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Abstract

The F-box protein Coronatine Insensitive (COI) is a receptor for the jasmonic acid signaling pathway in
plants. To investigate the functions of the six maize (Zea mays) COI proteins (COIla, COIlb, COllc,
COI1d, COI2a, and COI2b), we generated single, double, and quadruple loss-of-function mutants. The
pollen of the coi2a coi2b double mutant was inviable. The coil quadruple mutant (coil-4x) exhibited
shorter internodes, decreased photosynthesis, leaf discoloration, microelement deficiencies, and
accumulation of DWARFS8 and/or DWARF9, two DELLA family proteins that repress the gibberellic
acid signaling pathway. Co-expression of COI and DELLA in Nicotiana benthamiana showed that the
COI proteins trigger proteasome-dependent DELLA degradation. Many genes that are downregulated in
the coil-4x mutant are gibberellic acid-inducible. In addition, most of the proteins encoded by the
downregulated genes are predicted to be bundle sheath- or mesophyll-enriched, including those encoding
Cs-specific photosynthetic enzymes. Heterologous expression of maize Coi genes in N. benthamiana
showed that COI2a is nucleus-localized and interacts with maize jasmonate ZIM (zinc-finger
inflorescence meristem) domain (JAZ) proteins, the canonical COI repressor partners. However, maize
COlla and COllc showed only partial nuclear localization and reduced binding efficiency to the tested
JAZ proteins. Together, these results show the divergent functions of the six COI proteins in regulating
maize growth and defense pathways.



Introduction

Jasmonic acid (JA) is a lipid-derived plant hormone that regulates a wide range of biological
processes, including reproductive development, vegetative growth, and responses to biotic and
abiotic stresses (Feys et al. 1994; McConn et al. 1997; Vijayan et al. 1998; Stintzi and Browse
2000; Wang et al. 2020; He et al. 2021; Qi et al. 2022; Shikha et al. 2022). Methyl JA (MeJA) is
a volatile compound readily taken up and converted to JA by plants (Chuang et al. 2014). In
Arabidopsis (4rabidopsis thaliana), tomato (Solanum lycopersicum), rice (Oryza sativa) and
other plants, JA is conjugated to isoleucine to produce JA-isoleucine (JA-Ile). This compound is
perceived by a receptor, CORONATINE INSENSITIVE1 (COIl) (Xie et al. 1998; Xu et al.
2002), which is the F-box domain protein component of an E3-ligase complex that
polyubiquitinates jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) repressors
(Chini et al. 2007; Thines et al. 2007; Sheard et al. 2010). JAZ is a large family of proteins that
interact with MYC transcription factors (Zhang et al. 2015; Zander et al. 2020) and thereby
prevent the induced expression of a cohort of defense, stress, and development-related genes.
Binding of JA-Ile to the COIl receptor promotes COI1-JAZ protein-protein interactions, which
in turn leads to the formation of the E3 ubiquitin ligase SCF°!! complex and the subsequent
degradation of the JAZ by the 26S proteasome (Fonseca et al. 2009). The de-repression of MYC
transcription factors by JAZ degradation initiates transcription of the targeted genes (Dombrecht
et al. 2007).

Experiments with several plant species show that JA-Ile perception and the resulting
induced defense responses antagonistically modulate gibberellic acid (GA)-mediated growth
(Yang et al. 2012; Campos et al. 2016; Machado et al. 2017). This reciprocal relationship
between defense and growth is not due to a carbohydrate-resource trade-off (Campos et al. 2016;
Machado et al. 2017) but instead results from the fact that JAZ repressors of the JA-responsive
genes bind to and entrap DELLA proteins, repressors of GA-responsive growth genes, thereby
preventing their repressive effect on the growth-promoting PIF transcription factors (Hou et al.
2010; Yang et al. 2012). In Arabidopsis, JA-Ile perception by COI1 leads to JAZ degradation,
which releases DELLA and inhibits growth while inducing the transcription of defense genes by
MYC transcription factors. Interruption of JA signaling in both the Arabidopsis coil and the rice
coila coilb mutants results in a continuous DELLA entrapment by JAZ and a positive growth

response. DELLA also is essential for enhancing JA-mediated responses in Arabidopsis (Wild et



al. 2012; de Vleesschauwer et al. 2016). The constitutively active, dominant DELLA mutant
gibberellic acid insensitive (gai) is hypersensitive to JA-mediated gene induction. A quadruple
della mutant (which lacks four of the five Arabidopsis DELLA proteins) was partially insensitive
to JA perception (Navarro et al. 2008).

More recent research has demonstrated varied COI interactions in species other than
Arabidopsis. Interaction between COI and the single JAZ repressor in Marchantia polymorpha
involves dinor-cis-oxophytodienoic acid and dinor-iso-oxophytodienoic acid instead of JA-Ile
(Monte et al. 2018). A phylogenetic analysis indicated that JA-Ile biosynthesis is present in
angiosperms, ferns, horsetails, and Selaginella, though rapid wound-induced accumulation of
JA-Ile was found only in angiosperms (Pratiwi et al. 2017; Chini et al. 2023). Ligand specificity
of COI proteins also depends in part on the specific JAZ proteins with which they are interacting
(Monte et al. 2022). Whereas Arabidopsis and tomato have only one COI gene, multiple copies
of COI genes in rice (Inagaki et al. 2022) and other monocot species also suggest that the
encoded proteins may have acquired different functions in the course of evolution.

Maize (Zea mays) is one of the main staple crops and a model monocot. However, both
the mechanisms of JA signaling and the functions of individual maize COI receptors remain
under-investigated. Gene duplication events led to the evolution of three clades, two Coil and
one Coi2, in Poaceae (grasses) (Figure 1). Modern maize has six Coi genes (Coila, Coilb,
Coilc, Coild, CoiZa, and Coi2b; Supplementary Dataset S1), which may be due to an ancestral
genome duplication event that occurred between 8.5 and 13 million years ago. Genome
duplication was followed by genome reduction of the tetraploid maize to a diploid state, with
uneven gene losses and residual duplication of many genes, including the JA synthesizing
enzymes (reviewed in (Borrego and Kolomiets 2016)). CRISPR/Cas9-mediated knockouts of
Coi2a and Coi2b showed that these genes are essential for jasmonate signaling and pollen
formation in maize (Qi et al. 2022). When transformed into an Arabidopsis coi/ mutant, maize
Coila, Coilb, and Coilc, but not Coi2a, complemented the defects in fertility and induced
changes in gene expression after JA treatment (An et al. 2019). Maize COlla interacts with
JAZ15, and coila mutant plants showed elevated resistance to Fusarium graminearum
(Gibberella stem rot) (Ma et al. 2021). Yeast two-hybrid assays showed interactions of maize

COI1 but not COI2 with several maize JAZ proteins (Qi et al. 2022).



Rice has three COI genes and, similar to maize, rice COI2 has essential roles in pollen
vitality and male fertility (Inagaki et al., 2022; Trang Nguyen et al., 2022; Wang et al., 2023;
Yang et al., 2012). One study showed that rice COI2 is the essential receptor in JA-mediated
signaling, whereas COIla and COI1b play redundant roles with COI2 in plant growth regulation.
(Inagaki et al. 2022). In another study, rice COI2, COIla and COI1b were all essential for JA-
mediated defense against Nilaparvata lugens, the brown planthopper (Wang et al. 2023). In both
of these studies, the rice COI2 protein showed interaction with more members of the rice JAZ
family than COII.

Here, we present a functional analysis of the maize COI proteins using transposon
mutagenesis. Dissociation (Ds) and Mutator (Mu) transposon insertion mutations in each of the
six COI genes were isolated and single and higher order mutants characterized through insect
bioassays, measurement of morphological changes, quantification of gene expression profiles,
subcellular localization, and protein-protein interaction studies. Together, our results show that,
whereas the two maize COI2 proteins have a function similar to what has been observed for
Arabidopsis COI1, the four maize COI1 proteins function primarily in regulating GA-mediated
growth responses. This reveals a molecular model where subfunctionalization of COI gene
family members in maize enables growth responses to be uncoupled from plant defense
pathways.

Results

COI gene duplication in monocots and maize

There are six paralogous Coi genes in maize, which are derived from gene duplication events in
the course of monocot evolution (Figure 1, protein sequences in Supplementary Dataset S2,
machine-readable tree in Supplementary File S1). These six proteins share 55% to 58% sequence
identity with Arabidopsis COIl (Figure S1A). The two members of each protein pair, COIla and
COIld, COI1b and COllc, and COI2a and COI2b, respectively, shared 94%, 93%, and 95%
amino acid sequence identity, respectively (Figure S1B). COIla and COI1d showed about 80%
identity with COIlc and COI1b, whereas the four COIl proteins only share about 60% identical
amino acids with the two COI2 proteins. An alignment of COI protein sequences shows that
phenylalanine 89 of Arabidopsis COI, which is essential for the insertion of JA-Ile between COI
and JAZ (Sheard et al. 2010) is modified to tyrosine in four maize COI1 proteins (red arrow in

Figure S2). The other amino acids in the active site of Arabidopsis COI were not different from



their corresponding amino acids in the Poaceae COI proteins (Figure S2, black arrows). Several
other amino acids that are not located in the active site differ between Arabidopsis and maize
COI proteins. For instance, alanine 63 of Arabidopsis COI is changed to valine in C4 plant COI1
proteins and M. polymorpha, and to tyrosine in maize COI2 proteins (Figure S2, green arrow).
However, based on the amino acid sequence alone, we cannot predict the function of each
individual COI protein in the Poaceae.

COI sub-cellular localization and interactions with JAZ proteins

To investigate the subcellular locations of maize COI proteins, one gene of each closely related
pair (Coila, Coilc, and Coi2a) was fused to GFP and transiently expressed in Nicotiana
benthamiana. We observed that COI2a was predominantly localized in the nucleus (Figure 2),
similar to what is observed with COI in Arabidopsis (Withers et al. 2012). This subcellular
localization was not changed by spraying plants with 0.02% MeJA. By contrast, COIla and
COlIlc showed nucleo-cytosolic partitioning and appeared to be partly in subcellular structures in
the cytosol (Figure 2), though this could be an artefact of overexpression in N. benthamiana and
may not necessarily reflect localization in maize. Nucleo-cytosolic partitioning of transcription
factors and their regulators, an emerging field in developmental biology, has essential functions
in hormonal regulation of plant physiology (Powers et al. 2019; Jing et al. 2022).

The canonical functions of COI proteins include binding to JAZ repressors. Using a
bimolecular fluorescence complementation (BiFC) vector system, we co-expressed Coila,
Coilc, and Coi2a, fused to the C-terminal half of the YFP, together with fifteen members of the
maize JAZ gene family (Han and Luthe 2021) fused to the N-terminal half of the YFP. This
showed that, whereas COI2a strongly interacted with almost half of the maize JAZ proteins in N.
benthamiana leaf nuclei, neither COIla nor COIlc showed a consistent, reproducible interaction
with any JAZ proteins after induction by treatment with 0.02% MeJA (Figures 3, and S3). An
independent repeat of this experiment showed similar results (Figure S4).

