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Abstract
For the incompressible Navier-Stokes equations in R

3 with low viscosity ν > 0, we
consider the Cauchy problem with initial vorticity ω0 that represents an infinitely thin
vortex filament of arbitrary given strength � supported on a circle. The vorticity field
ω(x, t) of the solution is smooth at any positive time and corresponds to a vortex ring
of thickness

√
νt that is translated along its symmetry axis due to self-induction, an

effect anticipated by Helmholtz in 1858 and quantified by Kelvin in 1867. For small
viscosities, we show that ω(x, t) is well-approximated on a large time interval by
ωlin(x − a(t), t), where ωlin(·, t) = exp(νt�)ω0 is the solution of the heat equation
with initial data ω0, and ȧ(t) is the instantaneous velocity given by Kelvin’s formula.
This gives a rigorous justification of the binormal motion for circular vortex filaments
in weakly viscous fluids. The proof relies on the construction of a precise approxi-
mate solution, using a perturbative expansion in self-similar variables. To verify the
stability of this approximation, one needs to rule out potential instabilities coming
from very large advection terms in the linearized operator. This is done by adapt-
ing V. I. Arnold’s geometric stability methods developed in the inviscid case ν = 0
to the slightly viscous situation. It turns out that although the geometric structures
behind Arnold’s approach are no longer preserved by the equation for ν > 0, the rel-
evant quadratic forms behave well on larger subspaces than those originally used in
Arnold’s theory and interact favorably with the viscous terms.
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1 Introduction andmain result

We consider the Cauchy problem for the 3d incompressible Navier-Stokes equations
in the vorticity form

∂tω+ u · ∇ω−ω · ∇u = ν�ω in R
3 × (0,∞) , (1.1)

ω|t=0 = ω0 in R
3 , (1.2)

where we use the notation ω(x, t) for the vorticity of the fluid, and the velocity u(x, t)
is given by the Biot-Savart law u(x, t)= (4π)−1

∫
R3 ω(y, t)∧ (x − y) |x − y|−3 dy.

Our focus is on the special case where the initial vorticity ω0 = �δC is an idealized
vortex filament given by a current1 of strength � concentrated on an oriented cir-
cle C ⊂ R

3. More precisely, ω0 is the vector-valued measure on R
3 defined by the

identity

〈ω0 , ϕ〉 = �

3∑

i=1

∫

C
ϕi dxi , (1.3)

which is assumed to hold for any continuous test function ϕ = (ϕ1, ϕ2, ϕ3). In the
well-known analogy between fluid mechanics and electromagnetism, ω0 can be
thought of as an electric current of intensity � flowing through an infinitely thin
wire represented by the circle C; the direction of the current is then given by the ori-
entation of the circle and the sign of �. Vortex filaments were already considered in
the classical 1858 paper of Helmholtz [41] which deals with the inviscid case ν = 0
corresponding to the Euler equation. Helmholtz argued that a circular vortex filament
of zero thickness would move with infinite speed along its symmetry axis. In 1867
Kelvin [47] established the following formula for the speed of a vortex ring of small
but finite thickness d > 0 and radius r0 	 d

V ≈ �

4πr0

(
log

8r0
d

−C
)
, (1.4)

where C ∈R is a dimensionless constant that depends on the distribution of vorticity
inside a cross section of the ring. If the distribution is uniform, which is probably the
assumption made by Kelvin, the relevant value is C = 1

4 , see [46, §163].
In the viscous case ν > 0, the solution originating from the singular filament

ω0 = �δC becomes smooth for any positive time t > 0 and is expected to repre-
sent a viscous vortex ring of thickness proportional to

√
νt , as long as that quantity

is small compared to the radius r0 of the ring, see Fig. 1. Based on Kelvin’s formula
one anticipates that the vortex ring will move at the (time-dependent) speed (1.4) with
d = √

νt and C corresponding to a Gaussian distribution of vorticity inside the core.
To the best of our knowledge, the relevant value of the constant C was first deter-
mined by Saffman in [56]. The computation gives C = 3

2 log(2)+ 1
2 (1 − γE), where

1Here the term current can be understood in its heuristic meaning but also in the technical meaning of the
geometric measure theory, such as in [25].
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Fig. 1 An illustration our main result. Starting from a vortex filament supported on an oriented circle C,
the solution of the Navier-Stokes equation evolves into a viscous vortex ring of thickness proportional to√
νt which moves along the symmetry axis at a speed V given by the Kelvin-Saffman formula (1.5). In the

right picture, the vortex lines are circles that fill the depicted solid torus, whereas the curly arrows denote
the trajectories of the fluid particles

γE ≈ 0.5772... is Euler’s constant.2 We will refer to the formula

V (t) = �

4πr0

(

log
8r0√
νt

− 3

2
log 2 − 1

2
(1 − γE)

)

(1.5)

as the Kelvin-Saffman formula for the speed of a viscous vortex ring.
When the initial circle C is parametrized by (r0 cos θ, r0 sin θ,0) for θ ∈ [0,2π],

with the orientation in the direction of increasing θ , the translational motion will be
in the positive direction along the x3-axis if � > 0.

It is proved in [34] that the Cauchy problem (1.1), (1.2) with ω0 = �δC has a
unique solution in natural classes of axisymmetric fields. The main result of the
present paper, Theorem 1.1 below, describes the precise behavior of that solution in
the low viscosity regime where the circulation Reynolds number Re := �/ν is large.
Our description is valid on a time interval whose length is intermediate between the
advection time and the diffusion time, defined respectively as

Tadv = r2
0

�
, Tdif = r2

0

ν
. (1.6)

Note that Tadv � Tdif when Re 	 1. The leading term in our approximation is exactly
the one suggested by the Kelvin-Saffman formula together with the simplest diffusion
heuristics: The ring diffuses according to the linear heat equation, and translates with
speed (1.5) along its symmetry axis. Denoting by ωlin(x, t) the solution of the heat
equation ∂tω = ν�ω with initial condition ω|t=0 = ω0 = �δC, and defining ‖η‖ =
‖η/r‖L1(R3), where r = r(x) is the distance from x to the symmetry axis, we can
state our main result as follows.

Theorem 1.1 There exist dimensionless constants K > 0, R0 > 0, and σ ∈ (0, 1
3 )

such that, for all � > 0, all r0 > 0, and all ν > 0 satisfying Re := �/ν ≥ R0, the
following holds. If ω0 = � δC where C is an oriented circle of radius r0, the unique

2Fraenkel’s paper [27] contains formulae that can be used to obtain the same result. Tung and Ting in [57]
also give a formula for C of a similar nature, which however needs a small correction.
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axisymmetric solution ω of the Cauchy problem (1.1), (1.2) established in [34] can
be expressed for t ∈ (0, Tadv Reσ ) as

ω(x, t) = ωlin(x − a(t), t) + ωcor(x, t) ,

with ‖ωcor(· , t)‖ ≤ K �

(√
νt

r0

)1−3σ

, (1.7)

where a(t) describes the translation of the ring along its symmetry axis according
to the Kelvin-Saffman formula (1.5). Specifically, if C = {(r0 cos θ, r0 sin θ,0) ; θ ∈
[0,2π]} is oriented positively, one has a(t)= (0,0, a3(t)) where a3(t)=

∫ t
0 V (s)ds

and V is given by (1.5).

An extended version of our result, including a more precise approximate solution
and a much stronger control of the correction term, is formulated as Theorem 2.6
below, after the necessary notation has been introduced in Sect. 2. In particular, the
exponent 1 − 3σ in (1.7) can be improved to 1 if we take into account higher-order
corrections to the Kelvin-Saffman formula.

In Theorem 1.1, the constants K and R0 are large, whereas the exponent σ > 0
is taken small. We conjecture that an approximation result of the form (1.7) remains
valid on longer time scales of order TadvReσ

′
with σ ′ close to 1, but we have no

proof so far. In view of (1.4), the advection time Tadv can be interpreted as the time
needed for a vortex ring of circulation � and small (but not infinitesimal) aspect ratio
d/r0 to travel over a distance comparable to its radius r0. In contrast, the diffusion
time Tdif = TadvRe is the time at which the diffusion length

√
νt becomes equal to

the radius r0, so that the vortex ring structure is essentially lost. The assumption that
Re 	 1 means that the vortex ring can travel along its symmetry axis over a very long
distance, compared to its radius r0, before being destroyed by diffusion. In particular,
on the time scale T = Tadv Reσ where Theorem 1.1 provides a rigorous control we
find, using (1.5) and (1.6),

|a(T )| =
∫ T

0
V (t)dt = r0

4π
Reσ

(
log
(
Re

1−σ
2
)+C′) ,

for some constantC′. Obviously the quantity in the right-hand side grows boundlessly
as Re → +∞, even in the limiting case where σ = 0 and T = Tadv.

It is instructive to compare the situation for vortex rings with the case of a rec-
tilinear filament, where the vorticity is initially concentrated on a straight line � in
R

3. Let us denote this initial vorticity field by ω0 = �δ�. In that case the solution of
the full vorticity equation is given by ω( · , t)= �eνt�δ�, because the nonlinear terms
vanish identically due to symmetries when evaluated on the solution of the heat equa-
tion ∂tω = ν�ω. Although the evolution of the velocity and the vorticity fields does
not look very dramatic, the fluid particles in the vicinity of � do move at very large
speeds when νt is small, and the inertial forces in the fluid are therefore significant.
However, these forces are exactly balanced by the pressure gradient.

When the rectilinear filament is bent into a vortex ring (as already considered
in Helmholtz’s 1858 paper), the inertial forces are no longer in balance and the
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ring has to move. To achieve a relatively smooth motion, the bent vortex has to be
“well-prepared” so that the inertial forces generated by the fast-moving fluid particles
are still mostly canceled and do not generate fast oscillations. The initial condition
ω0 = �δC has the advantage of letting the equation to adjust the vorticity field into
a well-prepared state without trying to achieve this “by hand”. Quite remarkably,
this adjustment is made in exactly such a way that the oscillations are avoided.3 The
largest inertial forces still cancel and the situation remains somewhat close to the rec-
tilinear case with only two significant differences: (a) some motion of the ring along
its axis of rotational symmetry is needed to balance the forces, but the speed of this
motion is much lower than the speed of the fast particles in the fluid; (b) once the
thickness of the ring becomes comparable to its radius, new effects (not discussed in
this work) appear.

Theorem 2.6 can be compared with a result by Brunelli and Marchioro [9], where
the authors consider general axisymmetric vorticities that are initially supported in a
torus of major radius r0 > 0 and minor radius 0< ρ0 � r0. Under certain technical
assumptions, they show that the solution of the Navier-Stokes equations remains es-
sentially concentrated in a thin torus which moves along the symmetry axis according
to Kelvin’s law. If the vortex strength � is kept fixed, the solution is under control on
a time interval of length T log(r0/ρ0)

−1, which therefore shrinks to zero as ρ0 → 0.
Also, the authors assume that the viscosity satisfies νT ≤ ρ2

0 (up to a logarithmic cor-
rection), so that the viscous effects can be treated perturbatively. In the same spirit,
the case of several vortex rings with a common symmetry axis was recently consid-
ered in [11], see also [7, 12] for similar results in the inviscid case. Our Theorem 2.6
is restricted to specific initial data, which correspond to ρ0 = 0, but it provides a more
precise control of the solution on a much longer time scale, and the diffusive effects
are not treated perturbatively.

1.1 Main ideas of the proof of Theorem 1.1

Our analysis starts with the construction of a precise approximation of the solution
ω(x, t). This is achieved by writing the solution in suitable self-similar coordinates
that capture well the singular behavior of the solution at t = 0 through explicit rescal-
ings of a smooth “profile” η that can be thought of as a perturbation of a suitable
Gaussian η0. The perturbed profile η is expressed as an asymptotic series in the time-
dependent parameter ε = √

νt/r̄ , with r̄ = r̄(t) denoting the instantaneous radius of
the ring. To achieve a precision that is sufficient for our purposes, we need an expan-
sion up to the fourth order: η = η0 + εη1 + ε2η2 + ε3η3 + ε4η4 + ηcor. The profiles
ηj with j ≥ 1 are obtained by inverting operators containing the small parameter
δ = 1/Re = ν/�, and in that sense we really deal with a two-parameter expansion.
As far as we know, this is somewhat different from other expansions in the literature,
such as [14, 31, 56]. A one-parameter formal expansion in ε would treat δ as ∼ ε2,
in view of the relation r̄2ε2 = δ � t . Keeping both parameters makes it easier to cover
the regimes when ε2 and δ are not really comparable, as is the case for very small and
very large times. For the sake of completeness, we mention that the vorticity profiles

3In the related situation of interacting vortices in R
2, this was already observed in [32].
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ηj for j ≥ 1 can also depend on log ε. That phenomenon is well known, and the lead-
ing term in the speed of the ring is precisely related to choosing a moving coordinate
system in which the terms with log ε in η1 are eliminated.

The main difficulty in the proof of Theorem 1.1, however, is not in the computation
of an approximate solution, but in showing that the true solution remains close to this
approximation on a large time interval. This requires fairly strong stability properties
for the linearization of the vorticity equation at the approximate solution, which is
very singular in the low viscosity regime. When the initial condition corresponds
to a finite number of parallel rectilinear vortices, a stability analysis was carried on
in [32] by using suitable weighted L2 spaces adapted to the specific features of the
rectilinear vortices with Gaussian profiles. In the vortex ring case the nonlinearity of
the equations starts affecting the formal expansions earlier and it is unclear whether
the setup in [32] can be used to show that the vortex ring will not disintegrate on
time-scales approaching zero as ν→ 0. A recent important work [6] extends some of
the 2d methods for proving stability to a relevant 3d situation, but the length of the
time interval over which the solution is under control may approach 0 as ν tends to
zero.

In physical flows and numerical experiments one observes a remarkable degree
of stability of vortex rings as well as signs of instabilities with respect to non-
axisymmetric perturbations, see for example [53, 59]. At a rigorous mathematical
level the stability issues have not been well understood. In fact, when �/ν is not
small, not only the stability, but even the uniqueness of the solutions of the Cauchy
problem above with ω0 = � δC (and also with ω0 = � δ�) is open in classes of solu-
tions that do not share the symmetry of the initial data.

In the 1960s, V. I. Arnold suggested a variational method for proving stability of
steady solutions to Euler’s equation based on a geometric insight that can be summa-
rized as follows, using the Hamiltonian setup of [50]:

(a) The incompressible Euler equation can be viewed as a Poisson system with a
Hamiltonian function given by the usual kinetic energy.

(b) The steady states are critical points of the energy on the symplectic leaves.
The latter coincide with the coadjoint orbits, called just orbits in what follows, of
the group of the volume-preserving diffeomorphisms of the fluid domain acting by
push-forward on the vorticity fields.

(c) When the critical point is a local maximum or a local minimum on an orbit,
the corresponding steady state should be stable.

These ideas fit into a broader family of methods used for proving stability of so-
lutions of Hamiltonian systems by invoking extremality properties of a conserved
quantity under constraints given by other conserved quantities. For example, a circu-
lar planetary orbit in the three-dimensional Kepler problem is stable because it min-
imizes energy for a given angular momentum.4 In the applications to vortex rings, it
is natural to restrict the analysis to axisymmetric flows with no swirl, which means
that the velocity field is invariant under rotations about a symmetry axis and under
reflection across any plane containing that axis.

Arnold’s method has found many applications to Euler flows in 2d (see, for exam-
ple, [4]), and has also been invoked in the work of Benjamin [8] on inviscid vortex

4It is well-known that this is no longer the case in dimension four and higher [40].
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rings that is directly relevant for our purposes here. Although some arguments in [8]
may not be fully rigorous, they provide important suggestions for investigating sta-
bility of inviscid vortex rings in the class of axisymmetric solutions. In a different
direction, the conservation of energy, impulse, and vortex strength has been used to
control the evolution of a general class of concentrated solutions of the Euler equa-
tions describing vortex rings, see for example [7, 12].

There is voluminous literature on the stationary vortex ring solutions of the Euler
equation, starting with the explicit solution of Hill [43], see e.g. [1, 2, 5, 10, 15–18,
23, 27–30, 54, 55]. Many of these works rely in one way or another on variational
aspects of the underlying PDEs that have connections to the work of Arnold and Ben-
jamin, albeit in an indirect way. Roughly speaking, if we compare Arnold’s setup to
the maximization of a function f (x) under constraints gj (x)= cj , one can compare
some of the variational approaches in the references above to searching for critical
points of f (x)−λ1g1(x)−· · ·−λmgm(x) when the Lagrange multipliers λ1, . . . , λm
are given. Readers interested in related links can find more details in [35].

In our asymptotic expansions of the solutions of (1.1), (1.2) inviscid vortex ring
solutions can also be discerned. For each fixed time t > 0 the third-order expansion in
our parameter ε = √

νt/r̄ is a good approximation of an inviscid vortex ring, at least
in the limiting case where our second parameter δ = ν/� is taken equal to zero. A
part of our stability analysis can be thus understood in terms of the stability properties
of this ring, see Remark 2.3 and Sect. 3.8 for more details.

If one wishes to apply Arnold’s ideas to the solutions of (1.1), (1.2), there appears
to be a non-trivial obstacle: The viscous flows do not preserve the geometric struc-
tures that are at the basis of Arnold’s considerations and the influence of the viscosity
is too large to treat the viscous terms perturbatively. At first this may seem to be a
serious problem: If the preservation of the orbits and the Hamiltonian nature of the
equations are violated beyond the reach of the perturbative approach (such as [9, 11]),
can the geometric structure relying on maximization of the energy on symplectic
leaves be helpful? In our previous work [35] we showed, in a much simpler situation,
that the answer to this question can be positive. It turns out that the quadratic forms
coming up in Arnold’s stability analysis, although originally envisaged as quadratic
forms on the tangent spaces to the orbits, are often well-behaved on much larger sub-
spaces. This point can still be conceptually explained by the geometry of the Euler
equation. What we find more surprising is that Arnold’s forms also have favorable
behavior with respect to the dissipative term generated by the viscosity. We can show
this by direct calculation, but we do not have a good conceptual explanation of this
fortuitous circumstance. In the paper [35] we showed that the above ideas can be used
to prove the stability of the rectilinear vortex solution (in self-similar variables) with
respect to perturbations for which the vorticity field stays parallel to the original vor-
tex line. This result has been established previously by a different method [37]. The
new proof in [35] can be thought of as a proof of concept that the ideas of Arnold can
be applied even in the presence of viscosity. The application to vortex rings presented
here is more complicated, but we are not aware of any simpler approach in that case.

To conclude this section, we mention a recent important work by Dávila, Del Pino,
Musso, and Wei [22], where the authors rigorously establish “leapfrogging” of invis-
cid vortex rings. The construction uses “gluing methods” that were previously devel-
oped in [21] to study the interaction of vortices in the plane. The approach shares
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similarities with ours, as it relies on the construction of accurate approximate solu-
tions and their stability analysis. The stability part also uses an Arnold-type energy
functional, although the connection to Arnold’s geometric viewpoint is not explicit.
In the inviscid case, the expansion parameter ε > 0 does not need to change during
the motion, and the solution is controlled on a time interval of size T/| log ε|. This
is shorter than in Theorem 1.1, but our result is restricted to a single vortex ring, and
uses viscous effects. One expects the viscosity to have a stabilizing role, but its inter-
action with the geometric structures of Arnold requires a careful analysis. One needs
to show that the solutions will stay “coherent” for a sufficiently long time and the
viscous effects will not be enhanced too much by the high velocities inside and near
the ring.

Another description of the leapfrogging motion of vortex rings, in a different pa-
rameter regime, can be found in [13].

1.2 Comments on the local induction approximation for general filaments

The problem studied in this paper can be considered as a special case of the viscous
version of the local induction approximation conjecture. In the setup considered here
the conjecture could be formulated as follows: if we replace the circle C be a general
smooth closed curve and consider the Cauchy problem (1.1), (1.2) with ω0 = �δC,
the motion of the filament C should still be determined essentially by two effects: the
diffusion, which transforms the filament into a vortex tube of thickness d(t)≈ √

νt

at time t , and the advection by the self-induced velocity field. The latter is described
by a geometric equation that represents an extension of Kelvin’s formula to general
smooth curves, and was derived by Da Rios [20] in 1906:

V ≈
(
�

4πr
log

8r

d

)

b . (1.8)

Here V is the vector representing the local velocity of the filament, b denotes the
local binormal vector, r is the local radius of the curvature, and d denotes the local
thickness of the filament. (All these quantities may be time- and position-dependent.)
In the limit ν→ 0 the approximation should be valid until the geometric evolution of
the curve by the binormal flow leads to a self-intersection. For general initial curves C
the time of the first self-intersection may be approaching zero as ν approaches zero.
The first significant step towards this general case, a local-in time well-posedness re-
sult for a fixed ν > 0, was obtained in [6]. Some formal computations related to the
conjecture are presented in [14] and we also refer the reader to the important condi-
tional result in [44]. Our result can be viewed as a proof of the viscous formulation
of the conjecture in the special case where the curve C is a circle.

For a general smooth curve C and a sufficiently small Reynolds number �/ν, the
Cauchy problem (1.1), (1.2) is globally well-posed as first shown in [39] by a pertur-
bation analysis, see also [45] for a more general result in the same spirit. Accurate
calculations in the recent noteworthy preprint [26] suggest that even in these pertur-
bative regimes the motion by the local induction approximation can still be discerned,
although its effect is small and the distance traveled by the ring due to the velocity
field (1.8) seems to be quite shorter than its thickness.
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The general case of the local induction approximation conjecture for the setup con-
sidered in this paper seems to be difficult. In fact, it is unclear whether the strongest
version of the conjecture is valid even for small perturbations of the circle, as the
perturbed filaments may perhaps become unstable to general 3d perturbations before
possible self-intersections. For example, the instabilities studied in [53, 59] may be
relevant.

2 Preliminaries and sketch of the proof

In this section we introduce the notation that is necessary to formulate our result
in its stronger form, and we give a pretty detailed sketch of the overall proof. The
construction of the approximate solution will be performed in Sect. 3, and the stability
analysis in Sect. 4. Technical calculations are postponed to Appendix A and B.

2.1 Formulation of the problem in cylindrical coordinates

In a suitable Cartesian coordinate system, the circle of radius r0 > 0 which represents
the support of the initial vorticity (1.3) is given by C = {(r0 cos θ, r0 sin θ,0) ; θ ∈
[0,2π]}. Due to the symmetries of the problem, it is natural to introduce the standard
cylindrical coordinates (r, θ, z) defined by x1 = r cos θ , x2 = r sin θ , x3 = z and to
restrict our attention to velocity and vorticity fields of the form

u(x, t) = ur(r, z, t)er + uz(r, z, t)ez , ω(x, t) = ωθ(r, z, t)eθ , (2.1)

where er , eθ , ez denote unit vectors in the radial, azimuthal, and vertical directions,
respectively. In the usual terminology, we thus consider axisymmetric flows with no
swirl, see [49]. Due to the incompressibility condition divu := r−1∂r (rur)+∂z(uz)=
0, the velocity components ur,uz can be expressed in terms of the Stokes stream
function ψ

ur = −1

r
∂zψ , uz = 1

r
∂rψ . (2.2)

With this notation the vorticity formulation of the Navier-Stokes equation (1.1) be-
comes

∂tωθ +
{
ψ,
ωθ

r

}
= ν

[(
∂2
r + ∂2

z )ωθ + ∂r ωθ
r

]
, (2.3)

where {·, ·} is the Poisson bracket defined by {ψ,φ} = ∂rψ ∂zφ − ∂zψ ∂rφ. Equa-
tion (2.3) is to be solved in the domain �= {(r, z) ∈ R

2 | r > 0}. The smoothness of
the fields in the original variables imposes the “boundary conditions” ωθ(r, z, t) =
rζ(r, z, t) and ψ(r, z, t)= r2�(r, z, t) near r = 0, where ζ and � can be extended to
smooth functions on R

2 ×R+ that are even functions of r .
The Stokes stream function can be represented in terms of the vorticity ωθ =

∂zur − ∂ruz by the Biot-Savart law

ψ(r, z) = 1

2π

∫

�

√
rr̄ F

(
(r − r̄)2 + (z− z̄)2

rr̄

)

ωθ(r̄, z̄)dr̄ dz̄ , (2.4)
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where F : (0,∞)→ R is defined by

F(s) =
∫ π/2

0

1 − 2 sin2ψ
√

sin2ψ + s/4
dψ , s > 0 . (2.5)

Formula (2.4) provides a solution to the equation

curl curl

(
ψ

r
eθ

)

= ωθ eθ or, equivalently, − ∂r
(∂rψ

r

)
− ∂2

z ψ

r
= ωθ , (2.6)

which is familiar in magnetostatics, see for example [52, §701]. The same expression
can also be found in the classical book [46, §161]. It is well-known (and not hard to
check) that

F(s) =
{

log 8√
s
− 2 +O(s log s) as s→ 0 ,

π
2s3/2 +O(s−5/2) as s→ ∞ .

(2.7)

Since we wish to solve the Cauchy problem (1.1), (1.2) with initial data ω0 = �δC,
we assume that the vorticity ωθ in (2.1) satisfies the initial condition

ωθ

∣
∣
∣
t=0

= �δ(r0,0) , (2.8)

where δ(r0,z0) denotes the Dirac mass at the location (r0, z0) ∈�. Our starting point is
the following global well-posedness result for the vorticity equation (2.3) with such
initial data.

