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Abstract

We investigate the curvature of Eschenburg spaces with respect to two different met-
rics, one constructed by Eschenburg and the other by Wilking. With respect to the
Eschenburg metric, we obtain a simple complete characterization of the curvature of
every Eschenburg space in terms of the triples of integers defining the space. With
respect to Wilking’s metric, we study all the examples whose natural isometry group
acts with cohomogeneity two. Here, we find that apart from the previously known
examples with almost positive curvature, all the remaining examples have open sets
of points with zero-curvature planes.

Keywords Eschenburg space - Positive sectional curvature - Biquotient -
Homogeneous space
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1 Introduction

Given two triples of integers, p = (p1, p2, p3) and g = (q1, g2, ¢3) with Y p; =
3" g, there is an action of the compact Lie group S! € C on SU(3), given by

7% A = diag(z”', 272, z"?) A diag(z7', 7, qu)*l.

When the action is free, the quotient space is a smooth manifold called an Eschen-
burg space and denoted by E, ;.
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Eschenburg spaces, which generalize the homogeneous Aloff-Wallach spaces [1],
were introduced by Eschenburg [4] where he showed an infinite sub-family of them
admit Riemannian metrics of positive sectional curvature. These provided the first
inhomogeneous examples of positively curved Riemannian manifolds.

In more detail, Eschenburg equipped SU (3) with a certain left SU (3)-invariant right
U (2)-invariant Riemannian metric, endowing SU (3) with a non-negatively curved
Riemannian metric with fewer zero-curvature planes than in the standard bi-invariant
metric. The above S action is isometric with respect to this new metric, and hence this
metric descends to a metric on each Eschenburg space. We will refer to this metric as
the Eschenburg metric. We note that interchanging p and ¢, as well as permuting the
gi can change the isometry type, but not the diffeomorphism type of the Eschenburg
space. Hence, the Eschenburg space will typically have six non-isometric Eschenburg
metrics.

Using the notation p = min{p1, p2, p3} and p = max{p1, p2, p3}, Eschenburg
proved: N

Theorem 1.1 (Eschenburg). The Eschenburg space E, , has an Eschenburg metric of
positive sectional curvature if and only if g; ¢ [p, plforanyi =1,2,3.

It is therefore natural to study the curvature properties of the remaining Eschenburg
spaces. This was begun in [9], where Kerin found that E, , for p = (0,1, 1) and
qg = (0,0,2) is almost positively curved, but not positively curved. Recall that a
Riemannian manifold is said to be almost positively curved if the set of points for
which all 2-planes are positively curved is open and dense. Kerin also showed that
with one exception, every Eschenburg space has at least one Eschenburg metric of
quasi-positive curvature. We recall that a metric is called quasi-positively curved if it
is non-negatively curved and it has a point at which all 2-planes are positively curved.

Our first main result completely characterizes the nature of the curvature of every
Eschenburg space with Eschenburg metric. To describe our results, let S3 denote the
symmetric group on the set {1, 2, 3}.

Theorem 1.2 The curvature of E, , with the Eschenburg metric is determined by the
6 products (ps (1) — q1)(Po2) — q2) for o € S5 as follows:

1. If all 6 products are positive, E, ; is positively curved.

2. If all 6 products are non-negative, with at least one positive and one zero, E, 4 is
almost positively curved but not positively curved.

3. If at least one product is positive and at least one is negative, then E, ; is quasi-
positively curved but not almost positive curved.

4. If all products are non-positive, then every point of E, 4 has at least one zero-
curvature plane.

In case 1, the fact that all six products are positive implies that both g1, g2 < p or
both q1, g2 > p. The fact that 3" p; = Y ¢; now implies that g3 also does not lie in
[p, P]. Hence, Theorem 1.1 may be viewed as a special case of Theorem 1.2. Like
case 1, case 3 and 4 each comprise infinitely many examples.
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On the other hand, in case 2, the hypothesis on the 6 products implies that
(p1, p2, p3) is a permutation of (0, 1,1) while (q1,¢92,93) = (0,0,2), see
Proposition 3.2. Kerin [9, Theorem 2.4] has already shown the Eschenburg metric
is almost positively curved but not positively curved in this case.

The case of homogeneous and cohomogeneity-one Eschenburg metrics on Eschen-
burg spaces is completely understood. All homogeneous Eschenburg spaces (i.e.,
Aloff-Wallach spaces) admit a homogeneous Eschenburg metric of positive sectional
curvature, exceptfor £, , with p = (0,0, 0)andg = (1, —1, 0) [1]. All cohomogene-
ity one Eschenburg spaces admit a cohomogeneity one Eschenburg metric of positive
sectional curvature, except for £, ;, with p = (0,0, 2) and g = (1, 1, 0) [13], which
admits a cohomogeneity one Eschenburg metric of almost positive curvature.

In [12], Wilking equipped SU(3) with a different metric, which we will refer
to as the Wilking metric and showed that it induces almost positive curvature on the
above exceptional homogeneous Eschenburg space. This illustrates a general principle:
Wilking’s metric construction tends to have fewer isometries but also fewer zero-
curvature planes. Thus, in the search for new examples with (almost) positive curvature,
it is natural to look at cohomogeneity 2 Eschenburg spaces equipped with the Wilking
metric.

It turns out (see Proposition 2.2), that up to isometry, the examples whose “natural”
isometry group (in the sense of [7]) acts on E, ; with cohomogeneity at most 2 are of
the form p = (0,0, g1 + ¢2 + ¢3), 9 = (q1, 42, q3) With g; pairwise relatively prime,
q1 + g2 + g3 = 0, and g1 > ¢». Our next main theorem describes the curvature of
Wilking’s metric on many of these examples.

Theorem 1.3 Suppose q1, q2, and q3 are pairwise relatively prime integers with q1 +
@ +q3>0,91 > q q1 >0, and g2q3 < 0. Set p = (0,0, q1 + g2 + ¢g3) and
q = (q1, 92, q3). Then, under any of the following three hypothesis, Wilking’s metric
on Ep 4 is not almost positively curved.

1. g2+493=0
2. qp<0andqy +g2 >0
3. g3 <0andq; +q3 >0

While the numerous hypothesis on the g; in this theorem may seem arbitrary, it turns
out these conditions correspond exactly to the complement of the known examples,
see Proposition 2.20.

We now outline the rest of the paper. Section 2 contains background information
on Eschenburg spaces, including the construction of both the Eschenburg and Wilking
metrics. Section 3 contains the proof of Theorem 1.2. Section 4 contains the proof of
Theorem 1.3.

2 Background
In this section, we cover the necessary background, beginning with definition of
Eschenburg spaces and ending with a description of the two Riemannian metrics

we will be considering.
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2.1 Eschenburg Spaces

In this section, we cover the construction of Eschenburg spaces.
Suppose p = (p1, p2, p3) and g = (q1, g2, q3) are each triples of integers with
3" pi =Y gi. Then we obtain an action of the group S' < C on

SU@3) = {A € M3(C) : AA = I, det(A) = 1}

defined by
zx A = diag(z", 27*, z") A diag(z?', 292, 73y~

We will call a pair of triples (p, g) admissible if

Y pi=) g and ged(pocty — 1. Poxy —q2) = L forall o € S,

the permutation group on {1, 2, 3}. We observe that the relation Y p; = >_ g; implies
that analogous gcds involving g3 are automatically equal to 1 if (p, ¢) is admissible.
The importance of this definition is highlighted by the following proposition. See, e.g.,
[4, Proposition 21] for a proof.

Proposition 2.1 Consider the S' action on SU (3) defined by p = (p1, p2, p3) and
q = (q1, q2, q3) as above. Then the action is free (and hence, the quotient is a manifold)
if and only if ((p1, p2, P3). (q1. 92, q3)) is admissible.

As mentioned in the introduction, Eschenburg spaces were introduced by Eschen-
burg [4], where he showed an infinite family of them admit Riemannian metrics of
positive sectional curvature.

Some operations on (p, g¢) do not alter the diffeomorphism type of the resulting
Eschenburg spaces. Once we have defined the Eschenburg and Wilking metrics, we
will see that some of these operations do alter the isometry type while others do not. We
record some of these operations below. For a triple p = (p1, p2, p3) and m € Z, the
notation p+m will referto (p;+m, pa+m, p3+m).Foro € S3,the symmetric group
on {1, 2, 3}, the notation p, will refer to (ps (1), Po(2), Po(3))- Lastly, the notation —p
refers to (—p1, —p2, —p3).

