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Abstract 

The oxylipin 12-oxo-phytodienoic acid (OPDA) is known as a biosynthetic precursor of the 
important plant hormone jasmonic acid. However, OPDA is also a signaling molecule with 
functions independent of jasmonates. OPDA involvement in diverse biological processes, from 
plant defense and stress responses to growth regulation and development, has been documented 
across plant species. OPDA is synthesized in the plastids from alpha-linolenic acid, and OPDA 
binding to plastidial cyclophilins activates TGA transcription factors upstream of genes associated 
with stress responses. Here, we summarize what is known about OPDA metabolism and signaling 
while briefly discussing its jasmonate dependent and independent roles. We also describe open 
questions, such as the speculated covalent binding of OPDA to proteins and the biological roles of 
OPDA conjugates. 

 

 

Highlights 

► OPDA is not only a metabolic precursor of jasmonic acid but also a signaling molecule ► 
OPDA regulates diverse biological processes in a jasmonate-independent manner ► OPDA binds 
to cyclophilin proteins upstream of redox metabolism and gene expression ► OPDA bioactivity 
can be attributed to its electrophilic properties ► OPDA covalently binds to proteins in vitro to 
modulate their activity  
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OPDA metabolism 

12-oxo-Phytodienoic acid (OPDA) belongs to a large group of natural compounds, collectively 
called oxylipins, that are produced through oxygenation of polyunsaturated fatty acids (Gerwick 
et al., 1991). OPDA is found throughout the plant kingdom, including in the non-vascular model 
plants Marchantia polymorpha (Marchantia) and Physcomitrium patens (Mukhtarova et al., 2020). 
OPDA is synthesized in plastids from alpha-linolenic acid (α-LA , 18:3n3) (Vick and Zimmerman, 
1983; Wasternack and Feussner, 2018), and reported intracellular concentrations vary among plant 
species, from less than 4 ng g-1 in Nicotiana tabacum to over 1000 ng g-1 in Arabidopsis 
(Arabidopsis thaliana) (Stelmach et al., 1998). It is widely accepted that OPDA biosynthesis is 
initiated after α-LA release from membrane-embedded glycerolipids by the activity of 
phospholipases, for instance defective in anther dehiscence 1 (DAD1) in stamen filaments 
(Ishiguro et al., 2001) and plastid lipases 2/3 (PLIP 2/3) in response to abscisic acid elicitation 
(Wang et al., 2018) (Figure 1). Lipase-mediated liberation of α-LA is also a major regulatory step 
in OPDA synthesis, and activity of the lipases is subject the transcriptional control (Ito et al., 2007). 
Nevertheless, the existence of arabidopsides, which contain OPDA esterified to glycerolipids 
(Andersson et al., 2006; Hisamatsu et al., 2003), raises the question whether the release of α-LA 
may be bypassed for OPDA production. α-LA is converted into OPDA by sequential oxidation, 
dehydration, and cyclization catalyzed by a 13-lipoxygenase (13-LOX) (Bannenberg et al., 2009), 
allene oxide synthase (AOS) (Lee et al., 2008), and allene oxide cyclase (AOC) (Hofmann et al., 
2006), respectively. In Arabidopsis, there are four 13-LOX, one AOS, and four AOC isoenzymes. 
All four 13-LOXs contribute to OPDA synthesis (Chauvin et al., 2013), but they differ in their 
expression profiles, activity, and allosteric regulation. For instance, LOX3 and LOX4 are required 
for jasmonate production during stamen and filament formation (Caldelari et al., 2011), whereas 
LOX2 and LOX6 are the major forms responsible for OPDA accumulation in mature and young 
leaves, respectively, in response to wounding (Chauvin et al., 2013; Glauser et al., 2009). The four 
LOXs are also differentially activated by divalent cations and inhibited by OPDA supplementation 
(Maynard et al., 2021a), which suggests OPDA-regulated OPDA biosynthesis. Analogously to the 
LOXs, the four AOC genes differ in their expression patterns and encoded enzyme activities (Otto 
et al., 2016; Stenzel et al., 2012), in addition to being regulated by heteromultimerization (Otto et 
al., 2016). Additionally, 11-LOX, AOS, and AOC enzymes are involved in synthesizing a different 
bioactive oxylipin, namely 12-dinor-OPDA (dn-OPDA), starting from membrane-liberated 
hexadecatrienoic acid (Weber et al., 1997). Finally, LOX, AOS, and AOC function is ancient and 
evolutionarily conserved across vascular and non-vascular plants (Kanamoto et al., 2012; Koeduka 
et al., 2015; Yamamoto et al., 2015). 