Theorem 2.1 [34] For any � > 0, any ν > 0, and any (r0, z0) ∈�, the axisymmetric
vorticity equation (2.3) has a unique global mild solution ωθ ∈ C0((0,∞),L1(�) ∩
L∞(�)) such that

sup
t>0

‖ωθ(t)‖L1(�) < ∞ , and ωθ(t)dr dz⇀� δ(r0,z0) as t → 0 . (2.9)

Moreover there exists a constant C > 0, depending only on the ratio �/ν, such that

∫

�

∣
∣
∣ωθ(r, z, t)− �

4πνt
e−

(r−r0)2+(z−z0)2
4νt

∣
∣
∣dr dz ≤ C�

√
νt

r0
log
( r0√
νt

+ 1
)
, (2.10)

whenever t ∈ (0, Tdif), where Tdif = r2
0/ν.

Here and in what follows, it is understood that L1(�)= L1(�,dr dz), and simi-
larly for the other Lebesgue spaces. Theorem 2.1 establishes the existence of a four-
dimensional family of vortex ring solutions to (2.3) parametrized by the circulation
� > 0, the viscosity ν > 0, the initial radius r0 > 0, and the initial vertical position
z0 ∈R. Due to translation invariance in the vertical direction, we may assume without
loss of generality that z0 = 0, and we can also take r0 = 1 by rescaling the space vari-
ables. Then a rescaling of time allows us to change the values of both ν and �, while
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keeping the ratio �/ν fixed. Therefore, up to symmetries, the viscous vortex ring
solutions we consider here form a one-parameter family indexed by the circulation
Reynolds number Re := �/ν.

The uniqueness of the vortex ring solution under the minimal assumptions (2.9)
is discussed in some detail in [34], so we concentrate here on the short-time estimate
(2.10), which is of limited use despite appearances. For a fixed value of the Reynolds
number Re = �/ν, the right-hand side of (2.10) is small whenever t � Tdif, which
means that the solution of (2.3) with initial data (2.8) is well approximated by a
Gaussian vortex ring of thickness proportional to

√
νt , located a the initial position

(r0, z0) ∈ �. However, since the constant C depends on the Reynolds number in a
very bad way, estimate (2.10) gives no information on the solution at a fixed time
t > 0 in the low viscosity regime ν→ 0. This limitation is not surprising: due to the
translational motion along the vertical axis predicted by the Kelvin-Saffman formula
(1.5), the vortex ring at time t > 0 is actually located at a new position which is rather
far from the initial one if ν is small.

Our goal in this paper is to replace (2.10) by an improved estimate of the form

∫

�

∣
∣
∣ωθ(r, z, t)− �

4πνt
e−

(r−r̄(t))2+(z−z̄(t))2
4νt

∣
∣
∣dr dz ≤ K �

√
νt

r0
, (2.11)

for t ∈ (0, Tadv Reσ ), where the constantK is now independent of the Reynolds num-
ber, if Re 	 1. Comparing with (2.10), we observe that (2.11) is valid up to the
intermediate time Tadv Reσ , for some σ ∈ (0, 1

3 ), which is shorter than Tdif ≡ Tadv Re.
But the main difference is that (2.11) compares the solution ωθ(r, z, t) to a vortex ring
located at a time-dependent position (r̄(t), z̄(t)), which has to be determined. As we
shall see, we can take r̄(t), z̄(t) to be continuous functions of time which are smooth
for t > 0 and satisfy r̄(0)= r0, z̄(0)= z0. Moreover

˙̄r(t) = O
( ν

r0

)
, ˙̄z(t) = �

4πr0

(
log

1

ε(t)
+ v̂
)(

1 +O
(
ε(t)2 + δ2)

)
, (2.12)

where ε(t)= √
νt/r̄(t), v̂ = 3

2 log(2)+ 1
2 (γE − 1), and δ = ν/�. The first relation in

(2.12) implies that r̄(t)= r0
(
1+O(ε(t)2)

)
, which means that the change in the radius

of the vortex ring over the time interval under consideration is much smaller than
the diffusion length

√
νt . The second equality coincides with the Kelvin-Saffman

formula (1.5), up to higher order corrections.

2.2 Self-similar variables

From now on, we fix the circulation � > 0 and the position (r0,0) ∈ � of the ini-
tial filament, and we consider the vortex ring solution given by Theorem 2.1, in the
regime where the viscosity ν > 0 is small. In view of the approximation formula
(2.11), which is our objective, it is natural to make the following self-similar Ansatz
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for the axisymmetric vorticity and the associated Stokes stream function

ωθ(r, z, t) = �

νt
η
( r − r̄(t)√

νt
,
z− z̄(t)√
νt

, t
)
,

ψ(r, z, t) = � r̄(t)φ
( r − r̄(t)√

νt
,
z− z̄(t)√
νt

, t
)
,

(2.13)

where the time-dependent position (r̄(t), z̄(t)) ∈ � has to be determined. We intro-
duce the important notation

δ = ν

�
, ε =

√
νt

r̄(t)
, R = r − r̄(t)√

νt
, Z = z− z̄(t)√

νt
. (2.14)

The evolution equation for the rescaled vorticity η(R,Z, t) is found to be

t∂tη+ �

ν

{
φ ,

η

1 + εR
}

−
√
t

ν

( ˙̄r ∂Rη+ ˙̄z ∂Zη
)

= Lη+ ∂R
( εη

1 + εR
)
, (2.15)

where
{
φ,χ

} = ∂Rφ ∂Zχ − ∂Zφ ∂Rχ is the Poisson bracket in the new variables
(R,Z), and L is the Fokker-Planck operator

L = ∂2
R + ∂2

Z + 1

2

(
R∂R +Z∂Z

)+ 1 . (2.16)

Equation (2.15) is to be solved in the time-dependent domain

�ε = {
(R,Z) ∈R

2
∣
∣1 + εR > 0

}
, (2.17)

with the Dirichlet boundary condition η(−1/ε,Z, t)= 0 for all (Z, t) ∈R×R+.
As in [34], it is useful to introduce the velocity field U = (UR,UZ) defined by

UR = − ∂Zφ

1 + εR , UZ = ∂Rφ

1 + εR , (2.18)

in terms of which the nonlinearity in (2.15) reads
{
φ ,

η
1+εR

} = ∂R
(
UR η) +

∂Z(UZ η). The stream function φ in (2.15) satisfies the elliptic equation

η = ∂ZUR − ∂RUZ ≡ −∂R
( ∂Rφ

1 + εR
)

− ∂2
Zφ

1 + εR , (R,Z) ∈�ε , (2.19)

with boundary conditions φ(−1/ε,Z, t)= ∂Rφ(−1/ε,Z, t)= 0 for all (Z, t) ∈ R×
R+. Using (2.4), we easily obtain the representation formula [34]

φ(R,Z)= 1

2π

∫

�ε

√
(1+εR)(1+εR′)

× F
(

ε2 (R−R′)2 + (Z−Z′)2

(1+εR)(1+εR′)

)

η(R′,Z′)dR′ dZ′ , (2.20)

where F is as in (2.5). In what follows we write φ = BSε[η] when (2.20) holds.
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The quantities introduced in (2.14) are all dimensionless. The first one is the in-
verse Reynolds number δ > 0, a fixed parameter that is assumed to be small. The
second one is the time-dependent aspect ratio ε > 0, which appears in the evolution
equation (2.15), in the definition of the domain (2.17), and in the Biot-Savart for-
mula (2.20). Finally, the variables R, Z are self-similar coordinates centered at the
time-dependent location (r̄(t), z̄(t)) and normalized according to the size

√
νt of the

vortex core. Note that the rescaled functions η,φ defined in (2.13) are also dimen-
sionless.

Remark 2.2 Recalling that δ = ν/� and Tadv = r2
0/�, we observe that

ε2 = νt

r2
0

r2
0

r̄(t)2
= δt

Tadv

r2
0

r̄(t)2
≈ δt

Tadv
, (2.21)

as long as the ratio r0/r̄(t) remains close to unity, which will always be the case
thanks to (2.12). It follows in particular that ε2 is comparable to δ whenever t is
comparable to Tadv. Our goal is to control the solution of (2.3) when t ≤ Tadvδ

−σ for
some σ ∈ (0, 1

3 ), and on that interval it follows from (2.21) that ε2 � δ1−σ .

2.3 Approximate solution

The first important step in our analysis is the construction of an approximate solution
of (2.15) with initial data

η0(R,Z) = 1

4π
e−(R2+Z2)/4 , (R,Z) ∈�0 = R

2 . (2.22)

The associated stream function satisfies −�0φ0 = η0, where�0 = ∂2
R+∂2

Z . As η0, φ0

are both radially symmetric, it is clear that {φ0, η0} = 0, and the Gaussian profile
(2.22) has the property that Lη0 = 0. Since ε = 0 when t = 0 in view of (2.14), we
conclude that equation (2.15) is satisfied at initial time if η0 is given by (2.22).

For t > 0, we construct our approximate solution as a power series in the time-
dependent parameter ε = √

νt/r̄ , the coefficients of which depend on the small pa-
rameter δ. To this end, we multiply both sides of (2.15) by δ and rewrite the equation
in the equivalent form

δ t∂tη+
{
φ ,

η

1 + εR
}

− εr̄

�

( ˙̄r ∂Rη+ ˙̄z ∂Zη
)

= δ
[
Lη+ ∂R

( εη

1 + εR
)]
. (2.23)

This equation is defined on the time-dependent domain�ε , but expanding the factors
(1 + εR)−1 in powers of ε we get at each order a relation that can be solved in the
whole plane �0 = R

2. The corresponding approximation for the stream function φ is
obtained in a self-consistent way by expanding the integrand in (2.20) in powers of ε,
and integrating order by order over the whole plane R

2. As is shown in Sect. 3, this
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results in an asymptotic expansion of the form

ηapp(R,Z, t) =
M∑

m=0

εm ηm(R,Z,βε) ,

φapp(R,Z, t) =
M∑

m=0

εm φm(R,Z,βε) ,

(2.24)

where the dependence of the profiles ηm and φm on βε := log(1/ε) is polynomial.
The profiles also depend on the small parameter δ, but to make the notation lighter
this dependence is not indicated explicitly. The velocity of the vortex center is not
known a priori, but can be approximated in a similar way as a power series in ε

˙̄r(t) =
M−1∑

m=0

εm ˙̄rm(βε) , ˙̄z∗(t) =
M−1∑

m=0

εm ˙̄zm(βε) , (2.25)

where the quantities ˙̄rm(βε), ˙̄zm(βε) depend on δ and are polynomials in βε . As will
be explained below, the quantity ˙̄z∗(t) in (2.25) is only an initial approximation of the
vertical speed of the vortex ring; the final approximation ˙̄z(t) will be obtained from
it by a small adjustment. It is perhaps worth emphasizing that, throughout the paper,
the point (r̄(t), z̄(t)) is not necessarily the exact center of our vortex. Rather, it is its
suitably chosen approximation.

The outcome of the analysis carried out in Sect. 3 below is that, if we want our
expansions (2.24), (2.25) to hold uniformly with respect to the parameter δ in the limit
where δ→ 0, there is a unique choice of the profiles ηm,φm and of the velocities ˙̄rm,
˙̄zm such that

a) Both members of (2.23) agree up to order O(εM+1), modulo powers of βε ;
b) The point (r̄(t), z̄∗(t)) ∈� is the center of the vorticity (2.13) when η= ηapp.
The integer M in (2.24), (2.25) determines the accuracy of our approximate so-

lution. It turns out that M = 4 will be sufficient for our purposes. The velocities
˙̄r(t), ˙̄z∗(t) given by (2.25) are found to satisfy estimate (2.12) with δ = 0.

Remark 2.3 If we set δ = ˙̄r = 0, equation (2.23) reduces to

{
φ ,

η

1 + εR
}

− εr̄

�
˙̄z ∂Zη ≡

{
φ − r̄ ˙̄z

2�
(1 + εR)2 , η

1 + εR
}

= 0 , (2.26)

which is the relation satisfied by the vorticity η and the stream function φ of a station-
ary solution of the Euler equations in a frame moving with speed ˙̄z ez. These are pre-
cisely the vortex rings constructed, for instance, in [1, 10, 27, 29, 30]. In that situation
the aspect ratio ε > 0 is fixed and, as in (2.14), the dimensionless variables (R,Z) are
defined so that (r, z)= (r̄, z̄)+ εr̄ (R,Z). An approximate solution of (2.26) can be
constructed in the form of a power series in ε, as in (2.24), where all profiles ηm,φm
are even functions of the variable Z ∈ R, since this is the case for the coefficients in
(2.26) and for the initial approximation (2.22). Returning to the approximate solution
(2.24), we deduce by uniqueness that ηapp, φapp are even functions of Z in the limit
δ→ 0, and that ˙̄r = �

r0
O(δ) as δ→ 0.
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Remark 2.4 In view of (2.14) and (2.25), the function ε(t) is implicitly defined by the
relation

√
νt

ε(t)
= r̄(t) = r0 +

M−1∑

m=0

∫ t

0
ε(s)m ˙̄rm

(
βε(s)

)
ds , (2.27)

which should hold when 0< t � Tdif. As was mentioned in the previous remark, the
radial velocities ˙̄rm are small when δ� 1, so that Eq. (2.27) will be easy to solve, see
Sect. 3.6.

The asymptotic approximation ηapp(R,Z, t) is defined on the whole plane and
does not vanish on the boundary ∂�ε . To obtain a valid approximate solution of
(2.15), we fix σ0 ∈ (0,1) and we truncate ηapp outside a large ball of radius ε−σ0 by
setting

η∗(R,Z, t) = χ0
(
εσ0(R2+Z2)1/2

)
ηapp(R,Z, t) , φ∗(·, t) = BSε[η∗(·, t)] ,

(2.28)
where χ0 : R+ → [0,1] is a smooth function such that χ0(r) = 1 for r ≤ 1 and
χ0(r)= 0 for r ≥ 2. The remainder of that approximation is defined as

Rem(R,Z, t)= Lη∗ + ∂R
( εη∗

1+εR
)

− t∂tη∗ − 1

δ

{
φ∗ ,

η∗
1+εR

}

+ εr̄

δ�

( ˙̄r ∂Rη∗ + ˙̄z∗ ∂Zη∗
)
. (2.29)

By construction this quantity depends on time only through the parameter ε =√
νt/r̄(t).
The accuracy of our approximate solution is quantified by the following result,

which is established in Sect. 3.7 below

Proposition 2.5 Given any γ0 < 1 and any γ5 < 5, there exist a constant C > 0 such
that the remainder (2.29) satisfies

sup
(R,Z)∈�ε

eγ0(R
2+Z2)/4 |Rem(R,Z, t)| ≤ C

(
εδ + εγ5δ−1) , (2.30)

whenever the parameters ε, δ are small enough.

2.4 Stability estimates

In our previous work [34], the evolution equation (2.15) was carefully studied in the
particular case where r̄(t) = r0 and z̄(t) = z0. This does not make any substantial
difference for the initial value problem at fixed viscosity, and we can thus infer from
the results of [34] that Eq. (2.15) has a unique solution η(R,Z, t) with initial data η0

given by (2.22). Our purpose is to show that, if the inverse Reynolds number δ = ν/�
is sufficiently small, the solution η(R,Z, t) remains close to the approximation (2.28)



290 T. Gallay, V. Šverák

on a long time interval of the form (0, Tadvδ
−σ ), for some small σ > 0. We use the

decomposition

η(R,Z, t) = η∗(R,Z, t)+ δ η̃(R,Z, t) ,
φ(R,Z, t) = φ∗(R,Z, t)+ δ φ̃(R,Z, t) ,

(2.31)

where φ̃ = BSε[η̃] in the sense of (2.20). Similarly we assume that the vertical speed
of the vortex ring takes the form

˙̄z(t) = ˙̄z∗(t)+ δ ˙̃z(t) , (2.32)

where ˙̄z∗(t) is given by (2.25) and ˙̃z(t) is a small correction which is chosen so
that the perturbation η̃ has vanishing first order moment in the vertical direction, see
Sect. 4.1. The equation satisfied by η̃ then reads

t∂t η̃+ 1

δ

{
φ∗ ,

η̃

1 + εR
}

+ 1

δ

{
φ̃ ,

η∗
1 + εR

}
+
{
φ̃ ,

η̃

1 + εR
}

− εr̄

δ�

( ˙̄r ∂Rη̃+ ˙̄z∗ ∂Zη̃
)

= Lη̃+ ∂R
( εη̃

1 + εR
)

+ 1

δ
Rem(R,Z, t) + εr̄

δ�
˙̃z ∂Zη . (2.33)

Since η∗(R,Z,0) = η0(R,Z), the nonlinear evolution equation (2.33) is to be
solved with zero initial data. The solution is therefore driven by the source term
δ−1Rem(R,Z, t), which is small in view of Proposition 2.5 and Remark 2.2 if
the parameter σ is small enough. As long as η̃ stays small, the nonlinear term
{φ̃, (1+εR)−1η̃} is of course harmless. The most serious difficulty in controlling η̃
using (2.33) comes from the linear terms with a large prefactor δ−1 = �/ν. These
terms could conceivably trigger violent instabilities that might lead to strong amplifi-
cation of η̃ in a short time. Our goal is to show that this scenario does not occur, due
to the special structure of the advection terms in (2.33). A similar strategy was ap-
plied in the previous work [32] devoted to the vanishing viscosity limit of interacting
vortices in the plane, but the specific estimates used there do not seem to be easily
adaptable to the present situation.

To control the time evolution of the solution of (2.33), we use the energy functional

Eε(t) = 1

2

∫

�ε

Wε η̃
2 dR dZ − 1

2

∫

�ε

φ̃ η̃ dR dZ , (2.34)

where Wε : �ε → (0,+∞) is a weight function that will be described below. The
first term in the right-hand side of (2.34) is a weighted L2 integral of the vorticity η̃,
similar to weighted enstrophies that were used for the same purposes in [32, 34, 37],
for instance. The second term is just the kinetic energy associated with the vorticity
perturbation η̃, as can be seen by invoking (2.18), (2.19) and integrating by parts

1

2

∫

�ε

φ̃ η̃ dR dZ = 1

2

∫

�ε

|∂Rφ̃|2 + |∂Zφ̃|2
1 + εR dR dZ

= 1

2

∫

�ε

(|ŨR|2 + |ŨZ|2)(1 + εR)dR dZ .



Vanishing viscosity limit for axisymmetric vortex rings 291

To construct the weightWε in (2.34), we consider three different regions
1) The inner region where ρ := (R2+Z2)1/2 � ε−σ1 , for some small σ1 > 0. Here

we choose

Wε = 1

1 + εR �
′
ε

( η∗
1 + εR

)
, (2.35)

where η∗ is the approximate solution (2.28) and �ε : (0,+∞) → R is a smooth
function with the property that, in the region under consideration,

φ∗ − r̄ ˙̄z∗
2�
(1 + εR)2 = �ε

( η∗
1 + εR

)
+ O(εδ + εγ3) , (2.36)

for some γ3 < 3 that can be arbitrarily close to 3. It is not difficult to understand
intuitively why such a function should exist. Indeed, in the dimensionless variables
(2.14), the left-hand side of (2.36) is nothing but the stream function of the approxi-
mate solution η∗ in a frame moving with constant speed ˙̄z∗ in the vertical direction,
see Remark 2.3. If we drop the remainder term O(εδ + εγ3) and consider ε > 0 as
a fixed parameter, Eq. (2.36) expresses a functional relation between the potential
vorticity ζ∗ := (1 + εR)−1η∗ and the stream function, which implies that η∗ is a sta-
tionary solution of the Euler equation in the moving frame. This is not exactly true,
of course, but the estimate on the remainder Rem(R,Z, t) in Proposition 2.5 ensures
that the approximate solution η∗ (for a fixed value of ε > 0) is not far from a station-
ary solution of Euler, and in Sect. 3.8 we verify that this implies the existence of a
function �ε satisfying (2.36). Moreover, an easy calculation shows that

1

1 + εR �
′
ε

( η∗
1 + εR

)
= 4

ρ2

(
eρ

2/4 − 1
)+O(ε) , ρ :=

√
R2 +Z2 ≤ ε−σ1 .

2) The intermediate region where ε−σ1 � ρ ≤ ε−σ2 , for some σ2 > 1. In this
area we assume that the weight is approximately constant in space, with value
Wε ≈ exp(ε−2σ1/4).

3) The far field region where ρ ≥ ε−σ2 . Here we take Wε ≈ exp(ρ2γ /4), where
γ = σ1/σ2.

The actual construction of the weight is more complicated, and ensures that Wε
is Lipschitz continuous at the boundaries of the three regions under consideration,
see Sect. 4 below for details. For the moment, we just mention that our choice of
the energy functional in the inner region is related to Arnold’s variational character-
ization of the steady states of the Euler equation, as discussed in our previous work
[35]. In fact, if we suppose that η∗ is a stationary solution of the axisymmetric Euler
equation in a moving frame (which not exactly true), then the functional (2.34) with
the weight (2.35) corresponds, up to a constant factor, to the second variation of the
kinetic energy on the isovortical surface, which is the family of (potential) vorticities
ζ := (1 + εR)−1η that are measure-preserving rearrangements of ζ∗ [3, 35]. Since
the kinetic energy is conserved under the inviscid dynamics, the advection terms in-
volving δ−1 in (2.33), which originate from the linearization of Euler’s equation at
the “steady state” ζ∗, do not contribute to the time evolution of the functional Eε . In
reality ζ∗ is only an approximate steady state of Euler, and the cancellations alluded
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Fig. 2 When ε > 0 is small, the weightWε(R,Z) entering the energy functional (2.34) is close to a piece-

wise smooth radially symmetric function, which satisfies Wε ≈ A(ρ) := (4/ρ2)(eρ
2/4 − 1) in the inner

region where ρ := (R2+Z2)1/2 � ε−σ1 . WhenWε reaches the threshold value exp(ε−2σ1/4), the weight
is taken approximately constant until ρ = ε−σ2 , and outside that region we set Wε ≈ exp(ρ2γ /4) with
γ = σ1/σ2. The dashed lines reflect the fact that exp(ρ2γ /4)�Wε � A(ρ) where the implicit constants
do not depend on the parameter ε. The intermediate scales ε−σ0 , where the truncation (2.28) occurs, and
ε−1, which is the distance from the origin to the boundary ∂�ε , are indicated for completeness

to above only occur up to correction terms of order O(εδ+ εγ3), but this is sufficient
to cancel the dangerous factors δ−1 in (2.33). On the other hand, away from the inner
region, the last term in (2.34) is extremely small, so that our functional Eε reduces
to a weighted enstrophy. We assume that the weightWε is approximately constant in
the intermediate region, so that the advection terms in (2.33) do not contribute to the
evolution of Eε , and in the far field region the dynamics is dominated by the diffu-
sion operator L in (2.33) so that we can just take any radially symmetric weight with
appropriate growth at infinity.

A technical difficulty inherent to our approach is the fact that the functional Eε
is not coercive, unless the perturbed vorticity η̃ satisfies some moment conditions.
The problem comes from the inner region, where the last term in (2.34) plays an
important role. The results established in [35, Sect. 2] indicate that Eε is positive
definite provided η̃ has zero mean and vanishing first order moments with respect to
the space variables R,Z. In practice this means that, in addition to the information
provided by the energyEε , we must control the integral and the first order moments of
the perturbed vorticity η̃. It turns out that

∫
η̃ dR dZ is always extremely small, of the

order of O(exp(−c/ε2)) for some c > 0. The radial moment
∫
R η̃ dR dZ may take

larger values, but can be controlled using the conservation of the total impulse of the
vortex ring. Finally, we choose the correction ˙̃z(t) of the vertical speed (2.32) in such
a way that

∫
Z η̃ dR dZ = 0, see Sect. 4.1 below for further details. This correction

thus plays the role of a “modulation parameter”, see [51, 58] for a similar idea in the
context of the stability analysis of solitary waves.

Disregarding these technical questions for the moment, we briefly indicate how
the argument is concluded. If we differentiate Eε with respect to time, and use the
evolution equation (2.33) together with the estimate (2.30) on the source term, we
obtain after lengthy calculations a differential inequality of the form

tE′
ε(t) ≤ −c1Eε(t)+ c2

(
ε2 + ε2γ3

δ2

)
, t ∈ (0, Tadvδ

−σ ) , (2.37)
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for some positive constants c1, c2. Here we assume that ε2γ3 � δ2 so that the source
term in (2.37) is small. Since ε2 � δ1−σ by Remark 2.2, this is the case provided
σ < 1 − 2/γ3, which is possible if σ < 1/3 and γ3 is close enough to 3. Integrating
(2.37) with initial condition Eε(0)= 0, we find

Eε(t) ≤ c3

(
ε2 + ε2γ3

δ2

)
, t ∈ (0, Tadvδ

−σ ) , (2.38)

and using in addition the bounds on the moments of η̃ that are obtained by a different
argument we arrive at an estimate of the form δ‖η̃(t)‖Xε ≤ c(εδ + εγ3), where Xε is
the weighted L2 space equipped with the norm

‖η̃‖Xε =
(∫

�ε

Wε(R,Z) |η̃(R,Z)|2 dR dZ

)1/2

. (2.39)

This space depends on time through the parameter ε > 0, but we recall that the weight
function satisfies a uniform lower bound of the form Wε(R,Z) � exp(ρ2γ /4), see
Fig. 2.

