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ABSTRACT. Under mild topological restrictions, this article es-
tablishes that a smooth, closed, simply connected manifold of
dimension at most seven which can be decomposed as the union
of two disk bundles must be rationally elliptic. In dimension
five, such manifolds are classified up to diffeomorphism, while
the same is true in dimension six when either the second Betti
number vanishes or the third Betti number is non-trivial.

1. INTRODUCTION

A closed manifold is said to admit a double disk-bundle decomposition if it can
be written as the union of two disk bundles glued together along their common
boundary by a diffeomorphism. For example, a sphere Sn, n á 2, is well known to
admit at least two such decompositions: Dn*Dn and (Sp×Dq+1)*(Dp+1×Sq),
where n = p + q + 1.

Frequently, in the differential geometry literature, such decompositions ei-
ther arise naturally from geometric hypotheses (see, e.g., [39], [54] and [62]) or
are used to create novel, often non-homogeneous, examples of certain interesting
phenomena. Although it would be impossible to give an exhaustive listing, it is
perhaps instructive to highlight just some of the many situations where double
disk-bundle decompositions appear.

In the study of isoparametric and Dupin hypersurfaces, double disk-bundle
decompositions play a central role (see, e.g., [54], [30] and [66]). In [68], it
was shown that all fake quaternionic projective planes (see [12]) admit a Rie-
mannian metric such that there is a point through which all geodesics are simply
closed and of the same length. As particular examples of singular Riemannian
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foliations [61], double disk-bundle decompositions are also well understood from
the point of view of mean curvature flow [1].

There is a vast literature dealing with the special case of cohomogeneity-one
manifolds, where the decomposition arises as a result of the existence of a Lie group
action with one-dimensional orbit space. For example, the additional symmetry
afforded by such an action has been exploited to study minimal hypersurfaces
in spheres [43], construct infinite families of inhomogeneous Einstein manifolds
[6], and construct new examples of inhomogeneous nearly-Kähler structures on
6-manifolds [19].

In the study of positive and non-negative sectional curvature, the presence
of a decomposition as the union of two disk bundles has proven useful both in
producing exciting new examples (see, e.g., [9], [26], [27], [34] and [36]) and
in proving classification results under additional symmetry assumptions (see, e.g.,
[31], [32] and [33]). In particular, this extra structure has led to the proof of some
special cases (see [22] and [67]) of the Bott conjecture, which asserts that a closed,
simply connected Riemannian manifold admitting a metric with non-negative
sectional curvature must be rationally elliptic. Recall that a closed manifold M is
said to be rationally elliptic if dimQ(Ã7(M)·Q) < >, and rationally hyperbolic
otherwise.

Given the Bott conjecture, the prevalence of double disk-bundle decompo-
sitions among known examples of manifolds admitting non-negative or positive
sectional curvature, and given that the Double-Soul conjecture [29] asks whether
every non-negatively curved, closed, simply connected Riemannian manifold ad-
mits a double disk-bundle decomposition, the present work is motivated by a
desire to understand whether there is any connection between rational ellipticity
and these decompositions, even independent of curvature assumptions.

After a moment’s thought, it is clear that some topological restrictions are
necessary in any such investigation. Indeed, for all n á 2 and all m á 3, the
(n+4)-dimensional manifold Sn×#mk=1CP

2 is rationally hyperbolic and admits a
double disk-bundle decomposition. Nevertheless, it turns out that, in low dimen-
sions, the required topological restrictions are very mild.

Theorem A. LetMn be a smooth, closed, simply connected manifold of dimension
n à 7 which admits a double disk-bundle decomposition. Then, Mn is rationally
elliptic if and only if either n à 5 or else n = 6 and b2(M6) à 3 (respectively, n = 7
and b2(M7) à 2).

Note that, if M6 (respectively, M7) is rationally elliptic, then it is well known
that b2(M6) à 3 (respectively, b2(M7) à 2) ( see, e.g., [40]). Therefore, in light
of the examples given above, the statement is optimal in respect of restrictions on
the second Betti number in dimensions à 7. Furthermore, notice Theorem A may
be restated as follows: a smooth, closed, simply connected manifold of dimension
à 7 which admits a double-disk bundle decomposition is rationally elliptic if and
only if it has the same Betti numbers as a rationally elliptic manifold. This state-
ment is optimal in respect of dimension since there are counterexamples already
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in dimension eight. For example, for all n á 2, the (n+6)-dimensional manifold
Sn × ((S2 × S4)#(S2 × S4)) is rationally hyperbolic, yet admits a double disk-
bundle decomposition and has the same Betti numbers as the rationally elliptic
space Sn × S2 ×CP2. For completeness, however, recall that a consequence of the
work of Miller [51] is that, for k á 2, a smooth, closed, (k2 1)-connected mani-
fold of dimension à 4k2 2 is rationally elliptic whenever its rational cohomology
ring is isomorphic to that of a rationally elliptic space.

Closed, smooth, simply connected manifolds of dimension four which admit
a double disk-bundle decomposition were classified up to diffeomorphism in [24].
The only such manifolds are S4, CP2, S2 × S2, and CP2#± CP2—precisely those
simply connected 4-manifolds known to admit a metric of non-negative sectional
curvature. In dimension five, it turns out that an analogous statement is true.

Theorem B. A smooth, closed, simply connected manifold of dimension five ad-
mits a double disk-bundle decomposition if and only if it is diffeomorphic to S5, the
Wu manifold SU(3)/SO(3), S3 × S2, or the unique non-trivial S3-bundle over S2.

Theorem B may be viewed as further evidence that this is the complete list of
simply connected 5-manifolds admitting a metric of non-negative sectional cur-
vature (e.g., see [23], where decompositions as the union of two disk bundles play
a key role). Note that, by [42], each of the manifolds in Theorem B admits a
cohomogeneity-one action and, hence, a double disk-bundle decomposition.

Recall that a closed, simply connected, rationally elliptic 5-manifold must be
rationally homotopy equivalent to either S5 or S3 × S2 (see, e.g., [57]). However,
each of these rational homotopy types contains infinitely many distinct homotopy
types. Indeed, since the Wu manifold SU(3)/SO(3) is a rational homology 5-
sphere with H2(SU(3)/SO(3);Z) = Z2, taking the connected sum of a smooth,
closed, simply connected 5-manifold with SU(3)/SO(3) will change its homo-
topy type, but not its rational homotopy type.

Corollary C. There are infinitely many smooth, closed, simply connected, ratio-
nally elliptic 5-manifolds which do not admit a double disk-bundle decomposition.

It is an intriguing coincidence that the diffeomorphism types of manifolds
of dimension à 5 which admit a double disk-bundle decomposition are precisely
those for which there exists a Riemannian metric with trivial topological entropy
(see [56]). It would be interesting to know whether this is also true in higher
dimensions.

In dimensions six and seven, it is well known that there are infinitely many
rational homotopy types of closed, smooth, simply connected manifolds (see [40],
[69]). Many of these rational homotopy types can be represented by a nice model
space which, by Proposition 3.1, can easily be seen to admit a double disk-bundle
decomposition. In particular, an infinite family of 2-connected, rational homology
7-spheres, each admitting infinitely many double disk-bundle decompositions,
was constructed in [26], including many spaces which are not even homotopy
equivalent to an S3-bundle over S4 [27]. On the other hand, there are infin-
itely many rational homotopy types for which no nice representative is known,
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nor whether any representative can be decomposed as the union of two disk bun-
dles. Therefore, a classification in dimensions six and seven up to diffeomorphism,
similar to that in Theorem B, seems beyond the scope of the present article. Nev-
ertheless, it is possible to obtain some partial results.

