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Abstract

We investigate the curvature of Eschenburg spaces with respect to two different met-

rics, one constructed by Eschenburg and the other by Wilking. With respect to the

Eschenburg metric, we obtain a simple complete characterization of the curvature of

every Eschenburg space in terms of the triples of integers defining the space. With

respect to Wilking’s metric, we study all the examples whose natural isometry group

acts with cohomogeneity two. Here, we find that apart from the previously known

examples with almost positive curvature, all the remaining examples have open sets

of points with zero-curvature planes.

Keywords Eschenburg space · Positive sectional curvature · Biquotient ·
Homogeneous space
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1 Introduction

Given two triples of integers, p = (p1, p2, p3) and q = (q1, q2, q3) with
∑

pi =∑
qi , there is an action of the compact Lie group S1 ⊆ C on SU (3), given by

z ∗ A = diag(z p1 , z p2 , z p3)A diag(zq1, zq2 , zq3)−1.

When the action is free, the quotient space is a smooth manifold called an Eschen-

burg space and denoted by E p,q .
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Eschenburg spaces, which generalize the homogeneous Aloff-Wallach spaces [1],

were introduced by Eschenburg [4] where he showed an infinite sub-family of them

admit Riemannian metrics of positive sectional curvature. These provided the first

inhomogeneous examples of positively curved Riemannian manifolds.

In more detail, Eschenburg equipped SU (3) with a certain left SU (3)-invariant right

U (2)-invariant Riemannian metric, endowing SU (3) with a non-negatively curved

Riemannian metric with fewer zero-curvature planes than in the standard bi-invariant

metric. The above S1 action is isometric with respect to this new metric, and hence this

metric descends to a metric on each Eschenburg space. We will refer to this metric as

the Eschenburg metric. We note that interchanging p and q, as well as permuting the

qi can change the isometry type, but not the diffeomorphism type of the Eschenburg

space. Hence, the Eschenburg space will typically have six non-isometric Eschenburg

metrics.

Using the notation p = min{p1, p2, p3} and p = max{p1, p2, p3}, Eschenburg

proved:

Theorem 1.1 (Eschenburg). The Eschenburg space E p,q has an Eschenburg metric of

positive sectional curvature if and only if qi /∈ [p, p] for any i = 1, 2, 3.

It is therefore natural to study the curvature properties of the remaining Eschenburg

spaces. This was begun in [9], where Kerin found that E p,q for p = (0, 1, 1) and

q = (0, 0, 2) is almost positively curved, but not positively curved. Recall that a

Riemannian manifold is said to be almost positively curved if the set of points for

which all 2-planes are positively curved is open and dense. Kerin also showed that

with one exception, every Eschenburg space has at least one Eschenburg metric of

quasi-positive curvature. We recall that a metric is called quasi-positively curved if it

is non-negatively curved and it has a point at which all 2-planes are positively curved.

Our first main result completely characterizes the nature of the curvature of every

Eschenburg space with Eschenburg metric. To describe our results, let S3 denote the

symmetric group on the set {1, 2, 3}.

Theorem 1.2 The curvature of E p,q with the Eschenburg metric is determined by the

6 products (pσ(1) − q1)(pσ(2) − q2) for σ ∈ S3 as follows:

1. If all 6 products are positive, E p,q is positively curved.

2. If all 6 products are non-negative, with at least one positive and one zero, E p,q is

almost positively curved but not positively curved.

3. If at least one product is positive and at least one is negative, then E p,q is quasi-

positively curved but not almost positive curved.

4. If all products are non-positive, then every point of E p,q has at least one zero-

curvature plane.

In case 1, the fact that all six products are positive implies that both q1, q2 < p or

both q1, q2 > p. The fact that
∑

pi =
∑

qi now implies that q3 also does not lie in

[p, p]. Hence, Theorem 1.1 may be viewed as a special case of Theorem 1.2. Like

case 1, case 3 and 4 each comprise infinitely many examples.
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On the other hand, in case 2, the hypothesis on the 6 products implies that

(p1, p2, p3) is a permutation of (0, 1, 1) while (q1, q2, q3) = (0, 0, 2), see

Proposition 3.2. Kerin [9, Theorem 2.4] has already shown the Eschenburg metric

is almost positively curved but not positively curved in this case.

The case of homogeneous and cohomogeneity-one Eschenburg metrics on Eschen-

burg spaces is completely understood. All homogeneous Eschenburg spaces (i.e.,

Aloff-Wallach spaces) admit a homogeneous Eschenburg metric of positive sectional

curvature, except for E p,q with p = (0, 0, 0) and q = (1,−1, 0) [1]. All cohomogene-

ity one Eschenburg spaces admit a cohomogeneity one Eschenburg metric of positive

sectional curvature, except for E p,q with p = (0, 0, 2) and q = (1, 1, 0) [13], which

admits a cohomogeneity one Eschenburg metric of almost positive curvature.

In [12], Wilking equipped SU (3) with a different metric, which we will refer

to as the Wilking metric and showed that it induces almost positive curvature on the

above exceptional homogeneous Eschenburg space. This illustrates a general principle:

Wilking’s metric construction tends to have fewer isometries but also fewer zero-

curvature planes. Thus, in the search for new examples with (almost) positive curvature,

it is natural to look at cohomogeneity 2 Eschenburg spaces equipped with the Wilking

metric.

It turns out (see Proposition 2.2), that up to isometry, the examples whose “natural”

isometry group (in the sense of [7]) acts on E p,q with cohomogeneity at most 2 are of

the form p = (0, 0, q1 + q2 + q3), q = (q1, q2, q3) with qi pairwise relatively prime,

q1 + q2 + q3 ≥ 0, and q1 ≥ q2. Our next main theorem describes the curvature of

Wilking’s metric on many of these examples.

Theorem 1.3 Suppose q1, q2, and q3 are pairwise relatively prime integers with q1 +
q2 + q3 > 0, q1 > q2, q1 > 0, and q2q3 < 0. Set p = (0, 0, q1 + q2 + q3) and

q = (q1, q2, q3). Then, under any of the following three hypothesis, Wilking’s metric

on E p,q is not almost positively curved.

1. q2 + q3 ≥ 0

2. q2 < 0 and q1 + q2 ≥ 0

3. q3 < 0 and q1 + q3 > 0

While the numerous hypothesis on the qi in this theorem may seem arbitrary, it turns

out these conditions correspond exactly to the complement of the known examples,

see Proposition 2.20.

We now outline the rest of the paper. Section 2 contains background information

on Eschenburg spaces, including the construction of both the Eschenburg and Wilking

metrics. Section 3 contains the proof of Theorem 1.2. Section 4 contains the proof of

Theorem 1.3.

2 Background

In this section, we cover the necessary background, beginning with definition of

Eschenburg spaces and ending with a description of the two Riemannian metrics

we will be considering.
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2.1 Eschenburg Spaces

In this section, we cover the construction of Eschenburg spaces.

Suppose p = (p1, p2, p3) and q = (q1, q2, q3) are each triples of integers with∑
pi =

∑
qi . Then we obtain an action of the group S1 ⊆ C on

SU (3) = {A ∈ M3(C) : AA
t = I , det(A) = 1}

defined by

z ∗ A = diag(z p1 , z p2 , z p3)A diag(zq1, zq2 , zq3)−1.

We will call a pair of triples (p, q) admissible if

∑
pi =

∑
qi and gcd(pσ(1) − q1, pσ(2) − q2) = 1 for all σ ∈ S3,

the permutation group on {1, 2, 3}. We observe that the relation
∑

pi =
∑

qi implies

that analogous gcds involving q3 are automatically equal to 1 if (p, q) is admissible.

The importance of this definition is highlighted by the following proposition. See, e.g.,

[4, Proposition 21] for a proof.

Proposition 2.1 Consider the S1 action on SU (3) defined by p = (p1, p2, p3) and

q = (q1, q2, q3) as above. Then the action is free (and hence, the quotient is a manifold)

if and only if ((p1, p2, p3), (q1, q2, q3)) is admissible.

As mentioned in the introduction, Eschenburg spaces were introduced by Eschen-

burg [4], where he showed an infinite family of them admit Riemannian metrics of

positive sectional curvature.

Some operations on (p, q) do not alter the diffeomorphism type of the resulting

Eschenburg spaces. Once we have defined the Eschenburg and Wilking metrics, we

will see that some of these operations do alter the isometry type while others do not. We

record some of these operations below. For a triple p = (p1, p2, p3) and m ∈ Z, the

notation p+m will refer to (p1+m, p2+m, p3+m). For σ ∈ S3, the symmetric group

on {1, 2, 3}, the notation pσ will refer to (pσ(1), pσ(2), pσ(3)). Lastly, the notation −p

refers to (−p1,−p2,−p3).

Proposition 2.2 Suppose (p, q) is admissible. Then the following modifications of

(p, q) result in diffeomorphic Eschenburg spaces.

