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Abstract
We prove a number of results concerning monomorphisms, epimorphisms, dominions and
codominions in categories of coalgebras. Examples include: (a) representation-theoretic char-
acterizations of monomorphisms in all of these categories that when the Hopf algebras in
question are commutative specialize back to the familiar necessary and sufficient conditions
(due to Bien-Borel) that a linear algebraic subgroup be epimorphically embedded; (b) the fact
that a morphism in the category of (cocommutative) coalgebras, (cocommutative) bialgebras,
and a host of categories of Hopf algebras has the same codominion in any of these categories
which contain it; (c) the invariance of the Hopf algebra or bialgebra (co)dominion construc-
tion under field extension, again mimicking the well-known corresponding algebraic-group
result; (d) the fact that surjections of coalgebras, bialgebras or Hopf algebras are regular
epimorphisms (i.e. coequalizers) provided the codomain is cosemisimple; (e) in particular,
the fact that embeddings of compact quantum groups are equalizers in the category thereof,
generalizing analogous results on (plain) compact groups; (f) coalgebra-limit preservation
results for scalar-extension functors (e.g. extending scalars along a field extension k ≤ k

′ is
a right adjoint on the category of k-coalgebras).
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Introduction

A possible starting point for the considerations below is the familiar problem of determin-
ing, for a concrete category (i.e. one consisting of sets and functions [1, Definition 5.1]),
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A. Chirvasitu

whether the epimorphisms are precisely the surjections. Recall [1, Definition 7.3.9] that an
epimorphism in a category C is a morphism f : c → c′ for which every precomposition map

C(c′, c′′) −◦ f−−→ C(c, c′′)

is one-to-one. This is one natural category-theoretic generalization of the notion of surjectiv-
ity, and for concrete categories, where both concepts make sense, the latter plainly implies
the former.

The problem recurs in endless variations throughout a massive amount of literature this
introduction cannot possibly do justice. One example would be [54], which addresses the
issue for several categories (e.g. compact groups and Lie algebras, most relevantly for the
discussion below, but also others, such as C∗- or von Neumann algebras). Other examples
include, say, the earlier [48] (also compact groups), [30] (C∗-algebras), [6] (Lie algebras,
p-Lie algebras), [10, 11] (linear algebraic groups), [13] (algebraic groups in general), or the
series [31, 33–36], which systematically studies the broader notion of dominion [1, 14J] in
various categories (semigroups, associative algebras): assuming the category being studied
is sufficiently well-behaved, the dominion of a morphism f : c → c′ is the equalizer of the
two structure maps

c′ c′ ∐
c c

′

into the self-pushout of f . The connection between the two notions is that f : c → c′ is epic
precisely if its dominion is id:c′ → c′. Dominions make an oblique appearance in [10] too,
under a different name: for a closed linear algebraic subgroup ι : H ≤ G, the observable
envelope [10, §3] of H in G is precisely the dominion of ι in the category of linear algebraic
groups (see the discussion following Remark 2.8).

One of the main results is that the much of the familiar characterization [10, Théorème 1]
of epimorphisms in the category of linear algebraic groups goes through for Hopf algebras,
taking into account the fact that onemust dualize (the category of linear algebraic groups over
a field k being contravariantly equivalent to that of Hopf k-algebras [62, §1.4, Theorem]).
This is the content of Theorem 2.5 below:

Theorem For a morphism π : H → H ′ of coalgebras over a field k the following conditions
are equivalent:

(a) π is monic;
(b) The corestriction functor induced byπ between categories of (finite-dimensional) comod-

ules is full.
(c) For any (finite-dimensional) H-comodule V every idempotent morphism on MH ′

is in
MH .

(d) For any (finite-dimensional) H-comodule V every direct-sum decomposition V ∼= V1 ⊕
V2 as H ′-comodules is also one of H-comodules.
If furthermore π is a morphism of Hopf algebras, these are also equivalent to

(e) For any (finite-dimensional) right H-comodule V with comodule structure map

V 	 v 
→ v0 ⊗ v1 ∈ V ⊗ H

the space
V H ′ := {v ∈ V | v0 ⊗ π(v1) = v ⊗ 1}

of H ′-coinvariants coincides with the analogous space of H-coinvariants.
(f) We have HH ′ = k (i.e. the only H ′-coinvariants in H are the scalars). 
�
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Epimorphic Quantum Subgroups and Coalgebra Codominions

The statement above is somewhat vague on which category (coalgebras or Hopf algebras)
the morphisms are supposed to be monic in. The same issue arises in trying to relate the
statement back to algebraic groups: the latter form a category dual to that of commutative
Hopf algebras, so it is reasonable to wonder whether a morphism contained in two of the
categories of interest might be monic in one but not the other. Proposition 2.1 shows that this
is not an issue, and Theorem 2.14 expands this to (co)dominions (given a morphism in any
of the relevant categories, it does not matter where one computes its codominion):

Theorem (1) The dominion of an algebra morphism is the same in any of the following
categories that happen to contain it:

• commutative algebras;
• (commutative) bialgebras;
• (commutative or cocommutative) Hopf algebras;
• Hopf algebras with involutive or bijective antipode.

In particular, a morphism is or is not epic simultaneously in all of these categories
containing it.

(2) The codominion of an algebra morphism is the same in any of the following categories
that happen to contain it:

• cocommutative coalgebras;
• (commutative) bialgebras;
• (commutative or cocommutative) Hopf algebras;
• Hopf algebras with involutive or bijective antipode.

In particular, a morphism is or is not monic simultaneously in all of these categories
containing it. 
�
Another theme cropping up in the literature is the independence of the various notions

discussed above (dominions, epimorphisms) of the base field: [6, Proposition 5.3] is a case in
point (dominions of finite-dimensional Lie-algebra morphisms are preserved by field exten-
sions), as is [13, Theorem 5 (ii)] (where the category is that of algebraic groups instead). In
this same spirit, field extensions preserve not only codominions (Proposition 2.17), but also
arbitrary limits in categories of objects equipped with ‘coalgebraic structure‘ (Theorem 4.1
(2)):

Theorem Let k ≤ k
′ be a field extension.

(1) The functor k′ ⊗k − between any of the following categories (of objects linear over k
and k

′ respectively) is a right adjoint and in particular continuous:

• (cocommutative) coalgebras;
• (commutative or cocommutative) bialgebras;
• (commutative or cocommutative Hopf algebras);
• Hopf algebras with involutive or bijective antipode.

(2) The same scalar-extension functor k′ ⊗k − preserves (co)dominions in all of the cate-
gories above, along with those of commutative or plain algebras. 
�
Occasionally, an object will have the property that anymonomorphism having it as domain

is automatically a dominion (these are, for instance, the absolutely closed algebras of [34,
discussion preceding Corollary 1.7]). Examples suggest a general phenomenon whereby
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A. Chirvasitu

“semisimplicity entails absolute closure”: [6, Addenda] reports a remark of Hochschild’s to
the effect that embeddings of semisimple Lie algebras are dominions in the category of finite-
dimensional Lie algebras, and the analogue for linearly reductive algebraic groups follows
from standard GIT theory (e.g. [44, §1.2]).

Dualizing the picture once more, morphisms onto cosemisimple coalgebras are codomin-
ions. Several versions of this are recorded in Corollaries 2.22 and 2.24 and Theorem 2.26.
Focusing, for simplicity, on Hopf algebras (rather than bialgebras, etc.), a sampling of those
results reads as follows:

Theorem (1) A morphism π : H → H ′ of Hopf algebras is a codominion if either

• H is left or right faithfully coflat over H ′;
• or π has a right inverse in the category of either right or left H ′-comodules.