As further confirmation of these BiFC results, we used JAZ1a, which showed the highest
affinity for all three COIs by BiFC, in reciprocal pulldown experiments with COIla, COllc,
COI2a. All three tested COI proteins showed interaction with JAZ1a (Figure S5). Applying
exogenous JA-Ile substantially increased the COIla and COllca/JAZ interactions when the
corresponding COI protein was the bait (Figure S5A). Together, both BIFC and reciprocal
pulldown experiments indicate that JAZ1a binds to all three COI proteins. However, BIFC



experiments show that COIla and COI1b bind less efficiently than COI2a to the rest of the tested
maize JAZ proteins.
Generation of higher-order mutants of the maize COI genes
To investigate the in vivo functions of the maize COI proteins, we identified Ds and Mu
transposon insertions in the genetic background of maize inbred line W22 (Springer et al. 2018).
There was a pre-existing Ds transposon insertion mutation in the COI1d gene (Ahern et al. 2009;
Vollbrecht et al. 2010), and we remobilized other Ds transposon insertions to create mutations in
COlla, COllc, and COI1b. We obtained Mu transposon-insertion mutations of the COI2 genes
from the UniformMu Transposon Resource (Settles et al. 2007; Liu et al. 2016a). Genotyping of
the mutants by PCR identified the position of each transposon insertion (Figure 4A;
Supplementary Dataset S3). The transposon insertions are in the coding regions of their
respective genes, causing loss-of-function mutations due to in-frame stop codons in the
transposon sequences or aberrant splicing (Simon and Starlinger 1987). As the observed mutant
phenotypes are recessive in crosses, it is unlikely that they are caused by dominant negative
effects of the truncated or improperly spliced proteins.

Homozygous coi mutants were intercrossed to generate a set of higher-order mutants.
This included a homozygous coila coild double mutant, a homozygous coilb coilc double
mutant, and a homozygous quadruple mutant of all four Coil genes, hereafter called coil-4x.
The Coi2 combinations included a coi2a coi2b double mutant that was homozygous for coiZa
and heterozygous for the coi2b (coi2a/coi2a COI2b/coi2b) and a double mutant that was
heterozygous for coi2a and homozygous for coi2b (COI2a/coi2a coi2b/coi2b).
Knockout of both COI2 genes leads to pollen lethality
As has been reported previously for CRISPR/Cas9 mutants of these genes (Qi et al. 2022), a
coi2a coi2b double knockout is pollen lethal. We were not able to obtain a homozygous double
mutant by self-pollination of coi2a/coi2a COI2b/coi2b or COI2a/coi2a coi2b/coi2b. Genotyping
of the progeny from these self-pollinations showed a 1:1 ratio of the parental genotype and
homozygous single mutants. This ratio is expected if a double knockout of COI2 genes results in
gametophyte lethality rather than embryo lethality (Figure S6). To investigate whether coiZ2a
coi2b is lethal to pollen or egg cells, we performed test crosses between the coi2a/coila
Coi2b/coi2b and Coi2a/coi2a coi2b/coi2b and wildtype W22, with the wildtype being either the

pollen or the egg donor. Genotyping of the progeny indicated that, whereas coi2a coi2b eggs are



viable and can be transmitted to the next generation, the coi2a coi2b pollen genotype is lethal
(Figure S7). The tissue-specific abundance of the Coi2a transcripts in anthers and the Coi2b gene
in mature pollen (Figure S8, plotted using the Maize Genome Database, www.maizegdb.org) and
the COI2a protein in pollen (Figure S9; data from (Walley et al. 2016)) further suggested that the
COI2 proteins contribute to pollen development.

Resistance to lepidopteran herbivory is not compromised in coi mutants

Perception of JA-Ile by COI proteins is associated with the induction of herbivore defenses in
other plant species. However, Spodoptera frugiperda (fall armyworm) did not grow larger on
coil-4x (Figure 4B), and Spodoptera exigua (beet armyworm) grew less well on coi-4x than on
wildtype W22 plants (Figure 4C). This suggested that the COI1 proteins by themselves do not
play a major role in maize defense against insect herbivores. On coi2a/coi2a Coi2b/coi2b and
Coi2a/coi2a coi2b/coi2b mutant lines, S. frugiperda growth was not significantly improved
relative to wildtype parental lines (Figure 4D). However, as it was not possible to obtain
homozygous coi2a coi2b double mutants, and a single functional Coi2 gene may allow defense
induction, residual COI activity may be sufficient to limit herbivory.

COII quadruple mutants have shortened internodes

When growing the coil-4x mutant line, we noticed that the plants were shorter than wildtype
W22 and the coil double mutants (coila coild and coilb coilc) derived from the same crosses.
At ten days post-germination, the coil-4x mutants were similar in size to wildtype (Figure
S10A). However, whereas the first two leaves were longer in coi/-4x mutants than in wildtype,
the third leaves were significantly shorter, marking the onset of a developmental delay in the
mutant (Figure 5A,B). The coil-4x mutants were almost half of the size of wildtype W22 and
both of the coil-2x mutants at 20 days (Figure S10B, C) and 60 days (Figure 5C,D) post-
germination. The reduced height at 60 days post-germination was primarily due to shortened
internodes in the coil-4x plants relative to the corresponding internode lengths in coila coild
and coilb coilc, and wildtype lines derived from the same crosses (Figure SE,F).

The coil-4x mutant has reduced leaf micronutrients and photosynthetic activity

The consistently shorter growth of the coi/-4x mutant (Figure 5) was accompanied by a striped-
leaf phenotype that persisted throughout the life of the plant (Figure 6A). As striped leaves can
indicate a mineral nutrient deficiency (Foy and Barber 1958; Thoiron et al. 1997; Curie et al.

2001; Mattiello et al. 2015), we measured macro- and microelements in the leaves of coil-4x,



coila coild, coilb coilc, and wildtype W22 using inductively coupled plasma atomic absorption
emission spectroscopy (ICP-MS). This showed a decrease in leaf iron, manganese, copper, and
zinc in the coil-4x mutant relative to the double mutants and wildtype 20-day-old plants (Figure
6B). Similar reductions in iron, manganese, copper, and boron in coil-4x were seen in 13-day-
old plants in a separate experiment (Figure S11A). The levels of leaf macroelements showed
only a few differences between the coi/-4x mutants and the other lines, a decrease in
phosphorous at 20 days (Figure 6C) and an increase in potassium at 13 days (Figure S11B) after
germination.

Because the striped leaf phenotype can also indicate photosynthetic deficiency, we
compared the carbon assimilation efficiency and photosynthesis quantum yields between coil-4x
and wildtype. This showed a decrease in both carbon assimilation and quantum yield in the coi!-
4x mutant at 20 days after germination (Figure 6D, E). In a separate experiment, a similar
photosynthetic defect was observed in 28-day-old plants (Figure S11C, D).

Differential gene expression in coi mutants, with or without MeJA elicitation

We used transcript profiling to identify differentially expressed genes in the coi mutants
compared to wildtype plants, with and without MeJA elicitation. The 13 tested genotypes
consisted of six coi single mutants, coila coild, coilb coilc, coil-4x, double homozygote-
heterozygote combinations of the coi2 mutations, and two corresponding inbred line W22
wildtype lines (for the Ds and Mu insertion line crosses, respectively). Leaf tissue for gene
expression assays was taken from 5-9 biological replicates of the thirteen genotypes, each
sprayed with 0.02% MeJA in water or water alone as a control for 12 hours in one-hour intervals.
Leaves were harvested after the last treatment. Reads per million mapped reads (RPM) were
calculated for each gene, and P values for each between-genotype or between-treatment pairwise
comparison were calculated for 40,690 annotated genes in the maize W22 genome (Springer et
al. 2018). In one or more of 73 pairwise comparisons that were quantified among the 26 tested
conditions (13 genotypes +/- MeJA; Supplementary Datasets S4 and S5), there were 13,365
genes with differential expression (adjusted P <0.05; Supplementary Dataset S6). A heatmap
based on this list of differentially expressed genes showed that most expression differences were
due to induction or repression by MeJA (Figure 7).

Transcripts accumulating to lower levels in coil-4x encode components of photosynthetic
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As we were interested in the short stature and photosynthetic defects that differentiate the coil-
4x mutant from wildtype W22 and other coi mutant lines (Figures 5 and 6), we searched
specifically for genes that were differentially expressed in coil-4x relative to coila coild, coilb
coilc, coi2a/coi2a Coi2b/coi2b, Coila/coi2a coi2b/coi2b, and wildtype W22, with or without
MelJA treatment. This identified 25 genes that were expressed at a significantly downregulated
(Figure 8A and Supplementary Datasets S4 and S7) and 68 genes that were significantly
upregulated (Figure 9A and Supplementary Datasets S4 and S8) in coil-4x relative to the other
genotypes.

The downregulated genes in the coi/-4x mutant are clustered in two groups in the
heatmap dendrogram (Figure 8A), based on whether they are upregulated (top half) or
downregulated (bottom half) by MeJA in the other twelve maize lines. Genes that were repressed
by MeJA treatment were expressed at a low level in coil-4x, even prior to MeJA elicitation.
Conversely, genes that were induced by MeJA in other lines were still expressed at a relatively
low level in coil-4x after MeJA.

Among the downregulated genes in the coi/-4x mutant, 72% encode bundle sheath or
mesophyll-abundant transcripts (Supplementary Dataset S9), based on previously published
cell-type-specific transcriptome data (Li et al. 2010). We grouped the downregulated gene list
(Figure 8B and Supplementary Data Set S7) based on functional annotations in the Maize
Genome Database (www.maizegdb.org) and homologs in The Arabidopsis Information Resource
(TAIR, www.arabidopsis.org). Genes involved in photosynthesis, carbon fixation, and cyclic
electron transport constituted almost one-third of the downregulated genes in the coi/-4x mutant,
consistent with this mutant's decrease in carbon assimilation and photosystem II quantum yield
(Figure 6D, E). These included genes encoding Calvin cycle enzymes (Rubisco small subunit
and phosphoribulokinasel (PRK1)), C4 photosynthesis enzymes (phosphoenolpyruvate
carboxykinasel (PEPCK1)), alpha carbonic anhydrase, orthophosphate dikinase 2 (PPDK2), and
NAD(P)H-quinone oxidoreductase subunit U (NadhU)), fibrillin 4, which is associated with the
photosystem II light-harvesting complex, thylakoids, and plastoglobules (Singh et al. 2010), and
a chloroplast co-chaperonin. NadhU is an essential part of the NAD(P)H dehydrogenase complex
(NDH), which performs cyclic electron transport in chloroplasts by transferring electrons from

ferredoxin to plastoquinone (Yamamoto et al. 2011), and fibrilins have essential roles in the



biosynthesis of plastoquinone, light acclimation, and sulfur metabolism (Kim et al. 2015; Lee et
al. 2020).

Another group of downregulated genes encoded proteins involved in cell wall
metabolism, carbohydrate breakdown, and reactive oxygen species (ROS) scavenging. This
group included those encoding peroxidase 52 and a cinnamyl alcohol dehydrogenase (CAD),
which are both involved in lignin biosynthesis, a copper/zinc superoxide dismutase 1 (CSD1),
Sugary 1 (SUI, a pectin methylesterase inhibitor), which has a role in amylopectin biosynthesis,
and an invertase involved in sucrose breakdown.

A small group of transcription factors, including the HAPS5-transcription factor (NF-
YC4), which is involved in GA and abscisic acid (ABA)-activated signaling pathways (Liu et al.,
2016b), MYC70, a bHLH-transcription factor, and a cell growth defect protein with unknown
function, were among the genes that were downregulated in the coi/-4x mutant. We did not find
any downregulated genes with a known role in homeostasis, regulation, or transport of the
micronutrients that could explain the specific deficiency of these elements in the coi/-4x mutant
(Figure 6B). However, it is possible that the downregulation of some of the cell wall and lignin-
related proteins, such as CAD, which have been implicated in zinc and iron homeostasis, might
be the underlying cause of the microelement deficiency in the coi/-4x mutant (Van De Mortel et
al. 2006; Reyt et al. 2021).

