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COUNTEREXAMPLES TO THE

NONSIMPLY CONNECTED DOUBLE SOUL CONJECTURE

JASON DEVITO

A double disk bundle is any smooth closed manifold obtained as the union

of the total spaces of two disk bundles, glued together along their common

boundary. The double soul conjecture asserts that a closed simply connected

manifold admitting a metric of nonnegative sectional curvature is necessarily

a double disk bundle. We study a generalization of this conjecture by drop-

ping the requirement that the manifold be simply connected. Previously,

a unique counterexample was known to this generalization, the Poincaré

dodecahedral space S3/I∗. We find infinitely many 3-dimensional counter-

examples, as well as another infinite family of flat counterexamples whose

dimensions grow without bound.

1. Introduction

Suppose B− and B+ are closed smooth manifolds and that DB± → B± are disk bun-
dles over them, possibly of different ranks. Suppose in addition that the boundaries
∂DB± of DB± are diffeomorphic, say via a diffeomorphism f : ∂DB− → ∂DB+.
Then we may form a smooth closed manifold M = DB− ∪ f DB+. A manifold
diffeomorphic to one obtained from this construction is called a double disk bundle.
For example, RP2 is a double disk bundle, for it is a union of a disk and a closed
Möbius band. That is, RP2 is a union of a trivial 2-disk bundle over a point together
with nontrivial 1-disk bundle over S1.

Double disk bundles arise naturally in many diverse fields of geometry and
topology. We refer the reader to the introduction of [DeVito et al. 2023] for
numerous examples of this. Our main interest stems from Grove’s double soul
conjecture [2002].

Conjecture 1.1 (double soul conjecture). Suppose M is a closed simply connected

manifold which admits a Riemannian metric of nonnegative sectional curvature.

Then M is a double disk bundle.
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Evidence for this conjecture includes the fact that cohomogeneity one manifolds
(and free isometric quotients by a subaction of the cohomogeneity one action
[Wilking 2007]), which are one of two main building blocks for nonnegatively
curved manifolds, admit such a structure [Mostert 1957; Galaz-García and Zarei
2018]. In addition, Cheeger [1973] showed that the connect sum of two compact
rank one symmetric spaces (CROSS) admits a metric of nonnegative sectional
curvature. As a CROSS with a small open ball removed has the structure of a disk
bundle, these manifolds also verify the double soul conjecture. In addition, Cheeger
and Gromoll’s soul theorem [1972] gives an analogous theorem for noncompact com-
plete Riemannian manifolds of nonnegative sectional curvature. The conjecture has
also been verified for many other examples, including all known simply connected
positively curved manifolds [DeVito et al. 2023, Theorem 3.3], simply connected
biquotients in dimension at most 7 [González-Álvaro and Guijarro 2023], and
simply connected homogeneous spaces of dimension at most 10 [González-Álvaro
and Guijarro 2023]. We recall that a biquotient is the quotient of a Riemannian
homogeneous space by a free isometric action, and comprise the other main building
block of nonnegatively curved manifolds.

The conjecture also implies some classification results. For example, if true, then
it would follow that our known list of nonnegatively curved simply connected 4
and 5-dimensional manifolds is complete [Ge and Radeschi 2015, Theorem 1.1;
DeVito et al. 2023, Theorem B].

Grove [2002] noted that the natural generalization of Conjecture 1.1 to nonsimply
connected manifolds is false: the Poincaré dodecahedral space S3/I ∗ admits a
positively curved Riemannian metric, but does not support a double disk bundle
structure. However, this was previously the only known counterexample to the
generalized conjecture. As such, it is natural to search for more, with various
topological and geometric properties. Our main result supplies infinitely many
counterexamples to the generalized conjecture, on opposite ends of the nonnegative
curvature landscape.

Theorem 1.2. There are infinitely many closed Riemannian 3-manifolds of positive

sectional curvature which are not double disk bundles. In addition, there are

infinitely many closed flat manifolds which are not double disk bundles.

The 3-manifold family consists of infinitely many nontrivial isometric quotients
of a round S3. The homogeneous spaces S3/I ∗, S3/O∗, S3/T ∗, where I ∗, O∗,
and T ∗ are the binary icosahedral, octahedral, and tetrahedral groups are among
these examples.

In fact, S3/I ∗, S3/O∗, and S3/T ∗ are the only homogeneous spaces among
our examples. It is thus natural to wonder if there are more. This leads to the
obvious question:
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Question 1.3. Are there infinitely many homogeneous spaces which are not double

disk bundles?

Given that the three homogeneous examples of Theorem 1.2 are quotients of S3,
one is tempted to answer Question 1.3 by looking at homogeneous quotients of
spheres of higher dimension. However, we prove that S3/I ∗, S3/O∗, and S3/T ∗

are the only homogeneous quotients of a sphere, in any dimension, which are not
double disk bundles; see Proposition 4.9.

