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We numerically investigate the hydrodynamics and membrane dynamics of a multicomponent vesicle in two
strongly confined geometries. This serves as a simplified model for red blood cells undergoing large
deformations while traversing narrow constrictions. We propose a new parameterization for the bending
modulus that remains positive for all lipid phase parameter values. For a multicomponent vesicle passing
through a stenosis, we establish connections between various properties: lipid phase coarsening, size and
flow profile of the lubrication layers, excess pressure, and the tank-treading velocity of the membrane. For a
multicomponent vesicle passing through a contracting channel, we find that the lipid always phase separates
so that the vesicle is stiffer in the front as it passes through the constriction. For both cases of confinement
we find that lipid coarsening is arrested under strong confinement, and resumes at a high rate upon relief
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1 Introduction

Biological membranes, the basic structural units for compartmen-
talizing biological systems, comprise diverse arrays of proteins and
lipid species. These lipids undergo phase separation, forming
domains or rafts that lead to variations in material properties,
including bending stiffness. Synthetic multicomponent vesicles,
self-enclosed lipid bilayer membranes composed of different lipid
species, have been used to study the rich patterns and accompany-
ing morphologies that emerge from elastic heterogeneity in the
membrane. In a quiescent environment, such elastic heterogeneity
gives rise to wrinkling, budding, adhesion, and fusion of vesicle
membranes,'™ closely related to several cellular processes.*>

The hydrodynamics of a single-component vesicle is char-
acterized by parameters such as the capillary number, reduced
volume, and confinement ratio.® Such characterization is often
useful for inferring fluid and material properties. For example,
a vesicle’s reduced volume and viscosity contrast determine if it
undergoes tank-treading, swinging, or tumbling in a linear
shear flow.” Transitions in the vesicle shape occur in non-
linear parabolic flows,®° and these shapes include axisym-
metric bullets or parachutes, and asymmetric parachutes.
Recently, characterization of vesicles suspended in a channel
or pipe flow'*™ showed more exotic vesicle hydrodynamics
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flows by controlled release of vesicles passing through strong confinement.

such as snaking and swirling behaviors in croissant and slipper
shapes.

Under a linear shear flow, a multicomponent vesicle exhibits
more exotic dynamics in both shape and membrane composi-
tion than a single-component vesicle.*** For example, multi-
component vesicles under a background flow often exhibit
highly complex morphologies, leading to vesicle budding. The
hydrodynamics of these multicomponent vesicles include
phase treading, tumbling with no viscosity contrast, swinging,
budding, and fission."®?*2® Through numerical investigations,
Liu et al.'® identified several key dimensionless numbers, includ-
ing the reduced area, capillary number, and the floppy-to-stiff ratio
to characterize various dynamics of a two-dimensional multicom-
ponent vesicle in an unbounded linear shear flow. In addition to
the aforementioned numerical studies, these dynamics have been
observed in experiments.>”>°

Hydrodynamics of vesicles in extreme confinement have
been studied as a model system for red blood cells (RBCs)
squeezing through small capillaries (of sub-micron size in
diameter) under a pressure difference.*’ > Membrane perme-
ability has been incorporated to examine the single-component
vesicle hydrodynamics. In the absence of an osmotic gradient,
the semipermeable vesicle is affected by water influx/efflux over
a sufficiently long time or under a strong confinement.'?
Numerical simulations illustrate that a vesicle with moderate
membrane permeability can go through a strong confinement
much more easily, and can restore its water content within a
very short time after its passage through the strong confine-
ment. These results imply that the membrane permeability
may be inferred from vesicle hydrodynamics under a strong
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confinement. Motivated by these results, in this work we seek to
investigate how strong confinement may affect the hydrody-
namics of a multicomponent vesicle. This question is highly
relevant to hydrodynamics of cells in a confinement, and to our
knowledge has not been well studied.*® Ramachandran et al.
reported that confinement reduces the effective diffusion coef-
ficient of the concentration fluctuation in multicomponent
membranes. How is such a reduced concentration diffusion
coefficient reflected in the hydrodynamics of multicomponent
vesicles under strong confinement?

In this paper, we use numerical simulations and lubrication
analysis®”*® to investigate the effect of strong confinement on
a two-dimensional multicomponent vesicle. In particular we
show how the vesicle’s reduced area and its lipid composi-
tion affect the dynamics in two strongly confined geometries.
The remainder of the paper is organized as follows. Section 2
describes the model for the two-dimensional multicomponent
vesicle. We introduce a new parameterization of the bending
modulus that is necessary to avoid unphysical negative bending
stiffness. Section 2.2 describes numerical methods and also
defines the techniques we use to define the excess pressure,
lubrication layer width, and tank-treading velocity. Section 3
demonstrates the effects of strong confinement on multicom-
ponent vesicles. Finally, concluding remarks are made in
Section 4.

