12 The function R, defined in (3.47) belongs to (6o + V») N Z and satis-
fies

3Be
167

Rz = 205 RZio+ RZxa0 +8(xo1 + (R: = Z9m ) + *RZxas,  (3.48)

for some (time-independent) radially symmetric functions x20, X21, X22, X23 € Yo N
Z.

In view of (3.48), we look for a solution of (3.46) in the form 1y = B¢7j20 + 21 +
122, where 120, 21 € V> and 722 € ) do not depend on f. Inserting this ansatz into
(3.46) and using the fact that 19, B = —1/2 + O(€?), we obtain the system

o 3
Afpo +8(1 — L))o + Tem RZny =0,
3.49
0) =0, (349

1)
Afp1 +8(1 = L)1 — 5 120 +732( 16ﬁ;

8(1 = L)z +PoRa2 = 0,

where P, denotes the orthogonal projection in ) onto the subspace ). The first two
equations in (3.49) have a unique solution by Proposition 3.10, and as in Sect. 3.3 we
are satisfied with the approximate solution corresponding to (3.29) with N = 2. Since
PoR2 = 8x21 by (3.48), the third equation reduces to (1 — £)722 + x21 = 0, which
also has a unique solution due to Proposition 3.6. We conclude that we can choose 7>
in the form

(R, Z. o) = Be((R=Z%n0 +5RZm ) + (R~ Z%)nn + SR Zms + mas,
(3.50)
where all functions 7,; belong to Yo N Z. Using (3.45) and the calculations at the
beginning of Sect. A.3, we obtain a similar expression for the corresponding stream
function

$2(R. Z, Be) = e (R*=Z7)p20 + 8RZ¢1 ) + (R~ 2722

+8RZ P23 + BePoa + P25, (3.51)

where the functions ¢;; are radially symmetric and belong to S, (R?). With these
choices, the left-hand side of (3.46) is of size (’)(/3652 + €28) in the topology of Z.
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3.5 Third order approximation

The third order in the asymptotic expansion (2.24) can be computed in a similar way.
According to (3.36), (3.43) and Remark 2.3, we have 7 (1) = ro(1 — €* + O(¢*)) as
€ — 0, and using (3.34) we deduce that 1é = €/2 4+ €3 + O(e7). So, if we substitute
(2.24), (2.25) into (2.23) and keep only the terms involving €3 or €38, we find
{6310} + {¢2.m — Rno} + {é1.m2 — Ry + R¥no}
+ {¢0. 13 — Rma + R*n1 — R¥1o}
rO = = = = = =
T (ro drm2 + (r2—r0) 90 + 20 9zm2 + (22—20) 32770)
=8 (£ = 3)ms + drCr2 = R + Rno) = 19ms = m | (3:52)
On the other hand, using (3.31) with m = 3 and (3.15), we obtain

3 3
B = 3 BSulns ml = 5Lyt 5 3 (B + P+ Qu)sw, 359

m=0 m=1

where the polynomials P,,, O, are defined in (3.11) for m <2 and in (A.19) for
m = 3. We can thus write (3.52) in the form

Ans +8<t8,n3 +(3- [,)773) YRy =0, (3.54)

where

3

1
Rs = 5| D" ((Be+ L)Pu+ Qu)mso mo| + {#2.m — R}

m=1
+ {#1.m — Rmi +R2770} - {¢o,R7’/2—R2m +R3770} (3.55)
- %0((;2 —70)drno + (22 — 20)dzno + Zoaznz)
+89r (Rt — R*no) + 811 .
Lemma3.13 The function R3 defined in (3.55) belongs to (V1 + V3) N Z and satisfies
Ry = B (R*Zx30 + Zoa1 ) + R Zxz + Zasz + 00),  (3.56)

for some (time-independent) radially symmetric functions x30, X31, X32, X33 € Yo N
Z.

The proof of Lemma 3.13 is a direct calculation that is briefly outlined in Sect. A .4.
In particular we verify there that the quantity R3 does not contain any factor ,362,
which is perhaps surprising since ¢1, ¢, and 1, all contain at least one term multi-
plied by B.. We do not need the expression of the O(§) terms in (3.56), but they can
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be computed too and are found to be of the form 88 (R> {30 + Rx31) + (R %32 +
R )233), where X3; are radially symmetric functions. Finally we mention that R3 also
includes terms of the form (3.56) that are multiplied by 8.

As can be seen from the last line of (3.55), there is a unique way to choose the
quantities ?2 and 32 sothat R3 € y; + )3, where y; is the subspace defined in (3.22).
In view of (3.56), (3.36), (3.39), the velocities obtained in this way satisfy

ro - ro -
Forz = (c1Bc + )3, F"zZ = c3fe +eat+ 06D, (3.57)

for some constants ci, ¢z, ¢3, c4. Now, decomposing R3 = B R31 + R3zx where
R31, Rz are independent of S, we look for a solution of (3.54) in the form
13 = Be31 + 732 where

Afiz1 +8(3 — L)z +Ra1 = 0,
(3.58)

R . 3 .
Afz2+8(3 — L)z — 5 M +R32 = 0.

Since R31,R3p € y; + Vs, both equations in (3.58) can be solved using Proposi-
tion 3.10. However, at this stage, it is sufficient to use the crude approximation cor-
responding to N = 1 in (3.29). This means that we can determine our profiles by
solving the equations A#3; + R3; =0 for j = 1,2 using Proposition 3.8. We thus
obtain an approximate solution of (3.54) of the form

n3(R, Z, Be) = Be <R37730 + Rn31) + R3n32 + Rn33, (3.59)

where all functions n3; belong to Jy N Z. Using (3.53) we deduce the corresponding
expression of the stream function

93(R, Z, ) = B (R3¢0 + Rer ) + R3¢ + Reas (3.60)

where the functions ¢3; are radially symmetric and belong to S4(R?). Note that
(3.60) does not contain any factor ,352. With the choices (3.59), (3.60), the left-hand
side of (3.54) is of size O(B§) in the topology of Z.

3.6 Fourth order approximation
Finally we compute the fourth order approximation, which is the final step in our
construction. No modification of the vortex speed is needed at this stage, so we can
take

F3=123=0. (3.61)
The full expansion of the vortex speed is therefore

F(1) =ro+€2r(Be),  Ze(t) = Z0(Be) + €2 22(Be) (3.62)
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where f’o, 30 are defined in (3.36), (3.39) and .72 satisfy (3.57). As is easily verified,
this implies that 7() = ro(1 — €> 4+ O(e*Bc)) and 1¢ = €/24 €3+ O(€’Be) as € — 0.
We look for an approximate solution of (2.23) of the form

4

4
Napp(R. Z.1) = Y " nm(R.Z.Be),  bapp(R.Z.1) = Y _ " $m(R. Z. o).
m=0 m=0

(3.63)
where the profiles 7,,, ¢, for m < 3 have been constructed in the previous steps, and

N0, N1, Po are actually independent of Bc. In analogy with (3.53), we have

4

1 1
¢4 = - Lns+ 5= 3 ((Be + L) P+ Qo)1 (3.64)

m=1

where the polynomials P, Q,, are defined in (3.11) for m <2, in (A.19) for m =3,
and in (A.20) for m = 4. Replacing (3.62), (3.63), (3.64) into (2.23) and proceeding
as in the previous sections, we obtain the following equation for the profile 14

An4+a(za,n4+(2—£)n4)+7e4 —0, (3.65)

where

4
R4 = %[Z((ﬁe + L)Pm + Qm)774—m P 770}

+{#3.m — Rno} + {¢2.m — Rm + Rzno}

+{é1.n3— Rz + R*ni — R¥no} — {¢o. Rz — R*nz + R¥n1 — R*1po

_ rF()((fz —70)arm + (22 — 20)dzmi + gan,B)

+83g (R — R*n1 + R>10) + 2872 (3.66)

Lemma 3.14 The function R4 defined in (3.66) belongs to (6 Yo + Vo + Va) N Z and
satisfies

2
Ry =Y BE(RZow + RZxtse) + O). (3.67)
k=0

for some (time-independent) radially symmetric functions xax, xsk € Yo N Z.

The proof of Lemma 3.14 is the same as that of Lemma 3.13, and can therefore
be omitted. The only important observation is that the projection of R4 onto the
subspace ) is of size O(8). This can be seen as a consequence of Remark 2.3 when
S=i= 0, all profiles 7;,, ¢, are even functions of Z, so that the quantities R, are
oddin Z.
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We now project Eq. (3.65) on the subspace ), for m =0, 2,4, and compute an
(approximate) solution Py, n4 invoking either Proposition 3.8 (for m = 2, 4) or Propo-
sition 3.6 (for m = 0). In the latter case, we use the observation that Py R4 = O(S) to
show that Pyn4 is regular in the limit § — 0. Altogether, we obtain an approximate
solution of (3.65) in the form

2
MR Z,p) = 3 BE(RPZnu + (R = Z)nse+ ). (3.68)
k=0

where the functions 71 ; € Yy N Z are radially symmetric and time-independent. Us-
ing (3.64) we deduce a similar expression for the stream function

2
u(R.Z, 50 = Y BL(R2 220w+ (R2 = 2k +0at).  (3.69)

k=0

and with these choices the left-hand side of (3.65) is of size (’)(,3628) in the topology
of Z.

Since we have now completed the construction of our approximate solution, we
explain precisely how to define the vortex radius 7(¢) and the time-dependent aspect
ratio e(t) = /vt /7 (t). In view of (3.36), (3.57), and (3.62), the function 7 () satisfies
the differential equation

. s
F(t) = 0 (1 —e*(c1Bery + C2))

_ F61 vt i 7(t) 370
——E< _f(t)z(q Ogﬁ—i—Cz)), (3.70)

with initial condition 7(0) = rg. The right-hand side of (3.70) is a smooth function
of 7 > 0, uniformly in ¢ € (0, Tyif), and also a C 0.@ function of time for any o < 1.
Applying the Cauchy-Lipschitz theorem, we obtain a unique local solution of (3.70),
which can be extended as long as 7 () > 0. Now, if we define €(r) = /vt /F (1), it
follows that 7 (¢) = ro(l —e()?+ (9(64,36)), and it is easy to see that the solution of
(3.70) is well-defined and has the required properties on the time intervals relevant
for our considerations.

Remark 3.15 1t is useful to notice that the approximate solution n,p, given by (3.63)
satisfies, for all ¢+ > 0,

/ Napp(R, Z,1)dRdAZ =1, (3.71)
R2

/ Rnapp(R, Z,1)dRdZ :/ Z Napp(R, Z,1)dRAZ = 0. (3.72)
R2 R2

Indeed, at each step m > 1, the vorticity profile n,, is constructed by solving equations
of the form Any, + (% — L)1m + R = 0, where the source term R, has vanishing
integral (by definition) and zero first order moments (due to the choice of the speeds

@ Springer



Vanishing viscosity limit for axisymmetric vortex rings 309

?m,l, Em,l ). These properties are inherited by the profile n,,, due to Proposition 3.6,
and in view of (3.32) this leads to (3.71), (3.72).

3.7 Estimate of the remainder

This section is devoted to the proof of Proposition 2.5. Our task is to estimate the
remainder (2.29), where 7, ¢, are defined in (2.28), and for this we need bounds on
the derivatives of the stream function in terms of the vorticity. If ¢ = BS€[], where
the Biot-Savart operator is defined in (2.20), we have the formulas

926(R Z>——if JAFeR (TeR) Fs) “Z=ZINRZ) qpryy
WD = 0 Qe ‘ ‘ YRR+ (Z2-2) ’

1 ~ (R—-R"n(R',Z') I ypt
(R, Z) = _E/Q V(1+€R)(1+€R’) F(s) dR'dZ

(R—R)? +(Z2-2")?
€ v 1+€eR'
4 Q v/ 1+€R

(F(s)+ F(s))n(R', Z')dR'dZ’, (3.73)

where ﬁ(s) = —25F'(s), see [34, Sect. 4.2]. Here, as in (3.12), we use the shorthand
notation
e2D? » (R—R)? +(Z2-27')?

s = € . (3.74)
(1+€R)(1+€R") (1+€R)(1+€R)

In view of (2.7), we have F(s) — 1 as s — 0 and F(s) = O(s~3/?) as s — +o00.

