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Compact quantum group structures on type-I C*-algebras
Alexandru Chirvasitu, Jacek Krajczok, and Piotr M. Sottan

Abstract. We prove a number of results having to do with equipping type-I C*-algebras with com-
pact quantum group structures, the two main ones being that such a compact quantum group is
necessarily co-amenable, and that if the C*-algebra in question is an extension of a non-zero finite
direct sum of elementary C*-algebras by a commutative unital C*-algebra then it must be finite-
dimensional.

Introduction

The theory of locally compact quantum groups is inextricably connected to the theory of
operator algebras. In fact, paraphrasing S. L. Woronowicz [42, Section 0], any theorem on
locally compact quantum groups is one on C*-algebras. In the present paper we will focus
on some of the interplay between the theory of compact quantum groups and operator
algebras. Examples of such an interplay are motivated by results such as the well-known
equivalence between amenability of a discrete group I' and nuclearity of the C*-algebra
C!(I") ([23, Theorem 4.2]). This particular fact has been generalized to compact quantum
groups (i.e., duals of discrete quantum groups, see [28, Section 3]) of Kac type by Tomatsu
in [38, Corollary 1.2] and in a weakened form to all compact quantum groups in [38,
Theorem 3.9] (see also [5, Theorem 3.3]). Some of these topics were pursued further,
e.g., in [0, 14] in the language of quantum group actions as well as in [6, 9, 35] in the
locally compact case.

The moral of the above-mentioned research activity is that one can learn about certain
“group-theoretical” properties of a compact quantum group G by studying purely operator
theoretic properties of the C*-algebra C(G). Furthermore, one can often show that certain
C*-algebras do not admit a compact quantum group structure solely on the basis of some
of their properties as C*-algebras. Examples of such results are given in [32, 33] and
also [34] and most recently [20]. In this last paper, the second and third author show that
the C*-algebra known as the Toeplitz algebra (the C*-algebra generated by an isometry)
does not admit a structure of a compact quantum group. The main tools are built out
of certain direct integral decompositions available for so called type-I quantum groups,
i.e., locally compact quantum groups whose universal quantum group C*-algebra is of
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type I with particular emphasis on C*-algebras of type I with discrete CCR ideal (see
Section 1).

In the present paper, the techniques of [20] are vastly generalized and applied to a
number of problems. Moreover, the direct integral decompositions of representations (and
other objects) are avoided. In the preliminary Section I, we introduce our basic tools,
recall certain objects such as the CCR ideal of a C*-algebra and prove a number of lemmas
concerning implementation of automorphisms on C*-algebras with discrete CCR ideals.
The main result of Section 2 is Theorem 2.8 which says that a compact quantum group
G with C(G) of type I must be co-amenable ([3, Section 1]). Along the way we prove
a number of results about the scaling group of a compact quantum group which allow
to reprove the result of Daws ([11]) about automatic admissibility of finite-dimensional
representations of any discrete quantum group (cf. [31, Section 2.2]).

In the final Section 3, we discuss compact quantum group structures on C*-algebras
which are extensions of a finite direct sum of algebras of compact operators by a commuta-
tive C*-algebra. Examples of such C*-algebras occur quite frequently in non-commutative
geometry and include the Podle$ spheres ([15,27]), the quantum real projective plane
([19, Section 3.2]) and some weighted quantum projective space ([7, Section 3]) and many
others (see Section 3). We show that such C*-algebras do not admit any compact quan-
tum group structure which answers several questions left open in [32,33] and provides a
number of fresh examples of naturally occurring quantum spaces with this property.

Our exposition is based on a number of standard references. Thus we refer to classic
texts such as [1, 13] for all necessary background on C*-algebras and to [26, 43] for the
theory of compact quantum groups. We have tried to keep the terminology and notation
consistent with recent trends and as self-explanatory as possible. In particular, for a com-
pact quantum group G we denote by C(G) the (usually non-commutative) C*-algebra
playing the role of the algebra of continuous functions on G. The symbol Irr(G) will
denote the set of equivalence classes of irreducible representations of G and for a class
o € Irr(G) the dimension of « will be denoted by 7. Since in the theory of compact quan-
tum groups we allow the C*-algebras C(G) to be sitting strictly between the reduced and
universal versions (see [3]), we will write C;(G) and C,(G) for these two distinguished
completions of the canonical Hopf x-algebra Pol(G) inside C(G).

1. Preliminaries

All C*-algebras are unital except when we specify otherwise, or with obvious exceptions
such as the algebra of compact operators on an infinite-dimensional Hilbert space.

We denote by A the spectrum of the C*-algebra +, i.e., the set of equivalence classes
of irreducible non-zero representations ([13, §2.2.1 & §2.3.2]).
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For a Hilbert space H we denote by K (H ) the algebra of compact operators on H.
Furthermore, for a family # = {H,},ea of Hilbert spaces we set

K(H) := co- D K (H)) (1.1)

AEA

the algebra of compact operators in

H=H,

A€A

preserving that direct sum decomposition. In general, for non-unital C*-algebras 4, we
write AT for the minimal unitization of #.

1.1. Type-I C*-algebras

We will work with type-I C*-algebras in the sense of [16], which provides numerous
equivalent characterizations. Textbook sources are [13, Chapter 9] and [1, §1.5 and Chap-
ters 2 and 4].

Recall, e.g., from [1, discussion preceding Definition 1.5.3] the following definition.

Definition 1.1. For a C*-algebra #, the CCR ideal CCR(+) is the intersection over all
irreducible representations

w: A —> B(H)
of the pre-images 7! (K (H)) of the ideal K (H) of compact operators on H.