(2) In particular, surjections onto cosemisimple Hopf algebras are codominions in the cat-
egory of Hopf algebras. 
�
These considerations also deliver a non-commutative version of the result that embeddings

of compact groups are equalizers [19, Theorem 2.1]. Recall ([23, Definition 2.2], Definition
3.1 below) that CQG algebras are non-commutative analogues of the (Hopf) algebras of
representative functions [14, §III.1, Definition 1.1] on compact groups. With this in mind,
and paraphrased in dual language, Theorem 3.4 says that embeddings of “compact quantum
groups” are equalizers:

Theorem Surjections in the category of CQG algebras are coequalizers. 
�

1 Preliminaries

Algebras (always associative and unital), coalgebras (coassociative and counital) and the like
will typically be assumed linear over a field. Relevant background on coalgebras, bialgebras
and Hopf algebras is available in a number of excellent sources such as [24, 42, 53, 58], and
the text contains more specific references to those where needed.

Some prominent notation:

• As usual (e.g. [42, Definition 1.5.1]), �, ε and S typically denote the comultiplication,
counit and respectively antipode of a Hopf algebra (which one will typically be clear
from context).

• We use Sweedler notation [42, Notation 1.4.2] for comultiplications and (left or right)
comodule structures:

C 	 c 
→ c1 ⊗ c2 ∈ C ⊗ C

V 	 v 
→ v0 ⊗ v1 ∈ V ⊗ C

V 	 v 
→ v−1 ⊗ v0 ∈ C ⊗ V .

• Alg, Coalg, Bialg andHAlg denote the categories of algebras, coalgebras, bialgebras
and Hopf algebras respectively, over a field k fixed beforehand and usually implicit.
We might occasionally adorn the symbols with the field as a subscript, when wishing to
emphasize it (e.g. Algk).

• Various other subscripts modify those categories to indicate additional properties:

– ‘c’ stands for ‘commutative’ (e.g. Algc);
– ‘cc’ for ‘cocommutative’ [42, Definition 1.1.3] (e.g. Bialgk,cc);
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– while for Hopf algebras, a left-hand subscript might indicate antipode bijectivity or
involutivity: bi HAlg is the category of Hopf algebras with bijective antipode, while
2 HAlg that of Hopf algebras whose antipode squares to the identity.

– We will occasionally have to refer to these subscripts in bulk, in which case we use
non-alphanumeric symbols such as ‘�’ or ‘•’. Alg•, for instance, indicates both
Alg and Algc in one go, while � HAlg• refers collectively to bi HAlg, HAlgc,
HAlgc,cc, etc.

– As a variation of this, we might need to limit the possibilities for what one of the
subscripts might be, in which case we separate the various options by a ‘/’ symbol:
HAlgc/ means the category of either commutative or arbitrary Hopf algebras (but
not that of cocommutative Hopf algebras).

• Categories of modules are depicted as ‘M’ adorned with subscripts indicating the base
algebra, with the handedness of the placement indicating whether they are right or left
modules: MA, say, means right A-modules. This applies also to two-sided structures:
CMD , for instance, is the category of (C, D)-bicomodules for coalgebras C and D.
One exception will beVec = Veck (rather thanMk), the category of vector spaces over
k.

• Similarly, comodule [42, Definition 1.6.2] categories (over coalgebras, bialgebras, etc.)
exhibit the base coalgebra as a superscript, again left or right: MC is the category of
C-comodules.

• Additional ‘ f ’ subscripts indicate finite-dimensionality: MH
f would be the category of

finite-dimensional H -comodules.

Some category-theoretic terminology will feature quite extensively; we refer the reader to,
say, [1, 5, 40], again with more specific citations as needed. In general, for objects c, c′ ∈ C
of a category C, we write C(c, c′) for their space of morphisms.

One remark that is worth making now, as it pervades more or less the entire discussion,
is that apart from those imposing size conditions (i.e. the categories of finite-dimensional
(co)modules), every one of the categories mentioned above (Alg, Coalg, HAlg, their
(co)commutative versions, etc. etc.) is extremely well-behaved. Specifically, they are all
locally presentable in the sense of [2, Definition 1.17]:

• Module and comodule categories are Grothendieck [49, §2.8, Note 3 following Corol-
lary 8.13] (see [24, Corollary 2.2.8] for categories of comodules), and hence locally
presentable [38, Corollary 5.2].

• The other categories of “algebraic structures” (i.e. sets equipped with operations of vari-
ous arities, satisfying various equations; algebras and commutative algebras, say) this is
well known and a uniform consequence of, say [2, Theorem 3.28].

• For the categories of “coalgebraic” or “mixed” structures (coalgebras, bialgebras, Hopf
algebras) this has been worked out in ample detail in a number of papers of Porst’s; see
for instance [52, Lemmas 1 and 2, Theorem 6 and Proposition 22].

In particular, by [2, Remark 1.56] all of these categories

• are (co)complete (they have arbitrary (co)limits [1, Definition 12.2]);
• arewell-powered (the isomorphism classes of subobjects [1, Definition 7.77] of any given
object form a set [1, Definition 7.82]);

• and also co-well-powered (the isomorphism classes of quotient objects [1, Definition
7.84] of any given object form a set [1, Definition 7.87]);

• and hence satisfy a host of convenient adjoint functor theorems [1, §18]:

123



A. Chirvasitu

– cocontinuous (i.e. colimit-preserving) functors defined on any of these categories are
left adjoints [40, §5.8, Corollary on p.130].

– and continuous (i.e. limit-preserving) functors having them as domains are right
adjoints provided they also preserve κ-directed colimits [2, Definition 1.13 (1)] for
some regular cardinal κ [2, Theorem 1.66].

2 Epimorphic Quantum Subgroups and (co)Dominions

As we will be concerned with monomorphisms and epimorphisms of bialgebras, Hopf alge-
bras, etc., it will be worth noting that the notions are invariant under a number of convenient
modifications. These are very simple remarks, but it will be helpful to have made them
explicitly.

Proposition 2.1 (1) A morphism f : H → H ′ in Algk is epic in that category if and only
if it is epic in any of the following categories which contain it:

Alg•, Bialg•, � HAlg• .

(2) A morphism f : H → H ′ in Coalgk is monic in that category if and only if it is monic
in any of the following categories which contain it:

Coalg•, Bialg•, � HAlg• .

Proof We focus on (2), to fix ideas; the other half is entirely analogous (and categorically
dual).

The functors

HAlgc
inclusion−−−−−→ 2 HAlg

inclusion−−−−−→ bi HAlg
inclusion−−−−−→ HAlg

inclusion−−−−−→ Bialg
forget−−−→ Coalg

are right adjoints: see [52, diagram (9)] for the inclusions and [51, §2.2] for the last arrow.
They thus preserve monomorphisms [1, Proposition 18.6], and also reflect them because they
are faithful.

Exactly the same reasoning applies to

• the inclusion functors from commutative bialgebras (Hopf algebras) to plain bialgebras
(respectively Hopf algebras), which are also faithful right adjoints by [52, diagram (9)];

• and the chain of functors

HAlgc,cc
inclusion−−−−−→ HAlgcc

inclusion−−−−−→ Bialgcc
forget−−−→ Coalgcc .