Throughout the proof, we fix r+ > 0 and we assume that the parameters € =
/vt/F(t) and § = v/ T are small enough. By construction the vorticity 14 (R, Z, 1)
defined by (2.28) vanishes identically when p := (R*+2Z%)1/2 > 26790, 50 we can
assume henceforth that p < 2¢ 79, In that region, we have for any y € (0, 1) the a
priori bounds

S l0nuR.Zl < Ce A ST 9% (R.ZD < C. (3T5)

o] <2 la|=1

where « = (a1, @2) € N? and 9% = dg' 05*. Indeed, the first estimate in (3.75) holds
because 7, is obtained by truncating the asymptotic approximation napp(R, Z, 1)
which belongs to the space Z defined in (3.23). The second estimate can then be
obtained using the expressions (3.73) with ¢ = ¢, and n = n,. To see this, we
first observe that 1 +€R ~ 1 and 1 + €R’ ~ 1 in (3.73), because both quantities
p and p' = (R?+Z*)Y/? are smaller than 2¢ % < ¢~ L. If we use the estimates
|F(s)| < C in the first two lines of (3.73) and |F(s) + F(s)| < Cs~'/2 in the third
line, we thus obtain

R,Z t
9G4 (R, Z.0)| + 1926, (R. Z.1)] < C R 2.0V gpaz < c,
® /(R—R)?+(Z—2')*

@ Springer



310 T. Gallay, V. Sverak

which concludes the proof of (3.75). Finally, since

19« (R, Z, 1) = XO(EUO:O) 10 Mapp(R, Z, 1)
+00€”px((€7°p) Mapp (R, Z, 1) 13 log(e) ,

it follows from the expressions given in Sects. 3.3-3.6 that 0,17, satisfies the same
bound as 7, in (3.75). Summarizing, in view of (3.75), the remainder Rem(R, Z, t)
satisfies

e/ Rem(R, Z,1)| < C67'(1+p)e” M7 /% when p <267, (3.76)

for any yp € (0, 1). If we assume that y € (yp, 1), we conclude that the right-hand
side of (3.76) is O(8~'e™) if p > €79 So from now on we may concentrate on the
inner region p < €0, where 1, = napp is given by (3.63).

In that region we decompose the stream function as ¢, = BS¢[xo Nappl = (]52 —
¢! + ¢2, where

4 4
¢S = Zem BSyi [Mapp] , ¢i = Zém BS:: [(1=x0) Napp] »

o
¢>;2< Z €" BSulxo Napp] -

m=5

Here o is a shorthand notation for xo(e°p). The convergence of the series defining
¢f is easily justified using Lemmas 3.1 and 3.3, if we observe that both inequalities
in (3.12) are satisfied since p, p’ < €1, The principal term BSs[xo napp] can be
estimated using the explicit representation (3.15), where Ps5, Q5 are homogeneous
polynomials of degree 5, and this leads to a bound of the form

10RG2(R, Z,1)| + 10202(R, Z,1)| < CE B (1+p)°,  p<e @,

where B = log(1/€). Moreover |8R¢i| + |8Z¢}<| = O(e™) because (1 — x0)Napp =
O(e®). Finally, in view of (3.31) and (3.63), we have the identity

8 4
= ¢app Z Z BSk[nm—«].

k=m—4
from which we easily deduce

10R (62 — Bapp) | + 192 (42 — dapp)| < Ce™ B2 (14 p)°.

Collecting the estimates above, it is straightforward to verify that the remainder (2.29)
satisfies, when p < €7,

[Rem(R, Z, 1) — Rem(R, Z,1)| < C57'€>82 (1 4 p)° e 77*/4, (3.77)
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where R/e;n(R, Z,t) is the quantity defined for all (R, Z) € R2 by the formula
1
Enapp + €dgr (S477app) — 10 MNapp — g {¢app s S477app}

€r (- B
+ E (l" aRnapp + Zx aznapp) 5 (378)
with S4 =1 —€R + (eR)? — (¢R)? + (e R)*.

Now the crucial observation is that the asymptotic approximation (2.24), (2.25)
was constructed precisely so as to make the quantity (3.78) small in the topology of
Z. More precisely, the results of Sects. 3.3-3.6 can be rephrased as follows:

SRem(R, Z,1) = Oz <652 F 2B+ P52+ eSﬂS) . (3.79)

Inside the parenthesis in the right-hand side, the first four terms represent what re-
mains from the quantities €” (Anm + 8[18, + 5 - E]nm 4+ Ry) form=1,2,3,4
after the profiles 7, have been determined, and the last one corresponds to those
terms in (3.78) which are of order O(€d) or higher and were therefore not considered
in the construction of napp. Combining (3.77), (3.79) and using Young’s inequality,
we obtain

C
sup e70p2/4|Rem(R,Z,t)| < 3(632—}—63,3654-65/33) < C(65+e7’58_1),

p=<e%

for any y5 < 5. This concludes the proof of (2.30). O
3.8 The Eulerian approximation

As was already observed in Remark 2.3, if we set § = 7 =0in the expansion (2.24),
we obtain an approximate solution nf;p, qbﬁ,p, ZE of equation (2.26), which is nothing
but the stationary Euler equation in a frame moving with (constant) velocity Z e..
As is well known [3], steady states of the Euler system are often characterized by a
global functional relation between the vorticity and the stream function. In our case,
in view of (2.26), we expect finding a function @, : Ry — R such that

rOZE

Napp (R, Z)
2r

E
R, Z)—
Papp(R- 2) 1+€R

(1+€R)? = (I>E< ) +0(eM17), (3.80)

for all (R, Z) € R? such that p :=+v/R2+ Z2 « ¢\,

In this section, we first verify that a relation of the form (3.80) holds to second
order, namely with M = 2. Using the expressions (3.41), (3.42), (3.50), (3.51) with
8 = 0 and simplifying somehow the notation, we can write our approximate solution
in the form

nEo(R.Z) = 1o+ eRn +e*(RP—ZHm, + €13,

(3.81)
GEL(R.Z) = ¢o+ €Rpy + X (R*—Z1) ¢ + 23,
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where 1, ¢o are given by (3.32), and the profiles 11, 12,73 € Z and ¢1, P2, 3 €
S4(R?) are all radially symmetric. Note that 7,,, ¢,, may include factors of B, =
log(1/€) when m > 1, but this dependence is not explicitly indicated. We also expand
the unknown function &, in (3.80) in powers of €

e (s) = Po(s) +eDi(s) + €2 Dy(s). (3.82)
Finally, to simplify the writing, we denote

1 r0ZE
= —(Be—14+20v) = —
@ 4 ('36 + U) r
where the last equality follows from (3.39), (3.43), (3.57).
If we consider equality (3.80) to leading order in €, thus neglecting all terms that
are O(e) or O(eBe), we obtain the relation ¢g — w/2 = Pg(no), which determines
the principal term @ in the expansion (3.82). In view of (3.32), (3.33) we thus have

+OE*Be), (3.83)

w 1 . 1
Do (s) = ¢o(0) — > 1 E1n<10g M) , s>0. (3.84)

The constant in (3.84) has no relevance, but it is important to note that ®g(s) ~
—% loglog % as s — 0. For later use we define

Orpo  0dz¢o 4 2
Alp) = Bi(mo(p) = 50 = 20 = ;(e” Bo1), p=0. (389)

Incidentally we observe that A(p) = 1/h(p) where A is defined in (3.24).
To the next order in €, we deduce from (3.80) the relation

(1 — w)R = (o) (m — no) R + P1(no) (3.86)

which can be satisfied only if ®; = 0, because ®;(no) is the only radially symmetric
term in (3.86). Dividing by R, we obtain the equality ¢y — w = A(n; — no), which
happens to be satisfied in view of our definitions of the profiles 1y, ¢;. This fact can
be verified by following carefully the calculations in Sect. 3.3.

Finally we exploit (3.80) to order €2, keeping in mind that ®; = 0. In this calcula-
tion, we neglect the 0(62 Be) correction in (3.83), because this term would only add
an irrelevant constant to the function ®,. We thus obtain the relation

w
(R =22 + ¢ — 5 R? = & (0) (R*=Z2)mz + 13 + (o — ) R?)
1 1 2 p2
+ 3 P00m0) o = n1)"R™ + P2Gn0)

where it is useful to substitute R? = %(R2+Z2) + %(RZ—ZZ). The terms containing
R?—7? cancel exactly due to the identity

1
¢2—§‘I’—An2=0,
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w / 1 7 2
where W = 5+<I>o(no)(no—m)+5<I>o(no)(no—m) ,

which is satisfied by definition of the profiles ¢», 2, as can be verified by following
the calculations in Sect. 3.4. We are thus left with a relation involving only radially
symmetric terms

1
¢3— 5<R2+zz)w — Az = ©a(10), (3.87)

which provides the definition of the second order correction ®» in (3.82). Summariz-
ing, if ®, is defined by (3.82) with ®; =0, &g given by (3.84) and P, by (3.87), we
have shown that (3.80) holds with M =2.

We now come back to the approximate solution 7, ¢, of (2.23) constructed in
Sects. 3.3-3.6, and we show that it also satisfies a relation of the form (3.80), in a
sufficiently small region near the origin. To formulate that result, we denote, for all
(R,Z) € e,

(3.88)

O(R,Z,1) = ¢«(R, Z,1) — % (14+€R)? — ®E<M> ,

14+€R

Proposition 3.16 There exist o1 € (0, 09) and N € N such that, for any y3 < 3, the
quantity © defined by (3.88) satisfies, for some C > 0,

10RO (R, Z, )| +10z0(R, Z,1)] < C(ed+€™)(1+p)V, p<e™, (3.89)

whenever € and § are small enough.

Proof The idea is to compare © with the second order Eulerian approximation

- E
E _ FE roZE 2 napp(RsZat)
Oupp(R. Z, 1) _¢app(Rvat)_T(l+€R) —Cbe(ﬁ , (3.90)

which is of size @(e37) in view of (3.80). Here we consider both quantities nfpp, ¢aEpp

as time-dependent, because we deal with the viscous case where € = /vt /r(t). We
already estimated the difference ¢, — @,pp in the proof of Proposition 2.5, and by
construction we know that ¢,p, = ¢2ﬁ)p + O(es + 63/36). These arguments lead to the
bound

108 (6 — piop) | +102(0s — 9E,)| < C(e8+€B) (1+p)°, p=<e . (391)

On the other hand, we know that 7 (¢) = r()(l + O(€?)), and in view of (3.43), (3.57)
the difference between the vertical speed z, and its second order Eulerian approxi-
mation z is of size (I'/rg) - O(e%B¢). We thus find

7z ro%E -
eS|l +eR? < clp, pse (3.92)
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Finally n, is just a truncation of n,p, and by definition 7,pp — n:ﬁ,p =O(ed + €3Be)
in the topology of Z. This gives the following bound

38 (e — nEL)(R. Z,0)] < C(es +€e) (L +p)Ne? 14,

la|<1

p=e, (3.93)

for some N € N.
At this point we observe that 1, — no = O(€) in the topology of Z when p < €=,
In particular, there exists N € N such that |, — 19| < Ce(1 + p)Vno in that region,
and one can verify that N = 3 is in fact sufficient. If we choose o7 > 0 small enough
so that Noj < 1, it follows that
n«(R, Z, 1) -0

1
— <" <2 , < , 3.94
2770(,0)_ 1TerR = no(p) p=¢€ (3.94)

whenever € > 0 is small enough. The same estimate holds for the Eulerian approxi-
mation n,i,p

To conclude the proof of Proposition 3.16, we need bounds on the derivatives of
the function @, defined in (3.82). We begin with the leading order term ®¢ which is
given by the explicit formula (3.84). We have

, (S -5 | A s —1+log(1/s)
oL (=) = ()= T et Y
0(47‘[) 0(47‘[) s2(log(1/s))2

~ slog(1/s)’ 4
Thanks to (3.94) we only need to evaluate these expressions when the argument
s/(4) takes its values in the interval [%770(,0), 2n0(p)]. In view of Lemma 3.17
below, there exists C > 1 such that, for all A € [1/2,2] and all p > 0,

A
%” < ®y(rmo(p)) = CA(p),  |@5(rno(p)| = CB(p), (3.95)

where A(p) is defined in (3.85) and
16m
B(p) = ~@(m(p)) = 5 (07 =914 ) =0 (396)

The second order contribution ®; is not known explicitly, but from the definition
(3.87), where the left-hand side belongs to S, (R?%), we deduce that there exist C > 0
and N € N such that

|5 (An0(0))] < CA(LY1+ )",
|5 (An0(p))| < CB(p)(1+p)" |

forall p > 0andall A €[1/2,2].
Now, if 9% = d or 9z, we decompose

E E
roc(rreg) — 00 () = o) (" ()~ (7))
14+€R 14+€R 14+€R 14+€R 14+€R
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E E
(o) o () ()
14+€R 14+€R 14+€R
and we estimate the right-hand side using (3.93), (3.95), and (3.97). Taking into ac-
count the preliminary bounds (3.91), (3.92), we arrive at an estimate of the form

D 0% (O(R, Z.1) — OL (R, Z,1)| < C(es + € B)(1 + )V, p<e .

la=1

As was already mentioned, the approximation @f;,p(R, Z,1) is O(e37) in the topol-
ogy of S, (R?), so altogether we arrive at (3.89). O

In the argument above we used the following elementary result, whose proof can
be omitted.