1. (p′, q ′) = (p + m, q + m) for m ∈ Z

2. (p′, q ′) = (−p,−q)

3. (p′, q ′) = (pσ , q) where σ(3) = 3

4. (p′, q ′) = (pσ , q) where σ(3) �= 3

5. (p′, q ′) = (p, qσ ) where σ(3) = 3

6. (p′, q ′) = (p, qσ ) where σ(3) �= 3

7. (p′, q ′) = (q, p)

With respect to the Eschenburg metric, modifications 1,2,3,4, and 5 determine isometric

Eschenburg spaces. With respect to the Wilking metric, modifications 1,2,3,5, and 7

determine isometric Eschenburg spaces.
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Since we have not yet precisely defined the Eschenburg and Wilking metrics, we

will postpone the proof to Section 2.3.

As mentioned in the introduction, apart from the positively curved examples, only

two other Eschenburg spaces are known to admit almost positively curved Riemannian

metrics: when (p, q) = ((0, 1, 1), (0, 0, 2)) and when (p, q) = ((0, 0, 0), (1, 0,−1)).

Definition 2.3 Suppose (p, q) is admissible. Then (p, q) is exceptional if it is related

to either ((0, 1, 1), (0, 0, 2)) or ((0, 0, 0), (1, 0,−1)) by a combination of the modifi-

cations in Proposition 2.2.

The case where some qi is equal to some p j will arise frequently, so it is prudent

to collect some facts about this case.

Proposition 2.4 Suppose (p, q) is admissible with p1 = q1. Then, up to the changes

in Proposition 2.2, p has the form (a, 0, 0) and q has the form (a,−1, 1) for some

non-negative integer a. If, in addition, p1 = q2, then (p, q) is exceptional.

Proof Since (p, q) is admissible, for any i, j ∈ {2, 3}, we have

1 = gcd(p1 − q1, pi − q j ) = |pi − q j |.

Since both q2, q3 differ from p2 by 1, either q2 and q3 differ by 2, or q2 = q3.

Assume initially that q2 and q3 differ by 2. Since pi differs from both q2 and q3

by 1, we must have p2 = p3. Using Proposition 2.2(1) with t = −p2, p now has

the form (a, 0, 0). Since q2 = p2 ± 1 and q3 = p2 ∓ 1, q = (a,−1, 1) up to order.

Proposition 2.2(2) then allows us to assume a ≥ 0.

Thus, we may assume q2 = q3 and that both p2 and p3 differ from q2 by 1. Again,

via Proposition 2.2(1), we may assume that q2 = 0, so p2, p3 ∈ {±1}. As q2 = 0,

q now has the form (a, 0, 0), where, as above, we may assume a ≥ 0. If p2 = p3,

then we have the contradiction q1 =
∑

qi =
∑

pi = q1 ± 2. Thus p2 �= p3. Since

p2, p3 ∈ {±1}, we again obtain the form of the proposition. This completes the proof

of the first assertion.

For the second assertion, we assume that p1 = q1 = q2. Subtracting p1 (Proposition

2.2(1) ) from each entry of p and q, we obtain the triples p = (0, p2 − p1, p3 − p1)

and q = (0, 0, q3 − p1). We assume p2 − p1 ≥ 0 via Proposition 2.2(2). Admissibility

now implies that p2 − p1 = |p3 − p1| = 1. If p3 − p1 = 1, then the fact that
∑

pi =∑
qi gives p = (0, 1, 1) and q = (0, 0, 2). On the other hand, if p3 − p1 = −1,

then p = (0, 1,−1) and q = (0, 0, 0). Thus, in both cases, (p, q) is exceptional,

completing the proof. 	


2.2 The EschenburgMetric

In this section, we outline the construction of the metric.

Suppose G is a compact Lie group with bi-invariant metric 〈·, ·〉0. Given any closed

subgroup K ⊆ G, we perform a Cheeger deformation [2] of 〈·, ·〉0 in the direction

of K. Specifically, we can equip G × K with the metric 〈·, ·〉0 + t〈·, ·〉0|K where

t ∈ (0,∞) is some fixed parameter. Then K acts freely and isometrically via k ∗
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(g1, k1) = (g1k−1, kk1), and thus one obtains a metric on the orbit space G ×K K .

As bi-invariant metrics on Lie groups are well-known to have non-negative sectional

curvature, O’Neill’s formula [10] implies the metric on G ×K K is also non-negatively

curved.

The map (g1, k1) �→ g1k1 descends to a diffeomorphism G ×K K ∼= G. Using the

diffeomorphism to transfer the submersion metric on G ×K K to G, we obtain a new

metric 〈·, ·〉K on G, the Cheeger deformation of 〈·, ·〉0 in the direction of K .

The G × K action on itself given by (g, k) ∗ (g1, k1) = (gg1, k1k−1) commutes

with the previously described K action, so induces an isometric G × K action on

(G, 〈·, ·〉K ). One can easily verify the corresponding G × K action on G is nothing

but (g, k)∗g1 = gg1k−1
1 . In particular, 〈·, ·〉K is left G-invariant and right K -invariant.

Since 〈·, ·〉K is left invariant, it is defined by its value at the tangent space TeG

to the identity element e ∈ G. We identify TeG with the Lie algebra g of G in

the usual fashion. We use the notation k ⊆ g to denote the Lie algebra of k, and

we let p denote the 〈·, ·〉0-orthogonal complement of k in g. Defining φK : g → g

by φK (Xk + Xp) = t
t+1

Xk + Xp, it is straightforward to verify that 〈X , Y 〉K =
〈X , φK (Y )〉0 for all X , Y ∈ g. It is also straightforward to verify that the horizontal

lift of a vector φ−1
K (X) ∈ g = TeG to T(e,e)(G × K ) ∼= g ⊕ k is given by (X , 1

t
Xk).

Using T r(X) to denote the trace of a square matrix X, we can now define the

Eschenburg metric.

Definition 2.5 The Eschenburg metric on SU (3) is the metric obtained from the above

construction with G = SU (3), K = U (2) embedded via A �→ diag(A, det(A)),

t = 1, and 〈X , Y 〉0 = −T r(XY ).

The Eschenburg metric on an Eschenburg space E p,q is the metric obtained as a

submersion metric induced from the Eschenburg metric on SU (3).

Note 2.6 In the above definition, we set t = 1 for definiteness. While we state Propo-

sition 2.8 and Theorem 2.9 below in terms of the Eschenburg metric as we have defined

it, they are actually valid for any t ∈ (0,∞). In particular, allowing a different choice

of t in Definition 2.5 has no effect on Theorems 1.2 and 1.3.

The S1 actions on SU (3) defined in Section 2 act via left and right multiplication

by elements of U (3), so are not obviously isometric with respect to the Eschenburg

metric. The next proposition indicates that they are nevertheless isometric.

Proposition 2.7 Suppose (p, q) is admissible. Then the S1 action on SU (3) given by

z ∗ A = diag(z p1 , z p2 , z p3)A diag(zq1 , zq2 , zq3)−1

is isometric with respect to the Eschenburg metric.

Proof Consider the action

z ∗′ A = diag(z p′
1 , z p′

2 , z p′
3)A diag(zq ′

1, zq ′
2 , zq ′

3)−1,

where p′
i = 3pi − (p1 + p2 + p3) and q ′

i = 3qi − (q1 + q2 + q3). Since

det(diag(z p′
1, z p′

2 , z p′
3)) = det(diag(zq ′

1, zq ′
2 , zq ′

3)) = 1, this action is defined by a

subset of K × K , and hence is isometric.
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On the other hand, since
∑

pi =
∑

qi , we find

z ∗′ A = diag(z p′
1, z p′

2 , z p′
3)A diag(zq ′

1, zq ′
2 , zq ′

3)−1

= diag(z3p1 , z3p2 , z3p3)z−(p1+p2+p3) Azq1+q2+q3diag(z3q1 , z3q2 , z3q3)−1

= diag(z3p1 , z3p2 , z3p3)A diag(z3q1 , z3q2 , z3q3)−1.

In particular, the action ∗ is isometric when done at three times the speed. But this

clearly implies that ∗ itself is an isometric action. 	

The curvature calculations we are interested in all occur on the Lie algebra level.

To that end, we recall that g = su(3) consists of the 3 × 3 skew-Hermitian complex

matrices. The subpaces k and p are given as follows:

k = {A = (ai j ) ∈ g : a13 = a23 = a31 = a32 = 0}

and

p = {A = (ai j ) ∈ g : a11 = a12 = a21 = a22 = a33 = 0}.
Eschenburg [4] found a characterization of when a 2-plane σ ⊆ g has zero sectional

curvature with respect to the Eschenburg metric. To state his characterization, we set

Y3 = i diag(1, 1,−2) ∈ k and we set Y1 = i diag(−2, 1, 1) ∈ k.

Proposition 2.8 (Eschenburg). Suppose SU (3) is equipped with the Eschenburg met-

ric. Then, a 2-plane σ ⊆ g with zero-sectional curvature must contain at least one of

the following two vectors:

1. Y3 = i diag(1, 1,−2) or

2. AdkY1 for some k ∈ K = U (2).

From O’Neill’s formula [10], a zero-curvature plane in E p,q with the Eschenburg

metric must lift to a horizontal zero-curvature plane in SU (3). Using this fact and

Proposition 2.8, Kerin [9] proved a characterization of points [A] ∈ E p,q having a

zero-curvature plane with respect to the Eschenburg metric. To describe his results,

we set P = diag(p1, p2, p3), Q = diag(q1, q2, q3) and we view AdkY1 and Y3 as left

invariant vector fields on SU (3).