Proposition 2.2 Suppose (p, q) is admissible. Then the following modifications of
(p, q) result in diffeomorphic Eschenburg spaces.

(p'.q")=(p+m,q+m)formel

(p/v q/) = (_P: _Q)

(', 4") = (po, q) where o(3) = 3

(', 4") = (po, q) where 5 (3) # 3

(p'.q") = (p. qo) where 0 (3) =3

(P'.q") = (p,q0) where 5 (3) # 3

(r'.q4")=1(q.p)

With respect to the Eschenburg metric, modifications 1,2,3,4, and 5 determine isometric
Eschenburg spaces. With respect to the Wilking metric, modifications 1,2,3,5, and 7
determine isometric Eschenburg spaces.

NS A LN~
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Since we have not yet precisely defined the Eschenburg and Wilking metrics, we
will postpone the proof to Section 2.3.

As mentioned in the introduction, apart from the positively curved examples, only
two other Eschenburg spaces are known to admit almost positively curved Riemannian
metrics: when (p, g) = ((0, 1, 1), (0, 0, 2)) and when (p, ¢) = ((0, 0, 0), (1, 0, —1)).

Definition 2.3 Suppose (p, ¢g) is admissible. Then (p, q) is exceptional if it is related
to either ((0, 1, 1), (0, 0, 2)) or ((0, 0, 0), (1,0, —1)) by a combination of the modifi-
cations in Proposition 2.2.

The case where some g; is equal to some p; will arise frequently, so it is prudent
to collect some facts about this case.

Proposition 2.4 Suppose (p, q) is admissible with py = q1. Then, up to the changes
in Proposition 2.2, p has the form (a, 0, 0) and g has the form (a, —1, 1) for some
non-negative integer a. If, in addition, p1 = g2, then (p, q) is exceptional.

Proof Since (p, q) is admissible, for any i, j € {2, 3}, we have

1 =ged(p1 — q1, pi —qj) = |pi —q;l.

Since both g3, g3 differ from p> by 1, either g5 and g3 differ by 2, or g» = g3.

Assume initially that ¢ and g3 differ by 2. Since p; differs from both ¢> and ¢3
by 1, we must have p» = p3. Using Proposition 2.2(1) with t = —p, p now has
the form (a, 0,0). Since g = po =1 and g3 = p» ¥ 1, ¢ = (a, —1, 1) up to order.
Proposition 2.2(2) then allows us to assume a > 0.

Thus, we may assume g = g3 and that both p; and p3 differ from ¢, by 1. Again,
via Proposition 2.2(1), we may assume that go = 0, so p>, p3 € {£1}. Asq» = 0,
q now has the form (a, 0, 0), where, as above, we may assume a > 0. If p» = p3,
then we have the contradiction g1 = ) ¢; = Y pi = g1 £ 2. Thus pp # p3. Since
P2, p3 € {1}, we again obtain the form of the proposition. This completes the proof
of the first assertion.

For the second assertion, we assume that p; = g| = ¢». Subtracting p; (Proposition
2.2(1) ) from each entry of p and ¢, we obtain the triples p = (0, p» — p1, p3 — pP1)
andg = (0, 0, g3 — p1). We assume p, — p1 > 0 via Proposition 2.2(2). Admissibility
now implies that p» — p; = |p3 — p1| = 1. If p3 — p1 = 1, then the fact that ) p; =
> qi gives p = (0,1, 1) and ¢ = (0,0, 2). On the other hand, if p3 — p; = —1,
then p = (0,1, —1) and ¢ = (0,0, 0). Thus, in both cases, (p, g) is exceptional,
completing the proof. O

2.2 The Eschenburg Metric

In this section, we outline the construction of the metric.

Suppose G is a compact Lie group with bi-invariant metric (-, -)o. Given any closed
subgroup K C G, we perform a Cheeger deformation [2] of (-, -)¢ in the direction
of K. Specifically, we can equip G x K with the metric (-, -)o + #{-, -)o|x Where
t € (0,00) is some fixed parameter. Then K acts freely and isometrically via k *
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(g1, k1) = (glk’l, kki), and thus one obtains a metric on the orbit space G xg K.
As bi-invariant metrics on Lie groups are well-known to have non-negative sectional
curvature, O’Neill’s formula [ 10] implies the metric on G X g K is also non-negatively
curved.

The map (g1, k1) — g1k descends to a diffeomorphism G x g K = G. Using the
diffeomorphism to transfer the submersion metric on G x ¢ K to G, we obtain a new
metric (-, -)x on G, the Cheeger deformation of (-, -)¢ in the direction of K.

The G x K action on itself given by (g, k) x (g1, k1) = (gg1, kik~—1) commutes
with the previously described K action, so induces an isometric G x K action on
(G, (-, -)x)- One can easily verify the corresponding G x K action on G is nothing
but (g, k)*xg1 = gglkl_l. In particular, (-, -) ¢ is left G-invariant and right K -invariant.

Since (-, ) is left invariant, it is defined by its value at the tangent space 7,G
to the identity element e € G. We identify T,G with the Lie algebra g of G in
the usual fashion. We use the notation € C g to denote the Lie algebra of €, and
we let p denote the (-, -)o-orthogonal complement of ¢ in g. Defining ¢px : g — g
by ¢x(Xe + Xp) = HLIXE + X, it is straightforward to verify that (X, Y)x =
(X, pr (Y))o for all X,Y € g. It is also straightforward to verify that the horizontal
lift of a vector qu}l(X) €g=T,GtoTe(Gx K)=g® tis given by (X, %Xg).

Using Tr(X) to denote the trace of a square matrix X, we can now define the
Eschenburg metric.

Definition 2.5 The Eschenburg metric on SU (3) is the metric obtained from the above
construction with G = SU(3), K = U(2) embedded via A +— diag(A, det(A)),
t=1,and (X, Y)o = —Tr(XY).

The Eschenburg metric on an Eschenburg space E, 4 is the metric obtained as a
submersion metric induced from the Eschenburg metric on SU (3).

Note 2.6 In the above definition, we set # = 1 for definiteness. While we state Propo-
sition 2.8 and Theorem 2.9 below in terms of the Eschenburg metric as we have defined
it, they are actually valid for any ¢ € (0, 00). In particular, allowing a different choice
of ¢ in Definition 2.5 has no effect on Theorems 1.2 and 1.3.

The S! actions on SU(3) defined in Section 2 act via left and right multiplication
by elements of U (3), so are not obviously isometric with respect to the Eschenburg
metric. The next proposition indicates that they are nevertheless isometric.

Proposition 2.7 Suppose (p, q) is admissible. Then the S' action on SU (3) given by
7% A = diag(z”', 272, z7*) A diag(z¥", 72, qu)—l

is isometric with respect to the Eschenburg metric.

Proof Consider the action
2 ¥ A = diag(z"1, 272, 2P%) A diag (21, 2%, z93) 7,
where p; = 3p; — (p1 + p2 + p3) and ¢/ = 3¢; — (g1 + g2 + ¢3). Since

det(diag(z”1, 272, zP3)) = det(diag(z71, 292, 29)) = 1, this action is defined by a
subset of K x K, and hence is isometric.
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On the other hand, since ) p; = Y _ ¢;, we find

. / / / . ’ / o
7% A = diag(zP1, 272, zP3) A diag(z, z%2, 793) 7!

. _ . —1
— dlag(z3p‘ el Z3173)Z (P‘+p2+p3)Az‘“+qz+q3dlag(z3q‘, 392, Z3q3)

— diag(z3p1, Z3p2’ z3p3)A diag(z3q1 , Z3tiz7 23%)_1.

In particular, the action * is isometric when done at three times the speed. But this
clearly implies that * itself is an isometric action. O

The curvature calculations we are interested in all occur on the Lie algebra level.
To that end, we recall that g = su(3) consists of the 3 x 3 skew-Hermitian complex
matrices. The subpaces £ and p are given as follows:

E={A=(aj) €g:a13=ax3=a3 =azx =0}

and
p={A=(aj) €g:a =app=ay =an =a3 =0}
Eschenburg [4] found a characterization of when a 2-plane o C g has zero sectional

curvature with respect to the Eschenburg metric. To state his characterization, we set
Y3 =idiag(l, 1, —2) € £ and we set Y| = i diag(—2,1,1) € £

Proposition 2.8 (Eschenburg). Suppose SU (3) is equipped with the Eschenburg met-
ric. Then, a 2-plane o C g with zero-sectional curvature must contain at least one of
the following two vectors:

1. Y3 =idiag(l, 1, =2) or

2. AdiY) for somek € K = U(2).

From O’Neill’s formula [10], a zero-curvature plane in E, , with the Eschenburg
metric must lift to a horizontal zero-curvature plane in SU (3). Using this fact and
Proposition 2.8, Kerin [9] proved a characterization of points [A] € E, , having a
zero-curvature plane with respect to the Eschenburg metric. To describe his results,
we set P = diag(p1, p2, p3), O = diag(q1, q2, ¢3) and we view Ady Y| and Y3 as left
invariant vector fields on SU (3).