Lemma3.17 Let f, g : (0, +00) — (0, +00) be defined by
_s—1+log(l/s)

—f(s), 0.
s2(log(1/s))° e t

-5
Fs) = slog(1/s)’

Then given any A > 1 there exists C > 1 such that, for any » € [A~', A] and any
s >0,
1 < f(xs) <c. 1 g(As)

f(s) C = g

Ql

4 Energy estimates and stability proof

In the previous section we constructed an approximate solution 7, of the rescaled
vorticity equation (2.15) which corresponds, in the original variables, to a sharply
concentrated vortex ring of radius 7(¢) located at the approximate vertical position
Z«(t). Our goal is now to control the difference between this approximation and the
actual solution 7 of (2.15) with initial data ng, which is located at the modified vertical
position z(#) = z. () + 8z (t) given by (2.32). This will conclude the proof of our main
results, Theorems 1.1 and 2.6.

Our starting point is the evolution equation (2.33) for the perturbation 7 defined in
(2.31), which can be written in the form

_ 1 ~ 1,-~ ~ o~ € /(- ~ - ~
101 + g{fﬁ*aC} + 3{05,(*} +{o.c} - S—F(VaRU-FZ*aZU)
) . “.1)

- ~ €r -
= Lij+ €drl + 5 Rem(R. Z.1) + S—FZ (9. +6027)

where to simplify the notation we use the letter ¢ to denote the potential vorticity:

ﬁ(RaZa t) _ n*(RvZ’t)
T+eR (R, Z,t) = ——. 4.2)

C(R,Z,t) =
& ) 1+¢€R
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From our previous work [34] we know that Eq. (4.1) has a unique solution 7, in an
appropriate weighted L? space, with zero initial data. Our goal is to control the evolu-
tion of that solution on a large time interval, uniformly with respect to the viscosity in
the limit v — 0. This is not an easy task, because several terms in (4.1) are multiplied
by the Reynolds number §~! = I'/v, which becomes arbitrarily large in the regime
we consider. As was explained in the introduction, we shall use energy estimates to
control the solution of (4.1), but a few preliminary steps are necessary before starting
the actual calculations.

4.1 Control of the lowest order moments

To implement our strategy based on energy estimates, we need a precise information
on the lowest order moments of the solution of (4.1). We first define, for all ¢ > 0,

Mo(:):/ (R, Z,1)dX, m(t):f (R+€R*/2) (R, Z,1)dX, (4.3)
QE Qe

where dX = dR dZ denotes the Lebesgue measure in R.

Lemma 4.1 The moments defined in (4.3) satisfy uo(t) = O@E®s™ 1) and uni(t) =
O(€ 4 €75872) for any ys < 1, whenever € and § are small enough.

Proof The conclusion can be obtained by direct calculations, but we find it more
illuminating to use the conserved quantities of the original equation (2.3). The first
one is the total circulation

M(l)=/a)9(r,z,t)drdz = F/ (n4+87) (R, Z,1)dX
Q Q.

= r/ N+ dX +T8uo (), (4.4)
Qe

which satisfies M(0) =I" and is almost constant in time. In fact it is proved in [34,
Sect.4.4]that0<1—-M()/T <C exp(—c/ez) for some positive constants C and c.
Moreover, since the approximate solution 1,pp lies in the space Z defined by (3.23),
it follows from (2.28) and (3.71) that er nydX =1+ O(exp(—c/ez"o)). Therefore

1o(t) = Ofexp(—c/e®) 61) by (4.4).
We next consider the total impulse in the vertical direction

I= f r2w(r,z,1)drdz = Ff(t)2/ (1+€R)*(ne +87)(R, Z,1)dX, (4.5)
Q o

which is known to be exactly conserved [33, 49], so that I = Fr(% for all times. Equal-
ity (4.5) can be rephrased as 1/ I" = L. (¢) + Sf(t)zu(t), where

L(t) = 7 (1) [ (1+€R*nu(R, Z,1)dX,  w(t) = po(t) +2ep1(1). (4.6)
Qe
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It is not difficult to show that

L) = —F(t)Z/ (1+€R)?Rem(R, Z,1)dX . .7
Qe

The easiest way to establish (4.7) is to observe that the impulse /. (¢) would be con-
served if n, was an exact solution of (2.15), so that the remainder Rem(R, Z, t)
defined in (2.29) is the only term that contributes to the evolution of I,(¢). How-
ever equality (4.7) can also be verified by a direct calculation. In any case, since
Rem(R, Z, t) satisfies estimate (2.30) and er Rem(R, Z,t) dx = O(€*°), we deduce

from (4.7) that ¢ I/(t)| < Cr2(e?8 + €7571871), hence

t t 2 +1g—1
) 5§

II*(t)—réls/ |1;(s)|dsscr§f cb)y0+els) ds

0 0

N

< Crg(ezé + 6V5+18_1).

As 1 — L(t) = 87 (t)> u(t), we conclude that s () = O(e* + €7571872), which gives
the desired estimate for 1¢1(¢). O

It is not clear if the strategy above can be applied to control the first order moment
of the perturbation 7 with respect to the vertical variable Z. In particular, we are not
aware of any (approximately) conserved quantity that we could use for this purpose.
Instead we choose the modulation parameter z () in (2.32) so that the vertical moment
vanishes identically

pa(t) == / Z#(R, Z,1)dX = 0. (4.8)
Qe

Differentiating (4.8) with respect to time and using (4.1), we obtain the relation

zL(t)/ Z(an*+882ﬁ)dX=6_ljf ZR(R, Z,t)dX, (4.9)
Qe €r Q.
where
1 ~ 1 - .~ €&F /o .
R=g{¢*s§}+g{¢9§*}+{¢,§}_E<raRn+Z*azn)

) (4.10)
—Ln— EBRE ~3 Rem(R,Z,1).

In view of Lemma 4.1 the integral in the left-hand side of (4.9) is equal to
—1 4+ O(e™), and is therefore bounded away from zero if € is small enough.
The integral in the right-hand side is a priori of size @(8~!), but we observe that
R =8"1Af+ O(e8~1), where A is the linear operator defined in (3.19). Using the
properties established in Proposition 3.6, we see that the leading term gives no con-
tribution

1 i B 3
o RZZAndX = (Zno, Af)y, = —(A(Zno), 71)y, = 0,
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since Zno = —20zno is in the kernel of A. These considerations, which will be made
rigorous in Sect. 4.8 below, show that the modulation speed Z is uniquely determined
by (4.9), and suggest that Z(r) = O(||77]|x.) as long as [|7]| x, remains of size O(1).
In particular 67Z(¢) is indeed a small correction to the vertical position of the vortex
ring.

4.2 Definition and properties of the weight function

We now provide the precise definition of the weight function W, : Q, — (0, 4+-00)
which appears in the energy functional (2.34). We give ourselves three positive num-
bers o1, 02, y such that

O<or<oyg<1<oy, y = o1/02, “4.11)

where o9 € (0, 1) is the cut-off exponent already introduced in (2.28). As we shall
see o2 > 1 can be chosen arbitrarily, but o7 > 0 has to be taken sufficiently small. In
particular o7 should be small enough so that Proposition 3.16 holds.

Asin (4.2),if € > 0 and § > 0 are sufficiently small, we denote ¢, = 1,/(1 + €R),
where 7, is the approximate solution of (2.15) given by (2.28). We recall that ¢,
and ¢, := BS[#,] satisfy the relation (2.36), where @, : R, — R is the function
constructed in Sect. 3.8. We decompose the domain 2, = {(R, Z); 1+€R > O} into
a disjoint union Q, U Q7 U Q7', where

Q. = {(R, Z) € Qe; PL(L(R, 2)) < exp(e*2”1/4)] ,

Q= |(R,z)esz€\sz;;pge—”2}, (4.12)

Q= {(R, Z)EQe; p> 6_"2} )
Here and in what follows, if (R, Z) € R?, we denote p = (R2+Z2)/2. The domains
QL, Q7 also depend (mildly) on 8, but for simplicity this dependence is not indicated
explicitly.

Lemma 4.2 If € > 0 is small enough, the inner region Q2. defined in (4.12) is diffeo-
morphic to a open disk, and there exists k > 0 such that

1
(R2);psefc@ c|R 2Pz trlog=). @13
€

Proof The main properties of the function ®, are established in the proof of Propo-
sition 3.16. In particular, using estimates (3.94), (3.95), (3.97), it is easy to verify
that

%A(P) < @, (s«(R, 2)) < 2A(p), when p <2¢7°1. (4.14)

Here A(p) = (4/,02)(6'02/4 — 1), see (3.85). Since 2A(¢7°1) < exp(e‘z"l /4) as soon
as €771 > 3, we deduce that (R, Z) € Q. if p <€~ Similarly, using the lower
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bound in (4.14), it is easy to verify that the inner region €2/ is contained in the disk
p2<e 2 i logé if « > 407 and € > 0 is small enough. Finally €2, is diffeomor-
phic to a disk because @ (¢) is C?-close to a strictly increasing radially symmetric
function when € > 0 is small, see (3.82). O

We next choose a smooth cut-off function y; : R — [%, 3] such that

(4.15)

W

1 1
Xl(x)=m for |X|S§, x1(x) =0 for |x| >
The weight W, : Q. — (0, +00) is defined by

P, («(R,2)) in Q,
We(R,Z) = x1(€R) x {exp(e21/4) in Q, (4.16)
exp(p?’/4)  in Q)

where y = o01/02 < 1 and Q[, Q/, Q) are the regions defined in (4.12). In other
words, we assume that W, = ®,(¢,)/(1+€R) as long as the numerator remains
smaller than the threshold value exp(e 2% /4). Outside this inner region, the weight
is radially symmetric except for the geometric factor xi(e R), and the radial profile
remains constant as long as p < € %2 before increasing again like exp(p?” /4) when
p > €7 °2. By construction the function W, is locally Lipschitz continuous in €2,
and smooth in the interior of all three regions (4.12). The (mild) dependence of W,
upon the parameter § > 0 is not indicated explicitly. A schematic representation of
the graph of W, is given in Fig. 2.
Further properties of the weight W, are collected in the following lemma.