In other words, CCR(+) consists of those elements that are compact in every irre-
ducible representation.

Definition 1.2. A (typically type-I) C*-algebra # is said to have discrete CCR ideal if its
CCR ideal CCR(+) is of the form K(F) as in (1.1) for some family # = {H)})eca of
Hilbert spaces.

We occasionally also say # is discrete-CCR or CCR-discrete for brevity, though note
that this does not mean it is CCR!

Now let A be a type-I discrete-CCR C*-algebra, with
CCR(A) = K(H#), H ={Hi}rea

and set
H := P H;. (1.2)
AEA
The ideal K(H#) C A is represented in the obvious fashion on H with each component
K (H}) acting naturally on H . This representation po: K(#) — B(H) extends uniquely
to a representation
p: A — B(H)

by, e.g., [1, Theorem 1.3.4].
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Lemma 1.3. Let A be a type-I C*-algebra with CCR(A) of the form (1.1). Then the
representation p is faithful and every automorphism of 4 is given by conjugation by some
unitary U € U(H). Furthermore, if the family J is a singleton, then this unitary is unique
up to scaling by T1.

Proof. Recall from [1, pp. 14—15] that the representation p is constructed from
p0: CCR(A) = K(H) — B(H)

as follows: an element a € + is mapped to the unique element p(a) of B(H) such that
p(a)po(x) = po(ax) for all x € CCR(+4). By construction p = @, cp p*, where p* is
constructed analogously from p(}: K (H)) — B(H,). Since each pé is irreducible, so is
each p* ([1, Theorem 1.3.4]).

We now note that the CCR ideal CCR() is essential. Indeed, CCR(4) is the largest
CCR ideal in & (cf. [1, p. 24]). But every ideal in #4 is of type I and every type-I C*-
algebra contains a non-zero CCR ideal, so any non-zero ideal of 4 must have a non-zero
intersection with CCR (). It follows that p is faithful.

Now for any o € Aut(-4) the representation p(’} o « is equivalent to p(’}, so by [1,
Thm. 1.3.4] p* is equivalent to p* o a (because for a € #4 and x € CCR(A) we have
(p* o a)(a)(p(’} oa)(x) = (pé oa)(ax)). For each A let U, be a unitary implementing the
equivalence. Then U = €D, ., Uy implements equivalence between p o « and p.

As for uniqueness, it follows from the fact that when # = {H} } ¢4 is a singleton the
representation p is irreducible, and hence the only self-intertwiners of p are the scalars. m

Of more interest to us, however, will be one-parameter automorphism groups (where
we can also recover some measure of uniqueness).

Lemma 1.4. Let A be a type-I C*-algebra with CCR(+A) of the form (1.1). A one-para-
meter automorphism group (Qs)ser of A is given by conjugation by a one-parameter
unitary group
R>s Us e [ UH) C UH),
A€A
preserving the decomposition (1.2), unique up to scaling by an individual character y:
R — T on each Hj.

Proof. Every automorphism of # will permute the summands K (H}) of K(#), so a
one-parameter group will preserve each summand by continuity. But this means that on
each H) the automorphisms (o)ser are given by conjugation by a projective unitary
representation ([40, Chapter VII, Section 2]) of R on H). Since projective representations
of R lift to plain unitary representations, for each s we have

s ’B(Hl) = conjugation by b'*

for a possibly-unbounded positive self-adjoint non-singular operator » on H}. This lift is
moreover unique up to multiplication by a character R — U(H,) because K (H,) acts
irreducibly on H}. ]
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1.2. Scaling groups
We recall the following well-known observation.

Lemma 1.5. Let G and H be compact quantum groups. Any Hopf x-homomorphism
¢:C(G) - C(H)

(i.e., a unital x-homomorphism satisfying Ay o ¢ = (¢ ® @) o Ag) intertwines scaling
groups, in the sense that

¢ o rsG(a) = r;HI op(a), VseR,aePol(G).

Proof. Assume first that C(G) = Cy(G), C(H) = C,(H) are universal versions of the
algebras of continuous functions. In this case our lemma is simply a reformulation of
[25, Proposition 3.10, equation (20)].

Consider now the general case. Observe that ¢ restricts to a map Pol(G) — Pol(H),
hence by the universal property of Cy(G) we can extend ¢|poi(g) to a *-homomorphism
$:C (G) — Cy(H). Clearly ¢ is a Hopf *- homomorphlsm hence by the above argu-
ment gb intertwines scaling groups. As ¢ and $ are equal on Pol(G) and the canonical
morphisms C,(G) — C(G), C,(H) — C(H) intertwine scaling groups, we arrive at the
claim. ]

2. Admissibility and co-amenability

Throughout the discussion we denote by G a compact quantum group and by I' = G
its discrete quantum dual. The following observation will be put to use repeatedly; it is
[8, Lemma 2.3], and it follows from Lemma 1.5 upon noting that finite-dimensional rep-
resentations factor through Kac quotients.

Proposition 2.1. Every finite-dimensional representation p: A — M, of the COG algebra
A = C(G) is invariant under the scaling group (ts)ser of G, in the sense that

pots(a) = pla), VseR,aePolG).

Proposition 2.1 has a number of consequences. First, note the following generalization.

Corollary 2.2. Let B be a C*-algebra all of whose irreducible representations are finite-
dimensional and A = C(G) for a compact quantum group G. Then, every morphism
p: A — B is invariant under the scaling group (t5)ser of G.