The other infinite family, the closed flat manifolds, are precisely those with trivial
first homology group. The construction of such flat manifolds is rather abstract,
so we have been unable to determine which dimensions these examples appear.
However, we can show they exist in arbitrarily large dimensions.

We stress that all of our examples have nontrivial fundamental groups, so the
double soul conjecture remains open. In fact, all of our examples have nonnilpotent
fundamental groups, so the generalized double soul conjecture is still open for
nilpotent manifolds.

We now give an outline of the proof of Theorem 1.2, beginning with the
3-dimensional examples. We first prove that if M3 has a metric of positive sectional
curvature and is a double disk bundle, then it must have a double disk bundle
structure where the common boundary ∂DB−

∼= ∂DB+ is diffeomorphic to a
sphere S2 or to a torus T 2. We then classify all disk bundles whose total space
has boundary diffeomorphic to S2 or T 2, and then consider all possible ways of
gluing these together. The double disk bundle decomposition lends itself to the
use of the Seifert–van Kampen theorem, so we are able to compute presentations
for all the resulting fundamental groups. The end conclusion is that a positively
curved M3 admits a double disk bundle decomposition if and only if it is a lens
space or a particular Z/2Z quotient of a lens space, a so-called prism manifold.
From the known classification of fundamental groups of spherical 3-manifolds
[Wolf 2011, Section 7.5], we obtain infinitely many examples which are not
double disk bundles. It is worth noting that the examples we find are the only
3-dimensional counterexamples to the double soul conjecture, even under the weaker
assumption that M has a Riemannian metric of nonnegative sectional curvature;
see Remark 4.3.

For the flat examples, enumerating all the possibilities for the common bound-
ary ∂DB−

∼= ∂DB+ is not feasible, so we proceed differently. We first show in
Proposition 3.6 that for any manifold covered by a contractible manifold, any double
disk bundle decomposition must have both disk bundles of rank 1. On the other
hand, we also establish (Proposition 3.2) that if a manifold admits a double disk
bundle structure with at least one double disk bundle has rank 1, then the manifold
must have a nontrivial double cover, which in turn implies that the first homology
group surjects onto Z/2Z. Thus, any flat manifold with trivial first homology group
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cannot be a double disk bundle. Such flat manifolds have been constructed by Igor
Belegradek [2022], providing the examples.

An outline of the paper follows. In Section 2, we cover the required background
and set up notation. Section 3 contains general results on the topology of double
disk bundles especially in the case where at least one disk bundle has rank 1. In
Section 4, we classify the nonnegatively curved 3-manifolds which are double disk
bundles, finding that some positively curved examples are not double disk bundles.
Finally, Section 5 contains the results concerning flat manifolds.

2. Background and notation

Suppose B− and B+ are closed manifolds and that Dℓ±+1 → DB± → B± are disk
bundles. We assume their boundaries are diffeomorphic, say by a diffeomorphism
f : ∂DB− → ∂DB+. Then we can form the closed manifold M = DB− ∪ f DB+

by gluing DB− and DB+ along their boundary. A manifold obtained via this
construction is called a double disk bundle.

Restricting the projection maps to their respective boundaries, we obtain sphere
bundles Sℓ± → ∂DB± → B±. The numbers ℓ± g 0 will always refer to the
dimension of these fiber spheres. We will use L to denote the diffeomorphism
type of the common boundary. We will borrow language from the field of sin-
gular Riemannian foliations, and refer to L as the regular leaf and the B± as the
singular leaves.

As was shown in [DeVito et al. 2023, Proposition 4.1], if a connected closed
manifold M admits a double disk bundle decomposition, then it necessarily admits
one where both B± are connected. Thus we can and will always assume that in any
double disk bundle decomposition, both singular leaves B± are connected. Using
the sphere bundles Sℓ± → L → B±, the condition that both B± are connected
implies that L has at most 2 components, and that L is connected unless B− and B+

are diffeomorphic, ℓ− = ℓ+ = 0, and L ∼= S0 × B−
∼= S0 × B+.

The decomposition of M into two disk bundles is ideal for applying the Mayer–
Vietoris sequence in cohomology, as well as the Seifert–van Kampen theorem for
fundamental groups, at least when L is connected. In this context, we note that
contracting the fiber disks in either DB± provides a deformation retract of DB±

to B±, and the inclusion map L ∼= ∂DB± ¦ DB± becomes homotopic to the sphere
bundle projection L → B± under this deformation retract.

3. Some general structure results for double disk bundles

In this section, we will collect several needed facts regarding the relationship
between the fiber sphere dimensions ℓ± and coverings. We begin with some general
structure results where at least one ℓ± = 0.
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Lemma 3.1. Suppose S0 → L → B is a sphere bundle with ℓ = 0 and B a

connected smooth manifold. There is a smooth free involution Ã : L → L with L/Ã

diffeomorphic to B.