Lemma 4.3 There exist positive constants C1, Co such that, if €, §, and o1 are small
enough, the weight W satisfies the uniform bounds

Crexp(p¥ /4) < We(R, Z) < C2A(p), (R, 2)€Qe,  (417)

where p = (R2+Z%H1/2 and A(p) is defined in (3.85). Moreover, given any y1 < 1
there exists C3 > 0 such that the following estimates hold in the inner region 2.,

[We(R, Z) = A(p)| + |[VWe(R, Z) = VA(p)| = C3€" A(p). (4.18)

Proof Since % < x1(eR) < 3 and exp(p?’ /4) < CA(p), we deduce from (4.14)

that the bounds (4.17) hold in the inner region 2., as well as in the far field re-
gion Q. In the intermediate region Q2! we know that p < €2, which implies
that exp(pzy /4) < exp(e’wl /4) since y = o1/02, and this gives the lower bound
in (4.17). If p > 2¢79, it is clear that exp(e‘z"' /4) < A(p), which is the desired
upper bound. Finally if (R, Z) € Q and p < 2¢7°1, we deduce from (4.14) that
exp(e‘z"1 /4) < @ (g*(R, Z)) < 2A(p), which concludes the proof of the upper

bound in (4.17).
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To prove (4.18), we start from the expression (4.16) of the weight W, in the inner
region €2.. We know from (3.85) that A(p) = @6(770), where 7g is defined in (3.32).
We thus find

|We(R, Z) — A(p)|
< [x1(€R) — 1| (5,) + | L (Lx) — DL(mo)| + | DL (mo) — Dy(no)| . (4.19)

Since xi(eR) = (1 + €R)™! when (R, Z) € QL, the first term in the right-hand of
(4.19) is smaller than Ce|R| @ (¢y) < Cel_"lA(p). For the second term, we use the
bounds (3.94), (3.95), and (3.97) to obtain

| @ (54) — @ (no)|

IA

sup |®)(xno)| 1z« = nol
f=<a<2

IA

CB(p)(1+ p)Neny < Ce” A(p),

where in the last inequality we assumed that o1 > 0 is small enough so that Noj <
1 — y1. The last term in (4.19) is bounded by e2|<I>/2(n0)| < Ce" A(p) in view of
(3.97). Altogether we arrive at the estimate |W¢ (R, Z) — A(p)| < Ce"A(p). The
corresponding inequality for the first order derivatives can be obtained in a similar
way, and we omit the details O

4.3 Coercivity of the energy functional

For € > 0 small enough, we introduce the weighted L? space X = {n € LZ(QG);
Inllx, < oo} defined by the norm (2.39), namely

I3, = /Q W.(R. Z)In(R. Z) dRdZ . (4.20)

In the limiting case € = 0, it is understood that Qg = R? and Wo(R, Z) = A(p),
in agreement with (4.18). Assuming that € > 0, we consider the energy functional
(2.34), namely

1 .
Eclm = 5 Inl%, — B, neXe, 4.21)

where EX" is the kinetic energy defined by

phing 1 _ L[ oveP? _ nge
b [r;]_5 i ¢ndeZ_§ o 1+eRdeZ’ ¢ = BS°[n]. (4.22)

Since we are interested in the regime where € is small, it is important to observe
that £ Ein[n] becomes singular in the limit € — 0, if the vorticity 1 has nonzero mean.
This divergence is related to the well-known fact that any (nontrivial) nonnegative
vorticity distribution in R? has infinite kinetic energy. The regular part of Efin[n] is
given, to leading order, by the two-dimensional energy

, 1
ES ] = E/RZ(L”)"dX
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= ! 8 a2 ’
T 4m /Rz /Rzlog(D)n(R,Z)n(R ,Zhdxdx’, (4.23)

where L is the integral operator (3.14) and D> = (R—R')> + (Z—Z')?. More pre-
cisely, we have the following statement, whose proof is postponed to Sect. B.1.

Lemma 4.4 If € > 0 is small and n € X¢ satisfies supp(n) C Bc := {(R,Z) €
Qc; p < €79}, we have the expansion

Be —2
4

ENin[p) = ug+ Eg" I+ O(eelnly,),  ase—0, (4.24)

where B =log(1/€) and o = er ndRdZ.

We now consider the (formal) limit of the functional E.[n] as € — 0, assuming
that n has zero mean to avoid the logarithmic divergence in the right-hand side of
(4.24). In view of (4.18) and Lemma 4.4, we obtain the limiting functional

1 . 1 .
Eoln] = 5 A JAW)IN(R, Z)?dRAZ — Eg"[n] = - Inll%, = Eg "], (4.25)

which is studied in detail in our previous work [35]. In particular, we have the fol-
lowing property

Proposition 4.5 There exists constants C4 > 2 and Cs5 > 0 such that, for all n € Xp,
Inl1%, < CaEolnl+ Cs(uf+ ui + 13). (4.26)

where 1) = [ ndX, 1 = [go RndX, o = [po ZndX.

Proof The results of [35, Sect. 2] show that (4.26) holds when g = u; = uy =0,

and the general case is easily deduced by the following argument. Given n € Xp we

define

N = 1n—pono+ m19rnNo + 120210, ¢ = & — oo + 113rP0 + 1120700 ,

where ¢ = (27)~ 'Ly and g, ¢o are as in (3.32). By construction the integral and
the first order moments of the new function # € Xy vanish, so that we can apply the
results of [35] which give the bound ||ﬁ||2 y = C4Eo[7]. On the other hand, expand-

ing the quadratic expressions ||ﬁ||%,(0 and Eo[n] and using Holder’s inequality, it is
straightforward to verify that

. 1
lil%, = 5 I3, = C (g + ni +u3).
. 1
Eoli] = Eolnl+ g Il + C (g + 143 + 1)

for some C > 0. If we combine these estimates, we arrive at the bound (4.26) with a
deteriorated constant Cy. Il
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Using Proposition 4.5, we now establish a similar coercivity property for the func-
tional E. when € > 0 is small. The proof of the following proposition is again post-
poned to Sect. B.1.

Proposition 4.6 If the weight W, satisfies (4.17) and (4.18), there exist constants
Ce > 0 and C7 > 0 such that, for all sufficiently small € > 0 and all n € X, we have
the estimate

1%, < CoEelnl + Cr(Bed + 113 + 113) . (4.27)
where Be =log(1/€) and g = er ndX, pu = er RndX, ur = er ZndX.

In what follows we use the bound (4.27) to estimate the vorticity perturbation 7
introduced in (2.31). The corresponding moments g, ;1 are under control thanks
to Lemma 4.1, and uy = 0 according to (4.8). So it remains to bound the energy
functional E.[7], which is the purpose of the remaining sections.

4.4 Time evolution of the energy

Let 7 be the solution of (4.1) with zero initial data. Assuming that § > 0 and 0 > 0
are sufficiently small, we consider for ¢ € (0, Thgy6~7) the energy function

1 1 .

where € = /vt /i (t) and W, is the weight function defined by (4.16). The first term
in the right-hand side of (4.28) is equal to %Hﬁll2 = and the second one is the kinetic

energy El‘i“[ﬁ], which satisfies (4.22) and involves the stream function (5 = BS¢[7]
defined by the Biot-Savart formula (2.20). Differentiating (4.28) with respect to time
and using the relations (3.34), (4.22) together with the evolution equation (4.1), we
obtain by a direct calculation

té R|V¢? )

1 i
13, E, = (an~ —zaW~2)dX—/(za” L
t Le / en trl+2(t N ¢ l77+2(1+€R)2

€ €

=h+hb+L+L+1+16,

where the quantities Iy, ..., I collect the following terms.
1. Local advection terms

€rZs

1 - ~ S
L = _—/ Weﬂ{¢*, {}dX‘F / WenadzndX
3 Ja, o' Ja.
1 N FZx 5 -
__1 _ Iz 42
5/96 Weirfg, — S5 (1 +eR)?. £} ax (4.29)

1 {W(l—i—eR) ¢ —@(HeR)z}Ede
T2 o U CTRoor '
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2. Nonlocal advection terms

L[ - - e [ o - 1 "
1225/ ¢{¢*,¢}dx_€5’§ / ¢3z77dX—g/ (Weil — @) {d. &} dX
Qe Qe Qe

R FZs 5 - 1 o
=5 | #o-Srarerr Hax—5 [ Wil ofax

8 Ja. Q.
- é/ﬂ{rb $s — %(1 +eR)?|Edx
- éfg Wl + eR)[$. £,)EdX. (4.30)

3. Nonlinear terms
13=—/ (WJ]—([&){J),Z}dX:—/ {Weii, ) dX . (4.31)

4. Diffusive terms
I = fg (Weii — qB)(cﬁ + eaRE) dx.
Integrating by parts as explained in Sect. B.2, we obtain the equivalent expression

Iy = _/ WEIVﬁlde—/ (VW6~Vﬁ)ﬁdX—/ Ve® dX
Qe Qe Se

R|Vq§|2 (4.32)
€ ~ €
—— | w(We(14+€eR)?dX +- | ———dX,
s, mwasempax g [ 0
where
1 1
Ve = Z(R3R+Z82)WE_EW€_(1+6R)' (4.33)
5. Remainder term
1 -
Is = Ef (Weil — ¢) Rem(R, Z, 1) dX . (4.34)
6. Additional terms
1 -2 €rr .= -
Is == [ t@Woi*dX + — [ (Weij — @) dgidX
2 Qe ST Qe
) ] (4.35)
té R|V®| €rz .~ -
_ = 7 — Wi — 0 8dz1n)dX .
2 Jo. (1+€R)? o Jo, (Ve = 9) (o2 0021)

For the purposes of our analysis, it is useful to reorganize some terms appearing
in the quantities /4 and Ig. First, using (2.19) and integrating by parts, it is easy to
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verify that

$9 ~dx—/ 70 quX—E/ VO iy (4.36)
o, RN = QenR =5 Qe(]‘i‘GR)z . .
So, if we collect all terms involving |V<5|2 in (4.32), (4.35), and (4.36), we obtain the
quantity

€ 1é R|V|? €2Fr V|2 Ir V|2

4 2/ Jg (1+€R)? 28T Jq. (1+€R)? 2r Jg. 1+€R
where we used the expression (3.34) of 7é. Next, we prefer including the term involv-
ing t0; We in I rather than I¢, because it will be combined with the diffusive terms

in I4 to obtain negative quantities that will allow us to control the evolution of the
energy. Summarizing, if we define

= — [ waviPax - (VW6~Vﬁ)ﬁdX—/ Vet dx
Qe Qe Qe
| (4.37)
E e ~
——/ 3R(We(1+6R))§2dX+—f 1@ We)i* dX
2 Qe 2 Qe
and
A €rr o
=— | WeiidriidX + — EN[7
6 ST /;26 eNORN + = Ee [7]
efé o~ _
51 ), (Weil =) (920 +8977) X (4.38)

we obtain the identity 10, Ec =11 + L + I3 + i4 + Is + f6, which we exploit in
Sects. 4.6-4.9.

4.5 Bounds on the stream function

In this section we collect a few estimates on the stream function ¢ = BS€[1], where
BS€ is the e-dependent Biot-Savart operator (2.20). We are especially interested in
bounds on the velocity field U = (Ug, Uz) defined by (2.18).

Lemma 4.7 There exists a constant C > 0 such that, for all € € (0, 1),

ORQ ‘-i- dz¢ c

< R, Z)H|dX’. 4.39
1+¢€R 1+6R‘ - /;Zs \/(R—R/)z—l—(Z—Z’)z In )l ( )

In particular, for any q > 2, we have ||U || < Cylinllx, where U is the velocity field
(2.18).

Proof Estimate (4.39) is established in the proof of [34, Lemma 4.1], which in turn
relies on [33, Proposition 2.3]. Using the Hardy-Littlewood-Sobolev inequality, we
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deduce from (4.39) that |U ||z« < Cylinllrr if ¢ > 2 and p € (1, 2) satisfy the relation
1/p =1/q + 1/2. Finally, the lower bound on W, in (4.17) implies that ||n||Lr <
Clinllx, forany p €[1,2]. O

The particular case where n = 1, is the approximate solution (2.28) plays an im-
portant role.

Lemma 4.8 The following estimates hold for the stream function ¢, = BS[n.]

