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Abstract. We consider the Cauchy problem for the incompressible Navier–Stokes equations in R
3 for a one-parameter family

of explicit scale-invariant axi-symmetric initial data, which is smooth away from the origin and invariant under the reflection
with respect to the xy-plane. Working in the class of axi-symmetric fields, we calculate numerically scale-invariant solutions
of the Cauchy problem in terms of their profile functions, which are smooth. The solutions are necessarily unique for small
data, but for large data we observe a breaking of the reflection symmetry of the initial data through a pitchfork-type
bifurcation. By a variation of previous results by Jia and Šverák (Invent Math 196(1):233–265, 2013, https://doi.org/10.
1007/s00222-013-0468-x) it is known rigorously that if the behavior seen here numerically can be proved, optimal non-
uniqueness examples for the Cauchy problem can be established, and two different solutions can exists for the same initial
datum which is divergence-free, smooth away from the origin, compactly supported, and locally (−1)-homogeneous near
the origin. In particular, assuming our (finite-dimensional) numerics represents faithfully the behavior of the full (infinite-
dimensional) system, the problem of uniqueness of the Leray–Hopf solutions (with non-smooth initial data) has a negative
answer and, in addition, the perturbative arguments such those by Kato (Math Z 187(4):471–480, 1984, https://doi.org/
10.1007/BF01174182) and Koch and Tataru (Adv Math 157(1):22–35, 2001, https://doi.org/10.1006/aima.2000.1937), or
the weak-strong uniqueness results by Leray, Prodi, Serrin, Ladyzhenskaya and others, already give essentially optimal
results. There are no singularities involved in the numerics, as we work only with smooth profile functions. It is conceivable
that our calculations could be upgraded to a computer-assisted proof, although this would involve a substantial amount of
additional work and calculations, including a much more detailed analysis of the asymptotic expansions of the solutions at
large distances.
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1. Introduction

We consider the Cauchy problem for the Navier–Stokes equations in (0,∞) × R
3,

∂tu + u · ∇u = Δu − ∇p, ∇ · u = 0, u(0, ·) = u0. (1)

Important open questions about the Cauchy problem (1) concern existence and uniqueness of the solutions
in suitable classes of functions. There are essentially two methods to address these issues: the global
method based on a priori energy estimates and the local perturbation theory method.

The global method started by the seminal work of Leray [26] and further developed by Hopf [15], has
lead to the concept of the Leray–Hopf solutions. For u0 ∈ L2(R3), a Leray–Hopf solution of the Cauchy
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problem in (0, T ) × R
3 is a field u ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ; Ḣ1(R3)) satisfying (1) weakly, together

with some additional requirements, such as the energy inequality

‖u(t, ·)‖2
L2(R3) + 2

∫ t

0

‖∇u(τ, ·)‖2
L2(R3) dτ ≤ ‖u(0, ·)‖2

L2(R3) ,

for all t ∈ (0, T ), and suitable continuity of the map t → u(t). We will be dealing with solutions which are
smooth for t > 0, and have only a weak singularity at (x, t) = (0, 0), so the exact technical assumptions
are not our focus here, although in connection with the scale-invariant solutions one should point out the
important generalization by Lemarié–Rieusset [24,25], where the global energy requirements are replaced
by local ones.

By using the energy estimate and compactness arguments, Leray and others showed the existence of
a global Leray–Hopf solution for any u0 ∈ L2(R3) with T = ∞. However, the proof, which relies on
compactness arguments, does not give anything concerning uniqueness, except in the case when existence
of a more regular solution is known. In that case one can use the energy arguments around the more
regular solution, and show that any Leray–Hopf solution has to coincide with the regular one. These
results, now known as weak-strong uniqueness theorems, go back to Leray [26], with later generalizations
by a number of authors, including for example Prodi [29] and Serrin [31]. One has to mention also the
results by Kiselev and Ladyzhenskaya [21], where a slightly different approach is taken.

The perturbation method goes back to Oseen [28] and Leray [26] and was later developed in scale-
invariant spaces by Fujita and Kato [9,10] and Kato [19]. It treats the nonlinearity as a perturbation and
inverts the linear part to obtain an integral equation, which is then approached via the Picard iteration.
The borderline spaces for this method are scale-invariant with respect to the scaling symmetry of (1):

u(t, x) → uκ(t,x) = κu(κ2t, κx),

p(t, x) → pκ(t,x) = κ
2p(κ2t, κx),

u0(x) → u0κ(x) = κu0(κx),

(2)

where κ > 0. A space X for the initial datum u0 is scale-invariant if its norm is invariant under the
scaling of the initial condition. Well-known scale-invariant spaces X relevant for the Cauchy problem (1)
are, for example, the spaces L3, see Kato [19], and BMO−1, see Koch and Tataru [22]. An important
distinction between the two is that the former does not contain the function |x|−1, whereas the latter
does. This is related to the fact that for L3 one can show local-in-time well-posedness for data of any
size (with the time of existence depending on the datum), whereas for BMO−1 one can only treat small
data. The results in this paper suggest that this is not an artifact of the methods, but reflects the actual
behavior of the solutions.

A special class of initial data being naturally in BMO−1 and not in L3 is given by scale-invariant
initial data. An initial datum u0 is scale-invariant under the scaling symmetry (2) if u0κ = u0 for all
κ > 0. In particular such initial data behaves like |x|−1 both near the origin and at infinity, so are not
in L3. For scale-invariant initial data, it is natural to look for the solutions of (1) as being also invariant
under the scaling (2) i.e. satisfying uκ = u and pκ = p for all κ > 0. A scale-invariant solution (u, p)
has the form

u(t,x) =
1

t1/2
U

(
x

t1/2

)
, p(t,x) =

1
t
P

(
x

t1/2

)
,

where the profiles U = u(·, 1) and P = p(·, 1) satisfy

ΔU +
x

2
· ∇U +

1
2
U − U · ∇U − ∇P = 0, ∇ · U = 0, (3a)

in R
3 together with the condition

U(x) = u0(x) + o(|x|−1) as |x| → ∞. (3b)

Jia and Šverák [16] proved the following global existence result for scale-invariant initial data. A different
proof was obtained by Bradshaw and Tsai [6].
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Theorem 1. If u0 ∈ C∞(R3\{0}) is scale-invariant and divergence-free, then there exists a least one
scale-invariant solution u ∈ C∞((0,∞) × R

3) of (1). Moreover if u is a scale-invariant solution then the
profile U = u(1, ·) satisfies (3a) and

∣∣∂α
(
U(x) − eΔu0(x)

)∣∣ ≤ C(α,u0)

(1 + |x|)3+|α| , (4)

for any α.