The main result of this paper can now be formulated as follows

Theorem 2.6 For any γ3 ∈ (2,3), there exist constants K > 0, δ0 > 0, and σ ∈ (0, 1
3 )

such that, for all � > 0, all r0 > 0, and all ν > 0 satisfying δ := ν/� ≤ δ0, the follow-
ing holds. There exist continuous functions r̄(t), z̄(t) which are smooth for positive
times and satisfy (2.12) with r̄(0) = r0, z̄(0) = 0 such that the unique solution η of
(2.15) with initial data (2.22) satisfies

‖η(t)− η∗(t)‖Xε ≤ K
(
εδ + εγ3

)
, t ∈ (0, Tadvδ

−σ ) , (2.40)

where ε = √
νt/r̄(t) and η∗ is the approximate solution defined by (2.24), (2.28).

We recall that estimate (2.12) for the radial velocity ˙̄r implies that r̄(t)= r0
(
1 +

O(ε2)
)
, meaning that the major radius of the vortex ring remains essentially constant

on the time interval (0, Tadvδ
−σ ). As for the vertical velocity, it is given by (2.32)

where the approximate speed ˙̄z∗ defined in (2.25) and the correction ˙̃z satisfy

˙̄z∗ = �

4πr0

(
log

1

ε
+ v̂
)(

1+O
(
ε2)
)
, ˙̃z = �

r0
O
((
ε+ ε

γ3

δ

)
log

1

ε
+ δ
)
. (2.41)

This gives the announced formula (2.12) for the full velocity ˙̄z= ˙̄z∗ + δ ˙̃z.
It is not difficult to verify that Theorem 2.6 implies Theorem 1.1, see Sect. 4.9

for details. Here we just show how to derive estimate (2.11), which is essentially a
reformulation of (1.7). By construction, our approximate solution satisfies the esti-
mate ‖η∗(t)− η0‖Xε = O(ε), where η0 is the Gaussian function (2.22). Moreover,
the lower boundWε(R,Z)� exp(ρ2γ /4) implies that Xε ↪→ L1(�ε) uniformly in ε.
It thus follows from (2.40) that

‖η(t)− η0‖L1(�ε)
≤ C1

(
‖η(t)− η∗(t)‖Xε + ‖η∗(t)− η0‖Xε

)
≤ C2ε ,
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for any t ∈ (0, Tadvδ
−σ ), and returning to the original variables we arrive at estimate

(2.11).

Remark 2.7 It follows from (2.24) and (2.40) that the solution of (2.15) satisfies

η(R,Z, t) = η0(R,Z)+ εη1(R,Z)+ ε2η2(R,Z,βε)+O
(
δε + εγ3

)
, (2.42)

where the remainder term is estimated in the topology of Xε as ε→ 0. Here η0 is the
Gaussian function (2.22), and the vorticity profiles η1, η2 are explicitly constructed in
Sect. 3. Since δ � ε2 except for very small times, see Remark 2.2, we see that (2.42)
determines the shape of the vortex core up to third order in ε.

3 Construction of the approximate solution

In this section we construct perturbatively an approximate solution of (2.23) such that
the corresponding remainder satisfies (2.30). Approximations of vortex rings with
varying degrees of accuracy were obtained by many authors, and typically rely on
matched asymptotics expansions where the inner core of the vortex and the outer
region are considered separately, see [24, 27, 28, 42, 47] in the inviscid case and [14,
31, 57] in the viscous case. Here we rather follow the direct approach introduced in
[32] for interacting vortices in the plane, which does not rely on matched asymptotics
techniques.

3.1 Expansion of the Biot-Savart formula

Our first task is to compute an accurate asymptotic expansion of the function F(s)
defined by (2.5) in the limit where s→ 0. This can be done by expressing F in terms
of elliptic integrals, a procedure initiated in the early references [41, 52].

Lemma 3.1 For 0< s < 4 we have the power series representation

F(s) = log
( 8√
s

) ∞∑

m=0

Ams
m +

∞∑

m=0

Bms
m , (3.1)

where Am, Bm are real numbers. Moreover

A0 = 1 , A1 = 3

16
, A2 = − 15

1024
,

B0 = −2 , B1 = − 1

16
, B2 = 31

2048
.

(3.2)

Proof If s > 0 and k = 2/
√
s + 4 ∈ (0,1), it is straightforward to verify that

F(s) =
∫ π/2

0

1 − 2 sin2ψ
√

sin2ψ + s/4
dψ = 2 − k2

k
K(k)− 2

k
E(k) , (3.3)
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where K(k), E(k) are the complete elliptic integrals with modulus k

K(k) =
∫ π/2

0

1
√

1 − k2 sin2 θ
dθ , E(k) =

∫ π/2

0

√
1 − k2 sin2 θ dθ .

We are interested in the limit where s→ 0, namely k→ 1. Introducing the comple-
mentary modulus κ = √

1 − k2, we have the power series expansions (see [19])

K(k) =
∞∑

m=0

a2
m κ

2m
(

log
1

κ
+ 2bm

)
,

E(k) = 1 +
∞∑

m=0

2m+ 1

2m+ 2
a2
m κ

2m+2
(

log
1

κ
+ bm + bm+1

)
,

(3.4)

where a0 = 1, b0 = log(2), and

am = 1

2
· 3

4
· . . . · 2m−1

2m
, bm = log(2)+

2m∑

�=1

(−1)�

�
, m ∈N

∗ .

Combining (3.3), (3.4), we obtain a representation of the form

F(s)= 1 + κ2

√
1 − κ2

K(k)− 2√
1 − κ2

E(k)

= log
( 4

κ

) ∞∑

m=0

Cmκ
2m +

∞∑

m=0

Dmκ
2m , (3.5)

which converges for 0< κ < 1. Moreover, a direct calculation shows that

C0 = 1 , C1 = 3

4
, C2 = 33

64
, D0 = −2 , D1 = −3

4
, D2 = − 81

128
. (3.6)

As κ2 = s/(s + 4), the right-hand side of (3.5) can be written in the form (3.1), and
using (3.6) we see that the first coefficients satisfy (3.2). �

Remark 3.2 Various asymptotic expansions of the stream function given by the Biot-
Savart law (2.4) can be found in the literature [24, 31, 42, 46, 57], and are easily
recovered using Lemma 3.1.

We next consider the rescaled Biot-Savart formula (2.20), which can be written in
the equivalent form

φ(R,Z) = 1

2π

∫

�ε

Kε(R,Z;R′,Z′) η(R′,Z′)dR′ dZ′ , (3.7)
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where

Kε = √
(1+εR)(1+εR′) F

(
ε2D2

(1+εR)(1+εR′)

)

,

D2 = (R−R′)2 + (Z−Z′)2 .
(3.8)

To simplify the notations below, we define

βε = log
1

ε
, L(R,Z;R′,Z′) = log

( 8

D

)
. (3.9)

Lemma3.3 For any (R,Z), (R′,Z′) ∈ R
2 with (R,Z) �= (R′,Z′) and any sufficiently

small ε > 0, we have the expansion

Kε = (βε +L)
∞∑

m=0

εmPm +
∞∑

m=0

εmQm , (3.10)

where Pm(R,Z;R′,Z′), Qm(R,Z;R′,Z′) are homogeneous polynomials of degree
m in the three variables R, R′, and Z −Z′. Moreover

P0 =1

P1 = 1
2 (R +R′)

P2 = 1
16 (R −R′)2 + 3

16 (Z −Z′)2

Q0 =−2

Q1 =− 1
2 (R +R′)

Q2 = 1
4 (R

2 +R′2)− 1
16 D

2 .

(3.11)

Proof If (R,Z), (R′,Z′) are as in the statement, we take ε > 0 small enough so that

max
(|R|, |R′|) < 1

ε
, and s := ε2D2

(1+εR)(1+εR′)
< 4 . (3.12)

As D �= 0 by assumption, we have 0< s < 4, so that we can apply expansion (3.1) to
the quantity F(s) in (3.8). In view of definitions (3.9) we have

log
( 8√
s

)
= βε +L+ 1

2
log(1 + εR)+ 1

2
log(1 + εR′) . (3.13)

We observe that the last two terms in (3.13), as well as the prefactor√
(1+εR)(1+εR′) in (3.8) and each monomial sm in the series (3.1), can be ex-

panded into a power series in the three variables εR, εR′, and ε(Z − Z′). Thus,
combining (3.1) and (3.8), we obtain a representation of the form (3.10), where the
first homogeneous polynomials Pm,Qm are easily computed using the explicit values
(3.2). �

Remark 3.4 In what follows, with a slight abuse of notation, we denote by L the
integral operator on R

2 given by the kernel (3.9). For any continuous and rapidly
decreasing function η :R2 →R, we thus have

(
Lη
)
(R,Z) =

∫

R2
log

(
8

√
(R−R′)2 + (Z−Z′)2

)

η(R′,Z′)dR′ dZ′ . (3.14)
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Similarly, we associate integral operators to the homogeneous polynomials Pm, Qm
in (3.10), and to the functions LPm for all m ∈ N

∗.

Definition 3.5 Using the notation introduced in Remark 3.4, we define for all m ∈N
∗

the linear operators

BS0 = 1

2π
L, and BSm = 1

2π

(
βεPm +LPm +Qm

)
. (3.15)

Note that, for m≥ 1, the linear operator BSm depends on the parameter ε through
the constant factor βε = log(1/ε), but for simplicity this mild dependence is not indi-
cated explicitly. For convenience, we do not include the constant term βεP0 +Q0 ≡
βε − 2 in the definition of BS0, because the stream function is only defined up to an
additive constant. It is important to observe that, in (3.14) and in the corresponding
definition of the integral operators Pm,Qm, and LPm, the integration is performed on
the whole plane R

2, rather than on the half-plane �ε . This is justified because these
operators will always be applied to functions that decay rapidly at infinity, so that the
integration on R

2 \�ε gives a contribution of order O(ε∞) as ε→ 0, which can be
neglected in our perturbative expansion. If η : R2 → R is compactly supported, then
according to Lemma 3.3 the following equality holds in any bounded region of R2:

BSε[η] = βε − 2

2π

∫

R2
η(R′,Z′)dR′ dZ′ +

∞∑

m=0

εmBSm[η] , (3.16)

provided ε > 0 is sufficiently small. As was already mentioned, the first term in the
right-hand side of (3.16) is a constant that can be omitted.

3.2 Function spaces and linear operators

We next introduce the function spaces in which we shall construct our approximate
solution of (2.23). These spaces consist of functions that are defined on the whole
space R2, and not just on the half-plane�ε . Indeed, at each step of the approximation,
the vorticity profile ηm(R,Z,βε) and the stream function φm(R,Z,βε) in (2.24) are
defined for all (R,Z) ∈ R

2. To simplify the writing we often denote X = (R,Z),
and we use polar coordinates (ρ,ϑ) in R

2 defined by the relations R = ρ cosϑ , Z =
ρ sinϑ .

Following [36, 37] we introduce the weighted L2 space

Y =
{
η ∈ L2(R2)

∣
∣
∣

∫

R2
|η(X)|2 e|X|2/4 dX <∞

}
, (3.17)

equipped with the scalar product (η1, η2)Y = ∫
R2 η1(X)η2(X) e

|X|2/4 dX and the as-
sociated norm. We also introduce the differential operator L :D(L)→ Y correspond-
ing to (2.16), namely

Lη = �η+ 1

2
X · ∇η+ η ,

η ∈D(L) =
{
η ∈ Y

∣
∣
∣�η ∈ Y , X · ∇η ∈ Y

}
,

(3.18)
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as well as the integro-differential operator � :D(�)→ Y defined by

�η = 1

2π

({
Lη0 , η

}+ {Lη ,η0
})
,

η ∈D(�) =
{
η ∈ Y

∣
∣
∣
{
Lη0 , η

} ∈ Y
}
,

(3.19)

where η0 is the Gaussian function (2.22) and L denotes the integral operator (3.14).
Here and in what follows the Poisson bracket is understood with respect to the
rescaled variables (R,Z), so that {φ,η} = ∂Rφ ∂Zη − ∂Zφ ∂Rη. We recall the fol-
lowing well-known properties

Proposition 3.6 ([36, 37, 48]) 1) The linear operatorL is self-adjoint in Y , with purely
discrete spectrum

σ(L) =
{
−n

2

∣
∣
∣n= 0,1,2, . . .

}
.

The kernel of L is one-dimensional and spanned by the Gaussian function η0. More
generally, for any n ∈ N, the eigenspace corresponding to the eigenvalue λn = −n/2
is spanned by the n+ 1 Hermite functions ∂αη0 where α = (α1, α2) ∈ N

2 and α1 +
α2 = n.

2) The linear operator � is skew-adjoint in Y , so that �∗ = −�. Moreover,

Ker(�) = Y0 ⊕ {β1∂Rη0 + β2∂Zη0
∣
∣β1, β2 ∈ R

}
, (3.20)

where Y0 ⊂ Y is the subspace of all radially symmetric elements of Y .

A crucial observation is that both operators L, � are invariant under rotations
about the origin in R

2. It is therefore advantageous to decompose the space Y into a
direct sum

Y = ∞⊕
n=0

Yn , (3.21)

where Y0 ⊂ Y is as in Proposition 3.6 and, for all n≥ 1, the subspace Yn ⊂ Y consists
of all functions η ∈ Y such that η(ρ cosϑ,ρ sinϑ)= a1(ρ) cos(nϑ)+ a2(ρ) sin(nϑ)
for some a1, a2 :R+ → R. It is clear that Yn ⊥ Yn′ if n �= n′. In particular, in view of
(3.20), we have Yn ∈ Ker(�)⊥ for all n≥ 2. When n= 1, the functions ∂Rη0, ∂Zη0

belong to Y1 ∩ Ker(�), and we define

Y ′
1 = Y1 ∩ Ker(�)⊥

=
{

η ∈ Y1

∣
∣
∣
∣

∫

R2
η(R,Z)R dR dZ =

∫

R2
η(R,Z)Z dR dZ = 0

}

. (3.22)

Since � is skew-adjoint, we know that Ker(�)⊥ = Ran(�), but the image of �
is not dense in Y and, therefore, we cannot solve the equation �η = f for any f ∈
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Ker(�)⊥. As is shown in [32, 38], the problem disappears if one assumes in addition
that f belongs to a smaller space such as

Z =
{
η : R2 →R

∣
∣
∣ e|X|2/4η ∈ S∗(R2)

}
⊂ Y , (3.23)

where S∗(R2) denotes the space of all smooth functions which are slowly growing at
infinity. More precisely, a smooth function w :R2 → R belongs to S∗(R2) if, for any
α = (α1, α2) ∈ N

2, there exist C > 0 and N ∈ N such that |∂αw(X)| ≤ C(1 + |X|)N
for all X ∈R

2.

Remark 3.7 We do not need to specify the topology of the space Z , but the following
notation will be useful. If f ∈ Z depends on a small parameter ε > 0, we say that
f = O(ε) in Z if, for any α = (α1, α2) ∈ N

2, there exist C > 0 and N ∈ N such that
|∂αf (X)| ≤ Cε(1 + |X|)Ne−|X|2/4 for all X ∈ R

2.

To formulate the main technical result of this section, we introduce the notation

ϕ(ρ) = 1

2πρ2

(
1 − e−ρ2/4) , h(ρ) = ρ2/4

eρ
2/4 − 1

, ρ > 0 . (3.24)

The following statement is a slight extension of [32, Lemma 4]. For the reader’s
convenience, we give a short proof of it in Sect. A.1, emphasizing the case n = 1
which was not treated in [32].

Proposition 3.8 If n ≥ 2 and f ∈ Yn ∩ Z , or if n = 1 and f ∈ Y ′
1 ∩ Z , there ex-

ists a unique η ∈ Yn ∩ Z (respectively, a unique η ∈ Y ′
1 ∩ Z) such that �η = f . In

particular, if f = a(ρ) sin(nϑ), then η= ω(ρ) cos(nϑ), where

ω(ρ) = h(ρ)�(ρ)+ a(ρ)

nϕ(ρ)
, ρ > 0 , (3.25)

and where � : (0,∞)→ R is the unique solution of the differential equation

−�′′(ρ)− 1

ρ
�′(ρ)+

(n2

ρ2
− h(ρ)

)
�(ρ) = a(ρ)

nϕ(ρ)
, ρ > 0 , (3.26)

such that �(ρ)= O(ρn) as ρ→ 0 and �(ρ)= O(ρ−n) as ρ→ ∞.

Remark 3.9 As was observed in [32], if f = a(ρ) cos(nϑ), then η= −ω(ρ) sin(nϑ),
where ω is still given by (3.25), (3.26). The general case where f = a1(ρ) cos(nϑ)+
a2(ρ) sin(nϑ) follows by linearity.

In the construction of an approximate solution of (2.23), we shall encounter linear
equations of the form

δ
(
κ −L

)
ηδ +�ηδ = f , (3.27)
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where κ > 0 is fixed and the parameter δ > 0 can be arbitrarily small. Proposition 3.6
implies that the linear operator δ(κ − L)+� is invertible in Y , so that (3.27) has a
unique solution ηδ for any f ∈ Y . In general, the best estimate we can hope for is

‖ηδ‖Y = ∥
∥(δ(κ −L)+�)−1

f
∥
∥
Y ≤ 1

κδ
‖f ‖Y . (3.28)

However, if f satisfies the assumptions of Proposition 3.8, the solution ηδ admits a
regular expansion in powers of the small parameter δ. More precisely

Proposition 3.10 Assume that n≥ 2 and f ∈ Yn ∩Z , or that n= 1 and f ∈ Y ′
1 ∩Z .

For any fixed κ > 0 and any δ > 0, equation (3.27) has a unique solution ηδ ∈ Yn
(respectively, ηδ ∈ Y ′

1). Moreover, for each nonzero N ∈ N, there exists a constant
C > 0, depending only on f and N , such that

∥
∥
∥ηδ −

N−1∑

m=0

δmη̂m

∥
∥
∥
Y

≤ CδN , (3.29)

where the profiles η̂m ∈ Yn ∩ Z (respectively, η̂m ∈ Y ′
1 ∩ Z) are determined by the

relations �η̂0 = f and �η̂m = (L− κ)η̂m−1 for m≥ 1.

Proof Assume first that n≥ 2. Since the space Yn is invariant under the action of both
operators L and �, it is clear that ηδ ∈ Yn if f ∈ Yn. If we suppose in addition that
f ∈ Z , Proposition 3.8 shows that there is a unique η̂0 ∈ Yn ∩Z such that �η̂0 = f .
A direct calculation then shows that (L − κ)η̂0 ∈ Yn ∩ Z , so that we can define
η̂1 ∈ Yn ∩ Z as the unique solution of �η̂1 = (L − κ)η̂0. Repeating this procedure,
we construct the profiles η̂m for m= 0, . . . ,N , and we define η̃ = ηδ − (η̂0 + δη̂1 +
· · · + δN η̂N

)
, so that

(
δ(κ −L)+�

)
η̃ = f −

(
δ
(
κ −L

)+�
) N∑

m=0

δmη̂m = δN+1(L− κ)η̂N . (3.30)

Estimate (3.28) then gives the crude bound ‖η̃‖Y ≤ CδN , which nevertheless implies
(3.29). The proof is identical if n= 1 and f ∈ Y ′

1 ∩Z . �

3.3 First order approximation

We now begin the construction of an approximate solution of (2.23) in the form
(2.24), (2.25). We recall that, for an exact solution, the stream function is determined
by the relation (2.20), which we write in the compact form φ = BSε[η]. For our
approximate solution, we expand the Biot-Savart operator as in (3.16), omitting the
constant term in the right-hand side. We thus obtain the formal relation

∞∑

m=0

εmBSm

[ M∑

m=0

εmηm

]

=
M∑

m=0

εmφm +O
(
εM+1) ,
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which we assume to be satisfied order by order in ε, up to orderM . This leads to the
relations φ0 = BS0[η0], φ1 = BS0[η1] + BS1[η0], and more generally

φm = BS0[ηm] + BS1[ηm−1] + · · · + BSm−1[η1] + BSm[η0] . (3.31)

In particular, in view of (2.22) and (3.15), the leading order of our approximation is

η0(R,Z) = 1

4π
e−(R2+Z2)/4 , φ0(R,Z) = 1

2π

(
Lη0

)
(R,Z) , (3.32)

where L is the integral operator (3.14). The stream function φ0 has the expression

φ0(R,Z) = φ0(0)− 1

4π
Ein

(
R2+Z2

4

)

,

where Ein(x) =
∫ x

0

1 − e−t
t

dt , (3.33)

so that φ0 is radial and φ0(R,Z) ∼ −(2π)−1 logρ as ρ := (R2 + Z2)1/2 → +∞.
The value at the origin does not play a big role in our analysis, but can be computed
too, see Sect. A.2

φ0(0) = log(2)

π
+ γE

4π
, where γE is Euler’s constant.

Before proceeding further, we estimate the time derivative of the quantity ε =√
νt/r̄(t) introduced in (2.14). In view of (2.25), we have

t ε̇ = ε

2
− εt ˙̄r
r̄

= ε

2
− εt

r̄

M−1∑

m=0

εm ˙̄rm . (3.34)

At this stage the radial velocity profiles ˙̄rm are not determined yet, but in view of
Remark 2.3 we can anticipate the fact that | ˙̄r| = (�/r0) ·O(δ) as δ→ 0. Since δt =
(r2

0/�) · O(ε2) by Remark 2.2, it follows that r̄(t) = r0
(
1 + O(ε2)

)
and that t ε̇ =

ε/2 +O(ε3) as ε→ 0.
With that observation in mind, we substitute the expansions (2.24), (2.25) into the

evolution equation (2.23), keeping only the terms that are exactly of order ε or εβε .
This gives the relation

{
φ1 , η0

}+ {φ0 , η1
}+ η0∂Zφ0 − r0

�

( ˙̄r0 ∂Rη0 + ˙̄z0 ∂Zη0

)

= δ
[
∂Rη0 + (L− 1

2

)
η1 − t∂tη1

]
. (3.35)

To solve (3.35) we first impose the relation

˙̄r0 = −�δ
r0
, (3.36)
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which ensures that the terms involving ∂Rη0 cancel exactly. We also assume that η1
does not depend on βε , so that ∂tη1 = 0 (this property will be verified later). On
the other hand, from (3.31) with m = 1 we deduce that {φ1 , η0} = {BS0[η1] , η0} +
{BS1[η0] , η0}, where BS0, BS1 are defined in (3.15). Using (3.32) and the definition
(3.19) of the linear operator �, we thus find

{
φ1 , η0

}+ {φ0 , η1
} = 1

2π

({
Lη1 , η0

}+ {Lη0 , η1
})+ {BS1[η0] , η0

}

= �η1 + βε − 1

2π

{
P1η0 , η0

}+ 1

2π

{
LP1η0 , η0

}
,

where in the second line we used the definition (3.15) of BS1 and the fact that Q1 =
−P1 in view of (3.11). Now, elementary calculations that are reproduced in Sect. A.2
show that

{
P1η0 , η0

} = 1

2
∂Zη0 , and

1

2π

{
LP1η0 , η0

} = 1

2
∂Z
(
φ0η0

)
. (3.37)

It follows that we can write (3.35) in the equivalent form

�η1 + δ( 1
2 −L

)
η1 =

( r0
�

˙̄z0 − βε − 1

4π

)
∂Zη0 − 3

2
(∂Zφ0)η0 − 1

2
φ0∂Zη0 . (3.38)

Using the explicit expressions (3.32), (3.33) of the profiles η0, φ0, it is straightfor-
ward to verify that the right-hand side of (3.38), which we denote by −R1, belongs
to Y1 ∩ Z , where Y1, Z are the function spaces defined in (3.21), (3.23). There-
fore, according to Proposition 3.10, the linear equation (3.38) has a unique solution
η1 ∈ Y1 for any δ > 0, and that solution has a well-defined limit as δ→ 0 if and only
if R1 ∈ (ker�)⊥, namely if R1 ∈ Y ′

1. In view of (3.22), this gives the solvability
condition

∫
R2 R1Z dR dZ = 0, which determines uniquely the value of the constant

˙̄z0 in (3.38). The calculations are reproduced in Sect. A.2, and yield the following
expression of the vertical velocity to leading order

˙̄z0 = �

4πr0

(
βε − 1 + 2v

)
, where v = 3

4
log(2)+ 1

4
γE + 1

4
. (3.39)

Here again γE = 0,5772 . . . denotes Euler’s constant.

Remark 3.11 The formula (3.39), including the leading term βε = log(1/ε) and the
correct value of the constant 2v− 1, was established by Saffman [56], see also Fuku-
moto & Moffatt [31].

We assume henceforth that ˙̄z0 is given by (3.39), so that (3.38) reduces to

�η1 + δ( 1
2 −L

)
η1 = v

2π
∂Zη0 − 3

2
(∂Zφ0)η0 − 1

2
φ0∂Zη0 , (3.40)

where the right-hand side −R1 now belongs to Y ′
1 ∩ Z and is independent of ε.