8R¢* 32(]5* C
1+€R 14+eR|l =~ 14+ p4+€2p3°
(4.40)
07 ¢y ) < C
(14+€eR)?l — 14+ p+e3pt’

where p = (R24+7%)1/2,

Proof 1In the region where p < 1/(2¢), we can use estimate (4.39) with n = n,. Since
1+ satisfies the Gaussian bound (3.75), we easily deduce that |U| < C(1 + p)~!,
which gives estimate (4.40) in that case. We now concentrate on the region p >
1/(2¢), where a more careful analysis is needed. We start from the formulas (3.73)
with n = n,, and we first estimate the vertical derivative dz¢,. Since |F(s)| < Cs3/2
for all s > 0, we see that

drR'dZ’. (4.41)

370« C (1+€R")? [n«(R', Z")|
’ ‘ = €3 /QE (

(1+€R)? e (R—R')2 + (Z_Z/)2)2

Note that the integral is, in fact, taken over the support of 7., which is included in
the ball p’ := (R”>+2Z'*)!/2 < 267 where oy < 1. In particular we can disregard
the factor (1+€R’)? in the numerator, and the denominator is always larger that p* /2
if € is sufficiently small. So the right-hand side of (4.41) is bounded by Ce3p~*
when p > 1/(2¢), which concludes the proof of the second inequality in (4.40). Since
1 +€R <1+ €p, the estimate on dz¢p,/(14+€R) in (4.40) follows immediately.

To conclude the proof of the first inequality in (4.40), we must estimate the quan-
tity dgr¢, which contains an additional term given by the last line in (3.73). In the
region where p > 1/(2¢), using the fact that |F(s)| + |ﬁ(s)| < Cs73/2, we see that
the contribution of that term to the vertical speed Uz = dr¢4/(1+€R) is bounded by

C (1+€R"? n«(R', 2|

= drR'dZ' <
e Jo. (R-RY2+(z—22)""

=23

The proof of (4.40) is thus complete. U
4.6 Control of the advection terms

In what follows we always assume that § > 0 is sufficiently small and that €> < 8177
for some small o > 0, see Remark 2.2. As in Lemma 4.3, we also suppose that the
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exponent o1 > 0 is small enough. We first estimate the advection terms 1, I defined
in (4.29), (4.30). These terms are potentially dangerous because they include a factor
1/8 which is very large in the vanishing viscosity limit, but the energy functional
(2.34) was designed precisely so that these contributions can be controlled.

Lemma4.9 There exist y1 > 0 and C > 0 such that
oo, C€ )
L] < Ce™ iy, + 5 Wen~dX . (4.42)
4

Proof To exploit the properties of the weight W, we decompose the integral (4.29)
defining /; in three pieces, which correspond to the subdomains (4.12). If (R, Z) €
Q., we know from (4.16), (3.88) that

_ DL (Z4)
€7 1+e€R’

7_'2* 2
d)*_E(l“rGR) = D (4s) + O, (4.43)

where © is a remainder term that is studied in Proposition 3.16. It follows that

[Wet+er). 6= T2 1+ R} = [0/, @)+ 6] = {90, O},

where the right-hand side can be controlled using the bounds (3.89) on ® and the
estimates (4.14), (4.18) on the weight W in €2_. This gives, for some integer N and
any y3 € (2, 3),

[P, (), O} < C(es+ €)1+ )" We < C(es+€7)e VI W,  (4.44)

where we used the fact that 1 4+ p <2¢77! when (R, Z) € Q.. Since . ~Tfin Q. and
since 8! < €~2/(1=9) in the parameter regime we consider, it follows from (4.44)
that

1 . eV _ B "
E/Q/ {@L @), O} 2 dx < C(e—}-T)e Nov | Wei?dX < Ce ik, .

$2
(4.45)
where y; is taken so that 0 < y; < y3 —2/(1—0) — Noy. As y3 < 3 is arbitrary, such
a choice is always possible if we assume that o > 0 and o7 > 0 are small enough.
We next consider the intermediate region €2/ in which We(1 + €R) = x2(eR) x
exp(e_z"1 /4), where x2(x) = (1 4+ x) x1(x). In that region, we thus have

F;
Je = {Well+€R). ¢ = T2 (14 €R)?} = ex3(eR) exp(e 7 /4) 029 .
Since x2(x) = 1 when |x]| < %, the quantity J. vanishes when p := (R24-2H1/2 <
1/(2¢). In the region where 1/(2¢) < p < €7 %2, we know from (4.40) that

|07+ /(14+€R)?| < Ce3p~* < Ce, and that W, ~ exp(e’2”1/4). Since x} is a
bounded function, we deduce

1 - 1 Jo|7? Ce?
-/ IJ.|E2dX = -/ Meln™ v < €€ [ woitax. (4.46)
8 Jay 8 Jar (14+€R)? § Jar
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Finally, in Q7" we have We(1 + €R) = )(2(6R)Vf/e where W, = exp(p>” /4), so
that

’ ~ GFE*
Je = X3 (R We 076, +

X1(€R) (1 +€R)* Iz We + xa(e R){We , ¢}

The first term in the right-hand side is estimated as above, with the difference that
we now have the improved bound [3¢,/(1+€R)?| < Ce 3 p~* < Ce**273. For the
second one we observe that

0RWe| + |0z We| < ¥ 0 ' We < y e 21 W, since p>e 2,  (447)

and the last term is estimated using (4.47) and the first bound in (4.40). Altogether
we find

! 72 ¢ 1 f|2*| € 1 -9
S/S;g’ |Jel¢7dX < E Qg’(€2P4 + T pl—2y + 62104_27/)W6n dx
=< Ce” ”ﬁ”z‘)(‘6 P (448)

provided 0 < y1 <02 + 1 — 201 — 2/(1—0). Since o2 > 1, such a choice is again
possible if o > 0 and o > 0 are small enough. Combining (4.45), (4.46), (4.48), we
arrive at (4.42). O
Lemma 4.10 There exist y1 > 0 and C > 0 such that

1L < Ce iill%, - (4.49)

Proof In  we have We(1 +€R) = /(¢ by (4.43), hence We (1 +€R) ¢, ¢} =
{#. ®c(z4)}. Using the second relation in (4.43), we deduce that

{JS, Bs — rzir*(l +eR)2} —We(l+eR)d, ¢} = {4, ©}. (4.50)

The first-order derivatives of ® are estimated in Proposition 3.16. Proceeding as in
the previous lemma, we thus obtain

1 . - €\ no V|
g/ﬁé|{¢,®}||CIdX§C(E+?)e /Q rer 14X

< CeM Il . (4.51)

where 0 < y1 < y3 —2/(1—0) — Noj. In the last step, we used Holder’s inequality
with exponents 3 and 3/2, and we invoked Lemma 4.7 to control the L3 norm of
V¢/(1+€R).

In D, := Qc\ 2., we consider both terms in the left-hand side of (4.50) separately.
The contribution of the first one to I is estimated by

1 [ IVPlIVesl . €7 |Z| . 5
— _— dx 0 dX = O(e*® s 4.52
5[& op MY+ =0 D€|z¢||77| (eX7l%,).  (4.52)
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because |V, | < C by (4.40), ||V¢~)/(1+€R)||L3 < C|I1llx, by Lemma 4.7, and

1/2 1/6
IIﬁlle/z(u)S(/D Weﬁde) (/D W;3dX> = O(¢™Jliillx,) -

The second term in the left-hand side of (4.50) is nonzero only if p < 2e7%, in view
of (2.28). In that region, we know that W,|V¢,| < C(1 + p)V for some integer N,
because W, satisfies the upper bound in (4.17) and 5, belongs to the space Z defined
in (3.23). The contribution of that term to I, can therefore be estimated in the same
way as above:

1 O C [ IVl N
- W, , dX < — —q dXx
s/u 1{é. &1z fD er 1P
= O(e®Nil%,) - (4.53)
Combining (4.51), (4.52), (4.53), we obtain (4.49). u

4.7 Control of the diffusive terms

Our next task is to estimate the diffusive terms collected in (4.37). To formulate the
result, we introduce the continuous function py, : R? x Ry — R, defined by

o if p<e™,

py(R,Z,e) = 1€ if e l<p<e 2, 4.54)
pY if p=e%2,
where as usual p = (R2 + 22)1/2. Our goal in this section is:

Proposition 4.11 There exist k > 0 and C > 0 such that
fos [ W19l 37+ )X+ Co i) @S9
Qe
where o, (L1, L2 are defined in (4.3), (4.8).

The proof of Proposition 4.11 requires several steps. We first control the term in
14 that involves the time derivative of the weight function W,.

Lemma 4.12 There exist C > 0 and y1 > 0 such that

/ 10, Wo)i? dX

Qe
o - - ~
< —gl 5 We 22 dX + C y Wit dX + CeMlfll%, - (4.56)
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Proof Following (4.16) we decompose W (R, Z) = x1(¢R) We (R, Z), so that
1 We = x1(€R) 19, We(R, Z) + 1éRx | (€R) We(R, Z) . (4.57)

We first estimate the right-hand side in the region Q. defined by (4.12), where W€ =
DL (L) As D = Do + €2®, according to (3.82), we have 1, W, = DY (L4) 101 Ly +
2teé @) (gy) in that region. We recall that 2ré = e(1 + O(€?)) by (3.34), and that
the functions ®(, ®, satisfy the estimates (3.95), (3.97). It follows immediately that
|teé <D’2(§*)| < Ce2~Noy WE < CeW,. Moreover, since {, = n4/(1+€R) with n, =
Napp in €2, we also have |®(£,)10;¢x] < Ce(1 + o)V W, < Ce"' W, provided 0 <
y1 < 1 — Noj. Finally, the last term in (4.57) is bounded by CepW, < Cel—o We.
Altogether we have shown that [t3; We| < Ce”' W, in Q.

In the intermediate region €2/’ we have W, = exp(e¢ 2% /4) and p, = ¢!, so that

A o1 _ té O] » té o] .~
IB,WG = —7 exp(e 20—1/4)6207 = —? WE ,O)% ? A —Z Wép}%

Since |[téRx{(eR)| < |eRx{(eR)| < C, it follows that 18; W, < — (o7 /S)Wé,o)% inQ/.

Finally, in the exterior region ', the function We = exp(p? /4) does not depend on
time, and we deduce from (4.57) that |19; W | < C W,. Collecting all these estimates,
we arrive at (4.56). O

We next consider the term involving E in (4.37).

Lemma 4.13 There exist C > 0 and y1 > 0 such that

2
€ ~ € ~ .
—5/ IR(We(1+€R))C?dX < —n Wei?dX +Ce" i3, . (4.58)
Qe Qe

Proof If D, denotes any of the three regions defined in (4.12), we have

—%/ dr(We(1+ €R))Z2dX

D,
€2 s € ~

=S| wiax - —/ (9rWe)EiidX (4.59)
2 Jp, 2 Jp,
2 . 1 Ap We)?

< —6—/ witdx 4 [ OrW” (4.60)
4 De 4 De We

where in the third line we used Young’s inequality. In the inner region Q| we observe
that Z ~ 7}, because |e R| < 2¢!~71 « 1. Moreover we have €|dg W,| < Ce”' W, for
some y; > 0, so taking D = 2, and using (4.59) we obtain the analogue of (4.58)
in that region. Outside 2., we cannot directly compare ¢ and 7, so we prefer using
inequality (4.60). In the intermediate region 2/, we have |9g We| < Ce W, by (4.16),

and (4.58) easily follows. Finally, in the exterior region Q’e” , we observe that

W, = M_Fﬂp?)/*? w
Fre=\nern "2 <
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Taking o small enough so that y = o1 /07 < 1/2, and using the fact that p > €72 in
QY , we deduce that |dg We| < Ce”' W, for some y; > 0, and this leads to (4.58). The
proof is thus complete. g

To conclude the proof of Proposition 4.11, we consider the quadratic form given
by the first line of (4.37), namely

Oclnl = W6|V17|2dX +/ (VW - V)ndX +/ V5772 dx, (4.61)
Qe Qe Qe

where V¢ is defined in (4.33). Taking formally the limit € — 0 in (4.61), we obtain
using (4.18)

Qo[n]=/ A|Vn|2dX+/ (VA-Vn)ndX+/ VirdX, (4.62)
R2 R2 R2

where A is defined by (3.85) and V = %(RBR + Zdz)A — %A — 1. The limiting
quadratic form (4.62) is carefully studied in our previous work [35], and we have the
following result

Proposition 4.14 There exists constants Cs > 2 and Cy > O such that, for all n € Xy
with pn € Xy and Vi € X2, we have

IVnll%, + lonllz, + nl%, < CsQolnl + Co(ug + ui + 13) (4.63)
where g :f]RZ ndX, u; = fRZ RndX, pp = fRZ ZndX.