The only claim left to verify, then, is that a morphism f : H → H ′ of cocommutative
coalgebras is monic in Coalgcc if and only if it is so in Coalg.

f is monic in Coalg if and only if the comultiplication �H induces an isomorphism

H
�H−−−−−→∼=

H�H ′ H

[45, Theorem 3.5]. Note, though, that that cotensor product is nothing but the self-pullback of
f inCoalgcc (very similar to the remark that the products inCoalgcc are the tensor products
[58, Theorem 6.4.5]), so said condition is also equivalent to f being monic in Coalgcc: it
is a formal consequence of the definition that for a morphism f : c → c′ in any category C
the following conditions are equivalent:
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• f is monic;
• the diagram

c

c

c

c′
id f

id f

is a pullback;
• the self-pullback c ×c′ c exists and either one of the two morphisms c ×c′ c → c is an
isomorphism;

• the self-pullback c ×c′ c exists and the two morphisms c ×c′ c → c are equal;
• the self-pullback c ×c′ c exists and the diagonal map c → c ×c′ c is an isomorphism. 
�
In reference to the last part of the proof of Proposition 2.1, recall [45, Theorem 3.6] that

in Coalgcc the monomorphisms are precisely the injections. Slightly more is true:

Lemma 2.2 A Coalg-monomorphism with cocommutative codomain is an embedding.

Proof As in the proof of [45, Theorem 3.6], the claim reduces to the case when all coal-
gebras in sight are finite-dimensional. But then one can dualize the statement to address
(epi)morphisms of finite-dimensional algebras, whence the conclusion by [36, §2.11]: an
algebra admitting a finite-dimensional epimorphic extension contains a copy of the 2 × 2
upper-triangular matrices, so cannot be commutative. 
�

Lemma 2.2 does indeed imply [45, Theorem 3.6], since by Proposition 2.1 (2) a morphism
in Coalgcc is monic if and only if it is so in Coalg.

Remark 2.3 By contrast to the interesting algebra epimorphisms and coalgebra monomor-
phisms in focus here, the algebramonomorphisms and coalgebra epimorphisms are precisely
the injective (respectively surjective) morphisms in the relevant category. This is because the
forgetful functors

Alg → Vec and Coalg → Vec

are faithful and right (respectively left) adjoint [50, §§2.6, 2.7], so they preserve and reflect
monomorphisms (respectively epimorphisms) [1, Proposition 18.6].

Since it is, furthermore, occasionally convenient to extend scalars, it is worth noting that
the properties of interest are invariant under such extensions (or contractions).

Lemma 2.4 Let k ⊂ k
′ be a field extension. The property of a morphism f of algebras,

coalgebras, bialgebras or Hopf algebras over k of being monic or epic is equivalent to the
corresponding property for the scalar extension f ⊗k k

′.

Proof ByProposition 2.1 the claims about bialgebras orHopf algebras reduce to (co)algebras,
so we focus on these. For algebras being monic is equivalent to injectivity: a surjective
morphism A → B is the coequalizer of the two maps A ×B A → A; dually, for coalgebras
being epic is equivalent to surjectivity [45, Theorem 3.1]. We are thus reduced to considering

• epimorphisms A → B of algebras, equivalent to the multiplication map B → B ⊗A B
being isomorphisms [57, §X.1, Proposition 1.2];

• and monomorphisms C → D of coalgebras, equivalent to the coproduct map C →
C�DC being an isomorphism [45, Theorem 3.5], recalling the cotensor product [42,
Definition 8.4.2]

V�DW := {x ∈ V ⊗ W | (ρV ⊗ idW )x = (idV ⊗ρW )x ∈ V ⊗ D ⊗ W }
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of right and left comodules

ρV : V → V ⊗ C and ρW : W → C ⊗ W .

Being a faithfully flat [39, §4I] extension, k′ ⊗k − preserves and reflects everything in sight:
(c)tensor products, exactness, surjectivity, injectivity, etc. 
�
In the sequel, for a right comodule V over a bialgebra H , we write

V H := {v ∈ V | v0 ⊗ v1 = v ⊗ 1 ∈ V ⊗ H}
for its space of H-coinvariants.

Theorem 2.5 For a morphism π : H → H ′ in Coalg the following conditions are equiva-
lent:

(a) π is monic;
(b) The corestriction functor induced byπ between categories of (finite-dimensional) comod-

ules is full.
(c) For any (finite-dimensional) H-comodule V every idempotent morphism on MH ′

is in
MH .

(d) For any (finite-dimensional) H-comodule V every direct-sum decomposition V ∼= V1 ⊕
V2 as H ′-comodules is also one of H-comodules.
If furthermore π is a morphism in � HAlg, these are also equivalent to

(e) For any (finite-dimensional) right H-comodule V ∈ MH , the H ′-coinvariants are also
H-coinvariants.

(f) The only H ′-coinvariants in H are the scalars.

Proof (Passage to Hopf algebras) We know from Proposition 2.1 (2) that a morphism of
Hopf algebras is monic if and only if it is monic in the category of coalgebras.

(a) ⇐⇒ (b) For arbitrary comodules, this is part of [45, Theorem 3.5] (or its expansion
in [3, Theorem 2.1]). Because comodules (of a coalgebra over a field) are unions of
finite-dimensional subcomodules [43, Theore 5.1.1], the fullness of MH → MH ′

is
equivalent to the fullness of the analogous functor MH

f → MH ′
f between categories of

finite-dimensional comodules.
This same argument will allow us, in general, to obtain the mutual equivalence between
the various statements on arbitrary comodules and their finite-dimensional versions; we
will thus not belabor that point.
(b) �⇒ (c) This is obvious: just apply (b) to the idempotent morphism in question.
(c) ⇐⇒ (d) A direct-sum decomposition V ∼= V1 ⊕ V2 is nothing but a choice of
idempotent endomorphism on V in the relevant category (with range V1 and kernel V2),
so the two are plainly alternative phrasings of a common condition.
(d) �⇒ (b) Consider V ,W ∈ MH , and a linear map f : V → W , H ′-colinear. The
graph

� f := {(v, f v) | v ∈ V } ≤ V ⊕ W

is then an H ′-subcomodule, with supplementary summand W . Assumption (d) then
ensures that � f is also an H -subcomodule of V ⊕ W , whence the conclusion that f is
also H -colinear.
Assume henceforth that π is a Hopf-algebra morphism.
(b) ⇐⇒ (e) Since for H -comodules V we have a functorial identification

V H ∼= MH (k, V ),
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fullness implies (e).
To verify the converse, note that for finite-dimensional comodules V ,W ∈ MH

f we have

MH (V ,W ) ∼= (W ⊗ V ∗)H ,

i.e. the H -coinvariants of the tensor product of W and the dual of V . H -comodule
morphisms can thus be recast as coinvariants, so (e) does indeed imply (b).
(e) ⇐⇒ (f) The latter is nothing but (e) applied to the H -comodule H and thus formally
weaker than that condition. Conversely, it is enough to recall [24, Proposition 2.4.3] that
every H -comodule can be embedded in a direct sum of copies of H . 
�
Corollary 2.6 confirms, for algebraic groups, some speculative remarksmade in the context

of studying epimorphisms of Lie algebras on [6, pp.13-14]; see also [10, Théorème 1] for
connected algebraic groups and [13, Theorem 1] for the general statement (to which Theorem
2.5 specializes when the Hopf algebras in question are commutative).

Corollary 2.6 A closed embedding H ≤ G is an epimorphism in the category of linear
algebraic groups over a field if and only if the only the only H-invariants in O(G) are the
scalars.

Proof This is an immediate application of Theorem 2.5, noting that a closed embedding
H ≤ G of linear algebraic groups will be an epimorphism precisely when the dual surjection
O(G) → O(H) of Hopf algebras of regular functions is a monomorphism. 
�

[20, Corollary 2.2] provides examples of surjective, non-injective monomorphisms of
Hopf algebras of the form

H
antipode−−−−−−−→ Hop,cop

whenever the antipode is surjective but non-injective (e.g. as in [56, Theorem 3.2]), but
nothing as exotic as that is needed to exhibit such pathological monomorphisms:

Corollary 2.7 LetG be a connected linear algebraic group over a field andP ≤ G a parabolic
subgroup.