Theorem 2.9 (Kerin). Suppose E p,q is equipped with the Eschenburg metric and let

A = (ai j ) ∈ SU (3).

• Y3 is horizontal at A if and only if 〈Y3, AdA−1(i P) − i Q〉0 = 0, which holds if

and only if
3∑

j=1

|a j3|2 p j = q3 (2.10)

• For k = (ki j ) ∈ K , AdkY1 is horizontal at A if and only if 〈AdkY1, AdA−1(i P) −
i Q〉0 = 0, which holds if and only if

3∑

j=1

|((Ak) j1)|2 p j = |k11|2q1 + |k21|2q2 (2.11)
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Moreover, if either Y3 or AdkY1 is horizontal at A, then there is a zero-curvature plane

at [A] ∈ E p,q .

Note 2.12 Kerin’s proof [9, Theorem 2.2] of the last statement of Theorem 2.9 has a

small gap as it relies on Proposition 2.8, which is incorrectly stated in [9, Lemma 2.1] as

a biconditional. To complete the proof when AdkY1 is horizontal at A, one observes that

the centralizer of Y1 contains a two-dimensional subspace p′ ⊆ p consisting of matrices

with a13 = a31 = 0. In particular, after translating the seven-dimensional horizontal

space at A to TeG, one finds it intersects Adkp
′ ⊆ p in a subspace of dimension

at least 1. Selecting a non-zero vector Adk X from this subspace, one verifies that

[AdkY1, Adk X ] = [Y1, X ] = 0 and that [(AdkY1)k, (Adk X)k] = 0 since (Adk X)k =
0. From [6, Example], it now follows that the plane span{AdkY1, Adk X} projects to

a zero-curvature plane at [A] in E p,q . The case where Y3 is horizontal is similar but

easier: here, the entire space p centralizes Y1, so one has a three dimensional set of Xs

to choose from.

Note 2.13 We will often find solutions to Eq. 2.11 as follows. For A ∈ SU (3), we

consider the function f A : K → R given by the difference of the left hand side

and right hand side of Eq. 2.11. The function f A is obviously continuous, and K

is a connected. Thus, it is sufficient to show that f A takes on both non-positive and

non-negative values.

Recall the notation p = min{p1, p2, p3} and p = max{p1, p2, p3}. We will use

the following estimate on the left hand side of Eq. 2.11.

Lemma 2.14 For any A ∈ SU (3) and any k ∈ U (2),

p ≤
3∑

j=1

|((Ak) j1)|2 p j ≤ p.

Proof Notice that (Ak) j1 comprises the first column of Ak ∈ SU (3). Thus∑3
j=1 |(Ak) j1|2 = 1 and obviously each term |(Ak) j1|2 is non-negative. Thus, we

have

p =
3∑

j=1

|(Ak) j1|2 p ≤
3∑

j=1

|(Ak) j1|2 p j ≤
3∑

j=1

|(Ak) j1|2 p = p.

	


We will need a more explicit form for the zero curvature planes containing AdkY1.

Set

Z =

§
¨
©

⎡
£

βi 0 0

0 βi z

0 −z −2βi

¤
⎦ ∈ su(3) : β ∈ R and z ∈ C

«
¬
­ .

We note that the elements of Z all commute with Y1. In fact, Z and Y1 span the

centralizer of Y1.
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Lemma 2.15 Suppose σ ⊆ g is a zero-curvature plane with respect to the Eschenburg

metric on SU (3). In addition, assume that AdkY1 ∈ σ for some k ∈ K . Then

σ = span{AdkY1, Adk Z}

for some Z ∈ Z .

Proof Because AdkY1 ∈ σ , we know that σ is spanned by AdkY1 and some other

vector X . The plane σ lifts to the horizontal plane σ̂ in G × K which is spanned by

the vectors (φK (AdkY1),
1
t
φK (AdkY1)k) and (φK (X), 1

t
φK (X)k). Since σ has zero-

curvature, O’Neill’s formula implies that σ̂ must also have zero-curvature, which then

implies that [φK (AdkY1), φK (X)] = 0. But notice that Y1 ∈ k so AdkY1 ∈ k. In

particular, φK (AdkY1) = t
t+1

AdkY1, so we now conclude that [AdkY1, φ(X)] = 0.

Writing X = Xk + Xp, we find

0 = [AdkY1, φ(X)] = t

t + 1
[AdkY1, Xk]

︸ ︷︷ ︸
∈k

+[AdkY1, Xp]︸ ︷︷ ︸
∈p

.

Thus, we conclude that [AdkY1, Xk] = [AdkY1, Xp] = 0, so [AdkY1, X ] = 0.

Since Adk is a Lie algebra isomorphism, [Y1, Adk−1 X ] = 0, so Adk−1 X centralizes

Y1.

Thus, we have Adk−1 X = λY1 + Z for some λ ∈ R and Z ∈ Z . Thus,

X = λAdkY1 + Adk Z . Since AdkY1 and X are both in σ , so is Adk Z and

σ = span{Adk Z , AdkY1}. 	


2.3 TheWilkingMetric

We now describe a general method, due to Wilking [12], for constructing non-

negatively curved metrics on Lie group and their quotients. When compared with

Cheeger deformed metrics, these metrics typically have fewer zero-curvature planes.

We refer to this method as Wilking’s doubling trick.

Consider two closed subgroups K1, K2 ⊆ G, giving rise to two Cheeger deforma-

tions 〈·, ·〉Ki
, with i = 1, 2. Then G ×G supports the metric 〈·, ·〉K1 +〈·, ·〉K2 which is

left invariant and of non-negative sectional curvature. The action of G on G ×G given

by g ∗ (g1, g2) = (gg1, gg2) is free and isometric, so induces a Riemannian metric on

the quotient space G\(G × G). This quotient space is diffeomorphic to G (see, e.g.,

[5]), with a diffeomorphism being induced from the map (g1, g2) �→ (g−1
1 g2). Thus

this construction induces a new metric 〈·, ·〉K1,K2 on G.

The isometric K1 × K2 action on G × G obtained by right multiplication descends

to an isometric action on (G, 〈·, ·〉K1,K2), which implies that this new metric is left

K1-invariant and right K2-invariant. In particular, if L ⊆ K1 × K2, then the induced

action of L on G is isometric.

In the context of Eschenburg spaces, we take L = S1, embedded into U (3) ×
U (3) as z �→ (diag(z p1 , z p2 , z p3), diag(zq1 , zq2 , zq3)). Since S1 is not a subset of

SU (3) × SU (3), it is not immediately obvious that G\G × G/S1 is diffeomorphic to
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E p,q . Indeed, the notation G ×G/S1 does not actually even make sense. Nevertheless,

because
∑

pi =
∑

qi , S1 does act in a well-defined and isometric manor on �G\(G×
G). In more detail, we view G × G ⊆ U (3)×U (3). Then L acts on �U (3)\(U (3)×
U (3)). We observe that the natural map �G\(G × G) → �U (3)\(U (3) × U (3))

is injective. Indeed, if (A, B), (C, D) ∈ G × G are in the same �U (3) orbit, then

we have (U A, U B) = (C, D) for some U ∈ U (3). But then det(U ) = det(U A) =
det(C) = 1, so that (U , U ) ∈ �G. Viewing �G\(G×G) as subset of �U (3)\(U (3)×
U (3)) and choosing (A, B) ∈ G × G, the S1 action takes [(A, B)] to z ∗ [(A, B)] =
[(A diag(z p1 , z p2 , z p3)−1, B diag(zq1 , zq2 , zq3)−1)]. Choosing any matrix U ∈ U (3)

with det(U ) = z p1+p2+p3 = zq1+q2+q3 , we observe that

[(A diag(z p1, z p2 , z p3)−1, B diag(zq1 , zq2 , zq3)−1)]

is equal to

[(U A diag(z p1 , z p2 , z p3)−1, U B diag(zq1 , zq2 , zq3)−1)] ∈ �G\(G × G).

In particular the L action on �U (3)\(U (3) × U (3)) preserves �G\(G × G).

Moreover, the S1 action on �G\(G × G) is isometric. To see this, observe that via

the diffeomorphism �G\(G × G) ∼= G, the S1 action on �G\(G × G) becomes the

action given in Proposition 2.7. In particular, the proof of Proposition 2.7 applies in

this case as well.

Definition 2.16 The Wilking metric on SU (3) is the metric obtained by applying Wilk-

ing’s doubling trick in the case where both copies of G = SU (3) are equipped with

the Eschenburg metric. The Wilking metric on an Eschenburg space E p,q is the metric

obtained as a submersion metric induced from the Wilking metric on SU (3).

Now that we have defined both the Eschenburg and Wilking metrics, we can prove

Proposition 2.2.

Proof of Proposition 2.2 We will work down the list of options for (p′, q ′) given in the

statement of Proposition 2.2.

1. (p′, q ′) = (p + t, q + t). In this case, the corresponding actions by S1 are

identical, so the two quotients are isometric with respect to both the Eschenburg and

Wilking metrics.

2. (p′, q ′) = (−p,−q). In this case, the two actions differ only by a change of

coordinates in the circle. Hence, the quotients are isometric with respect to both the

Eschenburg and Wilking metrics.