The scale-invariant solution is unique for small initial data. For large initial data it has been conjectured
by Jia and Šverák [16,18] that the scale-invariant solution is not unique. Our goal is to present numerical
evidence for this conjecture. From the existence of such solutions, the non-uniqueness of Leray–Hopf
solutions and the sharpness of the Serrin uniqueness criterion can be established along the lines of Jia
and Šverák [18]. In the case of the harmonic map heat flow, related results have been obtained by Germain
et al. [12].

Two important results that appeared since this work has been completed should be mentioned. In
Buckmaster and Vicol [7], non-uniqueness and lack of regularity were established for Navier–Stokes weak
solutions in the class CtH

s
x with a small s > 0. The construction is carried out using the method of convex

integration. The solutions in CtH
s
x can exhibit a remarkable degree of non-uniqueness and “flexibility”.

It is currently unclear what the regularity threshold for the convex integration techniques is and whether
the class of the Leray–Hopf solutions can be reached by the method. In Albritton et al. [1], the authors
establish non-uniqueness for Leray–Hopf solutions with a non-trivial right-hand side following ideas similar
to the ones pursued in this paper. The difference is that if one is willing to admit a right-hand side of
the form f(t,x) = t−3/2F (xt−1/2) with some non-trivial smooth F (with reasonable decay at ∞), the
profile U does not have to satisfy a specific PDE. It can be chosen in a way that allows completing the
proof by the usual “pencil and paper” approach, without having to rely on numerical simulations.

We now introduce the function spaces needed for the study of (3). Let

U =
{
U ∈ L∞(R3) : ∇ · U = 0 and ‖U‖U < ∞}

, (5a)

where

‖U‖U =
∑

|α|≤2

sup
x∈R3

(1 + |x|)1+α |∂αU(x)| . (5b)

The profile U of a scale-invariant solution belongs naturally to U . Let

V =
{
v ∈ L2(R3) ∩ L4(R3) : ∇ · v = 0

}
, (6a)

with the norm

‖v‖V = ‖v‖L2(R3) + ‖v‖L4(R3) . (6b)

In view of (4), the difference between two different scale-invariant solutions sharing the same initial datum
will be in V. We define D as the following subspace of V,

D =
{
v ∈ V : ∂αv ∈ V and x · ∇v ∈ V for 0 ≤ |α| ≤ 2

}
, (7a)

with the norm

‖v‖D = ‖v‖V + ‖∇v‖V + ‖∇2v‖V + ‖x · ∇v‖V . (7b)

The subspace of axi-symmetric vector fields in D is denoted by Daxi. Given some fixed scale-invariant
vector-field a0 ∈ C∞(R3\ {0}), we define the map F : D × R → V by

F (v, σ) = −Δv − x

2
· ∇v − 1

2
v + (σA0 + v) · ∇ (σA0 + v) + ∇P, (8)
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where A0 = eΔa0 and P is chosen such that F (v, σ) is divergence-free. Therefore U is a solution of (3)
with u0 = σa0 for σ ∈ R if and only if F (v, σ) = 0 where v = U − σA0. The linearization of (3) around
U ∈ U is defined as the operator L(U) : D → V where

L(U)φ = −Δφ − x

2
· ∇φ − 1

2
φ + U · ∇φ + φ · ∇U + ∇p, (9)

and in particular D1F (v, σ) = L(σA0 + v). The operator L(U) is viewed as an unbounded operator in
V with domain D.

For small values of σ the solution of F (v, σ) = 0 is unique, leading to a unique solution Uσ = σA0 +v
of (3). As long as the kernel of the linearization D1F (v, σ) = L(Uσ) is trivial, the solution can be (locally)
uniquely continued to larger values of σ. However, if at some value of σ = σ0 this kernel is no more trivial
then another solution can bifurcate from v leading to the non-uniqueness of solutions of (3).

The following result on the spectrum of the linearization L(U) follows essentially by the results of
Gallay and Wayne [11] and Jia and Šverák [18].

Theorem 2. We have:
1. The spectrum of L(0) is given by

σ
(L(0)

)
=

{
λ ∈ C : Re λ ≥ 3

4

} ∪ {
3
2 + n, n ∈ N

}
.

The eigenvectors corresponding to the continuous part Re λ > 3
4 decay at infinity like |x|−2λ, whereas

the eigenvectors corresponding to 3
2 +n decay exponentially fast like e−|x|2/4. The multiplicity of the

eigenvalue 3
2 + n is (n + 1)(n + 3) with domain D and n + 1 with the axi-symmetric domain Daxi.

2. If U ∈ U , the spectrum of L(U) satisfies

σ
(L(U)

) ⊂ {
λ ∈ C : Re λ ≥ 3

4

} ∪ S, (10)

where S is a discrete set such that
{
λ ∈ S : Re λ ≤ δ

}
is finite for any δ < 3

4 .

This theorem ensures that only discrete spectrum can cross the imaginary axis. One can establish the
following continuation and bifurcation results depending on the behavior of the discrete spectrum:

Theorem 3. Let σ0 ∈ R and v0 ∈ D be a solution of F (v0, σ0) = 0, so U0 = σ0A0 + v0 is a solution of
(3) with u0 = σ0a0.

1. If zero is not in the spectrum σ(L(U0)), then there exist ε > 0 and a unique smooth solution curve
v : (σ0 − ε, σ0 + ε) → D such that F (v(σ), σ) = 0 and v(σ0) = v0. In particular Uσ = σA0 + v(σ)
is a solution of (3) with u0 = σa0.