OPDA can be further metabolized to s jasmonic acid (JA) and the plant hormone (+)-7-iso-
jasmonoyl-L-isoleucine (JA-Ile). After synthesis in the plastids, OPDA is transported to the 
peroxisomes and converted to JA by OPDA reductase 3 (OPR3) (Schaller and Weiler, n.d.) and 
three cycles of β-oxidation yielding cyclopentanone compounds, OPC-8:0, OPC-6:0, OPC-4:0, 
and finally OPC-2:0, i.e. JA. The recent identification of the OPDA transporter JASSY at the outer 
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membrane of the plastids (Guan et al., 2019), completed the elucidation of the JA pathway in 
vascular plants. Notably, JA-Ile was shown to induce the expression of LOX, AOS, and AOC genes, 
suggesting a positive-feedback loop in OPDA biosynthesis (Pauwels et al., 2008; Wasternack and 
Hause, 2013). LOX expression is also regulated by transcription factors of the TCP family, which 
is involved in plant growth control (Danisman et al., 2012), and Myb60, a guard-cell specific 
transcription factor (Simeoni et al., 2022). In vascular plants, OPDA is the primary precursor for 
JA synthesis via the above-mentioned OPR3 pathway. However, the existence of an alternative 
pathway was recently reported by Chini et al. (2018). This alternative route involves direct 
peroxisomal β-oxidation of OPDA to 4,5-didehydro-JA, which is reduced to JA by the cytoplasmic 
enzyme OPR2. The functional implications of this work are outlined later in this review. In 
addition to the β-oxidation leading to JA, OPDA can potentially undergo other chemical reactions. 
Specifically, due to the electrophilic character of the alpha-beta unsaturated carbonyl system, it 
behaves as a Michael acceptor. For instance, OPDA can be found conjugated to glutathione in 
planta (Ohkama-Ohtsu et al., 2010). Since the  α,β-unsaturated system of OPDA is highly reactive 
and toxic for insect larvae, conjugation to glutathione in the gut of some insect species (Dabrowska 
et al., 2009) has been proposed as a detoxification mechanism (Shabab et al., 2014). 

Although OPDA metabolism and its regulation have been extensively studied, there are 
still many open questions. For instance, substrate channeling in OPDA biosynthesis is suggested 
by the identification of LOX2, AOS, and AOC as constituents of a protein complex (Pollmann et 
al., 2019). Also unknown are the identity of the lipases that would release OPDA from 
arabidopsides, the exact role of the reported post-translational regulation of OPDA biosynthetic 
enzymes (Maynard et al., 2018) and the regulatory importance of the cross-talk with other oxylipin 
biosynthetic pathways.  

 
OPDA functions and mode of action: COI1-dependent bioactivity  

Although the so-called COI1-dependent OPDA functions (i.e.,  OPDA functioning primarily as a 
JA precursor) are beyond the scope of this review, for the sake of clarity, we will briefly outline 
current knowledge concerning JA-dependent OPDA signaling. For a broader coverage of COI1-
dependent OPDA activities we recommend excellent recent reviews on JA signaling (Fàbregas 
and Fernie, 2021; Goossens and Farmer, 2019; Wasternack and Feussner, 2018; Wasternack and 
Strnad, 2018). 

