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Abstract

We conduct a thorough study of different forms of horizontally explicit and vertically
implicit (HEVI) time-integration strategies for the compressible Euler equations on
spherical domains typical of nonhydrostatic global atmospheric applications. We
compare the computational time and complexity of two nonlinear variants (NHEVI-
GMRES and NHEVI-LU) and a linear variant (LHEVI). We report on the perfor-
mance of these three variants for a number of additive Runge-Kutta Methods ranging
in order of accuracy from second through fifth, and confirm the expected order of ac-
curacy of the HEVI methods for each time-integrator. To gauge the maximum usable
time-step of each HEVI method, we run simulations of a nonhydrostatic baroclinic
instability for 100 days and then use this time-step to compare the time-to-solution of
each method. The results show that NHEVI-LU is 2x faster than NHEVI-GMRES,
and LHEVI is 5x faster than NHEVI-LU, for the idealized cases tested. The baroclinic
instability and inertia-gravity wave simulations indicate that the optimal choice of
time-integrator is LHEVI with either second or third order schemes, as both schemes
yield similar time to solution and relative L2 error at their maximum usable time-
steps. In the future, we will report on whether these results hold for more complex
problems using, e.g., real atmospheric data and/or a higher model top typical of space
weather applications.
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1. Introduction

All problems in the numerical solution of time-dependent partial differential equa-
tions (PDEs) require, at the very least, two key ingredients for accurate, stable, and
efficient solutions. These ingredients are the selection of the methods for approximat-
ing the (i) spatial and (ii) temporal (time) derivatives. The focus of this paper is on
time-integration methods specifically designed for geophysical fluid dynamics (GFD)
where the stiffness of the PDEs results from a finer grid spacing in the vertical rel-
ative to the horizontal dimension. We are interested in solving the nonhydrostatic
form of the compressible Euler equations, where explicit time-integration is imprac-
tical due to the small time-steps dictated by the acoustic speed and reflected by the
Courant-Friedrichs-Lewy condition [9]. For this reason, recent work has focused on
nonlinear horizontally explicit and vertically implicit methods (HEVI) where, as the
name suggests, the horizontal flow along the surface of the earth is handled explic-
itly in time, whereas the flow normal to the surface of the earth along the radial (or
vertical) direction is handled implicitly. The work by Gardner et al. [12] describes a
nonlinear HEVI method that uses a GMRES-based Krylov solver, which we call non-
linear HEVI (or NHEVI-GMRES). Since the publication of that paper, others have
contributed to this discussion and we mention in particular the work by Steyer et al.
[51] and Vogl et al. [58]. The goal of our current work is to analyze NHEVI and seek
improvements to it such that (i) the stability and accuracy of the original method is
not degraded and (ii) its efficiency is enhanced. Some researchers have reached the
conclusion that NHEVI-GMRES may be too expensive and modifications have been
studied but perhaps not published (e.g., work on the U.S. Navy’s NEPTUNE model),
while other approaches have already appeared in the literature such as LHEVI (e.g.,
see [16, 60, 33, 8, 6, 32, 49, 59, 48] for IMEX-LHEVI and [44, 28] for split-explicit
LHEVI) but in these works it was not compared to the NHEVI method. Therefore,
the motivation for the current work is to quantitatively compare the NHEVI method
relative to linear HEVI (LHEVI); where we use the Nonhydrostatic Unified Model of
the Atmosphere (NUMA) [16] for the numerical experiments.

NUMA is a research CFD code that uses Element-Based Galerkin (EBG) meth-
ods [34, 15] for spatial discretization and a suite of explicit, IMEX, and fully implicit
time-integrators. NEPTUNE is primarily a low-altitude NWP model, although we
are also developing a high-altitude, whole atmosphere version [3] of both NUMA
and NEPTUNE for space weather applications. Early versions of NUMA [16] and
NEPTUNE [39] relied primarily on 1D linear IMEX schemes, where each column
of fluid was rotated to be aligned with the north pole during the implicit step. In
addition, linear IMEX relies on an a priori reference state to construct the linear op-
erator. Both of these constraints are problematic for an NWP model. The rotations
add additional computational cost to the solver, while pre-defined reference states
are typically not available for simulations with real data. In addition, in whole atmo-
sphere applications, the upper atmosphere undergoes very large day/night transitions
in temperature (hundreds of degrees Kelvin), which makes a predefined reference state
numerically unstable. For these reasons, we decided to implement and evaluate var-
ious HEVI schemes for both the low-altitude and high-altitude versions of NUMA.
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The complexity and numerical efficiency of each of these schemes are evaluated along
with their accuracy with idealized benchmarks, allowing us to determine the optimal
configuration for NUMA and then make a recommendation for NEPTUNE.

The remainder of the paper is organized as follows. In Sec. 2, we describe the form
of the governing equations used in our study along with the contravariant formulation
used in its discretization. Section 3 details the spatial discretization scheme based
on EBG methods [15], including special treatment of the metric terms using curl-
invariant metrics [30]. Section 4 summarizes the three different flavors of the HEVI
methods: nonlinear HEVI based on an iterative Krylov solver (NHEVI-GMRES),
nonlinear HEVI using a direct LU solver (NHEVI-LU), and linear HEVI (LHEVI).
Section 5 provides a complexity analysis of the three HEVI variants, while Sec. 6 com-
pares five additive Runge-Kutta (ARK) time-integrators that may be used with any
of the three HEVI variants. Numerical results using two standard global atmospheric
test cases are shown in Sec. 7, followed by conclusions in Sec. 8. In Appendix A we
discuss two other forms of the nonhydrostatic equations found in the literature and
include the necessary ingredients for solving them using the HEVI time-integration
methods described in this work.

2. Governing Equations

In this study we use the compressible Euler equations (with an artificial hyper-
diffusion operator). According to the convention we defined in [17, 19] we refer to
this particular form of the Euler equations as set 2NC, where the "NC" refers to a
non-conservative set. In Appendix A.1, we include two other equation sets: 2C which
is the conservation form of 2NC and 3C which uses the total energy as a prognostic
variable. All three sets are valid for a deep-atmosphere [61]. In a forthcoming paper,
we present an equation set which uses internal energy for the thermodynamic variable
[22] that is valid for space weather applications.

2.1. Set 2NC
This is perhaps the most widely used form of the equations in atmospheric sciences

and is written as follows
∂ρ

∂t
+∇ · (ρu) = 0 (1a)

∂u

∂t
+ u · ∇u+

1

ρ
∇P +∇Φ + 2ωr̂ × u = 0 (1b)

∂θ

∂t
+ u · ∇θ = 0 (1c)

P = PA

(
ρRθ

PA

)γ

. (1d)

In these equations, ρ is density, u = (u, v, w)T is the Cartesian velocity field, θ is
the potential temperature, P is pressure, Φ = g|r| is geopotential, r is the position
vector (measured from sea level), ω is the angular rotation of the earth, r̂ = r

|r| is the
unit vector along the direction of r, R is the specific gas constant, γ = cp

cv
is the ratio
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of specific heats with respect to constant pressure and volume, PA = 105 Pa is the
reference pressure at sea level, and the superscript T is the transpose operator. Note
that the momentum (1b) and thermodynamic (1c) equations are in non-conservation
(advective) form while the continuity (1a) equation is in conservation (flux) form; with
the proper numerics (as the EBG method that we use in this work) this equation set
will globally conserve mass as long as we do not use the product rule in (1a). Set
2NC, or variants thereof, are used in, e.g., E3SM [53] and NEPTUNE [39].

2.2. Contravariant Formulations
NUMA uses a Cartesian coordinate system, which while natural for flow in a box

(where the grid is aligned with the coordinate axes), appears out of place for global
atmospheric simulations on the sphere where the coordinate axes are no longer aligned
with a spherical grid. This issue can be ameliorated by using contravariant vector
quantities that are aligned with the grid. This requires mapping the Cartesian coor-
dinates to the reference coordinates such that vectors (e.g., velocity) are transformed
as follows: (u, v, w) → (uξ, uη, uζ) where (ξ, η) are aligned with the spherical manifold
and ζ is aligned with the radial component, i.e., the direction along which the HEVI
method is applied.

To express the transformation from covariant to contravariant vector quantities,
we make use of Einstein notation whereby ui and ui denote covariant and contravari-
ant quantities, respectively. In what follows, we refer to the covariant vectors as the
vectors in Cartesian space which, within an element, represent a curvilinear represen-
tation, while the contravariant vectors are those that are aligned with the manifold
and the crux of the problem is to construct a local (element-wise) map that takes
each element defined in Cartesian space to its corresponding reference space.

It is easy to show (via the chain rule) that the advective terms in covariant form
can be replaced by their contravariant form as follows

3∑
i=1

ui
∂q

∂xi
=

3∑
i=1

ui
∂q

∂ξi
(2)

where u = (u, v, w) = (u1, u2, u3),

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
(3)

are the covariant vector quantities and uξ =
(
uξ, uη, uζ

)
= (u1, u2, u3),

∇ξ =

(
∂

∂ξ
,
∂

∂η
,
∂

∂ζ

)
=

(
∂

∂ξ1
,
∂

∂ξ2
,
∂

∂ξ3

)
(4)

are the contravariant vector quantities. It is less easy to show that divergence (e.g.,
see [31]) can be transformed as follows

3∑
i=1

∂

∂xi
(qui) =

1

J

3∑
i=1

∂

∂ξi
(
Jqui

)
(5)
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where ui = u · ∇ξi for any vector u and scalar q with metric Jacobian J (see
Eq. (13)) and contravariant metric terms ∇ξi given by (14) where ξi is defined as
(ξ1, ξ2, ξ3) = (ξ, η, ζ). With all these transformations defined, we can proceed to the
spatial discretization of the equation sets. Note that discrete mass conservation re-
quires the continuity equation (1a) to be discretized in the divergence form shown in
(5). We cannot use the product rule and expand the divergence operator but must
maintain it in divergence form; it can be shown that the global integral of this term
vanishes when using EBG methods (e.g., see [52, 15]) that are presented in Sec. 3.
The same argument also holds for sets 2C and 3C described in Appendix A.1 that are
able to conserve quantities written in this form (e.g., the mass for both and density
potential temperature and total energy, respectively).