The corresponding surjection O(G) → O(P) of algebras of regular functions is a
monomorphism in the category of Hopf algebras.

Proof By the very definition of parabolic subgroups [12, §11.2], the homogeneous space
G/P is projective. It then follows [29, Theorem I.3.4] that it admits no non-constant regular
functions, meaning that condition (f) of Theorem 2.5 is met. 
�
Remark 2.8 Note that Corollary 2.7 goes through in positive characteristic; contrast this with
the situation for Lie algebras: by [6, Theorems 2.2 and 2.3], in positive characteristic (p, say)
epimorphisms of both finite-dimensional Lie algebras and finite-dimensional p-Lie algebras
(the restricted Lie algebras of characteristic p of [37, §V.7, Definition 4]) are surjective.

At the other extreme, so to speak, from epimorphically-embedded (linear algebraic) closed
subgroups H ≤ G lie the observable subgroups of [8, §4]: those for which the H-invariants
in O(G) separate the points of the homogeneous space G/H (as opposed to being constant,
as in the epimorphic case).

The connection to epimorphismswaspursued in [10, Proposition1],with extensions in [13,
Theorem 5]: every closed linear algebraic subgroup H ≤ G admits a smallest intermediate
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observable subgroup H ≤ H ≤ G, its observable hull (or envelope), which is at the same
time the largest subgroup in which H embeds epimorphically.

The notion has been developed further in a number of directions: [13, Theorem 5] in fact
applies to possibly non-affine group schemes, [47, Theorem 1] gives a geometric charac-
terization of observability, [28, Theorem 2.1] and [60, Theorem 9] provide numerous other
conditions equivalent to observability, etc. etc.

Different fields and contexts suggest different terminology (for observability), which we
will adopt here: see for instance [57, §XI.1], or [6], where the term ‘dominion’ is employed
extensively, or [1, 14J] for the category-theoretic version we recall and adapt here.

Definition 2.9 Let f : c → d be a morphism in a category C.
(1) Suppose C is complete and well-powered.

• The dominion of f is the smallest regular subobject c ↪−→ d (i.e. equalizer of a pair
of morphisms d → • [1, Definition 7.56]) through which f factors.

• f is a dominion if the map c → c to the dominion is an isomorphism.
• f dominates a subobject c′ ↪−→ d if we have a factorization

c

c′ c

d
f

Dually:
(2) Suppose C is cocomplete and co-well-powered.

• The codominion of f is the smallest regular quotient object c � d (i.e. coequalizer
of a pair of arrows • → c [1, Definition 7.71]) through which f factors.

• f (or d) is a codominion if the map d → d is an isomorphism.
• f dominates (this seems a better choice than ‘codominates’) a quotient object c � d ′

if we have a factorization

c

d d ′

d
f

Under the hypotheses on C, it can be shown ([1, §14.J] and its categorical dual) that such
arrows do exist and are unique up to the obvious notions of isomorphism.

With this in place, note that the observable envelope [10, §3] of a closed linear algebraic
subgroup H ≤ G is nothing but the dominion of H → G in the appropriate category (linear
algebraic groups in [10], arbitrary algebraic groups in [13, Theorem 5], etc.).

As to Hopf algebras H , there is a satisfying correspondence between dominions (in the
categoryAlg) of right coideal subalgebras A ≤ H and codominions (in the categoryCoalg)
of left module quotient coalgebras H � C . We review some of this material, as worked out
partially in [16, §1.1] (the discussion is not present in later iterations of that preprint or in
the published version [17]).

Throughout, let H be a Hopf algebra over some field k. The following constructions are
central to [59] and discussed there extensively:

Notation 2.10 (1) For a right H -coideal subalgebra ι : A ≤ H (i.e. both a subalgebra and a
right coideal [42, discussion preceding Example 1.6.6]), write r(ι) or slightly abusively
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r(A) (‘r ’ for ‘right’) for the quotient

r(ι) := H/H A+, A+ = ker ε|A, ε being the counit of H .

It is not difficult to see that r(ι) is a left H -module quotient coalgebra of H [59, Propo-
sition 1].

(2) There is a kind of reciprocal construction: given a left H -module quotient coalgebra
π : H → C , write l(π) or l(C) (‘l’ meaning ‘left’) for

l(π) := C H := {h ∈ H | π(h1) ⊗ h2 = π(1) ⊗ h}.
The same [59, Proposition 1] shows that l(π) is a right coideal subalgebra.
We might occasionally also drop parentheses in applying the operators l and r (e.g. r A in

place of r(A)).

The operators l and r give back-and-forth maps between

H≤ := {right H -coideal subalgebras ≤ H} and

H� := {left H -module quotient coalgebras of H}. (2-1)

We regard these as posets in the obvious fashion, ordering them

• by inclusion for subalgebras;
• and reverse kernel inclusion for quotients.

As observed in [16, §1.1], we have

Lemma 2.11 Let H be a Hopf algebra with its associated posets (2-1.)

(1) The maps l : H� → H≤ and r : H≤ → H� are order-reversing, and form a Galois
connection between the two posets in the sense of [40, §IV.5, Theorem 1]:

r A ≥ C ⇐⇒ lC ≥ A.

(2) The compositions
lr : H≤ → H≤ and rl : H� → H�

are closure operators on the two respective posets in the sense of [40, §VI.1] or [27,
Definition 0-3.8]: order-preserving, idempotent, and such that the image of an element
dominates that element.

Proof (1) is immediate from the definitions, whereas (2) is a formal consequence of (1). 
�
The relevance of Lemma 2.11 to the present discussion lies in relation to (co)dominions:

these too provide closure operators on the two posets, and the two types of closure coincide
(see [16, Proposition 1.1.6]).

Proposition 2.12 Let H be a Hopf algebra and H≤, H� its posets (2-1).

(1) For every right H-coideal subalgebra A ∈ H≤, lr A is precisely the dominion of A ≤ H
in the category of algebras.

(2) For every left H-module quotient coalgebra C ∈ H�, rlC is the codominion of H � C
in the category of coalgebras. 
�
The proof of [16, Proposition 1.1.6] relies on having available a number of equivalent

characterizations of dominions (and domination) for comodule morphisms, analogous to the
algebra-morphism counterparts in [57, §XI.1, Proposition 1.1]. Those characterizations are
left unstated in [16], so we revisit the matter here for completeness.
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Theorem 2.13 Let f : C → D and π : C � D′ be two morphisms in Coalgk, with π onto.
The following conditions are equivalent:

(a) f dominates π in the sense of Definition 2.9 (2).
(b) For any pair fi : C ′ → C, i = 1, 2 of coalgebra morphisms with f f1 = f f2 we have

π f1 = π f2.
(c) The two compositions

C ×D C C D′
idC ×ε

ε×idC

π (2-2)

are equal, where the leftmost term is the pullback in the category of k-coalgebras and
the two parallel left-hand morphisms are the canonical ones.

(d) The two compositions

C�DC C D′
idC ⊗ε

ε⊗idC

π (2-3)

are equal, where the leftmost term is the cotensor product [42, Definition 8.4.2].
(e) For any C-bicomodule X and element x ∈ X, we have

x0 ⊗ f (x1) = x0 ⊗ f (x−1) ∈ X ⊗ D �⇒ x0 ⊗π(x1) = x0 ⊗π(x−1) ∈ X ⊗ D′. (2-4)

(f) The same condition, but only for finite-dimensional bicomodules X.
(g) Given a linear map ϕ : V → W between (right, say) C-comodules, if ϕ is a morphism

of D-comodules via corestriction along f then it is a morphism of D′-comodules via
corestriction along π :

(idW ⊗ f ) ◦ ρW ◦ ϕ = (ϕ ⊗ f ) ◦ ρV implies

(idW ⊗π) ◦ ρW ◦ ϕ = (ϕ ⊗ π) ◦ ρV ,

where ρV : V → V ⊗ C and ρW : W → W ⊗ C are the comodule structure maps.
(h) As above, but only for finite-dimensional C-comodules V and W.