2. Assume the existence of a smooth solution curve v1 : (σ0−ε, σ0 +ε) → D such that F (v1(σ), σ) = 0.
If the spectrum of the linearization has the form{

0
} ⊂ σ

(L(U0)
) ⊂ {

λ ∈ C : Re λ > δ
} ∪ {

0
}
, (11)

for some δ > 0, where zero is a simple eigenvalue with associated eigenvector φ and if

ψ · ∇φ + φ · ∇ψ + ∇p /∈ Range
(L(U0)

)
, (12)

where ψ = A0+v′
1(σ0) = ∂σUσ

∣∣
σ=σ0

, then in addition to the solution curve
{(

v1(σ), σ
) ∈ D×R, σ ∈

(σ0 −ε, σ0 +ε)
}

through (v0, σ0) there exists another unique smooth solution curve
{(

v2(s), σ2(s)
) ∈

D × R, s ∈ (−ε, ε)
}

through (v0, σ0) such that F (v2(s), σ2(s)) = 0, v2(0) = v0, and σ2(0) = σ0.
If φ·∇φ+∇p /∈ Range

(L(U0)
)

the bifurcation is transcritical. If φ·∇φ+∇p ∈ Range
(L(U0)

)
and

an additional non-degeneracy assumption is satisfied, we are dealing with a pitchfork bifurcation.

Our aim is to choose a particular scale-invariant vector-field a0 and to construct numerical solutions
exhibiting the bifurcation. In the situation that we will consider here we will have an additional structure
coming from a Z2-symmetry. The branch v1 will correspond to the solutions invariant under the Z2-
symmetry, whereas the branch v2 will correspond to the solutions with broken symmetry. The branch
itself (as a set) will be invariant under the symmetry, and hence the bifurcation will necessarily be of
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pitchfork type, even though the usual non-degeneracy condition used for pitchfork bifurcations may not
be satisfied.

A possible mechanism behind the ill-posedness can be explained at a heuristic level as follows. Assume
the space is filled with an incompressible fluid and consider a portion of the fluid of the shape of a thin
disc {x2 + y2 ≤ R2, |z| ≤ ε}. If we impose on this portion of the fluid a fast rotation about the z-axis
with a smooth, albeit sharp transition to zero outside of the disc, the centrifugal force will result in an
outward motion of the fluid along the xy-plane, which will be superimposed on the rotation. One can
perhaps compare this outward flux with a jet of fluid, except that our “jet” goes out from the origin in
all directions lying in the xy-plane, rather than just in one direction. Due to incompressibility there must
also be an inward flux to the origin, which will take place along the z-axis. Assume the velocity field is
invariant under the reflection about the xy-plane. When the field is large, the flow can be expected to
be unstable, and any slight deviation from the reflection symmetry will quickly lead to a full breaking
of this symmetry. To break the symmetry for smooth solutions, we need an outside impulse. It may be
very small, but it cannot be zero. However, the situation may be different for non-smooth initial data.
We can imagine a scale-invariant initial datum u0 which resembles a rotation localized in the xy-plane
as much as possible. This can be achieved only to a degree, since the scale-invariance poses its own
restrictions, which are of course not compatible with fast decay (among other things). We can still think
of u0 as imposing significant rotation in some bounded region of the xy-plane, but falling off to zero
as we move away from the plane. Also, u0 is smooth except at the origin, where it of course cannot be
smooth due to the scale invariance (as long as it is non-trivial). Now the symmetry breaking impulse
can essentially come from within the singular point, and as such it can be completely hidden from the
information provided by the initial datum. In other words, at this level of singularity in the data, the
model is asked to operate based on the information which is insufficient for it, somewhat similarly as in
the non-uniqueness induced by reverse bubbling in the 2d harmonic map heat flow, see Topping [33], for
example. This analogy is not perfect, as the 2d harmonic map heat flow is critical. For the 3d case we
refer the reader to Germain et al. [12] already quoted above.

The very general method used in perturbation theory or weak-strong uniqueness breaks down exactly
at this point. The numerics presented below suggests that, at least when well-posedness for rough initial
data is concerned, the non-linear term in the equation does not seem to have any magical properties which
would enable one to go beyond the general perturbation analysis. We emphasize that this conclusion may
not apply to the problem of singularity formation from smooth data. The situation there may or may not
be the similar (see for example Tao [32]), but our results say nothing about it. However, if a singularity
is formed, our results suggest that, quite likely, uniqueness may be lost. The connection between loss
of regularity and uniqueness is, of course, not new. Already in the 1950s, Ladyzhenskaya emphasized
the possibility of non-uniqueness for solutions with insufficient regularity (including the Leray–Hopf
solutions), and Ladyzhenskaya [23] presented an example closely related to the scenario discussed in this
paper.

Due to our limited computational resources, we will work with axi-symmetric solutions, i.e. solutions
which are invariant under the rotations around the z-axis. In addition, we consider the Z2-symmetry R
defined by the reflection with respect to the plane z = 0. For the reasons previously explained, we choose
the following scale-invariant axi-symmetric divergence-free vector field for the initial data

a0(r, z) =
e−4(z/r)2

√
r2 + z2

eθ,

where (r, θ, z) denote the cylindrical coordinates. We note that this initial datum has “pure swirl” and is
clearly invariant under R. In this paper we do not consider the breaking of the axial symmetry, although
it is conceivable that for some classes of the initial data this may occur.

The solutions we are dealing with in our work here are defined on the whole space R
3, and hence some

truncation of the domain is needed for the numerics. The solutions have good asymptotic expansions for
|x| → ∞, which in principle could be calculated to a higher order precision. However, the most obvious
approximations seem to work quite well for the numerics, and therefore we did not use the higher order
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expansions. No doubt a possible computer-assisted proof would need to work with more sophisticated
approximations for large |x|.

The numerical methods are described in Sect. 2 and our numerical results are presented in Sect. 3,
which can be summarized as follows:
Numerical Observations. We numerically observe the following :

1. In the range σ ∈ [0, 500], there exists a smooth curve of axi-symmetric and R-symmetric self-similar
solution Uσ of (3), with Uσ(x) = σa0(x) + o(|x|−1) at infinity.