Theorem D. A smooth, closed, simply connected 6-manifold M6 with b2(M6) =
0 admits a double disk-bundle decomposition if and only if it is diffeomorphic to either
S6 or S3 × S3.

Observe that the conclusion of Theorem D excludes all smooth, closed, sim-
ply connected 6-manifolds M6 with b2(M6) = 0 which have torsion in their co-
homology, including all (non-trivial) rational homology spheres.

Corollary E. There are infinitely many smooth, closed, simply connected, ratio-
nally elliptic 6-manifolds which do not admit a double disk-bundle decomposition.

In fact, even without any assumption on b2(M6) in Theorem D above, M6

must be diffeomorphic to S3 × S3 if b3(M6) b 0. Therefore, in combination
with Theorem A, it follows that a rationally hyperbolic 6-manifold which admits
a double disk-bundle decomposition has its rational cohomology concentrated in
even degrees and Euler characteristic Ç á 10.

Corollary F. If M6 is a smooth, closed, simply connected, rationally hyperbolic
6-manifold which admits a double disk-bundle decomposition, then b2(M6) á 4 and
b3(M6) = 0.

The results in this article may be viewed as evidence that admitting a double
disk-bundle decomposition imposes strong restrictions on the topology of a man-
ifold. Consequently, it might be hoped that, in general, the rational homotopy
type of such a manifold is determined by its rational cohomology ring, a property
known as formality. It follows from work of Miller [51] that all closed, simply
connected manifolds of dimension à 6 are (intrinsically) formal, while, by recent
work of Crowley and Nordström [8], a closed, simply connected 7-manifold is
(intrinsically) formal if its cohomology ring satisfies a certain hard Lefschetz prop-
erty.

Theorem G. There are infinitely many non-formal, smooth, closed, simply con-
nected, rationally elliptic 7-manifolds which admit a double disk-bundle decomposi-
tion.

The manifolds in Theorem G are a certain family of biquotients of the form
(S3 × S3 × S3)//T 2, all of the same rational homotopy type and distinguished by
the order of the torsion in their cohomology rings. In particular, the unit tangent
bundle of S2 × S2 is one such space.

Returning to the original motivations for this work, we conclude this intro-
duction with some final observations which are likely already well known to the
experts. First, every known example of a simply connected manifold admitting
a Riemannian metric of positive sectional curvature admits a double disk-bundle
decomposition (see Theorem 3.3). While this is evidence for the validity of the
Double-Soul conjecture, the conjecture is completely open even in some of the
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simplest cases of manifolds admitting non-negative curvature. Indeed, among
compact Lie groups, it is currently unknown whether a semi-simple Lie group
with all simple factors being either E7 or E8 can be decomposed as the union of
two disk bundles (see Lemma 3.2).

Ever since the discovery of exotic spheres, there has been interest in deter-
mining to what extent their geometry resembles that of the standard sphere. In
dimension seven, it is now known that all exotic spheres admit a metric of non-
negative sectional curvature [26]. The key to obtaining such a metric is the re-
sult of Grove and Ziller ensuring that every cohomogeneity-one manifold with
codimension-two singular orbits admits such a metric [36]. It is natural to ask
whether something similar will work for higher-dimensional exotic spheres. As it
turns out, a (rational homology) sphere can be decomposed as the union of two
2-disk bundles only if it has dimension à 7 (see Corollary 4.12 and also [13]).
Therefore, new techniques and ideas will be required to construct a metric with
non-negative curvature on a higher-dimensional exotic sphere.

One of the main tools used to obtain many of the results in the paper, includ-
ing Corollary 4.12, is the generalization Theorem 4.11 of a result of Grove and
Halperin [30, Lemma 6.3] showing the non-triviality of the connecting homo-
morphism in a certain long exact sequence of rational homotopy groups naturally
associated with a double disk-bundle decomposition.

Organization. In Section 2, the notation to be used throughout the paper
is introduced and a summary is provided of the parts of rational homotopy theory
relevant to this work. In Section 3, some sufficient conditions are collected which
ensure the existence of a double disk-bundle decomposition and are then used
to examine compact Lie groups and manifolds known to admit positive sectional
curvature. Section 4 focuses upon establishing general topological results relevant
to manifolds admitting a double disk-bundle decomposition, with the main result
being Theorem 4.11. Sections 5, 6, and 7 are devoted to studying double disk-
bundle decompositions in dimensions at most five, equal to six and equal to seven,
respectively.

2. PRELIMINARIES

2.1. Terminology and notation. Suppose D3±+1 ³ DB± ³ B± are smooth
disk bundles of rank 3± + 1, respectively, over smooth, closed manifolds B±, and
that there is a diffeomorphism f : "DB2 ³ "DB+ of the boundaries. Identifying
these boundaries via the diffeomorphism f , the resulting smooth manifold M =
DB2 *f DB+ is called a double disk bundle. If L denotes the common image of
"DB± in M, then it is clear there are sphere bundles S3± ³ L³ B±.

An arbitrary smooth, closed, connected manifold M is said to admit a double
disk-bundle decomposition if there exists a diffeomorphism § : M ³ DB2 *f DB+
from M to a double disk bundle DB2 *f DB+. By an abuse of notation, B± and
L will be used to denote the images of pulling back to M via § the corresponding
objects in the double disk bundle DB2 *f DB+, while the decomposition itself
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will often be denoted by DB2 *L DB+ whenever the precise gluing map is not
needed. As a consequence of Proposition 4.1 below, B± will usually be assumed to
be connected, without additional comment.

It is clear that knowledge of the dimensions 3± of the fibers of the sphere bun-
dles S3± ³ L³ B± will play a role in understanding the topology ofM. Therefore,
manifolds admitting a double disk-bundle decomposition will often be discussed
under additional restrictions on 3±. Recall, moreover, that the diffeomorphism
group Diff(Sk) deformation retracts onto O(k + 1) whenever k à 3 [3, 37, 63].
Hence, it will be implicitly assumed that S3± ³ L ³ B± is a linear bundle if
3± à 3, respectively. The inclusion L ³ M gives rise to an additional homotopy
fibration F ³ L³ M, where F denotes the so-called homotopy fiber.

In [61], Qian and Tang showed that every manifold M admitting a double
disk-bundle decomposition DB2 *L DB+ also admits a codimension-one singular
Riemannian foliation with singular leaves diffeomorphic to B± and regular leaf
diffeomorphic to L. Thus, it will at times be convenient to abuse this suggestive
terminology and refer to B± and L as the singular and regular leaves, respectively,
of the double disk-bundle decomposition of M.

The symbol g will be used to indicate either that two manifolds are diffeo-
morphic or that two groups are isomorphic, depending on the context. Finally,
homology and cohomology will be taken with integral coefficients, unless explic-
itly indicated otherwise.

2.2. Rational homotopy theory. Borrowing heavily from [21], the basics
of rational homotopy theory required in this work can be summarized as follows.
(For a full treatment, see [16–18].)

A path-connected topological space X is said to be nilpotent if its fundamental
group Ã1(X) is a nilpotent group which acts nilpotently on the higher homotopy
groups Ãk(X), k á 2, by the action described in [18, p. 31]. Recall that a group
G acts nilpotently on a group H if there is a finite chain

H = H0 Q H1 Q · · · Q Hm = {e}

of subgroups such that, for each j * {1, . . . ,m}, Hj is normal in Hj21 and closed
under the action of G, the quotients Hj21/Hj are abelian, and the induced action
of G on Hj21/Hj is trivial. In particular, a group G is nilpotent if and only if it
acts on itself nilpotently by conjugation.