3. Spatial Discretization

Although the focus of this work is on time-integration, let us first describe the
spectral element method used for the spatial discretization which will assist in de-
scribing the construction of the operator Jacobian in the HEVI methods. The basis
functions ψ(ξ, η, ζ) are constructed as a tensor-product ⊗ of the one-dimensional (1D)
Lagrange polynomials h(ξi) as follows

ψI(ξ, η, ζ) = hi(ξ)⊗ hj(η)⊗ hk(ζ) (6)

where I = i + j(Nξ + 1) + k(Nξ + 1)(Nη + 1) is the map from the tensor-product
to monolithic space, with corresponding quadrature weights ϖI = ϖξ

iϖ
η
jϖ

ζ
k with

(ξi, ηj, ζk), i = 0, . . . , Nξ, j = 0, . . . , Nη, k = 0, . . . , Nζ denoting the Lobatto points of
order (Nξ, Nη, Nζ), respectively, that are used for both interpolation and integration,
and ψ ∈ H1 (Sobolev space) (see, e.g., [38, 10, 31, 15]). Because we use the Lobatto
points for both interpolation and integration, the 1D basis functions satisfy hi(ξ

k
j ) =

δij for any of the contravariant coordinates ξk where δ is the Kronecker function; this
is due to the Cardinality property of Lagrange polynomials. Differentiating (6) yields

∂

∂ξ
ψI(ξ, η, ζ) =

dhi(ξ)

dξ
⊗ hj(η)⊗ hk(ζ)

∂

∂η
ψI(ξ, η, ζ) = hi(ξ)⊗

dhj(η)

dη
⊗ hk(ζ) (7)

∂

∂ζ
ψI(ξ, η, ζ) = hi(ξ)⊗ hj(η)⊗

dhk(ζ)

dζ

where, e.g., we define the 1D differentiation matrices as Dξk

ij =
dhi(ξ

k
j )

dξk
, ∀ i, j =

0, . . . , Nξk . To simplify the exposition in Sec. 4, we exploit the row-sum property
of Dξk defined as

∑N
ξk

i=0 D
ξk

ij = 0 that can be used to show that for two functions p
and q we satisfy the identity

piD
ξk

ij qj = Dξk

ij (piqj) , (8)
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which means that we can write advective terms, such as u∂u
∂ζ

as Dζ
ij (uiuj). This flux-

differencing approach is used extensively in the literature addressing the construction
of kinetic-energy preserving and entropy-stable discontinuous Galerkin methods (e.g.,
see [13, 59, 48]).

Using the basis functions (6) we can construct the mass matrix on each element
Ωe as such

M
(e)
ij =

∫
Ωe

ψi(x, y, z)ψj(x, y, z)dΩe ≡
∫
Ω̂
ψi(ξ, η, ζ)ψj(ξ, η, ζ)JdΩ̂ (9)

where we now use the monolithic space for the subscripts (i, j), J is the metric
Jacobian defined in the next section and Ω̂ is the reference element defined by the
cube (ξ, η, ζ) ∈ [−1,+1]3; note that we never need the basis functions ψ(x, y, z)
defined in the physical coordinates, only those in the reference coordinates. Applying
co-located Lobatto integration to (9) yields the diagonal matrix

M
(e)
ij = ϖiJiδij (10)

due to Cardinality but is inexact since N Lobatto points integrate O(2N − 1) polyno-
mials exactly (the mass matrix represents a 2N polynomial). To denote the diagonal
nature of the mass matrix, we write it as M (e)

i . To construct the global mass matrix
we apply direct-stiffness summation (DSS) as follows

MI =
Ne∧
e=1

M
(e)
i (11)

where (i, e) → I denotes the map from local element-wise to global gridpoint notation
(see [23, 15]) and Ne denotes the number of elements such that

Ω =
Ne⋃
e=1

Ωe

where Ω is the global domain. Below we drop the subscript and write the global
gridpoint mass matrix as M where its inverse is simply defined and denoted as M−1.

3.1. Metric Terms
To transform from the physical Cartesian coordinates (x, y, z) to the reference

element coordinates (ξ, η, ζ) requires us to discuss the construction of the metric
terms. The standard approach to constructing them are the cross-product metrics
(e.g., see [15]) written as

∇ξi = 1

J

(
∂x

∂ξj
× ∂x

∂ξk

)
(12)

where the metric Jacobian is defined as

J =
∂x

∂ξ
·
(
∂x

∂η
× ∂x

∂ζ

)
(13)
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Figure 1: Alignment of grid such that ξ − η define the spherical manifold while ζ defines
the radial direction.

and i, j, k are defined cyclically such that if i = 1, then j = 2, and k = 3, etc. The
cross-product metric terms can maintain constant stream preservation in 2D but do
not have this property in 3D (see [30]). To satisfy this condition in 3D requires the
use of the curl-invariant metrics (e.g., see [30]) that are written as

∇ξi = 1

2J

[
∂

∂ξk

(
∂x

∂ξj
× x

)
− ∂

∂ξj

(
∂x

∂ξk
× x

)]
(14)

where, once again, the indices (i, j, k) are cyclic, and the metric Jacobian is computed
as described in [30].

In previous work [59, 48], we used the curl-invariant metrics but did not compare
them to the cross-product metrics. We rectify this by demonstrating the superiority of
the curl-invariant metrics to the cross-product form and then use the curl-invariant
metrics throughout the paper because they are guaranteed to maintain constant-
stream-preservation under all conditions, including when the boundaries are under-
resolved, whether topography is present or not, and under inexact integration of the
integrals required in efficient EBG methods. In an upcoming paper, we quantitatively
compare various metric terms using a suite of tropospheric and high-altitude atmo-
spheric problems in [22], further demonstrating the advantages of the curl-invariant
metrics.

3.2. Metric Terms along Columns
By constructing our grids in NUMA such that the ζ direction is aligned with the

vertical columns, this means that the HEVI methods only have to consider the ζ
direction; this is depicted in Fig. 1 where ξ − η define the spherical manifold (which
we refer to as the horizontal direction),while ζ is aligned with the radial direction
(referred to as the vertical direction) and is the direction along which the HEVI
time-integrators are constructed.

7



However, the metric terms defined in (14) and (13) are uniquely defined for each
element (e) and DOF (i, j, k) which implies that along a vertical column that shares
two or more element columns (on the cubed-sphere, this can be 1, 2, 3, or 4 but much
higher on an icosahedral grid) the metric terms as defined are C0 continuous. For
two of the three methods/storage schemes used in NUMA, this poses no problem.
However, for a gridpoint-based continuous Galerkin method (what we call CGc in
[2, 15]) we need to modify the metric terms. This procedure requires the following
steps: (i) expand a given metric term M in tensor-product Lagrange polynomials,
(ii) evaluate the weak form within an element, (iii) apply DSS, and (iv) weight the
result by the inverse mass matrix. This procedure ensures that the metric terms
are continuous across elements. Steps (i) through (iv) outlined above can be defined
concisely by the following L2 projection

MI =M−1

Ne∧
e=1

∫
Ωe

hi(ξ)hj(η)hk(ζ)

 Nξ∑
l=0

Nη∑
m=0

Nζ∑
n=0

hl(ξ)hm(η)hn(ζ)M(e)
l,m,n

 dΩe (15)

where h are the 1D basis functions previously defined, MI represents the metric
terms at the global gridpoint I, M(e)

i,j,k represents the metric terms for the element
e at the local gridpoint i, j, k; e.g., M(e)

i,j,k could represent the components of ∇ζ(e)i,j,k.
Once we apply this operation to J and ∇ζ, each vertical column can be integrated
independently without the need to DSS along the (ξ, η) directions; however, DSS
along the ζ direction is still required but this poses no issue if we partition the grid
such that all points of a column are on the same memory space (either an MPI rank
or GPU card). Note that this process is a one-time cost performed at initialization
(or whenever the grid is modified as in dynamically adaptive mesh refinement), so
this L2 projection does not negatively impact performance.

3.3. Testing the Metric Terms
Mass conservation is a fundamental property of a dynamical core and important

for accurate forecasts, such a surface pressure prediction [54]. Properly constructing
metric terms is a prerequisite for mass conservation. To evaluate the curl-invariant
metric terms, let us use a test case similar to the mountain case from [55], and compare
them with the cross-product metrics. We modify the size of the mountain and apply
no initial wind velocity. We define the profile of the axisymmetric mountain as follows

height =
hm

1 +
(

r
am

)2 (16)

where r = re cos
−1 (cosϕ cosλ), re is the radius of the earth, with hm = 15 km and

am = 5000 km, with the model top at zT = 30 km. The profile of the mountain has
been made artificially large (almost twice the height of Mount Everest) in order to
stress the metric terms. For the mountain case, we use 5× 5 elements on each panel
of the cubed-sphere grid [41] along with 6 elements in the vertical using polynomial
degree N = 4 in all directions which results in an average grid resolution of 500 km

8



(a) Mountain Case (b) Baroclinic Instability

Figure 2: Mass loss for set 2NC for the (a) static balanced mountain for a 30-day simulation
comparing the curl-invariant and cross-product metrics and (b) baroclinic instability for a
100-day simulation using the curl-invariant metrics.

in the horizontal and 1.25 km in the vertical where a terrain-following coordinate is
used [11]. The grid is purposely coarse to test the performance of the metric terms
in such resolution regimes. Figure 2a shows the mass loss for set 2NC for a 30-day
simulation with data at a daily cadence; the mass loss is defined as

Mass Loss =
|M(t)−M(0)|

M(0)
(17)

where
M(t) =

∫
Ω

ρ(t)dΩ (18)

for any time t integrating along the global domain Ω. The dashed red line in Fig.
2a representing the cross-product metrics (12) hovers near O(10−5) mass loss. In
contrast, the solid blue line for the curl-invariant metrics (14), evaluated with (15),
conserves mass to machine double precision; the results for sets 2C and 3C are similar,
the only difference is that 3C also conserves total energy. It is for this reason that
from here on we use the curl-invariant metrics exclusively. Figure 2b shows the mass
loss of the curl-invariant metrics for the baroclinic instability (presented in Sec. 7.1)
for a 100-day simulation using a grid resolution of 104 × 1.25 km, where machine
double-precision is achieved for the entirety of the 100-day simulation.