2. The spectrum of the linearization L(Uσ) with domain Daxi has the form{
λσ

} ⊂ σ
(L(

Uσ

)) ⊂ {
λ ∈ C : Re λ > δ

} ∪ {
λσ

}
, (13)

for some δ > 0, and there exists σ0 ≈ 292 such that λσ > 0 for σ < σ0, λσ = 0 for σ = σ0,
and λσ < 0 for σ > σ0. Near σ0, the eigenvalue λσ is simple, continuous in σ and the associated
eigenvector is not R-symmetric.

3. At σ = σ0 there is a supercritical pitchfork-type bifurcation corresponding to the breaking of the
symmetry R. More precisely, for σ ∈ [σ0, 500], in addition to Uσ, there exists two axi-symmetric
solutions Uσ + Vσ and Uσ + RVσ of (3) where Vσ = 0 for σ = σ0 and Vσ is not R-symmetric
(hence non trivial) for σ > σ0.

In particular, this suggests that the solutions of the Navier–Stokes equations are not unique on any
time-interval for large initial data in the Lorentz space L3,∞. This would mean, that the smallness
assumption required by Lemarié–Rieusset [25, Theorem 8.2] for proving the local well-posedness for
initial data in L3,∞ is not technical, but reflect the actual nature of the equations. The same conclusion
holds for the result by Koch and Tataru [22] for initial data in BMO−1.

The scale-invariant solutions have infinite energy, however, by following the ideas of Jia and Šverák
[18, Theorem 1.2] the different self-similar solutions can be localized:

Theorem 4. Assume that (3) exhibits the same solution behavior as observed in the above reported numer-
ical results. Then there exists T > 0 and two different axi-symmetric Leray–Hopf solutions of (1) on (0, T )
with the same compactly supported axi-symmetric initial datum u0 ∈ C∞(R3\{0}) with u0(x) = O(|x|−1)
near the origin. Moreover, these two Leray–Hopf solutions are smooth for t ∈ (0, T ) and belong to
Lp(0, T ;Lq(R3)) for any p, q with

2
p

+
3
q

> 1 and q ≥ 2. (14)

We note that a Leray–Hopf solution on (0, T ) belongs to Lp(0, T ;Lq(R3)) for all
2
p

+
3
q

≥ 3
2

and q ∈ [2, 6]. (15)

by the standard Sobolev embedding. If a Leray–Hopf solution belongs to the Serrin class Lp(0, T ;Lq(R3))
with

2
p

+
3
q

≤ 1, (16)

then the solution is unique and smooth [8,23,29,31]. Theorem 4 shows that the Serrin uniqueness criterion
is essentially optimal, since non-uniqueness holds for p and q satisfying (14). The Leray–Hopf and Serrin
classes are represented on Fig. 1.

Our main focus in this paper is on the numerics, which are presented in Sects. 2 and 3. The proofs
of Theorems 2, 3 and 4 are sketched in Sects. 4, 5 and 6 respectively and, in general, go along the lines
similar to those in Jia and Šverák [18].
Notations. The spaces U , V, and D are defined by (5), (6), and (7) respectively, and the subspaces of
axi-symmetric vector fields are denoted by Uaxi, Vaxi, and Daxi respectively. The operators F and L
are respectively defined by (8) and (9). The cylindrical coordinates are denoted by (r, θ, z). If α is a
multi-index, we denote by Pα the projection on the elements of α, Pαv =

∑
i∈α (v · ei) ei. For example,

Pθu = uθeθ and Przu = urer + uzez.
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1/31/61/∞ 1/4 1/2
1∕

1/2

1/4

1/8

1/∞

1

1
∕

Subclasses of (0 ; ( 3))

Serrin
Leray–Hopf
Condition (21)

Fig. 1. Different subclasses of the space Lp(0, T ; Lq(R3)). The Leray–Hopf solutions belong to the blue region
characterized by (15). The Serrin criterion for uniqueness and regularity is given by the green region defined by (16). The
corrector used in the proof of Theorem 4 to localize a self-similar solution belongs to the space XT defined by (19), hence
to the red region characterized by (21). The localization of the numerical solutions found belong to the complement of the

green region, hence showing that the Serrin uniqueness criterion is sharp in these spaces (Color figure online)

2. Numerical Methods

The restriction to the subspace of axi-symmetric solutions allows to perform the numerical simulations
in a two-dimensional domain in the (r, z) coordinates. We work in the following computational domain

Ω(R) =
{
(r, z) ∈ R

2 : 0 ≤ r ≤ R and |z| ≤ R
}
,

and divide its boundary into two disjoint parts, ∂Ω(R) = A(R) ∪ Γ(R), where

A(R) =
{
(0, z) ∈ R

2 : |z| < R
}

is the axis boundary and Γ(R) the artificial boundary. As it will become clear later, when the parameter
σ is increasing, the domain as to be also increasing in order to keep the region of interest into the
computational domain. Here we choose to work in the domain Ω(Rσ), where Rσ = 20κσ with κ

2
σ = 1+ σ

4 .
This specific factor was chosen such that visually the interesting phenomena are approximately located
in the same region of the computational domain for all values of σ.

The cylindrical coordinates require the following boundary condition on the axis,

Uσ · er = 0 and Uσ · eθ = 0 on A(Rσ).

The condition (3b) naturally leads to the following boundary condition on Γ(Rσ),

Uσ = σa0 on Γ(Rσ).

The reader not interested in the implementation of the numerical simulations can safely jump to Sect. 3
for the description of the numerical results.
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Fig. 2. Construction of the discretization Ω(R, n) for R = 20 and n = 8. First the domain Ω(R) is discretized into 2n2

squares and then refined near the origin

2.1. Discretization

The numerical simulations are performed by the finite elements method with the package FEniCS [2,27].
The domain Ω(R) is first discretized into 2n2 squares each of them split into two triangles, as shown

on Fig. 2a. To increase the precision near the origin, this discretization is refined in the square r ≤ R/2
and |z| ≤ R/4, which leads to the discretization Ω(R,n) represented on Fig. 2b. As already said, we need
to work in a domain growing as σ is increasing. In order to keep the mesh fixed during the continuation
in σ, we instead choose to rescale the Eq. (3) in Ω(Rσ) by a factor κ

2
σ = 1+ σ

4 . That way, the the domain
Ω(Rσ) is transformed into the domain Ω(20) and the same mesh can be used for all the values of σ.