Proof In [35, Theorem 4.2] we prove that there exists §g > O such that Qg[n] >
80||)7||%(0 for any n € &p such that pg = 1 = o = 0. On the other hand, if we apply
Young’s inequality to the middle term in the right-hand side of (4.62), we obtain the
lower bound

1 VA|?
Qolnl > —/ A|V77|2dx+/ (V—l | )nde
4 Rz ]RZ 3A

> 1||Vn||2 +i||pn||2 ~Clinll%, »
=2 Xo 24 Xo Xo

because a direct calculation reveals that V/A — |[VA|?/(3A%) > p2/(24) — C for
some constant C > 0. Taking a convex combination of both estimates, we see that
there exists Cg > 0 such that

1Vnl%, + lenl%, + Inl%, < CsQoln]. (4.64)

whenever 1 € Xy satisfies pg = w1 = uo = 0. It remains to deduce (4.63) from (4.64),
which is easily done using exactly the same arguments as in the proof of Proposi-
tion 4.5. g

The analogue of Proposition 4.14 for the full quadratic form (4.61) is the following
statement, whose proof is postponed to Sect. B.3.
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Proposition 4.15 There exists constants C1g > 2 and C11 > 0 such that, for all suffi-
ciently small € > 0 and all n € X with pyn € X and Vi € Xz, we have

||V77||3Q+|Inllﬁg€+/ Wepyn*dX
QLuQy
< CioQelnl +Cy (12 + / Wen dX)., (4.65)

where p? = pu + ut + 3 anduozfﬂgndX,/Ll :er RndX, /Lg:fQE ZndX.

End of the proof of Proposition 4.11 In view of (4.37) and (4.61) we have

A - 1
Bo=—0uil =5 [ an(Wet+er)Pax+ 3 [ r@woitax.

Qe Qe

The three terms in the right-hand side are estimated using (4.65), (4.58), and (4.56),
respectively. Taking € > O sufficiently small and recalling that p, > €~ °! > 1 out-
side the inner region 2, we arrive at (4.55). The slight discrepancy between the
definitions of y in (4. 3) and in Proposition 4.15 is completely harmless. g

4.8 Control of the remaining terms

In this section, we estimate the remaining terms /3, I5, and iﬁ defined in (4.31),
(4.34), and (4.38), respectively.
Control of I3. We deduce from (4.31) that

V|
|13|s/9 [V (Wi X

Vol (
< | X9 YW, | + W |V )dx 4.66
_/QH_RIHIMII el + We Vi (4.66)
To estimate the right-hand side, we use (4.39) and [36, Lemma 2.1] to obtain the
uniform bound

H V|

H 1/2
1+eR lIL>

~ 1/2 1/2 1/2 1/2
< Cll il < CHaNE (s + 1vil i) .

On the other hand it is easy to verify that |VW¢| < C(1 + p, ) W, where p,, is defined
in (4.54). It follows that

3/2 1/2 1/2 ~ ~ ~
|13 < CIANZ (171 + VAl (1 x, + leyfllx, + 1Vl x,)
< Cllfillx. Dell, (4.67)

where for convenience we denote
~ ~2 ~12 ~ 2
Deliil = Vil + lloy ik, + 1l (4.68)
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Control of Is. Proposition 2.5 asserts that the remainder Rem(R, Z, t) satisfies
the pointwise estimate (2.30), which implies in particular that Rem € X;. In view of
(4.34), we thus find

1 - 1~ . -
151 = 5 IReml (1l + 1%, '3l = (e + 5) (i, + 1w G, )

It remains to estimate the norm of W, 1% in the space X, . This can be done by decom-
posing the Biot-Savart kernel as in the proof of Lemma 4.4, see in particular Eq. (B.2)
below. Neglecting contributions of order O(e°°), we can restrict the integrals to the
region where R% + Z2 < ¢ 291 and R"> + Z'* < €21 Invoking (B.3) and recalling
that po(1) = O(€*) by Lemma 4.1, we find that [W. '@ llx, = IWe *ll2q,) <
ClI7|l x.. We conclude that

151 = e+ 5 ) Ml (4.69)

Control of f6. The first two terms in (4.38) are easily estimated, because F= O@%)
by (3.70). Proceeding as in Lemma 4.4 to control the kinetic energy, and recalling
that o(t) = O(e*), we find

6}"}’

1y = < Cellillx Vil x, + Ce*ll%, -

/ WeiidgidX + " phingz

So it remains to estimate the last term in (4.38), which involves the correction E(t) to
the vertical speed introduced in (4.9). Using (2.19) and integrating by parts we first
observe that

Tii= [ (Wei=d)om.aX = [ (Wedzn. —az.)iax
‘ ‘ (4.70)
= [ @oniax+ [ (Weozn.~z0.)i0x.
. QruQy

where O is defined in (3.88). In the second line, we used the expression (4.16) of W,
in the inner region €2 to obtain the identity W0z, — dz¢« = ®L({x)0z8x — Az s =
—070. The last integral in (4.70) is of order O(¢*||7|| x,), and the integral over 2
can be controlled using Proposition 3.16. We thus obtain |Z1] < C(ed + €¥3) |7l x. .
Moreover, we obviously have

I = < Clallx Vil . -

/ (Weii — $)dzidX

Finally, to control the velocity E(t), we need the following lemma:

Lemma4.16 Let J(t) = er ZR(R, Z,t)dX where R is defined in (4.10). Then there
exists a constant C > 0 such that

) < EPe
)

evs
(Hil, + 60, ) + € (e + 55 ). @71
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Proof We consider separately the various terms in the right-hand side of (4.10). Inte-
grating by parts, we find

3 l ~ . _ _l NOROx 77*3R<l~5
o= [ 2l oe)ox = = [ (T + 2 ox

In the right-hand side, we can restrict the integration to the region where p < €~ °!,
because the integral on the complement is of order (9(600||ﬁ|| Xs)~ Thus, expanding
the Biot-Savart formula as in Sect. 3.1, we obtain

1
=81 = 7 f (ﬁaR(Ln*) + U*BR(Lﬁ)) dX + O(eBellllx,) - (4.72)
T JR2

where L is the convolution operator (3.14). Since L is symmetric in L?*(R?) and
commutes with dg, the integral in (4.72) vanishes and we conclude that |J{| <

8~ epellill .
Similarly, we have

— ol _ TP LY
Jr .—/GZ{qﬁ,{}dX_/e{Z,qﬁ}{dX_ /eH_ERdX

Here again, up to a negligible error, we can assume that 7 is supported in the ball
p < €%, Proceeding as before, we thus find

1

b= = [ RonLipax + Oepelil,) = O(epeliy). @73
T JRr2

The remaining terms in (4.10) are easier to treat. In view of (4.8) we have
/ Z(£ij+eor)dx =0, and f Z(Forii + 2. 0277) dX = ~2.p10.
Qe Qe

where o (t) = O(€*°) by Lemma 4.1. Finally, using estimate (2.30), we obtain

1 V5
-/ 1Z| Rem(R, Z. 1)|dX < C(e n E—). (4.74)
5 Jo. 52

Combining (4.72), (4.73), and (4.74), we arrive at (4.71). Il

Corollary 4.17 There exists a constant C > 0 such that the velocity z defined by (4.9)
satisfies
P2l

= = (Nl + il ) + € (6 + ey;_l). (4.75)

We now conclude the estimate of the term fg. To simplify the writing, we assume
that [|7]| . < 1 and we use the shorthand notation (4.68). Also, since €2 <8177 we
observe that

€ s € V3

€+ 5 SR, where R (1) := e+ 5 (4.76)

@ Springer



334 T. Gallay, V. Sverak

Here y3 = y5—2/(1—0) < 3, so that y3 can be chosen arbitrary closetoys —2ifo >
0 is small enough. In view of (4.9) and (4.38) we have |Is| <Zo + |J|(|Ill + SIQ),
so that

€Be

[Is] < Cellila, DY+ € (555 il + Re ) (3Rellill . + 81171l x, D2)
8 (4.77)

< Cliilla, (DY + Re) (eBe + 8Re) < CeBellitllx. (DY* + Re) .
4.9 Conclusion of the proof

We are now in position to conclude the proof of Theorem 2.6, hence also of Theo-
rem 1.1. Let 7 be the unique solution of (2.33) with zero initial data. The associated
energy (2.34) satisfies the evolution equation

1 E() =L+ b+ L+ I+ Is+Is, (4.78)

where the various terms in the right-hand side are defined in Sect. 4.4 and estimated
in Sects. 4.6-4.8. Using (4.42), (4.49), (4.67), (4.55), (4.69), and (4.77), we find that,
as long as t < Taqvd ™7 and |7l x, < 1, there exist positive constants C, Cy, k such
that

14 Ec(t) < —kDe + Csllfillx, De + Clliill x, (Re + eBe DL/?)
Ce?

+— | WdX +Cu?,
) QY
where D is defined in (4.68), Re in (4.76), and p? := 2 + u? + u3 < CR2 by
Lemma 4.1. Since p, > ¢! in the region QZ , the integral term can be estimated as
follows
2 €2+201

€
— | WeirdXx <
8 Joy a

Wepsii*dX < € D,

where yx =2+ 201 —2/(1—0) > 0if o > 0 is small enough. So, if we assume that
C.lInllx, <« /4 and that € is sufficiently small, we obtain by Young’s inequality

K o K
1 Ec(t) < = De+ CRellillx, +Cp? < -7 D+ CR2.

Integrating that differential inequality over the time interval (0, ¢) and recalling that
E.(0) =0, we arrive at

tD t 2
Ee(t)—I—E/ ) 4y < c/ R 45 < cor 0.
4 Jo s 0 s

Finally, in view of (4.27), (4.8), and Lemma 4.1, we infer that

1715, < CoEe(®) + Cr(Berto(®)* + p1(1)?) < CR(1). (4.79)
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Inequality (4.79) holds as long as [|7(¢)]| x, <min(1, x/(4Cy)) and 1 < Tay6 . But
on that time interval we know that %, < €7372/(179) « 1 50 (4.79) is actually valid
for all ¢ € (0, Togy6~7) if € > 0 is small enough. Returning to the solution of (2.15)
with initial data (2.22), we obtain in view of (2.31), (4.79)

() =@ llx, = 8I7MIlx, < CERe(t) = C(ed+€7), 1€ (0, Tuayd™7),
which gives (2.40). This concludes the proof of Theorem 2.6. g

Remark 4.18 The correction Z(¢) to the vertical position of the vortex is small, and
produces negligible effects in our calculations. Indeed, it follows from (4.75) and
(4.79) that

FIZ(0)|
r

< (BeRe +9), hence  81Z(1)| S €27 (D(8+BeRe).  (4.80)
This gives in particular (2.41).
Proof of Theorem 1.1. Let wyiy (7, z, t) be the solution of the (axisymmetric) heat equa-

tion in  with initial data I" §( ). Using the same self-similar variables as in the
proof of Theorem 2.6, we define the rescaled vorticity nyj, by the relation

A e et el S WP

C()]in(r,Z_a3(t),t) = \/ﬁ ) \/W

where a3(t) = fot V(s)ds and V is given by (1.5). A direct calculation then shows
that 7y, satisfies the linear equation

10 Nlin — 5T (r ORNlin +$ 0z rlhn) = Lniin + 3R ( 1:’_711:R) s (4.82)
with initial data 7o, where the shift s(z) = z,(¢) — a3 (t) + 6z(¢) measures the differ-
ence between the vertical position of the vortex as computed in Theorem 2.6 and the
approximation given by the Kelvin-Saffman formula (1.5) without correction terms.
Since a3 = 7, it follows from (3.62) that § = €2 Zz + 8z Using (3.57) and (4.80), we
thus obtain

GFIS(I)I
sT

(’36 +ﬂée2+ea) < Cel 73, (4.83)

because €2 < 8177 so that 387! < €737 if 0 <o < 1/3 and € > 0 is small
enough.