Only a few defense-associated genes were downregulated in the coi/-4x mutant (Figure
8), including those encoding terpene synthase 19 (TPS19), halotolerant determinant 3-like
protein (HAL3A, a heme-binding protein with a putative role in terpenoid metabolism), a ras-
group-related LRR protein, an isoflavone reductase, and a serine-type endopeptidase. Expression
of well-studied JA-induced maize defense genes, including benzoxazinoid biosynthesis genes
(Figure S12 and Supplementary Dataset S10), terpene synthase genes with detectable expression
(other than Tps19) (Figure S13 and Supplementary Dataset S11), and Jaz genes (Figure S14 and
Supplementary Dataset S12), was not altered in the coi/-4x mutant relative to the other
genotypes. Moreover, the expression of most defense-related and lipoxygenase (LOX)-encoding
genes, which were previously studied in maize (Christensen et al. 2015), remained unchanged in
the coil-4x mutant relative to the other genotypes (Figure S15 and Supplementary Dataset S13).
This is consistent with the observation that resistance to lepidopteran herbivory was not

compromised in the coi/-4x mutant compared to W22. There was no significant increase in the
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expression of COI2 genes in the coil-4x mutant compared to W22 (Supplementary Dataset S14),
ruling out the possibility that the observed effects are due to a compensatory rise in COI2 genes.
Genes with higher transcript abundance in coil-4x are mainly involved in phosphate
metabolism, cell wall modification, and transcription regulation

A dendrogram and heatmap of genes that are expressed at a higher level in the coi/-4x mutant
than in the other genotypes (Figure 9A and Supplementary Dataset S8) also had two clusters,
genes that are induced (top part) or repressed (bottom part) by MeJA. These genes were
expressed at a higher level in coi/-4x, with or without MeJA treatment. Altogether, 29% of the
genes encode bundle sheath or mesophyll-abundant transcripts (Supplementary Dataset S15) (L1
et al. 2010). When these upregulated genes were grouped by their functional annotations, the
most abundant group comprised those encoding kinases, phosphatases, and a few transporters
involved in the transport of phosphate and other molecules, some of which are implicated in
phosphate homeostasis (Figure 9B and Supplementary Dataset S8).

A smaller group of upregulated genes had roles in lipid and phospholipid or glycolipid
metabolism. Noticeably in this group, Glycerophosphodiester phosphodiesterase 2 (Gpx2) and
Monogalactosyldiacylglycerol synthase type ¢ (Mgd3) catalyze lipid metabolism during
phosphate starvation. Another relatively large group of upregulated transcripts included genes
that were shown to be hormone-regulated in prior research. Most of these genes, including two
PP2C phosphatase genes, were induced by abscisic acid. This group also included those
encoding Friendly mitochondria (Fmt), Non-responding to oxylipins 38 (Noxy38), and
Lipoxygenase 12 (Lox12), a 9-LOX that is the main enzyme involved in the biosynthesis of the
JA stereoisomers called death acids (Christensen et al. 2015). FMT is an RNA binding protein
associated with cytosolic ribosomes (Kirschner 2022), which regulates mitochondrial
distribution, fusion, and quality control in Arabidopsis (El Zawily et al. 2014). Friendly
Mitochondria has also been shown to perceive 9-LOX-derived oxylipins (Vellosillo et al. 2007,
2013), but the exact mechanism of this perception is not known.

COI1 proteins function in GA signaling

The two main downregulated gene groups (photosynthesis and cell wall metabolism) in the coil-
4x mutant are induced by the GA signaling pathway (Ranwala and Miller 2008; Falcioni et al.
2018; Chen et al. 2020). Moreover, the short stature and shortened internodes of the coil-4x

mutant are similar to what is observed in constitutively active, dominant DELLA mutants, which
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also have a dwarf phenotype (Gale and Marshall 1973; Fujioka et al. 1988; Strader et al. 2004;
Ueguchi-Tanaka et al. 2008; Cassani et al. 2009; Lawit et al. 2010). Therefore, we hypothesized
that, unlike Arabidopsis and rice coi mutants, which are elongated relative to the respective
wildtype plants (Xu et al. 2002; Yang et al. 2012; Machado et al. 2017; Inagaki et al. 2022), the
maize coil-4x mutant is hyposensitive to GA signaling.

To test this hypothesis, we used an antibody against rice DELLA (SLENDER RICE 1
(SLR1)) (Ueguchi-Tanaka et al. 2008) to detect the maize DELLA protein and compare its
abundance in the leaves of 20-day-old coil-4x mutant and wildtype W22 maize seedlings. A
protein band migrated at the predicted size of DELLA, over-accumulated in the mutant plants,
suggesting that DELLA is more stable in the coil-4x mutant (Figure 10). As transcription of
Dwarf9 but not Dwarf8 is detected in our dataset (Supplementary Dataset 16), it is likely that the
rice DELLA antibodies are detecting DWARFS. To confirm that the detected protein band is
DELLA, we treated the 5-day-old coil-4x and wildtype seedlings germinated in water-filled
pouches, with 0.02% GA or 0.02% MeJA for two days. Immunoblot analysis of the leaves from
these seedlings showed that DELLA was reduced and increased after GA and MeJA treatments,
respectively (Figure S16). The level of DELLA, however, was not different between the coil-4x
and wildtype seedlings in this experiment. This was expected because the wildtype and coil-4x
seedlings at this early age and after germination in water, show height and leaf phenotypes that
are similar to wildtype plants.

To further investigate the effect of COIl on DELLA, we examined protein-protein
interactions. We did not observe any interaction between COI proteins and DELLA using BiFC.
However, co-expression of DELLA-RFP with COI-GFP in N. benthamiana is consistent with the
hypothesis that these proteins may interact directly or indirectly through a larger protein
complex. While DELLA-RFP was highly expressed and fully localized in the nuclei when
expressed alone or with GFP, it disappeared from nuclei upon co-expression with any of the
three tested COI proteins, COIla, COllc, or COI2a (Figure 11). Overall, less than 1% of the
nuclei contained DELLA-RFP in the presence of COL. However, we could still detect DELLA-
RFP outside of the nuclei, colocalized with the COI1-GFP in the unknown cytosolic structures
(Figure S17). We previously observed these structures with COI1-GFP alone (red arrow in
Figure 2).

COl is the F-box domain protein component of an E3-ligase complex that
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polyubiquitinates JAZ repressors and sends them for degradation by the 26S proteasome. We
hypothesized that the maize COI proteins also participate directly or indirectly in the assembly of
E3-ligase complexes that degrade DELLA. Therefore, we infiltrated leaves co-expressing
DELLA-RFP and COIla-GFP with the proteasome inhibitor bortezomib (BTZ) to test this
hypothesis. BTZ treatment restored DELLA in 60% of the nuclei (Figure 12A). Immunoblotting
of the total proteins extracted from the leaves with SLR1 antibody, showed that BTZ treatment
of the leaves that co-expressed DELLA-RFP with COlIla, restored the level of DELLA-RFP
from 25% to more than 50% of the controls (expressing DELLA-RFP alone or with GFP)
(Figure 12B). The similar BTZ-mediated restoration for the COIlc was from more than 50% to
100%. Together, these experiments indicate that COI directly or indirectly targets DELLA for
degradation by proteasomes.

Effects of Exogenous Hormones on the coil-4x Growth Phenotypes

To further investigate the effects of JA and GA signaling on the coil-4x and wildtype maize,
one-week-old seedlings of both genotypes were watered with either 0.02% MeJA or 0.02% GA
for three weeks. Three weeks after MeJA treatment, coil-4x leaves were chlorotic, with a yellow
color (Figure 13A). By contrast, wildtype leaves only showed some stripes during the first week
of treatment but then became green again. After two weeks, the height of MeJA-treated wildtype
plants was reduced by 53% relative to mock-treated controls (Figure 13B, D). Growth reduction
of the coil-4x mutant was less severe (35%), suggesting that the mutant line was less sensitive to
the growth-inhibitory effect of the MeJA. We attributed this continued MeJA sensitivity to the
presence of the two functional COI2 genes in the coil-4x mutant. GA treatment increased the
height of wildtype and coil-4x plants by 46% and 74%, respectively (Figure 13B and D). It did
not, however, rescue the developmental delay of the third leaf in the mutant. Three weeks after
MelJA treatment, wildtype plants grew out of the juvenile stage and restored their green leaves,
but the coil-4x failed to transition from the juvenile to adult growth phase (Figure 13C and D).
The plant height of wildtype and coi/-4x treated with MeJA for three weeks showed a 41% and
55% decrease, respectively (Figure 13C, D), relative to the corresponding mock-treated control

plants.

Discussion
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The shortened internode length and reduced plant height exhibited by the coi/-4x mutant are
reminiscent of the constitutively-active dominant DELLA mutants or GA suppression mutants,
which have been characterized in Arabidopsis (Strader et al. 2004), rice (Ueguchi-Tanaka et al.
2008), wheat (Gale and Marshall 1973) and maize (Fujioka et al. 1988; Cassani et al. 2009;
Lawit et al. 2010; Paciorek et al. 2022). The increased DELLA abundance in coil-4x relative to
wildtype (Figure 10) and the degradation of DELLA when co-expressed with COI in M.
benthamiana (Figure 11) confirmed that the underlying cause of the growth deficiency in the
coil-4x mutant is likely increased DELLA stability. Several studies have demonstrated crosstalk
between DELLA and plant defense responses (Navarro et al. 2008; Hou et al. 2010; Wild et al.
2012; Yang et al. 2012; Qi et al. 2014; de Vleesschauwer et al. 2016; Machado et al. 2017; Dong
and Hudson 2022). In Arabidopsis and rice, the JAZ repressors of the JA signaling pathway bind
to and entrap DELLA to hinder its repression of the growth-related genes (Hou et al. 2010; Yang
et al. 2012). As a result of JAZ stability and DELLA entrapment in the Arabidopsis coil and the
rice coila coilb mutants, these plants are hypersensitive to GA and grow taller than
corresponding wildtype plants (Xu et al. 2002; Yang et al. 2012; Machado et al. 2017). Thus, the
increased DELLA abundance and decreased growth in the maize coi/-4x mutant is a notable
contrast to the corresponding Arabidopsis and rice coi knockout mutants, which are taller than
the corresponding wildtype plants.

One possible explanation for the short stature of coil-4x is that maize COI1 proteins have
lost affinity for JAZ but not for the rest of the E3-ligase complex, thereby functioning as
competitive inhibitors of COI2. The resulting enrichment of COI2 in the E3-ligase complexes,
which results from COI1 depletion in coil-4x, may lead to JA hypersensitivity, increased
stabilization of DELLA proteins, and growth inhibition. However, expression of most canonical
JA-responsive genes (Figure S15 and Supplementary Dataset S13), as well as those encoding
enzymes for the biosynthesis of benzoxazinoids and terpenes (Figures S12 and S13;
Supplementary Datasets S10 and S11), was not significantly changed in the coi/-4x mutant
relative to wildtype.

The lack of a significant change in the defense response at the gene expression level was
in accordance with a lack of improved caterpillar growth on the coi/-4x mutant relative to
wildtype plants (Figure 4B, C). In fact, S. exigua caterpillars were significantly smaller on the

coil-4x mutant, which could be due to lower nutritional quality of the dwarf plants, which also
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have photosynthetic and mineral deficiencies (Figure 6). Prior experiments with S. exigua on
maize have shown MeJA accumulation in response to insect feeding (Al-Zahrani et al. 2020) and
increased caterpillar growth on mutant lines that are JA-deficient (Yan et al. 2012). This suggests
that maize COI1 proteins are not involved in the jasmonate signaling pathway and that COI2
proteins may have this canonical defensive function. Consistent with this hypothesis, maize
coi2a coi2b homozygous knockouts of are male sterile (Qi et al. 2022), a phenotype that also has
been associated with Arabidopsis coil/ mutants.