2 Formulation

We consider a single multicomponent vesicle w with boundary
7 suspended in a confined geometry Q<R* with boundary I'
(Fig. 1). The fluid flow is assumed to have zero Reynolds
number and is therefore governed by the incompressible Stokes
equations

V-T=0 and Vu=0, xeQ\y, (1)
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Fig. 1 A multicomponent vesicle suspended in a strongly-confined ste-
nosis. The color is the dimensionless stiffness which varies from by, = 0.1
to bmax = 1. The vesicle dynamics are determined by a combination of
phase, bending, and tension energies, and an imposed flow (blue arrows).
The lubrication layer (gray region), defined in Section 2.4, plays a key role in
the vesicle dynamics.
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where T = —pI + y(Vu + Vu") is the hydrodynamic stress tensor,
u is the velocity, p is the pressure, and p is the fluid viscosity.
Across the vesicle membrane, we require that the velocity is
continuous and locally inextensible, and the membrane and
hydrodynamic forces balance

[ul=0, V,-u=]0,

where f is the total membrane force and n is the outward unit
normal of y. Parameterizing y as x(s,t), where s is arclength and ¢

[Tn] =f xe€v, (2)

is time, the no-slip boundary condition is % = u(x). Along the

solid wall I', we impose a Dirichlet boundary condition
u(x) = U(x), where U is a Hagen-Poiseuille flow at the inlet and outlet

U(x) = U(l - (%)2) x=(x,y) €T, 3)

and y € [-W,W]. U is zero along the top and bottom of the
channel.

We nondimensionalize the governing equations with a
characteristic length scale R, = 4 x 10 ° m, a maxi-
mum bending stiffness hpa = 2 x 1078 J, and fluid viscosity
i =5 x 107> kg ms™". The resulting bending relaxation time
scale is tRy*/Pmax = 1.6 s, the velocity scale is Drax/tRo* = 2.5 pm

! the pressure scale is hyax/Ro> = 3.1 x 10~ 2 Pa, and the
tension scale is hya/Ry> =1.3 x 10~ N m ™. The dimensionless
parameters regarding the vesicle properties are the reduced
area o = 4nA/L?, where A and L are the vesicle’s area and length,
respectively, and the floppy-to-stiffness ratio ff = bmin/Pmax-
Since we consider flows in channels, we also define a maximum
imposed velocity, U, which sets the capillary number Ca =
URy>1t/Pmax, and W/R, is the dimensionless width of the channel
which varies in both examples we consider. Note that the
maximum velocity inside the stenosis is almost five times larger
than the maximum imposed velocity. As a result, the capillary
number inside the stenosis is also five times larger. Finally, the
Peclet number of the lipid dynamics is taken to be Pe = 1 which
results in a diffusion time scale of 6.4 x 10~* s. Therefore,
phase separation occurs at a rate three orders of magnitude
faster than vesicle relaxation. The effect of the Peclet number
has been examined,'®'® and it has no qualitative effect on the
vesicle dynamics. From this point onwards, all equations are
dimensionless.

2.1 Constitutive equations

Using the model first introduced by Liu et al.,'® the membrane

forces depend on the Helfrich energy, line tension, and phase
energy. The phase and bending energies are coupled through
the bending modulus. In particular, the individual energies are

E, = %J b(u)ids, E = J ads, (4)

Y Y

where u is the dimensionless lipid concentration, b(«) is the
lipid-dependent bending modulus, ¢ is the membrane tension,

This journal is © The Royal Society of Chemistry 2023
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Fig. 2 (a) A multicomponent vesicle entering a closely-fitting channel
(black lines) using the linear model in egn (8). The color denotes the
bending modulus b(u). An instability is introduced where the vesicle
bending modulus becomes negative. (b) The linear bending model in red
(egn (8)) and the new sigmoid bending model in blue (egn (9)). Note that
the new bending model satisfies b € (8,1) even if u ¢ [0,1].