Theorem 2.9 (Kerin). Suppose E, , is equipped with the Eschenburg metric and let
A = (a;j) € SUQ3).
e Y3 is horizontal at A if and only if (Y3, Ady—1 (i P) —iQ)o = 0, which holds if
and only if

3
Y laplPri=as (2.10)
j=1

o Fork = (kij) € K, AdyYy is horizontal at A if and only if (Ady Y1, Ad,-1 (i P) —
iQ)o = 0, which holds if and only if

3
D 1A Ppj = ki Pgr + kol g @.11)
j=1
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Moreover, if either Y3 or Ady Y| is horizontal at A, then there is a zero-curvature plane
at[Al e E, 4.

Note 2.12 Kerin’s proof [9, Theorem 2.2] of the last statement of Theorem 2.9 has a
small gap as itrelies on Proposition 2.8, which is incorrectly stated in [9, Lemma2.1] as
abiconditional. To complete the proof when Ady Y1 is horizontal at A, one observes that
the centralizer of Y| contains a two-dimensional subspace p’ C p consisting of matrices
with a;3 = a31 = 0. In particular, after translating the seven-dimensional horizontal
space at A to T,G, one finds it intersects Adgp’ C p in a subspace of dimension
at least 1. Selecting a non-zero vector AdyX from this subspace, one verifies that
[Adi Y1, Adiy X] = [Y1, X] = 0 and that [(AdxY1)e, (AdgX)e] = 0 since (AdiX)e =
0. From [6, Example], it now follows that the plane span{Ad; Y1, Ady X} projects to
a zero-curvature plane at [A] in £, ;. The case where Y3 is horizontal is similar but
easier: here, the entire space p centralizes Y1, so one has a three dimensional set of Xs
to choose from.

Note 2.13 We will often find solutions to Eq. 2.11 as follows. For A € SU(3), we
consider the function f4 : K — R given by the difference of the left hand side
and right hand side of Eq. 2.11. The function f4 is obviously continuous, and K
is a connected. Thus, it is sufficient to show that f4 takes on both non-positive and
non-negative values.

Recall the notation p = min{py, p2, p3} and p = max{pi, p2, p3}. We will use
the following estimate on the left hand side of Eq. 2.11.

Lemma 2.14 Forany A € SU(3) and any k € U (2),
3
P <Y Ak DIPp; <.
j=I

Proof Notice that (Ak);; comprises the first column of Ak e SU(3). Thus
Zi‘:l [(AKk) j1 |2 = 1 and obviously each term |(Ak) ;i |2 is non-negative. Thus, we
have

3 3 3
P=Y 1(A)j11Pp < > (AP pj < ) I(AK) ;PP =P
j=1 j=1 j=1
O

We will need a more explicit form for the zero curvature planes containing Ady Y.
Set

Bi 0 0
Z= 0 Bi z esu3):BeRandz € C
0 —z —2Bi

We note that the elements of Z all commute with Y7. In fact, Z and Y] span the
centralizer of Y.
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Lemma 2.15 Suppose o C g is a zero-curvature plane with respect to the Eschenburg
metric on SU(3). In addition, assume that AdyY| € o for some k € K. Then

o = span{Adi Y, Ady Z}

for some Z € Z.

Proof Because AdiY| € o, we know that o is spanned by AdyY; and some other
vector X. The plane o lifts to the horizontal plane & in G x K which is spanned by
the vectors (¢x (AdkY1), 1k (AdiY1)e) and (¢ (X), T¢x (X)e). Since o has zero-
curvature, O’Neill’s formula implies that & must also have zero-curvature, which then
implies that [¢px (Adr Y1), ¢k (X)] = 0. But notice that Y1 € € so AdyY; € € In
particular, ¢px (AdyY|) = —~ AdyY), so we now conclude that [Ad, Yy, ¢ (X)] = 0.

t+1
Writing X = X¢ + Xp, we find

+1
ct ep

t
0 =[Adc Y1, ¢(X)] = ——[Adi Y1, Xe] +[Adi Yy, Xp].
t ~————

Thus, we conclude that [Ad Y1, Xe] = [AdiY1, Xp] = 0, so [AdYy, X] = 0.
Since Ady is a Lie algebra isomorphism, [Y, Ad;-1X] = 0, so Ad;-1X centralizes
Y.

Thus, we have Ad,—1X = ALY + Z for some A € R and Z € Z. Thus,
X = MAdyY) + AdyZ. Since AdiY; and X are both in o, so is AdyZ and
o =span{AdyZ, AdrY1}. O

2.3 The Wilking Metric

We now describe a general method, due to Wilking [12], for constructing non-
negatively curved metrics on Lie group and their quotients. When compared with
Cheeger deformed metrics, these metrics typically have fewer zero-curvature planes.
We refer to this method as Wilking’s doubling trick.

Consider two closed subgroups K1, K» € G, giving rise to two Cheeger deforma-
tions (-, -)k,, withi = 1, 2. Then G x G supports the metric (-, -) g, + (-, -) k, whichis
left invariant and of non-negative sectional curvature. The action of G on G x G given
by g x (g1, g&2) = (gg1, gg2) is free and isometric, so induces a Riemannian metric on
the quotient space G\(G x G). This quotient space is diffeomorphic to G (see, e.g.,
[5]), with a diffeomorphism being induced from the map (g;, g2) — (gl_l g2). Thus
this construction induces a new metric (-, -) g, k, on G.

The isometric K| x K3 action on G x G obtained by right multiplication descends
to an isometric action on (G, (-, )k, k,), which implies that this new metric is left
K-invariant and right K»-invariant. In particular, if L € K| x K>, then the induced
action of L on G is isometric.

In the context of Eschenburg spaces, we take L = S 1 embedded into U 3) x
U3) as z — (diag(z?', zP2, zP3), diag(z9', z%2, z%3)). Since S' is not a subset of
SU3) x SU(3), it is not immediately obvious that G\G x G/S' is diffeomorphic to
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E, 4.Indeed, the notation G x G /S 1 does not actually even make sense. Nevertheless,
because 3" p; = Y ¢i, S' does actin a well-defined and isometric manor on AG\ (G x
G). In more detail, we view G x G € U (3) x U(3). Then L acts on AU (3)\(U (3) x
U (3)). We observe that the natural map AG\(G x G) — AUGB\U3) x U3))
is injective. Indeed, if (A, B), (C, D) € G x G are in the same AU (3) orbit, then
we have (UA, UB) = (C, D) for some U € U(3). But then det(U) = det(UA) =
det(C) = 1,sothat (U, U) € AG.Viewing AG\(G xG) as subsetof AU (3)\ (U (3) x
U (3)) and choosing (A, B) € G x G, the S! action takes [(A, B)] to z % [(A, B)] =
[(A diag(zP', zP2, zP3)~!, B diag(z?', z92, z9%)~1)]. Choosing any matrix U € U (3)
with det(U) = zP1+P2+P3 = 791+492+43 we observe that

[(Adiag(z"", 27, z7) 7", B diag(z?", 292, z%)™")]
is equal to
[(UAdiag(z"', 22, zP*) ™', U B diag(z?', 2%, z%3)™")] € AG\(G x G).

In particular the L action on AU (3)\(U (3) x U(3)) preserves AG\(G x G).

Moreover, the S! action on AG\(G x G) is isometric. To see this, observe that via
the diffeomorphism AG\(G x G) = G, the S! action on AG\(G x G) becomes the
action given in Proposition 2.7. In particular, the proof of Proposition 2.7 applies in
this case as well.

Definition 2.16 The Wilking metric on SU (3) is the metric obtained by applying Wilk-
ing’s doubling trick in the case where both copies of G = SU (3) are equipped with
the Eschenburg metric. The Wilking metric on an Eschenburg space E 4 is the metric
obtained as a submersion metric induced from the Wilking metric on SU (3).

Now that we have defined both the Eschenburg and Wilking metrics, we can prove
Proposition 2.2.

Proof of Proposition 2.2 We will work down the list of options for (p’, ¢’) given in the
statement of Proposition 2.2.