Rice COI2 showed stronger interactions with JAZ proteins than either of the two rice
COI1 proteins (Inagaki et al. 2022; Wang et al. 2023). Similar to these rice experiments, our
BiFC experiments show that maize COI2 has more consistent interactions with eight of the tested
JAZ proteins than either COIla or COIlc (Figures 3, S3, and S4). This effect was recapitulated
in co-immunoprecipitation and pulldown experiments (Figure S5), where COI2a showed
stronger interactions with JAZ1a in the presence of JA-Ile than either COIla or COllc. Our
results (Supplementary Dataset S12) differ from those of Qi et al (2022) who investigated a
partially overlapping set of JAZ proteins using yeast 2-hybrid assays and found that, whereas
some maize JAZ proteins showed interactions with maize COII proteins, none showed
interactions with maize COI2 proteins. The differences between our observations and those of Qi
et al (2022) may be related to the different assay systems. It may be that the protein milieu of
plant cells (N. benthamiana in our experiments) promotes different COI-JAZ interactions than
those that occur when maize proteins are expressed in yeast.

In Arabidopsis, co-immunoprecipitation experiments show that JA-Ile elicits COI-
mediated ubiquitination of JAZ, degradation by the 26S proteasome, and activation of defense-
related gene expression (Fonseca et al. 2009; Sheard et al. 2010). We propose that COI2 in maize
has a similar function in regulating defense responses (Figure 14A). However, although maize
coi2a coi2b double mutants are male sterile, maize COI2b failed to restore fertility in an
Arabidopsis coi mutant (An et al. 2019), suggesting that the maize COI2 proteins are somewhat
diverged from the Arabidopsis COI function, or at least don’t interact properly with other
members of Arabidopsis protein complexes.

The results that we have presented are consistent with the hypothesis that maize COI1
proteins, interacting with an as yet unknown ligand, have acquired a new function that leads to

DELLA instead of JAZ polyubiquitination and degradation (Figure 14B). In the absence of direct
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interactions between COI1 and DELLA, it is possible that the COI1 proteins lead to the
activation of some other E3 ubiquitin ligase that triggers DELLA degradation. DELLA-RFP
disappeared from the nuclei when co-expressed with COIla, COllc, and even COI2a in N.
benthamiana leaves. The proteasome inhibitor BTZ restored DELLA in 60% of the nuclei,
consistent with the hypothesis that maize COI proteins directly or indirectly target DELLA for
degradation by the proteasome (Figures 11 and 12).

DELLA is polyubiquitinated by SLEEPY1 (SLY1; AT4G24210) in Arabidopsis (Dill et
al. 2004) and by GIBBERELIN INSENSITIVE DWAREF 2 (GID2; Gene bank: AB100246) in
rice (Gomi et al. 2004). These two F-box domain E3 ligases have only 41% sequence identity
with one another, suggesting that functional diversification of the DELLA-targeting E3 ligases in
the course of plant evolution. In Arabidopsis and rice, E3 ligases polyubiquitinate DELLA
proteins after they interact with the corresponding GID1 receptors bound to GA. Maize has two
uncharacterized putative GID2 orthologs (www.maizegdb.org) which may function in the
canonical GA-mediated DELLA degradation. However, the corresponding maize E3 ligases have
not been identified. DELLA in maize and perhaps other C4 plants may have become a direct or
indirect target of COIl leading to E3-ligase activity that can polyubiquitinate DELLA for
proteasome-dependent degradation (Figure 14B).

DELLA is at the nexus of several signaling pathways and not limited to regulating the
crosstalk between GA and JA. In Arabidopsis, ABA inhibits GA-mediated seed germination, and
overaccumulation of DELLA upregulates ABA-mediated responses. This antagonistic crosstalk
was shown to be mediated through the formation of a module between the DELLA protein
RGL2 and one of the three NF-YC3, 4, or 9 homologs, which subsequently binds to the promoter
of the ABI5 transcription factor and modulates the ABA-responsive genes, regardless of the ABA
level (Liu et al. 2016b). In our data, one prominent group of genes that are more highly
expressed in the coil-4x mutant relative to all other genotypes consisted of ABA-regulated and
drought-responsive genes (Figure 9 and Supplementary Dataset S8), which is consistent with
over-accumulated DELLA (Figure 10) upregulating the ABA pathway in the coi/-4x mutant.
Downregulation of NF-YC4 in the coil-4x mutant relative to all other genotypes (Figure 8 and
Supplementary Dataset S7) may indicate a compensatory or regulatory feedback reaction to

alleviate the effects of the DELLA-mediated ABA induction.
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Both GA and JA signaling pathways have crosstalk with the auxin pathway. The
interactive modules between DELLA, ARF activators, and AUX-IAA repressors play crucial
roles in fruit ripening and vascular development (Hu et al. 2018, 2022). Moreover, JA and auxin
signaling complexes are structurally similar (Pérez and Goossens 2013; Tal et al. 2020). Cullinl
is a scaffolding module and a shared component of the SCF ubiquitin ligase complexes involved
in mediating responses to auxin and JA (Ren et al. 2005). An overabundance of Cullinl derived
from the depletion of the SCF*! complex from the four COI proteins may lead to an increased
formation and activity of the SCFT™®!, the auxin-inducible SCF ubiquitin ligase complex (Gray et
al. 2001), and hypersensitivity to auxin, assuming that the unique components of the auxin-
inducible complex are not limiting. It is known that auxin inhibits seed germination in an ABA-
dependent manner (Liu et al. 2013). It remains to be determined whether the auxin-related
symptoms in the coi/-4x mutant are a consequence of auxin or other hormonal imbalances.

Our results show that 72% of the downregulated and 29% of the upregulated genes in the
coil-4x mutant encode proteins are related to C4 metabolism, exhibiting bundle sheath or
mesophyll-specific expression (Supplementary Dataset S9 and S15) (Li et al. 2010). C4 species
have evolved more than 60 times independently in the plant kingdom in response to selective
pressures from the environment (Christin et al. 2013; Zhou et al. 2018; Bldtke and Brautigam
2019). We propose that in maize, and perhaps other C4 species, COI-regulated DELLA
degradation might be part of the plant adaptation strategies to maintain growth in response to
biotic stresses and severe environmental conditions (e.g., drought, high light, and elevated
temperatures), which are the driving forces in Cs evolution. It has long been speculated that Cs4
characteristics were pre-existing in C3 plants and were only modified in Cs4 species in response to
their environmental needs (Hibberd and Quick 2002; Burgess et al. 2016; Wasilewska-Debowska
et al. 2022). A recent study, which aimed to identify the genes associated with the onset of the
bundle sheath specificity in C; plants, showed that bundle sheath cells of rice and Arabidopsis
are conditioned to synthesize proteins involved in water transport, sulfur assimilation, and JA
synthesis (Hua et al. 2021).

Most downregulated genes in the coi/-4x mutant, which are GA-inducible and growth-
related, are also C4 genes with cell-specific-expression patterns (Figure 8 and Supplementary
Datasets S7 and S9). These genes encode bundle sheath-abundant photosynthetic proteins,
including NadhU, which is an essential part of the NAD(P)H dehydrogenase (NDH) complex
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that performs cyclic electron transport in chloroplasts (Yamamoto et al. 2011). NDH levels
increased from 4% of the total photosystem I (PSI) in C3 plants to 40% in the bundle sheath
chloroplasts of C4 to provide the high demand of ATP in the bundle sheath chloroplasts of
NADP-ME C4 plants, including maize, sorghum, and Flaveria Cs4 species (Takabayashi et al.
2005; Wasilewska-Debowska et al. 2022). Studies on the genus Flaveria, which includes both
Cs, C4, and intermediate species, showed that this protein complex increases up to fourteen times
in the bundle sheath chloroplasts of the C4 Flaveria species compared to the C3 species
(Nakamura et al. 2013). The NDH cyclic electron transport also protects plastoquinone, the
electron receiver of cyclic electron transport, and photosystem I against excessive reduction and
high light-derived reactive oxygen species, which can cause photoinhibition.

Interestingly, fibrillin 4, another photosynthetic protein that is downregulated in the coil-
4x, is a photosystem II (PSII) and light harvesting complex II (LHCII) associated member (Singh
et al. 2010) of the fibrillin family, which plays essential roles in the biosynthesis of
plastoquinone, light acclimation, and sulfur metabolism (Kim et al. 2015; Lee et al. 2020).
Phosphorylation of PSII and LHCII play essential roles in the acclimation of photosynthesis to
high light intensity, and this role becomes more essential in maize (Drozak and Romanowska
2006) and other C4 plants (Reviewed in (Wasilewska-Debowska et al. 2022)). Upregulation of
genes encoding kinases, phosphatases, and phosphate transporters, including the sulfur
transporter 3:4 (SULTR 3:4), a protein involved in the transport of sulfur (Takahashi et al. 1997)
and phosphorus (Ding et al. 2020), in the coi/-4x mutant (Figure 9 and Supplementary Dataset
S8), might be a compensatory response. Phosphorus deficiency in the leaves of the 20-day-old
coil-4x seedlings (Figure 6C), strengthens this hypothesis.

In conclusion, we propose that a non-classical crosstalk between the JA and GA
pathways, which is disrupted in the coi/-4x mutant, plays a role in the evolution of maize and
perhaps other C4 plants. By regulating growth responses, maize COIl proteins compensate for
the canonical growth penalty associated with JA-Ile induction of plant defense responses. Future

research will define the exact mechanisms of this compensatory response.

Materials and Methods

Plant materials and growth conditions
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Experiments were done with maize (Zea mays) inbred line W22 (Springer et al. 2018) and
derived transposon insertion lines. Seedlings were grown in Conviron (Winnipeg, Canada)
growth chambers under a light intensity of 500 pmol/m*/sec from actinic bulbs, a 16:8 h
light:dark cycle, 25 °C light, 22 °C dark, and 50% relative humidity, and in a soil mix containing
35% peat moss, 10% vermiculite, 35% baked clay, 10% sand, 10% sterilized topsoil. One-
month-old plants were transplanted into pots and moved to greenhouse rooms with a temperature
of 27 °C (day) and 22 °C (night), with a 16:8 h light:dark cycle and high pressure sodium light
bulbs supplying additional light when the ambient photosynthetically active radiation dropped
below 350 uE. Methyl jasmonate (MeJA) and gibberellic acid (GA) treatments were done on
plants that were germinated in soil or germination pouches. In the latter case, seeds were
germinated in CYG germination pouches (Mega-International.com).

Nicotiana benthamiana plants were grown in a temperature-controlled growth room with
a 16:8 h light:dark cycle under a light intensity of 500 umol/m?/sec from actinic bulbs, 25 °C
light, 22 °C dark, and 50% relative humidity, in Cornell Mix Cornell Mix [by weight 56% peat
moss, 35% vermiculite, 4% lime, 4% Osmocote slow-release fertilizer (Scotts, Marysville, OH),
and 1% Unimix (Scotts, Marysville, OH)].
Protein alignment and phylogenetic tree
The accession numbers and sequences for the maize six COI proteins were obtained from the
maizeGDB (https://www.maizegdb.org/). Blastp (protein-protein BLAST;
https://blast.ncbi.nlm.nih.gov/) was used for pairwise alignments and calculating the percentage
identity between COI proteins. The paralogous COI sequences from other organisms were
obtained from Phytozome (https://phytozome-next.jgi.doe.gov/) and were aligned with the maize
proteins using Clustal Omega (Sievers et al. 2011). A maximum likelihood, midpoint-rooted tree
was created using 1Q-Tree_and 1,000 replicates for calculating bootstrap values (Hoang et al.
2018; Minh et al. 2020). A machine-readable (Newick Format) version of the tree is in
Supplementary File S1. The tree in Figure 1 was visualized using MEGA11 (Tamura et al.
2021).
Transposon insertion lines and genotyping
The coi2 Mu transposon insertion alleles were identified from the UniformMu Transposon
Resource (https://curation.maizegdb.org/documentation/uniformmu/index.php) (Settles et al.