3.4. Tensor-based Hyper-Diffusion
We introduce numerical diffusion/hyper-diffusion by adding the following term to

the right-hand side of the continuous governing equations

∂q

∂t
= S(q) + (−1)α+1(∇ · τ∇)αq, (19)

where S(q) represents the spatial operators of the compressible Euler equations, q
the state variable, τ the viscosity tensor, and α is the order of the hyper-diffusion
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operator (e.g., α = 1 is second order standard diffusion and α = 2 is fourth order
hyper-diffusion). In this formulation, we adopt the tensor form of viscosity proposed
in [21], but modify the original formulation by multiplying the viscosity tensor τ by
each application of Laplacian operator. Applying an EBG discretization to (19) yields
the semi-discrete form

M
dq

dt
= S(q) +Hν(q), (20)

with
Hν(q) = (−1)α+1(Lν)

αq, (21)

where M is the global mass matrix, Hν is the hyper-diffusion operator, Lν is the
Laplacian matrix with viscosity, and S is the discrete EBG representation of S. Re-
peated application of the Laplacian operator gives rise to higher even-order derivatives
[14, 27, 15]. The Laplacian matrix Lν is calculated using the contravariant form in
terms of the reference coordinates ξ on the element Ωe as follows

Lν =

∫
Ωe

∇ψi · τ∇ψj dΩe (22)

where ∇ is defined by (3). Since ∇ψ = J−T ∇ξψ with ∇ξ defined by (4), J = ∂x
∂ξ

,

and J−T =
(
JT )−1, we rewrite (22) as

Lν =

∫
Ω̂

(∇ξψi)
T (J−1τJ−T )∇ξψj J dΩ̂

=

∫
Ω̂

(∇ξψi)
T Gν∇ξψj J dΩ̂, (23)

where Ω̂ denotes the reference element, J the metric Jacobian defined by (13), and
the viscous metric tensor Gν is defined as

Gν = J−1τJ−T . (24)

Formulating hyper-diffusion using (20), (21), and (22) only requires storing a single
metric tensor Gν instead of both a viscosity tensor τ and the viscous metric tensors,
thereby reducing memory consumption. We employ the following eigendecomposition
of the viscosity tensor τ from [21]

τ = JE

ν1λ−1
1 0 0
0 ν2λ

−1
2 0

0 0 ν3λ
−1
3

 (JE)T , (25)

where (ν1, ν2, ν3) are the viscosity parameters that act in the principal axes of the
metric tensor G = J−1J−T , and

(
λ−1
1 , λ−1

2 , λ−1
3

)
are the eigenvalues of G in ascending

order (λ1 > λ2 > λ3). The matrix E contains the normalized eigenvectors (e1, e2, e3)
of G in its columns, i.e., E = [e1|e2|e3]. E is orthonormal because G is symmetric.
The square root

√
λ can be interpreted as the stretching from the reference to the

10



physical element, i.e., ∆x =
√
λ∆ξ = 2

√
λ for ξ ∈ [−1, 1], which implies that

√
λ

characterizes the length scale of an element.
Substituting (25) into (24) yields the eigendecomposition

Gν = E

ν1λ−1
1 0 0
0 ν2λ

−1
2 0

0 0 ν3λ
−1
3

ET

= ν1λ
−1
1 (e1 ⊗ e1) + ν2λ

−1
2 (e2 ⊗ e2) + ν3λ

−1
3 (e3 ⊗ e3). (26)

The viscosity parameters νi have physical dimensions L2/T 1/α, while kinematic (phys-
ical) hyperviscosity νp has dimensions L2α/T . The viscosity parameters can be scaled
by the element size ∆x and time-step ∆t as follows

νi ≡ (ci)
1/α (∆xi)

2

(∆t)1/α
= (ci)

1/α 4λi
N2(∆t)1/α

, i = 1, . . . , 3 (27)

where ci = (c1, c2, c3) are the dimensionless coefficients that independently control the
amount of numerical hyper-diffusion in the principal directions and ∆xi = 2

√
λi/N is

the characteristic length for an element of polynomial order N (assumed constant to
simplify the discussion); to recover the physical viscosity νp we need to exponentiate
(27) by α.

In many atmospheric applications, a 3D mesh is generated using thin elements.
These elements are characterized by two significantly large eigenvalues and a much
smaller eigenvalue, λ1 ≈ λ2 ≫ λ3, due to their high aspect ratio. In this case, we
treat viscosity anisotropically by setting νH = ν1 = ν2 for the horizontal direction
and νV = ν3 for the vertical direction, assuming that λH = λ1 = λ2 and λV = λ3.
This setting simplifies the expression for Gν in (26) as a combination of horizontal
and vertical contributions, as such

Gν = νHλ
−1
H (e1 ⊗ e1 + e2 ⊗ e2) + νV λ

−1
V (e3 ⊗ e3). (28)

4. Horizontally Explicit Vertically Implicit (HEVI)

With the contravariant form of the governing equations and spatial discretization
both defined, we are now in a position to describe the HEVI time-integration strategy.
We base the HEVI approach on Additive Runge-Kutta (ARK) methods, although
other time-integration approaches could also be used (e.g., multi-step methods). We
describe three forms of HEVI methods: two nonlinear (NHEVI-GMRES and NHEVI-
LU) methods and one linear (LHEVI) method. The difference between linear and
nonlinear HEVI is that in nonlinear HEVI (NHEVI), all the vertical terms are solved
nonlinearly in an implicit fashion, as opposed to linearly in linear HEVI (LHEVI);
this is described in detail below.

4.1. Implicit-Explicit (IMEX) Runge-Kutta Method
Since our HEVI method is based on additive Runge-Kutta methods, let us first

describe the IMEX Runge-Kutta method. Consider solving the system of ordinary
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differential equations (ODEs)

dq

dt
= E (q) + I (q) (29)

where E denotes the operators that are handled explicitly and I those that are
handled implicitly.

For the state vector q, the stage values Qi are defined as follows

Qi =qn +∆t
i−1∑
j=1

aijE
(
Qj

)
+∆t

i∑
j=1

ãijI
(
Qj

)
, (30)

for each stage i = 1, ..., s. The updated solution is obtained in the following manner

qn+1 = qn +∆t
s∑

i=1

[
biE (Qi) + b̃iI (Qi)

]
(31)

where aij, bi and ãij, b̃i are the Butcher tableaux coefficients for the explicit and im-
plicit terms, respectively, and the superscripts n and n + 1 denote the values at
the current and next time-level. In this work, we only consider IMEX methods
such that A is strictly lower triangular and Ã is lower triangular, which makes
them diagonally-implicit Runge-Kutta (DIRK) methods; to be more precise, we
only consider DIRK methods that have the same (singly) diagonal implicit coeffi-
cient ãii=constant (SDIRK) and whereby the first stage is explicit (ESDIRK). The
Butcher tableaux are given in Table 1 for a general Runge-Kutta method with b = b̃
which is a necessary condition for conserving linear invariants (e.g., see [16]).

Table 1: Butcher tableaux for the horizontal (left) and vertical (right) terms.

c A

bT

c̃ Ã

b̃T

We explored a range of SDIRK and DIRK methods from the literature including
those in [24, 16, 51, 58, 25, 20] and only present those methods that resulted in the
most efficient time-to-solution. To analyze the results of the study, we consider the
ordinary differential equation

dq

dt
= {iksq}+ [ikfq] (32)

where i =
√
−1, ks and kf are the frequencies of the slow and fast waves. If we

now analyze the stability region (as we showed in [16]) for implicit fast processes
(order ≈ 40) versus explicit slow processes (order ≈ 4), for the ARK(2,3,2)1 method

1We use the IMEX designation ARK(i,e,o) from [5, 37] where i,e,o denote the number of implicit
and explicit stages, and the order of the method, respectively.
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(a) ARK(2,3,2)a (b) ARK(2,3,2)b

Figure 3: IMEX stability region for implicit fast processes (kf ) versus explicit slow pro-
cesses (ks) for the ARK(2,3,2) method.

presented in [16] we arrive at the stability regions illustrated in Fig. 5a; ARK(2,3,2)a
was proposed in [16] (a32 = 1

6

(
3 + 2

√
2
)
) due to the large explicit stability region

along the imaginary axis and for its accuracy (eliminates the second-order error for
the explicit components). However, the choice a32 = 1

2
has been the de facto method

used in NUMA (see [15], Ch. 20, p. 464) due to its larger allowable time-step. The
conclusion from our time-integrator study is that those methods that have the wedge-
shape stability region as in Fig. 3b admit larger time-steps than those methods with
the shape shown in Fig. 3a. It is for this reason that we limit our study to IMEX
methods with stability regions similar to those shown in Fig. 3b.

Below, we describe two types of HEVI methods; in NHEVI at each stage value
Qi calculation, a nonlinear implicit system of equations must be solved. Within
NHEVI, we describe two variants: NHEVI-GMRES whereby the linear problem is
solved using GMRES and NHEVI-LU where the operator Jacobian (defined in Sec.
4.2.2) is constructed and then solved using direct (LU) solvers. In contrast, in LHEVI,
only a linear system needs to be solved; we can decompose LHEVI into two separate
classes: linearization over a time-independent reference state (RS) and linearization
over a time-dependent previous solution (PS), although we only focus on LHEVI-PS.
Let us now describe the NHEVI and LHEVI methods.

4.2. Nonlinear HEVI (NHEVI)
To motivate the HEVI methods, let us consider a time-integration strategy whereby

the stiffness of the PDE is derived from the vertical processes as in the case of global
atmospheric simulations where the vertical resolution is much finer than the horizon-
tal. This arises because the spatial scales are so different in these directions where
the horizontal dimension is on the order of 2πre = 2π · 6.371 × 103 km ≈ 40, 000
km, whereas the vertical domain (in earth weather simulations) is ≈ 40 km which
gives a ratio of 1000:1. For this reason, the grid resolution in the vertical direction is
much finer than in the horizontal. For these types of domains, it behooves us to treat
the vertical direction differently and so let us consider treating it implicitly and fully
nonlinearly. We now describe the details of the NHEVI approach.
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Let q be the state vector and consider splitting the right-hand side of the PDE
into horizontal and vertical terms as follows

∂q

∂t
= H (q) + V (q) (33)

where we now seek to solve

Qi =qn +∆t
i−1∑
j=1

aijH
(
Qj

)
+∆t

i∑
j=1

ãijV
(
Qj

)
, (34)

where H denotes the horizontal terms that are handled explicitly and V the verti-
cal terms that are handled implicitly. Even though we use Cartesian coordinates to
represent the velocity field, we are able to decompose the horizontal and vertical di-
rections; we make use of the transformations described in Sec. 2.2. Before continuing,
we need to define the continuous horizontal and vertical operators.

4.2.1. HEVI Horizontal and Vertical Operators
In order to define the necessary horizontal and vertical operators for set 2NC,

we first expand the divergence operator in the continuity equation (1a) using the
contravariant formulation given by (5) and the gradient operators in (1b) and (1c)
using (2). The horizontal components given by the ξ and η derivatives are collected
in

H(q) = −


1
J
∇H ·

(
JρuH

)
uH · ∇Hu+ 1

ρ

(
∂P
∂ξ
∇ξ + ∂P

∂η
∇η

)
+
(

∂Φ
∂ξ
∇ξ + ∂Φ

∂η
∇η

)
+ 2ωζ̂ × u

uH · ∇Hθ

+Hν(q)

(35)
where uH =

(
uξ, uη, 0

)T , ∇H = ( ∂
∂ξ
, ∂
∂η
, 0)T , and ζ̂ is the unit vector in the ζ direction;

we include the hyper-diffusion operator in the explicit operator even though it includes
both horizontal and vertical components. The vertical components given by the ζ
derivatives are

V (q) = −

 1
J

∂
∂ζ

(
Jρuζ

)
uζ ∂u

∂ζ
+ 1

ρ
∂P
∂ζ
∇ζ + ∂Φ

∂ζ
∇ζ

uζ ∂θ
∂ζ

 . (36)

Since all the vertical operators, including vertical advection, are included in V , our
scheme is similar to the HEVI-A approach proposed in [12]. The horizontal and
vertical operators for sets 2C and 3C are defined in Appendix A.2.