3. and 4. (p′, q ′) = (pσ , q) for σ ∈ S3. In this case, let R denote the matrix obtained

by applying σ ∈ S3 to the rows of the identity matrix I . Observe that det R = ±1. Set

S =
{

R if det R = 1

R diag(1, 1,−1) if det R = −1
.

We observe that S ∈ SU (3) and that S conjugates diag(z p1 , z p2 , z p3) to

diag(z pσ(1) , z pσ(2) , z pσ(3)), it follows that left multiplication by S, L S : SU (3) →
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SU (3) induces a diffeomorphism between E p,q and E p′,q ′ . As the Eschenburg metric

is left SU (3)-invariant, L S is an isometry with respect to the Eschenburg metric. On

the other hand, the Wilking metric is only left U (2)-invariant, and L S ∈ U (2) if and

only if σ(3) = 3.

5. and 6. (p′, q ′) = (p, qσ ) for σ ∈ S3. The proof is analogous to the previous case

using right multiplication by S−1 instead of left multiplication by S. The isometry

statement follows as in the previous case by noting that both the Eschenburg and

Wilking metrics are only right U (2)-invariant.

7. (p′, q ′) = (q, p). In this case, the inverse map ι : SU (3) → SU (3) induces a

diffeomorphism between E p,q and E p′,q ′ . To see the map ι induces an isometry with

respect to the Wilking metric, note that viewing SU (3) as �SU (3)\(SU (3)×SU (3)),

ι corresponds to the map interchanging the two factors of SU (3) × SU (3). Because

the same metric is used on both factors, interchanging them is an isometry. 	


We now derive conditions under which a point [A] ∈ E p,q has a zero-curvature

plane with respect to the Wilking metric. We will abbreviate φU (2) to φ, so φ(X) =
t

t+1
Xk + Xp.

Given X ∈ g, we set

X̂ = (−φ−1(AdA−1 X), φ−1(X)) ∈ g ⊕ g.

We note under the �G action on G × G, that every orbit contains a point of the

form (A, I ). Additionally, we recall that e.g., Kerin [8, Section 1, Equation 9] has

shown that under the Riemannian submersion G × G → G\(G × G)/S1 ∼= E p,q , the

horizontal space at a point (A, I ), after left translation to the identity, is

HA = {X̂ : X ∈ g and 〈X , AdA(i P) − i Q)〉0 = 0},

where P = diag(p1, p2, p3) and Q = diag(q1, q2, q3). We recall that we have chosen

the bi-invariant metric on SU (3) whose value at the identity is 〈X , Y 〉0 = −T r(XY ).

Proposition 2.17 Suppose A = (ai j ) ∈ SU (3) is a point for which there are elements

k = (ki j ) ∈ U (2) and 0 �= Z ∈ Z simultaneously satisfy all three of the following

conditions:

3∑

j=1

|((Ak) j1)|2 p j = |k11|2q1 + |k21|2q2 (Condition A)

〈Adk Z , AdA−1(i P) − i Q〉0 = 0 (Condition B)

{
(AdAkY1)p, (AdAk Z)p

}
are linearly dependent over R. (Condition C)

Then, with respect to the Wilking metric, there is at least one zero-curvature plane

in T[A]E p,q .
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Proof Observe that under the Riemannian submersion G × G → G\(G × G)/S1 ∼=
E p,q , the point (A−1, e) maps to [A]. We will construct a horizontal zero-curvature

plane in T(A−1,e)G × G. By a result of Tapp [11], such a plane must project to a

zero-curvature plane in T[A]E p,q .

Consider first the vector AdkY1 ∈ g. From Theorem 2.9, Eq. Condition A is

equivalent to the condition that 〈AdkY1, AdA−1(i P) − i Q〉0 = 0. In particular,

ÂdkY1 ∈ HA−1 . Likewise, Eq. Condition B implies that Âdk Z ∈ HA−1 . Thus, the

plane σ̂ = span{ ÂdkY1, Âdk Z} is, after left translating to (A−1, e), a horizontal plane

at (A−1, e). It remains to determine its curvature.

Because the metric on G × G is a product of Eschenburg metrics, clearly σ̂ has

zero-curvature if and only if its two projections

σ̂1 = {−φ−1(AdAkY1),−φ−1(AdAk Z)}

and

σ̂2 = {φ−1(AdkY1), φ
−1(Adk Z)}

both have zero-curvature with respect to the Eschenburg metric.

We begin with the easier case of σ̂2. Eschenburg [6] has shown that with respect to

the Eschenburg metric, σ̂2 has zero sectional curvature if and only if [AdkY1, Adk Z ] =
0 and [(AdkY1)k, (Adk Z)k] = 0. For the first equation, we find [AdkY1, Adk Z ] =
[Y1, Z ] = 0. For the second, we note that (Adk Z)k = βY3. In particular, it is in the

centralizer of k, so [(AdkY1)k, (Adk Z)k] = 0. Thus, σ̂2 has zero-curvature.

We finally turn attention to σ̂1. As in the previous case, we need show that

[AdAkY1, AdAk Z ] = 0 and [(AdAkY1)k, (AdAk Z)k] = 0. For the first, we have

[AdAkY1, AdAk Z ] = [Y1, Z ] = 0.

For the second condition, we argue as follows. First observe that [k, k] ⊆ k, [p, p] ⊆
k, and [k, p] ⊆ p. Then, since [AdAkY1, AdAk Z ] = 0, it follows that

0 = [AdAkY1, AdAk Z ]k = [(AdAkY1))k, (AdAk Z))k] + [(AdAkY1))p, (AdAk Z))p].

Noting that Eq. Condition C implies [(AdAkY1))p, (AdAk Z))p] = 0, we conclude

that [(AdAkY1))k, (AdAk Z))k] = 0 as well. Thus, σ̂1 has zero-curvature as well. 	


We now specialize to Eschenburg spaces E p,q with p = (0, 0, q1 + q2 + q3)

and q = (q1, q2, q3) where the qi are relatively prime integers. We identify S1 with

{(diag(1, 1, zq1+q2+q3), diag(zq1, zq2 , zq3)) : z ∈ S1 ⊆ C} ⊆ U (3) × U (3). Then,

the normalizer of S1 ⊆ U (3) × U (3) contains U (2) × T 2 ⊆ U (3) × U (3), where

U (2) = K ⊆ SU (3), and T 2 is the maximal torus of diagonal matrices in SU (3).

Noting that U (2) × T 2 ⊆ K × K , this implies that with respect to the Wilking metric

on E p,q = SU (3)/S1, that left multiplication by U (2) and right multiplication by T 2

are isometries.
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Proposition 2.18 Suppose E p,q is equipped with a Wilking metric with p = (0, 0, q1+
q2 + q3) and q = (q1, q2, q3). Then the isometry group acts on E p,q with cohomo-

geneity at most two and every orbit passes through a point [A] ∈ E p,q where A ∈ F

and where the subset F ⊆ SU (3) is defined as

F =

§
¨
©

⎡
£

cos(α) − sin(α) 0

cos(θ) sin(α) cos(θ) cos(α) − sin(θ)

sin(θ) sin(α) sin(θ) cos(α) cos(θ)

¤
⎦ ∈ SU (3) : α, θ ∈ [0, 2π ]

«
¬
­ .

Proof The fact that the action is cohomogeneity at most two is well-known [7, Section

3]. So, we need only show that every orbit passes through a point in the image of F .

Recall that we have a U (2)-principal bundle π : SU (3) → CP2 given by mapping

A = (ai j ) ∈ SU (3) to its last row. It follows that two elements in SU (3) with the

same image in CP2 are K -equivalent. Since the {I } × T 2 ⊆ U (2) × T 2 action

commutes with the U (2) × {(1, 1)} ⊆ U (2) × T 2 action, π induces a T 2 action

on CP2. The proof will be complete if we can show that every T 2 orbit in CP2

intersects π(F). In fact, since clearly any unit length element of R3 has the form

(sin(θ) sin(α), sin(θ) cos(α), cos(θ)), it is sufficient to show that every point in CP2

is T 2-equivalent to one with all coordinates real.

Parametrizing T 2 ⊆ SU (3) as diag(z, w, zw), the induced T 2 action on CP2 is

given by

(z, w) ∗ [z1 : z2 : z3] = [zz1 : wz2 : zwz3].
If any zi = 0, then we may obviously find a T 2-equivalent point whose coordinates

are all real. If all three zi are non-zero, choose u with u3 = z1z2z3
|z1z2z3| . Let z = uz1

|z1| and

w = uz2
|z2| .

Then it is easy to verify that (z, w) ∗ [z1 : z2 : z3] = (z, w) ∗ [uz1 : uz2 : uz3] has

all coordinates real, completing the proof. 	


We have the following corollary.

Corollary 2.19 Two matrices A = (ai j ), B = (bi j ) ∈ SU (3)are in the same U (2)×T 2

orbit if and only if |a3i | = |b3i | for all i ∈ {1, 2, 3}.

Proof Given the block form of U (2) ⊆ SU (3), the action of U (2) × T 2 on the

bottom row of a matrix simply multiplies it by various unit length complex numbers.