2007). The coila, coilb, and coilc mutants were created by remobilizing nearby Ds transposon
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insertions. Ds transposon insertions that were tightly linked to maize Coila, Coilb, and Coilc
genes (1.S07.1293, .LW06.0524B, and 1.S07.1819, respectively) were identified through the
MaizeGDB webpage (https://www.maizegdb.org/). The identities of these lines were verified
with primers designed to specifically amplify a Ds junction fragment. Verified lines were crossed
with Activator (Ac) to induce Ds transposition. F1 seeds from these crosses were planted and
screened within two weeks after germination using primers designed to the Ds end sequence and
the Coi sequence of interest (Supplementary Dataset S17). A total of 4,004 (Coila), 6,160
(Coilb), and 1,800 (Coilc) maize seedlings were screened by PCR to find transposon insertions
in each Coi gene. Amplification fragments indicated a potential insertion in a Coi gene, and
genotypes were verified through successive PCR validation screens using different primer sets
that amplified Ds and Coi, followed by Sanger sequencing to identify the insertion site
(Supplementary Dataset S2). Seedlings carrying Coi:.Ds alleles were transplanted and grown to
maturity in a greenhouse and self-pollinated to recover progeny. Seeds from these Coi::Ds
insertion lines were harvested and planted for screening of homozygous Ds insertions.
Homozygous Coi::Ds insertion lines were then further characterized in this study. Detailed
methodology of Ac/Ds tagging has been described previously, and the coild mutant was
identified from this maize Ds transposon insertion collection (Ahern et al. 2009; Vollbrecht et al.
2010). Genotyping of the mutant and wildtype alleles of each Coi gene was performed using the
PCR primer pairs listed in Supplementary Dataset S17.

Insect bioassays

Eggs of fall armyworm (Spodoptera frugiperda) and beet armyworm (Spodoptera exigua) were
purchased from Benzon Research (www.benzonresearch.com) and were hatched at 28 °C on fall
armyworm diet and beet armyworm diet (Southland Products, www.southlandproducts.net),
respectively. Neonate larvae were confined on three-week-old maize plants using micro-
perforated plastic bread bags (www.amazon.com) that were sealed around the base of the plants
with wire twist ties. After ten days, caterpillars were harvested and weighed.

COI and DELLA construct preparation, plant infiltration, and imaging

To prepare the BiFC assay, the coding regions of Coidl, Coilc, and Coi2a (W22 accession
numbers in Supplementary Dataset S1), 15 Jaz genes (W22 accession numbers in Supplementary
Dataset S12), and the Dwarf9 (DELLA) gene (accession number: Zm00004b011408 in
Supplementary Dataset S16), were either amplified by PCR or synthesized by Twist Bioscience
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(https://www.twistbioscience.com/) and cloned by restriction cloning using Pacl and Spel or
Ascl into the BiFC vectors p2YC and p2YN (Kong et al. 2014) to generate Coi-cYFP, and JAZ-
nYFP, respectively. The primers used for vector construction are listed in Supplementary Dataset
S17.

To prepare constructs for the subcellular localization, the open reading frames of Coila,
Coilc, Coi2a, and DELLA (Dwarf9) were amplified and cloned into pDONR 207 using BP
clonase recombination (Invitrogen, Carlsbad, CA, USA), before being transferred with a second
recombination reaction (LR, Invitrogen) into the vector pEAQ-EGgW (Berthold et al. 2019). The
primers used for vector construction are listed in Supplementary Dataset S17. The recombinant
vectors were transformed into Agrobacterium tumefaciens strain GV3101 and grown in LB
medium with 50 mg 1! kanamycin and 50 mg 1! rifampicin for 1 d. After centrifugation for 10
min at 2000 x g, the bacteria were collected and resuspended in an infection solution (10 mM
MES, 10 mM MgCl, and 200 uM acetosyringone). The prepared suspensions (A600 nm = (.5)
were infiltrated into young but fully expanded N. benthamiana leaves using a needleless syringe.
Two to three days later, leaves were sprayed with 0.02% (v/v) MeJA in water. Two hours after
the MeJA spraying, yellow fluorescent protein (YFP, for BiFC) and enhanced green fluorescent
protein (EGFP) for subcellular localization were monitored using a laser confocal scanning
microscope (LSM 800, Zeiss) with an argon laser and DSS561 diode lasers. GFP was excited at
488-nm by the argon laser and observed using a detection window from 497 to 526 nm. RFP was
excited at 561 nm using the laser diode and detected in the 600 to 638 nm range. YFP was
excited at 514 nm by the argon laser and detected from 528 to 603 nm. Red channels in the
original images were changed to magenta for improved visibility using Fiji
(https://imagej.net/software/fiji/). All areas of the images received equivalent treatment.

Co-immunoprecipitation and pulldown assays

The coding sequence for full-length Jaz/a was synthesized by Twist Bioscience
(https://www.twistbioscience.com/ ) and cloned into the pMAL-TEV vector (Kroeger et al.
2009) via restriction enzymes BamH1 and Sal/l. The recombinant maltose binding protein fusion,
MBP-JAZ1a, was purified using amylose magnetic beads (New England Biolabs.), eluted from
the beads using 25 mM HCI, neutralized with one sixth volume of 1 M Tris pH 8, and used in the
JAZ/COI interaction studies. Three grams of N. benthamiana leaves infiltrated with each

construct expressing COIla, COIlc, COI2a fused to GFP, were ground in liquid nitrogen, and
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homogenized in extraction buffer containing 50 mM Tris-HCI pH 7.4, 100 mM NacCl, 10% (v/v)
glycerol, 1% (v/v) Tween-20, 0.1% Sodium Deoxycholate, 1 mM dithiothreitol (DTT), complete
protease inhibitor (Roche) and 50 mM MG132 (Sigma). After cleaning plant particles using
Micro-Spin filters (Pierce) and centrifugation (16,000g, 4 °C), the supernatant was collected. For
the co-immunoprecipitation experiment shown in Figure S5A, 30 ul of the ChromoTek GFP-
Trap® Magnetic Particles M-270 (proteintech) was added to 2 ml of the cleared leaf lysate
mixed with 6 pg of the purified MBP-JAZ, supplemented with JA-Ile or mock, and incubated for
1 h at 4 °C. After washing, samples were eluted with 40ul of the 2x Laemmli sample buffer,
boiled for 5 minutes, and 15 pl was loaded on SDS-PAGE gels, transferred to PVDF membranes
and incubated with monoclonal anti-GFP antibody (BioLegend, Cat:902605) (1:10000 dilution)
and anti-MBP antibody (Santa Cruz Biotechnology, Cat: sc-13564). Pulldown assay shown in
Figures S5B, was done the same with the exception that 6 pg of the MBP-JAZ1a bound amylose

resin was added to 2 ml of the cleared leaf lysates.

Expression analysis by RNA sequencing
Tissue was collected from the sixth leaf, 20 days after germination, at the end of the light period.
Leaves were sprayed with either 0.02% MeJA in water or water alone for 12 hours, in one-hour
intervals. Roughly 100 mg of leaf tissue from the middle of the leaf without the midrib was
placed into collection tubes. RNA extraction and 3’ RNA sequencing were performed at the
Cornell Institute of Biotechnology Genomic Facility (https://www.biotech.cornell.edu/core-
facilities-brc/facilities/genomics-facility), as described previously (Kremling et al. 2018).

Single-end Illumina reads generated from 3° RNA-Seq libraries were processed to
remove adaptor and low-quality sequences using Trimmomatic (v0.38) (Bolger et al. 2014) and
to trim polyA/T tails using PRINSEQ-++ (Cantu et al. 2019). The resulting reads were aligned to
the SILVA rRNA database (Quast et al. 2013) using Bowtie (Langmead et al. 2009) to remove
ribosomal RNA contamination. The cleaned high-quality RNA-Seq reads were aligned to the
maize W22 reference genome (Springer et al. 2018) using HISAT2 (v2.1) (Kim et al. 2019) with
default parameters. Based on these alignments, raw read counts were derived for each gene and
normalized to reads per million mapped reads (RPM). Differential gene expression analyses
were performed using DESeq?2 (Love et al. 2014).

To prepare heat maps, the RPM data were transformed by log(1+RPM) prior to

clustering. The color gradient in the heatmap reflects the Z scores, with red colors indicating
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higher-than-average expression levels (Z score > 0) and blue colors indicating lower-than-
average expression levels (Z score < 0). The pairwise comparative p values (<0.05) were used
for the sequential sorting to make the gene lists used in heatmaps. Heatmaps were produced in R
(https://www.r-project.org/) and Venn diagrams were made using FunRich
(http://www.funrich.org/).

Inductively coupled plasma atomic absorption emission spectroscopy

Elemental analysis determinations were performed using ICP-MS. Less than 200 milligrams of
leaf tissue were digested with a cocktail of HNOs and perchloric acid (1:1 ratio), diluted in 10 ml
of 5% HNOs, and analyzed using Sciex Inductively coupled argon plasma (AB Sciex LLC,
Framingham, MA), as described previously (Cobb et al. 2021).

Photosynthetic measurements

Photosynthetic efficiency was assessed by measuring gas exchange at a fixed CO2 concentration
of 400 umol mol! (GasExA), using an LI-6800 portable photosynthesis system (Li-Cor Inc.,
Lincoln, NE, USA). The efficiency of the photosystem II photochemistry and other light
response parameters was assessed at a fixed light intensity of 2000 pmol m2s™.

Protein extraction, and immunoblotting

Total protein was extracted from 60 mg of leaf material (Figures 10, 12, and S15) as described
previously (Feiz et al. 2012). For maize grown in soil, the fourth leaf was harvested 20 days after
germination. For N. benthamiana experiments, samples were collected 48 hours after co-
infiltration. For maize grown in germination pouches, seedlings were harvested after 5 days.
Briefly, the ground leaf material was mixed with 250 pl of the extraction buffer (50 mM Tris-
HCI, pH 7.5, 150 mM NacCl, 1% Triton X-100, 1 mM ethylene glycol-bis(B-aminoethyl ether)-
N,N,N',N’-tetraacetic acid (EGTA), and 1 mM DTT) with 1% protease inhibitor cocktail
(04693116001, Roche) and diluted 1x with the 2x loading buffer (65.8 mM Tris-HCI, pH 6.8,
2.1% SDS, 26.3% (w/v) glycerol, 0.01% bromophenol blue). A volume corresponding to 150 pg
of tissue was analyzed using 10% SDS-polyacrylamide gels. Proteins were analyzed by transfer
to polyvinylidene difluoride (PVDF) membranes. Immunodetection of the maize DELLA
proteins was performed using anti-SLR1 primary antibody (Cosmo Bio USA, Carlsbad,
California) (2:10,000 dilution) and anti-rabbit IgG, horseradish peroxidase conjugated secondary
antibody (www.promega.com) (1:10,000 dilution). The corresponding molecular weight for the

band in immunoblotting (70 kDa) was consistent with the expected size of maize DELLA
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proteins (65-66 kDa). The chemiluminescence signal was detected with the Pierce™ ECL Plus
immunoblotting substrate on a GelDoc Go Imaging (BIO-RAD). Bortezomib (BTZ,
Selleckchem.com) at 20 uM concentration was infiltrated into the N. benthamiana leaves 24
hours after leaf infiltration with the plasmids expressing the DELLA-RFP, and COIla-EGFP or
COI1c-EGFP proteins. Sixteen hours after BTZ treatments, leaves were used for confocal
microscopy or immunoblot analyses.