Proof. Indeed, it follows from Proposition 2.1 that for every irreducible representation
w: B — M, the composition 7 o p is invariant under t. The conclusion follows from the
fact that the direct sum of all 7 is faithful on B (i.e., every C*-algebra embeds into the
direct sum of its irreducible representations). ]
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Secondly, we obtain the following alternative proof of [11, Corollary 6.6] or [41],
Proposition 3.3] which concerns admissibility of finite-dimensional representations of dis-
crete quantum groups. The relevant terminology is explained in [10, 11,3 1]. In particular,
a finite-dimensional representation U of a locally compact quantum group H is admissi-
ble if the transpose of U (understood as a matrix of elements of the multiplier algebra of
Co(H)) is invertible.

Proposition 2.3. Every finite-dimensional unitary representation of a discrete quantum
group is admissible.

Proof. Let G be a compact quantum group and denote by I" the dual of G. Furthermore,
put A := C,(G). As explained in [28, Theorem 3.4] (cf. [22, Proposition 5.3], [36, Sec-
tion 5]), a unitary representation of I' on C” is defined by a morphism p: A — M,,.
Proposition 2.1 ensures that p is invariant under the scaling group of G. But then,
by [10, Proposition 3.2 and Remark 3.4], the representation of I" associated to p will be
admissible. ]

Next, we have the following sufficient criterion for the co-amenability of a compact
quantum group G. It appears as [8, Proposition 2.5], and we include a slightly different
proof here.

Proposition 2.4. A compact quantum group G is co-amenable if and only if the reduced
algebra C.(G) admits a morphism p: C.(G) — My, to a finite-dimensional C*-algebra.

Proof. Co-amenability means the counit is bounded on C;(G), so only the backwards
implication “<=" is interesting. We know from Proposition 2.1 that p is invariant under
the scaling group ts, s € R, so by analytic continuation its restriction to the dense Hopf
x-subalgebra Pol(G) C C,(G) is invariant under the squared antipode

S2 = T

(see [26, p. 32]). Once we have S 2_invariance, co-amenability follows from [4, Theo-
rem 4.4]. [

Remark 2.5. Proposition 2.4 generalizes [3, Theorem 2.8], which requires the existence
of a bounded character, and strengthens [4, Theorem 4.4] by removing the S2-invariance
hypothesis (which is automatic).

For future reference, we also record the following description of the Kac quotient of a
CQG algebra.

Proposition 2.6. Let A = C(G) and (t5)ser the corresponding scaling group. The Kac
quotient Axac s precisely the largest quotient of A on which tg acts trivially, i.e., the
quotient by the ideal generated by the elements

(@) —a, seR,aePol(G). 2.1
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Proof. On the one hand, since (75)scRr is a one-parameter group of CQG automorphisms
(i.e., each 7, preserves both the multiplication and the comultiplication), the quotient

A — B (2.2)

by the ideal generated by (2.1) is indeed a CQG algebra. Since furthermore (2.2) inter-
twines scaling groups (Lemma 1.5) the scaling group of 8B is trivial by construction and
hence 8B is Kac; this means that (2.2) factors as

A AKac B.

On the other hand, the morphism A — Ak, also intertwines scaling groups. Since its
codomain has trivial scaling group, it must vanish on all elements of the form (2.1) and
hence factors through 8. In short, the kernels of A — Ak, and (2.2) coincide. [ ]

Next, the goal will be to prove that compact quantum groups described by type-1 C*-
algebras are co-amenable. We need the following lemma.

Lemma 2.7. A unital type-I C*-algebra A has at least one non-zero finite-dimensional
irreducible representation.

Proof. Choose a proper maximal ideal I in +4 and note that then 4/ I is a type-I simple
unital C*-algebra. Thus any representation of «+ /I is faithful, and there exists an irre-
ducible one, say ¢: A/I — B(H). The range of ¢ contains K (H ), and hence it must
be equal to K (H) (otherwise ¢~ (K (H)) would be a proper ideal in + /1), but 4/ is
unital and ¢ is faithful, so H must be finite-dimensional. [

Theorem 2.8. Let G be a compact quantum group such that A = C(G) is type-1. Then
G is co-amenable.

Proof. Let h be the Haar measure of G and ¢ the ideal
{x € A|h(x*x) =0} C A.

The quotient 4/g will then be the reduced version C,(G) and again of type I. Since
it has a finite-dimensional representation by Lemma 2.7, co-amenability follows from
Proposition 2.4. u

3. Extensions of K(#) by C(X)

Throughout the present section, # denotes a C*-algebra fitting into an exact sequence

0 —— K(#) A—"€ 0 (3.1

where
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* € = C(X) for a (non-empty and for us always Hausdorff) compact space X,
* theideal K(#) is asin (1.1), where

J = {H ) ren, dimH, >2, VA eA (3.2)

is a finite, non-empty family of Hilbert spaces.
Note that such #4 is automatically of type I and K(#) is its CCR ideal. We denote

H = H,.

A€A

We list some examples of interest.
Example 3.1. For any finite family (3.2), the unitization K(J)™" satisfies the hypotheses.

Example 3.2. The Toeplitz C*-algebra T (dD) ([18, Definition 2.8.4]) associated to a
strongly (or strictly) pseudoconvex domain Q@ C C" ([21, §3.2] or [39, Definition 1.2.18])
is of the form above, with J a singleton.

This applies in particular to the case when D is the open unit disk in C. The algebra
T (D) is then the universal C*-algebra generated by an isometry, and Theorem 3.9 below
specializes to the main result of [20].