Following mechanical wounding or herbivory, OPDA biosynthesis is rapidly activated, 
leading to a significant accumulation of JA, which is conjugated to isoleucine to produce JA-Ile, 
the bioactive jasmonate in vascular plants (Figure 1). Specifically, JA-Ile binds to a coreceptor 
complex composed of the F-box protein coronatine insensitive 1 (COI1) and a jasmonate zim-
domain (JAZ) proteins, which, in the resting state, represses MYC family transcription factors 
(Chico et al., 2020; Liu et al., 2019; Lorenzo et al., 2004; Peñuelas et al., 2019).  The JAZs can 
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interact with the co-repressor TOPLESS and the adaptor protein NINJA (Pauwels et al., 2010), 
thereby linking JA-Ile perception to alterations in gene expression. Thereby, the JAZ proteins can 
be seen as an on-off switch regulating the broad repertoire of JA-Ile (i.e., COI1) dependent plant 
responses. JA-Ile signaling is a hyper-regulated pathway, reminiscent of auxin signaling in that 
the first step comprises an E3 ubiquitin ligase complex, which ubiquitinates protein substrates, 
marking them for degradation by the proteasome (Devoto et al., 2002). JA-Ile regulates many 
different processes in the plant, including root growth (Fernández-Calvo et al., 2011; Wasternack, 
2017), flower development (Wasternack, 2007), seed germination (Creelman and Mullet, 1997), 
formation of tubers in potato (Fernie and Willmitzer, 2001; Pelacho and Mingo-Castel, 1991), 
microbial symbioses (Hause and Schaarschmidt, 2009), cell death (Reinbothe et al., 2009), and 
leaf senescence (Griffiths, 2020). That said, the best understood and most extensively studied role 
of JA-Ile and therefore, indirectly, the COI1-dependent OPDA role, pertains to wound responses 
and plant defense.        

 
 

OPDA functions and mode of action: COI1-independent roles 

OPDA is not only the main precursor of JA-Ile but also a signaling molecule in its own right (Dave 
and Graham, 2012; Liu and Park, 2021; Maynard et al., 2018). Here, we outline the experimental 
evidence supporting OPDA regulatory roles independent of JA-Ile, i.e., independent of the COI1 
receptor. It has been known for a long time that the conversion of OPDA to JA/JA-Ile can be 
uncoupled, pointing to OPDA being more than a JA-Ile precursor. For instance, accumulation of 
OPDA, but not of jasmonates, has been observed in response to drought (Savchenko et al., 2014) 
and in differentiating leaf primordia (Omidbakhshfard et al., 2021).  

OPDA supplementation triggers multiple responses in plants. Not surprisingly, as OPDA 
is a JA precursor, many but not all of these responses can be traced to JA-Ile. However, a 
comparative gene expression analysis of the wild-type Arabidopsis plants treated with OPDA, JA, 
and methyl JA (MeJA) identified approximately 150 transcripts, including multiple heat shock 
proteins and glutathione-S-transferases (Taki et al., 2005), that exhibit stronger responses to 
OPDA. Along similar lines, exogenous OPDA and JA application induced different volatile 
production patterns in lima beans (Koch et al., 1999), OPDA but not JA-Ile treatment rescued the 
compromised phytoalexin production in hebiba, an oxylipin-deficient rice mutant (Shinya et al., 
2022), and OPDA was more effective in closing Arabidopsis stomata than MeJA (Savchenko et 
al., 2014). In rice, over-expression of AOS but not OPR3 improved resistance to the brown 
planthopper (Nilaparvata lugens) (Guo et al., 2014). Consistent with this observation, treatment 
with OPDA but not JA or JA-Ile increased rice resistance to planthoppers (Guo et al., 2014). 
Moreover, comparative transcriptional analysis of AOS and OPR3 over-expressing rice lines 
identified dozens of OPDA-responsive genes (Guo et al., 2014). In the maize inbred line Mp708, 
which accumulates OPDA in response to caterpillar feeding (Shivaji et al., 2010), corn leaf aphid 
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(Rhopalosiphum maidis) resistance was attributed to increased callose deposition (Varsani et al., 
2019).  