1
x is the membrane curvature, and f(u) :Zuz(l —u)? is a

double-well potential with local minimums at ¥ = 0 and u = 1.
The parameter ¢ « 1 sets the size of the transition region of u,
and the parameter a is line tension scaled by the characteristic
bending stiffness. All simulations use the parameter values
& =0.04 and a = 100. This corresponds to a size of 10~ * um for
the transition between the floppy and stiff regions, which is
similar to the values considered by others.'®'®?! The resulting
membrane forces are

where s is the unit tangent vector of y.

The lipid species u is governed by a fourth-order Cahn-
Hilliard equation that results in the lipids phase separating
while conserving their total mass. To model the variable bend-
ing,Sohn et al.'® parameterized the bending modulus as

b() = (1 — u) + fu. (8)

This journal is © The Royal Society of Chemistry 2023
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However, since the double-well potential does not have hard
walls, the lipid concentration is not guaranteed to be confined
to the interval [0,1]. This is problematic since b(u) < 0 if u >
(1 — ), and such values of u are possible when f « 1,
Ca » 1, or the vesicle is confined to a narrow region. This
behavior is demonstrated in Fig. 2(a) for a vesicle with a floppy-
to-stiff ratio § = 10™" entering a stenosis. Using the linear
bending model in eqn (8), the lipid concentration achieves a
maximum value of ¥ ~ 1.5 which results in an instability that is
formed by the resulting unphysical negative bending stiffness.
To rectify this issue, we could restrict the bending modulus to
be bounded in [$,1] by setting b(x) = max(min((1 — u) + fu,1),),
which is non-differentiable. However, this loss of differentiability
would result in a loss of accuracy of the overall method. Instead, we
parameterize the bending modulus with the sigmoid function

b(u):ﬂ; ltanh<3<u—%)) +¥. ©)

This parameterization maps the local minimums of the double-well
potential close to f and 1, but more importantly, b(x) remains
bounded in (f,1) even when u ¢ [0,1] (Fig. 2(b)). We compare this
new bending model against the linear model for a phase-treading
and tank treading vesicle in Section 2.3.

2.2 Numerical methods

We use a high-order integral equation formulation to resolve
the complex vesicle shapes and long-range hydrodynamic inter-
actions. The velocity field u at xe Q is written as a combination
of a single-layer potential and a double-layer potential

u() = S[EK) + DI, (10)
where

S0 = | (— log pl +’;—";')f<y>dsy, (1)

D) = o[ T s, (12)

r=x—y, p = |r|, nis the outward unit normal, 5 is a stress
density, and [ is the 2 x 2 identity matrix. The membrane
tension ¢ acts as a Lagrange multiplier so that the inexten-
sibility condition, V.,-u = 0, can be satisfied. The corres-
ponding pressure is

1 (r-f 11 1 rer
=—| —dsy +—| —=(1-2
r(x) ZnL P +ner2< p?

To avoid tangling, the vesicle membrane is parameterized in
terms of the 0-L variables,® where L is the fixed vesicle
length and 6 is the angle between the tangent vector and the
positive x-axis. This requires decomposing the velocity
field on y into a normal velocity V and tangential velocity
T. Then, the no-slip boundary condition for the vesicle
velocity is

) n - ndsy. (13)

d
d—t: Vn+ Ts+ Dln](x), xe€r. (14)
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Fig. 3 A multicomponent vesicle in a linear shear flow undergoes phase-
treading (top) and tank-treading (bottom) with the new sigmoid bending
model in egn (9). The dimensionless times are in the title. The red region is
stiff and the blue region is floppy. The simulations agree with the results in
Liu et al.*®

The boundary condition on I is satisfied by requiring that
satisfies

U(x) = —on(x) + SHI(x) + Dl (x),

xeTl, (15)
where the fluid velocity U on the solid wall I is defined in (3).
The vesicle and solid walls are discretized at a set of N and
Nyan collocation points, respectively. The single-layer potential
is approximated using quadrature for weakly-singular inte-
grands, while the double-layer potential is approximated using
the spectrally accurate trapezoid rule. A high-order quadrature
method resolves the hydrodynamic interactions between the
vesicle and the solid wall.*® Arclength derivatives are computed
with spectral accuracy using Fourier methods. The resulting
linear system is solved using GMRES. Finally, time stepping is
carried out using the second-order Adams-Bashforth method.

2.3 Validation

We validate the new sigmoid bending model in eqn (9) by
reproducing dynamics reported in the literature. Fig. 3 shows a
phase treading (top) and a tank-treading (bottom) multicom-
ponent vesicle in an unconfined linear shear flow. The simula-
tions align with the results reported by'® (¢f Fig. 3 and 4).