The following weak formulation of (3a) is used

(∇Uσ,∇ϕ
) − 1

2
(
x · ∇Uσ,ϕ

) − 1
2
(
Uσ,ϕ

)
+

(
Uσ · ∇Uσ,ϕ

)
+

(
Pσ,∇ · ϕ

)
= 0,

(∇ · Uσ, q
)

= 0,

where
(·, ·) denotes the scalar product on L2(Ω(Rσ)) and ϕ and q are test functions. The restriction of

this weak formulation to axi-symmetric is transformed into cylindrical coordinates and then discretized
with Lagrange quadratic polynomials (P2 elements) for Uσ and linear polynomials (P1 elements) for Pσ.

2.2. Continuation Algorithm for Uσ

In a first step, a continuation method is used in σ on the domain Ω(Rσ, 300). The steps of the continuation
method are chosen as 0.1 for 0 ≤ σ ≤ 2, 0.5 for 2 ≤ σ ≤ 50 and to 1 for 50 ≤ σ ≤ 500. At each step
the solution from the previous step is used as an initial datum for a Newton’s method. This Newton’s
method typically converges in two or three steps. This method was used because adjusting the step such
that only one Newton’s iteration leads to convergence is much too slow. In a second step, the solution Uσ

founded on Ω(Rσ, 300) is interpolated into the finer mesh Ω(Rσ, 600). From this initial guess, only one
Newton’s iteration leads to a converged solution on Ω(Rσ, 600) in general. All the Newton’s iterations
are performed with the MUMPS [3] linear solver through PETSc [5] binding.
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2.3. Eigenvalues Solver

On Ω(Rσ), the eigenvalue problem of L(Uσ) is given by

−Δφ − x

2
· ∇φ − 1

2
φ + Uσ · ∇φ + φ · ∇Uσ + ∇p = λφ, ∇ · φ = 0,

with the boundary conditions

φ · er = 0 and φ · eθ = 0 on A(Rσ),

and

φ = 0 on Γ(Rσ).

These equations are solved in the class of axi-symmetric φ and the discretization used is Ω(Rσ, 600) in the
same way as explained in Sect. 2.1. Due to the truncation of the domain, only the eigenvectors v of L(Uσ)
in R

3 having a relatively fast decay at infinity will be found. For a local equation in a similar situation it
might be reasonable to expect that eigenvectors with exponential decay exist. However, due to non-local
effect in the Navier–Stokes equations, the fastest decay one can expect in our problem here is probably
O(|x|−4), as the terms generated by the original non-linearity need to be projected on divergence-free
fields, which creates long-range terms. Therefore, imposing a Dirichlet boundary conditions on the eigen-
vectors deforms the problem slightly. In practical calculations this effect did not seem to be significant.
For a computer-assisted proof this issue would of course have to be carefully addressed. One possibility
for this would be to work with the asymptotic expansions at the spatial infinity, as we already discussed
above.

In a first step the 36 eigenvalues closest to the real axis were computed for each values of σ by using
the Krylov–Schur algorithm [13] implemented in SLEPc [14]. Instead of choosing a random initial vector,
a linear combination of the eigenvectors founded at the previous step is used, even if the gain in the
execution time is not very large.

In a second step, we track the eigenvalues closest to the real axis by a continuation method back to
σ = 0 in order to assert that they are not spurious and actually linked to the eigenvalues at σ = 0. For
this continuation by used the Newton’s method [4,30] by viewing the eigenvalue problem as a non-linear
one with a constraint on the size of the eigenvector.

2.4. Bifurcation from the R-Symmetric Solution

In the scenario where a real eigenvalue is crossing the real axis at σ0, as supposed in the hypotheses of
Theorem 3, then another solution of (3) should bifurcate from Uσ at σ = σ0. This new branch of solution
can be also found numerically. For a value of σ slightly bigger than σ0, Newton’s iterations are performed
with the initial guess Uσ + αφ, where φ is the eigenvector corresponding to the crossing eigenvalue and
α ∈ R is some real parameter to be adjusted such that the Newton’s method converges. When α is well
chosen, the Newton’s method converges to a solution Uσ +Vσ different from Uσ. Finally the continuation
algorithm described in Sect. 2.2 is used to determine the new branch of solution Uσ +Vσ for larger values
of σ.

3. Numerical Results

3.1. Base Solution Uσ

Using the continuation algorithm described in Sect. 2.2, an axi-symmetric and R-symmetric solution Uσ

was found for σ ∈ [0, 500]. This solution is represented on the whole computational domain Ω(Rσ, 600)
in Figs. 3 and 4. Near the vertical axis, the radial and azimuthal components of Uσ behaves like O(r) for
small values of r has required by the smoothness of the solution. The solutions are (−1)-homogeneous on
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Azimutal component of the symmetric solution:

Fig. 3. Azimuthal component of the numerical solution Uσ multiplied by |x| on the whole computational domain
Ω(Rσ, 600) for various σ. One can see that the choice of κσ is made such that the solution remains (−1)-homogeneous in

most of the computational domain except near the origin

a quite large region near the artificial boundary Γ(Rσ) as shown on Figs. 5 and 6. This means that the
choice of the size of the computational domain Ω(Rσ) was large enough. Near the origin, the solution is
shown on Figs. 7, 8 and 9. As shown on Fig. 7, the streamlines projected on the plane θ = 0 are closed,
therefore the streamlines of the profile Uσ are given by tori as shown on Fig. 10. The first numerical
observation on page 6 concerning the existence of Uσ is shown.