In particular, if A and B are in the same orbit, that we must have |a3i | = |b3i | for all

i ∈ {1, 2, 3}.
For the converse, assume that |a3i | = |b3i | for all i ∈ {1, 2, 3}. From the proof

of Proposition 2.18, we know that A and B are orbit-equivalent if π(A), π(B) ∈
CP2 are equivalent under the T 2-action. Again from the proof of Proposition

2.18, we see that under the T 2-action, π(A) is equivalent to a point of the form

[sin(θA) sin(αA), sin(θA) cos(αA), cos(θA)] ∈ CP2 and that similarly π(B) is T 2-

equivalent to [(sin(θB) sin(αB), sin(θB) cos(αB), cos(θB)] ∈ CP2. Observe that

| cos(θA)| = |a33| = |b33| = | cos(θB)| so that cos(θA) = ± cos(θB) . In an analogous

fashion, we see that sin(θA) sin(αA) = ± sin(θB) sin(αB) and that sin(θA) cos(αA) =
± sin(θB) cos(αB).
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To get the signs to agree, we note that element (−1, 1) ∈ T 2 transforms the point

[sin(θA) sin(αA), sin(θA) cos(αA), cos(θA)] to [− sin(θA) sin(αA), sin(θA) cos(αA),

− cos(θA)] which is the same point as [sin(θA) sin(αA),− sin(θA) cos(αA), cos(θA)].
That is, (−1, 1) acts by changing the sign of the middle coordinate. Similarly, one

sees that (1,−1) changes the sign of the first coordinate, while (−1,−1) changes the

sign of the last coordinate. Clearly, by using using these elements, one may transform

[sin(θA) sin(αA), sin(θA) cos(αA), cos(θA)] to [sin(θB) sin(αB), sin(θB) cos(αB), cos

(θB)], completing the proof. 	


We now isolate the choices of (q1, q2, q3) for which the corresponding Eschenburg

spaces are not already know to have a metric of strictly or almost positive curvature.

We observe that via Proposition 2.2 we may assume that q1 + q2 + q3 ≥ 0 and that

q1 ≥ q2.

Proposition 2.20 Suppose q = (q1, q2, q3) with q1, q2 and q3 pairwise relatively

prime integers for which q1 + q2 + q3 ≥ 0 and q1 ≥ q2. Let p = (0, 0, q1 + q2 + q3).

If E p,q is not diffeomorphic to a known example with positive or almost positive

sectional curvature, then all of the following must occur:

1a) q1 + q2 + q3 > 0

1b) q1 > 0

1c) q1 > q2

1d) q2q3 < 0

and at least one of the following must occur:

2a) q2 + q3 ≥ 0

2b) q2 < 0 and q1 + q2 ≥ 0

2c) q3 < 0 and q1 + q3 > 0

Proof As mentioned above, we assume that q1 + q2 + q3 ≥ 0 and q1 ≥ q2. If

q1 + q2 + q3 = 0, then the resulting Eschenburg space is homogeneous. Apart from

Wilking’s almost positively curved example [12], these homogeneous spaces admit

homogeneous metric of strictly positive sectional curvature [1]. Thus, we may assume

q1 + q2 + q3 > 0. Further, if q1 = q2, the the resulting Eschenburg space admits

a cohomogeneity one action. In particular, it is either diffeomorphic to a positively

curved example or to Kerin’s almost positively curved example [9]. Thus, we may

assume q1 > q2. In addition, if any qi = 0, then the fact that the qi are relatively

prime implies that (q1, q2, q3) is a permutation of (1, 1, 0) or (1,−1, 0). The first

case gives an Eschenburg space diffeomorphic to Kerin’s almost positively curved

example via the diffeomorphism swapping p and q, while the second case again gives

Wilking’s almost positively curved example. Thus, we may assume that all three qi

are non-zero.

If all three qi are positive, it is easy to see that 0 /∈ [min{qi }, max{qi }] and q1 +
q2 +q3 /∈ [min{qi }, max{qi }]. In particular, by Theorem 1.1, the resulting Eschenburg

space is diffeomorphic to a positively curved example.

Thus, we may assume that at least one qi < 0. If q1 < 0, the condition q1 ≥ q2

implies q2 < 0 as well. Then the condition q1 + q2 + q3 > 0 implies that q3 >

q1 + q2 + q3 > 0. From this, it follows easily that qi /∈ [0, q1 + q2 + q3] for all i .
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In particular, these Eschenburg spaces are known to admit strictly positively curved

metrics by Theorem 1.1. Thus, we may assume q1 > 0. If both q2 and q3 are negative,

we now see that qi /∈ [0, q1 + q2 + q3] for all i , so, again from Theorem 1.1, the

resulting Eschenburg space is positively curved. Thus, we have q2q3 < 0, completing

the verification of 1a) through 1d).

We now assume that 2a) does not occur and show that least one of 2b) and 2c) must

occur. Because q2 + q3 < 0, q1 /∈ [0, q1 + q2 + q3]. Thus, to have a new example,

we must have qi ∈ [0, q1 + q2 + q3] for at least one i ∈ {2, 3}. If this is true for

i = 2, we find q2 ≥ 0 (which, since q2 �= 0, implies that q2 > 0 and q3 < 0), and

q2 ≤ q1 + q2 + q3. In other words, we must have q3 < 0 and 0 ≤ q1 + q3. The case

where q3 ∈ [0, q1 + q2 + q3] is analogous.

It remains to see that the case q3 < 0 with q1 + q3 = 0 cannot occur. To see this,

observe that if q1 + q3 = 0, then since q1 and q3 are relatively prime, we must have

q1 = 1 and q3 = −1. Since q2 and q3 have opposite signs, we have the contradiction

1 = q1 > q2 > 0. 	


3 Determining the Curvature of the EschenburgMetrics

In this section, we prove Theorem 1.2. We divide up the proof depending on the nature

of the six possible products (pσ(1) − q1)(pσ(2) − q2) for σ ∈ S3.

3.1 At Least One (p�(1) − q1)(p�(2) − q2) > 0

In this section, we will prove the first three cases of Theorem 1.2, when at least one

(pσ(1) − q1)(pσ(2) − q2) > 0. Because permuting the pi is an isometry (Proposition

2.2), we may assume that (p1 − q1)(p2 − q2) > 0. We begin with [9, Theorem 2.3]

which asserts that in this case, there is at least one point of positive curvature.

Theorem 3.1 (Kerin). Suppose E p,q is an Eschenburg space with the Eschenburg

metric and that (p1 − q1)(p2 − q2) > 0. Then for any diagonal matrix A ∈ SU (3),

all 2-planes in T[A]E p,q have positive sectional curvature.

Of course, if all six products are positive, it is well-known that the resulting metric

is positively curved [4], so we will assume at least one product is non-positive. We

will break into two cases depending on whether there is a negative product or not.

Proposition 3.2 Suppose (pσ(1) − q1)(pσ(2) − q2) ≥ 0 for all σ ∈ S3. Assume addi-

tionally that at least one product is positive and at least one product is zero. Then, up

to the isometric modifications in Proposition 2.2, p = (0, 1, 1) and q = (0, 0, 2).

Proof Because permuting the pi as as well permuting q1 and q2 are isometries, we

may assume that p1 = q1. From Proposition 2.4, we conclude that either (p, q) has

the form ((a, 0, 0), (a,±1,∓1)) or that (p, q) has the form ((a, 1,−1), (a, 0, 0)),

where a is some non-negative integer.

We begin with the first form (p, q) = ((a, 0, 0), (a,±1,∓1)). If a = 0, then it

is easy to see that all six products are non-positive. In particular, this contradicts the

assumption that at least one product is positive. Hence, we may assume a > 0.
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Consider now the product

(p1 − q2)(p2 − q1) = (a − q2)(−a) ≥ 0.

Since a > 0, then 0 < a ≤ q2 ≤ 1, this forces a = 1 and q2 = 1, and therefore

q = (1, 1,−1). Using Proposition 2.2(1) with t = −1 and then Proposition 2.2(2),

we find (p, q) = ((0, 1, 1), (0, 0, 2)). This completes the analysis of the first form.

We now move on to the second form (p, q) = ((a, 1,−1), (a, 0, 0)). As before, if

a = 0 then it is easy to see that all products are non-positive, giving a contradiction.

Hence, a > 0.

Now, consider the product

(p3 − q1)(p1 − q2) = (−1 − a)a.

Since a > 0, this product is negative, giving a contradiction. 	


Theorem 3.3 Suppose that (pσ(1) − q1)(pσ(2) − q2) < 0 for some σ ∈ S3. Then the

Eschenburg metric on E p,q contains an open set of points which have at least one

zero-curvature plane.

Proof Since permuting the pi is an isometry (Proposition 2.2), we may assume that

p1 − q1 < 0 and p2 − q2 > 0. Now, consider the open set

U =
{

A = (ai j ) ∈ SU (3) :
3∑

i=1

|ai1|2 pi < q1 and

3∑

i=1

|ai2|2 pi > q2

}
.

Notice that the identity I ∈ U , so U �= ∅.

We claim that for every A ∈ U , that there is a zero-curvature plane at T[A]E p,q .

From Theorem 2.9, it is sufficient to show that for each A ∈ U , there is a k ∈ K

solving (2.11).