Example 3.3. The non-quotient Podles spheres introduced in [27] and surveyed for in-
stance in [15, §2.5, point 5]. According to [29, Proposition 1.2] those algebras (denoted
here collectively by #4) are all isomorphic to the pullback of two copies of the symbol map
T — C(S1). It follows that the C*-algebra in question fits into an extension

0—— K(?) & K(?) —— A—— C(S1) —— 0,
i.e., of the form (3.1) for a two-element family # = {H},ca of Hilbert spaces.

Example 3.4. As recalled in [24, Example, p. 123], the algebra CZ(M) of Calderon—
Zygmund operators (i.e., pseudo-differential operators of order zero; cf., e.g., [37, §VL.1])
on a smooth compact manifold M fits into an exact sequence

0—— K(L?(M)) —— CZ(M) —— C(S*M) —— 0
where S* M denotes the unit sphere bundle attached to the cotangent bundle of M.

The next proposition and two lemmas are the final preparatory steps for the main result
of this section (Theorem 3.9). The first step concerns faithfulness of the Haar measure.

Proposition 3.5. Let A be an extension of K(H#) by C(X) as in (3.1) and suppose A =
C(G) for some compact quantum group G. Then G is co-amenable. In particular, A =

C(G) is reduced.

Proof. This is a direct application of Theorem 2.8, since our C*-algebra +4 satisfies the
hypotheses of that earlier result. ]
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We henceforth write A = C;(G) to emphasize the faithfulness of the Haar measure,
as allowed by Proposition 3.5.

Recall from Section 1 that for each A we have the irreducible representation p*: A —
B(H)) obtained via the canonical extension of the embedding K (H)) — B(H)). Now
in the present case, {p*},en is precisely the subset of those irreducible representations of
4 which are of dimension strictly greater than one. It follows that the subset {p*}1ea C A
of the spectrum is invariant under every automorphism of ».' On the other hand, because
that set is discrete in our case, each individual p* is invariant under every one-parameter
automorphism group of #. In other words, every one-parameter automorphism group of 4
(e.g., the modular group (o;)ser or the scaling group (75)ser coming from the CQG
structure, for instance)

* restricts to a one-parameter automorphism group of each ideal K (H)) of #, and also
« induces a one-parameter automorphism group of the image #; of p*.

In this context, we have the following lemma.

Lemma 3.6. On each A) C B(H)), the modular automorphism o; of the Haar measure
on A acts as conjugation by ai’ for some non-singular, positive, trace-class operator a;,.

Proof. The restriction of the Haar measure /& to K (H}) is of the form Tr(d 2.d %) for
some positive, trace-class operator d on H). It follows that
o “K(Hl) = conjugation by d'’.
On the other hand, we know from Lemma 1.4 that
oy | Ay = conjugation by ait

for a possibly-unbounded non-singular, positive, self-adjoint operator a; on H). Since
conjugation by af{ and d'' agree on K (H)), the operators a; and d must be mutual
scalar multiples. Finally, since d is trace-class, so is a . [

The last remaining lemma is of more technical nature.

Lemma 3.7. On a Hilbert space H, let

* a and b be strongly commuting positive self-adjoint non-singular operators with a
bounded,

X be a bounded operator with finite-dimensional kernel, commuting with b** for all
s € R, and such that
a’xa " = p''x, VteR, (3.3)
for some p > 1.

Then, b has finite spectrum.

I'This also follows from a reasoning similar to the one in the proof of Lemma 1.3.
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Proof. Naturally, it suffices to assume H is infinite-dimensional (otherwise there is noth-
ing to prove). Let us denote by

Borel subsets of R 5 Q +— Egq € Projections on H

the spectral resolution of b. If the latter has infinite spectrum, we could partition R into
infinitely many Q,, n € Z>o with E, := Egq, non-zero.
Because a and b strongly commute, a preserves the subspaces H, := Im(E,) and
thus admits a spectral resolution
Q> Pn’g

thereon. By (3.3) and the fact that x and b strongly commute, x maps each range Im( P, q)
to P, on. The boundedness of ¢ means that we cannot scale by p > 1 indefinitely, so the
kernel of x|g, is non-zero for all n. Since there are infinitely many summands Hj, we are
contradicting the assumption on the finite-dimensionality of ker x. |

Remark 3.8. Due to the argument in the proof of Theorem 3.9 showing that A’ and B'*
commute, Lemma 3.7 in fact goes through under the formally weaker assumption that the
conjugation actions by a’’ and 'S commute on the algebra of compact operators.

With all of this in place, the main result of this section is the following.

Theorem 3.9. If G is a compact quantum group such that a unital C*-algebra A = C(G)
fits into an exact sequence (3.1) as above, then A is finite-dimensional.

Remark 3.10. The discreteness hypothesis on the ideal K(#) in Theorem 3.9 is crucial:
according to [44, Appendix 2], for deformation parameters p of absolute value < 1 the
function algebra C(SU, (2)) fits into an exact sequence

0 —— C(SY) ® K ({?) —— C(SU,(2)) —— C(S) —— 0.

Remark 3.11. Let us also note that the fact that we are dealing with a uniral C*-algebra 4
is essential for Theorem 3.9 as well. Indeed, the C*-algebras associated with the non-
compact quantum “az + b” groups ([30,45]) are extensions of K (H ) by C for an infinite-
dimensional separable Hilbert space H .

Proof of Theorem 3.9. Recall that by Lemma 1.4, on each H),
Ts| 4, = conjugation by b

for a possibly unbounded positive self-adjoint non-singular operator b, on H). Moreover,
because for each s, ¢ € R the automorphisms 7y and o; commute, conjugation by bis and
ai’ do, too (with a, as in Lemma 3.6).