4.2.2. NHEVI-GMRES
In order to compute the stage value Qi, we reformulate the problem similarly to

the multidimensional root-finding problem: F (Qi) = 0, where the nonlinear function
F is defined as

F (q) = q − ΛV (q)−R , (37)
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with Λ = ãii∆t and

R = qn +∆t
i−1∑
j=1

[
aijH

(
Qj

)
+ ãijV

(
Qj

)]
.

Given an initial guess q0, we use the Newton-Raphson method to generate a better
approximation to the solution through successive iterations m

qm+1 = qm + δqm (38)

where δqm is computed by solving the linear system

J(qm) δqm = −F (qm) (39)

with
J(qm) =

∂F

∂q
(qm)

defining the operator Jacobian of the function F evaluated at qm. In order to avoid
building the operator Jacobian matrix (see, e.g., [40, 29]), we use an approximation
for the action of the operator Jacobian on the vector δq using a Fréchet derivative,
defined as

J(qm) δqm ≈ F (qm + Eδqm)− F (qm)

E (40)

where E is some small perturbation. E can be a small scalar value, relative to the
norm of qm, but we use different magnitudes for each of the state variables q as
described in [58]. In this case, E is defined as a diagonal matrix.

Substituting (40) into (39) and rearranging yields the final form for the Jacobian-
free Newton-Krylov (JFNK) method

res ≡ F (qm + Eδqm) + (E − 1)F (qm)

E ≈ 0 (41)

that is written in residual form that is suitable for the application of the generalized
minimal residual (GMRES) [43] method. The evaluation of the residual in (41) only
requires one evaluation of F , which has a similar cost of evaluating the right-hand-
side (RHS) in an explicit time-step; we say one and not two because F (qm) is already
known. This is a key concept to the power and popularity of JFNK methods. Finally,
since only the vertical terms are solved implicitly, we can solve the system for each
column of the mesh independently, which avoids unnecessary off-process data com-
munication and data storage. Because this approach uses a nonlinear HEVI method
with GMRES, we refer to it as NHEVI-GMRES.

For set 2NC since the state vector is q =
(
ρ,uT , θ

)T , then we seek the root of the
function

F (q) =


ρ+ Λ

(
1
J

∂(Jρuζ)
∂ζ

)
+Rρ

u+ Λ
(
uζ ∂u

∂ζ
+ 1

ρ
∂P
∂ζ
∇ζ + ∂Φ

∂ζ
∇ζ

)
+Ru

θ + Λ
(
uζ ∂θ

∂ζ

)
+Rθ

 (42)
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where uζ is the third component of the contravariant velocity uξ =
(
uξ, uη, uζ

)
. Recall

that we build the grid such that the ζ direction of each element is aligned with the
vertical component of the grid, regardless of the geometry (e.g., flow on a sphere or in
a box). For sets 2C and 3C, the function F is defined by (37) with the corresponding
state vector q and right-hand side function R.

The NHEVI-GMRES method presents subtle issues including a heavy compu-
tational cost. To reduce the cost of this algorithm we may consider the following
strategies. The number of Newton iterations can be reduced by increasing the value
of the stopping criterion, but this strategy is limited since the solution needs to be
accurate. The number of GMRES iterations can be reduced by preconditioning which
we did not implement. The strategies that we did pursue include: (1) replacing the
GMRES solver in the solution of the linear problem with LU factorization and (2)
removing the Newton solver in the nonlinear loop with frequent linearizations; both
of these strategies are described in the sections below where we refer to them as
NHEVI-LU in Sec. 4.2.3 and LHEVI in Sec. 4.3.

4.2.3. NHEVI-LU
An alternative to NHEVI-GMRES requires computing the operator Jacobian an-

alytically. In this approach, we rebuild the Jacobian at each Newton step and then
solve the resulting matrix problem using an LU factorization; for this reason we refer
to it as NHEVI-LU.

Analytical Operator Jacobian for Set2NC. The function F (q) for which we need to
find the roots in the NHEVI method is given in (42). The analytical operator Jacobian
of this function, evaluated at a known state vector q0 =

(
ρ0,u

T
0 , θ0

)T and applied to
the state vector q =

(
ρ,uT , θ

)T , is given by

J2NC(q) = I+ ΛDζK2NC(q) (43)

where
Dζ

ij =

(
−(ϖJ)j
(ϖJ)i

Dζ
ji, D

ζ
ij, D

ζ
ij, D

ζ
ij, D

ζ
ij

)
for the 5 prognostic variables with I denoting an identity matrix and

K2NC(q) =



(
uζ

)
j

(ρζx)j (ρζy)j (ρζz)j 0

−
(

ζx
ρ2

)
i
Pj +

(
ζx
ρ

)
i

∂Pj

∂ρ (ζx)i uj + uζ
i (ζy)i uj (ζz)i uj

(
ζx
ρ

)
i

∂Pj

∂θ

−
(

ζy
ρ2

)
i
Pj +

(
ζy
ρ

)
i

∂Pj

∂ρ (ζx)i vj (ζy)i vj + uζ
i (ζz)i vj

(
ζy
ρ

)
i

∂Pj

∂θ

−
(

ζz
ρ2

)
i
Pj +

(
ζz
ρ

)
i

∂Pj

∂ρ (ζx)i wj (ζy)i wj (ζz)i wj + uζ
i

(
ζz
ρ

)
i

∂Pj

∂θ

0 (ζx)i θj (ζy)i θj (ζz)i θj uζ
i


(44)

where J is the metric Jacobian defined in (13), and (ζx, ζy, ζz) are the metric terms
along the vertical direction. In (43), we only show the entries at a given gridpoint
i = 0, . . . , Nζ on one element Ωe where the use of Dζ

ij represents a strong form
derivative while −Dζ

ji denotes a weak form derivative obtained from integration by
parts (e.g., see [15]); our experience shows we need the weak form in the continuity
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equation to formally conserve mass. Note that since Dζ is defined for all gridpoints
(i, j) = 0, . . . , Nζ then upon applying the differentiation Dζ makes these matrices
dim(J2NC , I,K2NC) = nvar (Nζ + 1)× nvar (Nζ + 1).

Applying numerical integration (multiplying by ϖiJi) and DSS along the ζ direc-
tion along all elements N ζ

e , results in the global representation G (J2NC) defined in
the vector space RM×M per vertical column (with 6[N ξ

eNξ + 1][Nη
eNη + 1] columns

on a cubed-sphere grid), where M = nvarnz, with nz = N ζ
e (Nζ + 1) denoting the

number of gridpoints along a column, and G represents the operator that takes J2NC

and constructs its global representation. We do not present the global matrix because
its construction will vary depending on the spatial discretization used, however, the
operator at a given gridpoint presented in (43) will not (only the definition of Dζ).

The cost of building G (J)2NC is O
(
nvarN

ζ
e (Nζ + 1)3

)
, with similar costs for con-

structing the Jacobians for sets 2C and 3C; these Jacobians are defined in Ap-
pendix A.3.

Lapack Banded Matrix Routines. We build the Jacobian matrix directly in LAPACK’s
band storage matrix format and use subroutines to perform LU factorization and
linear system solves that are specialized to banded matrices [4]. In order to use
LAPACK’s band storage, the user must specify the number of sub-diagonals kl and
super-diagonals ku of the matrix. For our methods, the number of sub-diagonals is
always equal to the number of super-diagonals and is given by

ku = kl = nvar(Nζ + 1)− 1 , (45)

where nvar = 5 is the number of state variables.
We already saw that the dimension of the sparse representation of G (J) for the

NHEVI method is a matrix with size M ×M ; however, the size of its banded storage
form is [3nvar(Nζ + 1)− 2] × M and its entries are related to that of the original
global operator Jacobian matrix G (J) through

G (JB)2ku+1+i−j, j = G (J)i,j (46)

for max (1, j − 2ku) ≤ i ≤ min (nvar × nz, j + ku).

4.3. Linear HEVI (LHEVI)
An alternative approach to NHEVI is the linear HEVI (LHEVI) method whereby

we solve the linear problem

∂q

∂t
= {S (q)− L (q)}EX + [L (q)]IM (47)

where S denotes the original right-hand side operator of the PDE while L represents
a linear approximation of the stiff terms; the curly brackets denote the terms that are
solved explicitly (EX) whereas the square brackets are those that are solved implicitly
(IM). We must consider how to create the linear operator L; this approach is akin to
a Rosenbrock [42] method since L is an approximation to the fully implicit nonlinear
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operator Jacobian J. The simplicity and efficiency of LHEVI can be illustrated by
discretizing (47) in time using a forward/backward Euler method

qn+1 = qn +∆tS (qn) + ∆tL
(
qn+1 − qn

)
(48)

= qE +∆tL
(
qn+1 − qn

)
, (49)

subtracting both sides by qn

qn+1 − qn = qE − qn +∆tL
(
qn+1 − qn

)
, (50)

and letting qtt = qn+1 − qn, q̂ = qE − qn, and Λ = ∆t yields the final LHEVI form

qtt = q̂ + ΛLqtt (51)

which can be rearranged to more easily illustrate the implicit operator as follows

(I− ΛL) qtt = q̂. (52)

The extension to an arbitrary order IMEX additive Runge-Kutta (ARK) method
is described in [16] which we summarize now for completeness. We employ (51) with
the following definitions

qtt = Q(i) +
i−1∑
j=1

ãij − aij
ãii

Q(j)

q̂ = qE +
i−1∑
j=1

ãij − aij
ãii

Q(j) (53)

qE = qn +∆t
i−1∑
j=1

aijS
(
Q(j)

)
.

4.3.1. LHEVI Linear Operator
To construct a semi-implicit IMEX method for the nonhydrostatic equations we

construct an approximation L by applying the expansion q(x, t) = q0(x, t) + q′(x, t)
in S [6, 32, 49, 59, 48], where q0(x, t) represents the solution at a previous time-level
tn, and only retaining terms linear in q′(x, t). Doing so, results in the linear operator

L (q) = −


1
J

∂
∂ζ

[
J
(
ρ0u

ζ + ρuζ0

)]
uζ0

∂u
∂ζ

+ uζ ∂u0

∂ζ
+ ∇ζ

ρ0

[
∂
∂ζ

(F0ρ+G0θ)− ρ
ρ0

∂P0

∂ζ

]
uζ ∂θ0

∂ζ
+ uζ0

∂θ
∂ζ

 (54)

which we call LHEVI-PS (previous solution). A special case of LHEVI-PS arises
when we apply a time-independent linearization defined as q(x, t) = q0(x)+ q′(x, t);
linearizing only about the scalar variables results in the semi-implicit IMEX meth-
ods described in [18, 16, 60, 33, 1, 36] which we call LHEVI-RS (reference state).
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The reference state q0(x) is selected to satisfy either a hydrostatic balance and/or
geostrophic balance.