The solution of (4.82) with initial data g can be estimated as in [34, Sect. 4.4],
with substantial simplifications. We use the approximate solution 7o(R, Z,t) :=
xo(4ep)no(R, Z), where yo is the cut-off function in (2.28). Decomposing njj, =
no + 7, we see that the correction 7 satisfies

19,7 — ;—F(r R+ § azn) = Li+ aR(%) +Ro, (4.84)
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where

N eﬁO €r /- N . N A~
Ro = Lo+ 9 ( ) —( 3 9 )—t8 .
0 no + Jdr ¥ eR +6F rdrNo + s dzno 110

To control the solution of (4.84), we introduce the space X, defined by the norm

i, = [ R 22araz.

Qe

In view of (4.83) we have ”ROHA? < Cel=39 and using energy estimates as in [34]

we deduce that the solution of (4.84) with zero initial data satisfies || 7]| 3 = Cel—30

for ¢t € (0, Thqvd~ 7). Since é& — X, by (4.17), (4.20), we arrive at the estimate
Imiin — nollx, = O(e'739) as € > 0.
Now the solution of (2.3) with initial data I" 8, ) satisfies, instead of (2.13),

L r—r(t) z—2:0)—8Z(1)

’ ’t = ’ ) t ) 485

wp(r.2.0) = (= = ) (4:85)
so combining (4.81), (4.85) we obtain

1

= / )wo (r. 2. t) — win(r, z — a3 (1), 1) ’ drdz

I'Jao

(4.86)

= In@) — min®ll L1 (0,

< Clin@) = min@llx, < Ce' 7,
because [|n(z) — nollx, < Ce and |[no — Minllx, < Cel 3, Using the notations of
(1.7), inequality (4.86) exactly means that ||wcor(-, )| < CTe!=3% This concludes
the proof of Theorem 1.1. g

Appendix A: Appendix to Sect. 3
A.1 Inverting the operator A

Following [32], we give here a short proof of Proposition 3.8. Assume that n > 2 and
feY,NZ orthatn=1and f € y; N Z. In both cases, we have f € Ker(A)l.
We want to show that there exists a unique n € Y, N Z (respectively, n € y; N Z if
n = 1) such that An = f.

To make things concrete, we suppose without loss of generality that f =
a(p) sin(n?d), for some function a : Ry — R. Our hypotheses imply that a is smooth,
that a(p) = O(p") as p — 0, and that ep2/4a(,o) grows at most polynomially as
0 — 00. We look for a solution of the form n = w(p) cos(nv’), where w : Ry — R
has to be determined. By (3.19), we have

1 1
2w 2
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The function ¢y is radially symmetric and satisfies d,¢0 = —p@(p), see (3.24) and
(A.12) below. It follows that

1
{¢0.n} = 3,00 s d9n = ne(p)w(p)sin(n?). (A.2)

On the other hand, as —AW =1, we have W = Q(p) cos(nd), where €2 is the unique
regular solution of the differential equation

1 2
—Q"(p) - P Q' (p) + 5 Q2(p) = w(p), p>0. (A.3)

Since 7 is radially symmetric and 9,179 = —(0/2)no = —p@(p)h(p), see (3.24), we
deduce

1
(W, mo} = ~Apm0 89 W = —np(Ph(p)R(p) sin(n?) (Ad)

In view of (A.1), (A.2), (A.4), the equation An = f is equivalent to the relation
(3.25), and using in addition (A.3) we obtain the differential equation (3.26) for the
stream function 2.

The main step in the proof is to show that (3.26) has a unique solution that is
regular at the origin and decays to zero at infinity. Here we distinguish two cases
according to the value of the angular Fourier mode 7.

1. If n > 2, the homogeneous equation (3.26) with a = 0 has two linearly indepen-
dent solutions ¥4, ¥_ which satisfy

n asp— 0, kp™™ asp—0,
P mww{p‘in g (A.5)

as p — 00,

P
Kp

n

v—(p) ~ !

as p — 00,

for some k > 0, see [32]. Here we use the crucial observation that (nz/pz) —h(p) >0
when n > 2, so that the differential operator in the left-hand side of (3.26) satisfies the
Maximum Principle. We deduce the following representation formula for the solution
of the inhomogeneous equation

a(r) > a(r)
Q(p) = 1ﬁ+(,0) —1// ()—d +v- (,0) — Yy (r)——dr, (A.6)
@(r) wo ne(r)

where wo = 2nk. It is then straightforward to verify that Q(p) = O(p") as p —> 0
and Q(p) = O(p™") as p — 0o. Moreover, if w is defined by (3.25), the function
n = w(p)cos(nvy) lies in ), N Z and satisfies An = f by construction. The details
can be found in [32, Lemma 4].

2. The situation is quite different when n = 1, because the lower order term 1/ p2 —
h(p) in (3.26) is no longer positive. In that case, it happens that the homogeneous
equation (3.26) with a = 0 has a solution ¥ (p) = p@(p) which satisfies ¥ (p) ~
p/(@m)as p— O0and ¥ (p) ~ 1/(2mp) as p — o0. In other words, the linear operator
in the left-hand side of (3.26) has a one-dimensional kernel, and for that reason we
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have to impose the solvability condition
o0
f €Y, c Ker(A)L, orequivalently / a(p)p>dp = 0. (A7)
0

To solve (3.26) for n = 1, we look for a solution of the form Q(p) = b(p)¥ (o),
which leads to a first-order differential equation for b(p). In view of (A.7), we thus
find

1 p 1 o0
b(p)=———+ 2dr = 7/ 2dr. A8
©) pw(p)2/o = er ), Aoy A9

Integrating (A.8) gives the representation formula

p
b(p) = by — / a(r)rz(]:(p) - f(r)) dr.  forsomeby R,
0
where

1 1
F(p) = 872 (log(ep2/4 —1) - oy 1) . Flp) = TR

We now substitute Q(p) = b(p)¥(p) into (3.25) with n = 1, and we choose the
constant by so that fooo w(p)p*dp = 0. This is always possible in a unique way, since

1
e P lpddp = — #£0.
0 b

o0 o0 1 o0
/ hp) () dp = / Mp)e(p*dp = /
0 0 T

To conclude the proof, it remains to verify that the function n = w(p) cos(#) con-
structed above belongs to J; N Z and satisfies An = f. These are straightforward
calculations, which can be omitted. O

A.2 First order calculations

We first establish the relations (3.37). As no € ) has unit mass we find, using (3.11),

(Pino) (R, Z) = /

R2

R+R’

R
no(R',ZdR' dZ' = 7 (A9)

hence {P1ng, no} = 1 dzno. On the other hand, since dgng = —(R/2)no and L is a
convolution operator, which therefore commutes with derivatives, we have

R R
(LPIM0)(R. Z) = 5 (Lno)(R. Z) + Lm0 (R. Z)

R
7 (Lno)(R. Z) — 3r (Lno)(R, Z).

Recalling that Lng = 2w ¢o, and that {¢g, no} = 0 because both ¢g, no are radially
symmetric, we thus obtain

! LP _[R ad _ 1 ad a
E{ 1710,710}—{5%— R¢O»UO} —§¢0 210 + {¢0. drno}
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1 R 1 1
= — 8 —[ , — } = — 8 — 8 .
2¢0 Z10 — 190 R 2¢o zno + 2( z$0)No

which concludes the proof of (3.37).

We next prove formula (3.39) for the vertical velocity. Assuming that Zo is given
by (3.39) for some v € R, we see that the right-hand side of (3.38) belongs to J}i =
Y NKer(A)?T if and only if

v 3 1
f (— dzno — = (dz¢o)no — —¢032770>Z dRdZ = 0. (A.10)
w2 \ 27 2 2

Since dzng = —(Z/2)no and fR2 er;o dRdZ =2, it is straightforward to verify that
(A.10) is equivalent to

v = n'/ ¢ono(3 — Z*)dRdZ = Z/ dono(6 — 1X %) dX, (A.11)
RZ 2 ]RZ
where X = (R, Z) and |X|* = R? 4+ Z2.

To evaluate the right-hand side of (A.11), we temporarily denote ¥y = 2w ¢g =
Lno, namely

1 8 2
X)=— [ 1 ( ) P4y X eR?,
Yo (X) 471/];%20% X 7] e €
This function satisfies — Ay = 2mn9 = % e~ 1XP/4 5o that
IX| | — g=p?/4 3 5
Yo(X) = ¥o(0) — fo po =: Yo(IX1, XeR", (A.12)
where
1 ¥4 VE
Yo(0) = log(8) — — | log(|Y])e dY = 2log(2) + —. (A.13)
4 R2 2
Using (A.12), (A.13) and integrating by parts, we easily find
1 . —p2/4
YonodX = = Yo(pe pdp
R2 2 Jo
. 52 3 YE
= ¥0(0) +/0 Fo(pre™ 1 dp = Zlog(2) + =,
and similarly

o
[, vomlXPax = apo) -+ [ g6+ 4)dp = Slog@ + 27 1.
R 0

Returning to (A.11), we conclude that
1/ Yono(6 — 1X1?) dX 3 og@) + Ly 4 1 (A.14)
V= — — = —lo - —. .
4 Jg YO0 4 OB T YYET Y
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A.3 Second order calculations

Our goal here is to prove Lemma 3.12. To establish (3.48), we consider separately
the various terms in (3.47). As 11 € Y has zero mean, we find as in (A.9) that P;n
is a constant, which can be disregarded. Moreover L P11 = %Lm + L( %m), hence
using the expression (3.41) of n; we find that

LPin = (R* = ZH)x1(p) +8RZx2(p) + x3(p) ,

where x1, x2, ... are functions of the radial variable p = (R% + Z2)1/2

is radially symmetric, we deduce that

. As no itself

{(Be = Py + LPin1 o} = RZxa(p) +8(R* — Z*) xs5(p). (A.15)

Next, using the expression (3.11) of P, we see that

1
(Pano)(R, Z) = — ((R—R’)2 n 3(2—2’)2) no(R', Z')dR' dZ'

16 ]RZ
_R2+322+1
T 16 16 27

. . . 2 2
and a similar calculation gives Q219 = 31% - % + %. Moreover,

(LPano)(R, Z)
— 1 8 2 N2 N , , , ,
~ 16 Rzlog(5>(2D +(Z-2)* = (R-R) )no(R,Z)dR az’,

where D? = (R—R’)*> + (Z—Z')?. Using the fact that 5 given by (3.32) is radially

symmetric, we easily obtain

1 2 2
E(LPMO)(R,Z) = x6(p) +(R" = Z%) x7(p) .

Altogether, we arrive at

Be Pano + LPano + Qamo, o} = ﬁRZnoJrRng(p). (A.16)

-
2 167

The remaining terms in (3.47) are easier to treat. In view of (3.39), (3.41), (3.42),
we have

1020 Be — 1 v
o} = a0z = {g1 - Rom}=- =0
{#1.m} T 9zm é1 o my=5-09zm
R v
= EE% — Ir¢0 + R p10(p) +8Z d11(p), Rnio(p) +86Z ?711(/0)} e dzn1

= RZ 00(0) +8(x10(0) + (R = Z)x11(0) ) +82RZ y12(p) (A17)
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It is also easy to verify that the terms (dz¢1)no + (3z¢o)n1 — 2R(dz¢po)no +
80r(Rng) are exactly of the same form. Finally, using again (3.41), (3.42), we ob-
tain

e — 1
4

R({o1.m0) + {00 m1) = R(P L azmo+ Zaso) +oRx1sm) . (A18)

If we now combine (A.15), (A.16), (A.17), (A.18), we arrive at (3.48). Il
A.4 Higher order calculations

The calculations carried out in Sects. 3.5 and 3.6 do not require new ideas, but a more
compact notation is often helpful. To prove Lemma 3.13 and similar statements, it
is important to understand how the decomposition (3.21) of the function space Y
behaves under the Poisson bracket. If we use polar coordinates R = pcos?d, Z =
psin?, we recall that ), is the subspace of ) spanned by functions of the form
a(p)cos(n¥) and b(p) sin(nv}). Since

1
(£ .8} = o Fozg — 02 fomg = - (3 Fos 0o Fpg).

we easily obtain the following result

LemmaA.l Ifa,b:R; — R are smooth functions and n,m € N, then

{a(p)cos(n®), b(p) cos(m®)} = cy1(p) sin((n—m)¥) + c12(p) sin((n+m)d),
{a(p)sin(n®), b(p)sin(m?)} = c21(p) sin((n—m)¥) + c2(p) sin((n+m)d),
{a(p)sin(nd) , b(p)cos(m®)} = c31(p) cos((n—m)¥) + c32(p) cos((n+m)v),

where c;j : Ry — R are smooth functions. In particular {YV,, Y} C YVn—m + Vnam
ifm <n.