3.2. Eigenvalues of L(Uσ )

At σ = 0, the eigenvalues found numerically are given up to a very high precision by 3
2 + n

2 for n ∈ N, with
multiplicity n + 1 and correspond exactly to the discrete part found in Theorem 2 decaying like e−|x|/4.
The continuous part is not seen numerically due to the polynomial decay |x|−2λ of the eigenvectors. The
eigenvectors found for σ > 0 are also extremely well-localized, even if numerically the rate cannot be
precisely determined due to precision issues. The real part of the eigenvalues closer to the real axis are
represented on Figs. 11 and 12. In particular a real eigenvalue crosses the real axis near σ ≈ 292 whereas
all the other eigenvalues have a strictly positive real part on the range σ ∈ [0, 500]. By going back in
σ, the crossing eigenvalue merges with another real eigenvalues near σ ≈ 12 to form a pair of complex
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Fig. 4. Norm of the radial and vertical component of the numerical solution Uσ multiplied by |x|. As expect since the
boundary condition σa0 is pure swirl, these two components decays like |x|−3

conjugate eigenvalues having a real part close to two. The eigenvalues near the crossing are represented
on Fig. 13 whereas the eigenvector corresponding to σ = 292 is shown on Fig. 14 and is not R-symmetric.
Hence, the second numerical observation claimed on page 6 is shown.

Interestingly, the eigenvalue λ = 1.5 is unchanged with respect to σ. The explanation of this fact
comes from the following simple observation, for which we are indebted to a valuable discussion with Hao
Jia. The Eq. (3a) for the profile Uσ leads to the following equation for its momentum Tσ = x ∧ Uσ,

−ΔTσ + 2Ωσ − x

2
· ∇Tσ + Uσ · ∇Tσ + x ∧ ∇Pσ = 0,

where Ωσ = ∇ ∧ Uσ is the vorticity of Uσ. Therefore, the eigenvalue problem L(Uσ)φ = λφ can be
transformed into the following equation for the momentum τ = x ∧ φ,

−Δτ + 2ω − x

2
· ∇τ + Uσ · ∇τ + v · ∇T σ + x ∧ ∇p = λτ ,

where ω = ∇ ∧ φ is the vorticity of φ. By integrating this last equation over R
3, we obtain the following

relation after some integrations by parts,

3
2

∫
R3

τ = λ

∫
R3

τ ,
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function Γ(s) is almost flat for s ≥ 10, so this means that the computational domain is large enough, since the numerical
solution is already (−1)-homogeneous in a large region
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Fig. 6. Decay of the function Γ(s) = σ−1 sup|x |=κσs |x|2|∇Uσ(x)| in term of s ∈ (0, 20) for various values of σ. We see

that ∇Uσ is already (−2)-homogeneous on almost half of the computational domain

which explains why the eigenvalue λ = 1.5 is unchanged even for large values of σ.

3.3. Bifurcating Solution Uσ + Vσ

Since a real eigenvalue crossed the real axis near σ ≈ 292, the method described in Sect. 2.4 furnish
another solution Uσ + Vσ of (3) bifurcating from Uσ. The bifurcating solution Uσ + Vσ is no more
visually symmetric with respect to the plane z = 0 for σ � 300 as shown on Figs. 15, 16 and 17. More
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Fig. 7. Streamlines of the radial and vertical components of Uσ near the origin. We remark that the streamlines are closed

precisely, Vσ = 0 for σ � 292 as expected and Vσ is growing as σ increases for σ � 292 as shown
on Fig. 18. The reflected solution Uσ + RV σ by the plane z = 0 is also a solution, so σ ≈ 292 is a
supercritical pitchfork-type bifurcation corresponding to the breaking of the Z2-symmetry with respect
to the plane z = 0. This behavior shows the third numerical observation made on page 6. By comparing
the streamlines of the base solution Uσ (Fig. 10a) and of the bifurcating branches Uσ +Vσ and Uσ +RV σ

(Fig. 19) at σ = 300, we see that the topological nature of the streamlines are drastically changed even
just after the bifurcation. The reason is that a slight change in the azimuthal component has a large
influence on the quasi-periodicity of the streamlines on the tori.

4. Spectrum of L(U)

First we determine the point spectrum of L(0):

Proposition 1. The point spectrum of L(0) with domain D is given by a continuous part
{
λ ∈ C : Re λ >

3
4

}
and a discrete part

{
3
2+n, n ∈ N

}
. The eigenvectors of the continuous part decay like |x|−2λ at infinity,

whereas the discrete part is characterized by eigenvectors decaying exponentially fast like e−|x|2/4. The
multiplicity of 3

2 + n is (n + 1)(n + 3) in D and n + 1 in Daxi.
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Fig. 8. Azimuthal component of the numerical solution Uσ near the origin

Proof. The point spectrum of L(0) is characterized by

−Δv − x

2
· ∇v − 1

2
v + ∇p = λv, ∇ · v = 0, (17)

so by taking the divergence of the equation, we get Δp = 0, and we can choose p = 0. Since v is
divergence-free, we use the poloidal–toroidal decomposition,

v = T(ψ) + S(φ),

where ψ and φ are two scalar fields and

T(ψ) = ∇ ∧ (ψx), S(φ) = ∇ ∧ T(φ).

Since

ΔT(ψ) = T(Δψ), ΔS(φ) = S(Δφ),

and

x · ∇T(ψ) = T(x · ∇ψ), x · ∇S(ψ) = S(x · ∇φ) − S(φ),
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Fig. 9. Azimuthal component near the origin of the numerical solution Uσ multiplied by |x|

we obtain that (17) is transformed into

−Δψ − x

2
· ∇ψ =

(
λ +

1
2

)
ψ, −Δφ − x

2
· ∇φ = λφ.

Both equations being similar, we focus on the second one. Due to the spherical symmetric, the separation
of variables can be used in spherical coordinates (r, θ, ϕ) and the eigenvectors are given by

φλlm(r, θ, ϕ) = fλl(r)Ylm(θ, ϕ),

where Ylm are the spherical harmonics and fλl satisfies the following radial equation

f ′′
λl +

(
2
r

+
r

2

)
f ′

λl − l(l + 1)
r2

fλl + λfλl = 0. (18)

In the above, l ∈ N and m ∈ {−l,−l + 1, . . . , l − 1, l}. Explicitly, we have

T(φλlm) = fλl(r) (csc θ ∂ϕYlm(θ, ϕ)eθ − ∂θYlm(θ, ϕ)eϕ) ,

S(φλlm) = l(l + 1)
fλl(r)

r
Ylm(θ, ϕ)er +

(rfλl(r))
′

r
(∂θYlm(θ, ϕ)eθ + csc θ ∂ϕYlm(θ, ϕ)eϕ) ,
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and one can check that the unique solution of (18) leading to continuous and nontrivial fields requires
l ≥ 1 and is given by

fλl(r) = rl
1F1

(
λ +

l

2
; l +

3
2
;
−r2

4

)
,
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Fig. 13. Eigenvalues of L(Uσ) near the crossing point λ = 0. On this plot the two eigenvalues are real

where 1F1 is the Kummer’s confluent hypergeometric function. At large values of r, we have

fλl(r) =
(
1 + O(r−2)

) {
e−r2/4r2λ−3, if λ − 3+l

2 ∈ N,

r−2λ, otherwise.