If at least one of the spaces H) is finite-dimensional then + is finite-dimensional.
Indeed, assume that dim(H)) < +oo for some A € A and let p € 4 be the central pro-
jection corresponding to the unit of K (H)). Then ps is a finite-dimensional ideal in
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A isomorphic to K (H,) = B(H)). It follows that it is also a weakly closed ideal in
L>®(G) € B(L*(G)), hence the claim is a consequence of [12, Theorem 3.4].

Due to the above observation, we assume all H) are infinite-dimensional throughout
the rest of the proof, and derive a contradiction. Observe that G cannot be of Kac type as
K (#) has no faithful bounded traces.

Claim. The operator €D, <, b, implementing the scaling group has finite spectrum.
Assuming the claim for now, we can conclude by noting that since

p(t5(2)) = EP bY¥ palz) by

AEA

for all z € 4 and s € R, and operators 5 1en bas é reA b;l are bounded, the analytic
generator 7_; has bounded extension to all of #4. It follows that G is of Kac type (see
[26, discussion following Example 1.7.10]), hence we arrive at a contradiction.

It thus remains to prove the claim. We will do this with an argument similar to the
one used in the proof of [20, Theorem 13]. Let us for each « € Irr(G) choose a unitary
representation U% € o together with an orthonormal basis in the corresponding Hilbert
space in which the positive operator p, is diagonal with entries

Pa,15 -5 Pa,ng

(cf. [26, Section 1.4]). Moreover, let U,Zv (u,v €{l,...,ny}) be the corresponding matrix
elements of U%. Recall that we have a quotient map

A —> € = A/K(IH).

Clearly it factors through the canonical Kac quotient Ak, ([31, Appendix]), hence thanks
to Lemma 1.5 we have m o ty, = 7 for all s € R. On the other hand, 7, scales U,Zv by
~ispis and hence non-trivially whenever py ., # pa.v. Consequently,

Pa,u Po,v>

n(Uy,) =0 whenever pyy 7# pPa,v-

This means that upon applying 7: A — €, the matrix

o o

U1,1 Ul,na
Ua = . ° .
o o

Una,l o Unaana

becomes block-diagonal, with one block for each distinct value in the spectrum of py,.
Having relabeled that spectrum, we can assume that

pO(,la N pa,d
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are all of the instances of a specific eigenvalue p > 1 in that spectrum. Now, define
Uﬁl . Uﬁd
x=| 1 . 1 |e8CHRBH) =S3(C?®H) (3.4)
Uin  Uga

to be the block of U* corresponding to p.

The fact that the original matrix U%* was unitary and the above remark that off-
diagonal Uy, are annihilated by = now imply that (3.4) is unitary mod X(C?® H).
In particular, the operator x has finite-dimensional kernel by Atkinson’s theorem (e.g.,
[2, Theorem 3.3.2]).

Consider the operators

A=]1®(@al) and B=]1®(@bx)

AEA AEA

acting on C? ® H. Clearly they are positive, self-adjoint and non-singular, A is bounded
and x and B’S commute for all s € R. Furthermore, A, B commute for all ¢, s € R.
Indeed, it suffices to argue that ai’, bfxs commute for each A € A. As conjugation by these
unitary operators implements the modular and the scaling group on #4,, we have
allbi¥ay by’ = e Vs.teR

for some fixed # € R (see, e.g., [17, p. 5 and Definition 14.2]). If # # 0 then according
to the Stone—von Neumann theorem ([17, Theorem 14.8]) there is a unitary operator from
Hj onto L?(R) ® Hy (for some non-zero Hilbert space Hy) and identifying

a; +— exp (— ihdd—x) ® 1g,,
by + (multiplication by ¢*) ® 1,.

Neither of these operators is bounded, hence we get a contradiction. It follows that / must
vanish, so we can henceforth assume that A and B strongly commute and the proof ends
by Lemma 3.7. ]

Funding. The first author is grateful for funding through NSF grants DMS-1801011
and DMS-2001128. The second and third authors were partially supported by the Polish
National Agency for the Academic Exchange, Polonium grant PPN/BIL/2018/1/00197 as
well as by the FWO-PAS project VS02619N: von Neumann algebras arising from quan-
tum symmetries.

References

[11 W. Arveson, An invitation to C *-algebras. Grad. Texts in Math. 39, Springer, New York, 1976
Zbl 0344.46123 MR 0512360


https://doi.org/10.1007/978-1-4612-6371-5
https://zbmath.org/?q=an:0344.46123
https://mathscinet.ams.org/mathscinet-getitem?mr=0512360

(2]
(3]
(4]
(5]
(6]
(7]
(8]
(91
[10]
(11]

[12]

(13]
(14]

(15]

(16]
(7]
(18]
[19]
(20]
(21]
(22]

(23]

Compact quantum group structures on type-I C*-algebras 1141

W. Arveson, A short course on spectral theory. Grad. Texts in Math. 209, Springer, New York,
2002 Zbl 0997.47001 MR 1865513

E. Bédos, G. J. Murphy, and L. Tuset, Co-amenability of compact quantum groups. J. Geom.
Phys. 40 (2001), no. 2, 130-153 Zbl 1011.46056 MR 1862084

E. Bédos, G. J. Murphy, and L. Tuset, Amenability and coamenability of algebraic quantum
groups. Int. J. Math. Math. Sci. 31 (2002), no. 10, 577-601 Zbl 1022.46043 MR 1931751

E. Bédos and L. Tuset, Amenability and co-amenability for locally compact quantum groups.
Internat. J. Math. 14 (2003), no. 8, 865-884 Zbl 1051.46047 MR 2013149