1. (p'.q") = (p +t,q + t). In this case, the corresponding actions by S' are
identical, so the two quotients are isometric with respect to both the Eschenburg and
Wilking metrics.

2. (p',q") = (—p, —¢q). In this case, the two actions differ only by a change of
coordinates in the circle. Hence, the quotients are isometric with respect to both the
Eschenburg and Wilking metrics.

3.and4. (p', q") = (ps, q) foro € S3.Inthis case, let R denote the matrix obtained
by applying o € S3 to the rows of the identity matrix /. Observe that det R = %1. Set

R if detR =1
| Rdiag(1,1,—1) if detR=—1"

We observe that S € SU(3) and that S conjugates diag(z?!, zP2,z"3) to
diag(zPo, zPe@  zPo®) it follows that left multiplication by S, Lg : SU(3) —
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SU (3) induces a diffeomorphism between E, ; and E,/ ;. As the Eschenburg metric
is left SU (3)-invariant, Lg is an isometry with respect to the Eschenburg metric. On
the other hand, the Wilking metric is only left U (2)-invariant, and Lg € U (2) if and
only if 0 (3) = 3.

5.and 6. (p', ¢') = (p, q5) for o € S3. The proof is analogous to the previous case
using right multiplication by S~ instead of left multiplication by S. The isometry
statement follows as in the previous case by noting that both the Eschenburg and
Wilking metrics are only right U (2)-invariant.

7.(p',q") = (q, p). In this case, the inverse map ¢ : SU(3) — SU(3) induces a
diffeomorphism between E, ;, and E . To see the map ¢ induces an isometry with
respect to the Wilking metric, note that viewing SU (3) as ASU 3)\(SU (3) x SU(3)),
¢ corresponds to the map interchanging the two factors of SU(3) x SU (3). Because
the same metric is used on both factors, interchanging them is an isometry. O

We now derive conditions under which a point [A] € E, ,; has a zero-curvature
plane with respect to the Wilking metric. We will abbreviate ¢y (2) to ¢, so ¢(X) =

Given X € g, we set
X=(—¢""(Ady1X). 07" (X)) eg@y.

We note under the AG action on G x G, that every orbit contains a point of the
form (A, I). Additionally, we recall that e.g., Kerin [8, Section 1, Equation 9] has
shown that under the Riemannian submersion G x G — G\(G x G)/S' = E p.q-the
horizontal space at a point (A, I), after left translation to the identity, is

Ha =1{X: X egand (X, Ada(iP) — i Q))o = 0},

where P = diag(p1, p2, p3) and Q = diag(q1, g2, g3). We recall that we have chosen
the bi-invariant metric on SU (3) whose value at the identity is (X, Y)o = —Tr(XY).

Proposition 2.17 Suppose A = (a;j) € SU(3) is a point for which there are elements
k= (kij) € U@2)and 0 # Z € Z simultaneously satisfy all three of the following
conditions:

3
D 1A DPpj = knPPgr + ki g2 (Condition A)
j=I1

(AdiZ, Ad4-1(iP) —iQ)o=0 (Condition B)

{(AdAle)p, (AdAkZ)p} arelinearly dependent over R. (Condition C)

Then, with respect to the Wilking metric, there is at least one zero-curvature plane
in T[A] Ep’q.
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Proof Observe that under the Riemannian submersion G x G — G\(G x G)/S' =
Ep 4, the point (A1, e) maps to [A]. We will construct a horizontal zero-curvature
plane in T 4-1 ,G x G. By a result of Tapp [11], such a plane must project to a
zero-curvature plane in Tja1E ) 4.

Consider first the vector AdiY; € g. From Theorem 2.9, Eq. Condition A is
equivalent to the condition that (AdiYi, Ady—1(iP) — iQ)o = 0. In particular,
m € H4-1. Likewise, Eq. Condition B implies that m € H4-1. Thus, the
plane 6 = span{m, A/dk\Z} is, after left translating to (A™', e), a horizontal plane
at (A~!, ). It remains to determine its curvature.

Because the metric on G x G is a product of Eschenburg metrics, clearly 6 has
zero-curvature if and only if its two projections

71 = {—¢ " (Adu Y1), —¢~(Adar 2)}

and
& = (¢ (Ad1), ¢~ (Adr2))

both have zero-curvature with respect to the Eschenburg metric.

We begin with the easier case of ¢,. Eschenburg [6] has shown that with respect to
the Eschenburg metric, &, has zero sectional curvature if and only if [Ady Y1, Ady Z] =
0 and [(AdrY1)e, (AdkZ)e] = 0. For the first equation, we find [Ady Y1, AdiZ] =
[Y1, Z] = 0. For the second, we note that (AdyZ)¢ = BY3. In particular, it is in the
centralizer of €, so [(AdrY1)e, (AdrZ)¢] = 0. Thus, 6, has zero-curvature.

We finally turn attention to &1. As in the previous case, we need show that
[Adar Y1, Adar Z] = 0 and [(AdarY1)e, (AdarZ)¢] = 0. For the first, we have

[AdarY1, Adar Z] = [Y1, Z] = 0.

For the second condition, we argue as follows. First observe that [€, €] C &, [p, p] <
€, and [&, p] C p. Then, since [Adax Y1, AdaxZ] = 0, it follows that

0 = [AdarY1, AdaxZ]e = [(AdakY1))e, (Adar 2))e] + [(AdakY1))p, (AdarZ))p].

Noting that Eq. Condition C implies [(AdaxY1))yp, (AdarZ))p] = 0, we conclude
that [(AdarY1))e, (AdarZ))e] = 0 as well. Thus, 61 has zero-curvature as well. O

We now specialize to Eschenburg spaces E, , with p = (0,0,91 + g2 + ¢3)
and ¢ = (g1, g2, q3) where the g; are relatively prime integers. We identify S! with
{(diag(1, 1, z1+92+43) diag(z9', 792, 79)) : z € S' € C} € U3) x U(3). Then,
the normalizer of S' € U(3) x U(3) contains U (2) x T2 C U@3) x U(3), where
UQ) = K C SU(3), and T? is the maximal torus of diagonal matrices in SU (3).
Noting that U (2) x T?> C K x K, this implies that with respect to the Wilking metric
onk,,=SUQ)/S !, that left multiplication by U (2) and right multiplication by 72
are isometries.
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Proposition 2.18 Suppose E, 4 is equipped with a Wilking metric with p = (0,0, g1+
q2 + q3) and g = (q1, q2, q3). Then the isometry group acts on E, , with cohomo-
geneity at most two and every orbit passes through a point [A] € E), ; where A € F
and where the subset F  SU (3) is defined as

cos(a) — sin(a) 0
F = cos(f) sin(a) cos(f) cos(a) —sin(@) | € SUB) : «, 0 € [0, 2]
sin(0) sin(e) sin(f) cos(ex) cos(H)

Proof The fact that the action is cohomogeneity at most two is well-known [7, Section
3]. So, we need only show that every orbit passes through a point in the image of F.

Recall that we have a U (2)-principal bundle 77 : SU(3) — CP? given by mapping
A = (a;j) € SU(3) to its last row. It follows that two elements in SU(3) with the
same image in CP? are K -equivalent. Since the {/} x T2 C U(2) x T? action
commutes with the U(2) x {(1, 1)} € U(2) x T? action, 7 induces a T2 action
on CP2. The proof will be complete if we can show that every T2 orbit in CP?2
intersects 7 (F). In fact, since clearly any unit length element of R> has the form
(sin(0) sin(a), sin(0) cos(x), cos(h)), it is sufficient to show that every point in CP?
is T'2-equivalent to one with all coordinates real.

Parametrizing T2 C SU (3) as diag(z, w, zw), the induced T2 action on CP? is
given by

(z,w) *[z1 : 22 : 73] = [2z1 : w22 : zwz3].

If any z; = 0, then we may obviously find a T'>-equivalent point whose coordinates

are all real. If all three z; are non-zero, choose u with u® = % Letz = %“ and
— uzx
—lall ) _
Then it is easy to verify that (z, w) * [z1 : 22 : 23] = (2, w) * [uz] : uzo : uz3] has

all coordinates real, completing the proof. O
We have the following corollary.

Corollary 2.19 Two matrices A = (a;j), B = (b;j) € SU(3) areinthe same U (2) x T2
orbit if and only if |a3;| = |b3i| foralli € {1, 2, 3}.

Proof Given the block form of U(2) C SU(3), the action of U(2) x T2 on the
bottom row of a matrix simply multiplies it by various unit length complex numbers.