Equation (3.40) is of the form (3.27), and can be solved using Proposition 3.10. For
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our purposes, it is sufficient to consider the approximate solution corresponding to
the choice N = 2 in (3.29), which reads

η1(R,Z) = Rη10(ρ)+ δZ η11(ρ) , ρ =
√
R2 +Z2 , (3.41)

where �(R η10) = −R1 and �(Z η11) = (L − 1
2 )(R η10). Note that η1 ∈ Y ′ ∩ Z ,

which implies in particular that the functions η10, η11 are smooth and have a Gaus-
sian decay at infinity. The corresponding stream function φ1 = BS0[η1] + BS1[η0] is
computed in Sect. A.2 and takes the form

φ1(R,Z,βε) = βε − 1

4π
R+ R

2
φ0 − ∂Rφ0 +Rφ10(ρ)+ δZ φ11(ρ) , (3.42)

where Rφ10 = BS0[Rη10] and Zφ11 = BS0[Zη11]. One can check that the functions
φ10, φ11 are smooth and decay at least like 1/ρ2 as ρ→ +∞. Note that φ1 involves
the time-dependent term βε = log(1/ε), so that ∂tφ1 �= 0. With the choices (3.36),
(3.39), (3.41), and (3.42), the relation (3.35) is not satisfied exactly, but the difference
of both members is O(δ2) in the topology of Z , which is all we need.

3.4 Second order approximation

We next compute the second order terms in the asymptotic expansion (2.24). As we
shall see, it is consistent at this stage to take

˙̄r1 = ˙̄z1 = 0 , (3.43)

so we make that assumption from now on. As before, we deduce from (3.34), (3.36),
(3.43) that r̄(t)= r0

(
1+O(ε2)

)
and t ε̇ = ε/2+O(ε3) as ε→ 0. Substituting (2.24),

(2.25) into (2.23) and keeping only the terms involving ε2 or ε2βε , we obtain the
relation
{
φ2 , η0

}+ {φ1 , η1 −Rη0
}+ {φ0 , η2 −Rη1 +R2η0

}− r0

�

( ˙̄r0 ∂Rη1 + ˙̄z0 ∂Zη1

)

= δ
[(
L− 1

)
η2 + ∂R(η1 −Rη0)− t∂tη2

]
. (3.44)

In view of (3.36), the terms involving ∂Rη1 cancel exactly. Moreover, we know from
(3.15), (3.31) that

φ2 = 1

2π

(
Lη2 + (βεP1 +LP1 +Q1

)
η1 + (βεP2 +LP2 +Q2

)
η0

)
, (3.45)

where the notations are introduced in Lemma 3.3. Recalling the definition (3.19) of
the operator �, we can thus write (3.44) in the equivalent form

�η2 + δ
(
t∂tη2 + (1 −L

)
η2

)
+R2 = 0 , (3.46)

where

R2 = 1

2π

{
(βε − 1)P1η1 +LP1η1 , η0

}+ 1

2π

{
βεP2η0 +LP2η0 +Q2η0 , η0

}
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+ {φ1 , η1
}+ (∂Zφ1)η0 + (∂Zφ0)η1 −R

({
φ1 , η0

}+ {φ0 , η1
}+ 2(∂Zφ0)η0

)

+ δ∂R(Rη0)− r0 ˙̄z0

�
∂Zη1 . (3.47)

We have the following result, whose proof is postponed to Sect. A.3

Lemma 3.12 The functionR2 defined in (3.47) belongs to (δY0 +Y2)∩Z and satis-
fies

R2 = 3βε
16π

RZη0 +RZχ20 + δ
(
χ21 + (R2 −Z2)χ22

)
+ δ2RZχ23 , (3.48)

for some (time-independent) radially symmetric functions χ20, χ21, χ22, χ23 ∈ Y0 ∩
Z .

In view of (3.48), we look for a solution of (3.46) in the form η2 = βεη̂20 + η̂21 +
η̂22, where η̂20, η̂21 ∈ Y2 and η̂22 ∈ Y0 do not depend on βε . Inserting this ansatz into
(3.46) and using the fact that t∂tβε = −1/2 +O(ε2), we obtain the system

�η̂20 + δ(1 −L
)
η̂20 + 3

16π
RZη0 = 0 ,

�η̂21 + δ(1 −L
)
η̂21 − δ

2
η̂20 +P2

(
R2 − 3βε

16π
RZη0

)
= 0 ,

δ
(
1 −L

)
η̂22 +P0R2 = 0 ,

(3.49)

where Pn denotes the orthogonal projection in Y onto the subspace Yn. The first two
equations in (3.49) have a unique solution by Proposition 3.10, and as in Sect. 3.3 we
are satisfied with the approximate solution corresponding to (3.29) withN = 2. Since
P0R2 = δχ21 by (3.48), the third equation reduces to (1 − L)η̂22 + χ21 = 0, which
also has a unique solution due to Proposition 3.6. We conclude that we can choose η2

in the form

η2(R,Z,βε) = βε

(
(R2−Z2)η20 + δRZη21

)
+ (R2−Z2)η22 + δRZη23 + η24 ,

(3.50)
where all functions η2j belong to Y0 ∩ Z . Using (3.45) and the calculations at the
beginning of Sect. A.3, we obtain a similar expression for the corresponding stream
function

φ2(R,Z,βε)= βε
(
(R2−Z2)φ20 + δRZφ21

)
+ (R2−Z2)φ22

+ δRZφ23 + βεφ24 + φ25 , (3.51)

where the functions φ2j are radially symmetric and belong to S∗(R2). With these
choices, the left-hand side of (3.46) is of size O(βεδ2 + ε2δ) in the topology of Z .
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3.5 Third order approximation

The third order in the asymptotic expansion (2.24) can be computed in a similar way.
According to (3.36), (3.43) and Remark 2.3, we have r̄(t)= r0

(
1 − ε2 +O(ε4−)

)
as

ε→ 0, and using (3.34) we deduce that t ε̇ = ε/2 + ε3 +O(ε5−). So, if we substitute
(2.24), (2.25) into (2.23) and keep only the terms involving ε3 or ε3βε , we find

{
φ3 , η0

}+ {φ2 , η1 −Rη0
}+ {φ1 , η2 −Rη1 +R2η0

}

+ {φ0 , η3 −Rη2 +R2η1 −R3η0
}

− r0

�

( ˙̄r0 ∂Rη2 + ( ˙̄r2−˙̄r0
)
∂Rη0 + ˙̄z0 ∂Zη2 + ( ˙̄z2−˙̄z0

)
∂Zη0

)

= δ
[(
L− 3

2

)
η3 + ∂R(η2 −Rη1 +R2η0)− t∂tη3 − η1

]
. (3.52)

On the other hand, using (3.31) with m= 3 and (3.15), we obtain

φ3 =
3∑

m=0

BSm[η3−m] = 1

2π
Lη3 + 1

2π

3∑

m=1

(
(βε +L)Pm +Qm

)
η3−m , (3.53)

where the polynomials Pm,Qm are defined in (3.11) for m ≤ 2 and in (A.19) for
m= 3. We can thus write (3.52) in the form

�η3 + δ
(
t∂tη3 + ( 3

2 −L
)
η3

)
+R3 = 0 , (3.54)

where

R3 = 1

2π

{ 3∑

m=1

(
(βε +L)Pm +Qm

)
η3−m , η0

}
+ {φ2 , η1 −Rη0

}

+ {φ1 , η2 −Rη1 +R2η0
}− {φ0 ,Rη2 −R2η1 +R3η0

}

− r0

�

(( ˙̄r2 − ˙̄r0
)
∂Rη0 + ( ˙̄z2 − ˙̄z0

)
∂Zη0 + ˙̄z0∂Zη2

)

+ δ∂R
(
Rη1 −R2η0

)+ δη1 .

(3.55)

Lemma3.13 The functionR3 defined in (3.55) belongs to (Y1 +Y3)∩Z and satisfies

R3 = βε

(
R2Zχ30 +Zχ31

)
+R2Zχ32 +Zχ33 +O(δ) , (3.56)

for some (time-independent) radially symmetric functions χ30, χ31, χ32, χ33 ∈ Y0 ∩
Z .

The proof of Lemma 3.13 is a direct calculation that is briefly outlined in Sect. A.4.
In particular we verify there that the quantity R3 does not contain any factor β2

ε ,
which is perhaps surprising since φ1, φ2, and η2 all contain at least one term multi-
plied by βε . We do not need the expression of the O(δ) terms in (3.56), but they can
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be computed too and are found to be of the form δβε
(
R3χ̃30 + Rχ̃31

)+ δ(R3χ̃32 +
Rχ̃33

)
, where χ̃3j are radially symmetric functions. Finally we mention that R3 also

includes terms of the form (3.56) that are multiplied by δ2.
As can be seen from the last line of (3.55), there is a unique way to choose the

quantities ˙̄r2 and ˙̄z2 so that R3 ∈ Y ′
1 +Y3, where Y ′

1 is the subspace defined in (3.22).
In view of (3.56), (3.36), (3.39), the velocities obtained in this way satisfy

r0

�
˙̄r2 = (

c1βε + c2
)
δ ,

r0

�
˙̄z2 = c3βε + c4 +O(δ2) , (3.57)

for some constants c1, c2, c3, c4. Now, decomposing R3 = βεR31 + R32 where
R31,R32 are independent of βε , we look for a solution of (3.54) in the form
η3 = βεη̂31 + η̂32 where

�η̂31 + δ( 3
2 −L

)
η̂31 +R31 = 0 ,

�η̂32 + δ( 3
2 −L

)
η̂32 − δ

2
η̂31 +R32 = 0 .

(3.58)

Since R31,R32 ∈ Y ′
1 + Y3, both equations in (3.58) can be solved using Proposi-

tion 3.10. However, at this stage, it is sufficient to use the crude approximation cor-
responding to N = 1 in (3.29). This means that we can determine our profiles by
solving the equations �η̂3j + R3j = 0 for j = 1,2 using Proposition 3.8. We thus
obtain an approximate solution of (3.54) of the form

η3(R,Z,βε) = βε

(
R3η30 +Rη31

)
+R3η32 +Rη33 , (3.59)

where all functions η3j belong to Y0 ∩Z . Using (3.53) we deduce the corresponding
expression of the stream function

φ3(R,Z,βε) = βε

(
R3φ30 +Rφ31

)
+R3φ32 +Rφ33 , (3.60)

where the functions φ3j are radially symmetric and belong to S∗(R2). Note that
(3.60) does not contain any factor β2

ε . With the choices (3.59), (3.60), the left-hand
side of (3.54) is of size O(βεδ) in the topology of Z .

3.6 Fourth order approximation

Finally we compute the fourth order approximation, which is the final step in our
construction. No modification of the vortex speed is needed at this stage, so we can
take

˙̄r3 = ˙̄z3 = 0 . (3.61)

The full expansion of the vortex speed is therefore

˙̄r(t) = ˙̄r0 + ε2 ˙̄r2(βε) , ˙̄z∗(t) = ˙̄z0(βε)+ ε2 ˙̄z2(βε) , (3.62)
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where ˙̄r0, ˙̄z0 are defined in (3.36), (3.39) and ˙̄r2, ˙̄z2 satisfy (3.57). As is easily verified,
this implies that r̄(t)= r0

(
1−ε2 +O(ε4βε)

)
and t ε̇ = ε/2+ε3 +O(ε5βε) as ε→ 0.

We look for an approximate solution of (2.23) of the form

ηapp(R,Z, t) =
4∑

m=0

εmηm(R,Z,βε) , φapp(R,Z, t) =
4∑

m=0

εmφm(R,Z,βε) ,

(3.63)
where the profiles ηm,φm for m≤ 3 have been constructed in the previous steps, and
η0, η1, φ0 are actually independent of βε . In analogy with (3.53), we have

φ4 = 1

2π
Lη4 + 1

2π

4∑

m=1

((
βε +L)Pm +Qm

)
η4−m , (3.64)

where the polynomials Pm, Qm are defined in (3.11) for m≤ 2, in (A.19) for m= 3,
and in (A.20) for m= 4. Replacing (3.62), (3.63), (3.64) into (2.23) and proceeding
as in the previous sections, we obtain the following equation for the profile η4

�η4 + δ
(
t∂tη4 + (2 −L

)
η4

)
+R4 = 0 , (3.65)

where

R4 = 1

2π

{ 4∑

m=1

(
(βε +L)Pm +Qm

)
η4−m , η0

}

+ {φ3 , η1 −Rη0
}+ {φ2 , η2 −Rη1 +R2η0

}

+ {φ1 , η3 −Rη2 +R2η1 −R3η0
}− {φ0 ,Rη3 −R2η2 +R3η1 −R4η0

}

− r0

�

(( ˙̄r2 − ˙̄r0
)
∂Rη1 + ( ˙̄z2 − ˙̄z0

)
∂Zη1 + ˙̄z0∂Zη3

)

+ δ∂R
(
Rη2 −R2η1 +R3η0

)+ 2δη2 . (3.66)

Lemma 3.14 The function R4 defined in (3.66) belongs to (δY0 +Y2 +Y4)∩Z and
satisfies

R4 =
2∑

k=0

βkε

(
R3Zχ4k +RZχ5k

)
+O(δ) , (3.67)

for some (time-independent) radially symmetric functions χ4k,χ5k ∈ Y0 ∩Z .

The proof of Lemma 3.14 is the same as that of Lemma 3.13, and can therefore
be omitted. The only important observation is that the projection of R4 onto the
subspace Y0 is of size O(δ). This can be seen as a consequence of Remark 2.3 when
δ = ˙̄r = 0, all profiles ηm, φm are even functions of Z, so that the quantities Rm are
odd in Z.
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We now project Eq. (3.65) on the subspace Ym for m = 0,2,4, and compute an
(approximate) solution Pmη4 invoking either Proposition 3.8 (form= 2,4) or Propo-
sition 3.6 (for m= 0). In the latter case, we use the observation that P0R4 = O(δ) to
show that P0η4 is regular in the limit δ→ 0. Altogether, we obtain an approximate
solution of (3.65) in the form

η4(R,Z,βε) =
2∑

k=0

βkε

(
R2Z2η4k + (R2 −Z2)η5k + η6k

)
, (3.68)

where the functions ηjk ∈ Y0 ∩Z are radially symmetric and time-independent. Us-
ing (3.64) we deduce a similar expression for the stream function

φ4(R,Z,βε) =
2∑

k=0

βkε

(
R2Z2φ4k + (R2 −Z2)φ5k + φ6k

)
, (3.69)

and with these choices the left-hand side of (3.65) is of size O(β2
ε δ) in the topology

of Z .
Since we have now completed the construction of our approximate solution, we

explain precisely how to define the vortex radius r̄(t) and the time-dependent aspect
ratio ε(t)= √

νt/r̄(t). In view of (3.36), (3.57), and (3.62), the function r̄(t) satisfies
the differential equation

˙̄r(t)= −�δ
r0

(
1 − ε(t)2(c1βε(t) + c2

))

= −�δ
r0

(

1 − νt

r̄(t)2

(
c1 log

r̄(t)√
νt

+ c2

))

, (3.70)

with initial condition r̄(0) = r0. The right-hand side of (3.70) is a smooth function
of r̄ > 0, uniformly in t ∈ (0, Tdif), and also a C0,α function of time for any α < 1.
Applying the Cauchy-Lipschitz theorem, we obtain a unique local solution of (3.70),
which can be extended as long as r̄(t) > 0. Now, if we define ε(t) = √

νt/r̄(t), it
follows that r̄(t)= r0

(
1 − ε(t)2 +O(ε4βε)

)
, and it is easy to see that the solution of

(3.70) is well-defined and has the required properties on the time intervals relevant
for our considerations.

Remark 3.15 It is useful to notice that the approximate solution ηapp given by (3.63)
satisfies, for all t > 0,

∫

R2
ηapp(R,Z, t)dR dZ = 1 , (3.71)

∫

R2
Rηapp(R,Z, t)dR dZ =

∫

R2
Zηapp(R,Z, t)dR dZ = 0 . (3.72)

Indeed, at each stepm≥ 1, the vorticity profile ηm is constructed by solving equations
of the form �ηm + (m2 −L

)
ηm +Rm = 0, where the source term Rm has vanishing

integral (by definition) and zero first order moments (due to the choice of the speeds
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˙̄rm−1, ˙̄zm−1). These properties are inherited by the profile ηm, due to Proposition 3.6,
and in view of (3.32) this leads to (3.71), (3.72).

3.7 Estimate of the remainder

This section is devoted to the proof of Proposition 2.5. Our task is to estimate the
remainder (2.29), where η∗, φ∗ are defined in (2.28), and for this we need bounds on
the derivatives of the stream function in terms of the vorticity. If φ = BSε[η], where
the Biot-Savart operator is defined in (2.20), we have the formulas

∂Zφ(R,Z) = − 1

2π

∫

�ε

√
(1+εR)(1+εR′) F̃ (s) (Z−Z′) η(R′,Z′)

(R−R′)2 + (Z−Z′)2
dR′ dZ′ ,

∂Rφ(R,Z) = − 1

2π

∫

�ε

√
(1+εR)(1+εR′) F̃ (s) (R−R′) η(R′,Z′)

(R−R′)2 + (Z−Z′)2
dR′ dZ′

+ ε

4π

∫

�ε

√
1+εR′

√
1 + εR

(
F(s)+ F̃ (s))η(R′,Z′)dR′ dZ′ , (3.73)

where F̃ (s)= −2sF ′(s), see [34, Sect. 4.2]. Here, as in (3.12), we use the shorthand
notation

s = ε2D2

(1+εR)(1+εR′)
≡ ε2 (R−R′)2 + (Z−Z′)2

(1+εR)(1+εR′)
. (3.74)

In view of (2.7), we have F̃ (s)→ 1 as s→ 0 and F̃ (s)= O(s−3/2) as s→ +∞.
Throughout the proof, we fix t > 0 and we assume that the parameters ε =√
νt/r̄(t) and δ = ν/� are small enough. By construction the vorticity η∗(R,Z, t)

defined by (2.28) vanishes identically when ρ := (R2+Z2)1/2 ≥ 2ε−σ0 , so we can
assume henceforth that ρ ≤ 2ε−σ0 . In that region, we have for any γ ∈ (0,1) the a
priori bounds

∑

|α|≤2

|∂αη∗(R,Z, t)| ≤ C e−γρ2/4 ,
∑

|α|=1

|∂αφ∗(R,Z, t)| ≤ C , (3.75)

where α = (α1, α2) ∈ N
2 and ∂α = ∂α1

R ∂
α2
Z . Indeed, the first estimate in (3.75) holds

because η∗ is obtained by truncating the asymptotic approximation ηapp(R,Z, t)

which belongs to the space Z defined in (3.23). The second estimate can then be
obtained using the expressions (3.73) with φ = φ∗ and η = η∗. To see this, we
first observe that 1 + εR ≈ 1 and 1 + εR′ ≈ 1 in (3.73), because both quantities
ρ and ρ′ := (R′2+Z′2)1/2 are smaller than 2ε−σ0 � ε−1. If we use the estimates
|F̃ (s)| ≤ C in the first two lines of (3.73) and |F(s)+ F̃ (s)| ≤ Cs−1/2 in the third
line, we thus obtain

|∂Rφ∗(R,Z, t)| + |∂Zφ∗(R,Z, t)| ≤ C

∫

R2

|η∗(R′,Z′, t)|
√
(R−R′)2 + (Z−Z′)2

dR′ dZ′ ≤ C ,
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which concludes the proof of (3.75). Finally, since

t∂tη∗(R,Z, t)= χ0
(
εσ0ρ

)
t∂tηapp(R,Z, t)

+ σ0 ε
σ0ρχ ′

0

(
εσ0ρ

)
ηapp(R,Z, t) t∂t log(ε) ,

it follows from the expressions given in Sects. 3.3–3.6 that t∂tη∗ satisfies the same
bound as η∗ in (3.75). Summarizing, in view of (3.75), the remainder Rem(R,Z, t)
satisfies

eγ0ρ
2/4 |Rem(R,Z, t)| ≤ C δ−1(1 + ρ) e−(γ−γ0)ρ

2/4 , when ρ ≤ 2ε−σ0 , (3.76)

for any γ0 ∈ (0,1). If we assume that γ ∈ (γ0,1), we conclude that the right-hand
side of (3.76) is O(δ−1ε∞) if ρ ≥ ε−σ0 . So from now on we may concentrate on the
inner region ρ ≤ ε−σ0 , where η∗ = ηapp is given by (3.63).

In that region we decompose the stream function as φ∗ = BSε[χ0 ηapp] = φ0∗ −
φ1∗ + φ2∗ , where

φ0∗ =
4∑

m=0

εmBSm[ηapp] , φ1∗ =
4∑

m=0

εmBSm[(1−χ0) ηapp] ,

φ2∗ =
∞∑

m=5

εmBSm[χ0 ηapp] .

Here χ0 is a shorthand notation for χ0(ε
σ0ρ). The convergence of the series defining

φ2∗ is easily justified using Lemmas 3.1 and 3.3, if we observe that both inequalities
in (3.12) are satisfied since ρ,ρ′ � ε−1. The principal term BS5[χ0 ηapp] can be
estimated using the explicit representation (3.15), where P5,Q5 are homogeneous
polynomials of degree 5, and this leads to a bound of the form

|∂Rφ2∗(R,Z, t)| + |∂Zφ2∗(R,Z, t)| ≤ Cε5βε (1 + ρ)5 , ρ ≤ ε−σ0 ,

where βε = log(1/ε). Moreover |∂Rφ1∗| + |∂Zφ1∗| = O(ε∞) because (1 − χ0)ηapp =
O(ε∞). Finally, in view of (3.31) and (3.63), we have the identity

φ0∗ = φapp +
8∑

m=5

εm
4∑

k=m−4

BSk[ηm−k] .

from which we easily deduce

|∂R
(
φ0∗ − φapp

)| + |∂Z
(
φ0∗ − φapp

)| ≤ Cε5β3
ε (1 + ρ)5 .

Collecting the estimates above, it is straightforward to verify that the remainder (2.29)
satisfies, when ρ ≤ ε−σ0 ,

∣
∣Rem(R,Z, t)− R̂em(R,Z, t)

∣
∣ ≤ Cδ−1ε5β3

ε (1 + ρ)5 e−γρ2/4 , (3.77)
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where R̂em(R,Z, t) is the quantity defined for all (R,Z) ∈ R
2 by the formula

Lηapp + ε∂R
(
S4ηapp

)− t∂tηapp − 1

δ

{
φapp , S4ηapp

}

+ εr̄

δ�

( ˙̄r ∂Rηapp + ˙̄z∗ ∂Zηapp

)
, (3.78)

with S4 = 1 − εR + (εR)2 − (εR)3 + (εR)4.
Now the crucial observation is that the asymptotic approximation (2.24), (2.25)

was constructed precisely so as to make the quantity (3.78) small in the topology of
Z . More precisely, the results of Sects. 3.3–3.6 can be rephrased as follows:

δ R̂em(R,Z, t) = OZ
(
εδ2 + ε2βεδ

2 + ε3βεδ + ε4β2
ε δ+ ε5β3

ε

)
. (3.79)

Inside the parenthesis in the right-hand side, the first four terms represent what re-
mains from the quantities εm

(
�ηm + δ[t∂t + m

2 − L
]
ηm + Rm) for m = 1,2,3,4

after the profiles ηm have been determined, and the last one corresponds to those
terms in (3.78) which are of order O(ε5) or higher and were therefore not considered
in the construction of ηapp. Combining (3.77), (3.79) and using Young’s inequality,
we obtain

sup
ρ≤ε−σ0

eγ0ρ
2/4 |Rem(R,Z, t)| ≤ C

δ

(
εδ2 + ε3βεδ + ε5β3

ε

)
≤ C

(
εδ + εγ5δ−1) ,

for any γ5 < 5. This concludes the proof of (2.30). �

3.8 The Eulerian approximation

As was already observed in Remark 2.3, if we set δ = ˙̄r = 0 in the expansion (2.24),
we obtain an approximate solution ηEapp, φ

E
app,

˙̄zE of equation (2.26), which is nothing

but the stationary Euler equation in a frame moving with (constant) velocity ˙̄zE ez.
As is well known [3], steady states of the Euler system are often characterized by a
global functional relation between the vorticity and the stream function. In our case,
in view of (2.26), we expect finding a function �ε : R+ →R such that

φEapp(R,Z)−
r0 ˙̄zE
2�

(1 + εR)2 = �ε

(
ηEapp(R,Z)

1 + εR
)

+O
(
εM+1−) , (3.80)

for all (R,Z) ∈ R
2 such that ρ := √

R2 +Z2 � ε−1.
In this section, we first verify that a relation of the form (3.80) holds to second

order, namely with M = 2. Using the expressions (3.41), (3.42), (3.50), (3.51) with
δ = 0 and simplifying somehow the notation, we can write our approximate solution
in the form

ηEapp(R,Z) = η0 + εRη1 + ε2(R2−Z2)η2 + ε2η3 ,

φEapp(R,Z) = φ0 + εRφ1 + ε2(R2−Z2)φ2 + ε2φ3 ,
(3.81)
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where η0, φ0 are given by (3.32), and the profiles η1, η2, η3 ∈ Z and φ1, φ2, φ3 ∈
S∗(R2) are all radially symmetric. Note that ηm,φm may include factors of βε =
log(1/ε) whenm≥ 1, but this dependence is not explicitly indicated. We also expand
the unknown function �ε in (3.80) in powers of ε

�ε(s) = �0(s)+ ε�1(s)+ ε2�2(s) . (3.82)

Finally, to simplify the writing, we denote

ω = 1

4π

(
βε − 1 + 2v

) = r0 ˙̄zE
�

+O(ε2βε) , (3.83)

where the last equality follows from (3.39), (3.43), (3.57).
If we consider equality (3.80) to leading order in ε, thus neglecting all terms that

are O(ε) or O(εβε), we obtain the relation φ0 − ω/2 = �0(η0), which determines
the principal term �0 in the expansion (3.82). In view of (3.32), (3.33) we thus have

�0(s) = φ0(0)− ω

2
− 1

4π
Ein
(

log
1

4πs

)
, s > 0 . (3.84)

The constant in (3.84) has no relevance, but it is important to note that �0(s) ∼
− 1

4π log log 1
s

as s→ 0. For later use we define

A(ρ) = �′
0

(
η0(ρ)

) = ∂Rφ0

∂Rη0
= ∂Zφ0

∂Zη0
= 4

ρ2

(
eρ

2/4 − 1
)
, ρ > 0 . (3.85)

Incidentally we observe that A(ρ)= 1/h(ρ) where h is defined in (3.24).
To the next order in ε, we deduce from (3.80) the relation

(φ1 −ω)R = �′
0(η0)(η1 − η0)R +�1(η0) , (3.86)

which can be satisfied only if �1 = 0, because �1(η0) is the only radially symmetric
term in (3.86). Dividing by R, we obtain the equality φ1 − ω = A(η1 − η0), which
happens to be satisfied in view of our definitions of the profiles η1, φ1. This fact can
be verified by following carefully the calculations in Sect. 3.3.