2.4 Lubrication layers and excess pressure

The lubrication layer between a vesicle and the solid wall plays
a critical role in the dynamics of a vesicle under strong

View Article Online

Soft Matter

confinement. Therefore, throughout Section 3, we calculate
and analyze the flow inside the lubrication layers between the
vesicle and the channel walls to elucidate the correlation
between hydrodynamics and membrane dynamics. To define
the size of the top lubrication layer, we let d(x,I's,p,) be the
minimum distance between a point on the vesicle, x € 7, and
the top half of the confining geometry. The size of the bottom
lubrication layer is defined similarly. We find all local mini-
mums of d(x,I"p), with the condition that d(x,I"«,p) < J, where
we use the parameter value 6 = 0.3 or 1.2 pm. If no such local
minimums exist, then the vesicle is too far from I',, to define a
lubrication layer. If there are two or more local minimums, the
left-most, X, and right-most, Xg, local minimums form the start
and end of the lubrication layer. If there is only one local
minimum, then x; and xi are the points on y to the left and
right of this local minimum with the condition that d(xy,I"cp) =
d(xXg,I"top) = 0. Then, the segment y,yer =7 consists of all points
x € 7 between x;, and xz with the condition that d(x,I'i,p) < 0.
Finally, the lubrication layer width is

Wtop =

——1——J d(X, I'op)ds. (16)

‘ Vlayer !

Vayer

The region that defines the top and bottom lubrication layers is
illustrated in Fig. 1, and the heights of the gray regions, wp
and wpe, denote the lubrication layer thicknesses. In this
example, the top layer is broken across two different regions.

A difference between the size of the top and bottom lubrica-
tion layers indicates that the vesicle membrane shape is asym-
metric with respect to the center of the channel, and this results
in tank-treading behavior."* To determine if a vesicle is tank-
treading, we calculate the tangential velocity at several points
on y, and if this value is constant, this is the tank-treading
velocity.

We also report the excess pressure for the stenosis geometry
and relate it to the size of the lubrication layers. The excess
pressure is the additional pressure that is required to pass the
vesicle through the geometry when compared to the pressure
necessary if the vesicle were absent. Average pressures are

(a)B D o S TS D < %

() | ¢ . . )

N

-
\\
) ¥
(c)U

=_ ) i

>

Fig. 4 A vesicle passing through the stenosis geometry. The vesicle's reduced area is o = 0.6 and the capillary number is Ca = 0.2. The vesicles are: (a)
stiff single-component; (b) floppy single-component; (c) multicomponent. The imposed flow is in the positive x direction denoted by the arrow.
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Fig. 5 A vesicle passing through the stenosis geometry. The vesicle's reduced area is « = 0.4 and the capillary number is Ca = 0.2. The vesicles are: (a)
stiff single-component; (b) floppy single-component; (c) multicomponent. The imposed flow is in the positive x direction denoted by the arrow.

calculated using eqn (13) along cross-sections that are parallel
to the flow direction near the inlet and outlet of the stenosis.

3 Hydrodynamics of a
multicomponent vesicle under strong
confinement

We consider both a single-component and a multicomponent
vesicle with an effective radius of R, = 4 um suspended in two
geometries: a closely-fitting geometry (stenosis) and a geometry
that slowly contracts to a narrow neck and then quickly widens
(contracting). All the multicomponent examples have floppy-to-
stiff ratio f = 10~". For the single-component case, we consider
two bending stiffnesses: b(«) = 1 and b(«) = 0.55. We refer to
these cases as a stiff single-component vesicle and a floppy
single-component vesicle, respectively. The smaller bending
stiffness represents the average bending stiffness of a multi-
component vesicle, when its stiff and floppy regions cover the
same amount of area. Throughout this section we plot the
position of the vesicle in terms of the x-coordinate of its center
of mass. For the stenosis geometry in Section 3.1, the narrow
region begins at x = —15 and ends at x = 15. For the contracting

o
—~

o
—~

Stiff Single-Component Vesicle

—Bending
—Tension

10 \,\

Bending and Tension Energies
=5

Bending and Tension Energies
N
o

20 10 0 10 20 20 10
Position

Floppy Single-Component Vesicle

0
Position

geometry in Section 3.2, the geometry begins to narrow at x = 4
and reaches its narrowest point at x = 15.