Recall that the rank of an abelian group A is the dimension of the rational
vector space A·Q. Building on this, the rank of a nilpotent group G is given by

rank(G) =
n∑

j=1

rank(Gj21/Gj),

where {Gj}
n
j=0 denotes the lower central series of G, and where each of the groups

Gj21/Gj , j á 1, is abelian; that is, G0 = G and Gj = [Gj21, G] for j á 1. In
particular, the quaternion group Q8 = {±1,±i,±j,±k} has rank(Q8) = 0.
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Let X be a nilpotent topological space. The rational homotopy groups of X

are the Q-vector spaces ÃQi (X) = Ãi(X) · Q, i á 2, of dimension di(X) =

dimQ(Ã
Q

i (X)). The space X is rationally elliptic if

dimQH
7(X;Q) <> and dimQ(Ã

Q
7 (X)) =

>∑

i=2

di(X) <>.

If, instead, dimQ(Ã
Q
7 (X)) = >, then X is said to be rationally hyperbolic.

Whenever dimQH7(X;Q) < >, there is an integer nX , called the formal
dimension of X, such that HnX (X;Q) b 0 and Hj(X;Q) = 0, for all j > nX . If
X is a closed, orientable manifold, then clearly nX = dim(X).

If X is a rationally elliptic space, then the dimensions di(X) of the rational
homotopy groups of X satisfy, among others, the relations

nX á
∑

i*N

2id2i(X),(2.1)

nX = 2d2(X)+
>∑

i=2

(2i2 1)(d2i21(X)2 d2i(X)).(2.2)

From the homotopy groups, one can construct a graded vector space VX =⊕>
i=0 V

i associated with X, where V 0 = Q, dimQ V 1 = rank(Ã1(X)) and, for
i á 2,

V i gHom(Ãi(X),Q) g Ã
Q

i (X) g Q
di(X).

Clearly, V 1 = 0 whenever Ã1(X) is a finite (nilpotent) group. An element v * V i

is said to be homogeneous of degree deg(v) = i.
The tensor algebra TVX on VX has an associative multiplication, with a unit

1 * V 0, given by the tensor product T iVX·T jVX ³ T i+jVX , where TkVX = V
·k
X .

Taking the quotient of TVX by the ideal generated by the elements

v ·w 2 (21)ijw · v,

where deg(v) = i, deg(w) = j, yields the free commutative graded algebra 'VX .
In particular, multiplication in 'VX satisfies v ·w = (21)ijw · v, for all v * V i

and w * V j .
Given a homogeneous basis {v1, . . . , vN} of VX , set '(v1, . . . , vN) = 'VX .

We denote the linear span of elements vi1vi2 · · ·viq * 'VX , 1 à i1 à i2 à · · · à
iq à N, of word-length q by 'qVX . Define '+VX =

⊕
qá1'

qVX .
The graded algebra 'VX has a linear differential dX , that is, a linear map

dX : 'VX ³ 'VX satisfying the following properties:

(1) dX has degree +1, i.e., dX maps elements of degree i to elements of degree
i+ 1.
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(2) d2
X = 0.

(3) dX is a derivation, i.e., dX(v ·w) = dX(v) ·w + (21)deg(v)v · dX(w).

(4) dX is nilpotent, i.e., there is an increasing sequence of graded subspaces
V(0) ¦ V(1) ¦ · · · such that we have V =

⋃>
k=0 V(k), dX|V(0) c 0, and

dX : V(k) ³ 'V(k2 1), for all k á 1.

In addition, dX satisfies the following:

(5) dX is decomposable, i.e., Im(dX) ¦ 'á2VX .

Since dX is a derivation, it clearly depends only on its restriction to VX . The
pair ('VX , dX) is called the minimal model for X, and its corresponding (rational)
cohomology satisfies H7('VX , dX) = H7(X;Q).

The minimal models of a nilpotent space X and its universal cover X̃ are
related as follows. If ('VX̃ , dX̃) and ('W,d) denote the minimal models of X̃
and the classifying space BG of G = Ã1(X), respectively, then W = W 1, V 1

X̃
= 0,

and the minimal model of X is given by

('VX , dX) = ('W ·'VX̃ , dX) = ('(W · VX̃), dX),

where dX|'W = d and dX(v)2 dX̃(v) * '
+W ·'VX̃ for all v * VX̃ .

By a slight abuse of terminology, two nilpotent spaces X and Y will be said
to be rationally homotopy equivalent (denoted X cQ Y ) if their minimal models
are isomorphic, that is, if there is a linear isomorphism f : ' VX ³ 'VY which
respects the grading and satisfies f çdX = dY çf and f(v ·w) = f(v)·f(w). It
is important to note that, first, it is not assumed that Ã1(X) g Ã1(Y) and, second,
the isomorphism f is not necessarily induced by a map between X and Y . In fact,
X cQ Y if and only if there is a chain of maps X ³ Y1 ± Y2 ³ ·· · ± Ys ³ Y such
that the induced maps on rational cohomology are all isomorphisms. Observe that
X and Y have isomorphic rational homotopy and rational cohomology groups
whenever X cQ Y .

A nilpotent space X with minimal model ('VX , dX) is said to be formal if
there is a morphism

('VX , dX)³ (H
7(X;Q),0)

of differential graded algebras inducing an isomorphism in cohomology. If formal
spaces X and Y have isomorphic rational cohomology rings, then X cQ Y . On
the other hand, there are examples of nilpotent spaces Y with rational cohomology
ring isomorphic to that of a formal space X and yet X 6cQ Y (see, e.g., [49,
Section 7]). A nilpotent space X is intrinsically formal if every nilpotent space
Y with rational cohomology ring isomorphic to H7(X;Q) satisfies X cQ Y and,
hence, is formal; that is, there is a unique rational homotopy type (minimal model)
associated with the cohomology ringH7(X;Q). In particular, a product of spheres
is intrinsically formal [14].
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3. EXAMPLES OF DOUBLE DISK BUNDLES

Many interesting geometric examples have arisen via double disk bundle con-
structions. In the hope of achieving a deeper understanding of the topological
implications of certain geometric conditions, it is then natural to investigate the
prevalence of manifolds admitting a double disk-bundle decomposition. To this
end, recall that a smooth, effective action of a compact Lie group G on a smooth
manifold M is of cohomogeneity one if the orbit space M7 = M/G of the action
is one dimensional or, equivalently, if there is a G-orbit of codimension one. Al-
ternatively, if the fixed-point set of the action of G on M is non-empty and has a
component of codimension one in M7, it is said to be fixed-point homogeneous.

Proposition 3.1. A smooth, closed, simply connected manifoldM admits a double
disk-bundle decomposition if at least one of the following conditions holds:

(a) M is a connected sum of two compact, rank-one symmetric spaces.
(b) M admits a smooth, effective action of cohomogeneity one.
(c) M is the quotient of a cohomogeneity-one manifold by a ‘free subaction.
(d) M is the total space of a smooth fiber bundle over a manifold which admits a

double disk-bundle decomposition.
(e) M is the total space of a linear sphere bundle admitting a smooth section.
(f ) M admits a Riemannian metric with non-negative sectional curvature which

is invariant under an isometric fixed-point-homogeneous action.

Proof. (a) This is a simple consequence of the standard fact that removing
a point from a non-spherical, simply connected, compact, rank-one symmetric
space yields a disk bundle over a lower-dimensional compact, rank-one symmetric
space.