As illustrated by the above examples, boosting OPDA levels by either exogenous 
application or overexpression of the biosynthetic enzymes was instrumental in identifying the 
OPDA-specific responses. However, such approaches are inherently compromised by OPDA 
conversion to jasmonates, i.e., it is difficult to distinguish COI1-dependent from independent 
OPDA-regulated responses. To better distinguish between the OPDA and JA-Ile dependent events, 
the two pathways can be uncoupled using mutants defective in the OPDA conversion to JA-Ile, 
such as the opr7 opr8 double mutant in maize, which accumulates near-normal levels of OPDA 
and has an 80% reduction in foliar JA levels (Yan et al., 2012). Supporting the role of OPDA in 
defense against aphids, opr7 opr8 mutants but not wild type plants were more resistant to corn leaf 
aphid infestation after OPDA addition (Varsani et al., 2019). However, accumulation of OPDA, 
JA, and other oxylipins in wildtype and opr7 opr8 mutant maize after exogenous OPDA addition 
was not measured in this experiment. 

Many published studies of Arabidopsis oxylipin signaling rely on the opr3-1 mutant 
(Stintzi et al., 2001; Stintzi and Browse, 2000). However, opr3-1 is not a complete loss of function 
mutant, and Arabidopsis has an alternate JA biosynthetic pathway dependent on the OPDA 
reductase OPR2 (Chini et al., 2018) (Figure 1). As a result, and especially under conditions that 
activate OPR2, opr3-1 mutants accumulate a significant amount of bioactive jasmonates (Chini et 
al., 2018), putting in question previous reports of OPDA-specific responses that were based only 
on the analysis of opr3 mutants (Dave et al., 2011; Mueller et al., 2008; Ribot et al., 2008; Stintzi 
et al., 2001; Taki et al., 2005). In contrast to opr3 single mutants, the newly isolated opr2 opr3 
double mutant is characterized by the absence of jasmonates and constitutes a novel and vital 
genetic resource to decouple OPDA and JA-Ile dependent events (Chini et al., 2018). For instance, 
in contrast to opr3, the opr2 opr3 mutant is severely compromised in its resistance to Botrytis 
cinerea and Alternaria brassicicola (Chini et al., 2018) arguing against the previously reported 
OPDA role in defense against the fungal pathogens. A different line that can be used to delineate 
OPDA-specific responses is the JA-Ile insensitive opr3 coi1 double mutant. Transcriptional 
analysis of OPDA-treated opr3 coi1 plants identified more than 500 differentially regulated genes 
(Monte et al., 2020). These were enriched in transcripts related to heat, redox, chemical stress, and 
other abiotic stresses, such as high light.   

In addition to the stomatal opening, thermotolerance, and response to insects and pathogens 
described above, OPDA was also associated with the regulation of seed germination (Dave et al., 
2016, 2011), embryo development (Goetz et al., 2012), and plant growth (see below). Moreover, 
OPDA can constitute a mobile signal. In Arabidopsis, OPDA produced in wounded leaves was 
transported via the phloem to the roots where it was converted to JA (Schulze et al., 2019). 

How does OPDA exert its regulatory functions? In response to stress, and in the chloroplast 
where it is produced, OPDA reversibly binds the cyclophilin 20-3 (CYP20-3) (Maynard et al., 
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2021b; Park et al., 2013) (Figure 2). Cyclophilins are evolutionarily conserved proteins 
characterized by peptidyl-prolyl isomerase activity, which catalyzes the isomerization of peptide 
bonds from ‘trans’ to ‘cis’ at proline residues to facilitate protein folding. CYP20-3 can also 
transfer electrons from thioredoxins to peroxide substrates. OPDA binding to CYP20-3 leads to 
the stabilization of enzymes involved in cysteine synthesis. The resulting boost in the cysteine 
production increases glutathione levels, leading to redox changes in both the plastid and the 
cytosol, as well as activation of the TGA transcription factors upstream of OPDA-responsive genes 
(Mueller et al., 2008). CYP20-3 was also shown to activate plastidial 2-cysteine peroxiredoxin A 
(2-CysPrx), which is involved in protecting and optimizing photosynthesis (Mueller et al., 2008).  