3.1 A multicomponent vesicle in the stenosis geometry

We start by considering a vesicle with reduced area o = 0.6
passing through stenosis with a capillary number Ca = 0.2. The
width of the stenosis starts at 6.8 and narrows to 1.4. With the
current setup and Ca = 0.2, an elliptical vesicle with reduced
area greater than o = 0.8 cannot fit through the closely-fitting
geometry. Fig. 4 shows six time steps of a (a) stiff single-
component (b) floppy single-component, and (c¢) multicompo-
nent vesicle. The lipid distribution at each point on the multi-
component vesicle is chosen randomly from the uniform
distribution with the range [0,1]. Since by = 0.1 and bpax = 1,
the mean bending stiffness is () ~ 0.55. In all plots, the color is
the dimensionless bending modulus of the multicomponent vesi-
cle that remains bounded in [0.1,1] by using the new sigmoid
bending modulus in eqn (9). A single Lagrangian point is included
to visualize any tank-treading behavior. There are slight differences
between the three cases, with the most noticeable being that the
multicomponent vesicle has higher curvature in the floppy region.
However, in general, there is little difference between these cases,
principally because these vesicles have a large reduced area.

~
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Fig. 6 The bending (blue), tension (red), and phase (green) energies of a (a) stiff single-component, (b) floppy single-component, and (c) multi-
component vesicle. The reduced area is « = 0.4. Note that the single-component vesicles do not have a phase energy.
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Fig. 7 The lubrication layer thicknesses (red and blue), excess pressure (green), and tank-treading velocity of four Lagrangian points of a (a) stiff single-
component vesicle, (b) floppy single-component vesicle, and (c) multicomponent vesicle. The reduced area is « = 0.4 in all three cases. Also illustrated is
the vesicle shape when its center of mass is located at x = 4. The color represents the spread of the tangential velocity relative to the average tangential
velocity, where the average is taken over the region x € [4,10]. We characterize the stiff single-component and multicomponent vesicles as tank treading
since the spread in the tangential velocity is below 15%, while the floppy single-component vesicle is not tank treading. The black dashed line is the center
line of the channel, and the arrow denotes the tank-treading direction. The percentage of the vesicle membrane that is below the center line is (a) 72%, (b)

44%, and (c) 68%.

We next consider a vesicle with a smaller reduced area
o = 0.4 with the same geometry and capillary number. Fig. 5
shows the shape of a (a) stiff single-component, (b) floppy
single-component, and (c) multicomponent vesicle at six loca-
tions along the stenosis channel. Contrary to the vesicles with
the larger reduced area (Fig. 4), the bending modulus has a
large effect on the vesicle shape. We first consider the three
different energies—bending, tension, and phase—for each
example. In Fig. 6, we plot these energies as a function of the
vesicle’s center. Note that the single-component vesicles do not
have a phase energy. We observe that, as the vesicle enters the
stenosis, it develops regions of high curvature, and this results
in an increase in the bending energy. As the stiff single-
component and multicomponent vesicles reach a steady-state
shape near the middle of the channel, their bending and
tension energies remain nearly constant from x = 0 until the
end of the stenosis. For the floppy case, the bending energy is
similar in size as the stiff case. Since the floppy bend-
ing modulus is about two-times smaller than the stiff case,
this indicates that the curvature of the floppy vesicle is about
/2-times larger than the stiff case. This additional curvature
corresponds to larger and more dynamic membrane deforma-
tions, and a more varying tension energy. For the multicompo-
nent vesicle, the phase energy is also nearly constant in this
region. This implies that there is no coarsening of lipid phase
parameter in the middle of a stenosis.

The coexistence of multiple lipid domains in a vesicle under
confinement results in additional interesting physics. We note
that in Fig. 6(c), the lipid species coarsens at three instances,
and this results in a decrease in the phase energy. Each
coarsening corresponds either to two stiff regions overtaking
a small floppy region, or to two floppy regions overtaking a

Soft Matter

small stiff region. In the first case, a region that was originally
floppy has become stiff, and this results in a sudden increase in
the bending energy. In the latter case, because the mass of the
lipid phase is conserved, the overtaken stiff region must
relocate to the another stiff-floppy interface, and this also
results in a sudden increase in the bending energy. These
increases are visible in Fig. 6(c) as small upticks in the blue
curve. However, in both cases, the vesicle smooths out these
new regions of high curvature, but it takes some time since the
diffusion time scale is several orders of magnitude smaller than
the bending relaxation time scale.

Another difference between the two reduced areas is that the
vesicles with smaller reduced area undergo tank-treading
motions. As mentioned earlier, tank-treading occurs when the
top and bottom lubrication layers differ in size. The size of the
lubrication layers for all three cases of the vesicle with reduced
area o = 0.4 are in the top half of Fig. 7.