Statistical analysis

Statistical comparisons (#-tests and ANOVA) were conducted using Microsoft Excel. Raw data
and statistical analyses for all bar graphs and line graphs are presented in Supplementary Dataset

S18.

Accession numbers

Raw RNA-Seq reads have been deposited in the NCBI BioProject database under accession
PRINA951759. MaizeGDB (www.maizegdb.org) accession numbers for maize inbred line W22 alleles of
key genes described in this work: Zm00004b018438 (Coila); Zm00004b027897 (Coild);
Zm00004b030639 (Coilc); Zm00004b026046 (Coilb); Zm00004b001065 (Coi2a); Zm00004b033978
(Coi2b); Zm00004b036097 (Jazla); Zm00004b009062 (Jazlb); Zm00004b040435 (Jaz2a);
Zm00004b006088 (Jaz2b); Zm00004b037309 (Jaz3-1a); Zm00004b009908 (Jaz3-1b); Zm0O0004b001750
(Jaz3-2); Zm00004b034344 (Jaz4-1b); Zm00004b008980 (Jaz5-1b); Zm00004b021513 (Jaz5-2);
Zm00004b006410 (Jaz4-3); Zm00004b036592 (Jaz4-5); Zm00004b004884 (Dwarf8); Zm00004b011408
(Dwarf9).
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Supplementary Figure S6. Segregation patterns of selfed coi2a/coi2a Coi2b/coi2b and
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without MeJA treatment.
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Figure legends

Figure 1. The maize genome encodes six coronatine insensitive (COI) proteins. The sequences
of six maize COI proteins, along with their paralogs from other species, were obtained from
Phytozome (https://phytozome-next.jgi.doe.gov/). Two predicted duplication events are marked.
Four maize COI1 proteins are marked with green boxes. Two maize COI2 proteins are marked
with blue boxes. The species in the Poaceae have three COI protein clades, two containing COI1
proteins (exemplified by maize COIla and COIld, and COI1b and COllc, respectively) and one
containing COI2 proteins (exemplified by maize COI2a and COI2b). The protein sequence
alignment and species names are presented in Supplementary Dataset S2. A machine-readable
(Newick Format) version of the tree is in Supplementary File S1. FASTA sequences of all
proteins are in Supplementary File S2. The maximum likelihood, midpoint-rooted tree was
produced with IQ-Tree and visualized with MEGA11. Bootstrap values are based on 1000

replicates. Scale bar indicates substitutions per site.

Figure 2. Subcellular locations of the maize coronatine insensitive (COI) proteins. COlla,

COllc, and COI2a proteins were fused to enhanced green fluorescent protein (EGFP), showing
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that COI2a is more targeted to the nuclei than the two COI1 proteins. Confocal images were
taken at 48 h after infiltrating plasmids expressing the COI-EGFP fusion proteins into the
Nicotiana benthamiana. Leaves were sprayed with water (mock) or 0.02% methyl jasmonate
(MeJA) two hours before imaging. White arrows indicate the nuclei, and red arrow represents a

cytosolic condensate. Scale bars = 25 um.

Figure 3. Bimolecular fluorescence complementation (BIFC) between the maize coronatine
insensitive (COI) proteins fused to the carboxy-terminus of yellow fluorescent protein (cYFP)
and jasmonate-ZIM domain (JAZ) proteins fused to the amino-terminus of yellow fluorescent
protein (nYFP). BIFC indicating co-localization is shown as white spots in the images. Magenta
represents chlorophyll fluorescence. Maize JAZ proteins have a higher affinity for COI2a than
COIla or COllc. Leaves were sprayed with 0.02% methyl jasmonate (MeJA) two hours before
imaging. Scale bars = 50 um. These experiments were repeated independently with similar

results (Figure S4). JAZ protein names are as in Han and Luthe (2022).

Figure 4. Fall armyworm (Spodoptera exigua) and beet armyworm (Spodoptera exigua)
caterpillar growth on coronatine insensitive (Coi) mutant and wildtype maize. (A) Locations of
Dissociation (Ds) transposon insertions in COII genes and Mutator (Mu) transposon insertions
in COI2 genes are marked with triangles. Insertions are located at 140, 2682, 344, 2342, -8, and
198 bp from the start codons of COIlla, COIld, COIlc, COIlb, COI2a, and COI2b, respectively.
Black bars represent exons, thin lines are introns, and white bars are non-coding regions of the
genes. (B) Mass of ten-day-old S. frugiperda caterpillars on wildtype and coil-4x maize. No
significant difference (P > 0.05, z-test). (C) Mass of ten-day-old S. exigua caterpillars on wildtype
and coil-4x. *P <0.05, t-test. (D) Mass of ten-day-old S. frugiperda on wildtype and coi2
mutants. No significant difference (NS, P> 0.05), Dunnett’s test relative to wildtype-Mu. All
data are mean +/— s.e., numbers in bars indicate the number of caterpillars for each treatment.

Raw data and statistical calculations are in Supplementary Dataset S18.

Figure 5. Plants with mutations in four maize coronatine insensitive (Coi) genes (coil-4x) have
impaired growth relative to the corresponding double mutants, coila coild and coilb coilc, and

wildtype inbred line W22 maize. (A,B) Lengths of the third leaf (dashed arrows in Panel A) of
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coi-4x and wildtype (WT) ten days after germination, N = 4 plants, mean + se, two-tailed
Student’s t-test, *P < 0.05, **P < 0.01. Scale bar in Panel A= 10 cm. (C,D) Plant heights at 60
days after germination. Numbers in bars = number of plants of each genotype, mean +/- s.e.,
letters indicate significant differences, P < 0.05, ANOVA followed by Tukey’s HSD test. Scale
bar in Panel C =22 cm. (E,F) Internode lengths were compared between four genotypes at 60
days post-germination. Positions of stem nodes are marked with white arrows in Panel B. coil-4x
N = 13 plants, wildtype N = 6 plants, coila coild and coilb coilc N =5 plants, mean +/— s.e.,
**%p < 0.01, Dunnett’s test relative to wildtype. Scale bar in Panel E = 22 cm. Raw data and

statistical calculations are in Supplementary Dataset S18.

Figure 6. Plants with mutations in four maize coronatine insensitive (Coi) genes (coil-4x) have
striped leaves, decreased microelement levels, and reduced photosynthesis. (A) The striped leaf
phenotype of the coil-4x at 20 days post-germination compared to corresponding leaves from the
double mutants and wildtype W22. Scale bar = 5 cm. (B) Microelements and (C) macroelements
in 20-day-old seedlings, N = 7 plants, mean +/— s.e., letters indicate differences (P < 0.05) using
Tukey’s HSD test. (D) Leaf CO, assimilation rate (GasEX A) at 400 umol mol™ CO, and (E) the

quantum yield of the photosystem II phytochemistry (ePSII) at 2000 pmol m” s ! of actinic light
were measured at 20 days after germination, respectively. Mean +/— s.e., n = 20 plants, two-
tailed Student’s z-test, **P < 0.01, ***P < (0.001. Raw data and statistical calculations are in

Supplementary Dataset S18.

Figure 7. Heatmap of gene expression for 13,365 genes that were differentially regulated
between two or more genotypes or between mock and methyl jasmonate (MeJA) induction.
Color ranges from blue (minimum) to red (maximum) reads per million bp for each gene.

The color key represents the normalized log(1+expression) ranging from blue (indicating low
values) to red (indicating high values). Reads per million (RPM) data were transformed by
log(1+RPM) prior to clustering. The color gradient in the heatmap reflects the Z scores, with red
colors indicating higher-than-average expression levels (Z score > 0) and blue colors indicating
lower-than-average expression levels (Z score < 0). Numerical data underlying the heatmap are

in Supplementary Dataset S6.
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Figure 8. Genes down-regulated in maize plants with mutations in four coronatine insensitive

(Coi) genes (coil-4x) encode two main groups of proteins, involved in C, photosynthesis and

carbohydrate and cell wall metabolism. (A) Heatmap showing downregulated genes in coil-4x
relative to other genotypes, with or without methyl jasmonate (MeJA) treatment. Reads per
million (RPM) data were transformed by log(1+RPM) prior to clustering. The color gradient in
the heatmap reflects the Z scores, with red colors indicating higher-than-average expression
levels (Z score > 0) and blue colors indicating lower-than-average expression levels (Z score <
0). (B) Down-regulated genes in coil-4x were categorized into five functional groups. The list of
the genes, color-coded by their functional group, as well as ordered based on their position in the

heatmap, is presented in Supplementary Dataset S7.

Figure 9. Genes up-regulated in maize plants with mutations in four coronatine insensitive (Coi)
genes (coil-4x) encode proteins involved in phosphate regulation, lipid and carbohydrate
metabolism, hormone regulation, and transcription. (A) Heatmap showing upregulated genes in
coil-4x relative to other genotypes, with or without methyl jasmonate (MeJA) treatment. The
reads are transformed by log(1+expression) prior to clustering. (B) Up-regulated genes in coil-
4x were categorized into six functional groups. The list of the genes, color-coded by their
functional group, as well as ordered based on their position in the heatmap, is presented in

Supplementary Dataset S8.

Figure 10. Immunoblot analyses of maize DELLA proteins. The leaf total proteins from equal
surface area (similar weight) leaves (fourth leaf, 20 days after germination) of wildtype maize
inbred line W22 and a line with mutations in four coronatine insensitive (Coi) genes (coil-4x)
were analyzed by probing with antibodies that react with rice DELLA (SLENDER RICE 1

(SLR1)). The membrane was stained with Ponceau S as the loading control.

Figure 11. Maize DELLA (DWARF9) disappears from the nuclei upon coexpression with the
maize coronatine insensitive (COI) proteins. Confocal images were taken after transiently
expressing genes in Nicotiana benthamiana leaves for 48 hours. Labels on left indicate infiltrated

genes for each row of images. GFP = green fluorescent protein, EGFP = enhanced green
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fluorescent protein, RFP = red fluorescent protein. Protease inhibitor (bortezomib) was co-

infiltrated in the bottom row. Scale bars =50 um.

Figure 12. Expression of the maize coronatine insensitivel (COIl) proteins leads to proteasome-
dependent degradation of maize DELLA in Nicotiana benthamiana. (A) Nuclei showing the
presence of the COI1a-EGFP (enhanced green fluorescent protein) and or DELLA-RFP (red
fluorescent protein) were counted on confocal images from an experiment similar to Figure 11,
with and without protease inhibitor. The bars are means +/— s.e. of N = 48 plants for the mock
treatment and N = 71 plants treated with the proteasome inhibitor bortezomib (BTZ). Raw data
and statistical calculations are in Supplementary Dataset S18. (B) Leaf tissue from the N.
benthamiana plants expressing DELLA-RFP alone or with EGFP, COI1a-EGFP, or COI1c-EGFP
(similar to those used in Figure 11), 48 hours after infiltration, was used for immunoblot
analyses. Membranes were probed with antibodies that react with rice DELLA (SLENDER
RICE 1 (SLR1)) and antibodies that react with GFP. The first membrane was stained with
Ponceau S as the loading control. Non-specific binding of the SLR1 antibody to an unrelated

protein was used as an extra loading control.