The OPDA molecule carries a highly reactive α,β-unsaturated carbonyl group that defines 
the reactive electrophile species that can further contribute to OPDA bioactivities. At least in vitro, 
OPDA can covalently bind to proteins by forming a sulfide bridge with cysteine thiols and, as a 
result, affect their activity (Dueckershoff et al., 2008; Findling et al., 2018). In a recent example, 
OPDA binding to two cysteinyl residues of plastidial thioredoxin, TRX-f1, impaired its ability to 
activate the Calvin-Benson-cycle enzyme fructose-1,6-bisphosphatase (Maynard et al., 2021b). 
However, although the in vitro evidence is highly encouraging, data supporting the occurrence and 
function of OPDA binding in vivo is still lacking. It is also unclear whether CYP20-3 is the sole 
OPDA receptor and whether the binding is limited to the plastidial proteins, where OPDA is 
biosynthesized. Given both the chemical resemblance and an accumulation pattern similar to 
OPDA, it is enticing to hypothesize that dn-OPDA, which is produced from the hexadecanoid 
pathway, may also interact with CYP20-3 (Soriano et al., 2022). Comprehensive identification of 
the OPDA protein interactome (covalent and non-covalent interactions) constitutes one of the 
grand challenges to understanding OPDA-mediated regulation in plants. 

Several conjugates of OPDA have been identified (Floková et al., 2014; Shinya et al., 
2022). Thylakoid membrane-associated mono- and digalactosyl diacylglycerol (MGDG and 
DGDG, respectively) OPDA conjugates, known as arabidopsides, have been described as an 
OPDA storage pool, and their metabolism contributes to cellular regulation of OPDA levels 
(Kourtchenko et al., 2007). In Arabidopsis, the amino acid conjugate OPDA-Ile was proposed to 
act as a regulatory molecule in a JA-dependent manner, although results of this study should be 
taken cautiously due the employment of the above-mentioned leaky opr3 mutant (Arnold et al., 
2016). Likewise, in rice, several OPDA amino acid conjugates have been proposed as non-
canonical signaling molecules (Shinya et al. 2022). However, the study was largely conducted in 
cell cultures and only small amounts of OPDA-Asp were detected in chitooligosaccharide-treated 
plants. Moreover, the AOC gene was targeted to generate the JA-impaired cell line, and it is long-
known that OPDA can be produced without AOC participation (Hebert et al., 2016; Wasternack 
and Feussner, 2018). Therefore, it is difficult to rule out JA-Ile-dependent activity in this 
experiment. Indeed, the typical JA-Ile concentration is approximately ten-fold lower than that of 
JA, and 100-fold, or more, lower than OPDA. This leads to one of the oldest questions in JA 
signaling, namely how much jasmonates are actually needed to activate the characteristic 
jasmonate responses of plants. 
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OPDA, a novel regulator of plant growth? 