Finally we exploit (3.80) to order ε2, keeping in mind that �1 = 0. In this calcula-
tion, we neglect the O(ε2βε) correction in (3.83), because this term would only add
an irrelevant constant to the function �2. We thus obtain the relation

(R2−Z2)φ2 + φ3 − ω

2
R2 = �′

0(η0)
(
(R2−Z2)η2 + η3 + (η0 − η1)R

2
)

+ 1

2
�′′

0(η0)(η0 − η1)
2R2 +�2(η0) ,

where it is useful to substitute R2 = 1
2 (R

2+Z2)+ 1
2 (R

2−Z2). The terms containing
R2−Z2 cancel exactly due to the identity

φ2 − 1

2
� −Aη2 = 0 ,
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where � = ω

2
+�′

0(η0)(η0 − η1)+ 1

2
�′′

0(η0)(η0 − η1)
2 ,

which is satisfied by definition of the profiles φ2, η2, as can be verified by following
the calculations in Sect. 3.4. We are thus left with a relation involving only radially
symmetric terms

φ3 − 1

2
(R2+Z2)� −Aη3 = �2(η0) , (3.87)

which provides the definition of the second order correction�2 in (3.82). Summariz-
ing, if �ε is defined by (3.82) with �1 = 0, �0 given by (3.84) and �2 by (3.87), we
have shown that (3.80) holds withM = 2.

We now come back to the approximate solution η∗, φ∗ of (2.23) constructed in
Sects. 3.3–3.6, and we show that it also satisfies a relation of the form (3.80), in a
sufficiently small region near the origin. To formulate that result, we denote, for all
(R,Z) ∈�ε ,

 (R,Z, t) = φ∗(R,Z, t)− r̄ ˙̄z∗
2�
(1 + εR)2 −�ε

(
η∗(R,Z, t)

1 + εR
)

, (3.88)

Proposition 3.16 There exist σ1 ∈ (0, σ0) and N ∈ N such that, for any γ3 < 3, the
quantity  defined by (3.88) satisfies, for some C > 0,

|∂R (R,Z, t)| + |∂Z (R,Z, t)| ≤ C(εδ + εγ3)(1 + ρ)N , ρ ≤ ε−σ1 , (3.89)

whenever ε and δ are small enough.

Proof The idea is to compare  with the second order Eulerian approximation

 Eapp(R,Z, t) = φEapp(R,Z, t)−
r0 ˙̄zE
2�

(1 + εR)2 −�ε
(
ηEapp(R,Z, t)

1 + εR
)

, (3.90)

which is of size O(ε3−) in view of (3.80). Here we consider both quantities ηEapp, φ
E
app

as time-dependent, because we deal with the viscous case where ε = √
νt/r̄(t). We

already estimated the difference φ∗ − φapp in the proof of Proposition 2.5, and by
construction we know that φapp = φEapp +O(εδ+ ε3βε). These arguments lead to the
bound

|∂R
(
φ∗ − φEapp

)| + |∂Z
(
φ∗ − φEapp

)| ≤ C
(
εδ + ε3βε

)
(1 + ρ)5 , ρ ≤ ε−σ0 . (3.91)

On the other hand, we know that r̄(t)= r0(1 +O(ε2)), and in view of (3.43), (3.57)
the difference between the vertical speed ˙̄z∗ and its second order Eulerian approxi-
mation ˙̄zE is of size (�/r0) ·O(ε2βε). We thus find

∣
∣
∣
r̄ ˙̄z∗
2�

− r0 ˙̄zE
2�

∣
∣
∣
∣
∣∂R(1 + εR)2∣∣ ≤ Cε3βε , ρ ≤ ε−σ0 . (3.92)
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Finally η∗ is just a truncation of ηapp and by definition ηapp − ηEapp = O(εδ + ε3βε)

in the topology of Z . This gives the following bound
∑

|α|≤1

∣
∣∂α
(
η∗ − ηEapp

)
(R,Z, t)

∣
∣ ≤ C

(
εδ + ε3βε

)
(1 + ρ)Ne−ρ2/4 ,

ρ ≤ ε−σ0 , (3.93)

for some N ∈ N.
At this point we observe that η∗ −η0 = O(ε) in the topology of Z when ρ ≤ ε−σ0 .

In particular, there exists N ∈ N such that |η∗ − η0| ≤ Cε(1 + ρ)Nη0 in that region,
and one can verify that N = 3 is in fact sufficient. If we choose σ1 > 0 small enough
so that Nσ1 < 1, it follows that

1

2
η0(ρ) ≤ η∗(R,Z, t)

1 + εR ≤ 2η0(ρ) , ρ ≤ ε−σ1 , (3.94)

whenever ε > 0 is small enough. The same estimate holds for the Eulerian approxi-
mation ηEapp.

To conclude the proof of Proposition 3.16, we need bounds on the derivatives of
the function �ε defined in (3.82). We begin with the leading order term �0 which is
given by the explicit formula (3.84). We have

�′
0

( s

4π

)
= 1 − s
s log(1/s)

,
1

4π
�′′

0

( s

4π

)
= − s − 1 + log(1/s)

s2
(
log(1/s)

)2 , s > 0 .

Thanks to (3.94) we only need to evaluate these expressions when the argument
s/(4π) takes its values in the interval

[ 1
2η0(ρ),2η0(ρ)

]
. In view of Lemma 3.17

below, there exists C > 1 such that, for all λ ∈ [1/2,2] and all ρ > 0,

A(ρ)

C
≤ �′

0

(
λη0(ρ)

) ≤ CA(ρ) ,
∣
∣�′′

0

(
λη0(ρ)

)∣
∣ ≤ CB(ρ) , (3.95)

where A(ρ) is defined in (3.85) and

B(ρ) = −�′′
0(η0(ρ)) = 16π

ρ4

(
(ρ2 − 4)eρ

2/2 + 4eρ
2/4
)
, ρ > 0 . (3.96)

The second order contribution �2 is not known explicitly, but from the definition
(3.87), where the left-hand side belongs to S∗(R2), we deduce that there exist C > 0
and N ∈N such that

∣
∣�′

2

(
λη0(ρ)

)∣∣ ≤ CA(ρ)(1 + ρ)N ,
∣
∣�′′

2

(
λη0(ρ)

)∣
∣ ≤ CB(ρ)(1 + ρ)N ,

(3.97)

for all ρ > 0 and all λ ∈ [1/2,2].
Now, if ∂α = ∂R or ∂Z , we decompose

∂α�ε

( η∗
1+εR

)
− ∂α�ε

( ηEapp

1+εR
)

= �′
ε

( η∗
1+εR

)(
∂α
( η∗

1+εR
)

− ∂α
( ηEapp

1+εR
))
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+
(
�′
ε

( η∗
1+εR

)
−�′

ε

( ηEapp

1+εR
))
∂α
( ηEapp

1+εR
)
,

and we estimate the right-hand side using (3.93), (3.95), and (3.97). Taking into ac-
count the preliminary bounds (3.91), (3.92), we arrive at an estimate of the form
∑

|α|=1

∣
∣∂α
(
 (R,Z, t)− Eapp(R,Z, t)

)∣
∣ ≤ C(εδ + ε3βε)(1 + ρ)N , ρ ≤ ε−σ1 .

As was already mentioned, the approximation  Eapp(R,Z, t) is O(ε3−) in the topol-

ogy of S∗(R2), so altogether we arrive at (3.89). �

In the argument above we used the following elementary result, whose proof can
be omitted.

Lemma 3.17 Let f,g : (0,+∞)→ (0,+∞) be defined by

f (s) = 1 − s
s log(1/s)

, g(s) = s − 1 + log(1/s)

s2
(
log(1/s)

)2 = −f ′(s) , s > 0 .

Then given any � > 1 there exists C > 1 such that, for any λ ∈ [�−1,�] and any
s > 0,

1

C
≤ f (λs)

f (s)
≤ C ,

1

C
≤ g(λs)

g(s)
≤ C .

4 Energy estimates and stability proof

In the previous section we constructed an approximate solution η∗ of the rescaled
vorticity equation (2.15) which corresponds, in the original variables, to a sharply
concentrated vortex ring of radius r̄(t) located at the approximate vertical position
z̄∗(t). Our goal is now to control the difference between this approximation and the
actual solution η of (2.15) with initial data η0, which is located at the modified vertical
position z̄(t)= z̄∗(t)+δz̃(t) given by (2.32). This will conclude the proof of our main
results, Theorems 1.1 and 2.6.

Our starting point is the evolution equation (2.33) for the perturbation η̃ defined in
(2.31), which can be written in the form

t∂t η̃+ 1

δ

{
φ∗ , ζ̃

}+ 1

δ

{
φ̃ , ζ∗

}+ {φ̃ , ζ̃}− εr̄

δ�

( ˙̄r ∂Rη̃+ ˙̄z∗ ∂Zη̃
)

= Lη̃+ ε∂Rζ̃ + 1

δ
Rem(R,Z, t)+ εr̄ ˙̃z

δ�

(
∂Zη∗ + δ∂Zη̃

)
,

(4.1)

where to simplify the notation we use the letter ζ to denote the potential vorticity:

ζ̃ (R,Z, t) = η̃(R,Z, t)

1 + εR , ζ∗(R,Z, t) = η∗(R,Z, t)
1 + εR . (4.2)
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From our previous work [34] we know that Eq. (4.1) has a unique solution η̃, in an
appropriate weighted L2 space, with zero initial data. Our goal is to control the evolu-
tion of that solution on a large time interval, uniformly with respect to the viscosity in
the limit ν→ 0. This is not an easy task, because several terms in (4.1) are multiplied
by the Reynolds number δ−1 = �/ν, which becomes arbitrarily large in the regime
we consider. As was explained in the introduction, we shall use energy estimates to
control the solution of (4.1), but a few preliminary steps are necessary before starting
the actual calculations.

4.1 Control of the lowest order moments

To implement our strategy based on energy estimates, we need a precise information
on the lowest order moments of the solution of (4.1). We first define, for all t > 0,

μ0(t) =
∫

�ε

η̃(R,Z, t)dX , μ1(t) =
∫

�ε

(
R + εR2/2

)
η̃(R,Z, t)dX , (4.3)

where dX = dR dZ denotes the Lebesgue measure in R
2.

Lemma 4.1 The moments defined in (4.3) satisfy μ0(t) = O(ε∞δ−1) and μ1(t) =
O(ε + εγ5δ−2) for any γ5 < 1, whenever ε and δ are small enough.

Proof The conclusion can be obtained by direct calculations, but we find it more
illuminating to use the conserved quantities of the original equation (2.3). The first
one is the total circulation

M(t)=
∫

�

ωθ(r, z, t)dr dz = �

∫

�ε

(
η∗ + δη̃)(R,Z, t)dX

= �

∫

�ε

η∗ dX+ �δμ0(t) , (4.4)

which satisfies M(0) = � and is almost constant in time. In fact it is proved in [34,
Sect. 4.4] that 0 ≤ 1−M(t)/� ≤ C exp(−c/ε2) for some positive constants C and c.
Moreover, since the approximate solution ηapp lies in the space Z defined by (3.23),
it follows from (2.28) and (3.71) that

∫
�ε
η∗ dX = 1 + O(exp(−c/ε2σ0)). Therefore

μ0(t)= O(exp(−c/ε2σ0) δ−1) by (4.4).
We next consider the total impulse in the vertical direction

I =
∫

�

r2ωθ(r, z, t)dr dz = �r̄(t)2
∫

�ε

(1 + εR)2(η∗ + δη̃)(R,Z, t)dX , (4.5)

which is known to be exactly conserved [33, 49], so that I = �r2
0 for all times. Equal-

ity (4.5) can be rephrased as I/� = I∗(t)+ δr̄(t)2μ(t), where

I∗(t) = r̄(t)2
∫

�ε

(1 + εR)2η∗(R,Z, t)dX , μ(t) = μ0(t)+ 2εμ1(t) . (4.6)
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It is not difficult to show that

tI ′∗(t) = −r̄(t)2
∫

�ε

(1 + εR)2 Rem(R,Z, t)dX . (4.7)

The easiest way to establish (4.7) is to observe that the impulse I∗(t) would be con-
served if η∗ was an exact solution of (2.15), so that the remainder Rem(R,Z, t)
defined in (2.29) is the only term that contributes to the evolution of I∗(t). How-
ever equality (4.7) can also be verified by a direct calculation. In any case, since
Rem(R,Z, t) satisfies estimate (2.30) and

∫
�ε

Rem(R,Z, t)dx = O(ε∞), we deduce

from (4.7) that |tI ′∗(t)| ≤ Cr2
0

(
ε2δ + εγ5+1δ−1

)
, hence

|I∗(t)− r2
0 | ≤

∫ t

0
|I ′∗(s)|ds ≤ Cr2

0

∫ t

0

ε(s)2δ + ε(s)γ5+1δ−1

s
ds

≤ Cr2
0

(
ε2δ + εγ5+1δ−1) .

As r2
0 − I∗(t)= δr̄(t)2μ(t), we conclude that μ(t)= O

(
ε2 + εγ5+1δ−2

)
, which gives

the desired estimate for μ1(t). �

It is not clear if the strategy above can be applied to control the first order moment
of the perturbation η̃ with respect to the vertical variable Z. In particular, we are not
aware of any (approximately) conserved quantity that we could use for this purpose.
Instead we choose the modulation parameter z̃(t) in (2.32) so that the vertical moment
vanishes identically

μ2(t) :=
∫

�ε

Z η̃(R,Z, t)dX = 0 . (4.8)

Differentiating (4.8) with respect to time and using (4.1), we obtain the relation

˙̃z(t)
∫

�ε

Z
(
∂Zη∗ + δ∂Zη̃

)
dX = δ�

εr̄

∫

�ε

ZR(R,Z, t)dX , (4.9)

where

R = 1

δ

{
φ∗ , ζ̃

}+ 1

δ

{
φ̃ , ζ∗

}+ {φ̃ , ζ̃}− εr̄

δ�

( ˙̄r ∂Rη̃+ ˙̄z∗ ∂Zη̃
)

−Lη̃− ε∂Rζ̃ − 1

δ
Rem(R,Z, t) .

(4.10)

In view of Lemma 4.1 the integral in the left-hand side of (4.9) is equal to
−1 + O(ε∞), and is therefore bounded away from zero if ε is small enough.
The integral in the right-hand side is a priori of size O(δ−1), but we observe that
R = δ−1�η̃+ O(εδ−1), where � is the linear operator defined in (3.19). Using the
properties established in Proposition 3.6, we see that the leading term gives no con-
tribution

1

4π

∫

R2
Z�η̃ dX = (

Zη0 ,�η̃
)
Y = −(�(Zη0) , η̃

)
Y = 0 ,
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since Zη0 = −2∂Zη0 is in the kernel of�. These considerations, which will be made
rigorous in Sect. 4.8 below, show that the modulation speed ˙̃z is uniquely determined
by (4.9), and suggest that ˙̃z(t) = O(‖η̃‖Xε ) as long as ‖η̃‖Xε remains of size O(1).
In particular δz̃(t) is indeed a small correction to the vertical position of the vortex
ring.

4.2 Definition and properties of the weight function

We now provide the precise definition of the weight function Wε : �ε → (0,+∞)
which appears in the energy functional (2.34). We give ourselves three positive num-
bers σ1, σ2, γ such that

0 < σ1 < σ0 < 1 < σ2 , γ = σ1/σ2 , (4.11)

where σ0 ∈ (0,1) is the cut-off exponent already introduced in (2.28). As we shall
see σ2 > 1 can be chosen arbitrarily, but σ1 > 0 has to be taken sufficiently small. In
particular σ1 should be small enough so that Proposition 3.16 holds.

As in (4.2), if ε > 0 and δ > 0 are sufficiently small, we denote ζ∗ = η∗/(1 + εR),
where η∗ is the approximate solution of (2.15) given by (2.28). We recall that ζ∗
and φ∗ := BSε[η∗] satisfy the relation (2.36), where �ε : R+ → R is the function
constructed in Sect. 3.8. We decompose the domain�ε = {(R,Z) ; 1 + εR > 0

}
into

a disjoint union �′
ε ∪�′′

ε ∪�′′′
ε , where

�′
ε =

{
(R,Z) ∈�ε ; �′

ε(ζ∗(R,Z)) < exp
(
ε−2σ1/4

)}
,

�′′
ε =

{
(R,Z) ∈�ε \�′

ε ; ρ ≤ ε−σ2
}
,

�′′′
ε =

{
(R,Z) ∈�ε ; ρ > ε−σ2

}
.

(4.12)

Here and in what follows, if (R,Z) ∈ R
2, we denote ρ = (R2+Z2)1/2. The domains

�′
ε,�

′′
ε also depend (mildly) on δ, but for simplicity this dependence is not indicated

explicitly.

Lemma 4.2 If ε > 0 is small enough, the inner region �′
ε defined in (4.12) is diffeo-

morphic to a open disk, and there exists κ > 0 such that

{
(R,Z) ; ρ ≤ ε−σ1

}⊂ �′
ε ⊂

{
(R,Z) ; ρ2 ≤ ε−2σ1 + κ log

1

ε

}
. (4.13)

Proof The main properties of the function �ε are established in the proof of Propo-
sition 3.16. In particular, using estimates (3.94), (3.95), (3.97), it is easy to verify
that

1

2
A(ρ) ≤ �′

ε

(
ζ∗(R,Z)

) ≤ 2A(ρ) , when ρ ≤ 2ε−σ1 . (4.14)

Here A(ρ)= (4/ρ2)
(
eρ

2/4 − 1
)
, see (3.85). Since 2A(ε−σ1) < exp(ε−2σ1/4) as soon

as ε−σ1 ≥ 3, we deduce that (R,Z) ∈ �′
ε if ρ ≤ ε−σ1 . Similarly, using the lower
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bound in (4.14), it is easy to verify that the inner region �′
ε is contained in the disk

ρ2 ≤ ε−2σ1 + κ log 1
ε

if κ > 4σ1 and ε > 0 is small enough. Finally �′
ε is diffeomor-

phic to a disk because �′
ε(ζ∗) is C2-close to a strictly increasing radially symmetric

function when ε > 0 is small, see (3.82). �

We next choose a smooth cut-off function χ1 :R → [ 1
2 ,3] such that

χ1(x) = 1

1 + x for |x| ≤ 1

2
, χ ′

1(x) = 0 for |x| ≥ 3

4
. (4.15)

The weight Wε :�ε → (0,+∞) is defined by

Wε(R,Z) = χ1(εR)×

⎧
⎪⎪⎨

⎪⎪⎩

�′
ε

(
ζ∗(R,Z)

)
in �′

ε ,

exp
(
ε−2σ1/4

)
in �′′

ε ,

exp
(
ρ2γ /4

)
in �′′′

ε ,

(4.16)

where γ = σ1/σ2 < 1 and �′
ε,�

′′
ε ,�

′′′
ε are the regions defined in (4.12). In other

words, we assume that Wε = �′
ε(ζ∗)/(1+εR) as long as the numerator remains

smaller than the threshold value exp(ε−2σ1/4). Outside this inner region, the weight
is radially symmetric except for the geometric factor χ1(εR), and the radial profile
remains constant as long as ρ ≤ ε−σ2 before increasing again like exp(ρ2γ /4) when
ρ > ε−σ2 . By construction the function Wε is locally Lipschitz continuous in �ε ,
and smooth in the interior of all three regions (4.12). The (mild) dependence of Wε
upon the parameter δ > 0 is not indicated explicitly. A schematic representation of
the graph of Wε is given in Fig. 2.

Further properties of the weightWε are collected in the following lemma.

Lemma 4.3 There exist positive constants C1,C2 such that, if ε, δ, and σ1 are small
enough, the weight Wε satisfies the uniform bounds

C1 exp
(
ρ2γ /4

) ≤ Wε(R,Z) ≤ C2A(ρ) , (R,Z) ∈�ε , (4.17)

where ρ = (R2+Z2)1/2 and A(ρ) is defined in (3.85). Moreover, given any γ1 < 1
there exists C3 > 0 such that the following estimates hold in the inner region �′

ε

∣
∣Wε(R,Z)−A(ρ)

∣
∣ + ∣

∣∇Wε(R,Z)− ∇A(ρ)∣∣ ≤ C3 ε
γ1A(ρ) . (4.18)

Proof Since 1
2 ≤ χ1(εR) ≤ 3 and exp(ρ2γ /4) ≤ CA(ρ), we deduce from (4.14)

that the bounds (4.17) hold in the inner region �′
ε , as well as in the far field re-

gion �′′′
ε . In the intermediate region �′′

ε we know that ρ ≤ ε−σ2 , which implies
that exp(ρ2γ /4) ≤ exp(ε−2σ1/4) since γ = σ1/σ2, and this gives the lower bound
in (4.17). If ρ ≥ 2ε−σ1 , it is clear that exp(ε−2σ1/4) ≤ A(ρ), which is the desired
upper bound. Finally if (R,Z) ∈ �′′

ε and ρ ≤ 2ε−σ1 , we deduce from (4.14) that
exp(ε−2σ1/4) ≤ �′

ε

(
ζ∗(R,Z)

) ≤ 2A(ρ), which concludes the proof of the upper
bound in (4.17).
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To prove (4.18), we start from the expression (4.16) of the weight Wε in the inner
region �′

ε . We know from (3.85) that A(ρ)=�′
0(η0), where η0 is defined in (3.32).

We thus find

|Wε(R,Z)−A(ρ)
∣
∣

≤ ∣
∣χ1(εR)− 1

∣
∣�′
ε(ζ∗)+

∣
∣�′
ε(ζ∗)−�′

ε(η0)
∣
∣+ ∣∣�′

ε(η0)−�′
0(η0)

∣
∣ . (4.19)

Since χ1(εR) = (1 + εR)−1 when (R,Z) ∈ �′
ε , the first term in the right-hand of

(4.19) is smaller than Cε|R|�′
ε(ζ∗)≤ Cε1−σ1A(ρ). For the second term, we use the

bounds (3.94), (3.95), and (3.97) to obtain
∣
∣�′
ε(ζ∗)−�′

ε(η0)
∣
∣≤ sup

1
2 ≤λ≤2

∣
∣�′′
ε (λη0)

∣
∣ |ζ∗ − η0|

≤ CB(ρ)(1 + ρ)Nεη0 ≤ Cεγ1A(ρ) ,

where in the last inequality we assumed that σ1 > 0 is small enough so that Nσ1 ≤
1 − γ1. The last term in (4.19) is bounded by ε2|�′

2(η0)| ≤ Cεγ1A(ρ) in view of
(3.97). Altogether we arrive at the estimate |Wε(R,Z) − A(ρ)∣∣ ≤ Cεγ1A(ρ). The
corresponding inequality for the first order derivatives can be obtained in a similar
way, and we omit the details �

4.3 Coercivity of the energy functional

For ε ≥ 0 small enough, we introduce the weighted L2 space Xε = {η ∈ L2(�ε) ;
‖η‖Xε <∞} defined by the norm (2.39), namely

‖η‖2
Xε =

∫

�ε

Wε(R,Z) |η(R,Z)|2 dR dZ . (4.20)

In the limiting case ε = 0, it is understood that �0 = R
2 and W0(R,Z) = A(ρ),

in agreement with (4.18). Assuming that ε > 0, we consider the energy functional
(2.34), namely

Eε[η] = 1

2
‖η‖2

Xε −Ekin
ε [η] , η ∈Xε , (4.21)

where Ekin
ε is the kinetic energy defined by

Ekin
ε [η] = 1

2

∫

�ε

φ η dR dZ = 1

2

∫

�ε

|∇φ|2
1 + εR dR dZ , φ = BSε[η] . (4.22)

Since we are interested in the regime where ε is small, it is important to observe
that Ekin

ε [η] becomes singular in the limit ε→ 0, if the vorticity η has nonzero mean.
This divergence is related to the well-known fact that any (nontrivial) nonnegative
vorticity distribution in R

2 has infinite kinetic energy. The regular part of Ekin
ε [η] is

given, to leading order, by the two-dimensional energy

Ekin
0 [η] = 1

4π

∫

R2

(
Lη)η dX
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= 1

4π

∫

R2

∫

R2
log
( 8

D

)
η(R,Z)η(R′,Z′)dX dX′ , (4.23)

where L is the integral operator (3.14) and D2 = (R−R′)2 + (Z−Z′)2. More pre-
cisely, we have the following statement, whose proof is postponed to Sect. B.1.