In particular, if A and B are in the same orbit, that we must have |a3;| = |b3;| for all
i e{l,2,3}.
For the converse, assume that |a3;| = |b3;| for all i € {1,2,3}. From the proof

of Proposition 2.18, we know that A and B are orbit-equivalent if w(A), m(B) €
CP? are equivalent under the 72-action. Again from the proof of Proposition
2.18, we see that under the 72-action, (A) is equivalent to a point of the form
[sin(B4) sin(as), sin(B4) cos(aa), cos(B4)] € CP? and that similarly 7 (B) is T2-
equivalent to [(sin(fp) sin(ap), sin(fp) cos(ap), cos(fp)] € CP2. Observe that
|cos(04)| = |azz| = |b3z| = | cos(fp)| sothatcos(64) = £ cos(fp) . In an analogous
fashion, we see that sin(64) sin(a4) = % sin(fp) sin(ap) and that sin(64) cos(ay) =
+sin(0p) cos(ap).
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To get the signs to agree, we note that element (—1, 1) € T2 transforms the point
[sin(B4) sin(aa), sin(B@4) cos(aa), cos(B4)] to [—sin(B4) sin(ay), sin(f4) cos(aa),
— cos(04)] which is the same point as [sin(04) sin(o4), — sin(04) cos(a4), cos(04)].
That is, (—1, 1) acts by changing the sign of the middle coordinate. Similarly, one
sees that (1, —1) changes the sign of the first coordinate, while (—1, —1) changes the
sign of the last coordinate. Clearly, by using using these elements, one may transform
[sin(B4) sin(aa), sin(B4) cos(aa), cos(B4)]to[sin(Bp) sin(apg), sin(fp) cos(ag), cos
(6p)], completing the proof. O

We now isolate the choices of (g1, g2, g3) for which the corresponding Eschenburg
spaces are not already know to have a metric of strictly or almost positive curvature.
We observe that via Proposition 2.2 we may assume that g1 + g2 + g3 > 0 and that

q1 = q2.

Proposition 2.20 Suppose q = (q1, q2,q3) with q1, g2 and q3 pairwise relatively
prime integers for which q1 +q2> + g3 > 0and q1 > gq2. Let p = (0, 0, g1 + q2 + g3).
If E, 4 is not diffeomorphic to a known example with positive or almost positive
sectional curvature, then all of the following must occur:

la) g1 +q2+q3>0
1b) q1 >0
Ic) g1 > q»
1d) q2q3 <0
and at least one of the following must occur:
2a) g2 +q3>0
2b) g2 <0and g1 +q2 >0
2c) g3 <0andq1 +q3 >0

Proof As mentioned above, we assume that g; + g2 + g3 > 0 and q; > ¢p. If
q1 + g2 + g3 = 0, then the resulting Eschenburg space is homogeneous. Apart from
Wilking’s almost positively curved example [12], these homogeneous spaces admit
homogeneous metric of strictly positive sectional curvature [1]. Thus, we may assume
q1 + q2 + g3 > 0. Further, if g; = ¢, the the resulting Eschenburg space admits
a cohomogeneity one action. In particular, it is either diffeomorphic to a positively
curved example or to Kerin’s almost positively curved example [9]. Thus, we may
assume g1 > ¢o. In addition, if any ¢; = 0, then the fact that the g; are relatively
prime implies that (g1, g2, ¢3) is a permutation of (1, 1, 0) or (1, —1, 0). The first
case gives an Eschenburg space diffeomorphic to Kerin’s almost positively curved
example via the diffeomorphism swapping p and g, while the second case again gives
Wilking’s almost positively curved example. Thus, we may assume that all three g;
are non-zero.

If all three g; are positive, it is easy to see that 0 ¢ [min{g;}, max{g;}] and g1 +
q2+q3 ¢ [min{q;}, max{q;}]. In particular, by Theorem 1.1, the resulting Eschenburg
space is diffeomorphic to a positively curved example.

Thus, we may assume that at least one ¢; < 0. If g; < 0, the condition g1 > ¢»
implies go < 0 as well. Then the condition g1 + g2 + ¢3 > 0 implies that g3 >
q1 + q2 + g3 > 0. From this, it follows easily that ¢; ¢ [0, g1 + g2 + ¢3] for all i.
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In particular, these Eschenburg spaces are known to admit strictly positively curved
metrics by Theorem 1.1. Thus, we may assume ¢ > 0. If both ¢» and g3 are negative,
we now see that g; ¢ [0, q1 + g2 + ¢3] for all i, so, again from Theorem 1.1, the
resulting Eschenburg space is positively curved. Thus, we have g2q3 < 0, completing
the verification of 1a) through 1d).

‘We now assume that 2a) does not occur and show that least one of 2b) and 2¢) must
occur. Because g2 + g3 < 0, q1 ¢ [0, g1 + g2 + g3]. Thus, to have a new example,
we must have ¢g; € [0, g1 + g2 + ¢3] for at least one i € {2, 3}. If this is true for
i =2, we find go > 0 (which, since g # 0, implies that go > 0 and ¢3 < 0), and
42 < q1 + g2 + g3. In other words, we must have g3 < 0 and 0 < g1 + g3. The case
where g3 € [0, g1 + g2 + g3] is analogous.

It remains to see that the case g3 < 0 with g1 + g3 = 0 cannot occur. To see this,
observe that if g + g3 = 0, then since g and g3 are relatively prime, we must have
g1 = 1 and g3 = —1. Since ¢» and g3 have opposite signs, we have the contradiction
1=¢qg1>¢q2>0. o

3 Determining the Curvature of the Eschenburg Metrics

In this section, we prove Theorem 1.2. We divide up the proof depending on the nature
of the six possible products (ps (1) — q1)(Po(2) — q2) for o € S3.

3.1 AtLeast One (ps1) — 1) (Ps2) — q2) >0

In this section, we will prove the first three cases of Theorem 1.2, when at least one
(Po1) — q1)(Po2) — q2) > 0. Because permuting the p; is an isometry (Proposition
2.2), we may assume that (p; — q1)(p2 — ¢q2) > 0. We begin with [9, Theorem 2.3]
which asserts that in this case, there is at least one point of positive curvature.

Theorem 3.1 (Kerin). Suppose E, , is an Eschenburg space with the Eschenburg
metric and that (p1 — q1)(p2 — q2) > 0. Then for any diagonal matrix A € SU (3),
all 2-planes in Tja | E 4 have positive sectional curvature.

Of course, if all six products are positive, it is well-known that the resulting metric
is positively curved [4], so we will assume at least one product is non-positive. We
will break into two cases depending on whether there is a negative product or not.

Proposition 3.2 Suppose (ps1) — q1)(Ps2) — q2) = 0 for all o € S3. Assume addi-
tionally that at least one product is positive and at least one product is zero. Then, up
to the isometric modifications in Proposition 2.2, p = (0, 1, 1) and g = (0, 0, 2).

Proof Because permuting the p; as as well permuting ¢; and g, are isometries, we
may assume that p; = g;. From Proposition 2.4, we conclude that either (p, g) has
the form ((a, 0, 0), (a, =1, F1)) or that (p, g) has the form ((a, 1, —1), (a, 0, 0)),
where a is some non-negative integer.

We begin with the first form (p, q) = ((a,0,0), (a, £1, F1)). If a = 0, then it
is easy to see that all six products are non-positive. In particular, this contradicts the
assumption that at least one product is positive. Hence, we may assume a > 0.
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Consider now the product

(p1—q2)(p2 —q1) = (@ — q2)(—a) = 0.

Since a > 0,then 0 < a < g» < 1, this forces a = 1 and g» = 1, and therefore
q = (1,1, —1). Using Proposition 2.2(1) with t+ = —1 and then Proposition 2.2(2),
we find (p, ¢) = ((0, 1, 1), (0, 0, 2)). This completes the analysis of the first form.

We now move on to the second form (p, ¢) = ((a, 1, —1), (a, 0, 0)). As before, if
a = 0 then it is easy to see that all products are non-positive, giving a contradiction.
Hence, a > 0.

Now, consider the product

(p3 —q)(p1 —q2) = (=1 —a)a.
Since a > 0, this product is negative, giving a contradiction. O
Theorem 3.3 Suppose that (ps1) — q1)(Po2) — g2) < O for some o € S3. Then the
Eschenburg metric on E, 4 contains an open set of points which have at least one

zero-curvature plane.

Proof Since permuting the p; is an isometry (Proposition 2.2), we may assume that
p1 —¢q1 < 0and pr — g2 > 0. Now, consider the open set

3 3
U= {A = (a;j) € SUB): Y lan’pi <qiand Y lain|*pi > qa ¢ -

i=1 i=1

Notice that the identity I € U, so U # (.