For a vesicle in free space, tank-treading is associated with a
steady membrane shape and a constant tangential speed along
the membrane. For a vesicle in strong confinement going
through dynamic deformation, we provide a criterion for a
transient tank-treading membrane by first calculating the
average, maximum, and minimum tangential velocities over
all Lagrangian points when the vesicle’s center of mass is in the
interval [4,10]. If the difference of the maximum and minimum
tangential velocities is within 15% of the average tangential
velocity, we characterize the vesicle as tank-treading. These
relative spreads are plotted in the bottom row of Fig. 7. The
average tangential velocities are —1.00 x 10 ' for the stiff
single-component vesicle, 3.31 x 107> for the floppy single-
component vesicle, and —8.48 x 10" for the multicomponent
vesicle. The difference of the maximum and minimum

This journal is © The Royal Society of Chemistry 2023
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Fig. 8 The co-moving velocity field in the thin fluid layer between the top
of a vesicle and the stenosis geometry. The vesicles are (a) stiff single-
component; (b) multicomponent. Similar velocity profiles between the
bottom of the vesicle and the stenosis geometry. The profiles are plotted
at slices where the pressure gradient transitions from a value that is
negative, zero, positive, zero, and negative. The right plots show the
tangential stress with the five slices denoted by the marks. Note that the
reversal in the pressure gradient occurs when the tangential stress is
sufficiently large.

velocities relative to the average tangential velocities is 1.2% for
the stiff single-component vesicle, 12% for the multicompo-
nent vesicle, and over 300% for the floppy single-component
vesicle. Therefore, we classify the stiff single-component and
multicomponent vesicles as tank treading, while the floppy
single-component is not tank treading.

The direction and speed of the tank-treading depends on
how much of the vesicle membrane is exposed to positive shear
(below the center line) versus how much is exposed to negative
shear (above the center line).® The majority of the membrane of
the stiff single-component and multicomponent vesicles are
below the center line, and this results in a clockwise tank-
treading behavior. In contrast, the majority of the membrane of
the floppy single-component vesicle is above the center line,
and the result is counterclockwise rotation, but, again, large
normal deformations are occurring along with the rotation.
Finally, the stiff single-component vesicle tank treads faster
than the multicomponent cases since more of its membrane is
located below the center line.

The sizes of the top and bottom lubrication layers are also
related to the excess pressure. The green curve on the top half
of Fig. 7 shows the excess pressure (with the axis aligned on the
right side of the plot). As a general trend, the sum of the top
and bottom lubrication layer thicknesses is correlated with the
magnitude of the excess pressure—larger lubrication layers
correspond to smaller (less negative) excess pressures. This is
because smaller excess pressure is required to push the same
amount of fluid around the vesicle when the lubrication layer
thickness is larger.

When a vesicle is tank-treading near a solid wall, the flow in
the thin layer of fluid includes both a linear profile and a
Poiseuille profile.*® The magnitude of the Poiseuille profile is
determined by the pressure gradient between the vesicle and

This journal is © The Royal Society of Chemistry 2023

View Article Online

Paper

the solid wall, while the linear profile is determined by the
tangential velocity of the vesicle relative to the solid wall. Using
the definition of the lubrication layer outlined in Section 2.4,
we consider the flow profile inside this lubrication layer in
Fig. 8. We observe that the Poiseuille coefficient (quadratic
term) can be either positive or negative, meaning that the
pressure gradient in the streamwise direction in the lubrication
layer switches signs. The Poiseuille coefficient is related to the
lateral gradient of the tangential traction, F,, on the vesicle
membrane*"*

m

th = —05 + usg. (17)

Here,

m /
is the derivative of the membrane energy with respect to the
lipid concentration.'®

For a single-component vesicle, the tangential traction is
F. = —o, (the Marangoni stress), and the streamwise gradient of
the Marangoni stress determines the sign of the Poiseuille
coefficient in Fig. 8(a). For a multicomponent vesicle, the
Poiseuille coefficient can also change sign around the boundary
between two lipid domains, where the membrane energy
changes sharply between lipid species. This correlation
between the location of the boundary between lipid domains
and the fluid velocity profile in the lubrication layer implies
that, by visualizing the flow in the lubrication layer and
identifying locations where the nonlinear shear flow profile is
convex, it is possible to identify the location of boundaries
between lipid domains as shown in Fig. 8(b).