Proof. Because S0 consists of two points, the sphere bundle is nothing but a double
cover. If L is disconnected, it follows that L ∼= S0 × B and the required involution
Ã simply interchanges the two copies of B.

On the other hand, if L is connected, the covering L → B is characterized by an
index 2-subgroup of Ã1(B), which is necessarily normal. Hence, the covering is
regular, so the deck group is isomorphic to Z/2Z. Then one can take Ã to be the
nontrivial element of the deck group. □

Proposition 3.2. Suppose M is a connected manifold and M = DB− ∪ f DB+ is a

double disk bundle with ℓ− = 0. Then M admits a nontrivial double cover of the

form M = DB+ ∪g DB+ for some diffeomorphism g : L → L. That is, M has a

double disk bundle decomposition where each half is a copy of DB+.

Proof. Because ℓ− = 0, Lemma 3.1 gives a free involution Ã : L → L with
quotient B−. We now form M as the union

M = (DB+ × {−1})∪Ã◦ f L × [−1, 1] ∪ f (DB+ × {1}),

where DB+ ×{−1} is glued to L ×{−1} and DB+ ×{1} is glued to L ×{1}. From
[Kosinski 1993, Chapter VI, Section 5], the union (DB+ ×{−1})∪Ã◦ f L ×[−1, 1]

is diffeomorphic to DB+, so M is diffeomorphic to a double disk bundle with both
halves a copy of DB+.

Thus, we need only show that M is a double cover of M . To that end, we define
a free involution Ä on M whose quotient is M . Given (x,±1) ∈ DB+ ×{±1}, we
define Ä(x,±1)= (x,∓1). In other words, Ä interchanges the two copies of DB+

on the “ends” of M . In addition, we define the action of Ä on L×[−1, 1] by mapping
a point (y, t) to (Ã (y),−t). It is easy to verify that this is the required involution. □

If both ℓ± = 0, then applying Proposition 3.2 gives a double cover which again
has both ℓ± = 0. Hence, we can iterate this procedure. This shows that a manifold
can only admit a double disk bundle decomposition with both ℓ± = 0 if Ã1(M) is
infinite. In fact, while it will not be needed in the remainder of the paper, it turns
out that a double cover of M fibers over S1.

Proposition 3.3. Suppose M is a connected manifold which admits a double disk

bundle structure with both ℓ− = ℓ+ = 0 and regular leaf L. Then Ã1(M) is infinite,
and M has a double cover M which fibers over S1 with fiber L.

Proof. We have already proven the first statement, so we focus on the second. By
assumption, we may write M = DB+∪ f DB− for some diffeomorphism f : L → L .
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As both ℓ± = 0, Lemma 3.1 gives a pair of free involutions Ã± : L → L with
L/Ã± diffeomorphic to B±. Both Ã± extend to involutions on L × [−1, 1] defined
by (y, t) 7→ (Ã±(y),−t). The quotient (L × [−1, 1])/Ã± is clearly diffeomorphic
to DB±.

Now, take two copies of L ×[−1, 1], which we will refer to as the left copy and
right copy. We glue (y, 1) in the left copy to ( f (y), 1) in the right copy, and we
glue (y,−1) in the left copy to (Ã+( f (Ã−(y))),−1) to form the manifold M .

From [Kosinski 1993, Chapter VI, Section 5], if we only do the gluing of (y, 1)
to ( f (y), 1), the resulting manifold is diffeomorphic to L ×[−1, 1]. Thus, M has
the structure of a mapping torus for some self diffeomorphism of L , so is a bundle
over S1 with fiber L .

It remains to see that M is a double cover of M . To that end, we define a free
involution Ä on M with quotient M as follows. On the left copy of L ×[−1, 1], Ä
acts by (y, t) 7→ (Ã−(y),−t). On the right copy, Ä acts by (y, t) 7→ (Ã+(y),−t).
Once again, it is easy to verify this has the desired properties. □

Remark 3.4. In Proposition 3.3, if L is disconnected, then M itself fibers over S1.
On the other hand, if L is connected, passing to a double cover is sometimes
necessary to obtain the bundle structure. For example, if M = RPn#RPn with
n g 3, then M has a double disk bundle structure with both ℓ± = 0. Indeed, RPn

with a ball removed is a diffeomorphic to the total space of the disk bundle in
the tautological bundle over RPn−1. But M does not fiber over S1 because its
fundamental group Ã1(M)∼= (Z/2Z)∗(Z/2Z) has abelianization (Z/2Z)·(Z/2Z),
so does not surject onto Z.

The next proposition describes how double disk bundles act with respect to
covering maps.

Proposition 3.5. Suppose M is a connected manifold which admits a double disk

bundle structure with both ℓ± g 1. If Ä : M ′ → M is any nontrivial covering (in
the sense that M ′ is connected), then M ′ is a double disk bundle with regular leaf

L ′ := Ä−1(L), singular leaves B ′
± := Ä−1(B±), and with ℓ′± = ℓ±. In addition, each

of L ′, B ′
+, and B ′

− are connected.