(b): In this case, the statement is well known and follows from the Slice
Theorem and fundamental group considerations (see, e.g., Section 1 in [42] and
[35, Section 1]). In particular, if G acts on M with cohomogeneity one, then
there are closed subgroups H ¦ K± ¦ G with K±/H g S3± and such that M is
equivariantly diffeomorphic to the union of the disk bundles G ×K± D

3±+1 glued
(equivariantly) along their common boundary G ×K± S

3± g G/H.
(c): Suppose G acts on M2 with cohomogeneity one and there is a subgroup

U ¦ G which acts freely onM2 with quotientM. Observe first that the U action on
M2 preserves the orbits of the G action. Now, via the equivariant diffeomorphism
mentioned in the proof of (b) above, U acts freely on each of the disk bundles
G ×K± D

3±+1 by the action induced from the action of U by left multiplication
on the first factor of the product G ×D3±+1. As the U action commutes with the
action of K± on the right of the first factor, it follows that U \ (G ×K± D

3±+1) is
diffeomorphic to (U \ G) ×K± D

3±+1. These disk bundles both have boundary
diffeomorphic to the biquotient U \G/H, and the equivariant gluing map in the
double disk-bundle decomposition of M2 now induces a gluing of the quotient
disk bundles, yielding the desired double disk-bundle decomposition of M.
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(d) Suppose Y ³ M ³ N is a fiber bundle such that N is diffeomorphic to a
double disk bundle DB2*LDB+. By [61], there is a Riemannian metric gN on N
yielding a singular Riemannian foliation with singular leaves B± and regular leaf
diffeomorphic to L. If (gx)x*N is a smoothly varying family of Riemannian met-
rics on the fibers (that is, on Y ), then a standard partition-of-unity argument yields
a (unique) complete Riemannian metric gM on M inducing the metric gx on the
fiber Yx, for each x * N, and such that the projection map (M,gM)³ (N,gN)
is a Riemannian submersion.

On the other hand, it is well known that, by pulling back the leaves of the fo-
liation on the base, a singular Riemannian foliation can be lifted via a Riemannian
submersion and, moreover, the codimensions of the leaves are preserved. There-
fore, (M,gM) admits a codimension-one singular Riemannian foliation with two
singular leaves and, hence, a double disk-bundle decomposition (see, e.g., [7]).

(e): Suppose Sk ³ M ³ N is a linear sphere bundle admitting a smooth
section Ã : N ³ M. This can be viewed as the unit-sphere subbundle of a rank-
(k+1) vector bundle Ã : E ³ N equipped with a smooth fiberwise inner product
〈 , 〉. Therefore, M can be decomposed as the union of the disk bundles

M2 =
⋃

x*N

{v * Skx | 〈v,Ã(x)〉 à 0} and M+ =
⋃

x*N

{v * Skx | 〈v,Ã(x)〉 á 0}

over N.
(f) This assertion is taken directly from the Ph.D. thesis of Spindeler [67]. w

Whereas the double disk-bundle decomposition in Proposition 3.1 (b) ad-
mits a natural codimension-one singular Riemannian foliation with homogeneous
leaves, notice that the decomposition in (c) admits a codimension-one singu-
lar Riemannian foliation with biquotient leaves, all the while retaining many of
the characteristics of a cohomogeneity-one manifold. This breaking of symmetry
should have many applications and, indeed, has already been applied in [26]. Fur-
thermore, observe that such decompositions arise whenever one has a compact Lie
group G and closed subgroups H ¦ K± ¦ G ×G with K±/H g S3± and such that
K± act freely on G via the respective restrictions of the action

(G ×G)×G ³ G; ((g1, g2), g)� g1gg
21
2 .

This observation now follows easily from the well-known diffeomorphism G g
&G\(G×G), where &G is the diagonal subgroup in G×G, after first constructing
a cohomogeneity-one (G × G)-manifold with the given data and then applying
Proposition 3.1 (c) to the free &G subaction.

Manifolds admitting double disk-bundle decompositions arise frequently in
geometry, as the following examples illustrate.

Lemma 3.2. Let G be a compact, connected Lie group which is not isomorphic to
a finite quotient of a product

∏m
i=1Gi, where Gi * {E7,E8} for all i * {1, . . . ,m}.
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Then, G admits a cohomogeneity-one action and, hence, a double disk-bundle decom-
position.

Proof. Recall that every compact, connected Lie group G is isomorphic to the
quotient G2/� of a product G2 = Tk ×

∏m
i=1Gi by a finite subgroup � of the

center of G2, where Tk is a torus of rank k and each Gi is a simply connected,
compact, simple Lie group. In particular, if K2 ¦ G2 × G2 acts effectively on G2

with cohomogeneity one, then it commutes with the action of � and induces an
effective cohomogeneity-one K22 = K2/(K2+�) action on G2/� . The only possible
quotient spaces under this action are a closed interval and a circle. In the first
case, it follows as in Proposition 3.1 (b) that G2/� admits a double disk-bundle
decomposition. In the case that the quotient space is a circle, all K22 orbits are
principal G2/� and the quotient map G2/� ³ S1 is a bundle projection map. In
particular, it now follows from Proposition 3.1 (d) that G2/� admits a double disk-
bundle decomposition. By making use of the isomorphism, it is clear that in each
case G also admits a cohomogeneity-one action and, hence, a double disk-bundle
decomposition.

It now remains only to show there is a cohomogeneity-one action on each pos-
sible product group G2 = Tk×

∏m
i=1Gi. If there is some i0 * {1, . . . ,m} such that

Gi0 6* {E7,E8}, then the statement follows immediately from the classification by
Kollross of cohomogeneity-one actions on compact, simple Lie groups [45, 46].
Indeed, if i0 =m, for example, then there is a subgroup Hm ¦ Gm × Gm acting

on Gm by cohomogeneity one and, therefore, the group K2 = Tk×
∏m21
i=1 Gi×Hm

acts on G2 with cohomogeneity one, as desired.
On the other hand, if G2 = Tk ×

∏m
i=1Gi, with k > 0 and Gi * {E7,E8}

for all i * {1, . . . ,m}, then it is clear that K2 = Tk21 ×
∏m
i=1Gi acts on G2 with

cohomogeneity one and quotient space S1. w
In [45] and [46], Kollross made the additional observation that the simple

Lie groups E7 and E8, when equipped with a bi-invariant metric, do not admit
any isometric action of cohomogeneity one. More generally, it is currently un-
known whether E7 and E8 even admit a double disk-bundle decomposition. As
compact Lie groups with bi-invariant metrics are the simplest examples of Rie-
mannian manifolds with non-negative sectional curvature, this suggests Grove’s
Double-Soul conjecture [29] is quite subtle and difficult. On the other hand, as
noted in [29], the situation appears to be better in the case of positive curvature.

Theorem 3.3. Every known example of a manifold admitting positive sectional
curvature admits a double disk-bundle decomposition.

Proof. As described in [72], the known examples of closed, simply connected
Riemannian manifolds with positive sectional curvature comprise compact rank-
one symmetric spaces (CROSSes), an infinite family of Eschenburg spaces in di-
mension 7, and an infinite family of Bazaikin spaces in dimension 13, as well
as the following sporadic examples: the homogeneous flag manifolds SU(3)/T 2,
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Sp(3)/Sp(1)3, and F4/Spin(8); the Berger space SO(5)/SO(3)max, where the
embedding SO(3) ³ SO(3)max ¦ SO(5) is induced from the unique irreducible
5-dimensional representation of SO(3); a biquotient SU(3)//T 2 (the inhomoge-
neous flag); and a cohomogeneity-one manifold P2.

It is well known that the CROSSes admit smooth cohomogeneity-one actions,
as does P2, by construction. Each of the homogeneous flag manifolds can be
written as a linear sphere bundle over a CROSS, while the inhomogeneous flag
SU(3)//T 2 is the total space of a linear S2-bundle over CP2, and it was shown
in [28] that SO(5)/SO(3)max is diffeomorphic to a linear S3-bundle over S4.
Therefore, it follows from Proposition 3.1 (d) that each admits a double disk-
bundle decomposition.