The trade-off between growth and defense responses is a well-documented phenomenon. In 
response to stress, both abiotic and biotic, plants actively reduce growth rates to preserve resources 
that are required for initiating stress responses (Skirycz and Inzé, 2010). However, some studies 
suggest that this trade-off is governed by fine-tuned signaling mechanisms, independent of 
resource availability, with oxylipins playing a central role (Huang et al., 2017; Major et al., 2017). 
The involvement of OPDA, both JA-Ile-dependent and independent, in boosting plant resistance 
and growth arrest is also known, and has been recently reviewed by (Liu and Park, 2021). OPDA 
treatment was shown to inhibit plant growth and promote mitotic arrest. Specifically, exogenous 
application of OPDA reduced leaf area (Zhang and Turner, 2008) and root length (Mueller et al., 
2008) of wild-type Arabidopsis plants. Markedly, an absent (Zhang and Turner, 2008) or less 
pronounced inhibitory effect (Mueller et al., 2008) was observed in the opr3-1 mutant, which is 
deficient but not devoid of JA-Ile (see previous section). Conversely, a loss-of-function mutant of 
AOS, which lacks both OPDA and JA-Ile, was reported to have bigger leaves, due to an increase 
in cell number, implicating OPDA and/or JAs in the regulation of leaf growth (Noir et al., 2013). 
Along similar lines, OPDA, but notably not JA-Ile, accumulation was shown to coincide with the 
disappearance of the Arabidopsis leaf meristem (Omidbakhshfard et al., 2021), further suggesting 
a role of OPDA in the regulation of leaf growth. Existence of a plastid-derived signal upstream of 
the exit from proliferation has been hypothesized (Andriankaja et al., 2012), and we speculate that 
OPDA may constitute a small-molecule signal coordinating the onset of photomorphogenesis with 
the leaf meristem arrest. It will be particularly informative to examine the timing of leaf meristem 
arrest in mutants that are defective in OPDA and JA-Ile synthesis, and most importantly the opr2-
1 opr3-3 double mutant Considering the importance of plant growth for yield, further dissection 
of the OPDA role in the regulating meristematic activity will be quite interesting.  

The potential anti-cancer activity of oxylipins has also been explored; briefly reviewed in 
(Wasternack, 2014). Intriguingly, OPDA, a homolog of animal prostaglandins but not JA was  
shown to arrest proliferation in breast cancer cells by promoting degradation of G1 cyclin D1 
(Altiok et al., 2008). Moreover, among several tested jasmonates including, JA, 12-OH-JA, MeJA, 
and JA-Ile, only OPDA suppressed H2O2-induced cytotoxicity. OPDA pretreatment inhibited the 
H2O2-induced reactive oxygen species (ROS) increase and mitochondrial membrane potential 
decrease. In addition, OPDA induced the nuclear translocation of the nuclear factor erythroid 2-
related factor 2 (Nrf2), increased intracellular GSH level, and elevated expression of the Nrf2-
regulated phase II antioxidant enzymes heme oxygenase-1, NADPH quinone oxidoreductase 1, 
and glutathione reductase (Taki-Nakano et al., 2014). Together, these results suggest that the anti-
ROS activity of OPDA may have homologous effects on enzymes in plants and animals.   

 

OPDA metabolism and functions are conserved in non-vascular plants 
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In contrast to vascular plants, non-vascular plants such as Marchantia, and P. patens produce 
OPDA and dn-OPDA but not jasmonates, making them excellent models for studying both OPDA-
specific responses and the evolution of OPDA and JA-Ile signaling (Bowman et al., 2017; Monte 
et al., 2020, 2018; Soriano et al., 2022). These bryophyte studies constitute, arguably, the strongest 
evidence of OPDA-dependent responses that are independent of JA and JA-Ile. Analogous to 
higher plants, OPDA synthesis in Marchantia was induced by wounding. Growth was suppressed 
by elevating OPDA levels, either through exogenous application or overexpression of the OPDA 
biosynthetic gene MpAOC (Yamamoto et al., 2015). Conversely, the loss of OPDA production by 
MpAOS1/2 disruption reduced defense against spider mites (Tetranychus urticae) (Koeduka et al., 
2022), consistent with the reported OPDA role regulating insect resistance in vascular plants. 
Interestingly, dn-OPDA but not OPDA is perceived by the evolutionarily conserved COI1 receptor 
in Marchantia. A single-residue substitution is sufficient to switch the ligand specificity from JA-
Ile to dn-OPDA (Monte et al., 2018). Other key signaling components, including the JAZ repressor 
and MYC transcription factors, are also conserved (Monte et al., 2019) (Peñuelas et al., 2019). 
Moreover, transcriptional analysis of wild-type and Mpcoi1 plants treated with OPDA identified 
the existence of CO1-independent regulatory networks upstream of the thermotolerance-related 
genes, and treatment with OPDA protects Marchantia against heat stress (Monte et al., 2020). This 
was also true for dn-cis-OPDA but not for dn-iso-OPDA, which possesses a much less reactive 
(more stable) tetra-substituted double bond (compared to that of OPDA or dn-cis-OPDA) in the 
alpha position relative to the carbonyl group (Monte et al., 2020).  