Proof. Since a covering map is a submersion, everything except the connectedness
of L ′, B ′

± is a direct consequence of [DeVito et al. 2023, Proposition 3.1d]. Thus,
we need only show the connectedness of L ′ and B ′

±. As both B ′
± are the continuous

image of the sphere bundle projections L ′ → B ′
±, it is sufficient to show that L ′ is

connected.
So, we now show that L ′ is connected. Because Ä is a covering, so is Ä|L ′ : L ′ → L .

In addition, since at least one ℓ± g 1, L must be connected. Thus, to show L ′ is
connected, it is sufficient to select x ∈ L , and show that any pair of points in Ä−1(x)

can be connected by a path in L ′. Let x1, x2 ∈ Ä−1(x).
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Because M ′ is connected, we may connect x1 and x2 by a path µ ′ : [0, 1] → M ′

in M ′. Then µ := Ä ◦ µ ′ is a closed curve in M .
We claim that µ is homotopic rel endpoints to a closed curve ³ lying entirely

in L . To see this, note that µ represents an element of Ã1(M, x), so we need to
show the map Ã1(L , x)→ Ã1(M, x) induced by the inclusion L → M is surjective.

The Seifert–van Kampen theorem applied to the double disk bundle decompo-
sition of M shows that any curve in M is, up to homotopy rel endpoints, a finite
concatenation of curves in DB+ and DB−. Because both ℓ± g 1, the long exact
sequence in homotopy groups implies the maps Ã1(L)→ Ã1(DB±)∼= Ã1(B±) are
surjective, so each curve in DB+ or DB− is homotopic rel end points to one lying
entirely in L . In particular, µ is homotopic rel end points to a curve ³ in L .

Now, since Ä : L ′ → L is a covering, it is, in particular, a fibration. As µ has a
lift to M ′, ³ must lift to a curve ³′ : [0, 1] → M ′. Since the homotopy from µ to ³
fixed the end points and the fiber of Ä is discrete, ³′ must have the same endpoints
as µ ′. That is, ³′ is a curve connecting x1 and x2 with image in L ′. This completes
the proof that L ′ is connected, and thus, of the proposition. □

In the special case that M is aspherical, i.e., the universal cover of M is con-
tractible, we can completely characterize the possibilities for the fiber sphere
dimensions ℓ± for any double disk bundle structure on it.

Proposition 3.6. Suppose M is an aspherical manifold which admits a double

disk bundle structure. Then both ℓ− = ℓ+ = 0. That is, both fiber spheres are

0-dimensional.

Proof. We assume for a contradiction that M has a double disk bundle decomposition
with say, ℓ− > 0. This implies that the regular leaf L is connected. If ℓ+ = 0, then
Proposition 3.2 implies that M has a double cover admitting a double disk bundle
structure with both ℓ± > 0. Noting that the double cover of an aspherical manifold
is aspherical, we may therefore assume that both ℓ± > 0.

In this case, we consider the universal cover Ä : M ′ → M . From Proposition 3.5,
we obtain a double disk bundle structure on M ′ with regular leaf L ′ and singular
leaves B ′

± connected. We will conclude the proof by showing that M ′ has no such
double disk bundle structure. Specifically, we will show that H t (ℓ++ℓ−)(L ′; Z/2Z)

is nontrivial for all t g 0, contradicting the fact that L ′ is a finite-dimensional
manifold. Set R = Z/2Z for legibility.

Because M ′ is contractible, the Mayer–Vietoris sequence for the double disk
bundle decomposition of M ′ yields isomorphisms

Èk : H k(B ′
−; R)· H k(B ′

+; R)→ H k(L ′; R)

for each k g 1 (and that È0 is surjective). Recalling that Èk is nothing but the
difference in the maps induced by the sphere bundle projections L ′ → B ′

±, it
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follows that each map H k(B ′
±; R) → H k(L ′; R) must injective. Since both B ′

±

are connected, we have Gysin sequences associated to L ′ → B ′
±; injectivity of

H∗(B ′
±; R) → H∗(L ′; R) then implies via the Gysin sequence that the R-Euler

classes e± of both bundles L ′ → B ′
± are trivial. In more detail, in the sequence

H 0(B ′
±; R)

∪e±−−→ H ℓ±+1(B ′
±; R)→ H ℓ±+1(L ′; R),

the first map has image generated by e± while the while the second map is injective.
Exactness at the middle term then forces e± = 0. We thus have group isomorphisms

H∗(L ′; R)∼= H∗(B ′
+; R)¹ H∗(Sℓ+; R)∼= H∗(B ′

−; R)¹ H∗(Sℓ−; R),

where the inclusions H∗(B ′
±; R)→ H∗(B ′

±; R)¹ H∗(Sℓ±; R) are the obvious ones.
We will now prove that H t (ℓ−+ℓ+)(L ′; R) ̸= 0 for all t g 0 by induction. The

base case is clear, as it is simply the assertion that H 0(L ′; R) ̸= 0.
Now, assume that H t (ℓ−+ℓ+)(L ′; R) is nonzero for some t g 0. Since Èk for

k := t (ℓ+ + ℓ−) is surjective, there must therefore be a nonzero element x in at
least one of H k(B ′

±; R). We assume without loss of generality that x ∈ H k(B ′
+; R).