Lemma 4.4 If ε > 0 is small and η ∈ Xε satisfies supp(η) ⊂ Bε := {(R,Z) ∈
�ε ; ρ ≤ ε−σ1}, we have the expansion

Ekin
ε [η] = βε − 2

4π
μ2

0 +Ekin
0 [η] +O

(
εβε‖η‖2

Xε
)
, as ε→ 0 , (4.24)

where βε = log(1/ε) and μ0 = ∫
�ε
η dR dZ.

We now consider the (formal) limit of the functional Eε[η] as ε → 0, assuming
that η has zero mean to avoid the logarithmic divergence in the right-hand side of
(4.24). In view of (4.18) and Lemma 4.4, we obtain the limiting functional

E0[η] = 1

2

∫

R2
A(ρ)η(R,Z)2 dR dZ −Ekin

0 [η] = 1

2
‖η‖2

X0
−Ekin

0 [η] , (4.25)

which is studied in detail in our previous work [35]. In particular, we have the fol-
lowing property

Proposition 4.5 There exists constants C4 > 2 and C5 > 0 such that, for all η ∈ X0,

‖η‖2
X0

≤ C4E0[η] +C5
(
μ2

0 +μ2
1 +μ2

2

)
, (4.26)

where μ0 = ∫
R2 η dX, μ1 = ∫

R2 Rη dX, μ2 = ∫
R2 Zη dX.

Proof The results of [35, Sect. 2] show that (4.26) holds when μ0 = μ1 = μ2 = 0,
and the general case is easily deduced by the following argument. Given η ∈ X0 we
define

η̂ = η−μ0η0 +μ1∂Rη0 +μ2∂Zη0 , φ̂ = φ −μ0φ0 +μ1∂Rφ0 +μ2∂Zφ0 ,

where φ = (2π)−1Lη and η0, φ0 are as in (3.32). By construction the integral and
the first order moments of the new function η̂ ∈ X0 vanish, so that we can apply the
results of [35] which give the bound ‖η̂‖2

X0
≤ C4E0[η̂]. On the other hand, expand-

ing the quadratic expressions ‖η̂‖2
X0

and E0[η̂] and using Hölder’s inequality, it is
straightforward to verify that

‖η̂‖2
X0

≥ 1

2
‖η‖2

X0
−C(μ2

0 +μ2
1 +μ2

2) ,

E0[η̂] ≤ E0[η] + 1

4C4
‖η‖2

X0
+C(μ2

0 +μ2
1 +μ2

2) ,

for some C > 0. If we combine these estimates, we arrive at the bound (4.26) with a
deteriorated constant C4. �
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Using Proposition 4.5, we now establish a similar coercivity property for the func-
tional Eε when ε > 0 is small. The proof of the following proposition is again post-
poned to Sect. B.1.

Proposition 4.6 If the weight Wε satisfies (4.17) and (4.18), there exist constants
C6 > 0 and C7 > 0 such that, for all sufficiently small ε > 0 and all η ∈ Xε , we have
the estimate

‖η‖2
Xε ≤ C6Eε[η] +C7

(
βεμ

2
0 +μ2

1 +μ2
2

)
, (4.27)

where βε = log(1/ε) and μ0 = ∫
�ε
η dX, μ1 = ∫

�ε
Rη dX, μ2 = ∫

�ε
Zη dX.

In what follows we use the bound (4.27) to estimate the vorticity perturbation η̃
introduced in (2.31). The corresponding moments μ0,μ1 are under control thanks
to Lemma 4.1, and μ2 = 0 according to (4.8). So it remains to bound the energy
functional Eε[η̃], which is the purpose of the remaining sections.

4.4 Time evolution of the energy

Let η̃ be the solution of (4.1) with zero initial data. Assuming that δ > 0 and σ > 0
are sufficiently small, we consider for t ∈ (0, Tadvδ

−σ ) the energy function

Eε(t) = 1

2

∫

�ε

Wε(R,Z) η̃(R,Z, t)
2 dX − 1

2

∫

�ε

φ̃(R,Z, t) η̃(R,Z, t)dX , (4.28)

where ε = √
νt/r̄(t) and Wε is the weight function defined by (4.16). The first term

in the right-hand side of (4.28) is equal to 1
2‖η̃‖2

Xε , and the second one is the kinetic

energy Ekin
ε [η̃], which satisfies (4.22) and involves the stream function φ̃ = BSε[η̃]

defined by the Biot-Savart formula (2.20). Differentiating (4.28) with respect to time
and using the relations (3.34), (4.22) together with the evolution equation (4.1), we
obtain by a direct calculation

t∂tEε =
∫

�ε

(
Wεη̃ t∂t η̃+ 1

2
t (∂tWε)η̃

2
)

dX −
∫

�ε

(
φ̃ t∂t η̃+ t ε̇

2

R|∇φ̃|2
(1 + εR)2

)
dX

= I1 + I2 + I3 + I4 + I5 + I6 ,
where the quantities I1, . . . , I6 collect the following terms.

1. Local advection terms

I1 = −1

δ

∫

�ε

Wεη̃
{
φ∗ , ζ̃

}
dX+ εr̄ ˙̄z∗

δ�

∫

�ε

Wεη̃ ∂Zη̃ dX

= −1

δ

∫

�ε

Wεη̃
{
φ∗ − r̄ ˙̄z∗

2�
(1 + εR)2 , ζ̃

}
dX

= − 1

2δ

∫

�ε

{
Wε(1 + εR) , φ∗ − r̄ ˙̄z∗

2�
(1 + εR)2

}
ζ̃ 2 dX .

(4.29)
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2. Nonlocal advection terms

I2 = 1

δ

∫

�ε

φ̃
{
φ∗ , ζ̃

}
dX− εr̄ ˙̄z∗

δ�

∫

�ε

φ̃ ∂Zη̃ dX− 1

δ

∫

�ε

(
Wεη̃− φ̃){φ̃ , ζ∗

}
dX

= 1

δ

∫

�ε

φ̃
{
φ∗ − r̄ ˙̄z∗

2�
(1 + εR)2 , ζ̃

}
dX− 1

δ

∫

�ε

Wεη̃
{
φ̃ , ζ∗

}
dX

= 1

δ

∫

�ε

{
φ̃ , φ∗ − r̄ ˙̄z∗

2�
(1 + εR)2

}
ζ̃ dX

− 1

δ

∫

�ε

Wε(1 + εR){φ̃ , ζ∗
}
ζ̃ dX . (4.30)

3. Nonlinear terms

I3 = −
∫

�ε

(
Wεη̃− φ̃){φ̃ , ζ̃}dX = −

∫

�ε

{
Wεη̃ , φ̃

}
ζ̃ dX . (4.31)

4. Diffusive terms

I4 =
∫

�ε

(
Wεη̃− φ̃)

(
Lη̃+ ε∂Rζ̃

)
dX .

Integrating by parts as explained in Sect. B.2, we obtain the equivalent expression

I4 = −
∫

�ε

Wε |∇η̃|2 dX−
∫

�ε

(∇Wε · ∇η̃)η̃ dX−
∫

�ε

Vεη̃
2 dX

− ε

2

∫

�ε

∂R
(
Wε(1 + εR))ζ̃ 2 dX+ ε

4

∫

�ε

R|∇φ̃|2
(1 + εR)2 dX ,

(4.32)

where

Vε = 1

4
(R∂R +Z∂Z)Wε − 1

2
Wε − (1 + εR) . (4.33)

5. Remainder term

I5 = 1

δ

∫

�ε

(
Wεη̃− φ̃)Rem(R,Z, t)dX . (4.34)

6. Additional terms

I6 = 1

2

∫

�ε

t (∂tWε)η̃
2 dX+ εr̄ ˙̄r

δ�

∫

�ε

(
Wεη̃− φ̃) ∂Rη̃ dX

− t ε̇

2

∫

�ε

R|∇φ̃|2
(1 + εR)2 dX+ εr̄ ˙̃z

δ�

∫

�ε

(
Wεη̃− φ̃) (∂Zη∗ + δ∂Zη̃

)
dX .

(4.35)

For the purposes of our analysis, it is useful to reorganize some terms appearing
in the quantities I4 and I6. First, using (2.19) and integrating by parts, it is easy to
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verify that

−
∫

�ε

φ̃ ∂Rη̃ dX =
∫

�ε

η̃ ∂Rφ̃ dX = ε

2

∫

�ε

|∇φ̃|2
(1 + εR)2 dX . (4.36)

So, if we collect all terms involving |∇φ̃|2 in (4.32), (4.35), and (4.36), we obtain the
quantity

(ε

4
− t ε̇

2

)∫

�ε

R|∇φ̃|2
(1 + εR)2 dX+ ε2r̄ ˙̄r

2δ�

∫

�ε

|∇φ̃|2
(1 + εR)2 dX = t ˙̄r

2r̄

∫

�ε

|∇φ̃|2
1 + εR dX ,

where we used the expression (3.34) of t ε̇. Next, we prefer including the term involv-
ing t∂tWε in I4 rather than I6, because it will be combined with the diffusive terms
in I4 to obtain negative quantities that will allow us to control the evolution of the
energy. Summarizing, if we define

Î4 = −
∫

�ε

Wε |∇η̃|2 dX−
∫

�ε

(∇Wε · ∇η̃)η̃ dX−
∫

�ε

Vεη̃
2 dX

− ε

2

∫

�ε

∂R
(
Wε(1 + εR))ζ̃ 2 dX+ 1

2

∫

�ε

t (∂tWε)η̃
2 dX ,

(4.37)

and

Î6 = εr̄ ˙̄r
δ�

∫

�ε

Wεη̃∂Rη̃ dX+ t ˙̄r
r̄
Ekin
ε [η̃]

+ εr̄ ˙̃z
δ�

∫

�ε

(
Wεη̃− φ̃) (∂Zη∗ + δ∂Zη̃

)
dX , (4.38)

we obtain the identity t∂tEε = I1 + I2 + I3 + Î4 + I5 + Î6, which we exploit in
Sects. 4.6–4.9.

4.5 Bounds on the stream function

In this section we collect a few estimates on the stream function φ = BSε[η], where
BSε is the ε-dependent Biot-Savart operator (2.20). We are especially interested in
bounds on the velocity field U = (UR,UZ) defined by (2.18).

Lemma 4.7 There exists a constant C > 0 such that, for all ε ∈ (0,1),
∣
∣
∣
∂Rφ

1 + εR
∣
∣
∣+
∣
∣
∣
∂Zφ

1 + εR
∣
∣
∣ ≤

∫

�ε

C
√
(R−R′)2 + (Z−Z′)2

|η(R′,Z′)|dX′ . (4.39)

In particular, for any q > 2, we have ‖U‖Lq ≤ Cq‖η‖Xε where U is the velocity field
(2.18).

Proof Estimate (4.39) is established in the proof of [34, Lemma 4.1], which in turn
relies on [33, Proposition 2.3]. Using the Hardy-Littlewood-Sobolev inequality, we
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deduce from (4.39) that ‖U‖Lq ≤ Cq‖η‖Lp if q > 2 and p ∈ (1,2) satisfy the relation
1/p = 1/q + 1/2. Finally, the lower bound on Wε in (4.17) implies that ‖η‖Lp ≤
C‖η‖Xε for any p ∈ [1,2]. �

The particular case where η = η∗ is the approximate solution (2.28) plays an im-
portant role.

Lemma 4.8 The following estimates hold for the stream function φ∗ = BSε[η∗]
∣
∣
∣
∂Rφ∗

1 + εR
∣
∣
∣+
∣
∣
∣
∂Zφ∗

1 + εR
∣
∣
∣ ≤ C

1 + ρ + ε2ρ3
,

∣
∣
∣
∂Zφ∗

(1 + εR)2
∣
∣
∣ ≤ C

1 + ρ + ε3ρ4 ,

(4.40)

where ρ = (R2+Z2)1/2.

Proof In the region where ρ ≤ 1/(2ε), we can use estimate (4.39) with η= η∗. Since
η∗ satisfies the Gaussian bound (3.75), we easily deduce that |U | ≤ C(1 + ρ)−1,
which gives estimate (4.40) in that case. We now concentrate on the region ρ ≥
1/(2ε), where a more careful analysis is needed. We start from the formulas (3.73)
with η= η∗, and we first estimate the vertical derivative ∂Zφ∗. Since |F̃ (s)| ≤ Cs−3/2

for all s > 0, we see that

∣
∣
∣
∂Zφ∗

(1 + εR)2
∣
∣
∣ ≤ C

ε3

∫

�ε

(1+εR′)2 |η∗(R′,Z′)|
(
(R−R′)2 + (Z−Z′)2

)2 dR′ dZ′ . (4.41)

Note that the integral is, in fact, taken over the support of η∗, which is included in
the ball ρ′ := (R′2+Z′2)1/2 ≤ 2ε−σ0 where σ0 < 1. In particular we can disregard
the factor (1+εR′)2 in the numerator, and the denominator is always larger that ρ4/2
if ε is sufficiently small. So the right-hand side of (4.41) is bounded by Cε−3ρ−4

when ρ ≥ 1/(2ε), which concludes the proof of the second inequality in (4.40). Since
1 + εR ≤ 1 + ερ, the estimate on ∂Zφ∗/(1+εR) in (4.40) follows immediately.

To conclude the proof of the first inequality in (4.40), we must estimate the quan-
tity ∂Rφ∗ which contains an additional term given by the last line in (3.73). In the
region where ρ ≥ 1/(2ε), using the fact that |F(s)| + |F̃ (s)| ≤ Cs−3/2, we see that
the contribution of that term to the vertical speed UZ = ∂Rφ∗/(1+εR) is bounded by

C

ε2

∫

�ε

(1+εR′)2 |η∗(R′,Z′)|
(
(R−R′)2 + (Z−Z′)2

)3/2 dR′ dZ′ ≤ C

ε2ρ3 .

The proof of (4.40) is thus complete. �

4.6 Control of the advection terms

In what follows we always assume that δ > 0 is sufficiently small and that ε2 � δ1−σ
for some small σ > 0, see Remark 2.2. As in Lemma 4.3, we also suppose that the
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exponent σ1 > 0 is small enough. We first estimate the advection terms I1, I2 defined
in (4.29), (4.30). These terms are potentially dangerous because they include a factor
1/δ which is very large in the vanishing viscosity limit, but the energy functional
(2.34) was designed precisely so that these contributions can be controlled.

Lemma 4.9 There exist γ1 > 0 and C > 0 such that

|I1| ≤ Cεγ1 ‖η̃‖2
Xε + Cε2

δ

∫

�′′
ε

Wεη̃
2 dX . (4.42)

Proof To exploit the properties of the weight Wε , we decompose the integral (4.29)
defining I1 in three pieces, which correspond to the subdomains (4.12). If (R,Z) ∈
�′
ε , we know from (4.16), (3.88) that

Wε = �′
ε(ζ∗)

1 + εR , φ∗ − r̄ ˙̄z∗
2�
(1 + εR)2 = �ε(ζ∗)+ , (4.43)

where  is a remainder term that is studied in Proposition 3.16. It follows that

{
Wε(1 + εR) , φ∗ − r̄ ˙̄z∗

2�
(1 + εR)2

}
= {
�′
ε(ζ∗) , �ε(ζ∗)+ 

} = {
�′
ε(ζ∗) ,  

}
,

where the right-hand side can be controlled using the bounds (3.89) on  and the
estimates (4.14), (4.18) on the weight Wε in �′

ε . This gives, for some integer N and
any γ3 ∈ (2,3),
∣
∣{�′

ε(ζ∗) ,  
}∣∣ ≤ C

(
εδ + εγ3

)
(1 + ρ)N Wε ≤ C

(
εδ + εγ3

)
ε−Nσ1 Wε , (4.44)

where we used the fact that 1 +ρ ≤ 2ε−σ1 when (R,Z) ∈�′
ε . Since ζ̃ ≈ η̃ in �′

ε and
since δ−1 � ε−2/(1−σ) in the parameter regime we consider, it follows from (4.44)
that

1

δ

∫

�′
ε

∣
∣{�′

ε(ζ∗) ,  
}∣∣ ζ̃ 2 dX ≤ C

(
ε + εγ3

δ

)
ε−Nσ1

∫

�′
ε

Wεη̃
2 dX ≤ Cεγ1 ‖η̃‖2

Xε ,

(4.45)
where γ1 is taken so that 0< γ1 < γ3 − 2/(1−σ)−Nσ1. As γ3 < 3 is arbitrary, such
a choice is always possible if we assume that σ > 0 and σ1 > 0 are small enough.

We next consider the intermediate region �′′
ε in which Wε(1 + εR) = χ2(εR)×

exp
(
ε−2σ1/4

)
, where χ2(x)= (1 + x)χ1(x). In that region, we thus have

Jε :=
{
Wε(1 + εR) , φ∗ − r̄ ˙̄z∗

2�
(1 + εR)2

}
= εχ ′

2(εR) exp
(
ε−2σ1/4

)
∂Zφ∗ .

Since χ2(x) = 1 when |x| ≤ 1
2 , the quantity Jε vanishes when ρ := (R2+Z2)1/2 ≤

1/(2ε). In the region where 1/(2ε) ≤ ρ ≤ ε−σ2 , we know from (4.40) that
|∂Zφ∗/(1+εR)2| ≤ Cε−3ρ−4 ≤ Cε, and that Wε ≈ exp

(
ε−2σ1/4

)
. Since χ ′

2 is a
bounded function, we deduce

1

δ

∫

�′′
ε

|Jε | ζ̃ 2 dX = 1

δ

∫

�′′
ε

|Jε | η̃2

(1+εR)2 dX ≤ Cε2

δ

∫

�′′
ε

Wεη̃
2 dX . (4.46)
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Finally, in �′′′
ε we have Wε(1 + εR) = χ2(εR)Ŵε where Ŵε = exp(ρ2γ /4), so

that

Jε = εχ ′
2(εR)Ŵε ∂Zφ∗ + εr̄ ˙̄z∗

�
χ1(εR)(1 + εR)2∂ZŴε + χ2(εR)

{
Ŵε , φ∗

}
.

The first term in the right-hand side is estimated as above, with the difference that
we now have the improved bound |∂Zφ∗/(1+εR)2| ≤ Cε−3ρ−4 ≤ Cε4σ2−3. For the
second one we observe that
∣
∣∂RŴε

∣
∣+ ∣∣∂ZŴε

∣
∣ ≤ γ ρ2γ−1 Ŵε ≤ γ εσ2−2σ1 Ŵε , since ρ ≥ ε−σ2 , (4.47)

and the last term is estimated using (4.47) and the first bound in (4.40). Altogether
we find

1

δ

∫

�′′′
ε

|Jε | ζ̃ 2 dX ≤ C

δ

∫

�′′′
ε

( 1

ε2ρ4 + r̄| ˙̄z∗|
�

ε

ρ1−2γ + 1

ε2ρ4−2γ

)
Wεη̃

2 dX

≤ Cεγ1 ‖η̃‖2
Xε , (4.48)

provided 0 < γ1 < σ2 + 1 − 2σ1 − 2/(1−σ). Since σ2 > 1, such a choice is again
possible if σ > 0 and σ1 > 0 are small enough. Combining (4.45), (4.46), (4.48), we
arrive at (4.42). �

Lemma 4.10 There exist γ1 > 0 and C > 0 such that

|I2| ≤ Cεγ1 ‖η̃‖2
Xε . (4.49)

Proof In �′
ε we have Wε(1 + εR)=�′

ε(ζ∗) by (4.43), hence Wε(1 + εR){φ̃ , ζ∗
}=

{
φ̃ , �ε(ζ∗)

}
. Using the second relation in (4.43), we deduce that

{
φ̃ , φ∗ − r̄ ˙̄z∗

2�
(1 + εR)2

}
−Wε(1 + εR){φ̃ , ζ∗

} = {
φ̃ ,  

}
. (4.50)

The first-order derivatives of  are estimated in Proposition 3.16. Proceeding as in
the previous lemma, we thus obtain

1

δ

∫

�′
ε

∣
∣
{
φ̃ ,  

}∣
∣ |ζ̃ |dX ≤ C

(
ε + εγ3

δ

)
ε−Nσ1

∫

�′
ε

|∇φ̃|
1+εR |η̃|dX

≤ Cεγ1 ‖η̃‖2
Xε , (4.51)

where 0< γ1 < γ3 − 2/(1−σ)−Nσ1. In the last step, we used Hölder’s inequality
with exponents 3 and 3/2, and we invoked Lemma 4.7 to control the L3 norm of
∇φ̃/(1 + εR).

In Dε :=�ε \�′
ε , we consider both terms in the left-hand side of (4.50) separately.

The contribution of the first one to I2 is estimated by

1

δ

∫

Dε

|∇φ̃| |∇φ∗|
1 + εR | η̃|dX+ εr̄| ˙̄z∗|

δ�

∫

Dε
|∂Zφ̃| |η̃|dX = O

(
ε∞‖η̃‖2

Xε
)
, (4.52)
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because |∇φ∗| ≤ C by (4.40), ‖∇φ̃/(1+εR)‖L3 ≤ C‖η̃‖Xε by Lemma 4.7, and

‖η̃‖L3/2(Dε ) ≤
(∫

Dε
Wεη̃

2 dX

)1/2(∫

Dε
W−3
ε dX

)1/6

= O
(
ε∞‖η̃‖Xε

)
.

The second term in the left-hand side of (4.50) is nonzero only if ρ ≤ 2ε−σ0 , in view
of (2.28). In that region, we know that Wε |∇ζ∗| ≤ C(1 + ρ)N for some integer N ,
becauseWε satisfies the upper bound in (4.17) and η∗ belongs to the space Z defined
in (3.23). The contribution of that term to I2 can therefore be estimated in the same
way as above:

1

δ

∫

Dε
Wε |

{
φ̃, ζ∗

}| |ζ̃ |dX ≤ C

δ

∫

Dε

|∇φ̃| |η̃|
1 + εR (1 + ρ)N dX

= O
(
ε∞‖η̃‖2

Xε
)
. (4.53)

Combining (4.51), (4.52), (4.53), we obtain (4.49). �

4.7 Control of the diffusive terms

Our next task is to estimate the diffusive terms collected in (4.37). To formulate the
result, we introduce the continuous function ργ : R2 ×R+ →R+ defined by

ργ (R,Z, ε) =

⎧
⎪⎨

⎪⎩

ρ if ρ ≤ ε−σ1 ,

ε−σ1 if ε−σ1 < ρ < ε−σ2 ,

ργ if ρ ≥ ε−σ2 ,

(4.54)

where as usual ρ = (R2 +Z2)1/2. Our goal in this section is:

Proposition 4.11 There exist κ > 0 and C > 0 such that

Î4 ≤ −κ
∫

�ε

Wε

(
|∇η̃|2 + ρ2

γ η̃
2 + η̃2

)
dX+C(μ2

0 +μ2
1 +μ2

2

)
, (4.55)

where μ0,μ1,μ2 are defined in (4.3), (4.8).

The proof of Proposition 4.11 requires several steps. We first control the term in
Î4 that involves the time derivative of the weight function Wε .

Lemma 4.12 There exist C > 0 and γ1 > 0 such that

∫

�ε

t (∂tWε)η̃
2 dX

≤ −σ1

5

∫

�′′
ε

Wερ
2
γ η̃

2 dX+C
∫

�′′′
ε

Wεη̃
2 dX+Cεγ1‖η̃‖2

Xε . (4.56)
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Proof Following (4.16) we decomposeWε(R,Z)= χ1(εR) Ŵε(R,Z), so that

t∂tWε = χ1(εR) t∂t Ŵε(R,Z)+ t ε̇Rχ ′
1(εR) Ŵε(R,Z) . (4.57)

We first estimate the right-hand side in the region �′
ε defined by (4.12), where Ŵε =

�′
ε(ζ∗). As �ε =�0 + ε2�2 according to (3.82), we have t∂t Ŵε =�′′

ε (ζ∗) t∂t ζ∗ +
2tεε̇ �′

2(ζ∗) in that region. We recall that 2t ε̇ = ε(1 + O(ε2)) by (3.34), and that
the functions �0,�2 satisfy the estimates (3.95), (3.97). It follows immediately that
|tεε̇ �′

2(ζ∗)| ≤ Cε2−Nσ1Ŵε ≤ CεWε . Moreover, since ζ∗ = η∗/(1+εR) with η∗ =
ηapp in �′

ε , we also have |�′′
ε (ζ∗)t∂t ζ∗| ≤ Cε(1 + ρ)NŴε ≤ Cεγ1Wε , provided 0 <

γ1 < 1 − Nσ1. Finally, the last term in (4.57) is bounded by CερWε ≤ Cε1−σ1Wε .
Altogether we have shown that |t∂tWε | ≤ Cεγ1Wε in �′

ε .
In the intermediate region �′′

ε we have Ŵε = exp
(
ε−2σ1/4

)
and ργ = ε−σ1 , so that

t∂t Ŵε = −σ1

2
exp
(
ε−2σ1/4

) t ε̇

ε2σ1+1
= −σ1

2
Ŵε ρ

2
γ

t ε̇

ε
≈ −σ1

4
Ŵε ρ

2
γ .