On the other hand, in general, the Eschenburg spaces SU(3)//S1
p,q and the

Bazaikin spaces SU(5)//(Sp(2) · S1
q) neither admit a cohomogeneity-one action

nor appear as the total space of a nice fiber bundle. Still, the free quotient action
in each case is (or, at least, can be rewritten as) a subaction of a cohomogeneity-
one action on SU(3) or SU(5), respectively. By Proposition 3.1 (c), it then follows
that each admits a double disk-bundle decomposition. w

4. TOPOLOGY OF DOUBLE DISK BUNDLES

Given the relative simplicity of the construction, it is possible to say quite a lot
about the topology of double disk bundles. Some useful results in this regard are
collected here.

To begin, observe that the cylinder D1× S1 is a disk bundle over S1 for which
the boundary is disconnected, by the fact that "D1 = S0 g {±1}. Hence, each
component of the boundary of D1 × S1 may be glued to (a component of ) the
boundary of a distinct disk bundle. Therefore, it is possible that a closed manifold
could decompose into more than two disk bundles. For example, the sphere S2

can be decomposed as the union of a chain of cylinders glued end to end and
capped off by two disks D2 × {pt}. Of course, it is clear that capping off one
end of the union of such a chain of cylinders yields a manifold diffeomorphic
to the 2-disk, so that the above decomposition of S2 reduces to the union of
two disks. The following proposition shows that this reduction to a double disk-
bundle decomposition is a general phenomenon.

Proposition 4.1. Let M be a smooth, closed, connected manifold which can be
decomposed as the union of disk bundles glued together via diffeomorphisms of the
components of their respective boundaries. Then, M admits a double disk-bundle
decomposition DB2 *f DB+ for which both B± are connected.

Proof. SinceM is closed, it can be decomposed as the union of at most finitely
many disk bundles. Let D3i+1 ³ DBi ³ Bi, i = 1, . . . ,m, be the disk bundles
in such a decomposition. As each DBi ¦ M is compact, it follows that each base
manifold Bi is closed. Furthermore, it may be assumed without loss of generality
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that each Bi is connected. Let S3i ³ SBi ³ Bi, i = 1, . . . ,m, denote the corre-
sponding sphere bundles. The long exact homotopy sequence for S3i ³ SBi ³ Bi
yields that SBi has at most two components, where SBi being disconnected im-
plies that 3i = 0 and that DBi g Bi × [21,1].

As M is closed and connected, either all of the sphere bundles SBi, i =
1, . . . ,m, are disconnected, or there are precisely two disk bundles with connected
boundary. After relabelling the disk bundlesDBi and, if necessary, reparametrizing
their fibers, it follows from the hypothesis that, if all SBi are disconnected, there
are diffeomorphisms fi : Bi × {+1} ³ Bi+1 × {21}, for all i * {1, . . . ,m 2 1},
and fm : Bm × {+1} ³ B1 × {21}. On the other hand, if SB1 and SBm are con-
nected (and m > 2), then the diffeomorphisms f1 and fm21 may be replaced by
f1 : SB1 ³ B2 × {21} and fm21 : Bm21 × {+1} ³ SBm, respectively, while fm
does not occur.

It is, however, well known that in both cases DB1*f1 · · ·*fm22 DBm21 is dif-
feomorphic to DB1, independent of the choices of diffeomorphisms f1, . . . , fm22

(see, e.g., [47, Chapter VI, Section 5]). Hence, there is always a diffeomorphism
f : SB1 ³ SBm such that M is diffeomorphic to DB1 *f DBm, as desired. w

Recall that, if a manifold M is the total space of a fiber bundle over S1, then
M has infinite fundamental group and, by Proposition 3.1 (d), it admits a double
disk-bundle decomposition (B2 × [21,1]) *f (B+ × [21,1]) with B2 g B+ of
codimension one. In fact, the permissible codimensions of B± in a double disk
bundle M = DB2 *f DB+ are always restricted by the fundamental group of M.

Proposition 4.2. Let M be a smooth, closed, simply connected manifold which
admits a double disk-bundle decomposition DB2 *L DB+ with B± connected. Then,
B± are both of codimension á 2.

Proof. Suppose, without loss of generality, that B2 ¦ M is of codimension
one, and let Ã2 : DB2 ³ B2 denote the bundle projection map. Thus, the
fiber Ã21

2 (b) ¦ DB2 over a point b * B2 is diffeomorphic to an interval and
intersects B2 transversally in a single point. Moreover, if the two points comprising
Ã21
2 (b) + L are joined by an arbitrary curve c+ in DB+, then the closed curve
cb = Ã21

2 (b) * c+ in M intersects the closed submanifold B2 transversally in a
single point. Consequently, the intersection form

IM : Hn21(M)×H1(M) ³ Z

yields IM([B2], [cb]) = ±1, where [B2] and [cb] are the homology classes repre-
sented by B2 and cb, respectively. However, this is a contradiction, since M being
simply connected implies that H1(M) = 0 and, hence, that the intersection form
IM is trivial. Therefore, the codimension of B2 must be at least two. w

Note that an analogue of the above proposition for closed, smooth, simply
connected, cohomogeneity-one manifolds appeared in [35, Lemma 1.6].
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The following characterization of trivial orientable circle bundles is often use-
ful when dealing with double disk-bundle decompositions where at least one of
the singular leaves is of codimension two. In the sequel, an element of a finitely
generated abelian group A will be called a generator if it is neither torsion nor a
non-trivial multiple of any other element. Equivalently, an element of A will be
called a generator if it generates a free abelian subgroup of rank one which is not
properly contained in any other free abelian subgroup of rank one.

Theorem 4.3. Let S1 ³ L ³ B be an orientable circle bundle over a connected
manifold B with Ã1(L) abelian. Then, the bundle is trivial if and only if the induced
homomorphism Ã1(S1) ³ Ã1(L) is injective with image containing a generator of
Ã1(L).

Proof. Recall, for example, from [53, Proposition 6.15], that every orientable
circle bundle S1 ³ L ³ B is principal and, hence, classified by its Euler class
e * H2(B). In particular, S1 ³ L³ B is trivial if and only if e = 0.

The Gysin sequence corresponding to S1 ³ L ³ B yields an exact sequence

0³ H1(B)³ H1(L)
f
----------------------------------------³H0(B)

#e
-----------------------------------------------------------------³H2(B)³ ·· · .

Let i : S1 ³ L be inclusion of a circle fiber, and let j : (D2,S1) ³ (E, L) be
the corresponding fiber inclusion of pairs, where D2 ³ E ³ B is the disk bundle
with boundary S1 ³ L ³ B. There then exists a commutative diagram (see, e.g.,
[38, Section 4D])

H1(S1)

g

��

H1(L)
i7oo

��

f // H0(B)

§yyssss
sss

sss

H2(D2,S1) H2(E, L)
j7

oo

where the vertical maps are those in the long exact sequences for the pairs, j7 is
an isomorphism, § is the Thom isomorphism, and f is the map in the Gysin
sequence above. Therefore, the above Gysin sequence can be modified to yield a
commutative diagram

0 // H1(B) // H1(L)
f //

i7

$$JJJJJJJJJ
H0(B)

#e // H2(B) // · · ·

H1(S1)

g

OO .

Clearly, therefore, the Euler class e is trivial if and only if i7 : H1(L) ³ H1(S1) is
surjective. But, since H1(S1) is free abelian, we see that i7 is surjective if and only
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if i7 : H1(S1)³ H1(L) is injective and maps a generator of H1(S1) to a generator
of H1(L). Since Ã1(L) is abelian, naturality in the Hurewicz theorem now ensures
that e = 0 if and only if the induced homomorphism i7 : Ã1(S1) ³ Ã1(L) is
injective and maps a generator of Ã1(S1) to a generator of Ã1(L), as desired. w

In [30], Grove and Halperin systematically studied spaces admitting a double
disk-bundle decomposition from the perspective of rational homotopy theory. For
the present work, it is useful to have a summary of their results adapted to the
current situation.