If y± ∈ H ℓ±(Sℓ±; R) ∼= R is the nonzero element, then the element x ¹ y+ ∈

H k+ℓ+(L ′; R) is nonzero, and not in the image of H k+ℓ+(B ′
+; R). Since Èk+ℓ+

is surjective, it now follows that H k+ℓ+(B ′
−; R) ̸= 0. Suppose z ∈ H k+ℓ+(B ′

−; R)

is such a nonzero element. Then the element z ¹ y− ∈ H (t+1)(ℓ−+ℓ+)(L ′; R) is
nonzero, completing the induction. □

We will also need a proposition regarding orientability.

Proposition 3.7. Suppose M is a double disk bundle and that M is orientable. Then

so is the regular leaf L.

Proof. Because L is the boundary of both disk bundles, L must have trivial normal
bundle. Then T M |L = T L · 1 with 1 denoting a trivial rank 1 bundle. Computing
the first Stiefel–Whitney class using the Whitney sum formula, we find

0 = w1(T M |L)= w1(T L)+w1(1)= w1(T L).

Thus w1(T L)= 0, so L is orientable. □

4. 3-dimensional examples

The goal of this section is to prove the following theorem.

Theorem 4.1. Suppose M3 is a closed manifold admitting a metric of positive

sectional curvature. Then M is a double disk bundle if and only if M is S3, a lens

space L(p, q), or a prism manifold.
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By definition, a lens space L(p, q) (where gcd(p, q) is necessarily 1) is the
quotient of S3 by a free isometric action by the cyclic group Z/pZ ¦ S1 ¦ C

acting on S3 ¦ C
2 via µ ∗ (z1, z2) = (µz1, µ

q z2). Also, by definition, a prism
manifold is an isometric quotient of a round S3 with fundamental group isomorphic
to ïa, b | aba−1b = 1, a2´ = b³ð, where gcd(³, ´)= 1. Prism manifolds include the
homogeneous spaces S3/D∗

4n , where D∗
4n is the order 4n group generated by e2Ã i/n

and j in the group Sp(1) of unit length quaternions.
From, e.g., [McCullough 2002, Table 1], the homogeneous 3-manifolds which

are covered by S3 consists of precisely the lens space L(p, 1), the prism manifolds
S3/D∗

4n , and the spaces S3/T ∗, S3/O∗, or S3/I ∗, where T ∗, O∗, and I ∗ are the
binary tetrahedral, octahedral, and icosahedral groups respectively. In addition,
from e.g., [Wolf 2011, Section 7.5], the product of any of these fundamental groups
with a cyclic group of relatively prime order is again the fundamental group of a
positively curved 3-manifold. Thus, Theorem 4.1has the following corollary.

Corollary 4.2. There are infinitely many positively curved 3-manifolds which do

not admit a double disk bundle structure. These examples include precisely three

homogeneous examples: S3/T ∗, S3/O∗, and S3/I ∗, where T ∗, O∗, and I ∗ are the

binary tetrahedral, octahedral, and icosahedral groups respectively.

Remark 4.3. By using work of others, it is easy to extend Theorem 4.1 to nonneg-
atively curved 3-manifolds. Hamilton [1982, main theorem; 1986, Theorem 1.2]
showed a closed 3-manifold M admitting a metric of nonnegative sectional curvature
is covered by S3, S2×S1, or T 3. If M is covered by S2×S1, then M is diffeomorphic
to S2 × S1, RP2 × S1, RP3#RP3, or to the unique nontrivial S2 bundle over S1

[Tollefson 1974]. Clearly for each of these possibilities, M is a double disk bundle.
If M is covered by T 3, then from [Scott 1983, p. 448], M is a double disk bundle.

We now work towards proving Theorem 4.1. For the remainder of this section,
M denotes a 3-manifold of positive sectional curvature. From [Hamilton 1982,
main theorem], M is finitely covered by S3, so has finite fundamental group. A
simple application of the Lefschetz fixed point theorem implies that M must be
orientable. From Proposition 3.3, at least one of ℓ±> 0, which, in particular, implies
that L is connected.

Proposition 4.4. Suppose M is a closed orientable 3-manifold which admits a dou-

ble disk bundle decomposition with at least one fiber sphere of positive dimension.

The regular leaf L must be diffeomorphic to either S2 or T 2.