Proof (e) ⇐⇒ (f) and (g) ⇐⇒ (h)This follows immediately from the fact that comodules
are unions of finite-dimensional subcomodules [43, Theorem 5.1.1]. This holds for bico-
modules too of course: a C-bicomodule is nothing but a comodule over C ⊗ Ccop ,where
Ccop is the coalgebra with “co-opposite” comultiplication

C 	 c 
→ c2 ⊗ c1 ∈ C ⊗ C .

We will thus only have to consider finite-dimensional (bi)comodules.
(a) ⇐⇒ (c) The codominion of f is the coequalizer of the two parallel left-hand maps in
(2-2) [1, 14J (g)], hence the equivalence.
(b) ⇐⇒ (c). On the one hand, the former is formally stronger because the two parallel
arrows in (2-2) can serve the role of fi in (b). On the other, fi as in (b) will have to factor
uniquely through (c) by the universality property of the pullback. This gives the opposite
implication (c) ⇒ (b) and hence the equivalence.
(c) ⇐⇒ (d) For any pair of morphisms fi : C ′ → C , i = 1, 2 with f f1 = f f2 we have a
map

C ′ 	 c 
→ f1(c1) ⊗ f2(c2) ∈ C�DC ≤ C ⊗ C .
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In particular, there is a canonical mapC ×D C → C�DC which together with (2-3) factors
(2-2). Note next, as a simple exercise, that the coequalizer (in Vec!) of the two left-hand
parallel arrows in (2-3) is already a quotient coalgebra of C .
It follows that the codominion of f can also be recovered as the coequalizer in Vec of the
two left-hand maps in (2-3), so the conclusion follows.
(f) �⇒ (h) Given V ,W ∈ MC

f (hence finite-dimensional), apply (f) to the finite-
dimensional C-bicomodule

X := Hom(V ,W ) ∼= W ⊗ V ∗

with its right comodule structure inherited fromW and the left structure inherited from that
on V ∗ (which in turn results from dualizing the original right comodule structure on V ).
(g) �⇒ (b) This will be entirely analogous to the proof of [57, §XI.1, Proposition 1.1,
implication (d) ⇒ (a)].
Morphisms fi : C ′ → C as in (b) will induce right C-comodule structures on C ′ so that f1
becomes a D-comodule morphism

• fromC ′
f f2

, meaningC ′ equippedwith the D-comodule structure induced by f f2 (which
is equal to f f1 by hypothesis);

• to C f , meaning C equipped with the D-comodule structure induced by f .

By assumption, the same goes with π in place of f :

MD′ 	 C ′
π f2

f1−−−−→ Cπ ∈ MD′
.

This, though, means precisely that π f1 = π f2.
(b) �⇒ (f) The argument is very similar to the proof of [57, §XI.1, Proposition 1.1, impli-
cation (a) ⇒ (b)].
Consider a finite-dimensional C-bicomodule X with right and left comodule structures
denoted as usual, by

X 	 x 
→ x0 ⊗ x1 ∈ X ⊗ C and

X 	 x 
→ x−1 ⊗ x0 ∈ C ⊗ X respectively.

This equips the dual vector space X∗ with a C-bicomodule structure in the only sensible
fashion: denoting the generic element of X∗ by x∗, we have

x∗
0 (x)x

∗
1 = x∗(x0)x−1 ∈ C and x∗

0 (x)x
∗−1 = x∗(x0)x1 ∈ C

for all x∗ ∈ X and x ∈ X . One can then equip the space C ′ := C ⊕ X∗ with a coalgebra
structure by keeping the comultiplication and counit we already have on C , and setting

X∗ 	 x∗ 
→ � x∗
0 ⊗ x∗

1 + x∗−1 ⊗ x∗
0 ∈ X∗ ⊗ C ⊕ C ⊗ X∗ ≤ C ′ ⊗ C ′

and ε|X∗ ≡ 0.
Now fix an x ∈ X satisfying the hypothesis of (e) (i.e. the left-hand side of (2-4)), and
consider the two coalgebra morphisms fi : C ′ → C , i = 1, 2 defined by

• f1 := obvious projection of C ′ = C ⊕ X∗ onto C ;
• f2|C := idC ;
• and

X∗ 	 x∗ 
→ f2 x∗(x0)x1 − x∗(x0)x−1 = x∗
0 (x)x

∗−1 − x∗
0 (x)x

∗
1 ∈ C .
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We have f f1 = f f2 and hence also π f1 = π f2 by assumption, whence right-hand side of
(2-4).
This completes the proof. 
�
The discussion above focuses on dominions of (co)algebra morphisms, whereas we will

later be interested in the richer structures mentioned before (bialgebras, Hopf algebras). It is
good to know, then, that a result analogous to Proposition 2.1 holds: it doesn’t make much
difference where one computes the (co)dominion, so long as it makes sense to do so.

Theorem 2.14 (1) The dominion of an algebra morphism f : H → H ′ is the same in any
of the categories

Alg•, Bialg•, HAlg•, bi HAlg, 2 HAlg

that happen to contain it.
(2) The codominion of a coalgebra morphism f : H → H ′ is the same in any of the

categories
Coalg•, Bialg•, HAlg•, bi HAlg, 2 HAlg

that happen to contain it.

Proof The two statements are once more mutual duals, with one proof easily adapted into
the other, so we focus on (2).

Some of the discussion bifurcates over cocommutativity. For any of the categories in
question, the codominion of f is the coequalizer of the two maps

H ×H ′ H H (2-5)

from the pullback in the corresponding category (by [1, 14J (g)], as in the proof of the
equivalence (a) ⇐⇒ (c) in 2.13). Those pullbacks range over just two possibilities: those
computed in Coalgcc and those computed in Coalg; this is because the relevant forgetful
functors to Coalg• are right adjoints, once more by [52, diagram (9)] and [51, §2.2]. The
claim, then, amounts to this:

For f : H → H ′ in any of the categories of bialgebras or Hopf algebras in (2), the
forgetful functor to Coalg• preserves coequalizers of pairs of the form (2-5).

Even more specifically, Coalg• → Vec is a left adjoint and hence cocontinuous [50,
§4.3], we are claiming that the coequalizers of the form (2-5) in any of the categories Bialg•
or � HAlg• are computable in Vec.

To see this, note that the pair (2-5) is reflexive [5, §3.3, preceding Proposition 4]: the two
arrows have a common right inverse H ′ → H ′ ×H H ′ whose components are both idH ′ . The
conclusion then follows from Lemma 2.15. 
�
Lemma 2.15 (1) The forgetful functors from Bialg• or � HAlg• to Vec preserve reflexive

equalizers, with ‘•’ meaning any combination of ‘c’ or ‘cc’ and ‘�’ either blank, ‘bi’ or
‘2’.

(2) Dually, the forgetful functors fromBialg• or� HAlg• toVecpreserve reflexive coequal-
izers.