Figure 13. Effect of exogenous methyl jasmonate (MeJA) and gibberellic acid (GA) on growth of
wildtype maize inbred line W22 and Plants with mutations in four maize coronatine insensitive (Coi)
genes (coil-4x). (A) Leaf discoloration symptoms at 30 days post-germination and after three weeks of
JA treatment. Scale bar = 5 cm. (B) Plant heights at 23 days post-germination, with mock, MeJA, or GA
treatments. Scale bar = 10 cm. (C) Plant heights at 30 days post-germination, with or without MeJA
treatment. WT = wildtype. Scale bar = 10 cm. (D) Bar chart showing percent change in height relative to
the mock-treated controls for the MeJA and GA treatments shown in panels B and C. N =4, mean +/—

s.e., two-tailed Student’s #-test, *P < 0.05. Raw data and statistical calculations are in Supplementary

Dataset S18.

Figure 14. Model for differential functions of maize coronatine insensitive (COI) proteins in
regulating growth and defense. (A) Maize COI2 proteins are proposed to have the classical F-
box domain protein function of Arabidopsis and tomato COlIs. At low jasmonate-isoleucine (JA-
Ile) concentrations (black arrow pointing down), jasmonate ZIM-domain (JAZ) proteins prevent

activation of JA-Ile-responsive genes by MYC transcription factor (black right-angle arrow with
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ared X). Higher abundance of JA-Ile (black arrow pointing up) leads to interactions between
COI2 and JAZ proteins (arched gray arrow), causing addition of ubiquitin (U) to JAZ and
degradation (blue arrow) by the 16S proteasome (red triangles). The absence of JAZ proteins
leads to activation of transcription by MYC proteins and expression of defense-related genes
(black right-angle arrow). (B) At low gibberellic acid (GA) levels (black arrow pointing down),
DELLA is bound to PIF transcription factors, preventing transcription of GA-responsive genes
(black right-angle arrow with a red X). At high GA levels, an as yet unknown maize F-box
protein contributes to an E3 ligase complex (dashed blue arrow) that causes addition of ubiquitin
(U) to DELLA and degradation (blue arrow) by the 16S proteasome, leading to activation of GA-
responsive genes (black right-angle arrow). Based on the results that are presented, we propose
that maize COI1 proteins directly or indirectly cause DELLA degradation (green triangles). In
the coil-4x mutant, there is no COII, resulting in less DELLA degradation, less growth, and

shorter stature of the maize plants.
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Figure 1. The maize genome encodes six coronatine insensitive (COI) proteins. The sequences of six
maize COlI proteins, along with their paralogs from other species, were obtained from Phytozome
(https://phytozome-next.jgi.doe.gov/). Two predicted duplication events are marked. Four maize COI1
proteins are marked with green boxes. Two maize COI2 proteins are marked with blue boxes. The
species in the Poaceae have three COIl protein clades, two containing COI1 proteins (exemplified by
maize COl1a and COI1d, and COI1b and COl1c, respectively) and one containing COI2 proteins
(exemplified by maize COI2a and COI2b). The protein sequence alignment and species names are
presented in Supplementary Dataset S2. A machine-readable (Newick Format) version of the tree is in
Supplementary File S1. FASTA sequences of all proteins are in Supplementary File S2. The maximum
likelihood, midpoint-rooted tree was produced with IQ-Tree and visualized with MEGA11. Bootstrap
values are based on 1000 replicates. Scale bar indicates substitutions per site.
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Figure 3. Bimolecular
fluorescence complementation
(BIFC) between the maize
coronatine insensitive (COI)
proteins fused to the carboxy-
terminus of yellow fluorescent
protein (CYFP) and jasmonate-
ZIM domain (JAZ) proteins fused
to the amino-terminus of yellow
fluorescent protein (nYFP). BIFC
indicating co-localization is shown
as white spots in the images.
Magenta represents chlorophyll
fluorescence. Maize JAZ proteins
have a higher affinity for COI2a
than COIl1a or COl1c. Leaves
were sprayed with 0.02% methyl
jasmonate (MeJA) two hours
before imaging. Scale bars =

50 um. These experiments were
repeated independently with
similar results (Figure S4). JAZ
protein names are as in Han and
Luthe (2022).
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Figure 4. Fall armyworm (Spodoptera exigua) and beet armyworm (Spodoptera exigua) caterpillar
growth on coronatine insensitive (Coi) mutant and wildtype maize. (A) Locations of Dissociation (Ds)
transposon insertions in CO/1 genes and Mutator (Mu) transposon insertions in COI2 genes are
marked with triangles. Insertions are located at 140, 2682, 344, 2342, -8, and 198 bp from the start
codons of COl1a, COI1d, COIl1c, COI1b, COI2a, and COI2b, respectively. Black bars represent
exons, thin lines are introns, and white bars are non-coding regions of the genes. (B) Mass of ten-
day-old S. frugiperda caterpillars on wildtype and coi1-4x maize. No significant difference (P > 0.05,
t-test). (C) Mass of ten-day-old S. exigua caterpillars on wildtype and coi7-4x. *P < 0.05, t-test. (D)
Mass of ten-day-old S. frugiperda on wildtype and coi2 mutants. No significant difference (NS, P >
0.05), Dunnett’s test relative to wildtype-Mu. All data are mean +/- s.e., numbers in bars indicate the
number of caterpillars for each treatment. Raw data and statistical calculations are in Supplementary
Dataset S18.
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Figure 5. coi1-4x has impaired growth relative to the corresponding double mutants, coifa coi1d and
coi1b coi1c, and wildtype inbred line W22 maize. (A,B) Leaf lengths of coi-4x and wildtype (WT) ten days
after germination, N = 4, mean t se, two-tailed Student’s t-test, *P < 0.05, **P < 0.01. (C,D) Plant heights
at 60 days after germination. Numbers in bars = sample sizes, mean +/- s.e., letters indicate significant
differences, P < 0.05, ANOVA followed by Tukey-Kramer Post Hoc Test. (E,F) Internode lengths were
compared between four genotypes at 60 days post-germination. coi7-4x N = 13, wildtype N = 6, coifa
coild and coi1b coiic N =5, mean +/- s.e., **P < 0.001, Dunnett’s test relative to wildtype. Raw data
and statistics are presented in Supplemental Dataset S4.
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Figure 6. Plants with mutations in four maize coronatine insensitive (Coi) genes (coi1-4x) have striped
leaves, decreased microelement levels, and reduced photosynthesis. (A) The striped leaf phenotype of
the coi1-4x at 20 days post-germination compared to corresponding leaves from the double mutants
and wildtype W22. Scale bar = 5 cm. (B) Microelements and (C) macroelements in 20-day-old
seedlings, N = 7 plants, mean +/- s.e., letters indicate differences (P < 0.05) using Tukey’s HSD test.
(D) Leaf CO, assimilation rate (GasEX A) at 400 ymol mol™ CO, and (E) the quantum yield of the
photosystem Il phytochemistry (aPSI/) at 2000 umol m-2 s -* of actinic light were measured at 20 days
after germination, respectively. Mean +/- s.e., n = 20 plants, two-tailed Student’s t-test, **P < 0.01, ***P
< 0.001. Raw data and statistical calculations are in Supplementary Dataset S18.
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Figure 7. Heatmap of gene expression for 13,365 genes that were differentially regulated between two or
more genotypes or between mock and methyl jasmonate (MeJA) induction. Color ranges from blue
(minimum) to red (maximum) reads per million bp for each gene.

The color key represents the normalized log(1+expression) ranging from blue (indicating low values) to
red (indicating high values). Reads per million (RPM) data were transformed by log(1+RPM) prior to
clustering. The color gradient in the heatmap reflects the Z scores, with red colors indicating higher-than-
average expression levels (Z score > 0) and blue colors indicating lower-than-average expression levels
(Z score < 0). Numerical data underlying the heatmap are in Supplementary Dataset S6.
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Figure 8. Genes down-regulated in maize plants with mutations in four coronatine insensitive (Coi)
genes (coi1-4x) encode two main groups of proteins, involved in C, photosynthesis and carbohydrate
and cell wall metabolism. (A) Heatmap showing downregulated genes in coi1-4x relative to other
genotypes, with or without methyl jasmonate (MeJA) treatment. Reads per million (RPM) data were
transformed by log(1+RPM) prior to clustering. The color gradient in the heatmap reflects the Z scores,
with red colors indicating higher-than-average expression levels (Z score > 0) and blue colors indicating
lower-than-average expression levels (Z score < 0). (B) Down-regulated genes in coi71-4x were
categorized into five functional groups. The list of the genes, color-coded by their functional group, as
well as ordered based on their position in the heatmap, is presented in Supplementary Dataset S7.
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Figure 9. Genes up-regulated in maize plants with mutations in four coronatine insensitive (Coi) genes (coi1-
4x) encode proteins involved in phosphate regulation, lipid and carbohydrate metabolism, hormone
regulation, and transcription. (A) Heatmap showing upregulated genes in coi7-4x relative to other genotypes,
with or without methyl jasmonate (MeJA) treatment. The reads are transformed by log(1+expression) prior to
clustering. (B) Up-regulated genes in coi7-4x were categorized into six functional groups. The list of the
genes, color-coded by their functional group, as well as ordered based on their position in the heatmap, is
presented in Supplementary Dataset S8.



wildtype i1 4, Wildtype i 4
T - — @ o DELLA

Ponceau
stained blot

Figure 10. Immunoblot analyses of maize DELLA proteins. The leaf total proteins
from equal surface area (similar weight) leaves (fourth leaf, 20 days after germination)
of wildtype maize inbred line W22 and a line with mutations in four coronatine
insensitive (Coi) genes (coi1-4x) were analyzed by probing with antibodies that react
with rice DELLA (SLENDER RICE 1 (SLR1)). The membrane was stained with
Ponceau S as the loading control.
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Figure 11. Maize DELLA (DWARF9) disappears from the nuclei upon coexpression with the maize
coronatine insensitive (COIl) proteins. Confocal images were taken after transiently expressing
genes in Nicotiana benthamiana leaves for 48 hours. Labels on left indicate infiltrated genes for
each row of images. GFP = green fluorescent protein, EGFP = enhanced green fluorescent protein,
RFP = red fluorescent protein. Protease inhibitor (bortezomib) was co-infiltrated in the bottom row.
Scale bars =50 ym.
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Figure 12. Expression of the maize coronatine insensitive1 (COI1) proteins leads to proteasome-
dependent degradation of maize DELLA in Nicotiana benthamiana. (A) Nuclei showing the
presence of the COl1a-EGFP (enhanced green fluorescent protein) and or DELLA-RFP (red
fluorescent protein) were counted on confocal images from an experiment similar to Figure 11, with
and without protease inhibitor. The bars are means +/- s.e. of N = 48 plants for the mock treatment
and N = 71 plants treated with the proteasome inhibitor bortezomib (BTZ). Raw data and statistical
calculations are in Supplementary Dataset S18. (B) Leaf tissue from the N. benthamiana plants
expressing DELLA-RFP alone or with EGFP, COl1a-EGFP, or COI1c-EGFP (similar to those used
in Figure 11), 48 hours after infiltration, was used for immunoblot analyses. Membranes were
probed with antibodies that react with rice DELLA (SLENDER RICE 1 (SLR1)) and antibodies that
react with GFP. The first membrane was stained with Ponceau S as the loading control. Non-
specific binding of the SLR1 antibody to an unrelated protein was used as an extra loading control.
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Figure 13. Effect of exogenous methyl jasmonate (MeJA) and gibberellic acid (GA) on growth of
wildtype maize inbred line W22 and Plants with mutations in four maize coronatine insensitive
(Coi) genes (coi1-4x). (A) Leaf discoloration symptoms at 30 days post-germination and after
three weeks of JA treatment. Scale bar = 5 cm. (B) Plant heights at 23 days post-germination,
with mock, MeJA, or GA treatments. Scale bar = 10 cm. (C) Plant heights at 30 days post-
germination, with or without MeJA treatment. WT = wildtype. Scale bar = 10 cm. (D) Bar chart
showing percent change in height relative to the mock-treated controls for the MeJA and GA
treatments shown in panels B and C. N =4, mean +/- s.e., two-tailed Student’s t-test, *P < 0.05.
Raw data and statistical calculations are in Supplementary Dataset S18.
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Figure 14. Model for differential functions of maize coronatine insensitive (COIl) proteins in
regulating growth and defense. (A) Maize COI2 proteins are proposed to have the classical F-
box domain protein function of Arabidopsis and tomato COls. At low jasmonate-isoleucine (JA-
lle) concentrations (black arrow pointing down), jasmonate ZIM-domain (JAZ) proteins prevent
activation of JA-lle-responsive genes by MYC transcription factor (black right-angle arrow with a
red X). Higher abundance of JA-lle (black arrow pointing up) leads to interactions between COI2
and JAZ proteins (arched gray arrow), causing addition of ubiquitin (U) to JAZ and degradation
(blue arrow) by the 16S proteasome (red triangles). The absence of JAZ proteins leads to
activation of transcription by MYC proteins and expression of defense-related genes (black
right-angle arrow). (B) At low gibberellic acid (GA) levels (black arrow pointing down), DELLA is
bound to PIF transcription factors, preventing transcription of GA-responsive genes (black right-
angle arrow with a red X). At high GA levels, an as yet unknown maize F-box protein contributes
to an E3 ligase complex (dashed blue arrow) that causes addition of ubiquitin (U) to DELLA and
degradation (blue arrow) by the 16S proteasome, leading to activation of GA-responsive genes
(black right-angle arrow). Based on the results that are presented, we propose that maize COI1
proteins directly or indirectly cause DELLA degradation (green triangles). In the coi7-4x mutant,
there is no COI1, resulting in less DELLA degradation, less growth, and shorter stature of the
maize plants.