It is also necessary to compute the homogeneous polynomials P;, Q; in (3.10) for
higher values of j than in Lemma 3.3. This is a cumbersome calculation that can be
done for instance using computer algebra. For j = 3 we find

1
Py=——(R+R)(R-R)+3(Z-2)),
32 ( ) (A.19)
05 = —~(R+ RY((R+ R)? = 6(Z — Z)?)
3 = 48 ,
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and the calculation for j =4 yields the more complicated expressions

15 21 3
Pi=——(Z-7Z)*+ = (R—R)>(Z-Z)? + — RR' (Z-Z7)?
4 1024( )+512( )7 ( )+16 ( )
17 1
31 89 1 (A.20)
= (Z-7Z)*— —— (R+R)*(Z-7Z)* + — RR' (Z—-Z7)?
04 2048( ) 1024( +R)( ) +256 ( )
19 2 p2 35 oo ne_ L opann
— — (R*-R — RR'(R+R)?>— — R*R'%.
6144( ) * 1536 (R+R) 128

The proof of Lemma 3.13 is similar to that of Lemma 3.12, and the details can
be omitted. We use the expressions (3.41), (3.50) of the vorticities 71, 12, the for-
mulas (3.42), (3.51) for the stream functions ¢1, ¢, and the definition (3.15) of
the Biot-Savart operators, which involve the polynomials (3.11) and (A.19). Using
Lemma A.1, it is straightforward to verify that the quantity defined in (3.55) satisfies
R3 € V1 + V3 and takes the form

Ra = 1(p)sin(®) + 12(p) sin(39) +8(x3(p) c0s(®) + xa(p) cos(39) ) + OS2,

where x1, x2, X3, x4 are radially symmetric functions which may depend linearly on
Be. To arrive at (3.56), it remains to verify that R 3 does not contain any term involving
:33- Indeed, according to (3.11), (3.50), we have

Be pyy = &/ (R+R)m(R',Z)dR' dZ' =
2 4 R2

BeR
47

/ ma(R', Z')dR'dZ’,
R2

so that the first term in (3.55) does not contain ﬂez. The only other terms that we have
to check are

Be —1+2v

ro - i _
{p1.m} - onaznz = {471 o

R, 712} ;

but using the expressions (3.42), (3.50) we immediately see that the right-hand side
does not contain any factor /362. Altogether we arrive at (3.56). g
Appendix B: Appendix to Sect. 4

B.1 Properties of the energy functional

Proof of Lemma 4.4 We use the first expression of El‘i“[n] in (4.22) and the represen-

tation formula (2.20) for the stream function ¢. Since supp(n) C B¢ by assumption,
we have

. 1
Efm[n] = E/B /B K (R,Z; R, Z'Yn(R, Z)n(R', Z")dX dX’, (B.1)
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where the integral kernel K is defined in (3.8). As R+ Z? < €721 and R?*+77? <
€729 the argument of F in (3.8) is not larger than Ce>~2°! for some C > 0. Using
the asymptotic expansion of F'(s) as s — 0 and proceeding as in Sect. 3.1, we easily
obtain the decomposition

8 ~
Ke(R,Z;R',Z') = Bc —2+1log -+ KR, Z: R.,Z), (B.2)

where Bc =log(1/€) and D?> = (R—R')? + (Z—Z')%. The remainder K. satisfies the
estimate

_ 8
IRe(R.Z: R, Z))| < Ce(IR|+ |R’|)(,3€ 41+ log B) +O(Be>1).  (B3)

If we insert the decomposition (B.2) into (B.1), the contributions of B, — 2 and
log(8/D) give exactly the first two terms in the right-hand side of (4.24), in view
of (4.23). Moreover, taking into account estimate (B.3) where €27201 < ¢, we see
that the contributions of K. to the kinetic energy (B.1) are of order (9(6,3E I 77||EY€), as
stated in (4.24).

Proof of Proposition 4.6 Given n € X,, we decompose n = nj + 12 where n; = nlp,
and 1p, is the indicator function of the ball B, = {(R, Z) € Q; R?+ 7% < e 20y,
We thus have

1 1 1
Ec[n] = E/Q Wen%dXvLE/Q We ﬂ%dX—E/Q (o1 +¢2)(m +n2)dX, (B.4)

where ¢; = BS¢[n;] for j =1,2. We claim that

1 .
3 | @) in+m)ax = R0+ O InE). @)

€

so that

1
Eclm = Ecm1+ Slnal%, +O(€lnl%,) . (B.6)

—2r
where the kernel K. is given by (3.8). Using the crude estimate | F (s)| < C(I logs| +
1), we easily obtain

To prove (B.5), we recall that ¢; (R, Z) = L er Ke(R,Z;R',Znj(R',Z")dX’,

|Ke(R,Z; R', Z))| < C(1+€|R|)“(1+€|R')* (Be + [log D| + 1), (B.7)

for some a > 1/2. It follows in particular that

(R, Z)] < C(Be +1)A+p)Inllx., p=VR+22,

for some b > 1/2, and using Holder’s inequality we deduce

/Q lp(R, Z)|In2(R, Z)|dX
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1/2
SC(ﬁe+1)|Inllfy5</ (1+p)2bW6(R,Z>—1dX> :
B¢

where the last integral is O(€®°) in view of (4.17). In a similar way we have

1/2
$2(R, Z)| < C(Be +1)(1 + /’)b(/B(.“ +p)PIn(R’, Z/)|2dX/)

= O(e®Inlla.) (1 +p),

so that fggqﬁzm dx = O(e°°||n||gvé). Altogether we arrive at (B.5).
Now, since 7 is supported in the ball B, it follows from (4.18) and Lemma 4.4
that

Imiz, = lInil%, + O™ Inl%,).
Be—2 . kin 2 (B.8)
= 5 o+ Eg"m1+ O(eBelinlly, )

E&[m]
Moreover we know from Proposition 4.5 that
Im %, < CaEolml+Cs(ig+ i + i3) » (B.9)

where [ig, i1, iz are the moments of 7, which satisfy /i; = u; + O(e*Inllx,)-
Combining both estimates in (B.8) we obtain

Be—2 _
—— a5 +0(e"Inl%,).

1 . 1 .
Eolm] = S lm %, — E§"0m] < Slml%, — E&Im]+ =~

namely Eo[n] < Eelm]+ E22 32 + O(en Inl1%, )- Using in addition (B.9) we de-
duce

Iml%, < Imli, + O Inl%,)
< CaEclml+ C(Befig+ i1 + 1) + O(¢" Inll%,) -
Finally, invoking (B.6) and recalling that C4 > 2, we find
Ik, < Imll%, + %unzuﬁé < CaEclnl + C(Beiig+ i1 + i13) + O(¢" %)
and estimate (4.27) follows, since ji; = u; + (’)(eoollnllxg) for j=0,1,2. O
B.2 Diffusive terms in the energy functional

We justify here the expression (4.32) of the quantity 4. Integrating by parts as in
[35], we find

Wi L7dX = —/ W6|Vﬁ|2dX—/ (VW€~Vﬁ)ﬁdX—/ Vei?dX
Qe Qe Qe Qe
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where Ve = 1(Rdg + Zdz)We — § We. Similarly,

6/ WeiidrgdX =€ | We(1+€R); 0rZdX = _2/
Q.

dr(We(1+€R))Z*dX .
Qe

Qe

On the other hand, integrating by parts and using the relation (2.19) between ¢ and
1, we obtain

- - - Ird 1 -
f ¢<£ﬁ+eaR;)dX=/ ﬁ(A¢— 16+Re(ie>dx_§/ 7i(Rog + Z07)pdX

€

1 s
= _/ ﬁ2(1+eR)dX—§f ii(Rig + Zdz)$dX .
Qe Qe

It remains to treat the last term in the right-hand side. Here again, we use the relation
(2.19) and integrate by parts to obtain

1/ i(Rig + Z07)$dX = Ef RIVOI®
2 Jo, MEORT 202 T 4o A¥eR?

Altogether we arrive at (4.32), with V. = V. — (1 +€R).
B.3 Coercivity of the diffusive quadratic form

This section is devoted to the proof of Proposition 4.15. Given € > 0 sufficiently
small, we take a smooth partition of unity of the form 1 = X32 + x f, where x3, x4 are
radially symmetric and x3 = 1 when p < %e“’l, x3 =0 when p > €77, We can also
assume that |V x3| 4+ |V x4| < Ce°!. Given n as in the statement of Proposition 4.15,
we define 73 = x31, N4 = x41. We thus have the decompositions 1> = n% + ni,
nVn =n3Vn3 +n4Vns, and

Va2 = Vs> + 1Viul? = IV + [Vxal?)n?. (B.10)

As a consequence, the quadratic form Q.[n] can be decomposed as

Qclnl = Qclnsl + Qe[n4]—/ We(IVx3l? + [Vxal?)n* dX . (B.11)

Qe

The last term in (B.11) is bounded by Ce®p ||%( and is thus negligible when € < 1.
So our main task is to estimate from below the terms QOcln3]l and Qc[n4].

We first consider the function 13 which is supported in the region where p < €™,
We recall that the weight W, in (4.16) satisfies the estimates (4.18), which read

IVWe(R, Z) — VA(p)| + [We(R, Z) — A(p)| < Ce" A(p),
when p <e !, (B.12)
where y; > 0. We easily deduce that

Qcln3l = Qolnsl — Ce” (I V3l + lomsliz, + Im3l%,) (B.13)
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where Qg is the limiting quadratic form (4.62). On the other hand, we know from
Proposition 4.14 that

CsQolnsl = [IVnall%, + llomsliy, + Imal%, — Co(ig + A +23) . (B.14)

where fio, (L1, flo are the moments of 53, which satisfy f1; = u; + O(e°°||n||;(g).
Combining (B.13), (B.14) and using (B.12) once again, we arrive at

IVnsli%, + lomsl%, + Inall%, < 2CsQclnsl+ C (g + it +i3).  (B.15)

We next consider the function 4, which is nonzero only if p > %e“’l . Our starting
point is the lower bound

VW |?
3We

1
Octnal = y [ wavniPax+ [ (v EEeb)pax.
Q. Q.

which is obtained from (4.61) by applying Young’s inequality to the middle term in
the right-hand side. Using the expression (4.16) of the weight function, as well as the
estimates (B.12) in the inner region €2, it is not difficult to verify that

Cp>—C in QL,
-C in Q7,
Cp* in Q,

Ve _IVWel>
We  3W2

for some positive constants C, C. 1t follows that

1 -
Ocni) = IVl +C [ Weptitax = [ wentax.  ®6)
vay

/
€

If we now combine (B.15) and (B.16), we obtain

IV, + IV naliy, + linll%, + /Q o Ve Py dX

< Cio(Qelml + Qclml) +Cu (i + | Weadx),  (B.17)

1
QG

for some positive constants Cg, C11, where 1> = ,&(2) + /1% + /1%. Finally, using again
(B.10) as well as (B.11), and recalling that fi; = u; + O(eoo||17||;(€), we deduce
(4.65) from (B.17). O
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