In what follows, we build on the NHEVI-LU method described in Sec. 4.2.3 and use
L = I− J, where J is the operator Jacobian of F for each equation set; we can in fact
see this relationship between L and J in (52). We then use LAPACK’s banded routines
to perform the LU factorization and back substitution as described in Sec. 4.2.3.
Therefore, in the LHEVI-PS method, we essentially apply the NHEVI-LU method
but for only one Newton iteration. In order to avoid the creation, factorization, and
solution of the linear system at every time step, we explore an option to set how
often the reference state is modified; this is the reason why we refer to this state as a
previous solution. This reference state can be any previous state including the current
one as in NHEVI. Unless otherwise specified, we recompute the operator Jacobian
every 5 time-steps and show in Sec. 7 that some time-integration methods allow for
much larger time-steps between operator Jacobian updates (referred to as the update
time-step).

5. Complexity Analysis

The number of vertical levels nz may need to be increased in an atmospheric model
for several applications, such as studying the planetary boundary layer (PBL) or
extending a model into the upper atmosphere (e.g., whole-atmosphere modeling) [22].
Hence, knowledge of the computational complexity of the time-integration scheme
with respect to nz is an important consideration. Let us now describe the complexity
of each of the three methods: NHEVI-GMRES, NHEVI-LU, and LHEVI (PS).

5.1. NHEVI-GMRES
In NHEVI-GMRES, we must solve the JFNK problem for all nvar = 5 prognostic

variables (density, three velocities, and thermodynamic variable) so that nz grid-
points along a vertical column require the solution of a 5nz × 5nz system of nonlinear
equations to be solved with complexity

25n2
zNNewton(col)NGMRES(col)

2 (55)

per column col per RK stage, where NNewton denotes the number of Newton iterations,
and NGMRES the number of GMRES iterations. Because the number of Newton and
GMRES iterations vary for each column, the cost per iteration will be that of the
most expensive column. Recall that the number of points along a vertical column
is defined as nz = N ζ

eNζ + 1, where Nζ and N ζ
e represent the polynomial order and

number of elements along the ζ direction, which is aligned with the radial component
of the sphere (recall Fig. 1).

5.2. NHEVI-LU
Next, let us consider reducing the complexity (and computational cost) of NHEVI-

GMRES by obviating the need for the GMRES iterations. We achieve this by replac-
ing the iterative solution with a direct one such as LU, although other direct solvers
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can be substituted. A standard LU factorization requires O (50n3
z) for the forward re-

duction and O (25n2
z) for the back substitution. Hence the complexity of NHEVI-LU

is (
50n3

z + 25n2
z

)
NNewton(col) (56)

per column per RK stage. The complexity of this approach can be further reduced by
storing the matrix in banded form. For a matrix with bandwidth B the per column
complexity of the forward-reduction and back-substitution is

10nzB(B + 1) (57)

where B = 2nvar(Nζ + 1) ≈ 10Nζ . Therefore, the total per column per RK stage
complexity of NHEVI-LU is

100nzNζ (10Nζ + 1)NNewton(col). (58)

Comparing the complexity of NHEVI-LU (58) with NHEVI-GMRES (55), we see
that the cost of NHEVI-GMRES scales quadradically with nz and NGMRES whereas
NHEVI-LU scales linearly with nz and does not require GMRES. So, as the number of
vertical levels nz increases, NHEVI-LU requires fewer FLOPS than NHEVI-GMRES,
making NHEVI-LU more efficient.

5.3. LHEVI
The advantage of LHEVI can be described by reconsidering the total per column

complexity of NHEVI-LU, which we modify as follows for LHEVI

1000nzN
2
ζ (59a)

100nzNζ (59b)

where (59a) is the cost of the forward-reduction and is only incurred whenever we
update the operator Jacobian, while (59b) is the cost of the back-substitution that is
incurred per RK stage. Comparing the NHEVI-LU and LHEVI complexity, we see
that LHEVI amortizes the cost of constructing the forward-reduction across all stages
and numerous time-steps so that we mostly pay the price of the less computationally
expensive back-substitution.

5.4. Summary of Complexity
To summarize, the complexity of both NHEVI-LU and LHEVI scale linearly with

nz while NHEVI-GMRES scales quadratically with nz. To illustrate this behavior,
we ran four simulations with nz ranging from 13 to 97 with each of the three HEVI
variants for a short period of time (0.1 days at 104 km horizontal resolution for the
baroclinic instability) and only report the simulation time associated with dynamics
(and discount initialization time). The results of this study shown in Fig. 4 clearly
show the super-quadratic dependence of nz for NHEVI-GMRES and the approxi-
mately linear dependence for NHEVI-LU and LHEVI. In Sec. 7 we discuss a more
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Figure 4: Time-to-solution for 0.1 simulation days as a function of vertical gridpoints nz.

detailed cost analysis for the three methods. It should be added that increasing nz

has an adverse effect on the time-to-solution for NHEVI-GMRES because satisfying
the stopping criterion on the residual res is dependent on the condition number [56].
This increases the computation cost and also the memory consumption, since more
Krylov vectors need to be stored.

6. Time-Integrators

In this section we explore five additive Runge-Kutta (ARK) time-integrators taken
from the literature covering a range of orders from second through fifth. Our intent
here is not to perform an exhaustive study of IMEX methods but rather to evaluate
a representative sample of time-integrators that gave us the fastest time-to-solution.
The methods that we showcase below are: ARK2 which is the ARK(2,3,2)b method
defined in [16, 15], ARK3 which is the ARK(3,4,3) method from [24], ARS3 which
is the ARK(3,4,3) method from [5], ARK4 which is the ARK(5,6,4) from [24], and
ARK5 which is the ARK(7,8,5) from [25]. Because ARS3 and ARK5 do not possess
a dense (or continuous) output formula (the rest of the methods do), we did not use
it for constructing an initial guess for the nonlinear solver; this way we perform a fair
comparison across all the methods. Dense output only impacts the performance of
the NHEVI methods.

Figure 5 shows the stability region of the five methods we consider. Note that
they all have the wedge-shape stability region which confers a larger explicit stability
region with increasing implicit time-step size; this is the advantage of these types of
time-integrators. The disadvantage is that it is difficult to know a priori how diffusive
the method is with increasing implicit time-step. Comparing Figs. 3a and 3b, we see
that for those methods where the implicit time-step does not alter the stability region
of the explicit part, we can always be sure to avoid the diffusive part of the region
by pushing the time-step to its maximum explicit component (red region in Fig. 3a).
However, this means that these methods will always require a smaller time-step; these
are the sorts of trade-offs that need to be considered when choosing a method. In
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(a) ARK2 (b) ARK3 (c) ARS3 (d) ARK4 (e) ARK5

Figure 5: IMEX stability region for implicit fast processes (kf ) versus explicit slow pro-
cesses (ks) for a variety of ESDIRK methods.

what follows, we aim to use methods that allow for a faster time-to-solution regardless
of the dissipation introduced.

Comparing the performance of the various methods using complexity is possible
except for the NHEVI-GMRES method. The reason for this is because NHEVI-
GMRES requires outer Newton iterations in addition to inner GMRES iterations;
the main complication is in the inner GMRES iterations. In the baroclinic instability
test below, we require on average 2-7 Newton iterations per time-step per column and
≈ 45 GMRES iterations per time-step per column (this number includes the iterations
for all implicit stages and held constant across all time-integrators). For NHEVI-LU,
computing the cost is more straightforward since the cost of the LU decomposition
and backsolve is well-defined; this is also true for LHEVI since there are no Newton
iterations. Therefore, in LHEVI, the cost of the method is directly proportional to
the effective time-step of the method which we define as

∆teff =
∆tmax

sim

where ∆tmax is the maximum time-step that the method can use and sim denotes the
number of implicit stages. This means that the number of evaluations of the left- and
right-hand side functions are on the order

CostLHEV I =
Tfinal
∆teff

.

To compare whether method 1 is faster than method 2, we compute the ratio

Rm1→m2 =
∆teff,m1

∆teff,m2

> 1 faster
< 1 slower

. (60)

We use these ratios in Sec. 7 to compare the cost of the time-integrators.

7. Numerical Results

In this section, we present the numerical results for two dry test cases on the
sphere. We begin with the nonhydrostatic baroclinic instability [57] to discern the
performance of all the methods and to gauge the maximum usable time-steps for each
time-integrator. Finally, we use the inertia-gravity wave problem [55] to compute
convergence rates for the time-integrators.
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(a) Surface Pressure (b) Vertical Vorticity

Figure 6: Baroclinic Instability. Set 2NC with ARK2-LHEVI at grid resolution 104× 1.25
km resolution at 10 days showing: (a) Surface pressure and (b) vertical vorticity at 850 hPa.

7.1. Baroclinic Instability
The nonhydrostatic baroclinic instability proposed by Ullrich et al. [57] is a useful

idealized test case for evaluating global, deep-atmosphere, non-hydrostatic dynamical
cores. In particular, this case has been used for previous HEVI studies [12, 58]. The
background state for this case is an exact solution to the deep-atmosphere Euler
equations that is in both hydrostatic and geostrophic balance [50]. A stream-function
perturbation is applied, triggers a baroclinic instability, and wave breaking occurs
after day 7.

Figure 6 shows contours for the surface pressure and vertical vorticity at 850
hPa for set 2NC using a grid resolution of 104 × 1.25 km; the results for the other
two equation sets are similar (not shown). The grid resolution corresponds to using
polynomial order Nξ = Nη = Nζ = 4 with number of elements N ξ

e = Nη
e = 24 and

N ζ
e = 6. The surface pressure contours shown in Fig. 6a and vertical vorticity shown

in Fig. 6b compare favorably with results from the literature [57, 59, 47]. We also
show the energy budget and minimum surface pressure for the three equation sets
with data at a 6-hour cadence in Fig. 7. Figure 7a shows the deviations in internal,
kinetic, potential, and total energy from their initial values and are computed in a
similar fashion to the mass loss in (17) and (18) (without normalizing by the initial
values). For sets 2NC and 2C, total energy is constructed from the other three
components whereas for set 3C, internal energy is diagnosed (since total energy is
a prognostic variable). Because the hyperdiffusion applied to the momentum and
thermodynamic equations dissipates energy, we do not expect exact conservation for
any of the three equation sets; however sets 2NC and, especially, 3C do very well
and exhibit low total energy loss. Figure 7b shows that all equation sets yield similar
mimimum surface pressure for most of the simulation. The results for both the energy
budget and minimum surface pressure compare well with results from the literature
(see, e.g., [47]). With the verification confirmed, let us now turn to the discussion of
the performance of the various HEVI methods.