We claim that for every A € U, that there is a zero-curvature plane at Tjo1E) 4.
From Theorem 2.9, it is sufficient to show that for each A € U, thereisa k € K
solving (2.11).

Following Remark 2.13, it is sufficient to show the function f4 : K — R given by

3
fatky =" 1(AK) 1P pj — ki Pg1 — lkail*ga

i=1

attains both non-negative and non-positive values.
To that end, observe that for the identity matrix /, that

3
fal) = Z lai11>pi — q1,
i=1

which is negative since A € U.
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Similarly, selecting k € K with (k11, k21) = (0, 1) , we see that

3
fak) =" lainl*pi — g2,
i=1

which is positive since A € U. O
With all of this in hand, we can now prove cases (1), (2), and (3) of Theorem 1.2.

Proofof (1),(2), and (3) of Theorem 1.2 1f all six products are positive, the resulting
Eschenburg spaces are all positively curved [4].

On the other hand, if all six products are non-negative, with at least one positive
and at least one zero, then Proposition 3.2 implies that up to isometry, (p,q) =
(0,1, 1), (0,0, 2)). But Kerin [9, Theorem 2.4] showed that for this example, the
Eschenburg metric is almost positively curved but not positively curved.

Thus, we may assume some of the six products are positive while some are negative.
By Theorem 3.1, the Eschenburg metric has quasi-positive curvature. On the other
hand, by Theorem 3.3, the Eschenburg metric is not almost positively curved. O

3.2 All Products Non-positive

The goal of this section is to prove Theorem 1.2(4). We begin with a characterization
of the p and g for which all six products are non-positive. Recall the notation p =

min{py, p2, p3} and p = max{p1, p2, p3}.

Proposition 3.4 Suppose (ps1) — q1)(Po2) — q2) < 0 for all o € S3. Then one of
the following three cases occur up to isometry:

1. Both min{q1, q2} < p and max{q1, 2} > P.
2. (p,q) =(0,0,2),(0, 1, 1))
3. (p’ C]) = ((_1705 1)’ (Oa 07 O))

Proof We will assume the first conclusion does not occur and show that either the
second or third conclusion must hold.

Assuming the first conclusion does not hold, we conclude max{qi, g2} < p or
min{q1, g2} > p. If the first option occurs, we use Proposition 2.2(2) to replace ¢
with —g and p with — p. The condition max{q;, g2} < P becomes min{—g;, —¢>} >
min{—p1, —p2, —p3}. In particular, we may assume without loss of generality that

min{qi, g2} > p. Further, by using Proposition 2.2(3)(4)(5), and (6), we may assume

p=pi=pr=p3=pandp <qi = q. (3.5

We will now show that that condition that all six products (ps (1) —¢q1) (P (2) —q2) are
non-positive together with Eq. 3.5 implies that (p, ¢) is exceptional. From Proposition
2.4, to show (p, g) is exceptional, it is sufficient to show that g = g» = p; for some
i, or that pp = p3 = ¢; for some i.
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If g0 > po, then (p1 — q1)(p2 — g2) > 0, giving a contradiction. Thus, we have
P1 <41 =42 = p2 = p3.

Thenboth (p2—¢q1)(p3—¢q2) = 0and (p3—q1)(p2—q2) > 0, soboth products must
be zero. The case that g1 = p3 cannot occur for otherwise we see 1 < p>» < p3 =41,
S0 g2 = q1 = p2 = p3, which contradicts admissibility of p and g. Thus, q; # p3
which then implies that g = p» and either go = p3 or g1 = p». In either case, (p, q)
must be exceptional. We now focus on each exceptional case.

Taking into account the isometries in Proposition 2.2, there are at most four
Eschenburg metrics on the exceptional Eschenburg space E,, with (p,q) =
((0,0,2), (0, 1, 1)). They are represented by the pairs

((07 0’ 2)1 (1’ 19 O))’((_Zs 0’ 0)’ (_1’ 0’ _1))7
((—-1,-1,0), (—2,0,0)), and ((—1, —1,0), (0,0, —2)).

Of these, the first and last pairs have (p1 — g1)(p2 — g2) > 0 and the third satisfies
the first conclusion of this proposition. The second, up to isometry, the example given
in the second conclusion of this proposition.

Similarly, up to isometry, there are at most three Eschenburg metrics on the excep-
tional Eschenburg space E(, ) with (p,q) = ((0,0,0), (1, —1, 0)), but both pairs
with p = (0, 0, 0) fall into the first conclusion of this proposition. The remaining pair
is ((—1,0, 1), (0, 0, 0)), giving the third conclusion of the proposition. ]

We are now ready to prove Theorem 1.2(4).

Theorem 3.6 Suppose (ps(1) —q1)(Po2) — q2) < 0forall o € S3. Then the Eschen-
burg metric on E, ;4 has a zero-curvature plane at every point.

Proof One of case 1, 2, or 3 of Proposition 3.4 must occur. The strategy for each case
is the same as in the proof of Theorem 3.3. Namely, we will show the function f4
from Remark 2.13 attains both non-negative and non-positive values.

Case 1: Assume that case 1 occurs. Recall that by Lemma 2.14, that for all A €
SU@3) and k € U(2), that p < 23:1 |(Ak)j1|2pj <7P.

Using the identity / € K, we find

fal) = pilan* + palaai* + p3lazi)* — q1.

Since g1 < D, Lemma 2.14 implies f4 (1) > 0.
On the other hand, if we select k € K with (ky1, k1) = (0, 1), then

fak) = pilaal® + palanl? + pslaznl® — g2

Since g > p, Lemma 2.14 implies f4 (k) < 0. This concludes the first case.
Case 2: We now move onto the second case. Here, the function f,4 takes the form

fak) = 2lazikiy + azkar|* — lkar |
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If az; = azp = 0, then obviously f4(k) < 0. Otherwise, the matrix

1 asy as 0
k = _53] aszn 0 S K

2 2
Vlazil® + laz| 0 0 Vlazl*>+ laz/?

and fa(k) = —|ko1|*> < 0. On the other hand, for the identity matrix /, we have
fa(I) = 0. This completes the second case.

Case 3: We lastly move on to the third case. Here, from our choice of p and ¢, the
function fy4 takes the form

fak) = —lankiy + ainka1|? + lazikin + azokar |

As in the proof of Case 2, we can select k € U (2) to make —|aj1k11+ai2ka; |2 =0,
so that f4(k) > 0. We can also select k € U (2) to make |az1k11 + azzkzi |2 =0, so
that f4 (k) < 0 as well. This completes the proof of the third case, and hence, of the
theorem. O

4 Wilking Metrics with Many Zero-curvature Planes

In this section, we prove Theorem 1.3. We begin by setting up notation. We let p =

(0,0, p3) and g = (q1. 92, q3), where p3 = q1 + g2 + g3, and q1. g2, and g3 are

relatively prime integers. Following Proposition 2.20, we assume that p3 > 0 and that

q1 > q2. We consider the Eschenburg space E), ; equipped with the Wilking metric.
We select a point A = A(0, o) € F so that

cos(a) —sin(w) 0
A = | cos(f) sin() cos(f) cos(axx) — sin(x)
sin(f) sin(«) sin(f) cos(a) cos(h)

We define /(0) by the formula

(p3 — q3) cos?(0) + g3 sin*(0)

h(®) =
©) sin?(8) (p3 cos2(8) + q3)

and we define g(6) by the formula

P3q1 cos>(0) + p3gs sin®(0) — q2q3

0 =
86 (@1 — q2)(p3 c0s2(8) + ¢3)

The importance of 4 and g is given by the following theorem which allows us to
recognize when an Eschenburg space with Wilking metric is not almost positively
curved.
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Theorem 4.1 Suppose there is an real number 0y for which both 0 < h(6y) < 1 and
0 < g(6o) < 1. Then there is a non-empty open subset of points in E, 4 for which
there is at least one zero-curvature plane at each point.

To prove Theorem 4.1, we require several lemmas, the first of which is a routine
calculation.

Lemma 4.2 All of the following identities hold:

p3sin?(0)h(0) — g2
q1 — 42 5
n20)(1 — h(©)) — — cos(9) [ P20 — 43
2. sin"(0)(1 = h(6)) = —cos(6) <p3 cos?(6) +613>
25in(8) cos(6) (p3 cos* (6) + 2p3g; sin’(0) cos>(0) — g3)

sin*(0)(p3 cos2(0) + ¢3)?
4p3q3 sin(0) cos(6)

(g1 — q2)(p3 cos?(8) + ¢3)?