Proof Singling out one of the mutually-dual claims again, say (2):
Let fi : X → Y , i = 1, 2 be a reflexive pair of parallel morphisms in any of the categories

in question, with a common right inverse s : Y → X : f1s = f2s = idY . Note now that the
kernel

{ f1(x) − f2(x) | x ∈ X} ≤ Y (2-6)
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of the vector-space coequalizer Y → Y of ( fi ) is both a coideal (naturally, since colimits in
Coalg coincide with those in Vec) and, by the reflexivity assumption, an ideal:

( f1(x) − f2(x))y = f1(xs(y)) − f2(xs(y)), ∀x ∈ X , y ∈ Y ,

and similarly for left multiplication. It follows that the vector-space coequalizer is in fact a
quotient bialgebra, and invariance of (2-6) under antipodes (in HAlg) or inverse antipodes
(in bi HAlg, etc.) is immediate. 
�
Remark 2.16 The proof of Theorem 2.14 touches on the issue of cokernel preservation for
the various forgetful functors

Bialg•, � HAlg• −→ Coalg• .

Since these functors are in fact monadic (or tripleable [5, §3.3]) by [52, Theorem 10 and
Proposition 28] and [50, §4.3]. This entails the preservation of some reflexive coequalizers
(Beck’s Theorem: [5, §3.3, Theorem 10]) but not, generally, all of them.

As a matter of fact, 2.15 could have been obtained in a more roundabout (and concep-
tual) manner by tracing through the monadicity proof in [50]; the more direct route seemed
preferable in this specific case.

There is also an analogue, for (co)dominions, of 2.4: field extensions preserve the relevant
constructions.

Proposition 2.17 The scalar-extension functor k
′ ⊗k − along a field extension preserves

(co)dominions in all of the categories Alg•, Coalg•, Bialg• and � HAlg•.

Proof Theorem 2.14 reduces the problem to Alg and Coalg. Moreover, since codominions
of algebra morphisms and dominions of coalgebra morphisms are uninteresting (they are just
the images of the respective morphisms), we discuss dominions in Alg and codominions in
Coalg.

We saw in the course of the proof of Theorem 2.13 that the codominion of C → D is
the coequalizer (in Vec) of the two maps C�DC → C . Dually, the dominion of an algebra
morphism A → B is the equalizer of the two maps B → B ⊗A B [57, §XI.1, Proposition
1.1]. As in the proof of Lemma 2.4, field scalar extensions preserve all of these constructions.

�
Remark 2.18 (1) See [6, Proposition 5.3] for an analogue of Proposition 2.17 for finite-

dimensional Lie algebras.
(2) A version of Proposition 2.17 holds for algebraic groups [13, Theorem 5 (ii)]: the latter’s

specialization to linear algebraic groups amounts precisely to the HAlgc-codominion
instance of Proposition 2.17.

Theorem 2.13 helps relate codominions to the notion of coflatness. Recall [15, §10.8] that
a left C-comodule M is

• coflat if the functor MC �C M−−−−−−→ Vec is exact;
• and faithfully coflat if that functor is in addition faithful.

We apply the term to coalgebra morphisms C → D: they are right (faithfully) coflat if
C ∈ MD is (faithfully) coflat, and similarly on the left.

Remark 2.19 As it happens, for coalgebras coflatness and injectivity interact very conve-
niently:
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• coflatness is equivalent to injectivity in the relevant category of comodules ([24, Theorem
2.4.17] or [15, §10.12, (ii) (1)]);

• and faithful coflatness is equivalent [15, §10.12, (ii) (2)] to the comodule in question
being an injective cogenerator (recall [40, §V.7] that a cogenerator in a category C is an
object d such that whenever C-morphisms fi : c → c′, i = 1, 2 differ so do g fi for some
g : c′ → d).

One can now replicate (and dualize) the usual discussion of faithfully flat descent ([21, Teo-
rema], [46, Theorem 3.8]) for categories of modules, in its formulation in terms of categories
of comodules over corings [15, §25.4].

Construction 2.20 For any coalgebra C

• the category CMC of C-bicomodules is monoidal ([40, §VII.1], [25, Definition 2.1.1]),
with �C as the tensor bifunctor and C as the monoidal unit.

• It thus makes sense to speak of algebras internal to CMC [25, Definition 7.8.1] and
categories of modules over them [25, Definition 7.8.5]

• Similarly, for a unital internal algebra A ∈ CMC , we denote by MA the category (of
right A-modules) consisting of right C-comodules V ∈ MC equipped with a morphism

V�C A → V in MC ,

associative and unital in the obvious sense.
The difference to [25, Definition 7.8.5] lies in V being only a right C-comodule rather
than a C-bicomodule.

Consider, now, a coalgebra morphism C → D.

• The cotensor product C�DC is a unital algebra in CMC , with multiplication

(C�DC)�C (C�DC) ∼= C�DC�DC
id⊗εC⊗id−−−−−−−→ C�DC

and unit
C

�C−−−−→ C�DC .

• For any (right) D-comodule W , the cotensor product W�DC is not only a right C-
comodule, but also a right C�DC-module with multiplication

(W�DC)�C (C�DC) ∼= W�DC�DC
id⊗εC⊗id−−−−−−−−→ W�DC .

• This gives a functor

MD −�DC−−−−−−−→ MC�DC ,

the right half of an adjunction

MC�DC ⊥ MD ,

N 
→ NC�DC

−�DC

(2-7)

where the space NC�DC of coinvariants (by analogy to the group-homology term [26,
§1.1]) of the C�DC-module N is defined as the (vector-space) coequalizer

N�DC N NC�DC

action

id⊗ε

(2-8)
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Having set up all of this, Theorem 2.21 is a straightforward dualization of the standard
arguments for faithfully flat descent [21, Teorema]. We give a proof for completeness; as
noted in [22, §4.2] though, such results are nowadays easily available as consequences of
Beck’s [5, §3.3, Theorem 10] on (co)monadic functors.

Theorem 2.21 let f : C → D be a coalgebra morphism. The adjunction (2-7) is an equiv-
alence in either of the following conditions:

• f is left faithfully coflat;
• or f is a split epimorphism (i.e. has a right inverse) in DMD.

Proof Consider the commutative diagram

MD MC�DC

MC

−�DC

−�DC forget

Now observe that

• the left-hand arrow is right adjoint to the scalar corestriction functor MC → MD ;
• the monad on MC associated to that adjunction [5, §3.1, Theorem 1] is nothing but

−�DC : MC → MC ;
• and the horizontal arrow is the comparison functor [5, §3.2, following Proposition 2]
associated to that selfsame adjunction (and monad).

The condition that the horizontal arrow be an equivalence is now equivalent to themonadicity
of −�DC : MD → MC , this, in turn holds in the two flagged cases:

• IfC ∈ DM is faithfully coflat then the conclusion follows fromBeck’s theorem ([5, §3.3,
Theorem 10]): we have already observed it is a right adjoint, and it reflects isomorphisms
and preserves all coequalizers (not just suitable reflexive ones) by faithful coflatness.

• On the other hand, if f : C → D has a right inverse in DMD , then the counit

−�DC → id
(
natural transformation of functors MD → MD

)

of the adjunction betweenMD andMC has a right inverse, hence the monadicity claim
by (the categorical dual of) [41, Proposition 3.16]. 
�
To circle back to codominions:

Corollary 2.22 A morphism C → D in any of the categories

Coalg•, Bialg• or � HAlg• (2-9)

that

• is left or right faithfully coflat;
• or is a split epimorphism in DMD

is a codominion.

Proof Per Theorem 2.14 (2), it is enough to handle Coalg. That claim, though, follows
immediately from the description of the codominion of C → D as the coequalizer (2-3) and
from Theorem 2.21: for

N = C ∼= D�DC ∈ MC�DC

the two parallel left-hand arrows of 2-8 specialize precisely to those of (2-3). 
�
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Remark 2.23 In the context of left module quotient coalgebras of Hopf algebras, fitting into
the framework of Proposition 2.12, Corollary 2.22 specializes back to (a particular case of)
[59, Theorem 2].