Theorem 4.4 (Grove-Halperin [30]). Suppose that a smooth, closed, simply
connected manifold M admits a double disk-bundle decomposition DB2 *L DB+,
where B± are both connected. If F denotes the homotopy fiber of the inclusion L³ M,
then L and F are nilpotent spaces and F is rationally rational homotopy equivalent to
one of the spaces listed in Table 4.1, where Am(4) denotes a certain simply connected
topological space whose non-trivial rational homotopy groups are in degrees 4, 7 and
4m 2 1. Moreover, the possible fundamental groups of F and codimensions of B± are
indicated in Table 4.1.

Observe from the long exact homotopy sequence for the homotopy fibration
F ³ L³ M that, in particular, Ã1(L)must be abelian whenever rank(Ã1(L)) á 1.
As a first, simple application of Theorem 4.4, one obtains a criterion for a double
disk bundle to be rationally elliptic.

Lemma 4.5. LetM be a smooth, closed, simply connected manifold which admits
a double disk-bundle decomposition DB2*LDB+ with B± connected. If there exists a
j0 * N such that the rational homotopy groups of some X * {L, B±} satisfy ÃQj (X) =
0, for all j á j0, then M is rationally elliptic.

Proof. In either case, since L is a sphere bundle over B±, all rational homotopy

groups ÃQj (L) of L must vanish whenever j á j0, for some j0 * N. Let F be
the homotopy fiber of the inclusion map L ³ M. By Theorem 4.4, the rational
homotopy groups of F vanish in sufficiently high dimensions. The long exact
homotopy sequence for the homotopy fibration F ³ L³ M now yields that there

is some j1 * N such that ÃQj (M) = 0, for all j á j1, and, hence, that M is
rationally elliptic. w

If a manifold M of arbitrary dimension admits a double disk-bundle decom-
position DB2*LDB+ with a singular leaf B * {B±} of sufficiently low dimension,
it turns out that M is always rationally elliptic.

Proposition 4.6. Suppose that M is a smooth, closed, simply connected manifold
which admits a double disk-bundle decomposition DB2 *L DB+ with B± connected
and dim(B) à 3, for some B * {B±}. Then, M is rationally elliptic.

Proof. If F is the homotopy fiber of the inclusion L³ M then, sinceM is sim-
ply connected, the long exact homotopy sequence associated with the homotopy
fibration F ³ L ³ M ensures that Ã1(F) ³ Ã1(L) is surjective. From the list of
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Ã1(F) F cQ {³,´} = {3±}
Orientability of
S3±-bundles

Z2 S1 × S1 ×'S3

1 = ³ = ´

Both

Z· Z2 S1 × S3 ×'S5 One

Q8 S3 × S3 ×'S7 Neither

Z
S1 × S´ ×'S´+2 1 = ³ < ´ Both

S1 × S2´+1 ×'S2´+3 1 = ³ < ´, ´ odd S1-bundle

0

S³ × S´ ×'S³+´+1 1 < ³ à ´

Both

S³ ×'S³+1 1 < ³ = ´

SU(3)/T 2 ×'S7

2 = ³ = ´Sp(2)/T 2 ×'S9

G2 /T 2 ×'S13

Sp(3)/Sp(1)3 ×'S13

4 = ³ = ´A4(4)×'S17

A6(4)×'S25

F4 /Spin(8)×'S25 8 = ³ = ´

TABLE 4.1. Properties of the homotopy fiber F and the bundles
S3± ³ L ³ B± associated with a double disk-bundle decomposi-
tion DB2 *L DB+

possible fundamental groups of F given in Table 4.1, it follows that Ã1(L) is either
Q8 or abelian. Considering the sphere bundle S3 ³ L ³ B corresponding to B,
it is clear that Ã1(B) is itself either Q8 or abelian. As dim(B) à 3, this implies B
is finitely covered by one of S1, S2, T 2, S3, S2 × S1, or T 3 (see, e.g., [2, Table 2,
p. 25]). In particular, by Lemma 4.5, M is rationally elliptic. w

As there are well-known classifications of simply connected, closed manifolds
in low dimensions, it is convenient to have a criterion which ensures there is a sin-
gular leaf in a double disk-bundle decomposition whose universal cover is closed.

Lemma 4.7. Suppose M is a smooth, closed, simply connected manifold which
admits a double disk-bundle decomposition DB2 *L DB+ with B± connected. Then,
rank(Ã1(L)) à 1 if and only if at least one of the singular leaves B± has finite funda-
mental group.
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Proof. Assume rank(Ã1(L)) à 1, and suppose Ã1(B±) are both infinite. The
long exact homotopy sequences for the bundles S3± ³ L ³ B± then yield

1 à rank(Ã1(B±)) à rank(Ã1(L)) à 1

and, hence, that Ã1(L) and its quotients Ã1(B±) are abelian of rank one. Further-
more, the images of the homomorphisms Ã1(S3±)³ Ã1(L) in the respective long
exact sequences are both finite and, hence, cannot together generate Ã1(L). Since
Ã1(M) = 0, this is a contradiction to equation (3.7) of [30].

Assume, on the other hand, there is some B * {B±} with Ã1(B) finite. Then,
since rank(Ã1(S3±)) à 1, the long exact homotopy sequences for S3± ³ L ³ B±
ensure rank(Ã1(L)) à 1, as desired. w

Recall that a topological space is said to be of finite type if it is weakly homo-
topy equivalent to a CW-complex with finitely many k-cells for each k. It turns
out that, for a nilpotent space X, being of finite type is equivalent to the integral
homology groups Hj(X) being finitely generated for all j á 1, and to the homo-
topy groups Ãj(X) being finitely generated for all j á 1 (see Theorem 4.5.2 in
[50]).

Lemma 4.8. Suppose X is a nilpotent space of finite type and p : X̄ ³ X is a
covering map. Then, X̄ is also a nilpotent space of finite type.

Proof. Recall that the map p induces an injection on fundamental groups and
an isomorphism on higher homotopy groups. In particular, by the discussion
immediately preceding the lemma, it thus suffices to show that X̄ is a nilpotent
space. As subgroups of nilpotent groups are nilpotent, the nilpotency of Ã1(X)

ensures that Ã1(X̄) g p7(Ã1(X̄)) ¦ Ã1(X) is nilpotent, while the isomorphisms
p7 : Ãk(X̄) ³ Ãk(X), k á 2, are, by definition, equivariant with respect to the
action of Ã1(X̄) (see [38, pp. 341–342]); that is,

p7(µ ·×) = p7(µ) · p7(×)

for all µ * Ã1(X̄) and all × * Ãk(X̄). It now follows easily from the nilpotency
of the space X that X̄ is nilpotent. w

This lemma finds a useful application in the context of double disk bundles.
Indeed, the regular leaf, after taking an appropriate cover, behaves, up to homo-
topy, like a closed manifold of possibly lower dimension. Recall that the maximal
free abelian cover N̄ of a closed, smooth, orientable manifold N with first Betti
number b1(N) is the total space of a principal Zb1(N)-bundle over N. Indeed, N̄ is
a smooth, orientable manifold, with finite fundamental group an extension of the
torsion subgroup ofH1(N) by the commutator subgroup ofÃ1(N), and the group
of deck transformations for the covering is Zb1(N). For example, the maximal free
abelian cover of a product Tk ×N is Rk ×N whenever Ã1(N) is finite.
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Proposition 4.9. Let M be a smooth, closed, simply connected manifold which
admits a double disk-bundle decomposition DB2 *L DB+ with B± connected. Then,
the maximal free abelian cover L̄ of L is a rational Poincaré-duality nilpotent space of
formal dimension dim(L)2 b1(L).