Therefore, the spectrum of (17) in V has a continuous part Reλ > 3
4 and a discrete part given by

λn = 3
2 + n

2 for n ∈ N, characterized by eigenvectors decaying exponentially fast at infinity. The eigenspace
corresponding to λn for n ∈ 2N is span by T(φ(λ+1/2)lm) with l ∈ {1, 3, 5, . . . , n+1} and by S(φλlm) with
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l ∈ {2, 4, 6, . . . , n}, where in both m ∈ {−l,−l−1, . . . , l−1, l}. For n ∈ 2N+1, the eigenspace corresponding
to λn is span by T(φ(λ+1/2)lm) with l ∈ {2, 4, 6, . . . , n+1} and by S(φλlm) with l ∈ {1, 3, 5, . . . , n}, always
with m ∈ {−l,−l − 1, . . . , l − 1, l}. Hence the multiplicity of λn is (n + 1)(n + 3). In Vaxi the eigenvectors
are characterized by m = 0, so the multiplicity of λn is n + 1. �

Using proposition 1, the proof of Theorem 2 follows by applying results by Gallay and Wayne [11] and
Jia and Šverák [18]:

Proof of Theorem 2. The spectrum of the operator Lv = −Δv − x
2 ·∇v − 1

2v on domain L2(R3) without
divergence-free condition, was determined explicitly by Gallay and Wayne [11, Theorem A.1]

σ(L) =
{
λ ∈ C : Re λ ≥ 3

4

} ∪ {
3
2 + n, n ∈ N

}
.

Therefore we directly obtain that σ(L(0)) ⊂ σ(L). The fact that the spectrum of σ(L(0)) coincide with
the spectrum of σ(L) follows from proposition 1.

Since the operator L(U) − L(0) is a relatively compact perturbation of L(0), the essential spectrum
is unchanged, and (10) follows, see Jia and Šverák [18, Lemma 2.7]. �

5. Continuation and Bifurcation

In this section, we sketch the proof of Theorem 3, since it follows by applying standard results from the
theory of bifurcations:

Proof of Theorem 3. First of all, since D ⊂ W 2,4(R3) ⊂ C1(R3) with continuous embeddings, we directly
deduce the continuity of the map F : D × R → V defined by (8). Therefore, F is smooth since it is
quadratic.

For the first part, since 0 /∈ σ
(L(U0)

)
, then L(U0) = D1F (v0, σ0) is invertible, so the result follows

by applying the implicit function theorem [20, § I.1].
For the second part, we define F̂ (w, σ) = F (v1(σ) + w, σ), so that F̂ (0, σ) = 0. The aim is to find a

nontrivial solution of F̂ (w, σ) = 0. Since v1 : (σ0 − ε, σ0 + ε) → D is smooth, we deduce the smoothness
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Fig. 15. Streamlines of the radial and vertical components of the numerical solution Uσ + Vσ

of F̂ : D × R → V. We have D1F̂ (0, σ0) = D1F (v0, σ0) = L(U0), so

Kernel
(
D1F̂ (0, σ0)

)
= span(φ), Range

(
D1F̂ (0, σ0)

)
= Range

(L(U0)
)
.

Since L(U0) − L(0) is a relatively compact perturbation of L(0), L(U0) is a Fredholm operator of index
zero, hence F̂ (·, 0) is a Fredholm operator of index zero. Moreover,

D12F̂ (0, σ0)φ = D12F (v0, σ0)φ + D11F (v0, σ0)(φ,v′
1(σ0))

= (A0 + v′
1(σ0)) · ∇φ + φ · ∇ (A0 + v′

1(σ0)) + ∇p,

= ψ · ∇φ + φ · ∇ψ + ∇p,

where ψ = A0+v′
1(σ0) = ∂σUσ

∣∣
σ=σ0

so by hypothesis D12F̂ (0, σ0)φ /∈ Range
(
D1F̂ (0, σ0)

)
. Therefore, we

can apply the Crandall–Rabinowitz theorem stated in Kielhöfer [20, Theorem I.5.1] to obtain a nontrivial
smooth curve

{(
w(s), σ2(s)

) ∈ D × R, s ∈ (−ε, ε)
}

through (v0, σ0) such that F̂ (w(s), σ2(s)) = 0,
w(0) = 0 and σ2(0) = σ0. Then by defining v2(s) = v1(σ2(s)) + w(s), we obtain that

{(
v2(s), σ2(s)

) ∈
D×R, s ∈ (−ε, ε)

}
is a smooth solution curve through (v0, σ0) such that F (v2(s), σ2(s)) = 0, v2(0) = v0

and σ2(0) = σ0. Since D11F̂ (0, σ0) = D11F (v0, σ0), we have

D11F̂ (0, σ0)(φ,φ) = 2φ · ∇φ + ∇p,
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Fig. 16. Azimuthal component of the numerical solution Uσ + Vσ

and the nature of the bifurcation follows from the discussion in Kielhöfer [20, § I.6]. We note that the
usual non-degeneracy condition for the pitchfork bifurcation may not be satisfied as F̂ is quadratic. On
the other hand, the reflection symmetry forces the bifurcation to be of the pitchfork type. �

6. Localization of Self-Similar Solutions

In this section, we follow the ideas of Jia and Šverák [18] to obtain solutions with finite energy by
truncation of scale-invariant solutions. The space XT is defined as

XT =

{
w ∈ L∞(0, T ;L4(R3)) : sup

t∈(0,T )

t1/2 ‖∇w(t, ·)‖L4(R3) < ∞
}

, (19)

equipped with the norm

‖w‖XT
= sup

t∈(0,T )

(
‖w(t, ·)‖L4(R3) + t1/2 ‖∇w(t, ·)‖L4(R3)

)
.