We continue with the next lemma.

1. g(0) =

3. WO =—

4. 80 =

Lemma 4.3 Suppose that 0 € R has all of the following properties:

e Both p3cos’(0) £ q3 # 0
e 0 is not an integral multiple of /2

Additionally assume that there is an element k = (k;j) € SU(2) C K anda € R
Jfor which both
ki l* = g(6) (4.4)

and
[sin(a)ki; — cos(@)ki2)? = h(H). 4.5)

Then, with respect to the Wilking metric, there is a zero-curvature plane at
[AG, )] € Ep .

Proof Following Proposition 2.17, we need to find k € K, 0 # Z € Z satisfying
(Condition A), (Condition B), and (Condition C). To that end, we use k as hypothesized

i 0 0
in the lemma. We define Z = | 0 i ¢ where
0 —z —2pi

z = 3i tan(0)(cos(a)k; + sin(a)k12)

and where

2p3cos2(H)
p3cos*(0) +q3°

We observe that by hypothesis, z and g are well-defined, and B # 0. In particular,
Z # 0. We also note the following identities for 8, which easily follow from Lemma
4.2
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_ 2p3sin’(0)(1 — h(9))
© p3cos?(0) — g3

(4.6)
and
cos?(0)(1 + B) = sin?(0)(1 — h(6)). 4.7)

We now proceed to verify each of the three conditions of Proposition 2.17.

Equation Condition A
Given our choice of A and k above, Eq. Condition A specializes to

sin?(0)] sin(@)k11 — cos(e)ka1 > p3 = ki1 l*q1 + k2112 qa.

Using the fact that |ko1|?> = 1 — |k11|?> and Eqs. 4.4 and 4.5, verifying this equation
is equivalent to verifying

8@)q1 + (1 —g(0)q2

o= sin(0) ps

which is routine.

Equation Condition B
Given our choice of A and z above, Eq. Condition B specializes to the equation

((2cos?(8)—sin(9)) p3+(q1+q2—243)) B—6 sin*(8) p3| cos(e)ky 1 +sin(a)k 2> =0.

Using Eq. 4.5, we note that

cos(a)kyy + sin(a)k12 z
—sin(a)ki1 + cos(a)ki2

|| cos(e) sin(e) | | ki1
|| —sin(e) cos(@) | | k2
= ki [* + ka1 [°

=1.

| cos(@)kiy + sin(@)ki2|? + h(8) = ‘[

2

In particular, verifying (Condition B) reduces to verifying

6sin(0) p3(1 — h(0))

= . 4-8
p (2 cos2(8) — sin®(0)) p3 + (g1 + g2 — 2¢3) @9

Writing sin?(0) = 1 —cos2(0) and recalling that p3 = g1 +¢2 +g3, we find that the
denominator is simplifies to 3(p3 cos2(9) — ¢q3). Then we see that Eq. 4.8 is nothing
but Eq. 4.6.
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Equation Condition C

We will now verify (Condition C). In fact, we will show that with our choice
of A, k, B, and z, that (AdarY1)py = (AdaxZ)p. We recall that matrices in p are
determined entirely by their (1, 3) and (2, 3) entries. As such, we will only list these
entries.

A routine calculation shows that for generic k = (k;;) € K with k33 = 1 (so
koo = k11 and ko; = —k12), and generic Z € Z, that (Adar Y1)y is given by
3i sin(@) [ cos?(a)ky1kip —sin®(a)k k12 + sin(a) cos(e) (1 — 2|k11|_2) - ]

cos(6)(cos () (1=2[ky1|?) — lki1|* + sin() cos(a) (ki1kia + k11ki2)) |

Using the fact that k € K, so that k1] + |ki2)? = 1, it is easy to verify that this
can be rewritten in the form

(Adac¥D)p = 3i sin(9) [(COS(a)klz — sin(e)k11)(cos(a)kyy + Sin(a)%lz)] '

—cos(0)] cos(a)kin — sin(a)kyq|?

Similarly, a routine calculation shows that for our specific choice of z, that
(AdarZ)p =

3i sin(0)(cos(@)k12 — sin(a)kq)(cos(a)ky] + sin(e)k2)
3i tan(0) (cos(0) — sin?(0))| cos(a)ky1 + sin(a)k12|* + 3i cos(8) sin(@)B |

It is now obvious that the (1, 3) entri_es of the equation (AdaxY1)p) = (AﬂAk Z)p
are identical. Since | cos(a)k2 — sin(e)k11|> = h(6) and | cos(a)k;| + sin(e)k2|> =
1 — h(0), the (2, 3) entries if (AdaxY1)p and (AdaxZ)y agree if and only if

= sin(@) cos(B)h(0) — tan(@)(cosz(é) — sin2(9))(1 — h(9))
B cos(9) sin(0) '

But this is simply a rearrangement of Eq. 4.7, so it must hold. O

In order to use Lemma 4.3, we need to find solutions to both Eqs. 4.4 and 4.5.
To that end, when 0 < g(0) < 1, we will restrict attention to k = (k;;) € K with
ki1 = «/g(@), so that Eq. 4.4 is automatically satisfied. As |ky1|> + |k12|> = 1, we
find that k1> must have the form ko = /T — g(@)e'? for some y € R. We will find
solutions to Eq. 4.5 by varying y and appealing to the Intermediate Value Theoerem.
This will require estimates on the left hand side of Eq. 4.5.

Lemma 4.9 Suppose that for some 6 € R, that0 < g(0) < 1. Supposekiy = /g(0) €
R and k1p = /1 — g(0)e'Y for some y € R. Then we have

min | sin(a)k(; — cos(oe)zlgl2 < sinz(y)
aeR

and :
cosz(y) < max | sin(a)ky; — cos(a)k12|2.
aeR
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Proof By our choice of k11 and k12, we see | sin(a)k;; — cos(oz)Em2 takes the form

2
(sin(oe)\/g(O) — cos() cos(y)/1 — g(9)> + cosz(oz) sinz(y)(l —g(0)). (4.10)

By selecting « for which tan(a) = SLVANAEH O] Vl;g(e), the first term in parenthesis

NAQ)
vanishes, so | sin(a)ki; — cos(a)k12|? reduces to cos?(a) sin(y)(1 — g(#)). Since
cos?(a)and 1 — g(60) are both bounded above by 1, it follows that mingep | sin(o)ki; —
cos(a)kia|* < sin’(y).
For the upper bound, we select an « for which sin(e) = /g(0) and cos(a) =
—4/1 — g(0). Then, by discarding the last term of Eq. 4.10 we find

| sin(@)ki — cos(@)kia|* > (g(8) + (1 — g(8)) cos(y))?
= (2(0)(1 — cos(y)) + cos(y))?
> cos>(y),

where the last inequality holds because g(6)(1 — cos(y)) > 0. O
We can now prove Theorem 4.1.

Proof By continuity, there is a neighborhood U C R of 6 for which both 0 < h(6p) <
Il and 0 < g(6p) < 1 on U. Further, by shrinking U if necessary, we may assume
that all & € U satisfy all the inequalities in the statement of Lemma 4.3. In particular,
we may assume 0y satisfies all these inequalities. Now, consider the subset V C F
defined by

V = {A(G,a) € F :0 € U and (] sin(a)|/g(®) — | cos(a)]|/1 — g(G))2 < h(9)
and h(0) < (|sin(@)]v/g(®) + | cos(@)]y/1 — g(0))*}

The set V is obviously an open subset of F. Below, we will demonstrate the fol-
lowing three claims:

1. V is non-empty.

2. Under the U (2) x T?-action of Proposition 2.18, the orbit of V is an open subset
of SU(3).

3. Every point of V projects to a point in SU (3) having at least one zero-curvature
plane.

Temporarily assuming these claims, we may complete the proof as follows. The
claims establish the existence of a non-empty open subset of SU(3) consisting of
points whose projections to £, , all have at least one zero-curvature plane. Since the
natural projection SU (3) — E, 4 is a submersion, it is open, and hence the projection
of this open subset of SU(3) is an open subset of E, , witnessing the fact that the
Wilking metric is not almost positively curved.
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We now establish the claims.
Claim 1: To see V is non-empty, we begin with the point 6y € U. Select a real
number yy > 0 with the property that

0 < sin®(yp) < h(6y) < cos>(y) < 1.