Proof. Recall from Theorem 4.4 that L is a nilpotent space. Now, being
a closed, smooth, codimension-one submanifold of a closed, simply connected
manifold, L must also be orientable (by [41, p. 107]) with Hj(L) finitely gener-
ated for all j á 1. Therefore, by [50, Theorem 4.5.2] and Lemma 4.8, the maxi-
mal free abelian cover L̄ of L is a smooth, orientable manifold which is nilpotent
and of finite type. In particular, dimQH7(L̄;Q) must be finite dimensional. It
now follows from Milnor-Barge duality (see [5], [52] and also [48, Theorem 5.2])
that there is an integral homology class [L̄] * HdimL2b1(L)(L̄) such that the cap
product

# [L̄] : Hj(L̄;Q)³ Hdim(L)2b1(L)2j(L̄ : Q)

is an isomorphism for all j á 0, as desired. w

Observe that, if F is the homotopy fiber of the inclusion L ³ M, it follows
from Table 4.1, the Hurewicz theorem, and the long exact homotopy sequence
for the homotopy fibration F ³ L ³ M that b1(L) = rank(Ã1(L)) à 2. In
other words, the maximal free abelian cover L̄ of the regular leaf L behaves on
the level of rational cohomology like a closed, simply connected manifold with
dim(L)2 2 à dim(L̄) à dim(L).

Just as it is convenient to know that the maximal free abelian cover of the
regular leaf L is nilpotent, it is often useful to have a criterion ensuring that a
singular leaf is a nilpotent space.

Lemma 4.10. Suppose S1 ³ L
Ã
----------------------------------------------³ B is a circle bundle such that the induced

homomorphism Ã1(S1)³ Ã1(L) is injective. If L is nilpotent, then so too is B.

Proof. From the long exact homotopy sequence for the bundle, it is clear that
the homomorphism Ã7 : Ã1(L) ³ Ã1(B) is surjective. Being the image of a
nilpotent group under a homomorphism, it follows that Ã1(B) is nilpotent.

Since Ã1(S1) injects into Ã1(L), the long exact homotopy sequence yields
isomorphisms Ã7 : Ãk(L)³ Ãk(B) for all k á 2.

For k á 2, let

Ãk(L) = G
k
0 Q Gk1 Q · · · Q Gkm = {1}

be the chain of subgroups associated with the abelian group Ãk(L) which witness
the nilpotency of the action of Ã1(L). Define subgroups Hkj = Ã7(G

k
j ) ¦ Ãk(B)

for j * {0, . . . ,m}. Since we know Ã7 is an isomorphism, it is clear that, for each
j * {1, . . . ,m}, Hj is normal in Hj21; that is,

Ãk(B) = H
k
0 Q Hk1 Q · · · Q Hkm = {1}.
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It remains to show that the action of Ã1(B) = Ã7(Ã1(L)) preserves each Hj
and induces a trivial action on each Hj21/Hj . By definition (see, e.g., [38, p. 341–
342]), it is clear that Ã7 : Ãk(L) ³ Ãk(B) is equivariant with respect to the action
of Ã1(L); that is,

Ã7(µ ·×) = Ã7(µ) ·Ã7(×)

for all µ * Ã1(L) and all × * Ãk(L). Since Ã1(B) = Ã7(Ã1(L)), it now clearly
follows that Hj is closed under the action of Ã1(B) for all j * {0, . . . ,m}.

Finally, if µ * Ã1(L) and × * Gj21, it follows from the nilpotency of the
Ã1(L) action that

Ã7(µ) ·Ã7(×) = Ã7(µ ·×) * Ã7(× ·Gj) = Ã7(×)Hj ,

and, hence, that Ã1(B) acts trivially on each Hj21/Hj . w

Recall now that the Lusternik-Schnirelmann category cat(Y) of a topological
space Y is defined to be the least integerm * N such that Y is the union ofm+1
open sets, each of which is contractible in Y . The rational Lusternik-Schnirelmann
category cat0(Y) of Y , on the other hand, is defined to be the minimal cat(Z)
among all Z which are rationally homotopy equivalent to Y .

The following theorem will be an important tool in the remainder of the
paper. Although our interest is restricted to the manifold case, the statement re-
mains true in the setting of double mapping cylinders (see [30]) as long as cat0(L)
is finite; in this way, it is a generalization of Lemma 6.3 of [30]. (See [11, Propo-
sition 2.7] for another related statement under different hypotheses.)

By Table 4.1, the homotopy fiber F of the inclusion map L ³ M always has
a loop-space factor of the form 'Sk for some k * N. Denote by s the degree of
the unique non-trivial rational homotopy group of 'Sk of even degree. That is,
s = k2 1, if k is odd, and s = 2(k2 1), if k is even.

Theorem 4.11. Suppose M is a smooth, closed, simply connected manifold which
admits a double disk-bundle decomposition DB2 *L DB+ with B± connected. Then,
in the long exact sequence of rational homotopy groups associated with the homotopy
fibration F ³ L ³ M, the connecting homomorphism " : ÃQs+1(M) ³ ÃQs (F) is
non-trivial.

Proof. Suppose the homomorphism " is trivial. In particular, it then follows

from the long exact sequence that the map ÃQs (F) ³ Ã
Q
s (L) is injective.

Consider now the space Ws21 in the Whitehead tower

· · · ³ W2 ³ W1 ³ W0 ³ F

associated with F , that is, an (s21)-connected space such that the mapWs21 ³ F
induces an isomorphism Ãj(Ws21) ³ Ãj(F) for every j á s. Therefore, by
Table 4.1, there are three possible configurations of non-trivial rational homotopy
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groups for Ws21. First, if 3± are even with 32 = 3+ and F cQ S32 ×'S32+1, then
Ã1(F) = 0 and

ÃQj (Ws21) =

{
Q2, j = s = 32,

Q, j = 232 2 1.

Second, if 3± are even and 32 b 3+, then F cQ S32×S3+×'S32+3++1, Ã1(F) = 0
and

ÃQj (Ws21) =

{
Q, j = s = 32 + 3+,

Q, j = 2 max{3±} 2 1 > s.

In all other cases, the only non-trivial rational homotopy group is

ÃQs (Ws21) = Q.

In all three scenarios, by computing the minimal model it becomes clear there
is an element x * Hs(Ws21;Q) b 0 such that xm b 0 for all m * N. In
particular, this implies Ws21 has cup-length cup(Ws21) = >. Moreover, from
Propositions 27.14 and 28.1 of [16] it now follows that

cat0(Ws21) á cup(Ws21) = >.

On the other hand, the composition Ws21 ³ F ³ L induces (by assumption)

an injection ÃQeven(Ws21) ³ ÃQeven(L), while the kernel of ÃQodd(Ws21) ³ ÃQodd(L)
has dimension » * {0,1}. By Theorem 4.4, L (and F) is nilpotent. Therefore,
the mapping theorem [18, Theorem 2.81] yields cat0(Ws21) à cat0(L) whenever
» = 0. By combining Propositions 27.2 and 27.5 and Lemma 28.2 of [16], it may
thus be concluded in the case » = 0 that

> = cat0(Ws21) à cat0(L) à cat(L) à n2 1 <>,

a contradiction.
Suppose, therefore, that » = 1, and hence, that ÃQodd(Ws21) b 0. Observe

first that the mapping theorem applied to the map Ws21 ³ F yields

> = cat0(Ws21) à cat0(F).