Since |t ε̇Rχ ′
1(εR)| ≤ |εRχ ′

1(εR)| ≤ C, it follows that t∂tWε ≤ −(σ1/5)Wερ2
γ in�′′

ε .

Finally, in the exterior region �′′′
ε , the function Ŵε = exp(ρ2γ /4) does not depend on

time, and we deduce from (4.57) that |t∂tWε | ≤ CWε . Collecting all these estimates,
we arrive at (4.56). �

We next consider the term involving ζ̃ in (4.37).

Lemma 4.13 There exist C > 0 and γ1 > 0 such that

−ε
2

∫

�ε

∂R
(
Wε(1 + εR))ζ̃ 2 dX ≤ −ε

2

4

∫

�ε

Wεζ̃
2 dX+Cεγ1‖η̃‖2

Xε . (4.58)

Proof If Dε denotes any of the three regions defined in (4.12), we have

− ε

2

∫

Dε
∂R
(
Wε(1 + εR))ζ̃ 2 dX

= −ε
2

2

∫

Dε
Wεζ̃

2 dX− ε

2

∫

Dε

(
∂RWε

)
ζ̃ η̃ dX (4.59)

≤ −ε
2

4

∫

Dε
Wεζ̃

2 dX+ 1

4

∫

Dε

(∂RWε)
2

Wε
η̃2 dX , (4.60)

where in the third line we used Young’s inequality. In the inner region �′
ε we observe

that ζ̃ ≈ η̃, because |εR| ≤ 2ε1−σ1 � 1. Moreover we have ε|∂RWε | ≤ Cεγ1Wε for
some γ1 > 0, so taking Dε = �′

ε and using (4.59) we obtain the analogue of (4.58)
in that region. Outside �′

ε , we cannot directly compare ζ̃ and η̃, so we prefer using
inequality (4.60). In the intermediate region �′′

ε , we have |∂RWε | ≤ CεWε by (4.16),
and (4.58) easily follows. Finally, in the exterior region �′′′

ε , we observe that

∂RWε =
(
εχ ′

1(εR)

χ1(εR)
+ γR

2
ρ2γ−2

)

Wε .
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Taking σ1 small enough so that γ ≡ σ1/σ2 < 1/2, and using the fact that ρ ≥ ε−σ2 in
�′′′
ε , we deduce that |∂RWε | ≤ Cεγ1Wε for some γ1 > 0, and this leads to (4.58). The

proof is thus complete. �

To conclude the proof of Proposition 4.11, we consider the quadratic form given
by the first line of (4.37), namely

Qε[η] =
∫

�ε

Wε |∇η|2 dX+
∫

�ε

(∇Wε · ∇η)η dX+
∫

�ε

Vεη
2 dX , (4.61)

where Vε is defined in (4.33). Taking formally the limit ε → 0 in (4.61), we obtain
using (4.18)

Q0[η] =
∫

R2
A|∇η|2 dX+

∫

R2
(∇A · ∇η)η dX+

∫

R2
V η2 dX , (4.62)

where A is defined by (3.85) and V = 1
4 (R∂R + Z∂Z)A − 1

2A − 1. The limiting
quadratic form (4.62) is carefully studied in our previous work [35], and we have the
following result

Proposition 4.14 There exists constants C8 > 2 and C9 > 0 such that, for all η ∈ X0
with ρη ∈X0 and ∇η ∈X 2

0 , we have

‖∇η‖2
X0

+ ‖ρη‖2
X0

+ ‖η‖2
X0

≤ C8Q0[η] +C9
(
μ2

0 +μ2
1 +μ2

2

)
, (4.63)

where μ0 = ∫
R2 η dX, μ1 = ∫

R2 Rη dX, μ2 = ∫
R2 Zη dX.

Proof In [35, Theorem 4.2] we prove that there exists δ0 > 0 such that Q0[η] ≥
δ0‖η‖2

X0
for any η ∈ X0 such that μ0 = μ1 = μ2 = 0. On the other hand, if we apply

Young’s inequality to the middle term in the right-hand side of (4.62), we obtain the
lower bound

Q0[η] ≥ 1

4

∫

R2
A|∇η|2 dX+

∫

R2

(
V − |∇A|2

3A

)
η2 dX

≥ 1

4
‖∇η‖2

X0
+ 1

24
‖ρη‖2

X0
−C‖η‖2

X0
,

because a direct calculation reveals that V/A − |∇A|2/(3A2) ≥ ρ2/(24) − C for
some constant C > 0. Taking a convex combination of both estimates, we see that
there exists C8 > 0 such that

‖∇η‖2
X0

+ ‖ρη‖2
X0

+ ‖η‖2
X0

≤ C8Q0[η] , (4.64)

whenever η ∈ X0 satisfiesμ0 = μ1 = μ2 = 0. It remains to deduce (4.63) from (4.64),
which is easily done using exactly the same arguments as in the proof of Proposi-
tion 4.5. �

The analogue of Proposition 4.14 for the full quadratic form (4.61) is the following
statement, whose proof is postponed to Sect. B.3.
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Proposition 4.15 There exists constants C10 > 2 and C11 > 0 such that, for all suffi-
ciently small ε > 0 and all η ∈Xε with ργ η ∈ Xε and ∇η ∈X 2

ε , we have

‖∇η‖2
Xε + ‖η‖2

Xε +
∫

�′
ε∪�′′′

ε

Wερ
2
γ η

2 dX

≤ C10Qε[η] +C11

(
μ2 +

∫

�′′
ε

Wεη
2 dX

)
, (4.65)

where μ2 = μ2
0 +μ2

1 +μ2
2 and μ0 = ∫

�ε
η dX, μ1 = ∫

�ε
Rη dX, μ2 = ∫

�ε
Zη dX.

End of the proof of Proposition 4.11 In view of (4.37) and (4.61) we have

Î4 = −Qε[η̃] − ε

2

∫

�ε

∂R
(
Wε(1 + εR))ζ̃ 2 dX+ 1

2

∫

�ε

t (∂tWε)η̃
2 dX .

The three terms in the right-hand side are estimated using (4.65), (4.58), and (4.56),
respectively. Taking ε > 0 sufficiently small and recalling that ργ ≥ ε−σ1 	 1 out-
side the inner region �′

ε , we arrive at (4.55). The slight discrepancy between the
definitions of μ1 in (4.3) and in Proposition 4.15 is completely harmless. �

4.8 Control of the remaining terms

In this section, we estimate the remaining terms I3, I5, and Î6 defined in (4.31),
(4.34), and (4.38), respectively.

Control of I3. We deduce from (4.31) that

|I3| ≤
∫

�ε

|∇φ̃|
1+εR |η̃|∣∣∇(Wεη̃)

∣
∣dX

≤
∫

�ε

|∇φ̃|
1+εR |η̃|

(
|η̃||∇Wε | +Wε |∇η̃|

)
dX . (4.66)

To estimate the right-hand side, we use (4.39) and [36, Lemma 2.1] to obtain the
uniform bound

∥
∥
∥

|∇φ̃|
1+εR

∥
∥
∥
L∞ ≤ C‖η̃‖1/2

L4/3‖η̃‖1/2
L4 ≤ C‖η̃‖1/2

Xε
(‖η̃‖1/2

Xε + ‖∇η̃‖1/2
Xε
)
.

On the other hand it is easy to verify that |∇Wε | ≤ C(1 +ργ )Wε where ργ is defined
in (4.54). It follows that

|I3| ≤ C‖η̃‖3/2
Xε
(‖η̃‖1/2

Xε + ‖∇η̃‖1/2
Xε
)(‖η̃‖Xε + ‖ργ η̃‖Xε + ‖∇η̃‖Xε

)

≤ C‖η̃‖XεDε[η̃] , (4.67)

where for convenience we denote

Dε[η̃] = ‖∇η̃‖2
Xε + ‖ργ η̃‖2

Xε + ‖η̃‖2
Xε . (4.68)
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Control of I5. Proposition 2.5 asserts that the remainder Rem(R,Z, t) satisfies
the pointwise estimate (2.30), which implies in particular that Rem ∈ Xε . In view of
(4.34), we thus find

|I5| ≤ 1

δ
‖Rem‖Xε

(
‖η̃‖Xε + ‖W−1

ε φ̃‖Xε
)

≤ C
(
ε + εγ5

δ2

)(
‖η̃‖Xε + ‖W−1

ε φ̃‖Xε
)
.

It remains to estimate the norm ofW−1
ε φ̃ in the space Xε . This can be done by decom-

posing the Biot-Savart kernel as in the proof of Lemma 4.4, see in particular Eq. (B.2)
below. Neglecting contributions of order O(ε∞), we can restrict the integrals to the
region where R2 +Z2 ≤ ε−2σ1 and R′2 +Z′2 ≤ ε−2σ1 . Invoking (B.3) and recalling
that μ0(t) = O(ε∞) by Lemma 4.1, we find that ‖W−1

ε φ̃‖Xε = ‖W−1/2
ε φ̃‖L2(�ε)

≤
C‖η̃‖Xε . We conclude that

|I5| ≤ C
(
ε + εγ5

δ2

)
‖η̃‖Xε . (4.69)

Control of Î6. The first two terms in (4.38) are easily estimated, because ˙̄r = O(δ)
by (3.70). Proceeding as in Lemma 4.4 to control the kinetic energy, and recalling
that μ0(t)= O(ε∞), we find

I0 :=
∣
∣
∣
∣
εr̄ ˙̄r
δ�

∫

�ε

Wεη̃∂Rη̃ dX+ t ˙̄r
r̄
Ekin
ε [η̃]

∣
∣
∣
∣ ≤ Cε‖η̃‖Xε‖∇η̃‖Xε +Cε2‖η̃‖2

Xε .

So it remains to estimate the last term in (4.38), which involves the correction ˙̃z(t) to
the vertical speed introduced in (4.9). Using (2.19) and integrating by parts we first
observe that

I1 : =
∫

�ε

(
Wεη̃− φ̃)∂Zη∗ dX =

∫

�ε

(
Wε∂Zη∗ − ∂Zφ∗

)
η̃ dX

= −
∫

�′
ε

(∂Z )η̃ dX+
∫

�′′
ε∪�′′′

ε

(
Wε∂Zη∗ − ∂Zφ∗

)
η̃ dX ,

(4.70)

where  is defined in (3.88). In the second line, we used the expression (4.16) ofWε
in the inner region�′

ε to obtain the identityWε∂Zη∗ −∂Zφ∗ =�′
ε(ζ∗)∂Zζ∗ −∂Zφ∗ =

−∂Z . The last integral in (4.70) is of order O(ε∞‖η̃‖Xε ), and the integral over �′
ε

can be controlled using Proposition 3.16. We thus obtain |I1| ≤ C(εδ + εγ3)‖η̃‖Xε .
Moreover, we obviously have

I2 :=
∣
∣
∣
∣

∫

�ε

(
Wεη̃− φ̃)∂Zη̃ dX

∣
∣
∣
∣ ≤ C‖η̃‖Xε‖∇η̃‖Xε .

Finally, to control the velocity ˙̃z(t), we need the following lemma:

Lemma4.16 Let J (t)= ∫
�ε
ZR(R,Z, t)dX whereR is defined in (4.10). Then there

exists a constant C > 0 such that

|J | ≤ Cεβε

δ

(
‖η̃‖Xε + δ‖η̃‖2

Xε

)
+C

(
ε + εγ5

δ2

)
. (4.71)
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Proof We consider separately the various terms in the right-hand side of (4.10). Inte-
grating by parts, we find

J1 := 1

δ

∫

�ε

Z
({
φ∗ , ζ̃

}+ {φ̃ , ζ∗
})

dX = −1

δ

∫

�ε

(
η̃∂Rφ∗
1+εR + η∗∂Rφ̃

1+εR
)

dX .

In the right-hand side, we can restrict the integration to the region where ρ ≤ ε−σ1 ,
because the integral on the complement is of order O

(
ε∞‖η̃‖Xε

)
. Thus, expanding

the Biot-Savart formula as in Sect. 3.1, we obtain

−δJ1 = 1

2π

∫

R2

(
η̃∂R(Lη∗)+ η∗∂R(Lη̃)

)
dX+O

(
εβε‖η̃‖Xε

)
, (4.72)

where L is the convolution operator (3.14). Since L is symmetric in L2(R2) and
commutes with ∂R , the integral in (4.72) vanishes and we conclude that |J1| ≤
δ−1εβε‖η̃‖Xε .

Similarly, we have

J2 :=
∫

�ε

Z
{
φ̃ , ζ̃

}
dX =

∫

�ε

{
Z , φ̃

}
ζ̃ dX = −

∫

�ε

η̃∂Rφ̃

1+εR dX .

Here again, up to a negligible error, we can assume that η̃ is supported in the ball
ρ ≤ ε−σ1 . Proceeding as before, we thus find

J2 = − 1

2π

∫

R2
η̃∂R(Lη̃)dX+O

(
εβε‖η̃‖2

Xε
) = O

(
εβε‖η̃‖2

Xε
)
. (4.73)

The remaining terms in (4.10) are easier to treat. In view of (4.8) we have
∫

�ε

Z
(
Lη̃+ ε∂Rζ̃

)
dx = 0 , and

∫

�ε

Z
( ˙̄r ∂Rη̃+ ˙̄z∗ ∂Zη̃

)
dX = −˙̄z∗μ0 ,

where μ0(t)= O(ε∞) by Lemma 4.1. Finally, using estimate (2.30), we obtain

1

δ

∫

�ε

|Z| |Rem(R,Z, t)|dX ≤ C
(
ε + εγ5

δ2

)
. (4.74)

Combining (4.72), (4.73), and (4.74), we arrive at (4.71). �

Corollary 4.17 There exists a constant C > 0 such that the velocity ˙̃z defined by (4.9)
satisfies

r̄| ˙̃z|
�

≤ Cβε

(
‖η̃‖Xε + δ‖η̃‖2

Xε

)
+C

(
δ+ εγ5−1

δ

)
. (4.75)

We now conclude the estimate of the term Î6. To simplify the writing, we assume
that ‖η̃‖Xε ≤ 1 and we use the shorthand notation (4.68). Also, since ε2 � δ1−σ we
observe that

ε + εγ5

δ2
� Rε(t) , where Rε(t) := ε + εγ3

δ
. (4.76)



334 T. Gallay, V. Šverák

Here γ3 = γ5 −2/(1−σ) < 3, so that γ3 can be chosen arbitrary close to γ5 −2 if σ >
0 is small enough. In view of (4.9) and (4.38) we have |Î6| ≤ I0 + |J |(|I1| + δI2

)
,

so that

|Î6| ≤ Cε‖η̃‖XεD1/2
ε +C

(εβε
δ

‖η̃‖Xε +Rε

)(
δRε‖η̃‖Xε + δ‖η̃‖XεD1/2

ε

)

≤ C‖η̃‖Xε
(
D1/2
ε +Rε

)(
εβε + δRε

) ≤ Cεβε‖η̃‖Xε
(
D1/2
ε +Rε

)
.

(4.77)

4.9 Conclusion of the proof

We are now in position to conclude the proof of Theorem 2.6, hence also of Theo-
rem 1.1. Let η̃ be the unique solution of (2.33) with zero initial data. The associated
energy (2.34) satisfies the evolution equation

t∂tEε(t) = I1 + I2 + I3 + Î4 + I5 + Î6 , (4.78)

where the various terms in the right-hand side are defined in Sect. 4.4 and estimated
in Sects. 4.6–4.8. Using (4.42), (4.49), (4.67), (4.55), (4.69), and (4.77), we find that,
as long as t ≤ Tadvδ

−σ and ‖η̃‖Xε ≤ 1, there exist positive constants C,C∗, κ such
that

t∂tEε(t) ≤ − κDε +C∗‖η̃‖XεDε +C‖η̃‖Xε
(
Rε + εβεD1/2

ε

)

+ Cε2

δ

∫

�′′
ε

Wεη̃
2 dX+Cμ2 ,

where Dε is defined in (4.68), Rε in (4.76), and μ2 := μ2
0 + μ2

1 + μ2
2 ≤ CR2

ε by
Lemma 4.1. Since ργ ≥ ε−σ1 in the region �′′

ε , the integral term can be estimated as
follows

ε2

δ

∫

�′′
ε

Wεη̃
2 dX ≤ ε2+2σ1

δ

∫

�′′
ε

Wερ
2
γ η̃

2 dX � εγ∗Dε ,

where γ∗ = 2 + 2σ1 − 2/(1−σ) > 0 if σ > 0 is small enough. So, if we assume that
C∗‖η̃‖Xε ≤ κ/4 and that ε is sufficiently small, we obtain by Young’s inequality

t∂tEε(t) ≤ −κ
2
Dε +CRε‖η̃‖Xε +Cμ2 ≤ −κ

4
Dε +CR

2
ε .

Integrating that differential inequality over the time interval (0, t) and recalling that
Eε(0)= 0, we arrive at

Eε(t)+ κ

4

∫ t

0

Dε(s)

s
ds ≤ C

∫ t

0

Rε(s)
2

s
ds ≤ CRε(t)

2 .

Finally, in view of (4.27), (4.8), and Lemma 4.1, we infer that

‖η̃(t)‖2
Xε ≤ C6Eε(t)+C7

(
βεμ0(t)

2 +μ1(t)
2) ≤ CRε(t)

2 . (4.79)
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Inequality (4.79) holds as long as ‖η̃(t)‖Xε ≤ min
(
1, κ/(4C∗)

)
and t < Tadvδ

−σ . But
on that time interval we know that Rε � εγ3−2/(1−σ) � 1, so (4.79) is actually valid
for all t ∈ (0, Tadvδ

−σ ) if ε > 0 is small enough. Returning to the solution of (2.15)
with initial data (2.22), we obtain in view of (2.31), (4.79)

‖η(t)− η∗(t)‖Xε = δ‖η̃(t)‖Xε ≤ CδRε(t) = C
(
εδ + εγ3

)
, t ∈ (0, Tadvδ

−σ ) ,

which gives (2.40). This concludes the proof of Theorem 2.6. �

Remark 4.18 The correction z̃(t) to the vertical position of the vortex is small, and
produces negligible effects in our calculations. Indeed, it follows from (4.75) and
(4.79) that

r̄| ˙̃z(t)|
�

�
(
βεRε + δ) , hence δ|z̃(t)| � ε2r̄(t)

(
δ + βεRε

)
. (4.80)

This gives in particular (2.41).

Proof of Theorem 1.1. Let ωlin(r, z, t) be the solution of the (axisymmetric) heat equa-
tion in � with initial data � δ(r0,z0). Using the same self-similar variables as in the
proof of Theorem 2.6, we define the rescaled vorticity ηlin by the relation

ωlin
(
r, z− a3(t), t

) = �

νt
ηlin

( r − r̄(t)√
νt

,
z− z̄∗(t)− δz̃(t)√

νt
, t
)
, (4.81)

where a3(t) = ∫ t0 V (s)ds and V is given by (1.5). A direct calculation then shows
that ηlin satisfies the linear equation

t∂tηlin − εr̄

δ�

( ˙̄r ∂Rηlin + ṡ ∂Zηlin

)
= Lηlin + ∂R

( εηlin

1 + εR
)
, (4.82)

with initial data η0, where the shift s(t)= z̄∗(t)− a3(t)+ δz̃(t) measures the differ-
ence between the vertical position of the vortex as computed in Theorem 2.6 and the
approximation given by the Kelvin-Saffman formula (1.5) without correction terms.
Since ȧ3 = ˙̄z0, it follows from (3.62) that ṡ = ε2 ˙̄z2 + δ ˙̃z. Using (3.57) and (4.80), we
thus obtain

εr̄|ṡ(t)|
δ�

≤ C
(βεε3

δ
+ βεε2 + εδ

)
≤ Cε1−3σ , (4.83)

because ε2 � δ1−σ so that βεε3δ−1 ≤ ε1−3σ if 0 < σ < 1/3 and ε > 0 is small
enough.

The solution of (4.82) with initial data η0 can be estimated as in [34, Sect. 4.4],
with substantial simplifications. We use the approximate solution η̂0(R,Z, t) :=
χ0(4ερ)η0(R,Z), where χ0 is the cut-off function in (2.28). Decomposing ηlin =
η̂0 + η̂, we see that the correction η̂ satisfies

t∂t η̂− εr̄

δ�

( ˙̄r ∂Rη̂+ ṡ ∂Zη̂
)

= Lη̂+ ∂R
( εη̂

1 + εR
)

+R0 , (4.84)
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where

R0 = Lη̂0 + ∂R
( εη̂0

1 + εR
)

+ εr̄

δ�

( ˙̄r ∂Rη̂0 + ṡ ∂Zη̂0

)
− t∂t η̂0 .

To control the solution of (4.84), we introduce the space X̂ε defined by the norm

‖η̂‖2
X̂ε

=
∫

�ε

e(R
2+Z2)/4 η̂(R,Z)2 dR dZ .

In view of (4.83) we have ‖R0‖X̂ε ≤ Cε1−3σ , and using energy estimates as in [34]

we deduce that the solution of (4.84) with zero initial data satisfies ‖η̂‖X̂ε ≤ Cε1−3σ

for t ∈ (0, Tadvδ
−σ ). Since X̂ε ↪→ Xε by (4.17), (4.20), we arrive at the estimate

‖ηlin − η0‖Xε = O
(
ε1−3σ ) as ε→ 0.

Now the solution of (2.3) with initial data � δ(r0,z0) satisfies, instead of (2.13),

ωθ(r, z, t) = �

νt
η
( r − r̄(t)√

νt
,
z− z̄∗(t)− δz̃(t)√

νt
, t
)
, (4.85)

so combining (4.81), (4.85) we obtain

1

�

∫

�

∣
∣
∣ωθ
(
r, z, t

)−ωlin
(
r, z− a3(t), t

)∣∣
∣dr dz

= ‖η(t)− ηlin(t)‖L1(�ε)

≤ C‖η(t)− ηlin(t)‖Xε ≤ Cε1−3σ ,

(4.86)

because ‖η(t) − η0‖Xε ≤ Cε and ‖η0 − ηlin‖Xε ≤ Cε1−3σ . Using the notations of
(1.7), inequality (4.86) exactly means that ‖ωcor(· , t)‖ ≤ C�ε1−3σ . This concludes
the proof of Theorem 1.1. �

Appendix A: Appendix to Sect. 3

A.1 Inverting the operator�

Following [32], we give here a short proof of Proposition 3.8. Assume that n≥ 2 and
f ∈ Yn ∩ Z , or that n = 1 and f ∈ Y ′

1 ∩ Z . In both cases, we have f ∈ Ker(�)⊥.
We want to show that there exists a unique η ∈ Yn ∩ Z (respectively, η ∈ Y ′

1 ∩ Z if
n= 1) such that �η= f .

To make things concrete, we suppose without loss of generality that f =
a(ρ) sin(nϑ), for some function a :R+ →R. Our hypotheses imply that a is smooth,
that a(ρ) = O(ρn) as ρ → 0, and that eρ

2/4a(ρ) grows at most polynomially as
ρ → ∞. We look for a solution of the form η = ω(ρ) cos(nϑ), where ω : R+ → R

has to be determined. By (3.19), we have

�η = {
φ0 , η

}+ {� ,η0
}
, where φ0 = 1

2π
Lη0 , � = 1

2π
Lη . (A.1)
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The function φ0 is radially symmetric and satisfies ∂ρφ0 = −ρϕ(ρ), see (3.24) and
(A.12) below. It follows that

{
φ0 , η

} = ∂ρφ0
1

ρ
∂ϑη = nϕ(ρ)ω(ρ) sin(nϑ) . (A.2)

On the other hand, as −�� = η, we have � =�(ρ) cos(nϑ), where � is the unique
regular solution of the differential equation

−�′′(ρ)− 1

ρ
�′(ρ)+ n2

ρ2
�(ρ) = ω(ρ) , ρ > 0 . (A.3)

Since η0 is radially symmetric and ∂ρη0 = −(ρ/2)η0 = −ρϕ(ρ)h(ρ), see (3.24), we
deduce

{� ,η0
} = −∂ρη0

1

ρ
∂ϑ� = −nϕ(ρ)h(ρ)�(ρ) sin(nϑ) . (A.4)

In view of (A.1), (A.2), (A.4), the equation �η = f is equivalent to the relation
(3.25), and using in addition (A.3) we obtain the differential equation (3.26) for the
stream function �.

The main step in the proof is to show that (3.26) has a unique solution that is
regular at the origin and decays to zero at infinity. Here we distinguish two cases
according to the value of the angular Fourier mode n.

1. If n≥ 2, the homogeneous equation (3.26) with a ≡ 0 has two linearly indepen-
dent solutions ψ+, ψ− which satisfy

ψ−(ρ) ∼
{
ρn as ρ→ 0 ,

κρn as ρ→ ∞ ,
ψ+(ρ) ∼

{
κρ−n as ρ→ 0 ,

ρ−n as ρ→ ∞ ,
(A.5)

for some κ > 0, see [32]. Here we use the crucial observation that (n2/ρ2)−h(ρ) > 0
when n≥ 2, so that the differential operator in the left-hand side of (3.26) satisfies the
Maximum Principle. We deduce the following representation formula for the solution
of the inhomogeneous equation

�(ρ) = ψ+(ρ)
∫ ρ

0

r

w0
ψ−(r)

a(r)

nϕ(r)
dr +ψ−(ρ)

∫ ∞

ρ

r

w0
ψ+(r)

a(r)

nϕ(r)
dr , (A.6)

where w0 = 2nκ . It is then straightforward to verify that �(ρ) = O(ρn) as ρ → 0
and �(ρ) = O(ρ−n) as ρ → ∞. Moreover, if ω is defined by (3.25), the function
η = ω(ρ) cos(nϑ) lies in Yn ∩ Z and satisfies �η = f by construction. The details
can be found in [32, Lemma 4].