Such a yg exists because 0 < h(fp) < 1 and both sin and cos are continuous.
Note that yy < /4 for otherwise the inequality sin(yp) < cos®(yp) is false. We let
ki1 = @ e Rand kjp = meim.

Now, by Lemma 4.9, the real function o — | sin(x)kj; — cos(oz)Em2 has a range
containing the closed interval [sinz(,Bo), cosz(,Bo)]. In particular, it contains h(6p).
Thus, by the Intermediate Value Theorem, there is an oy € R for which

| sin(ag)k11 — cos(ap)ki2|* = h(6p).

We now show that A(6p, ap) € V, so that V # . To see this, simply note that the
triangle inequality implies that both

[I5in(@0) |/ @0) — | cos@)|y/T = g(60)| < | sin(o)kir — cos(eouz|
and that

| sin(o)k11 — cos(eo)ki2| < | sin(ao)|v/g(0o) + | cos(a)]y/1 — g(6p).

Moreover, equality can only occur when yy is an integral multiple of 7. Recalling
that yp € (0, 7/4), we see that both inequalities are strict. Squaring both strict inequal-
ities and using the fact that | sin(ag)k1; — cos(ao)k12|> = h(6p), it now follows that
A6y, ap) € VsoV #£0.

Claim 2: We next claim that, under the U(2) x T2 action of Proposition 2.18,
that the orbit of V is an open subset of SU(3). Indeed, following Corollary 2.19,
A = (a;j) € SU(3) is orbit equivalent to an element of F where |a33|2 =
cos2(0), laz1|* = sin?(0) sin®(«), and |a32|2‘ :I sin2(0) cos?(a). TheseI laltter two

Tt 3 — asy — asn
equalities can be rearranged to | sin(«)| = m and | cos(a)| = m We
also note that by replacing all sin2(0) with 1 — cos2(9) = 1 — |az3|?, we may view
both % and g as functions of a33.

Then Corollary 2.19 implies that the U (2) x T orbit of V is given by

2
las1 | lazz|
A=(a;;)eSUQB): | ——/ - 1= h
{ (aij) 3) ( il 8(azz) = ol g(a33)> < h(az3)

2

laz| laza|

and h(as3) < ( g(a33)+\/1—g(a33)> ,
V1—laz3)? V1 —az3)?
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which is obviously open.

Claim 3: We now show that Lemma 4.3 implies that every point in V has at least
one zero-curvature plane. So, let A(9, a) € V. We set k11 = +/g(0), so that Eq. 4.4 is
satisfied. Writing k1p = /T — g(6)e'”, our goal is to find y solving Eq. 4.5.

We observe that by the reverse triangle inequality, we have the bounds

[Isin(@)V/g @) — [cos(@Iy/T = g @] < | sin(@ki1 — cos(@hkuz|

with equality achieved at either y = 0 or y = 7, depending on the signs of sin(«)
and cos(w). Similarly, by the triangle inequality we have the bound

| sin(@)ki1 — cos(@)kiz| < |sin(@)|y/g(©@) + | cos(@)|y/1 — g(6)

which equality similarly achieved at either y = Oory = 7.

Squaring these inequalities, the fact that A(6, «) € V implies that () lies between
the two extremes of the function y > | sin(a)k;;—cos()k2|*. Thus, the Intermediate
Value Theorem implies the existence of a yp € R for which | sin(a)k1 —cos(a)k12 |2 =
h(6). That is, Eq. 4.5 is solved by this choice of yp. Lemma 4.3 now implies the
existence of a zero-curvature plane at [A(0, «)]. O

We now use Theorem 4.1 to show that, under the hypotheses of Proposition 2.20,
that Wilking’s metric is not almost positively curved. That is, we will now prove
Theorem 1.3.

Proof Assume ¢, q2, and g3 fulfill conditions 1a) through 1d) of Proposition 2.20.
That is, we assume that p3 > 0, g1 > 0, g1 > @2, and that gog3 < 0 so g2 and ¢3
have opposite signs. We will break the proof into cases based on the cases 2a), 2b),
and 2¢) in Proposition 2.20.

Case 2¢): Assume that g3 < 0 and ¢g; + g3 > 0. We will additionally assume that
q2 + q3 < 0; the opposite case where g + g3 > 0 will be accounted for in Case
2a) below. We also observe that the following proof does not use the hypothesis that
q3 < 0.

We compute that h(7/2) = 1, h/(w/2) = 0, and h"(7/2) = —2, so that 0 <
h(0) < 1 for all 8 sufficiently close to /2.

We also compute that g(r/2) = %, g'(w/2) =0, and g’ (w/2) = ;qu"z <
0. By hypothesis, the numerator and denominator of g(;r/2) are both positive, so
g(m/2) > 0.

In addition, we also see that g(/2) < 1. Indeed, we have

92+q3=0
q3 = —q2

q1+93=q1 —q2

atas _ 1

q1 —q2
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It follows that for all 6 sufficiently close to /2, s0 0 < g(f) < 1. Since we have
shown 0 < h(0) < 1 for 6 sufficiently close to /2, we may apply Theorem 4.1 to
complete the proof of this case.

Case 2a): Here, we assume that g» + g3 > 0. Since ¢; > g2 by hypothesis,
q1 + g3 > 0. In particular, if g» 4+ g3 = 0, it follows under Case 2c) above. As such,
for the remainder of the proof of this case, we may assume that g + g3 > 0.

We define 6y € (0, /2) by equation

0052(90) — M
(g2 — g3) 3
To see this is well-defined, we need to verify that 0 < % < 1. The case

where g < 0 and g3 > 0 is similar to the case where g > 0 and ¢3 < 0, so we
only show the first case. So, assume that go < 0 and g3 > 0. Then the numerator and
denominator are both negative, so the fraction is positive. In addition, since g1 > 0
and p3 > 0, we see that both g1¢g3 > 0 and —g2p3 >, so that 0 < q143 — g3 p3. Then

0<q193 —q2p3
q3(q2 + q3) < q3(g2 + q3) + 9193 — @2 p3
93(q2 + q3) < q3p3 — q2p3
q3(q2 +q3) < (93 — q2)p3
q3(q2 + q3)

(@3 — q2)p3
—q3(q2 + q3)
(g2 — q3)p3

<1

< 1.

A simple computation now reveals that g(6p) = 1. Further, from Lemma 4.2,
g’ (60) # 0. 1In particular, any neighborhood of 6y contains points & where 0 < g(0) <
1. We also compute that /(6p) = % We claim that 0 < h(6p) < 1. Believing
this, it follows that any neighborhood of 6 contains points & where both 0 < h(0) < 1
and 0 < g(#) < 1. Then Theorem 4.1 completes the proof in this case.

It remains to establish the claim. Again, the case where g < 0 and g3 > 0is similar
to the case where g» > 0 and g3 < 0, so we only prove it in the first case. So, assume
that ¢» < 0 and ¢3 > 0. The numerator of /() is negative, as is the denominator, so

h(6p) > 0. On the other hand, since g2 + g3 > 0, we have

q1 < p3
q192 > q2p3
49192 — 4193 > 42P3 — 4143
(92 —g3)q1 > q2p3 — 9193
(g2 — g3)q1
q2pP3 — 4193

< 1.

The completes the proof in case 2a).
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Case 2b): Assume that ¢o < 0 and that g; + g» > 0. We break into subcases
depending on whether g1 + g2 = 0 or not. So, assume initially that g; + g» = 0. Then

. . 2 -2
on (0, 7 /2), h(0) simplifies to h(0) = m while g(0) = f1|(1+2;£1>5(1(_fil:r2‘1(30§‘)“ ®

Then 0 < h(0) < 1forall6 € (0, 7/2) and g(0) = % Thus, for all 8 > 0 sufficiently
close to 0, we have 0 < h(0) < 1 and 0 < g(0#) < 1. So, by Theorem 4.1, there is an
open set of points having a zero-curvature plane in this case as well.

We may thus assume that g1 + g» > 0. Then 0 < % < 1,sothereisafp € R

with the property that cos?(6p) = %. We then compute 4 (6p) = 1 and, from Lemma
4.2, that 1’ (8g) # 0. In particular, any neighborhood of 6y contains points for which
0 < h(@) < 1. Moreover, g(6p) = QI@ > By our hypotheses on the ¢;, it follows
that 0 < g(6p) < 1. By continuity, for alf@ sufficiently close to 6y, 0 < g(8) < 1. It
follows that any neighborhood of 6y contains a point for which both 0 < h(f) < 1
and 0 < g(0) < 1. One final application of Theorem 4.1 then completes the proof in
this case, and hence completes the proof of Theorem 1.3. O
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