3.2 A multicomponent vesicle in the contracting geometry

In this section, we consider a vesicle passing through a channel
that slowly contracts from a width of 6.5 to 0.63, and then
immediately opens back up to a channel with width 6.5. In
dimensional units, the width of the neck is 2 um. We first
consider the effect of the initial lipid concentration when the
floppy and stiff regions each make up half of the vesicle
membrane. In Fig. 9, snapshots of vesicles with reduced area

) === D » N
§ = = = D p
S :
£ = d b b

Fig. 9 A multicomponent vesicle with 50% floppy region passing through
a contracting geometry. The vesicle's reduced area is « = 0.5 and the
capillary number is Ca = 0.2. The lipid distribution is initialized to be (a)
random, (b) phase separated with the stiff region leading; (b) random; (c)
phase separated with the floppy region leading.
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Fig. 10 A vesicle passing through a contracting geometry. The vesicle's
reduced area is « = 0.5 and the Capillary number is Ca = 0.2. (a) A stiff
single-component vesicle. The percentage of the multicomponent vesicle
that is floppy is (b) 15%, (c) 25%, (d) 35%, and (e) 45%. The vesicles with a
larger percentage of floppy regions pass through the neck earlier than the
vesicles with less percentage of floppy regions.

o = 0.5 with different initial lipid distributions are illustrated.
The initial distributions are (a) random, (b) stiff in the front
and floppy in the back, and (c) floppy in the front and stiff in
the back. As previously mentioned, the initial random lipid
distributions are sampled from the uniform distribution with
the range [0,1]. The vesicle with the random initial lipid
distribution quickly phase separates into two floppy and two
stiff regions. As seen in the stenosis geometry, further phase
separation is delayed until the vesicle is no longer under strong
confinement. The vesicle with the stiff region at the front
maintains its orientation. In contrast, the vesicle with the
floppy region on the front reorients the floppy region towards
the back of the vesicle. In summary, in all three cases, the
vesicle is orienting itself so that the stiff region passes through
the constriction before the floppy region. Therefore, in subse-
quent simulations, we initialize the vesicle’s lipid concen-
tration so that the floppy region is in the back and its stiff
region is in the front. The vesicle shapes develop regions with
high curvature in the floppy region when they first pass through
the narrowest part of the geometry, but once the strong con-
finement is abruptly removed, these regions of high curvature
are quickly smoothed.

In addition to the lipid distribution, the percentage of the
vesicle that is floppy plays a role in the vesicle shapes and
dynamics. Therefore, we consider a vesicle with reduced area
o = 0.5 in the contracting geometry with various sizes of the
floppy region. Motivated by the last experiment, we initialize
the stiff region to be in the front and the floppy region to be in
the back. In each simulation, the capillary number is Ca = 0.2.
Fig. 10 shows the vesicle shapes at the same six time steps when
the percentage of the floppy region is (a) 0% (single-
component), (b) 15%, (c) 25%, (d) 35%, and (e) 45%. One effect
of the size of the floppy region is that the symmetry of the
vesicle shape is broken at smaller percentages. We also see that
floppier vesicles have faster migration speeds, but the effect is
quite small—Table 1 reports the time the vesicle first passes
through the neck.
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Table1l The time required for the vesicles to completely pass through the
neck

Floppy percentage 0% 15%  25%  35%  45%  50%
Dimensionless time 2.32 2.30 2.29 2.26 2.23 2.25
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Fig. 11 The bending energies of the single-component and multicom-
ponent vesicles in Fig. 10. The vertical dashed lines correspond to the
configurations in Fig. 10. As the size of the floppy region increases, the
maximum bending energy decreases.

12 14 16

We conclude this example by considering the different
shapes and energies that single-component and multicompo-
nent vesicles display. Since we have initialized the lipid species
to initially be phase separated, the phase energy is nearly
constant for all cases, and is therefore not plotted. The tension
energy, on the other hand, increases as the vesicle approaches
the neck, but its general shape is similar for all five cases, and it
too is not plotted. However, the bending energies show differ-
ent behaviors for each of the cases (Fig. 11). The main differ-
ence being that the multicomponent vesicles with a higher
percentage of floppy regions have less bending energy, espe-
cially as the vesicle passes through the neck. We also note that
the bending energy undergoes several transient increases and
decreases. These occur when the tail of the vesicle undergoes
transitions from lower energy shapes, such as ‘C’ or ‘S’ shapes,
to high energy shapes, such as ‘W’ shapes. Fig. 12 shows these
different vesicle shapes for the single-component vesicle and
multicomponent vesicle that is 45% floppy. The shapes at
several critical points along the bending energy are included.