Figure 8 shows the time-to-solution for the baroclinic instability test at 104 ×
1.25 km resolution for set 2NC on 512 AMD Epyc (Rome) cores. All simulations
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(a) Energy Budget (b) Surface Pressure

Figure 7: Baroclinic Instability. (a) Energy budget (solid line is 2NC, dashed is 2C, and
dotted is 3C) and (b) minimum surface pressure for three equation sets. All simulations use
ARK2-LHEVI at grid resolution 104× 1.25 km resolution through 15 days.

Time-Integrator HEVI Method ∆t (secs) Update ∆t Time-to-Solution (secs)
ARK2 NHEVI-GMRES 135 - 1793
ARS343 NHEVI-GMRES 195 - 1884
ARK4 NHEVI-GMRES 205 - 2919
ARK5 NHEVI-GMRES 190 - 4399
ARK2 NHEVI-LU 135 - 502
ARS343 NHEVI-LU 195 - 515
ARK4 NHEVI-LU 205 - 791
ARK5 NHEVI-LU 190 - 1210
ARK2 LHEVI 135 50 163
ARS343 LHEVI 195 20 167
ARK4 LHEVI 205 50 245
ARK5 LHEVI 190 50 373

Table 2: Baroclinic Instability. Configurations for the timing comparisons in Fig. 8 for set
2NC. NHEVI uses ϵ = 0.05, with Newton tolerance 10−5 and GMRES tolerance 10−9.

use the 4th order tensor viscosity with non-dimensional parameters (c1, c2, c3) =
(0.0045, 0.0045, 0.0001) with the viscosity computed at each stage of the IMEX method.
Each IMEX method uses the optimal configuration that admits the maximum usable
time-step. We define the maximum usable time-step as the time-step that (i) yields
the expected solution of the test case at 10 days and (ii) remains stable for 100 days.
The figure shows that NHEVI-LU is 2x faster than NHEVI-GMRES and that LHEVI
is much faster than either NHEVI method; 5x faster than NHEVI-LU and 10x faster
than NHEVI-GMRES. In addition, the results show that ARK2 and ARS3 are always
the fastest methods.

To help make sense of the time-to-solution for LHEVI, it is convenient to look
at the ratio R defined in (60). Comparing ARK2 to the other methods we see that
the ratio is R2→3 = 1.04, R2→4 = 1.31, R2→5 = 2.48, where the subscripts 2, 3, 4, 5
denote the order of the ARK methods; this ratio confirms that ARK2 and ARS3
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Figure 8: Baroclinic Instability. Time-to-solution (in seconds) for set 2NC for a 10-day
simulation at 104× 1.25 km resolution. Each IMEX method uses its maximum usable time-
step configuration presented in Table 2.

result in a similar performance. The cost of all the methods can be reduced if we only
apply hyper-diffusion at the final stage. This reduces both the computational and
communication costs substantially in a per time-step basis. We save this option for
future work where we shall discuss the role of this strategy within multi-rate HEVI
methods (see, e.g., [35]).

Now that we have compared the performance of each of the three HEVI methods
and shown that LHEVI is, by far, the most efficient, we next need to quantify the
accuracy of LHEVI compared to NHEVI. We could use this test case (baroclinic
instability) for the time-convergence study but we choose a different case (inertia-
gravity) presented below.

7.2. Inertia-Gravity Wave
This section investigates the accuracy of the proposed LHEVI and NHEVI meth-

ods using the inertia-gravity wave from [55] (case 2-#2). We use this test case in
keeping with recent papers that use the two-dimensional inertia-gravity wave in a
square domain [45, 7, 6, 59]; in our case, we use its extension to three-dimensional
global spherical domains suitable for verifying global atmospheric simulations.

The wave propagation is initiated by adding the following potential temperature
perturbation defined in spherical coordinates (λ, ϕ, z)

θ′ = ∆θf(λ, ϕ)g(z), (61)

where ∆θ = 10 K is the amplitude of the potential temperature perturbation. The
horizontal and vertical distribution functions, f(λ, ϕ) and g(z), are defined as

f(λ, ϕ) =

{
1
2

(
1 + cos(πr/rpert)

)
r < rpert,

0 r ≥ rpert,
(62)

g(z) = sin

(
πz

ztop

)
(63)
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where
r = re cos

−1
(
sinϕ+ cosϕ0 cos (λ)

)
(64)

with ztop = 10 km, rpert = re/3 km, and λ and ϕ are the longitude and latitude,
respectively. The global domain is discretized using 4th-order polynomials in all
three directions. The grid resolution in the horizontal and vertical directions are
approximately 104 km and 417 m, respectively; this grid resolution corresponds to
the same polynomial order and number of elements used in the baroclinic instability.
For temporal refinement, we test a series of time-step sizes, ∆t = 100 × 2n seconds,
with n ∈ [−9,−8, . . . , 0]. Figure 9 displays the potential temperature perturbation
along the equator at the final time t = 48 hr, calculated using ARK5-LHEVI. The
potential temperature perturbations qualitatively agree with Fig. 5b in [55], indicating
that the time-integrator can handle horizontally propagating gravity waves.

Figure 9: Inertia-gravity wave. Contours of potential temperature perturbation on the
equator (ϕ = 0) at t = 48 hours using set 2NC with ARK5-LHEVI.

We assess the accuracy of the method using a normalized L2-norm of the relative
error in the potential temperature field, which is defined as

L2 error =

√∫
Ω
(θ − θtrue)

2 dΩ√∫
Ω
(θtrue)

2 dΩ
. (65)

In this test, we consider the solution obtained using a five-stage fourth-order low-
storage RK method [26] with ∆t = 100 × 2−12 seconds as the true solution and
measure the relative errors at t = 3600 seconds. Figure 10 shows that the LHEVI
and NHEVI methods achieve optimal convergence rates in the L2-norm; the dashed
lines denote the optimal convergence rates, which have slopes equal to their order on
a log-log plot. Results are shown for set 2NC but similar results are obtained with the
other two equation sets (not shown). In the figure, the curves from ARK3 and ARS3
overlap, since both produce almost identical results. The optimal convergence rates
demonstrate that the formulations of the LHEVI and NHEVI methods are consistent
and yield accurate solutions; in fact, the accuracy of the LHEVI and NHEVI solutions
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(a) LHEVI (b) NHEVI

Figure 10: Inertia-gravity wave. Convergence of the normalized L2-norm of the relative
error with respect to time-step ∆t in the potential temperature field for LHEVI and NHEVI
with set 2NC.

are almost identical. The plateauing of the error norms for large ∆t was discussed in
[16] and is due to the acoustic waves being entirely damped.

In Sec. 7.1, we used the tensor-based hyper-diffusion to ensure the long-time sta-
bility of the methods. While the artificial hyper-diffusion parameters are designed
to automatically scale with the grid and time-step sizes, as shown in (27), for this
particular test, we opt for the constant viscosities, ν1 = ν2 = 5.0× 107 and ν3 = 150,
to eliminate the adaptive effects of time refinement and reach convergence (recall that
to recover the physical viscosities requires squaring νi).

8. Conclusions

We compared three versions of HEVI methods (NHEVI-GMRES, NHEVI-LU,
and LHEVI) using a number of different IMEX methods found in the literature rang-
ing from second to fifth order in accuracy. We confirmed that all methods obtained
the expected rate of convergence for LHEVI and NHEVI-LU. The LHEVI method
performed the best regarding time-to-solution while achieving similar accuracy and
stability characteristics to the NHEVI methods; we confirm these results by timing
the simulations but also confirm the numerical results with the complexity analysis
for each of the three HEVI methods. We tested the methods on the baroclinic in-
stability on the sphere using 100-day simulations to confirm that the configurations
for each HEVI method and all time-integrators were stable for long-time simula-
tions. The baroclinic instability and inertia-gravity wave simulations indicate that
the optimal choice of time-integrator is LHEVI with either ARK2 or ARS3, as both
methods yield similar time-to-solution and relative L2 error at their maximum usable
time-steps. All time-integrators conserve mass with any choice of equation set; in
addition, total energy is conserved up to dissipation due to hyper-diffusion for set
3C. In the future, we will test LHEVI with ARK2 and ARS3 on more stringent flow
problems that produce steeper vertical gradients to test whether the same conclusions
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hold. However, the results of this study offer new possibilities for constructing yet
more efficient time-integrators, e.g., extending the HEVI methods to fully implicit
methods in all dimensions that then employ the corresponding version of LHEVI as
preconditioners. We will report on this class of methods in the future and test them
on more realistic NWP and space weather problems.

Appendix A. Sets 2C and 3C

For completeness, below we include the governing equations for sets 2C and 3C in
Appendix A.1, the horizontal and vertical operators in HEVI in Appendix A.2, and
the HEVI operator Jacobians in Appendix A.3.

Appendix A.1. Governing Equations
A simple manipulation of (1) results in the conservation form

∂ρ

∂t
+∇ ·U = 0 (A.1a)

∂U

∂t
+∇ ·

(
U ⊗U

ρ
+ PId

)
+ ρ∇Φ + 2ωr̂ ×U = 0 (A.1b)

∂Θ

∂t
+∇ ·

(
ΘU

ρ

)
= 0 (A.1c)

P = PA

(
RΘ

PA

)γ

, (A.1d)

where U = ρu is momentum, Θ = ρθ is density potential temperature, and Id is the
rank-d identity matrix where d is the spatial dimension; with the proper numerics
(such as the EBG methods we use in this work) mass and integrated potential tem-
perature are globally conserved. Set 2C, or a variant thereof, is used in, e.g., ICON
[62] and MPAS [46].