The space XT,axi is the subspace of axi-symmetric vector fields in XT .
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Fig. 17. Azimuthal component of the numerical solution Uσ + Vσ multiplied by |x|. The symmetry R with respect to the
plane z = 0 is broken for σ � 300

By restricting all the spaces to axi-symmetric vector fields, the result of Jia and Šverák [18, Theo-
rem 1.2] becomes:

Theorem 5. Let U ∈ Uaxi be such that the spectrum of L(U) with domain Daxi is included in
{
z ∈ C :

Re z > −β
}

some β < 1
8 . Let V ∈ Vaxi be such that ‖V ‖V + ‖∇V ‖V is sufficiently small depending on

‖U‖U and β. Let

u(t,x) =
1

t1/2
(U + V )

(
x

t1/2

)
.

Let w0 ∈ L4
axi(R

3) be a divergence-free vector field. Then there exists a time T > 0 and a unique solution
w ∈ XT,axi to the generalized Navier–Stokes system with singular lower order terms,

∂tw + u · ∇w + w · ∇u + w · ∇w = Δw − ∇p, ∇ · w = 0, w(0, ·) = w0. (20)

Here the initial condition is satisfied in the sense that

lim
t→0+

‖w(t, ·) − w0‖L4(R3) = 0.
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for σ � 292, Vσ = 0, so that both solutions coincide. After the bifurcation, the two solutions are more and more different
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Be using this theorem, we follow the arguments of Jia and Šverák [18, § 5] to localize the two self-similar
solutions to L2(R3):

Proof of Theorem 4. By assuming that our numerical results reflect the actual behavior of the solutions,
we obtain the existence of two different axi-symmetric self-similar solutions Uσ and Uσ + Vσ for σ > σ0

satisfying (3) with the same initial datum u0 = σa0,

u1(t,x) =
1

t1/2
Uσ

(
x

t1/2

)
, u2(t,x) =

1
t1/2

(Uσ + Vσ)
(

x

t1/2

)
.

By choosing σ > σ0 close enough to σ0, we can assume that the crossing eigenvalue λσ in (13) satisfies
λσ > − 1

8 and moreover, we can make ‖Vσ‖V + ‖∇Vσ‖V small enough to apply Theorem 5. By a cutoff
of the stream function associated to u0, we can write u0 = ũ0 − w0, where ũ0 is a divergence-free vector
field of compact support in B2R and equal to u0 on BR and w0 is a divergence-free vector field such that
‖w0‖L4(R3) ≤ CR−1/4. By taking R large enough, we can apply Theorem 5 with initial data w0, U = Uσ,
and V = 0, to obtain a solution w1 ∈ XT,axi of (20). Therefore ũ1 = u1+w1 is an axi-symmetric solution
of the Navier–Stokes system (1) with initial data ũ0. In the same way, by applying Theorem 5 with initial
data w0, U = Uσ, and V = Vσ, we obtain a solution w2 ∈ XT,axi of (20), so that ũ2 = u2 + w2 is an
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Fig. 19. Streamline of the two non-symmetric solutions Uσ + Vσ and Uσ + RVσ at σ = 300 going through the point
r = 2 and z = −1. a The streamline is almost 2π

4
-periodic; b the streamline is almost 2π

3
-periodic

axi-symmetric solution of the Navier–Stokes system (1) with initial data ũ0. By the standard regularity
theory of the Navier–Stokes equations w1,w2 ∈ C∞((0, T )×R

3), so by using Theorem 1, we obtain that
ũ1, ũ2 ∈ C∞((0, T ) × R

3). Since ũ0 ∈ L2(R3), one can show that ũ1 and ũ2 are Leray–Hopf solutions,
for example by using the results of Jia and Šverák [17, Lemma 2.2].

We now prove that ũ1 and ũ2 are not equal. Since w1 and w2 are uniformly bounded in L4(R3), we
see that

‖ũ1(t, ·) − ũ2(t, ·)‖L4(R3) ≥ ‖u1(t, ·) − u2(t, ·)‖L4(R3) − ‖w1(t, ·) − w2(t, ·)‖L4(R3)

≥ t−1/8 ‖Vσ‖L4(R3) − C,

is unbounded as t → 0+, and therefore ũ1 and ũ2 are not equal since Vσ is not trivial.
We now prove that ũ1 and ũ2 belong to the complement of Serrin class. Since w1 ∈ XT , we obtain

that supt∈(0,T ) t1/2 ‖w1‖L∞(R3) < ∞, so w1 ∈ Lp(0, T ;L∞(R3)) for 1 ≤ p < 2. By interpolation, we
obtain w1 ∈ Lp(0, T ;Lq(R3)) for

p = ∞ and q = 4 or
2
p

+
4
q

> 1 and q ≥ 4 (21)

as drawn on Fig. 1. We split the space into R
3 = B ∪Bc where B is the ball of radius one centered at the

origin and Bc its complement. By using the explicit decay (4) of the self-similar solutions, we obtain that
u1 ∈ Lp(0, T ;Lq(B)) for 2

p + 3
q > 1 and therefore ũ1 ∈ Lp(0, T ;Lq(B)) also for 2

p + 3
q > 1. In the same

way, we can prove that u1 ∈ L∞(0, T ;L(Bc)) for q > 3, so ũ1 ∈ Lp(0, T ;Lq(Bc)) for p and q satisfying
(21). Since ũ1 ∈ L∞(0, T ;L2(R3)), by interpolation we obtain that ũ1 ∈ Lp(0, T ;Lq(Bc)) for 2

p + 4
q > 1

and q ≥ 2. Therefore we proved that ũ1 ∈ Lp(0, T ;Lq(R3)) for 2
p + 3

q > 1 and q ≥ 2. The same procedure
applies to ũ2 and the proof is finished. �
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discussions and comments. Parts of this work were done while J. Guillod was at the School of Mathematics
of the University of Minnesota, the Mathematics Department of Princeton University, and the ICERM
at Brown University. The hospitality and facilities of these institutions are gratefully acknowledged. The



46 Page 24 of 25 J. Guillod, V. Šverák JMFM
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