Following Remark 2.13, it is sufficient to show the function f A : K → R given by

f A(k) =
3∑

i=1

|(Ak) j1|2 p j − |k11|2q1 − |k21|2q2

attains both non-negative and non-positive values.

To that end, observe that for the identity matrix I, that

f A(I ) =
3∑

i=1

|ai1|2 pi − q1,

which is negative since A ∈ U .
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Similarly, selecting k ∈ K with (k11, k21) = (0, 1) , we see that

f A(k) =
3∑

i=1

|ai2|2 pi − q2,

which is positive since A ∈ U . 	


With all of this in hand, we can now prove cases (1), (2), and (3) of Theorem 1.2.

Proof of (1),(2), and (3) of Theorem 1.2 If all six products are positive, the resulting

Eschenburg spaces are all positively curved [4].

On the other hand, if all six products are non-negative, with at least one positive

and at least one zero, then Proposition 3.2 implies that up to isometry, (p, q) =
((0, 1, 1), (0, 0, 2)). But Kerin [9, Theorem 2.4] showed that for this example, the

Eschenburg metric is almost positively curved but not positively curved.

Thus, we may assume some of the six products are positive while some are negative.

By Theorem 3.1, the Eschenburg metric has quasi-positive curvature. On the other

hand, by Theorem 3.3, the Eschenburg metric is not almost positively curved. 	


3.2 All Products Non-positive

The goal of this section is to prove Theorem 1.2(4). We begin with a characterization

of the p and q for which all six products are non-positive. Recall the notation p =
min{p1, p2, p3} and p = max{p1, p2, p3}.

Proposition 3.4 Suppose (pσ(1) − q1)(pσ(2) − q2) ≤ 0 for all σ ∈ S3. Then one of

the following three cases occur up to isometry:

1. Both min{q1, q2} ≤ p and max{q1, q2} ≥ p.

2. (p, q) = ((0, 0, 2), (0, 1, 1))

3. (p, q) = ((−1, 0, 1), (0, 0, 0))

Proof We will assume the first conclusion does not occur and show that either the

second or third conclusion must hold.

Assuming the first conclusion does not hold, we conclude max{q1, q2} < p or

min{q1, q2} > p. If the first option occurs, we use Proposition 2.2(2) to replace q

with −q and p with −p. The condition max{q1, q2} < p becomes min{−q1,−q2} >

min{−p1,−p2,−p3}. In particular, we may assume without loss of generality that

min{q1, q2} > p. Further, by using Proposition 2.2(3)(4)(5), and (6), we may assume

p = p1 ≤ p2 ≤ p3 = p and p1 < q1 ≤ q2. (3.5)

We will now show that that condition that all six products (pσ(1)−q1)(pσ(2)−q2) are

non-positive together with Eq. 3.5 implies that (p, q) is exceptional. From Proposition

2.4, to show (p, q) is exceptional, it is sufficient to show that q1 = q2 = pi for some

i , or that p2 = p3 = qi for some i .
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If q2 > p2, then (p1 − q1)(p2 − q2) > 0, giving a contradiction. Thus, we have

p1 < q1 ≤ q2 ≤ p2 ≤ p3.

Then both (p2−q1)(p3−q2) ≥ 0 and (p3−q1)(p2−q2) ≥ 0, so both products must

be zero. The case that q1 = p3 cannot occur for otherwise we see q1 ≤ p2 ≤ p3 = q1,

so q2 = q1 = p2 = p3, which contradicts admissibility of p and q. Thus, q1 �= p3

which then implies that q2 = p2 and either q2 = p3 or q1 = p2. In either case, (p, q)

must be exceptional. We now focus on each exceptional case.

Taking into account the isometries in Proposition 2.2, there are at most four

Eschenburg metrics on the exceptional Eschenburg space E p,q with (p, q) =
((0, 0, 2), (0, 1, 1)). They are represented by the pairs

((0, 0, 2), (1, 1, 0)),((−2, 0, 0), (−1, 0,−1)),

((−1,−1, 0), (−2, 0, 0)), and ((−1,−1, 0), (0, 0,−2)).

Of these, the first and last pairs have (p1 − q1)(p2 − q2) > 0 and the third satisfies

the first conclusion of this proposition. The second, up to isometry, the example given

in the second conclusion of this proposition.

Similarly, up to isometry, there are at most three Eschenburg metrics on the excep-

tional Eschenburg space E(p,q) with (p, q) = ((0, 0, 0), (1,−1, 0)), but both pairs

with p = (0, 0, 0) fall into the first conclusion of this proposition. The remaining pair

is ((−1, 0, 1), (0, 0, 0)), giving the third conclusion of the proposition. 	


We are now ready to prove Theorem 1.2(4).

Theorem 3.6 Suppose (pσ(1) − q1)(pσ(2) − q2) ≤ 0 for all σ ∈ S3. Then the Eschen-

burg metric on E p,q has a zero-curvature plane at every point.

Proof One of case 1, 2, or 3 of Proposition 3.4 must occur. The strategy for each case

is the same as in the proof of Theorem 3.3. Namely, we will show the function f A

from Remark 2.13 attains both non-negative and non-positive values.

Case 1: Assume that case 1 occurs. Recall that by Lemma 2.14, that for all A ∈
SU (3) and k ∈ U (2), that p ≤

∑3
j=1 |(Ak) j1|2 p j ≤ p.

Using the identity I ∈ K , we find

f A(I ) = p1|a11|2 + p2|a21|2 + p3|a31|2 − q1.

Since q1 ≤ p, Lemma 2.14 implies f A(I ) ≥ 0.

On the other hand, if we select k ∈ K with (k11, k21) = (0, 1), then

f A(k) = p1|a12|2 + p2|a22|2 + p3|a32|2 − q2.

Since q2 ≥ p, Lemma 2.14 implies f A(k) ≤ 0. This concludes the first case.

Case 2: We now move onto the second case. Here, the function f A takes the form

f A(k) = 2|a31k11 + a32k21|2 − |k21|2.
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If a31 = a32 = 0, then obviously f A(k) ≤ 0. Otherwise, the matrix

k = 1√
|a31|2 + |a32|2

⎡
£

a32 a31 0

−a31 a32 0

0 0
√

|a31|2 + |a32|2

¤
⎦ ∈ K

and f A(k) = −|k21|2 ≤ 0. On the other hand, for the identity matrix I , we have

f A(I ) ≥ 0. This completes the second case.

Case 3: We lastly move on to the third case. Here, from our choice of p and q, the

function f A takes the form

f A(k) = −|a11k11 + a12k21|2 + |a31k11 + a32k21|2.

As in the proof of Case 2, we can select k ∈ U (2) to make −|a11k11 +a12k21|2 = 0,

so that f A(k) ≥ 0. We can also select k ∈ U (2) to make |a31k11 + a32k21|2 = 0, so

that f A(k) ≤ 0 as well. This completes the proof of the third case, and hence, of the

theorem. 	


4 WilkingMetrics with Many Zero-curvature Planes

In this section, we prove Theorem 1.3. We begin by setting up notation. We let p =
(0, 0, p3) and q = (q1, q2, q3), where p3 = q1 + q2 + q3, and q1, q2, and q3 are

relatively prime integers. Following Proposition 2.20, we assume that p3 > 0 and that

q1 > q2. We consider the Eschenburg space E p,q equipped with the Wilking metric.

We select a point A = A(θ, α) ∈ F so that

A =

⎡
£

cos(α) − sin(α) 0

cos(θ) sin(α) cos(θ) cos(α) − sin(α)

sin(θ) sin(α) sin(θ) cos(α) cos(θ)

¤
⎦ .

We define h(θ) by the formula

h(θ) = (p3 − q3) cos2(θ) + q3 sin2(θ)

sin2(θ)(p3 cos2(θ) + q3)

and we define g(θ) by the formula

g(θ) = p3q1 cos2(θ) + p3q3 sin2(θ) − q2q3

(q1 − q2)(p3 cos2(θ) + q3)
.

The importance of h and g is given by the following theorem which allows us to

recognize when an Eschenburg space with Wilking metric is not almost positively

curved.
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Theorem 4.1 Suppose there is an real number θ0 for which both 0 < h(θ0) < 1 and

0 < g(θ0) < 1. Then there is a non-empty open subset of points in E p,q for which

there is at least one zero-curvature plane at each point.

To prove Theorem 4.1, we require several lemmas, the first of which is a routine

calculation.

Lemma 4.2 All of the following identities hold:

1. g(θ) = p3 sin2(θ)h(θ) − q2

q1 − q2

2. sin2(θ)(1 − h(θ)) = − cos2(θ)

(
p3 cos2(θ) − q3

p3 cos2(θ) + q3

)

3. h′(θ) = −2 sin(θ) cos(θ)(p2
3 cos4(θ) + 2p3q3 sin2(θ) cos2(θ) − q2

3 )

sin4(θ)(p3 cos2(θ) + q3)2

4. g′(θ) = 4p3q2
3 sin(θ) cos(θ)

(q1 − q2)(p3 cos2(θ) + q3)2

We continue with the next lemma.