F. P. Boca, Ergodic actions of compact matrix pseudogroups on C *-algebras. Astérisque 232
(1995), 93-109 Zbl 0842.46039 MR 1372527

T. Brzezifiski and W. Szymafiski, The C *-algebras of quantum lens and weighted projective
spaces. J. Noncommut. Geom. 12 (2018), no. 1, 195-215 Zbl 1491.46067 MR 3782057

M. Caspers and A. Skalski, On C*-completions of discrete quantum group rings. Bull. Lond.
Math. Soc. 51 (2019), no. 4, 691-704 Zbl 1447.46052 MR 3990385

J. Crann and M. Neufang, Amenability and covariant injectivity of locally compact quantum
groups. Trans. Amer. Math. Soc. 368 (2016), no. 1, 495-513 Zbl 1330.22013 MR 3413871
B. Das, M. Daws, and P. Salmi, Admissibility conjecture and Kazhdan’s property (T) for quan-
tum groups. J. Funct. Anal. 276 (2019), no. 11, 3484-3510 Zbl 1412.22014 MR 3944302
M. Daws, Remarks on the quantum Bohr compactification. Illinois J. Math. 57 (2013), no. 4,
1131-1171 Zbl 1305.43006 MR 3285870

K. De Commer, P. Kasprzak, A. Skalski, and P. M. Sottan, Quantum actions on discrete quan-
tum spaces and a generalization of Clifford’s theory of representations. Israel J. Math. 226
(2018), no. 1,475-503 Zbl 1409.46045 MR 3819700

J. Dixmier, C *-algebras. North-Holland Mathematical Library, Vol. 15, North-Holland Pub-
lishing Co., Amsterdam, 1977 MR 0458185

S. Doplicher, R. Longo, J. E. Roberts, and L. Zsid6, A remark on quantum group actions and
nuclearity. Rev. Math. Phys. 14 (2002), no. 7-8, 787-796 Zbl 1030.46091 MR 1932666

L. Dabrowski, The garden of quantum spheres. In Noncommutative geometry and quantum
groups (Warsaw, 2001), pp. 3748, Banach Center Publ. 61, Polish Acad. Sci. Inst. Math.,
Warsaw, 2003 Zbl 1069.81538 MR 2024420

J. Glimm, Type I C *-algebras. Ann. of Math. (2) 73 (1961), 572-612 Zbl 0152.33002

MR 124756

B. C. Hall, Quantum theory for mathematicians. Grad. Texts in Math. 267, Springer, New
York, 2013 Zbl 1273.81001 MR 3112817

N. Higson and J. Roe, Analytic K-homology. Oxford Math. Monogr., Oxford University Press,
Oxford, 2000 MR 1817560

J. H. Hong and W. Szymaniski, Quantum spheres and projective spaces as graph algebras.
Comm. Math. Phys. 232 (2002), no. 1, 157-188 Zbl 1015.81029 MR 1942860

J. Krajczok and P. M. Sottan, The quantum disk is not a quantum group. J. Topol. Anal. 15
(2023), no. 2,401-411 MR 4585233

S. G. Krantz, Function theory of several complex variables. AMS Chelsea Publishing, Provi-
dence, RI, 2001 Zbl 1087.32001 MR 1846625

J. Kustermans, Locally compact quantum groups in the universal setting. Internat. J. Math. 12
(2001), no. 3,289-338 Zbl 1111.46311 MR 1841517

C. Lance, On nuclear C *-algebras. J. Functional Analysis 12 (1973), 157-176

Zbl 0252.46065 MR 0344901


https://doi.org/10.1007/b97227
https://zbmath.org/?q=an:0997.47001
https://mathscinet.ams.org/mathscinet-getitem?mr=1865513
https://doi.org/10.1016/S0393-0440(01)00024-9
https://zbmath.org/?q=an:1011.46056
https://mathscinet.ams.org/mathscinet-getitem?mr=1862084
https://doi.org/10.1155/S016117120210603X
https://doi.org/10.1155/S016117120210603X
https://zbmath.org/?q=an:1022.46043
https://mathscinet.ams.org/mathscinet-getitem?mr=1931751
https://doi.org/10.1142/S0129167X03002046
https://zbmath.org/?q=an:1051.46047
https://mathscinet.ams.org/mathscinet-getitem?mr=2013149
https://zbmath.org/?q=an:0842.46039
https://mathscinet.ams.org/mathscinet-getitem?mr=1372527
https://doi.org/10.4171/JNCG/274
https://doi.org/10.4171/JNCG/274
https://zbmath.org/?q=an:1491.46067
https://mathscinet.ams.org/mathscinet-getitem?mr=3782057
https://doi.org/10.1112/blms.12267
https://zbmath.org/?q=an:1447.46052
https://mathscinet.ams.org/mathscinet-getitem?mr=3990385
https://doi.org/10.1090/tran/6374
https://doi.org/10.1090/tran/6374
https://zbmath.org/?q=an:1330.22013
https://mathscinet.ams.org/mathscinet-getitem?mr=3413871
https://doi.org/10.1016/j.jfa.2018.09.001
https://doi.org/10.1016/j.jfa.2018.09.001
https://zbmath.org/?q=an:1412.22014
https://mathscinet.ams.org/mathscinet-getitem?mr=3944302
https://doi.org/10.1215/ijm/1417442565
https://zbmath.org/?q=an:1305.43006
https://mathscinet.ams.org/mathscinet-getitem?mr=3285870
https://doi.org/10.1007/s11856-018-1709-x
https://doi.org/10.1007/s11856-018-1709-x
https://zbmath.org/?q=an:1409.46045
https://mathscinet.ams.org/mathscinet-getitem?mr=3819700
https://mathscinet.ams.org/mathscinet-getitem?mr=0458185
https://doi.org/10.1142/S0129055X02001399
https://doi.org/10.1142/S0129055X02001399
https://zbmath.org/?q=an:1030.46091
https://mathscinet.ams.org/mathscinet-getitem?mr=1932666
https://doi.org/10.4064/bc61-0-3
https://zbmath.org/?q=an:1069.81538
https://mathscinet.ams.org/mathscinet-getitem?mr=2024420
https://doi.org/10.2307/1970319
https://zbmath.org/?q=an:0152.33002
https://mathscinet.ams.org/mathscinet-getitem?mr=124756
https://doi.org/10.1007/978-1-4614-7116-5
https://zbmath.org/?q=an:1273.81001
https://mathscinet.ams.org/mathscinet-getitem?mr=3112817
https://mathscinet.ams.org/mathscinet-getitem?mr=1817560
https://doi.org/10.1007/s00220-002-0732-1
https://zbmath.org/?q=an:1015.81029
https://mathscinet.ams.org/mathscinet-getitem?mr=1942860
https://doi.org/10.1142/S1793525321500436
https://mathscinet.ams.org/mathscinet-getitem?mr=4585233
https://doi.org/10.1090/chel/340
https://zbmath.org/?q=an:1087.32001
https://mathscinet.ams.org/mathscinet-getitem?mr=1846625
https://doi.org/10.1142/S0129167X01000757
https://zbmath.org/?q=an:1111.46311
https://mathscinet.ams.org/mathscinet-getitem?mr=1841517
https://doi.org/10.1016/0022-1236(73)90021-9
https://zbmath.org/?q=an:0252.46065
https://mathscinet.ams.org/mathscinet-getitem?mr=0344901