Recall that the cosemisimple coalgebras ([42, Definition 2.4.1 and Lemma 2.4.3], [24,
Theorem 3.1.5]) are those whose (left or right) comodules are all injective (or equivalently,
projective).

Corollary 2.24 A surjection in any of the categories (2-9) onto a cosemisimple object is a
codominion.

Proof This follows from Corollary 2.22 once we observe that for cosemisimple C a (right,
say) C-comodule M surjecting onto C is faithfully coflat. Indeed, M coflat by assumption,
and,C being projective inMC [24, Theorem 3.1.5],M will also contain it as a summand. But
every coalgebra is an injective cogenerator in its own category right comodules [15, §9.1],
hence so is M ∈ MC (so that it is also faithfully coflat [15, §10.12, (ii) (2)]). 
�

Remark 2.25 Compare Corollary Corollary 2.24 to the remark made in passing in [6,
Addenda] (and attributed to Hochschild) that every semisimple Lie subalgebra of any finite-
dimensional Lie algebra is a dominion in the category of finite-dimensional Lie algebras.

Since by [6, Theorems 2.2 and 2.3] that question is only interesting in characteristic zero,
where semisimple Lie algebras have semisimple categories of finite-dimensional represen-
tations [32, §6.3, Theorem], the connection to cosemisimplicity starts to become apparent.

As a matter of fact, the second bullet point in Corollary 2.22 is sub-optimal: one-sided
splitting suffices.

Theorem 2.26 The conclusion of Corollary 2.22 holds provided C → D has a right inverse
as a either a left or right D-comodule morphism.

Proof The proof of Corollary 2.22 makes it apparent that one does not quite need the adjunc-
tion (2-7) to be an equivalence: it is enough that its counit be an equivalence (in other words
[40, §IV.3, Theorem 1]: that the right adjoint −�DC be fully faithful).

In other words, fora coalgebra morphism f : C → D to be a codominion all we need is
that

N�DC�DC N�DC N
idN ⊗ idC ⊗ε

idN ⊗ε⊗idC

idN ⊗ε (2-10)

be a coequalizer in Vec. In the presence of a left D-comodule right inverse s : D → C to
f , the maps

N → idN ⊗s N�DC and N�DC → id⊗ id⊗s N�DC�DC

make (2-10) into a split (or contractible) coequalizer [5, §3.3, following Proposition 1] in
Vec, so in particular (as the name suggests) a Vec-coequalizer [5, §3.3, Proposition 2]. 
�

Remark 2.27 The remarkbehind the proof ofTheorem2.26 is precisely dual to [9, Proposition
2.2], concerned with algebra morphisms A → B split as right A-module maps.
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3 CQG Algebras and Compact Groups

One class of Hopf algebras particularly well-suited for generalizing compact-group repre-
sentation theory is that of CQG algebras [23, Definition 2.2]. One version of that definition
is as follows:

Definition 3.1 A CQG algebra is

• a complexHopf ∗-algebra H ([23, §1]: complexHopf algebra equippedwith a conjugate-
linear multiplication-reversing involution ‘∗’ such that both � and ε are ∗-morphisms);

• all of whose finite-dimensional comodules

V 	 v 
→ x0 ∈ v1 ∈ V ⊗ H

are unitarizable: admitting an inner product 〈− | −〉 (linear in the second variable, say),
compatible with the comodule structure in the sense that

〈v | w0〉Sw1 = 〈v0 | w〉v∗
1 , ∀v,w ∈ V .

CQGwill denote the category ofCQGalgebras, withHopf *-algebramorphisms as its arrows.

Remark 3.2 Cosemisimplicity is a consequence of 3.1: the orthogonal complement of a
subcomodule is again a subcomodule, hence the semisimplicity of the category MH .

The motivation stems from the fact that the commutative CQG algebras are precisely the
algebras of representative functions [14, §III.1, Definition 1.1] on compact groups, and the
usual Tannakian duality machinery [14, §III.7] can phrased as a contravariant equivalence
between the category CQGc of commutative CQG algebras and the category of compact
groups [61, Theorems 2.6 and 2.8]. For that reason, one thinks of the category CQG as dual
to that of compact quantum groups (this being one possible definition of the latter category,
though not the only one: see e.g. [61, Definition 2.3 and subsequent discussion]).

Recall, in this context, that embeddings of compact groups are equalizers [19, Theorem
2.1], whence

Corollary 3.3 The dominion of a compact-group morphism is the embedding of its image in
its codomain.

Dually, the codominion of a morphism in the category CQGc of commutative CQG alge-
bras is the surjection of its domain onto its image. 
�

This also implies that epimorphisms of compact groups are onto ([48, Theorem], [54,
Proposition 9]) or equivalently, monomorphisms in CQGc are embeddings. This latter result
transports over to CQG: the monomorphisms in that category are precisely the injective
morphisms [18, Proposition 6.1].

In view of all of the above, it seems reasonable to ask whether one can strengthen
[18, Proposition 6.1] in the same direction, by showing that codominions (rather than just
monomorphisms) behave “as expected”:

Theorem 3.4 A surjection in CQG is a coequalizer in that category.

Proof Recall [18, Theorem 3.1] that CQG is locally presentable, so much of the discussion
in 1 applies: the category is complete and cocomplete, etc. In particular, we can freely refer
to pullbacks therein.
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Let f : H → H ′ be a surjective morphism of CQG algebras. As in the proof of the
equivalence c ⇐⇒ d in 2.13, the vector-space coequalizer of the two maps

H�H ′ H H

is already a CQG algebra, and hence also the coequalizer of the two maps (2-5) from the
pullback in CQG. The latter is the codominion in CQG [1, 14J (g)], so that codominion is
also computable in Coalg (or Bialg, etc.). But H ′ is cosemisimple, so the codominion is
H → H ′ itself by Corollary 2.24. 
�

The non-commutative analogue of Corollary 3.3 is now a consequence (or rather rephras-
ing):

Corollary 3.5 the codominion of a morphism in the category CQG of CQG algebras is the
surjection of its domain onto its image.

Remark 3.6 In fact, Corollary 3.3 follows fromCorollary 3.5 (thus giving an alternative proof
of [19, Theorem 2.1], on which we need not rely): the inclusion functor CQGc → CQG

• is a right adjoint so on the one hand it preserves pullbacks and hence diagrams of the
form (2-5);

• and also preserves split coequalizers, as in the proof of Lemma 2.15 (2).

This means in particular that said inclusion functor preserves codominions.

4 Asides On Scalar Extension And Limits Of Coalgebras

In light of the proof of Proposition 2.17, one might wonder whether it could have been
phrased in terms of the other description of a coalgebra codominion: as a coequalizer of the
two coalgebra (rather than vector space) morphisms on the left-hand side of (2-2), with the
symbol ×D denoting the pullback in Coalg.

The algebra analogue, whereby the dominion of f : A → B is the equalizer of the two
morphisms

B B
∐

A B

(pushout in Alg) is obvious enough:

Algk
k

′⊗k−−−−−→ Algk′

is a left adjoint so preserves pushouts, as it does (co)equalizers. Note, though an asymmetry
in the behavior of k′ ⊗k − for algebras vs. coalgebras: in both cases the functor k′ ⊗k − is
a left adjoint, so the customary dualization does not obtain. Indeed, as observed in 1, it is
enough to argue that the functor is (in both cases) cocontinuous:

• For coalgebras this is obvious, since the colimits inCoalg are just those inVec (Remark
2.3).