Set 3C is the most commonly used form of the compressible Euler equations in
computational fluid dynamics (CFD) and is written as follows

∂ρ

∂t
+∇ ·U = 0 (A.2a)

∂U

∂t
+∇ ·

(
U ⊗U

ρ
+ PId

)
+ ρ∇Φ + 2ωr̂ ×U = 0 (A.2b)

∂E

∂t
+∇ ·

(
(E + P )U

ρ

)
= 0 (A.2c)

P = (γ − 1)

(
E − U ·U

2ρ
− ρΦ

)
, (A.2d)

where E = ρe is total energy, with e = cvT+
u·u
2

+Φ denoting the total specific energy
(internal, kinetic, and potential). This set will conserve both mass and total energy.
Unlike sets 2NC and 2C, 3C does not make any assumptions on the composition of
the atmosphere and is valid for a whole atmosphere model. Set 3C, to our knowledge,
has not been used in any atmospheric model except for NUMA [17, 18], an early
version of CLIMA [49], and Atum [59, 48].
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Appendix A.2. HEVI Operators
The horizontal and vertical HEVI operators for set 2C are

H(q) = −


1
J
∇H ·

(
JFH

ρ

)
1
J
∇H ·

(
JFH

U

)
+ ρ

(
∂Φ
∂ξ
∇ξ + ∂Φ

∂η
∇η

)
+ 2ωζ̂ ×U

1
J
∇H ·

(
JFH

T

)
+Hν(q) (A.3)

V (q) = −


1
J

∂
∂ζ

(
JF ζ

ρ

)
1
J

∂
∂ζ

(
JF ζ

U

)
+ ρ∂Φ

∂ζ
∇ζ

1
J

∂
∂ζ

(
JF ζ

T

)
 (A.4)

where F T denotes the flux for the thermodynamic variable and the contravariant
flux components are defined as F ξ,η

q =
(
F ξ

q,F
η
q , 0

)T , F ζ
q , for the state vector q =

(ρ,UT ,Θ)T , with the contravariant fluxes computed as F i
q = F q · ∇ξi. Set 3C has

a similar form except that the thermodynamic variable and corresponding flux are
different, along with the equation of state (compare Eqs. (A.1) and (A.2)).

Appendix A.3. HEVI Operator Jacobians
For set 2C we arrive at the following operator Jacobian

J2C(q) = I+ ΛDζK2C(qj) + ΛP

where Dζ can be either Dζ
strong or Dζ

weak, denoting the strong or weak forms, respec-
tively. These are defined as follows(

Dζ
strong

)
ij
=
Jj
Ji
Dζ

ij (A.5a)

(
Dζ

weak

)
ij
= −(ϖJ)j

(ϖJ)i
Dζ

ji, (A.5b)

where

K2C(qj) =



0 ζx ζy ζz 0

− U
ρ2

Uζ + ζx
∂P
∂ρ

1
ρ
Uζ + ζx

(
U
ρ
+ ∂P

∂U

)
1
ρ
ζy

U
ρ
+ ζx

∂P
∂V

1
ρ
ζz

U
ρ
+ ζx

∂P
∂W

1
ρ
ζx

∂P
∂E

− V
ρ2

Uζ + ζy
∂P
∂ρ

1
ρ
ζx

V
ρ
+ ζy

∂P
∂U

1
ρ
Uζ + ζy

(
V
ρ
+ ∂P

∂V

)
1
ρ
ζz

V
ρ
+ ζy

∂P
∂W

1
ρ
ζy

∂P
∂E

−W
ρ2

Uζ + ζz
∂P
∂ρ

1
ρ
ζx

W
ρ

+ ζz
∂P
∂U

1
ρ
ζy

W
ρ

+ ζz
∂P
∂V

1
ρ
Uζ + ζz

(
W
ρ

+ ∂P
∂W

)
1
ρ
ζz

∂P
∂E

−Uζ

ρ2
ζx

Θ
ρ

ζy
Θ
ρ

ζz
Θ
ρ

Uζ

ρ


(A.6)

with all terms evaluated at j, and

P = diag


0

ζx
∂Φ
∂ζ

ζy
∂Φ
∂ζ

ζz
∂Φ
∂ζ

0

 , (A.7)
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with all terms evaluated at i.
For set 3C we get

J3C(q) = I+ ΛDζK3C(qj) + ΛP

with Dζ defined as in Eq. (A.5) and P as in Eq. (A.7), with

K3C(qj) =



0 ζx ζy ζz 0

− U
ρ2

Uζ + ζx
∂P
∂ρ

1
ρ
Uζ + ζx

(
U
ρ
+ ∂P

∂U

)
1
ρ
ζy

U
ρ
+ ζx

∂P
∂V

1
ρ
ζz

U
ρ
+ ζx

∂P
∂W

1
ρ
ζx

∂P
∂E

− V
ρ2

Uζ + ζy
∂P
∂ρ

1
ρ
ζx

V
ρ
+ ζy

∂P
∂U

1
ρ
Uζ + ζy

(
V
ρ
+ ∂P

∂V

)
1
ρ
ζz

V
ρ
+ ζy

∂P
∂W

1
ρ
ζy

∂P
∂E

−W
ρ2

Uζ + ζz
∂P
∂ρ

1
ρ
ζx

W
ρ

+ ζz
∂P
∂U

1
ρ
ζy

W
ρ

+ ζz
∂P
∂V

1
ρ
Uζ + ζz

(
W
ρ

+ ∂P
∂W

)
1
ρ
ζz

∂P
∂E

Uζ
(

1
ρ

∂P
∂ρ

− E+P
ρ2

)
Uζ

ρ
∂P
∂U

+ E+P
ρ

ζx
Uζ

ρ
∂P
∂V

+ E+P
ρ

ζy
Uζ

ρ
∂P
∂W

+ E+P
ρ

ζz
Uζ

ρ

(
1 + ∂P

∂E

)


.

(A.8)

with all terms evaluated at j.
Upon differentiation by Dζ , numerical integration (multiplying by ϖiJi), and ap-

plying DSS along ζ, results in the global Jacobian matrices G (J) ∈ RM×M , where
M = nvarN

ζ
e (Nζ + 1), and G represents the operator that takes J and constructs its

global representation, as presented in Sec. 4.2.3.

Acknowledgments

Felipe Alves was funded by the Defense Sciences Office of the Defense Applied
Research and Projects Agency (DARPA DSO) through the Space Environment Ex-
ploitation (SEE) program. F. X. Giraldo, Soonpil Kang, James F. Kelly, and P.
Alex Reinecke gratefully acknowledge the support of the Office of Naval Research un-
der grant # N0001419WX00721. F. X. Giraldo was also supported by the National
Science Foundation under grant AGS-1835881. This work was performed when Fe-
lipe Alves and Soonpil Kang held National Academy of Sciences’ National Research
Council (NRC) Fellowships at the Naval Postgraduate School.

References

[1] D. Abdi, F. Giraldo, E. Constantinescu, L. Carr, L. Wilcox, and
T. Warburton, Acceleration of the implicit-explicit nonhydrostatic unified
model of the atmosphere on manycore processors, The International Journal of
High Performance Computing Applications, 33 (2017), pp. 242–267.

[2] D. Abdi and F. X. Giraldo, Efficient construction of unified continuous and
discontinuous Galerkin formulations for the 3D Euler Equations, Journal of Com-
putational Physics, 320 (2016), pp. 46–68.

[3] R. Akmaev, Whole atmosphere modeling: Connecting terrestrial and space
weather, Reviews of Geophysics, 49 (2011).

[4] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide, Society for Industrial and Applied
Mathematics, third ed., 1999.

30



[5] U. Ascher, S. Ruuth, and R. Spiteri, Implicit-explicit Runge-Kutta methods
for time-dependent partial differential equations, Applied Numerical Mathemat-
ics, 25 (1997), pp. 151–167.

[6] M. Baldauf, A horizontally explicit, vertically implicit (HEVI) discontinuous
Galerkin scheme for the 2-dimensional euler and Navier-Stokes equations using
terrain-following coordinates, Journal of Computational Physics, 446 (2021).

[7] M. Baldauf and S. Brdar, 3d diffusion in terrain-following coordinates: test-
ing and stability of horizontally explicit, vertically implicit discretizations, Quar-
terly Journal of the Royal Meteorological Society, 142 (2016), pp. 2087–2101.

[8] L. Bao, R. Klöfkorn, and R. Nair, Horizontally explicit and vertically
implicit (HEVI) time discretization scheme for a discontinuous Galerkin nonhy-
drostatic model, Monthly Weather Review, 143 (2015), pp. 972–990.

[9] R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equa-
tions of mathematical physics, IBM Journal: translation from the original paper
in Mathematische Annale, 100,32-24, 100 (1928), pp. 215–234.

[10] M. Deville, P. Fischer, and E. Mund, High-Order Methods for Incompress-
ible Flow, Cambridge University Press, New York, 2002.

[11] T. Galchen and R. Somerville, Use of a coordinate transformation for so-
lution of Navier-Stokes equations, Journal of Computational Physics, 17 (1975),
pp. 209–228.

[12] D. J. Gardner, J. E. Guerra, F. P. Hamon, D. R. Reynolds, P. A. Ull-
rich, and C. S. Woodward, Implicit–explicit (IMEX) Runge–Kutta methods
for non-hydrostatic atmospheric models, Geoscientific Model Development, 11
(2018), pp. 1497–1515.

[13] G. J. Gassner, A. R. Winters, and D. A. Kopriva, Split form nodal discon-
tinuous Galerkin schemes with summation-by-parts property for the compressible
Euler equations, Journal of Computational Physics, 327 (2016), pp. 39–66.

[14] F. X. Giraldo, Trajectory calculations for spherical geodesic grids in Cartesian
space, Monthly Weather Review, 127 (1999), pp. 1651–1662.

[15] , An Introduction to Element-based Galerkin Methods on Tensor-Product
Bases - Analysis, Algorithms, and Applications, vol. 24, Springer, 2020.

[16] F. X. Giraldo, J. F. Kelly, and E. M. Constantinescu, Implicit-explicit
formulations of a three-dimensional nonhydrostatic unified model of the atmo-
sphere (NUMA), SIAM Journal on Scientific Computing, 35 (2013), pp. B1162–
B1194.

31



[17] F. X. Giraldo and M. Restelli, A study of spectral element and discon-
tinuous Galerkin methods for the Navier–Stokes equations in nonhydrostatic
mesoscale atmospheric modeling: equation sets and test cases, Journal of Com-
putational Physics, 227 (2008), pp. 3849–3877.

[18] , High-order semi-implicit time-integrators for a triangular discontinuous
Galerkin oceanic shallow water model, International Journal for Numerical Meth-
ods in Fluids, 63 (2010), pp. 1077–1102.

[19] F. X. Giraldo, M. Restelli, and M. Läuter, Semi-implicit formulations
of the Navier-Stokes equations: application to nonhydrostatic atmospheric mod-
eling, SIAM Journal on Scientific Computing, 32 (2010), pp. 3394–3425.

[20] O. Guba, M. A. Taylor, A. M. Bradley, P. A. Bosler, and A. Steyer,
A framework to evaluate IMEX schemes for atmospheric models, Geoscientific
Model Development, 13 (2020), pp. 6467–6480.

[21] O. Guba, M. A. Taylor, P. A. Ullrich, J. R. Overfelt, and M. N.
Levy, The spectral element method (SEM) on variable-resolution grids: evaluat-
ing grid sensitivity and resolution-aware numerical viscosity, Geoscientific Model
Development, 7 (2014), pp. 2803–2816.