Proof. Assume without loss of generality that ℓ+ > 0. This implies that L is
connected. Since L is 2-dimensional and an Sℓ+-bundle over B+, we must have
ℓ+ ∈ {1, 2}. If ℓ+ = 2, the fiber inclusion map S2 → L is an embedding between
closed manifolds of the same dimension, hence a diffeomorphism. If ℓ+ = 1, then



248 JASON DEVITO

the Euler characteristic Ç(L)=Ç(S1)Ç(B+)= 0, so L must be T 2 or a Klein bottle.
But L must be orientable from Proposition 3.7. □

We will proceed by breaking into cases depending on whether L = S2 or L = T 2.
We will classify all disk bundles whose boundary is diffeomorphic to L , and then
classify ways of gluing the corresponding disk bundles. Using a collar neighborhood,
it easy to see that if two gluing maps are isotopic, then the corresponding double disk
bundles are diffeomorphic. The following lemma provides another circumstance
where the double disk bundles are diffeomorphic.

Lemma 4.5. Suppose X and Y are manifolds with boundary and f : ∂X → ∂Y is

a diffeomorphism. Assume in addition that G : X → X is a diffeomorphism with

g := G|∂X : ∂X → ∂X. Then the manifolds X ∪ f Y and X ∪ f ◦g Y are diffeomorphic.

Proof. We define a diffeomorphism Æ : X ∪ f ◦g Y → X ∪ f Y by mapping x ∈ X

to Æ(x) = G(x) and mapping y ∈ Y to Æ(y) = y. It is obvious that Æ is a diffeo-
morphism, if it is well defined.

We now check that it is well-defined. If we first identify x ∈ ∂X with f (g(x))

and then apply Æ, we obtain the point f (g(x)). On the other hand, if we first
apply Æ and then identify with ∂Y , we get Æ(x)= G(x)= g(x)∼ f (g(x)). □

Proposition 4.6. Suppose M is a double disk bundle with regular leaf L = S2.

Then, M is diffeomorphic to S3, RP3, or RP3#RP3.

Proof. To begin with, note there are precisely two isomorphism types of sphere
bundles with total space S2: they are S2 → S2 →{p}, and S0 → S2 → RP2. Since a
diffeomorphism of either S0 or S1 extends to a diffeomorphism of the corresponding
disk, both of these extend uniquely to disk bundles. Moreover, Diff(S2) deformation
retracts to O(2) [Smale 1959], so we may assume our gluing map is either the
identity or the antipodal map. Both options extend to a diffeomorphism of the
3-ball B3, so by Lemma 4.5 the choice of gluing map is irrelevant if either B± ={p}.

If we have B+ = B− = {p}, then M is obtained by gluing two 3-balls along
their boundary S2, so M is diffeomorphic to S3 in this case. If we have B+ = {p}

and B− = RP2, then gluing gives RP3. Finally, if we have B+ = B− = RP2, we
obtain RP3# ± RP3. But RP3 admits an orientation reversing diffeomorphism, so
RP3# − RP3 is diffeomorphic to RP3qRP3. □

We now classify all double disk bundles with regular leaf L = T 2 and with at
least one ℓ± > 0, which completes the proof of Theorem 4.1.

Proposition 4.7. Suppose M admits a double disk bundle structure with regular

leaf L = T 2 and with ℓ+ > 0. Then either Ã1(M) is abelian, or M is a prism

manifold.
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Remark 4.8. The classification of 3-manifolds with Ã1(M) abelian is well known
[Aschenbrenner et al. 2015, Section 1.7, Table 2]. The only such examples which
are covered by S3 are the lens spaces L(p, q). Each of these is well-known to
be a double disk bundle, e.g., they are all quotients of S3 via a subaction of the
well-known cohomogeneity one action of T 2 on S3. The examples which are not
covered by S3 are covered by S2 × S1, so are all double disk bundles by Remark 4.3.

Proof. The assumption that ℓ+ > 0 implies that ℓ+ = 1, so B+ = S1. An S1-bundle
over S1 is determined by an element of Ã0(Diff(S1)). Since Diff(S1) deformation
retracts to O(2), there are precisely two S1-bundles over S1. Of course, one has
total space K , the Klein bottle. Thus, there is a unique S1 bundle over S1 with total
space T 2, the trivial bundle.

If ℓ− = 2, the fiber inclusion S2 → T 2 must be an embedding, giving an obvious
contradiction. Hence, ℓ− ∈ {0, 1}. Of course, if ℓ− = 1, then the bundle L → B−

must be the trivial bundle as in the previous paragraph. On the other hand, if ℓ− = 0,
then L → B− is a 2-fold covering, so B− is diffeomorphic to either T 2 or K .