4 Conclusions

In this work we used numerical simulations to examine the
hydrodynamics of a multicomponent vesicle under strong
confinement. The vesicle is an simplified model for a red blood
cell, which has multiple lipid domains in its membrane and
often has to squeeze through a small space. We refined the
phase-field formulation in Liu et al"™ with a new bending
model that uses a sigmoid function for the bending stiffness

This journal is © The Royal Society of Chemistry 2023
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Fig. 12 The bending energy of (a) a stiff single-component vesicle, and (b)
a multicomponent vesicle whose boundary is 45% floppy passing through
a contracting geometry. The vesicle shape at different locations are
included. We can clearly see that the sudden increases and decreases in
the bending energy are due to transitions between lower energy and
higher energy shapes.

to retain positiveness in the bending modulus. The linear
model*® works well for a vesicle in free-space. However, under
strong confinement we find it necessary to enforce the condi-
tion that the dimensionless bending modulus b(u) be in the
range of [$,1] (8 = Pmin/Dmax) to avoid instability in membrane
shapes (see Section 2.1). We focused on the hydrodynamics of a
multicomponent vesicle in two types of confinement: a stenosis
channel (Section 3.1), and a contracting channel (Section 3.2).
For both confining geometries we varied the reduced area o and
the initial distribution of lipid domains with a fixed floppy-to-
stiff ratio f = 0.1, a fixed Capillary number Ca = 0.2, and a fixed
Peclet number of the lipid dynamics Pe = 1.

In Section 3.1 the confinement ratio (defined as 2//W) in the
stenosis is 1.67, and in Section 3.2 the confinement ratio increases
to a maximum of 3.60 at the neck. Consequently the dependence
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of the vesicle shape on the capillary number is expected to be less
sensitive according to results in Agarwal and Biros'' Finally the
phase separation is assumed to occur at a much faster time scale
than vesicle relaxation with Peclet number Pe = 1.

As a multicomponent vesicle enters and exits a closely-fitted
stenosis, coarsening of the lipid domains is expedited. However,
inside the stenosis, the strong confinement hinders the coarsen-
ing as the vesicle shape and the lipid distribution remain nearly
unaltered as the vesicle moves through the stenosis. Once inside a
stenosis, we define the lubrication layer and its width. We find
that tank-treading along the vesicle inside the stenosis is closely
related to the asymmetry in the lubrication layer width between
the top and bottom walls. For vesicles with a high reduced area
the lubrication layer width is symmetric between the top and
bottom walls, and we find no tank-treading along the membrane.
On the other hand, for a vesicle with a lower reduced area, the
lubrication layer width is asymmetric and the vesicle membrane
tanks treads. Furthermore we also find that the excess pressure
(the additional pressure required to pass the vesicle through the
stenosis) is correlated to the size of the lubrication layer: a larger
lubrication layer size results in a smaller excess pressure.

Inside the lubrication layer, the shear flow consists of a
quadratic component (due to pressure gradient in the thin film)
and a linear component (due to membrane motion in the
tangential direction). By analyzing these two components at
various locations in the lubrication layer, we further elucidated
the correlation between the location of boundary between lipid
domains and the change of sign in the pressure gradient in the
lubrication layer. These results may be used to identify
the location of boundaries between the lipid domains via the
visualization of the flow in the lubrication layer.

For a multicomponent vesicle squeezing through a constric-
tion, we simulated the passage of a vesicle with various initial
configurations of lipid domains. We found that, once the vesicle
makes its passage, the front of the vesicle is often stiffer than the
back of the vesicle, with a similar shape of a smaller curvature in
the front than the curvature in the back. This is also observed for a
vesicle moving out of confinement from a stenosis channel. Thus
we propose that a strong confinement followed by a sharp
transition to a wider opening can be used to produce phase-
separated multicomponent vesicle with the floppy lipid species in
the back and the stiff lipid species in the front of the vesicle.

Such asymmetry in lipid domain induced by strong confine-
ment and sudden release gives rise to a nonuniform ten-
sion distribution in the membrane, with a smaller tension
(in magnitude) in the front and a larger tension (in magnitude)
in the back. This resembles the behavior of a red blood cell as it
traverses a narrow slit.>>** During this process, the membrane
tension is primarily negative, resulting in compression that is
more pronounced at the rear of the cell than at the front.
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