• While for algebras one can argue directly that coequalizers and coproducts are preserved,
e.g. using the convenient description of coproducts [7, Corollary 8.1] as direct sums of
tensor products.

123



Epimorphic Quantum Subgroups and Coalgebra Codominions

That nevertheless the variant of the proof of Proposition 2.17 alluded to above would have
gone through follows from Theorem 4.1: even though it is a left adjoint and not a right one,
it does preserve the Coalg-equalizer of

C ×D C C

for a coalgebra morphism C → D.

Theorem 4.1 Let k ≤ k
′ be a field extension, and consider the left adjoint (−)k′ := k

′ ⊗k −
between the two versions (of k- and k′-linear objects respectively) of any of the categories

Alg•, Coalg•, Bialg•, � HAlg• .

(1) For Alg•, (−)k′ preserves infinite products (and hence is also right adjoint) precisely
when k ≤ k

′ is a finite extension.
Otherwise, the functor does not preserve any infinite product of non-zero algebras (and
hence is not right adjoint).

(2) For all other categories (−)k′ preserves equalizers of arbitrary families and arbitrary
products, and hence is a right adjoint.

Proof As noted repeatedly (in various formulations; e.g. [52, diagram (9)] and [51, §2.2]),
the forgetful functors

Bialg•, � HAlg• −→ Alg•
Bialg•, � HAlg• −→ Coalg•

are right and left adjoints respectively (with the ‘•’ symbols understood tomatch: for algebras,
if ‘c’ appears on the left it does so on the right, and similarly for coalgebras and ‘cc’). It
is thus enough to treat Alg• (algebras, commutative or plain) and Coalg• (coalgebras,
cocommutative or plain).

It is mentioned in 1 that functions defined on any of the categories are right adjoint as soon
as they are continuous and preserve certain filtered colimits, so in particular, for a functor that
is already know to be left adjoint, continuity is equivalent to being a right adjoint.Additionally,
continuity is also equivalent to preservation of products and pair equalizers [1, Proposition
13.4], hence the claims about right adjointness.

We now address the two claims.

(1) InAlg• the limits are just the ordinary ones formVec, the forgetful functorAlg• → Vec
being right adjoint. Part (1), then, follows immediately from the remark that the canonical
map

(
∏

i∈i
Vi

)

k′
−→

∏

i∈I
Vi,k′ (4-1)

is

• an isomorphism if k ≤ k
′ is a finite extension;

• and a proper embedding if the field extension is infinite and infinitely many Vi are
non-zero.

(2) We will discuss the various types of limits separately.
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(a) (Equalizers) In both Coalg and Coalgcc these are computed identically: given a
family of morphisms fi : C → D, their equalizer is the largest subcoalgebra of C
contained in the vector-space equalizer

EqVec( fi ) := {c ∈ C | fi (c) ∈ D are all equal} (4-2)

(see for instance [4, first paragraph of the proof of Theorem 1.1] for pairs of
morphisms; the argument works generally). That k′ ⊗k − preserves vector-space
equalizers (4-2) is straightforward linear algebra, so the conclusion follows from
Lemma 4.2 below.

(b) (Products in COALG) Let Ci , i ∈ I be a family of k-coalgebras, and consider the
canonical morphism (∏

Ci

)

k′
can−−−−−→

∏
Ci,k′ , (4-3)

where the products are taken in the categories of k- and k′-coalgebras respectively.
Consider a finite-dimensional k-vector space V . By Lemma 4.3, the morphism (4-3)
induces a bijection between the comodule structures on Vk′ over the two sides of that
morphism. The same result also implies that for finite-dimensional k-spaces V and
W equipped with such comodule structures we have

MC
k′ (Vk′ ,Wk′) ∼= MC (V ,W )k′ , C :=

∏
Ci .

Given that every finite-dimensional k′-vector space is of the form Vk′ for some V ∈
Veck, f , the Tannakian reconstruction of the coalgebras (4-3) from their respective
finite-dimensional comodules [55, Theorem 2.1.12 and Lemma 2.2.1] now makes it
clear that (4-3) is an isomorphism.

(c) (Products in COALGcc) Consider an arbitrary family of cocommutative coalgebras
Ci ∈ Coalgcc, i ∈ I . For any finite subfamily thereof the product in Coalg is
nothing but the tensor product [58, Theorem 6.4.5], so in general we have

Coalgcc∏
Ci ∼= Coalg

lim←−
F

⊗

i∈F
Ci , (4-4)

where
• F ranges over the finite subsets of the full index set I , ordered by inclusion
• For F ⊆ F ′ the connecting morphism

⊗

i∈F ′
Ci −→

⊗

i∈F
Ci

acts as the identity for i ∈ F and as the counit for i ∈ F ′ \ F .
As we already know from points (2a) and (2b) above that (−)k′ preserves arbitrary
limits inCoalg, and since it of course preserves tensor products, it will also preserve
limits of the form (4-4). 
�

This concludes the proof.

Lemma 4.2 For a linear subspace V ≤ C, denote by CV ≤ V the largest subcoalgebra of
C contained in V .

For any field extension k ≤ k
′ and linear subspace V ≤ C of a k-coalgebra the canonical

inclusion
k

′ ⊗k CV → (k′ ⊗k C)k′⊗kV
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is an equality.

Proof In words, scalar extensions along field inclusions preserve the largest-subcoalgebra-
contained-in-a-subspace construction.

To see this, observe that

CV = {c ∈ C | �nc ∈ V⊗(n+1) ≤ C⊗(n+1)},
where

C 	 c 
→ �n c1 ⊗ · · · ⊗ cn+1 ∈ C⊗(n+1)

is the iterated comultiplication (so that �1 = �C and �0 = idC ). We thus have

CV =
⋂

n≥0

�−1
n V⊗(n+1),

and we conclude by noting that k′ ⊗k − preserves intersections of arbitrary families of
subspaces (e.g. by choosing a basis for k′ over k, etc.). 
�
Lemma 4.3 Let k ≤ k

′ be a field extension, C a k-coalgebra, V a k-vector space, and denote
by (−)k′ the functor k′ ⊗k −.

A right Ck′ -comodule structure on Vk′ arises by scalar extension from a unique C-
comodule structure on V .

Proof Per the adjunction

Veck Veck′ ,

(−)
k′

scalar restriction

a k′-linear map Vk′ → Vk′ ⊗k′ Ck′ is (the same thing as) a k-linear map V → V ⊗ C ⊗ k
′

(unadorned tensor products being over k). Choosing a basis ei , i ∈ I for k′/k with 1 = ei0 ,
such a map is in turn uniquely determined by its components

V 	 v 
→ v
(i)
0 ⊗ v

(i)
1 ⊗ ei ∈ V ⊗ C ⊗ K .

The condition that the original map be a Ck′ -comodule structure then amounts to

• the map
V 	 v 
→ v

(i0)
0 ⊗ v

(i0)
1 ∈ V ⊗ C

being a right C-comodule structure;
• while

V 	 v 
→ v
(i)
0 ⊗ v

(i)
1 ∈ V ⊗ C, i �= i0 (4-5)

are coassociative and satisfy

v
(i)
0 ε

(
v

(i)
1

)
= 0 ∈ V , ∀v ∈ V (4-6)

(by contrast to the usual counitality condition, that would equate the left-hand side with
v).

Coassociativity together with (4-6) are easily seen to imply the vanishing of all (4-5), proving
the claim: the Ck′ -comodule structures on Vk′ are precisely those of the form

Vk′ ≥ V 	 v 
→ v0 ⊗ v1 ⊗ 1 ∈ V ⊗ C ⊗ k
′ ∼= Vk′ ⊗k′ Ck′

for a C-comodule structure v 
→ v0 ⊗ v1 on V . 
�
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