2. The situation is quite different when n= 1, because the lower order term 1/ρ2 −
h(ρ) in (3.26) is no longer positive. In that case, it happens that the homogeneous
equation (3.26) with a ≡ 0 has a solution ψ(ρ) = ρϕ(ρ) which satisfies ψ(ρ) ∼
ρ/(8π) as ρ→ 0 andψ(ρ)∼ 1/(2πρ) as ρ→ ∞. In other words, the linear operator
in the left-hand side of (3.26) has a one-dimensional kernel, and for that reason we
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have to impose the solvability condition

f ∈ Y ′
1 ⊂ Ker(�)⊥ , or equivalently

∫ ∞

0
a(ρ)ρ2 dρ = 0 . (A.7)

To solve (3.26) for n = 1, we look for a solution of the form �(ρ) = b(ρ)ψ(ρ),
which leads to a first-order differential equation for b(ρ). In view of (A.7), we thus
find

b′(ρ) = − 1

ρψ(ρ)2

∫ ρ

0
a(r)r2 dr = 1

ρψ(ρ)2

∫ ∞

ρ

a(r)r2 dr . (A.8)

Integrating (A.8) gives the representation formula

b(ρ) = b0 −
∫ ρ

0
a(r)r2

(
F(ρ)−F(r)

)
dr , for some b0 ∈R ,

where

F(ρ) = 8π2
(

log
(
eρ

2/4 − 1
)− 1

eρ
2/4 − 1

)

, F ′(ρ) = 1

ρψ(ρ)2
.

We now substitute �(ρ) = b(ρ)ψ(ρ) into (3.25) with n = 1, and we choose the
constant b0 so that

∫∞
0 ω(ρ)ρ2 dρ = 0. This is always possible in a unique way, since

∫ ∞

0
h(ρ)ψ(ρ)ρ2 dρ =

∫ ∞

0
h(ρ)ϕ(ρ)ρ3 dρ = 1

8π

∫ ∞

0
e−ρ2/4ρ3 dρ = 1

π
�= 0 .

To conclude the proof, it remains to verify that the function η = ω(ρ) cos(ϑ) con-
structed above belongs to Y ′

1 ∩ Z and satisfies �η = f . These are straightforward
calculations, which can be omitted. �

A.2 First order calculations

We first establish the relations (3.37). As η0 ∈ Y0 has unit mass we find, using (3.11),

(
P1η0

)
(R,Z) =

∫

R2

R+R′

2
η0(R

′,Z′)dR′ dZ′ = R

2
, (A.9)

hence {P1η0 , η0} = 1
2 ∂Zη0. On the other hand, since ∂Rη0 = −(R/2)η0 and L is a

convolution operator, which therefore commutes with derivatives, we have

(
LP1η0

)
(R,Z)= R

2
(Lη0)(R,Z)+L

(R

2
η0

)
(R,Z)

= R

2
(Lη0)(R,Z)− ∂R

(
Lη0

)
(R,Z) .

Recalling that Lη0 = 2πφ0, and that {φ0, η0} = 0 because both φ0, η0 are radially
symmetric, we thus obtain

1

2π

{
LP1η0 , η0

} =
{R

2
φ0 − ∂Rφ0 , η0

}
= 1

2
φ0 ∂Zη0 + {φ0 , ∂Rη0

}
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= 1

2
φ0 ∂Zη0 −

{
φ0 ,

R

2
η0

}
= 1

2
φ0 ∂Zη0 + 1

2
(∂Zφ0)η0 ,

which concludes the proof of (3.37).
We next prove formula (3.39) for the vertical velocity. Assuming that ˙̄z0 is given

by (3.39) for some v ∈ R, we see that the right-hand side of (3.38) belongs to Y ′
1 =

Y ∩ Ker(�)⊥ if and only if
∫

R2

( v

2π
∂Zη0 − 3

2
(∂Zφ0)η0 − 1

2
φ0∂Zη0

)
Z dR dZ = 0 . (A.10)

Since ∂Zη0 = −(Z/2)η0 and
∫
R2 Z

2η0 dR dZ = 2, it is straightforward to verify that
(A.10) is equivalent to

v = π

∫

R2
φ0η0

(
3 −Z2)dR dZ = π

2

∫

R2
φ0η0

(
6 − |X|2)dX , (A.11)

where X = (R,Z) and |X|2 =R2 +Z2.
To evaluate the right-hand side of (A.11), we temporarily denote ψ0 = 2πφ0 =

Lη0, namely

ψ0(X) = 1

4π

∫

R2
log
( 8

|X− Y |
)
e−|Y |2/4 dY , X ∈ R

2 .

This function satisfies −�ψ0 = 2πη0 = 1
2 e

−|X|2/4, so that

ψ0(X) = ψ0(0) −
∫ |X|

0

1 − e−ρ2/4

ρ
dρ =: ψ̃0(|X|) , X ∈ R

2 , (A.12)

where

ψ0(0) = log(8)− 1

4π

∫

R2
log(|Y |) e−|Y |2/4 dY = 2 log(2)+ γE

2
. (A.13)

Using (A.12), (A.13) and integrating by parts, we easily find
∫

R2
ψ0η0 dX = 1

2

∫ ∞

0
ψ̃0(ρ)e

−ρ2/4ρ dρ

= ψ0(0)+
∫ ∞

0
ψ̃ ′

0(ρ)e
−ρ2/4 dρ = 3

2
log(2)+ γE

2
,

and similarly
∫

R2
ψ0η0|X|2 dX = 4ψ0(0)+

∫ ∞

0
ψ̃ ′

0(ρ)e
−ρ2/4(ρ2 + 4)dρ = 6 log(2)+ 2γE − 1 .

Returning to (A.11), we conclude that

v = 1

4

∫

R2
ψ0η0

(
6 − |X|2)dX = 3

4
log(2)+ 1

4
γE + 1

4
. (A.14)
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A.3 Second order calculations

Our goal here is to prove Lemma 3.12. To establish (3.48), we consider separately
the various terms in (3.47). As η1 ∈ Y1 has zero mean, we find as in (A.9) that P1η1
is a constant, which can be disregarded. Moreover LP1η1 = R

2 Lη1 +L(R2 η1
)
, hence

using the expression (3.41) of η1 we find that

LP1η1 = (R2 −Z2)χ1(ρ)+ δRZχ2(ρ)+ χ3(ρ) ,

where χ1, χ2, . . . are functions of the radial variable ρ = (R2 + Z2)1/2. As η0 itself
is radially symmetric, we deduce that

{
(βε − 1)P1η1 +LP1η1 , η0

} = RZχ4(ρ)+ δ(R2 −Z2)χ5(ρ) . (A.15)

Next, using the expression (3.11) of P2, we see that

(
P2η0

)
(R,Z)= 1

16

∫

R2

(
(R−R′)2 + 3(Z−Z′)2

)
η0(R

′,Z′)dR′ dZ′

= R2

16
+ 3Z2

16
+ 1

2
,

and a similar calculation gives Q2η0 = 3R2

16 − Z2

16 + 1
4 . Moreover,

(
LP2η0

)
(R,Z)

= 1

16

∫

R2
log
( 8

D

)(
2D2 + (Z−Z′)2 − (R−R′)2

)
η0(R

′,Z′)dR′ dZ′ ,

where D2 = (R−R′)2 + (Z−Z′)2. Using the fact that η0 given by (3.32) is radially
symmetric, we easily obtain

1

2π

(
LP2η0

)
(R,Z) = χ6(ρ)+ (R2 −Z2)χ7(ρ) .

Altogether, we arrive at

1

2π

{
βεP2η0 +LP2η0 +Q2η0 , η0

} = βε

16π
RZη0 +RZχ8(ρ) . (A.16)

The remaining terms in (3.47) are easier to treat. In view of (3.39), (3.41), (3.42),
we have

{
φ1 , η1

}− r0 ˙̄z0

�
∂Zη1 =

{
φ1 − βε − 1

4π
R ,η1

}
− v

2π
∂Zη1

=
{R

2
φ0 − ∂Rφ0 +Rφ10(ρ)+ δZ φ11(ρ) ,R η10(ρ)+ δZ η11(ρ)

}
− v

2π
∂Zη1

= RZχ9(ρ)+ δ
(
χ10(ρ)+ (R2 −Z2)χ11(ρ)

)
+ δ2RZχ12(ρ) . (A.17)
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It is also easy to verify that the terms (∂Zφ1)η0 + (∂Zφ0)η1 − 2R(∂Zφ0)η0 +
δ∂R(Rη0) are exactly of the same form. Finally, using again (3.41), (3.42), we ob-
tain

R
({
φ1 , η0

}+ {φ0 , η1
}) = R

(βε − 1

4π
∂Zη0 +Zχ13(ρ)+ δRχ14(ρ)

)
. (A.18)

If we now combine (A.15), (A.16), (A.17), (A.18), we arrive at (3.48). �

A.4 Higher order calculations

The calculations carried out in Sects. 3.5 and 3.6 do not require new ideas, but a more
compact notation is often helpful. To prove Lemma 3.13 and similar statements, it
is important to understand how the decomposition (3.21) of the function space Y
behaves under the Poisson bracket. If we use polar coordinates R = ρ cosϑ , Z =
ρ sinϑ , we recall that Yn is the subspace of Y spanned by functions of the form
a(ρ) cos(nϑ) and b(ρ) sin(nϑ). Since

{
f ,g

} = ∂Rf ∂Zg − ∂Zf ∂Rg = 1

ρ

(
∂ρf ∂ϑg − ∂ϑf ∂ρg

)
,

we easily obtain the following result

Lemma A.1 If a, b : R+ → R are smooth functions and n,m ∈ N, then

{
a(ρ) cos(nϑ) , b(ρ) cos(mϑ)

} = c11(ρ) sin((n−m)ϑ)+ c12(ρ) sin((n+m)ϑ) ,
{
a(ρ) sin(nϑ) , b(ρ) sin(mϑ)

} = c21(ρ) sin((n−m)ϑ)+ c22(ρ) sin((n+m)ϑ) ,
{
a(ρ) sin(nϑ) , b(ρ) cos(mϑ)

} = c31(ρ) cos((n−m)ϑ)+ c32(ρ) cos((n+m)ϑ) ,

where cij : R+ → R are smooth functions. In particular {Yn,Ym} ⊂ Yn−m + Yn+m
if m≤ n.

It is also necessary to compute the homogeneous polynomials Pj ,Qj in (3.10) for
higher values of j than in Lemma 3.3. This is a cumbersome calculation that can be
done for instance using computer algebra. For j = 3 we find

P3 = − 1

32
(R +R′)

(
(R −R′)2 + 3(Z −Z′)2

)
,

Q3 = − 1

48
(R +R′)

(
(R +R′)2 − 6(Z −Z′)2

)
,

(A.19)
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and the calculation for j = 4 yields the more complicated expressions

P4 = − 15

1024
(Z−Z′)4 + 21

512
(R−R′)2(Z−Z′)2 + 3

16
RR′ (Z−Z′)2

+ 17

1024
(R2−R′2)2 − 1

256
RR′ (R−R′)2 ,

Q4 = 31

2048
(Z−Z′)4 − 89

1024
(R+R′)2(Z−Z′)2 + 1

256
RR′ (Z−Z′)2

− 19

6144
(R2−R′2)2 + 35

1536
RR′(R+R′)2 − 1

128
R2R′2 .

(A.20)

The proof of Lemma 3.13 is similar to that of Lemma 3.12, and the details can
be omitted. We use the expressions (3.41), (3.50) of the vorticities η1, η2, the for-
mulas (3.42), (3.51) for the stream functions φ1, φ2, and the definition (3.15) of
the Biot-Savart operators, which involve the polynomials (3.11) and (A.19). Using
Lemma A.1, it is straightforward to verify that the quantity defined in (3.55) satisfies
R3 ∈ Y1 +Y3 and takes the form

R3 = χ1(ρ) sin(ϑ)+ χ2(ρ) sin(3ϑ)+ δ
(
χ3(ρ) cos(ϑ)+ χ4(ρ) cos(3ϑ)

)
+O(δ2) ,

where χ1, χ2, χ3, χ4 are radially symmetric functions which may depend linearly on
βε . To arrive at (3.56), it remains to verify that R3 does not contain any term involving
β2
ε . Indeed, according to (3.11), (3.50), we have

βε

2π
P1η2 = βε

4π

∫

R2
(R +R′) η2(R

′,Z′)dR′ dZ′ = βεR

4π

∫

R2
η24(R

′,Z′)dR′ dZ′ ,

so that the first term in (3.55) does not contain β2
ε . The only other terms that we have

to check are

{
φ1 , η2

}− r0

�
˙̄z0∂Zη2 =

{
φ1 − βε − 1 + 2v

4π
R ,η2

}
,

but using the expressions (3.42), (3.50) we immediately see that the right-hand side
does not contain any factor β2

ε . Altogether we arrive at (3.56). �

Appendix B: Appendix to Sect. 4

B.1 Properties of the energy functional

Proof of Lemma 4.4 We use the first expression of Ekin
ε [η] in (4.22) and the represen-

tation formula (2.20) for the stream function φ. Since supp(η)⊂ Bε by assumption,
we have

Ekin
ε [η] = 1

4π

∫

Bε

∫

Bε

Kε(R,Z;R′,Z′) η(R,Z)η(R′,Z′)dX dX′ , (B.1)
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where the integral kernelKε is defined in (3.8). As R2 +Z2 ≤ ε−2σ1 and R′2 +Z′2 ≤
ε−2σ1 , the argument of F in (3.8) is not larger than Cε2−2σ1 for some C > 0. Using
the asymptotic expansion of F(s) as s→ 0 and proceeding as in Sect. 3.1, we easily
obtain the decomposition

Kε(R,Z;R′,Z′) = βε − 2 + log
8

D
+ K̃ε(R,Z;R′,Z′) , (B.2)

where βε = log(1/ε) andD2 = (R−R′)2 + (Z−Z′)2. The remainder K̃ε satisfies the
estimate

|K̃ε(R,Z;R′,Z′)| ≤ Cε
(|R| + |R′|)

(
βε + 1 + log

8

D

)
+O

(
βεε

2−2σ1
)
. (B.3)

If we insert the decomposition (B.2) into (B.1), the contributions of βε − 2 and
log(8/D) give exactly the first two terms in the right-hand side of (4.24), in view
of (4.23). Moreover, taking into account estimate (B.3) where ε2−2σ1 ≤ ε, we see
that the contributions of K̃ε to the kinetic energy (B.1) are of order O

(
εβε‖η‖2

Xε
)
, as

stated in (4.24). �

Proof of Proposition 4.6 Given η ∈ Xε , we decompose η = η1 + η2 where η1 = η1Bε
and 1Bε is the indicator function of the ball Bε = {(R,Z) ∈�ε ; R2 + Z2 ≤ ε−2σ1}.
We thus have

Eε[η] = 1

2

∫

�ε

Wε η
2
1 dX+ 1

2

∫

�ε

Wε η
2
2 dX− 1

2

∫

�ε

(
φ1 +φ2

)(
η1 +η2

)
dX , (B.4)

where φj = BSε[ηj ] for j = 1,2. We claim that

1

2

∫

�ε

(
φ1 + φ2

)(
η1 + η2

)
dX = Ekin

ε [η1] +O
(
ε∞‖η‖2

Xε
)
, (B.5)

so that

Eε[η] = Eε[η1] + 1

2
‖η2‖2

Xε +O
(
ε∞‖η‖2

Xε
)
. (B.6)

To prove (B.5), we recall that φj (R,Z)= 1
2π

∫
�ε
Kε(R,Z;R′,Z′)ηj (R′,Z′)dX′,

where the kernel Kε is given by (3.8). Using the crude estimate |F(s)| ≤ C(| log s| +
1
)
, we easily obtain

∣
∣Kε(R,Z;R′,Z′)

∣
∣ ≤ C

(
1+ε|R|)a(1+ε|R′|)a(βε + ∣∣logD

∣
∣+ 1

)
, (B.7)

for some a > 1/2. It follows in particular that

|φ(R,Z)| ≤ C
(
βε + 1

)
(1 + ρ)b‖η‖Xε , ρ =

√
R2 +Z2 ,

for some b > 1/2, and using Hölder’s inequality we deduce
∫

�ε

|φ(R,Z)| |η2(R,Z)|dX
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≤ C
(
βε + 1

)‖η‖2
Xε

(∫

Bcε

(1 + ρ)2b Wε(R,Z)−1 dX

)1/2

,

where the last integral is O(ε∞) in view of (4.17). In a similar way we have

|φ2(R,Z)| ≤ C
(
βε + 1

)
(1 + ρ)b

(∫

Bcε

(1 + ρ′)2b|η(R′,Z′)|2 dX′
)1/2

= O
(
ε∞‖η‖Xε

)
(1 + ρ)b ,

so that
∫
�ε
φ2η1 dx = O

(
ε∞‖η‖2

Xε
)
. Altogether we arrive at (B.5).

Now, since η1 is supported in the ball Bε , it follows from (4.18) and Lemma 4.4
that

‖η1‖2
Xε = ‖η1‖2

X0
+O

(
εγ1‖η‖2

Xε
)
,

Ekin
ε [η1] = βε−2

4π
μ̃2

0 +Ekin
0 [η1] +O

(
εβε‖η‖2

Xε
)
.

(B.8)

Moreover we know from Proposition 4.5 that

‖η1‖2
X0

≤ C4E0[η1] +C5
(
μ̃2

0 + μ̃2
1 + μ̃2

2

)
, (B.9)

where μ̃0, μ̃1, μ̃2 are the moments of η1, which satisfy μ̃j = μj + O
(
ε∞‖η‖Xε

)
.

Combining both estimates in (B.8) we obtain

E0[η1] = 1

2
‖η1‖2

X0
−Ekin

0 [η1] ≤ 1

2
‖η1‖2

Xε −Ekin
ε [η1]+ βε−2

4π
μ̃2

0 +O
(
εγ1‖η‖2

Xε
)
,

namely E0[η1] ≤ Eε[η1] + βε−2
4π μ̃

2
0 + O

(
εγ1‖η‖2

Xε
)
. Using in addition (B.9) we de-

duce

‖η1‖2
Xε ≤ ‖η1‖2

X0
+O

(
εγ1‖η‖2

Xε
)

≤ C4Eε[η1] +C(βεμ̃2
0 + μ̃2

1 + μ̃2
2

)+O
(
εγ1‖η‖2

Xε
)
.

Finally, invoking (B.6) and recalling that C4 > 2, we find

‖η‖2
Xε ≤ ‖η1‖2

Xε + C4

2
‖η2‖2

Xε ≤ C4Eε[η] +C(βεμ̃2
0 + μ̃2

1 + μ̃2
2

)+O
(
εγ1‖η‖2

Xε
)
,

and estimate (4.27) follows, since μ̃j = μj +O
(
ε∞‖η‖Xε

)
for j = 0,1,2. �

B.2 Diffusive terms in the energy functional

We justify here the expression (4.32) of the quantity I4. Integrating by parts as in
[35], we find
∫

�ε

Wεη̃Lη̃ dX = −
∫

�ε

Wε |∇η̃|2 dX−
∫

�ε

(∇Wε · ∇η̃)η̃ dX−
∫

�ε

Ṽεη̃
2 dX ,
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where Ṽε = 1
4 (R∂R +Z∂Z)Wε − 1

2Wε . Similarly,

ε

∫

�ε

Wεη̃ ∂Rζ̃ dX = ε

∫

�ε

Wε(1+εR)ζ̃ ∂Rζ̃ dX = −ε
2

∫

�ε

∂R
(
Wε(1+εR))ζ̃ 2 dX .

On the other hand, integrating by parts and using the relation (2.19) between φ̃ and
η̃, we obtain

∫

�ε

φ̃
(
Lη̃+ ε∂Rζ̃

)
dX =

∫

�ε

η̃
(
�φ̃ − ε∂Rφ̃

1 + εR
)

dX− 1

2

∫

�ε

η̃
(
R∂R +Z∂Z

)
φ̃ dX

= −
∫

�ε

η̃2(1 + εR)dX− 1

2

∫

�ε

η̃
(
R∂R +Z∂Z

)
φ̃ dX .

It remains to treat the last term in the right-hand side. Here again, we use the relation
(2.19) and integrate by parts to obtain

1

2

∫

�ε

η̃
(
R∂R +Z∂Z

)
φ̃ dX = ε

4

∫

�ε

R|∇φ̃|2
(1 + εR)2 dX .

Altogether we arrive at (4.32), with Vε = Ṽε − (1 + εR).
B.3 Coercivity of the diffusive quadratic form

This section is devoted to the proof of Proposition 4.15. Given ε > 0 sufficiently
small, we take a smooth partition of unity of the form 1 = χ2

3 + χ2
4 , where χ3, χ4 are

radially symmetric and χ3 = 1 when ρ ≤ 1
2ε

−σ1 , χ3 = 0 when ρ ≥ ε−σ1 . We can also
assume that |∇χ3| + |∇χ4| ≤ Cεσ1 . Given η as in the statement of Proposition 4.15,
we define η3 = χ3η, η4 = χ4η. We thus have the decompositions η2 = η2

3 + η2
4,

η∇η= η3∇η3 + η4∇η4, and

|∇η|2 = |∇η3|2 + |∇η4|2 − (|∇χ3|2 + |∇χ4|2
)
η2 . (B.10)

As a consequence, the quadratic form Qε[η] can be decomposed as

Qε[η] = Qε[η3] +Qε[η4] −
∫

�ε

Wε
(|∇χ3|2 + |∇χ4|2

)
η2 dX . (B.11)

The last term in (B.11) is bounded by Cε2σ1‖η‖2
Xε and is thus negligible when ε� 1.

So our main task is to estimate from below the terms Qε[η3] and Qε[η4].
We first consider the function η3 which is supported in the region where ρ ≤ ε−σ1 .

We recall that the weightWε in (4.16) satisfies the estimates (4.18), which read

|∇Wε(R,Z)− ∇A(ρ)| + |Wε(R,Z)−A(ρ)| ≤ Cεγ1A(ρ) ,

when ρ ≤ ε−σ1 , (B.12)

where γ1 > 0. We easily deduce that

Qε[η3] ≥ Q0[η3] −Cεγ1
(‖∇η3‖2

X0
+ ‖ρη3‖2

X0
+ ‖η3‖2

X0

)
, (B.13)
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where Q0 is the limiting quadratic form (4.62). On the other hand, we know from
Proposition 4.14 that

C8Q0[η3] ≥ ‖∇η3‖2
X0

+ ‖ρη3‖2
X0

+ ‖η3‖2
X0

−C9
(
μ̃2

0 + μ̃2
1 + μ̃2

2

)
, (B.14)

where μ̃0, μ̃1, μ̃2 are the moments of η3, which satisfy μ̃j = μj + O
(
ε∞‖η‖Xε

)
.

Combining (B.13), (B.14) and using (B.12) once again, we arrive at

‖∇η3‖2
Xε + ‖ρη3‖2

Xε + ‖η3‖2
Xε ≤ 2C8Qε[η3] +C(μ̃2

0 + μ̃2
1 + μ̃2

2

)
. (B.15)

We next consider the function η4, which is nonzero only if ρ ≥ 1
2ε

−σ1 . Our starting
point is the lower bound

Qε[η4] ≥ 1

4

∫

�ε

Wε |∇η4|2 dX+
∫

�ε

(
Vε − |∇Wε |2

3Wε

)
η2

4 dX ,

which is obtained from (4.61) by applying Young’s inequality to the middle term in
the right-hand side. Using the expression (4.16) of the weight function, as well as the
estimates (B.12) in the inner region �′

ε , it is not difficult to verify that

Vε

Wε
− |∇Wε |2

3W 2
ε

≥

⎧
⎪⎨

⎪⎩

Cρ2 − C̃ in �′
ε ,

−C̃ in �′′
ε ,

Cρ2γ in �′′′
ε ,

for some positive constants C, C̃. It follows that

Qε[η4] ≥ 1

4
‖∇η4‖2

Xε +C
∫

�′
ε∪�′′′

ε

Wε ρ
2
γ η

2
4 dX− C̃

∫

�′′
ε

Wε η
2
4 dX . (B.16)

If we now combine (B.15) and (B.16), we obtain

‖∇η3‖2
Xε + ‖∇η4‖2

Xε + ‖η‖2
Xε +

∫

�′
ε∪�′′′

ε

Wε ρ
2
γ η

2 dX

≤ C10
(
Qε[η3] +Qε[η4]

)+C11

(
μ̃2 +

∫

�′′
ε

Wεη
2 dX

)
, (B.17)

for some positive constants C10,C11, where μ̃2 = μ̃2
0 + μ̃2

1 + μ̃2
2. Finally, using again

(B.10) as well as (B.11), and recalling that μ̃j = μj + O
(
ε∞‖η‖Xε

)
, we deduce

(4.65) from (B.17). �
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