Each of these S1-bundles extends to a disk bundle in a unique way. In addition,
Diff(T 2) deformation retracts to Gl2(Z) [Farb and Margalit 2012, Theorem 2.5], so
we can always assume our gluing map lies in Gl2(Z). Moreover, the diffeomorphism
[ 1

0
0

−1

]

of T 2 = ∂(D2 × S1) extends to a diffeomorphism of DB+
∼= D2 × S1, so

Lemma 4.5 implies that we may assume our gluing map lies in Gl+2 (Z).
Applying the Seifert–van Kampen theorem to the double disk decomposition of

M , we note that since ℓ+ = 1, the map Ã1(L)→ Ã1(B+) is surjective. This implies
that Ã1(M) is isomorphic to a quotient of Ã1(DB−)= Ã1(B−). Thus, if B− ̸= K ,
then Ã1(M) is necessarily abelian.

So, we assume B− = K , and that the gluing map is determined by a matrix
[

³ ´

µ ¶

]

∈ Gl+2 (Z).

We have presentations

Ã1(S
1)= ïað, Ã1(T

2)∼= ïb, c | [b, c] = 1ð, and Ã1(K )= ïd, e | ded−1e = 1ð.

The unique abelian index 2 subgroup of Ã1(K ), which is isomorphic to Ã1(T
2),

is generated by {d2, e}. Therefore, by picking a new generating set for Ã1(T
2) if

necessary, we may assume the map Ã1(T
2)→ Ã1(K ) maps b to d2 and c to e.

We claim that, in addition, we may choose the projection map T 2 → S1 to map b to
a and c to the identity. We begin with the standard projection onto the second factor
p2 : T 2 = S1 × S1 → S1. This maps (1, 0) ∈ Ã1(T

2)∼= Z
2 to the identity and (0, 1)

to a. Since {b, c} generates Ã1(T
2), there is an element of f ∈ Gl2(Z)≃ Diff(T 2)

which maps c to (1, 0) and b to (0, 1). Then the composition p2 ◦ f : T 2 → S1 is
a (trivial) fiber bundle with fiber S1 which maps c to the identity and b to a.
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Note that under the gluing map
[

³

µ

´

¶

]

, the map

Ã1(T
2)

[

³

µ

´

¶

]

−−−→ Ã1(T
2)→ Ã1(S

1)

is therefore given by b 7→ b³cµ 7→ a³, and c 7→ b´c¶ 7→ a´ , where we have used
multiplicative notation rather than additive for both Ã1(T

2)∼= Z
2 and Ã1(S

1)∼= Z.
Thus, the Seifert–van Kampen theorem gives

Ã1(M)∼= ïa, d, e | ded−1e = 1, a³ = d2, a´ = eð.

We claim that this is isomorphic to

ïd, e | ded−1e = 1, d2´ = e³ð,

so that M has the fundamental group of a prism manifold.
To that end, we first note that the generator a in the first presentation is unnec-

essary. Indeed, we have ³¶−´µ = 1, so

a1 = a³¶−´µ = (a³)¶(a´)−µ = d2¶e−µ .

Thus, we need only demonstrate that the relations in the first presentation are
consequences of the relations in the second, and vice versa.

So, assume initially that both a³ = d2 and a´ = e. Raising the first relation to
the power of ´, and the second to the power of ³, we obtain

d2´ = a³´ = e³,

so the relations in the first presentation imply those in the second. Conversely,
assuming d2´=e³ , noting that d2 commutes with everything, and setting a =d2¶e−µ ,
we find

a³ = d2³¶e−µ³

= d2(1+´µ )e−µ³

= d2(d2´)µ (e³)−µ

= d2(e³)µ (e³)−µ

= d2

and likewise, we find that a´ = e.
Thus, Ã1(M) is isomorphic to the fundamental group of a prism manifold, as

defined above. Since such manifolds are classified up to diffeomorphism by their
fundamental group [Aschenbrenner et al. 2015, Theorem 2.2], M must be a prism
manifold in these cases. □
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We conclude this section by proving that the three homogeneous examples S3/T ∗,
S3/O∗, and S3/I ∗ of Corollary 4.2 are the only homogeneous examples in any
dimension which are covered by a sphere but are not double disk bundles.

Proposition 4.9. Suppose M is a closed homogeneous space which is covered by

a sphere. Then M admits a double disk bundle decomposition, except when M is

diffeomorphic to one of S3/T ∗, S3/O∗, or S3/I ∗.

Proof. From [Wilking and Ziller 2018, Table 2], we see that the homogeneous
spaces nontrivially covered by a sphere are

(a) real projective spaces,

(b) homogeneous lens spaces, or

(c) quotients of S4n−1 ¦ H
n by a nonabelian finite subgroup of Sp(1) acting

diagonally.

Here, a homogeneous lens space is a quotient S2n+1/(Z/mZ), where Z/mZ =

{(z, z, . . . , z) ∈ C
n+1 : zm = 1}, and H denotes the skew-field of quaternions.