Lemma 4.3 Suppose that θ ∈ R has all of the following properties:

• Both p3 cos2(θ) ± q3 �= 0

• θ is not an integral multiple of π/2

Additionally assume that there is an element k = (ki j ) ∈ SU (2) ⊆ K and α ∈ R

for which both

|k11|2 = g(θ) (4.4)

and

| sin(α)k11 − cos(α)k12|2 = h(θ). (4.5)

Then, with respect to the Wilking metric, there is a zero-curvature plane at

[A(θ, α)] ∈ E p,q .

Proof Following Proposition 2.17, we need to find k ∈ K , 0 �= Z ∈ Z satisfying

(Condition A), (Condition B), and (Condition C). To that end, we use k as hypothesized

in the lemma. We define Z =

⎡
£

βi 0 0

0 βi z

0 −z −2βi

¤
⎦ where

z = 3i tan(θ)(cos(α)k11 + sin(α)k12)

and where

β = − 2p3 cos2(θ)

p3 cos2(θ) + q3
.

We observe that by hypothesis, z and β are well-defined, and β �= 0. In particular,

Z �= 0. We also note the following identities for β, which easily follow from Lemma

4.2:
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β = 2p3 sin2(θ)(1 − h(θ))

p3 cos2(θ) − q3
(4.6)

and

cos2(θ)(1 + β) = sin2(θ)(1 − h(θ)). (4.7)

We now proceed to verify each of the three conditions of Proposition 2.17.

Equation Condition A

Given our choice of A and k above, Eq. Condition A specializes to

sin2(θ)| sin(α)k11 − cos(α)k21|2 p3 = |k11|2q1 + |k21|2q2.

Using the fact that |k21|2 = 1 − |k11|2 and Eqs. 4.4 and 4.5, verifying this equation

is equivalent to verifying

h(θ) = g(θ)q1 + (1 − g(θ))q2

sin2(θ)p3

,

which is routine.

Equation Condition B

Given our choice of A and z above, Eq. Condition B specializes to the equation

((2 cos2(θ)−sin2(θ))p3+(q1+q2−2q3))β−6 sin2(θ)p3| cos(α)k11+sin(α)k12|2 =0.

Using Eq. 4.5, we note that

| cos(α)k11 + sin(α)k12|2 + h(θ) =
∣∣∣∣
[

cos(α)k11 + sin(α)k12

− sin(α)k11 + cos(α)k12

]∣∣∣∣
2

=
∣∣∣∣
[

cos(α) sin(α)

− sin(α) cos(α)

] [
k11

k21

]∣∣∣∣
2

= |k11|2 + |k21|2

= 1.

In particular, verifying (Condition B) reduces to verifying

β = 6 sin2(θ)p3(1 − h(θ))

(2 cos2(θ) − sin2(θ))p3 + (q1 + q2 − 2q3)
. (4.8)

Writing sin2(θ) = 1−cos2(θ) and recalling that p3 = q1 +q2 +q3, we find that the

denominator is simplifies to 3(p3 cos2(θ) − q3). Then we see that Eq. 4.8 is nothing

but Eq. 4.6.
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Equation Condition C

We will now verify (Condition C). In fact, we will show that with our choice

of A, k, β, and z, that (AdAkY1)p = (AdAk Z)p. We recall that matrices in p are

determined entirely by their (1, 3) and (2, 3) entries. As such, we will only list these

entries.

A routine calculation shows that for generic k = (ki j ) ∈ K with k33 = 1 (so

k22 = k11 and k21 = −k12), and generic Z ∈ Z , that (AdAkY1)p is given by

3i sin(θ)

[
cos2(α)k11k12−sin2(α)k11k12 + sin(α) cos(α)(1 − 2|k11|2)

cos(θ)(cos2(α)(1−2|k11|2) − |k11|2 + sin(α) cos(α)(k11k12 + k11k12))

]
.

Using the fact that k ∈ K , so that |k11|2 + |k12|2 = 1, it is easy to verify that this

can be rewritten in the form

(AdAkY1)p = 3i sin(θ)

[
(cos(α)k12 − sin(α)k11)(cos(α)k11 + sin(α)k12)

− cos(θ)| cos(α)k12 − sin(α)k11|2
]

.

Similarly, a routine calculation shows that for our specific choice of z, that

(AdAk Z)p =
[

3i sin(θ)(cos(α)k12 − sin(α)k11)(cos(α)k11 + sin(α)k12)

3i tan(θ)(cos2(θ) − sin2(θ))| cos(α)k11 + sin(α)k12|2 + 3i cos(θ) sin(θ)β

]
.

It is now obvious that the (1, 3) entries of the equation (AdAkY1)p) = (AdAk Z)p
are identical. Since | cos(α)k12 − sin(α)k11|2 = h(θ) and | cos(α)k11 + sin(α)k12|2 =
1 − h(θ), the (2, 3) entries if (AdAkY1)p and (AdAk Z)p agree if and only if

β = − sin(θ) cos(θ)h(θ) − tan(θ)(cos2(θ) − sin2(θ))(1 − h(θ))

cos(θ) sin(θ)
.

But this is simply a rearrangement of Eq. 4.7, so it must hold. 	


In order to use Lemma 4.3, we need to find solutions to both Eqs. 4.4 and 4.5.

To that end, when 0 < g(θ) < 1, we will restrict attention to k = (ki j ) ∈ K with

k11 =
√

g(θ), so that Eq. 4.4 is automatically satisfied. As |k11|2 + |k12|2 = 1, we

find that k12 must have the form k12 =
√

1 − g(θ)eiγ for some γ ∈ R. We will find

solutions to Eq. 4.5 by varying γ and appealing to the Intermediate Value Theoerem.

This will require estimates on the left hand side of Eq. 4.5.

Lemma 4.9 Suppose that for some θ ∈ R, that 0 < g(θ) < 1. Suppose k11 =
√

g(θ) ∈
R and k12 =

√
1 − g(θ)eiγ for some γ ∈ R. Then we have

min
α∈R

| sin(α)k11 − cos(α)k12|2 ≤ sin2(γ )

and

cos2(γ ) ≤ max
α∈R

| sin(α)k11 − cos(α)k12|2.
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Proof By our choice of k11 and k12, we see | sin(α)k11 − cos(α)k12|2 takes the form

(
sin(α)

√
g(θ) − cos(α) cos(γ )

√
1 − g(θ)

)2
+ cos2(α) sin2(γ )(1 − g(θ)). (4.10)

By selecting α for which tan(α) = cos(γ )
√

1−g(θ)√
g(θ)

, the first term in parenthesis

vanishes, so | sin(α)k11 − cos(α)k12|2 reduces to cos2(α) sin2(γ )(1 − g(θ)). Since

cos2(α) and 1−g(θ) are both bounded above by 1, it follows that minα∈R | sin(α)k11−
cos(α)k12|2 ≤ sin2(γ ).

For the upper bound, we select an α for which sin(α) =
√

g(θ) and cos(α) =
−

√
1 − g(θ). Then, by discarding the last term of Eq. 4.10 we find

| sin(α)k11 − cos(α)k12|2 ≥ (g(θ) + (1 − g(θ)) cos(γ ))2

= (g(θ)(1 − cos(γ )) + cos(γ ))2

≥ cos2(γ ),

where the last inequality holds because g(θ)(1 − cos(γ )) ≥ 0. 	


We can now prove Theorem 4.1.

Proof By continuity, there is a neighborhood U ⊆ R of θ0 for which both 0 < h(θ0) <

1 and 0 < g(θ0) < 1 on U . Further, by shrinking U if necessary, we may assume

that all θ ∈ U satisfy all the inequalities in the statement of Lemma 4.3. In particular,

we may assume θ0 satisfies all these inequalities. Now, consider the subset V ⊆ F

defined by

V =
{

A(θ, α) ∈ F :θ ∈ U and (| sin(α)|
√

g(θ) − | cos(α)|
√

1 − g(θ))2 < h(θ)

and h(θ) < (| sin(α)|
√

g(θ) + | cos(α)|
√

1 − g(θ))2
}

The set V is obviously an open subset of F . Below, we will demonstrate the fol-

lowing three claims:

1. V is non-empty.

2. Under the U (2) × T 2-action of Proposition 2.18, the orbit of V is an open subset

of SU (3).

3. Every point of V projects to a point in SU (3) having at least one zero-curvature

plane.

Temporarily assuming these claims, we may complete the proof as follows. The

claims establish the existence of a non-empty open subset of SU (3) consisting of

points whose projections to E p,q all have at least one zero-curvature plane. Since the

natural projection SU (3) → E p,q is a submersion, it is open, and hence the projection

of this open subset of SU (3) is an open subset of E p,q witnessing the fact that the

Wilking metric is not almost positively curved.
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We now establish the claims.

Claim 1: To see V is non-empty, we begin with the point θ0 ∈ U . Select a real

number γ0 > 0 with the property that

0 < sin2(γ0) < h(θ0) < cos2(γ0) < 1.

Such a γ0 exists because 0 < h(θ0) < 1 and both sin and cos are continuous.

Note that γ0 < π/4 for otherwise the inequality sin2(γ0) < cos2(γ0) is false. We let

k11 =
√

g(θ) ∈ R and k12 =
√

1 − g(θ)eiγ0 .

Now, by Lemma 4.9, the real function α �→ | sin(α)k11 − cos(α)k12|2 has a range

containing the closed interval [sin2(β0), cos2(β0)]. In particular, it contains h(θ0).