Supplementary Data. Feiz et al. (2024). F-Box Protein Regulation of Growth in Maize. Plant Cell.

Protein identity (%)

Zm-COl1a At-COl 58

Zm-COl1d At-COI 58

Zm-COl1c At-COI 57

Zm-COl1b At-COI 58

Zm-COl2a At-COl 56

Zm-COI2b At-COI 55

Protein identity (%)

Z/m-COl1a  Zm-COl1d 94
Zm-COlla  Zm-COl1c 79
Zm-COl1a  Zm-COl1b 78
Z/m-COI1d  Zm-COl1c 80
Zm-COI1d  Zm-COl1b 80
Zm-COl1c Zm-COlI1b 93
Zm-COl1a  Zm-COl2a 60
Z/m-COl1a  Zm-COI2b 61
Zm-COI1d Zm-COl2a 60
Zm-COI1d  Zm-COl2b 60
Zm-COl1lc  Zm-COl2a 60
Zm-COl1c  Zm-COl2b 59
Zm-COI1b  Zm-COl2a 61
Zm-COIl1b  Zm-COl2b 60
Zm-COl2a Zm-COl2b 95

Figure S1. In support of Figure 1. Amino acid identity of Arabidopsis and maize COI
proteins. (A) Percent amino acid identity between maize CORONATINE INSENSITIVE
(COI) proteins and Arabidopsis COI proteins. (B) Percent amino acid identity among the six
maize COI proteins. The maize proteins are color-coded based on pairwise similarity in the
phylogenetic tree in Figure 1.
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Supplementary Data. Feiz et al. (2024). F-Box Protein Regulation of Growth in Maize. Plant Cell.
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Figure S3. In support of Figure 3.
Bimolecular fluorescence
complementation (BIFC) between
the maize coronatine insensitive
(COI) proteins and severn
jasmonate-ZIM domain (JAZ)
proteins. COI proteins were fused to
the carboxy-terminus of yellow
fluorescent protein (cYFP) and JAZ
proteins were fused to the amino-
terminus of yellow fluorescent
protein (nYFP). Shown are he
maize COIla, COllc, and COI2¢
and seven JAZ proteins that did not
show interactions with any of the
COlI proteins. Scale bars = 50 pm.
JAZ protein names are as in Han
and Luthe (2022).
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Figure S4. In support of Figure
3. An independent repeat of
the COI-JAZ bimolecular
fluorescence complementation
(BIFC) experiment that is
presented in Figures 3 and S3.
Shown are interactions
between the maize coronatine
insensitive (COI) proteins
fused to the carboxy-terminus
of yellow fluorescent protein
(cYFP) and jasmonate-ZIM
domain (JAZ) proteins fused to
the amino-terminus of yellow
fluorescent protein (nYFP).
Scale bars= 50 um. JAZ
protein names are as in Han
and Luthe (2022).
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Figure S4. continued
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Figure SS. In support of Figure 3. Interactions between each maize COI and JAZ1a detected via
coimmunoprecipitation and pulldown assays. (A) Immunoblots of the recombinant MBP-JAZ1a (with anti-
MBP antibody) and COlIla, COllc, or COI2a fused to GFP (with anti-GFP) after coimmunoprecipitation of
MBP-JAZ1a (~60 kD) with COI-GFP (~95 kD) using GFP-Trap beads, with and without adding 2 uM
jasmonate-isoleucine (JA-Ile). (B) Immunoblots of the COIla, COllc, or COI2a fused to GFP after
pulldown with the MBP-JAZ1a using amylose beads, with and without adding 2 uM JA-Ile. aGFP = anti-
green fluorescent protein antibodies, aMBP = anti maltose binding protein antibodies.
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Figure S6. In support of Figure 4. Segregation patterns of selfed coi2a/coi2a Coi2b/coi2b and Coi2a/coiZa
coi2b/coi2b mutants. Segregation patterns show that there are no homozygous coi2a/coi2a coi2b/coi2b
mutants among the progeny. This indicates that either male or female coi2a coi2b gametes do not survive.
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Figure S7. In support of Figure 4. Test crosses between coi2a/coi2a Coi2b/coi2b and Coi2a/coila
coi2b/coi2b and the wildtype W22 maize. These crosses indicate that coi2a coi2b pollen is not viable.
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Figure S8. In support of Figure 4. Expression of maize Coi2 genes. Transcriptome data show
highest expression of maize Coi2 genes in anthers. Data were plotted from the Maize Genome
Database (www.maizegdb.org)
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Figure S9. In support of Figure 4. Proteomics data show pollen-specific abundance of
maize COI2a protein. Data are from: Walley et al (2016), Integration of omic
networks in a developmental atlas of maize, Science, 353:814-818,
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Figure S10. In support of Figure 5. Growth phenotypes of coil-4x compared to wild type and
double mutants. Phenotypic comparisons between the coronatine insensitivel (coil) quadruple
mutant (coil-4x) and the corresponding double mutants, coila coild and coilb coilc, and wildtype
W22 (WT). (A) plant heights were compared between coil-4x and wildtype at the indicated ages.
N =10 plants at 10, 17, and 35 days, and N= 6 plants at 58 days. Student’s #-test, *P < (.05, ** P <
0.01, *** P<0.001. (B, C) Plant heights at 20 days after germination. Numbers in bars = numbers
of plants of each genotype, mean +/— s.e., letters indicate differences P < 0.05 using ANOVA

followed by Tukey-Kramer test. Raw data and statistical calculations are in Supplementary Dataset
S18.
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Figure S11. In support of Figure 6. Microelements, macroelements, and photosynthesis assays. (A)
Microelements and (B) macroelements in 13-day-old seedlings of coronatine insensitivel (coil)
quadruple mutant (coil-4x) and wildtype W22 plants, N = 5 plants, mean +/- s.e., Student’s z-test with (*
P<0.05, ** P<0.01, *** P<0.001). Macro and micronutrients were measured in dried tissue of the third
leave by inductively coupled plasma - atomic absorption emission spectroscopy (ICP-AES). (C) Leaf
CO, assimilation rate (GasEX A) at 400 umol mol™" CO, and (D) the quantum yield of the photosystem
I phytochemistry (oPSII) at 2,000 umol m2 s - of actinic light (B) were measured at 28 days after
germination, respectively. Mean +/— s.e., n = 5 plants, two-tailed Student’s #-test , *P < 0.05, **P < 0.01,
kP <0.001, WT — wildtype. Raw data and statistical calculations are in Supplementary Dataset S18.
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Figure S12. In support of Figure 7. Heatmap showing expression of the benzoxazinoid
biosynthesis genes, with and without methyl jasmonate (MeJA) induction. The expression
levels of the genes used in this heatmap are presented in Supplementary Dataset S10. Reads
per million (RPM) data were transformed by log(1+RPM) prior to clustering. The color
gradient in the heatmap reflects the Z scores, with red colors indicating higher-than-average
expression levels (Z score > 0) and blue colors indicating lower-than-average expression
levels (Z score < 0).
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Figure S13. In support of Figure 7. Heatmap showing expression of the terpene synthase
genes, with and without methyl jasmonate (MeJA) induction. The expression levels of the
genes used in this heatmap are presented in Supplementary Dataset S11. Reads per million
(RPM) data were transformed by log(1+RPM) prior to clustering. The color gradient in the
heatmap reflects the Z scores, with red colors indicating higher-than-average expression
levels (Z score > 0) and blue colors indicating lower-than-average expression levels (Z score
<0).
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Figure S14. In support of Figure 7. Heatmap showing expression of the maize Jaz genes,
with and without methyl jasmonate (MeJA) induction. The expression levels of the genes
used in this heatmap are presented in Supplementary Dataset S12. Reads per million (RPM)
data were transformed by log(1+RPM) prior to clustering. The color gradient in the heatmap
reflects the Z scores, with red colors indicating higher-than-average expression levels (Z
score > 0) and blue colors indicating lower-than-average expression levels (Z score < 0).
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Figure S15. In support of Figure 7. Heatmap showing expression of defense and lipoxygenase (Lox)
genes studied by Christensen et al. (2015), with and without methyl jasmonate (MeJA) induction. The

expression levels of the genes used in this heatmap are presented in Supplementary Dataset S13. Reads

per million (RPM) data were transformed by log(1+RPM) prior to clustering. The color gradient in the
heatmap reflects the Z scores, with red colors indicating higher-than-average expression levels (Z score

> () and blue colors indicating lower-than-average expression levels (Z score < 0).
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Ponceau
stained blot

Figure S16. In support of Figure 10. DELLA protein levels decrease and increase after
treatment of five-day-old seedlings with GA and MeJA, respectively. Immunoblot
analyses of the maize DELLA proteins after treatment of the 5-day-old seedlings
germinated in CYG germination pouches, with gibberellic acid (GA) and methyl
jasmonate (MeJA) for two days. The leaf total proteins from equal surface area (similar
weight) of coil-4x and wildtype inbred line W22 leaves were analyzed by probing with
the rice DELLA (SLENDER RICE1 (SLR1 )) antibodies. The membrane was stained with
Ponceau S as the loading control.
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Bright Field Chlorophyl COlMa-GFP DELLA-RFP Merged

Figure S17. In support of Figure 11. Co-localization of DELLA-RFP and COIla-EGFP in cytosolic
condensates. Whereas the co-expression of the DELLA-RFP with COIla-EGFP leads to the
disappearance of nuclear-localized DELLA-RFP (Figure 11), the cytosol-localized DELLA-RFP is
detectable. White and red arrows represent the nuclei and the cytosolic condensates, respectively.
Scale bar =50 um. RFP = red fluorescent protein. GFP = green fluorescent protein. EGFP =
enhanced green fluorescent protein.
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