[22] J. F. Kelly, F. A. V. d. B. A. Alves, J. T. Emmert, S. D. Eckermann,
F. X. Giraldo, and P. A. Reinecke, A nonhydrostatic and mass conserv-
ing ground-to-thermosphere dynamical core based on specific internal energy, (in
preparation), 1 (2023), pp. 1–X.

[23] J. F. Kelly and F. X. Giraldo, Continuous and discontinuous Galerkin
methods for a scalable three-dimensional nonhydrostatic atmospheric model:
limited-area mode, Journal of Computational Physics, 231 (2012), pp. 7988–8008.

[24] C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes
for convection-diffusion-reaction equations, Applied Numerical Mathematics, 44
(2003), pp. 139–181.

[25] C. A. Kennedy and M. H. Carpenter, Higher-order additive Runge–Kutta
schemes for ordinary differential equations, Applied Numerical Mathematics, 136
(2019), pp. 183–205.

[26] C. A. Kennedy, M. H. Carpenter, and R. M. Lewis, Low-storage, explicit
Runge–Kutta schemes for the compressible Navier–Stokes equations, Applied Nu-
merical Mathematics, 35 (2000), pp. 177–219.

[27] Y.-J. Kim, F. X. Giraldo, M. Flatau, C.-S. Liou, and M. S. Peng,
A sensitivity study of the Kelvin wave and the Madden-Julian Oscillation in
aquaplanet simulations by the Naval Research Laboratory Spectral Element At-
mospheric Model, Journal of Geophysical Research-Atmospheres, 113 (2008).

32



[28] J. B. Klemp, W. C. Skamarock, and S. Ha, Damping acoustic modes
in compressible horizontally explicit vertically implicit (HEVI) and split-explicit
time integration schemes, Monthly Weather Review, 146 (2018), pp. 1911–1923.

[29] D. Knoll and D. Keyes, Jacobian-free Newton-Krylov methods: a survey
of approaches and applications, Journal of Computational Physics, 193 (2004),
pp. 357–397.

[30] D. Kopriva, Metric identities and the discontinuous spectral element method on
curvilinear meshes, Journal of Scientific Computing, 26 (2006), pp. 301–327.

[31] D. Kopriva, Implementing Spectral Methods for Partial Differential Equations,
Springer, New York, 2009.

[32] D. Lee and A. Palha, Exact spatial and temporal balance of energy ex-
changes within a horizontally explicit/vertically implicit non-hydrostatic atmo-
sphere, Journal of Computational Physics, 440 (2021).

[33] S.-J. Lock, N. Wood, and H. Weller, Numerical analyses of Runge–Kutta
implicit–explicit schemes for horizontally explicit, vertically implicit solutions of
atmospheric models, Quarterly Journal of the Royal Meteorological Society, 140
(2014), pp. 1654–1669.

[34] S. Marras, J. F. Kelly, M. Moragues, A. Müller, M. A. Kopera,
M. Vazquez, F. X. Giraldo, G. Houzeaux, and O. Jorba, A review of
element-based galerkin methods for numerical weather prediction: finite elements,
spectral elements, and discontinuous Galerkin, Archives of Computational Meth-
ods in Engineering, (2015), pp. 1–50.

[35] P. R. Mugg, Extrapolated Multirate Methods for Hyperbolic Partial Differential
Equations, PhD thesis, Naval Postgraduate School, Monterey, CA, June 2021.

[36] A. Müller, M. Kopera, S. Marras, L. Wilcox, T. Isaac, and F. Gi-
raldo, Strong scaling for numerical weather prediction at petascale with the
atmospheric model numa, The International Journal of High Performance Com-
puting Applications, 0 (2018), p. 1094342018763966.

[37] L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and appli-
cations to hyperbolic systems with relaxation, Journal of Scientific Computing,
25 (2005), pp. 129–155.

[38] A. T. Patera, A spectral method for fluid dynamics: Laminar flow in a channel
expansion, Journal of Computational Physics, 54 (1984), pp. 468–488.

[39] P. A. Reinecke, K. Viner, J. D. Doyle, S. Gabersek, M. Martini,
J. Michalakes, D. Ryglicki, D. Flagg, and F. X. Giraldo, Development
and testing of a next generation spectral element model for the U.S. Navy, in
17th Workshop on High Performance Computing (ECMWF), 24-28 October,
ECMWF, Reading UK, 2016.

33



[40] J. Reisner, A. Wyszogrodzki, V. Mousseau, and D. Knoll, An efficient
physics-based preconditioner for the fully implicit solution of small-scale ther-
mally driven atmospheric flows, Journal of Computational Physics, 189 (2003),
pp. 30–44.

[41] C. Ronchi, R. Iacono, and P. Paolucci, The ‘’cubed sphere”: A new method
for the solution of partial differential equations in spherical geometry, Journal of
Computational Physics, 124 (1996), pp. 93–114.

[42] H. H. Rosenbrock, Some general implicit processes for the numerical solution
of differential equations, The Computer Journal, 5 (1963), pp. 329–330.

[43] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston,
1996.

[44] M. Satoh, Conservative scheme for the compressible nonhydrostatic models with
the horizontally explicit and vertically implicit time integration scheme, Monthly
Weather Review, 130 (2002), pp. 1227–1245.

[45] W. Skamarock and J. Klemp, Efficiency and accuracy of the Klemp–
Wilhelmson time-splitting technique, Monthly Weather Review, 122 (1994),
pp. 2623–2630.

[46] W. C. Skamarock, J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H.
Park, and T. D. Ringler, A multiscale nonhydrostatic atmospheric model
using centroidal Voronoi tesselations and C-grid staggering, Monthly Weather
Review, 140 (2012), pp. 3090–3105.

[47] W. C. Skamarock, H. Ong, and J. B. Klemp, A fully compressible nonhy-
drostatic deep-atmosphere equations solver for mpas, Monthly Weather Review,
149 (2021), pp. 571–583.

[48] A. N. Souza, J. He, T. Bischoff, M. Waruszewski, L. Novak, V. Barra,
T. Gibson, A. Sridhar, S. Kandala, S. Byrne, L. C. Wilcox, J. E.
Kozdon, F. X. Giraldo, O. Knoth, J. Marshall, R. Ferrari, and
T. Schneider, The flux-differencing discontinuous Galerkin method applied to
an idealized fully compressible nonhydrostatic dry atmosphere,, Journal of Ad-
vances in Modeling Earth Systems, 15 (2023), p. e2022MS003527.

[49] A. Sridhar, Y. Tissaoui, S. Marras, Z. Shen, C. Kawczynski,
S. Byrne, K. Pamnany, M. Waruszewski, T. H. Gibson, J. E. Koz-
don, V. Churavy, L. C. Wilcox, F. X. Giraldo, and T. Schneider,
Large-eddy simulations with ClimateMachine v0.2.0: a new open-source code for
atmospheric simulations on gpus and cpus, Geoscientific Model Development, 15
(2022), pp. 6259–6284.

[50] A. Staniforth and A. White, Further non-separable exact solutions of the
deep-and shallow-atmosphere equations, Atmospheric Science Letters, 12 (2011),
pp. 356–361.

34



[51] A. Steyer, C. J. Vogl, M. Taylor, and O. Guba, Efficient IMEX Runge-
Kutta methods for nonhydrostatic dynamics, 2019. arXiv:1906.07219.

[52] M. A. Taylor and A. Fournier, A compatible and conservative spectral el-
ement method on unstructured grids, Journal of Computational Physics, 229
(2010), pp. 5879–5895.

[53] M. A. Taylor, O. Guba, A. Steyer, P. A. Ullrich, D. M. Hall, and
C. Eldred, An energy consistent discretization of the nonhydrostatic equa-
tions in primitive variables, Journal of Advances in Modeling Earth Systems,
12 (2020), p. e2019MS001783. e2019MS001783 10.1029/2019MS001783.

[54] J. Thuburn, Some conservation issues for the dynamical cores of nwp and
climate models, Journal of Computational Physics, 227 (2008), pp. 3715–3730.

[55] H. Tomita and M. Satoh, A new dynamical framework of nonhydrostatic
global model using the icosahedral grid, Fluid Dynamics Research, 34 (2004),
pp. 357–400.

[56] L. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, Philadel-
phia, 1997.

[57] P. A. Ullrich, T. Melvin, C. Jablonowski, and A. Staniforth, A pro-
posed baroclinic wave test case for deep- and shallow-atmosphere dynamical cores,
Quarterly Journal of the Royal Meteorological Society, 140 (2014), pp. 1590–
1602.

[58] C. J. Vogl, A. Steyer, D. R. Reynolds, P. A. Ullrich, and C. S.
Woodward, Evaluation of implicit-explicit additive Runge-Kutta integrators
for the HOMME-NH dynamical core, Journal of Advances in Modeling Earth
Systems, 11 (2019), pp. 4228–4244.

[59] M. Waruszewski, T. H. Gibson, L. C. Wilcox, J. E. Kozdon, and F. X.
Giraldo, Entropy stability discontinuous Galerkin methods for balance laws in
non-conservative form. Applications to Euler with gravity, Journal of Computa-
tional Physics, 468 (2022), p. 111507.

[60] H. Weller, S.-J. Lock, and N. Wood, Runge-Kutta IMEX schemes for
the horizontally explicit/vertically implicit (HEVI) solution of wave equations,
Journal of Computational Physics, 252 (2013), pp. 365–381.

[61] A. A. White, B. J. Hoskins, I. Roulstone, and A. Staniforth, Con-
sistent approximate models of the global atmosphere: shallow, deep, hydrostatic,
quasi-hydrostatic and non-hydrostatic, Quarterly Journal of the Royal Meteoro-
logical Society, 131 (2005), pp. 2081–2107.

[62] G. Zängl, D. Reinert, P. Rípodas, and M. Baldauf, The ICON (ICOsa-
hedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description

35



of the non-hydrostatic dynamical core, Quarterly Journal of the Royal Meteoro-
logical Society, 141 (2015), pp. 563–579.

36


	Introduction
	Governing Equations
	Set 2NC
	Contravariant Formulations

	Spatial Discretization
	Metric Terms
	Metric Terms along Columns
	Testing the Metric Terms
	Tensor-based Hyper-Diffusion

	Horizontally Explicit Vertically Implicit (HEVI)
	Implicit-Explicit (IMEX) Runge-Kutta Method
	Nonlinear HEVI (NHEVI)
	HEVI Horizontal and Vertical Operators
	NHEVI-GMRES
	NHEVI-LU

	Linear HEVI (LHEVI)
	LHEVI Linear Operator


	Complexity Analysis
	NHEVI-GMRES
	NHEVI-LU
	LHEVI
	Summary of Complexity

	Time-Integrators
	Numerical Results
	Baroclinic Instability
	Inertia-Gravity Wave

	Conclusions
	Sets 2C and 3C
	Governing Equations
	HEVI Operators
	HEVI Operator Jacobians