 

Outlook 

Although OPDA metabolism and functions in plant physiology and stress responses have been 
studied extensively, many open questions remain, including the regulation of OPDA biosynthesis, 
the roles of OPDA conjugates, and the occurrence and function of OPDA binding to proteins. We 
suggest several future avenues of OPDA research: 1) All published data employing opr3 single 
mutants should be examined carefully, and generation of new data based on described leaky alleles 
must be avoided. 2) The potential of the Arabidopsis the opr2 opr3 double mutant (Chini et al., 
2018) alone, and in combination with other biosynthetic (e.g., jar1) or perception (coi1) mutants 
should be fully explored, in order to comprehensively dissect the physiological relevance of 
OPDA. 3) Similar experiments should be conducted other plant species, in particular monocots, to 
determine whether effects observed in Arabidopsis are conserved. 4) Researchers should make use 
of the evolutionary conservation of OPDA metabolism and functions to focus physiological studies 
on the bryophytes that accumulate OPDA and dn-OPDA but not JA and JA-Ile. 5) Newly 
developed biochemical methods, including thermal proteome profiling (Savitski et al., 2014), 
limited proteolysis (Piazza et al., 2018), and PROMIS (Veyel et al., 2018) for comprehensive 
identification of OPDA protein partners (Luzarowski and Skirycz, 2019; Venegas-Molina et al., 
2021; Wagner et al., 2021), should be employed for oxylipin target identification. 
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Figures 
 
Figure 1. Simplified scheme of the OPDA and JA biosynthesis (LOX pathway). LA (18:3n3) 
is released from the glycerolipids by phospholipases in the chloroplast. The action of LOX results 
in the conversion of α-LA into the hydroperoxide 13-hydroperoxyoctadeca-9,11-dienoic acid (13-
HPOT). Following this step, AOS transforms 13- HPOT into the unstable allene oxide 12,13(S)-
epoxylinolenic acid (12,13-EOT), which is further converted to OPDA by the AOC enzyme. 
OPDA translocation into the peroxisomes is mediated by JASSY, and once there is reduced to 
OPC-8:0 by OPR3, although this step may be bypassed (dashed line). OPC-8:0 is activated to the 
corresponding CoA ester by OPCL1 (OPC-8:0-CoA ligase 1). This is the entry-point of three β-
oxidations carried out by ACX (acyl-CoA oxidase), MFP (multifunctional protein) and KAT (L-
3- ketoacyl CoA thiolase). Jasmonoyl-CoA, is likely cleaved by a thioesterase to produce (+)-7-
iso-JA, which can epimerize to the more stable (-)-JA. Finally, JAR1 conjugates JA to Ile in the 
cytoplasm resulting in JA-Ile. Arabidopsis mutants discussed in the review are indicated in blue 
for the particular step. Dashed lines and bonds indicate the existence of an OPR3-independent 
pathway and compounds, respectively. 

 

Commented [GJ1]: It is not immediately obvious what 
this is referring to in the figure. 
 
Also, in the figure, it is not clear which reaction is catalyzed 
by OPR2 



 
 
 
 
 
 
 
 
 
 
 
 



Figure 2. Schematic representation of jasmonoyl-L-isoleucine (JA-Ile) and 12-oxo-
phytodienoic acid (OPDA) signaling. A) JA-Ile binding to the SCFCOI1 receptor complex induces 
ubiquitination and subsequent degradation of the JAZ repressors and activates gene expression. B) 
OPDA binding induces the formation of the cysteine synthase complex (CSC) composed of serine 
acetyltransferase1 (SAT1), and O-acetylserine(thiol)lyase. Consequent changes to the redox status 
drive gene expression. OPDA also promotes activation of the peroxiredoxin, 2-CysPrx, directly 
impacting Calvin Cycle enzymes. 
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