Thus, by the Intermediate Value Theorem, there is an α0 ∈ R for which

| sin(α0)k11 − cos(α0)k12|2 = h(θ0).

We now show that A(θ0, α0) ∈ V , so that V �= ∅. To see this, simply note that the

triangle inequality implies that both

∣∣∣| sin(α0)|
√

g(θ0) − | cos(α)|
√

1 − g(θ0)

∣∣∣ ≤ | sin(α0)k11 − cos(α0)k12|

and that

| sin(α0)k11 − cos(α0)k12| ≤ | sin(α0)|
√

g(θ0) + | cos(α)|
√

1 − g(θ0).

Moreover, equality can only occur when γ0 is an integral multiple of π . Recalling

that γ0 ∈ (0, π/4), we see that both inequalities are strict. Squaring both strict inequal-

ities and using the fact that | sin(α0)k11 − cos(α0)k12|2 = h(θ0), it now follows that

A(θ0, α0) ∈ V so V �= ∅.

Claim 2: We next claim that, under the U (2) × T 2 action of Proposition 2.18,

that the orbit of V is an open subset of SU (3). Indeed, following Corollary 2.19,

A = (ai j ) ∈ SU (3) is orbit equivalent to an element of F where |a33|2 =
cos2(θ), |a31|2 = sin2(θ) sin2(α), and |a32|2 = sin2(θ) cos2(α). These latter two

equalities can be rearranged to | sin(α)| = |a31|√
1−|a33|2

and | cos(α)| = |a32|√
1−|a33|2

. We

also note that by replacing all sin2(θ) with 1 − cos2(θ) = 1 − |a33|2, we may view

both h and g as functions of a33.

Then Corollary 2.19 implies that the U (2) × T 2 orbit of V is given by

§
¨
©A = (ai j ) ∈ SU (3) :

(
|a31|√

1 − |a33|2
√

g(a33) − |a32|√
1 − |a33|2

√
1 − g(a33)

)2

< h(a33)

and h(a33) <

(
|a31|√

1 − |a33|2
√

g(a33) + |a32|√
1 − |a33|2

√
1 − g(a33)

)2
«
¬
­ ,
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which is obviously open.

Claim 3: We now show that Lemma 4.3 implies that every point in V has at least

one zero-curvature plane. So, let A(θ, α) ∈ V . We set k11 =
√

g(θ), so that Eq. 4.4 is

satisfied. Writing k12 =
√

1 − g(θ)eiγ , our goal is to find γ solving Eq. 4.5.

We observe that by the reverse triangle inequality, we have the bounds

∣∣∣| sin(α)|
√

g(θ) − | cos(α)|
√

1 − g(θ)

∣∣∣ ≤ | sin(α)k11 − cos(α)k12|

with equality achieved at either γ = 0 or γ = π , depending on the signs of sin(α)

and cos(α). Similarly, by the triangle inequality we have the bound

| sin(α)k11 − cos(α)k12| ≤ | sin(α)|
√

g(θ) + | cos(α)|
√

1 − g(θ)

which equality similarly achieved at either γ = 0 or γ = π .

Squaring these inequalities, the fact that A(θ, α) ∈ V implies that h(θ) lies between

the two extremes of the functionγ �→ | sin(α)k11−cos(α)k12|2. Thus, the Intermediate

Value Theorem implies the existence of a γ0 ∈ R for which | sin(α)k11−cos(α)k12|2 =
h(θ). That is, Eq. 4.5 is solved by this choice of γ0. Lemma 4.3 now implies the

existence of a zero-curvature plane at [A(θ, α)]. 	


We now use Theorem 4.1 to show that, under the hypotheses of Proposition 2.20,

that Wilking’s metric is not almost positively curved. That is, we will now prove

Theorem 1.3.

Proof Assume q1, q2, and q3 fulfill conditions 1a) through 1d) of Proposition 2.20.

That is, we assume that p3 > 0, q1 > 0, q1 > q2, and that q2q3 < 0 so q2 and q3

have opposite signs. We will break the proof into cases based on the cases 2a), 2b),

and 2c) in Proposition 2.20.

Case 2c): Assume that q3 < 0 and q1 + q3 > 0. We will additionally assume that

q2 + q3 ≤ 0; the opposite case where q2 + q3 > 0 will be accounted for in Case

2a) below. We also observe that the following proof does not use the hypothesis that

q3 < 0.

We compute that h(π/2) = 1, h′(π/2) = 0, and h′′(π/2) = −2, so that 0 <

h(θ) < 1 for all θ sufficiently close to π/2.

We also compute that g(π/2) = q1+q3

q1−q2
, g′(π/2) = 0, and g′′(π/2) = −4p3

q1−q2
<

0. By hypothesis, the numerator and denominator of g(π/2) are both positive, so

g(π/2) > 0.

In addition, we also see that g(π/2) ≤ 1. Indeed, we have

q2 + q3 ≤ 0

q3 ≤ −q2

q1 + q3 ≤ q1 − q2

q1 + q3

q1 − q2
≤ 1.
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It follows that for all θ sufficiently close to π/2, so 0 < g(θ) < 1. Since we have

shown 0 < h(θ) < 1 for θ sufficiently close to π/2, we may apply Theorem 4.1 to

complete the proof of this case.

Case 2a): Here, we assume that q2 + q3 ≥ 0. Since q1 > q2 by hypothesis,

q1 + q3 > 0. In particular, if q2 + q3 = 0, it follows under Case 2c) above. As such,

for the remainder of the proof of this case, we may assume that q2 + q3 > 0.

We define θ0 ∈ (0, π/2) by equation

cos2(θ0) = −q3(q2 + q3)

(q2 − q3)p3
.

To see this is well-defined, we need to verify that 0 <
−q3(q2+q3)
(q2−q3)p3

< 1. The case

where q2 < 0 and q3 > 0 is similar to the case where q2 > 0 and q3 < 0, so we

only show the first case. So, assume that q2 < 0 and q3 > 0. Then the numerator and

denominator are both negative, so the fraction is positive. In addition, since q1 > 0

and p3 > 0, we see that both q1q3 > 0 and −q2 p3 >, so that 0 < q1q3 − q3 p3. Then

0 < q1q3 − q2 p3

q3(q2 + q3) < q3(q2 + q3) + q1q3 − q2 p3

q3(q2 + q3) < q3 p3 − q2 p3

q3(q2 + q3) < (q3 − q2)p3

q3(q2 + q3)

(q3 − q2)p3
< 1

−q3(q2 + q3)

(q2 − q3)p3
< 1.

A simple computation now reveals that g(θ0) = 1. Further, from Lemma 4.2,

g′(θ0) �= 0. In particular, any neighborhood of θ0 contains points θ where 0 < g(θ) <

1. We also compute that h(θ0) = (q2−q3)q1

q2 p3−q1q3
. We claim that 0 < h(θ0) < 1. Believing

this, it follows that any neighborhood of θ0 contains points θ where both 0 < h(θ) < 1

and 0 < g(θ) < 1. Then Theorem 4.1 completes the proof in this case.

It remains to establish the claim. Again, the case where q2 < 0 and q3 > 0 is similar

to the case where q2 > 0 and q3 < 0, so we only prove it in the first case. So, assume

that q2 < 0 and q3 > 0. The numerator of h(θ0) is negative, as is the denominator, so

h(θ0) > 0. On the other hand, since q2 + q3 > 0, we have

q1 < p3

q1q2 > q2 p3

q1q2 − q1q3 > q2 p3 − q1q3

(q2 − q3)q1 > q2 p3 − q1q3

(q2 − q3)q1

q2 p3 − q1q3
< 1.

The completes the proof in case 2a).
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Case 2b): Assume that q2 < 0 and that q1 + q2 ≥ 0. We break into subcases

depending on whether q1 + q2 = 0 or not. So, assume initially that q1 + q2 = 0. Then

on (0, π/2), h(θ) simplifies to h(θ) = 1
cos2(θ)+1

while g(θ) = q1(1+cos2(θ))+q3 sin2(θ)

2q1(1+cos2(θ))
.

Then 0 < h(θ) < 1 for all θ ∈ (0, π/2) and g(0) = 1
2
. Thus, for all θ > 0 sufficiently

close to 0, we have 0 < h(θ) < 1 and 0 < g(θ) < 1. So, by Theorem 4.1, there is an

open set of points having a zero-curvature plane in this case as well.

We may thus assume that q1 + q2 > 0. Then 0 <
q3

p3
< 1, so there is a θ0 ∈ R

with the property that cos2(θ0) = q3

p3
. We then compute h(θ0) = 1 and, from Lemma

4.2, that h′(θ0) �= 0. In particular, any neighborhood of θ0 contains points for which

0 < h(θ) < 1. Moreover, g(θ0) = q1

q1−q2
. By our hypotheses on the qi , it follows

that 0 < g(θ0) < 1. By continuity, for all θ sufficiently close to θ0, 0 < g(θ) < 1. It

follows that any neighborhood of θ0 contains a point for which both 0 < h(θ) < 1

and 0 < g(θ) < 1. One final application of Theorem 4.1 then completes the proof in

this case, and hence completes the proof of Theorem 1.3. 	
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