We have a uniform description of these actions: let K ∈ {R,C,H} and set
k = dimR(K). Let G denote any finite subgroup of O(1),U (1) or Sp(1) respectively.
Then G acts freely on Skn−1 ¦ K

n via the diagonal action in each coordinate and
the cases (a), (b), and (c) above correspond to the choice of K.

We first claim that if n g 2 then all such quotients Snk−1/G admit a double disk
bundle decomposition. Indeed, one can simply observe that the block action by
O(n−1)×O(1), U (n−1)×U (1), or Sp(n−1)×Sp(1) on Snk−1 ¦ K

n = K
n−1·K

is cohomogeneity one, and G acts via a subaction of the block action.
This leaves the case n = 1, which gives the manifolds S0/G, S1/G, or S3/G.

Of course, the first is 0-dimensional, and any quotient S1/G is diffeomorphic to S1,
and thus admits a double disk bundle decomposition. The final case S3/G is given
by Corollary 4.2. □

5. Flat examples

The goal of this section is to prove the following theorem.

Theorem 5.1. There are infinitely many closed flat manifolds, in arbitrarily large

dimension, which are not double disk bundles.

We begin with a proposition which allows us to recognize when a flat manifold
does not admit a double disk bundle decomposition.

Proposition 5.2. Suppose M is a closed flat manifold with H1(M) finite of odd

order. Then M cannot admit a double disk bundle decomposition.
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Proof. Assume for a contradiction that M admits a double disk bundle decomposi-
tion. Since M is flat, the Cartan–Hadamard theorem implies that M is aspherical.
Thus, Proposition 3.6 applies: any double disk bundle decomposition on M must
have both ℓ± = 0. Then, from Proposition 3.2, M admits a nontrivial double cover.
In particular, Ã1(M) must have an index 2 subgroup, so admits a surjection to Z/2Z.
Since H1(M) is the abelianization of Ã1(M), this surjection must factor through
H1(M). But no finite group of odd order admits a surjection to Z/2Z, giving a
contradiction. □

In order to prove Theorem 5.1, we need only establish the existence of infinitely
many flat manifolds M in arbitrarily large dimensions with first homology group
H1(M) finite of odd order. In fact, we will find examples with H1(M) trivial. As
H1(M) is the abelianization of Ã1(M), we are thus tasked with finding an infinite
family of flat manifolds for which Ã1(M) = [Ã1(M), Ã1(M)] is perfect. These
examples are furnished by the following theorem.

Theorem 5.3. Suppose Æ is any finite perfect group. Then there is a closed flat

manifold MÆ for which H1(MÆ)= 0 and for which MÆ has holonomy Æ.

Recall that the alternating group on n letters, An is perfect if n g 4. We claim
that for n g 7, that dim MAn

g n − 1, so Theorem 5.1 immediately follows from
Proposition 5.2 and Theorem 5.3. Indeed, the holonomy group of an n-manifold
is a subgroup of the orthogonal group O(n), and for n g 7, the smallest non-
trivial representation of An occurs in dimension n − 1 [Fulton and Harris 1991,
Problem 5.5].

Thus, to prove Theorem 5.1, we need only to prove Theorem 5.3. We do this
using an argument due to Igor Belegradek [2022].

We will use the following characterization of the fundamental group of a closed
flat manifold.

Theorem 5.4 [Bieberbach 1911; Auslander and Kuranishi 1957]. An abstract

group Ã is the fundamental group of a closed flat n-manifold if and only if both of

the following conditions are satisfied:

(1) Ã is torsion free.

(2) Ã fits into a short exact sequence of the form 0 → Z
n → Ã → Æ→ 0, where Æ

is a finite group.

The finite group Æ is called the holonomy of Ã as it is isomorphic to the holonomy
group of the flat manifold n-manifold with fundamental group Ã .

We need a lemma, which is [Holt and Plesken 1989, Proposition 2.3.13].
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Lemma 5.5. Suppose a group Ã fits into a short exact sequence of the form

0 → Z
n → Ã → Æ → 0,

where Æ is a finite group. Then the commutator subgroup Ã ′ = [Ã, Ã] also fits into

a short exact sequence of the form

0 → Z
m → Ã ′ → Æ′ = [Æ, Æ] → 0.

In addition, if Æ is perfect, then so is Ã ′.

We may now prove Theorem 5.3.

Proof of Theorem 5.3. Let Æ denote any finite perfect group. From [Auslander and
Kuranishi 1957, Theorem 3] there is an abstract group Ã satisfying both conditions
of Theorem 5.4. The commutator Ã ′ = [Ã, Ã] is a subgroup of the torsion free
group Ã , so is torsion free. From Lemma 5.5, Ã ′ is also perfect, and satisfies the
second condition of Theorem 5.4 with finite quotient Æ′ = [Æ, Æ] = Æ. Hence, by
Theorem 5.4, there is a flat manifold MÆ with fundamental group Ã ′. Since Ã ′ is
perfect, H1(MÆ)= 0. □
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