[24]

(25]
[26]
(27]
(28]
(29]
(30]
(31]
(32]

(33]

(34]
(35]
(36]

(37]

(38]
(39]
[40]
(41]

(42]

[43]

[44]

A. Chirvasitu, J. Krajczok, and P. M. Sottan 1142

M. Lesch, K-theory and Toeplitz C *-algebras—a survey. In Séminaire de Théorie Spectrale
et Géométrie, No. 9, Année 1990-1991, pp. 119-132, Sémin. Théor. Spectr. Géom. 9, Univ.
Grenoble I, Saint-Martin-d’Heres, 1991 Zbl 0752.46039 MR 1715935

R. Meyer, S. Roy, and S. L. Woronowicz, Homomorphisms of quantum groups. Miinster
J. Math. 5 (2012), 1-24 Zbl 1297.46050 MR 3047623

S. Neshveyev and L. Tuset, Compact quantum groups and their representation categories.
Cours Spéc. 20, Société Mathématique de France, Paris, 2013 Zbl 1316.46003 MR 3204665
P. Podles, Quantum spheres. Lett. Math. Phys. 14 (1987), no. 3, 193-202 Zbl 0634.46054
MR 919322

P. Podles and S. L. Woronowicz, Quantum deformation of Lorentz group. Comm. Math. Phys.
130 (1990), no. 2, 381-431 Zbl 0703.22018 MR 1059324

A. J.-L. Sheu, Quantization of the Poisson SU(2) and its Poisson homogeneous space—the
2-sphere. Comm. Math. Phys. 135 (1991), no. 2, 217-232 Zbl 0719.58042 MR 1087382

P. M. Sottan, New quantum “az + b” groups. Rev. Math. Phys. 17 (2005), no. 3, 313-364
Zbl 1088.46041 MR 2144675

P. M. Sottan, Quantum Bohr compactification. Illinois J. Math. 49 (2005), no. 4, 1245-1270
Zbl 1099.46048 MR 2210362

P. M. Sottan, Quantum spaces without group structure. Proc. Amer. Math. Soc. 138 (2010),
no. 6, 2079-2086 Zbl 1194.46109 MR 2596045

P. M. Sottan, When is a quantum space not a group? In Banach algebras 2009, pp. 353-364,
Banach Center Publ. 91, Polish Acad. Sci. Inst. Math., Warsaw, 2010 Zbl 1216.46062

MR 2777489

P. M. Sottan, On quantum maps into quantum semigroups. Houston J. Math. 40 (2014), no. 3,
779-790 Zbl 1318.46051 MR 3275623

P. M. Sottan and A. Viselter, A note on amenability of locally compact quantum groups.
Canad. Math. Bull. 57 (2014), no. 2, 424-430 Zbl 1304.46070 MR 3194189

P. M. Sottan and S. L. Woronowicz, From multiplicative unitaries to quantum groups. IL
J. Funct. Anal. 252 (2007), no. 1, 42-67 Zbl 1134.46044 MR 2357350

E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory inte-
grals. Princeton Math. Ser. 43, Princeton University Press, Princeton, NJ, 1993

Zbl 0821.42001 MR 1232192

R. Tomatsu, Amenable discrete quantum groups. J. Math. Soc. Japan 58 (2006), no. 4, 949—
964 7Zbl 1129.46061 MR 2276175

H. Upmeier, Toeplitz operators and index theory in several complex variables. Oper. Theory
Adv. Appl. 81, Birkhduser, Basel, 1996 Zbl 0957.47023 MR 1384981

V. S. Varadarajan, Geometry of quantum theory. Second edn., Springer, New York, 1985

Zbl 0581.46061 MR 805158

A. Viselter, Weak mixing for locally compact quantum groups. Ergodic Theory Dynam. Sys-
tems 37 (2017), no. 5, 1657-1680 Zbl 1377.37009 MR 3668004

S. L. Woronowicz, Pseudospaces, pseudogroups and Pontriagin duality. In Mathematical prob-
lems in theoretical physics (Proc. Internat. Conf. Math. Phys., Lausanne, 1979), pp. 407412,
Lecture Notes in Phys. 116, Springer, Berlin-New York, 1980 MR 582650

S. L. Woronowicz, Compact matrix pseudogroups. Comm. Math. Phys. 111 (1987), no. 4,
613-665 Zbl 0627.58034 MR 901157

S. L. Woronowicz, Twisted SU(2) group. An example of a noncommutative differential calcu-
lus. Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 117-181 Zbl 0676.46050 MR 890482


https://doi.org/10.5802/tsg.90
https://zbmath.org/?q=an:0752.46039
https://mathscinet.ams.org/mathscinet-getitem?mr=1715935
https://zbmath.org/?q=an:1297.46050
https://mathscinet.ams.org/mathscinet-getitem?mr=3047623
https://zbmath.org/?q=an:1316.46003
https://mathscinet.ams.org/mathscinet-getitem?mr=3204665
https://doi.org/10.1007/BF00416848
https://zbmath.org/?q=an:0634.46054
https://mathscinet.ams.org/mathscinet-getitem?mr=919322
https://doi.org/10.1007/bf02473358
https://zbmath.org/?q=an:0703.22018
https://mathscinet.ams.org/mathscinet-getitem?mr=1059324
https://doi.org/10.1007/bf02098041
https://doi.org/10.1007/bf02098041
https://zbmath.org/?q=an:0719.58042
https://mathscinet.ams.org/mathscinet-getitem?mr=1087382
https://doi.org/10.1142/S0129055X05002339
https://zbmath.org/?q=an:1088.46041
https://mathscinet.ams.org/mathscinet-getitem?mr=2144675
https://doi.org/10.1215/ijm/1258138137
https://zbmath.org/?q=an:1099.46048
https://mathscinet.ams.org/mathscinet-getitem?mr=2210362
https://doi.org/10.1090/S0002-9939-10-10265-2
https://zbmath.org/?q=an:1194.46109
https://mathscinet.ams.org/mathscinet-getitem?mr=2596045
https://doi.org/10.4064/bc91-0-21
https://zbmath.org/?q=an:1216.46062
https://mathscinet.ams.org/mathscinet-getitem?mr=2777489
https://zbmath.org/?q=an:1318.46051
https://mathscinet.ams.org/mathscinet-getitem?mr=3275623
https://doi.org/10.4153/CMB-2012-032-3
https://zbmath.org/?q=an:1304.46070
https://mathscinet.ams.org/mathscinet-getitem?mr=3194189
https://doi.org/10.1016/j.jfa.2007.07.006
https://zbmath.org/?q=an:1134.46044
https://mathscinet.ams.org/mathscinet-getitem?mr=2357350
https://doi.org/10.1515/9781400883929
https://doi.org/10.1515/9781400883929
https://zbmath.org/?q=an:0821.42001
https://mathscinet.ams.org/mathscinet-getitem?mr=1232192
https://doi.org/10.2969/jmsj/1179759531
https://zbmath.org/?q=an:1129.46061
https://mathscinet.ams.org/mathscinet-getitem?mr=2276175
https://doi.org/10.1016/s0168-9274(96)90019-7
https://zbmath.org/?q=an:0957.47023
https://mathscinet.ams.org/mathscinet-getitem?mr=1384981
https://zbmath.org/?q=an:0581.46061
https://mathscinet.ams.org/mathscinet-getitem?mr=805158
https://doi.org/10.1017/etds.2015.115
https://zbmath.org/?q=an:1377.37009
https://mathscinet.ams.org/mathscinet-getitem?mr=3668004
https://doi.org/10.1007/3-540-09964-6_354
https://mathscinet.ams.org/mathscinet-getitem?mr=582650
https://doi.org/10.1007/bf01219077
https://zbmath.org/?q=an:0627.58034
https://mathscinet.ams.org/mathscinet-getitem?mr=901157
https://doi.org/10.2977/prims/1195176848
https://doi.org/10.2977/prims/1195176848
https://zbmath.org/?q=an:0676.46050
https://mathscinet.ams.org/mathscinet-getitem?mr=890482

Compact quantum group structures on type-I C*-algebras 1143

[45] S. L. Woronowicz, Quantum “az + b group on complex plane. Internat. J. Math. 12 (2001),
no. 4, 461-503 Zbl 1060.46515 MR 1841400

Received 23 September 2021.

Alexandru Chirvasitu
Department of Mathematics, University at Buffalo, Buffalo, USA; achirvas@buffalo.edu

Jacek Krajczok
School of Mathematics and Statistics, University of Glasgow, Glasgow, UK;
jacek krajczok @ glasgow.ac.uk

Piotr M. Soltan
Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw,
Warsaw, Poland; piotr.soltan @fuw.edu.pl


https://doi.org/10.1142/S0129167X01000836
https://zbmath.org/?q=an:1060.46515
https://mathscinet.ams.org/mathscinet-getitem?mr=1841400
mailto:achirvas@buffalo.edu
mailto:jacek.krajczok@glasgow.ac.uk
mailto:piotr.soltan@fuw.edu.pl

	Introduction
	1. Preliminaries
	1.1. Type-I C*-algebras
	1.2. Scaling groups

	2. Admissibility and co-amenability
	3. Extensions of K(H) by C(X)
	References