In the case where 3± are even with 32 = 3+ and F cQ S32 × 'S32+1, the
unique non-trivial rational homotopy group in even degrees is ÃQs (F) = Q2,

which, by assumption, injects into ÃQs (L). Therefore, ÃQeven(F) ³ ÃQeven(L) is
injective, while the kernel of

ÃQodd(F) = Ã
Q

23221(F) = Q ³ Ãodd
Q(L)
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is one dimensional (since » = 1). Hence, Theorem II of [15] implies

> = cat0(F) à cat0(L)+ 1 à n <>,

again a contradiction.
Finally, suppose 3± (and » = 1) are even with 32 b 3+, that is,

F cQ S
32 × S3+ ×'S32+3++1.

In particular, F has exactly five non-trivial rational homotopy groups, occurring
in degrees

min{3±} < max{3±}, 2 min{3±} 2 1 < s = 32 + 3+ < 2 max{3±} 2 1,

and each of rank 1. Therefore, the kernel of ÃQodd(F) = Q
2 ³ ÃQodd(L) has dimen-

sion * {1,2} (since » = 1). Moreover, as mentioned above, F , and hence L, are
simply connected. If ÃQeven(F) ³ ÃQeven(L) is injective, then Theorem II of [15]
yields a contradiction

> = cat0(F) à cat0(L)+ 1 à n+ 1 <>

as before. Therefore, given the assumption that ÃQs (F) ³ ÃQs (L) is injective, it

remains only to show that ÃQ3±(F) = Q ³ ÃQ3±(L) are injective. It clearly suffices
to show that these homomorphisms are non-trivial.

To this end, observe that the inclusion L³ M factors through the disk bundles
DB±, and that the inclusions L ³ DB± and DB± ³ M are homotopic to the
corresponding sphere-bundle projection maps L ³ B± and inclusions B± ³ M,

respectively. Therefore, the homomorphism ÃQ3±(L) ³ ÃQ3±(M) decomposes as a

composition ÃQ3±(L) ³ Ã
Q

3±
(B±)³ Ã

Q

3±
(M).

Now, if ÃQ3±(F) = Q ³ ÃQ3±(L) is trivial, then the long exact sequence for

F ³ L ³ M implies that ÃQ3±(L) ³ ÃQ3±(M) is injective, which, by the above

observations, further implies that ÃQ3±(L) ³ ÃQ3±(B±) is injective. However, since

cat0(S3±) = 2, Theorem II of [15] applied to the sphere bundle S3± ³ L ³ B±
reveals that ÃQ3±(S

3±) = Q ³ ÃQ3±(L) must be injective and, hence, by exactness,

that ker(ÃQ3±(L) ³ ÃQ3±(B±)) b 0, a contradiction. Thus, the homomorphisms

ÃQ3±(F) = Q ³ Ã
Q

3±
(L) must be non-trivial, as desired. w

As mentioned in the Introduction, it was shown in [26] that every homo-
topy 7-sphere admits a metric of non-negative curvature. Crucial to establishing
this fact was the observation that every homotopy 7-sphere admits a double disk-
bundle decomposition with 3± = 1. The following corollary shows that a similar
strategy to obtain non-negative curvature on exotic spheres in higher dimensions
will not work.
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Corollary 4.12. Suppose M is a homotopy sphere. Then, M admits a double
disk-bundle decomposition DB2 *L DB+ with B± connected and codim(B±) = 2 if
and only if it is either diffeomorphic to Sn, n * {2,3,4,5}, or homeomorphic to S7.

Proof. If M admits a double disk-bundle decomposition DB2 *L DB+ with
B± connected and codim(B±) = 2, that is, with 3± = 1, then Table 4.1 implies
that the corresponding homotopy fiber F of the inclusion L³ M has a factor 'Sk
with k * {3,5,7}. In the notation above, it follows that s * {2,4,6} and, by
Theorem 4.11, that M has a homotopy group of positive rank in one of degrees
3, 5 or 7. Since M is a homotopy sphere, it must therefore be of dimension
n * {2,3,4,5,7}. If 2 à n à 5, then M must be diffeomorphic to Sn. Indeed, if
n * {2,3,5}, this follows from the corresponding Smooth Poincaré Conjecture,
while for n = 4, it was established in [25].

On the other hand, the standard actions of S1 on S2 and T 2 on S3 are of
cohomogeneity one and have codimension-two singular orbits. Similar actions
on S4 and S5 can be found in [55] and [33], respectively. Finally, if n = 7, the
construction in [26] ensures that every homotopy 7-sphere admits a double disk-
bundle decomposition with 3± = 1. w

In Corollary 4.12, one still obtains the restriction dim(M) * {2,3,4,5,7} un-
der the weaker hypothesis that M is only a simply connected rational homotopy
sphere (see [13] for this and related observations). However, in this case much re-
mains unknown about which such M admit a double disk-bundle decomposition
with 3± = 1. Indeed, although it was demonstrated in [26] that a large family of
2-connected, rational 7-spheres admit such a structure, it was subsequently shown
in [27] that this family does not contain all possible homotopy types of such man-
ifolds: for example, the family does not contain any 2-connected 7-manifold M7

with H4(M7) = Z5 and non-standard linking form. In a forthcoming work, the
authors will detail general obstructions to the existence of any double disk-bundle
decomposition for highly connected, rational homology spheres, as well as for
more general spaces.

5. DOUBLE DISK BUNDLES IN DIMENSION AT MOST FIVE

As discussed in the Introduction, the smooth classification of simply connected
manifolds of dimension at most four admitting a double disk-bundle decompo-
sition is well known. Using this, the case of manifolds of dimension at most five
in Theorem A is then a simple consequence of the preliminary results obtained in
Section 4.

Theorem 5.1. Let M be a smooth, closed, simply connected manifold which ad-
mits a double disk-bundle decomposition. If dim(M) à 5, then M is rationally ellip-
tic. If dim(M) à 4, then M is diffeomorphic to one of S2, S3, S4, CP2, S2 × S2 or
CP2#±CP2.
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Proof. Since dim(M) à 5, Propositions 4.1 and 4.2 implyM admits a decom-
position DB2 *L DB+ with B± connected and dim(B±) à 3. By Proposition 4.6,
it now follows that M is rationally elliptic.

In dimensions 2 and 3, a smooth, closed, simply connected manifold must be
diffeomorphic to a sphere, whereas the four-dimensional statement was proven by
Ge and Radeschi [24]. w

To prove Theorem B, assume for the remainder of this section that M5 is a
smooth, closed, simply connected 5-manifold which admits a double disk-bundle
decomposition DB2 *L DB+ with B± connected. It was already shown in The-
orem 5.1 that such an M5 must be rationally elliptic. Recall that, according to
Pavlov [57], a five-dimensional, rationally elliptic manifold is rationally homo-
topy equivalent to either S5 or S3 × S2. The following lemma will be helpful
later.

Lemma 5.2. Under the identifications

H7(S2 × S2) g Z[x,y]/{x2 = y2 = 0},

H7(CP2#CP
2
) g Z[u,v]/{u2 + v2 = uv = 0},

every automorphism of H7(S2 × S2) maps {±x,±y} to itself, while every automor-

phism of H7(CP2#CP
2
) maps {±(u+ v),±(u2 v)} to itself.

Proof. In the case ofH7(S2×S2), notice that, for any ax+by * H2(S2×S2),
the identity (ax + by)2 = 2abxy holds. Thus, (ax + by)2 = 0 if and only

if either a = 0 or b = 0. On the other hand, in the case of H7(CP2#CP
2
),

(au + bv)2 = 0 if and only if a = ±b. It follows that the sets {±x,±y} and
{±(u + v),±(u 2 v)} characterize all primitive elements of degree two in their
respective rings which square to 0. Therefore, these two sets are fixed by any
automorphism of their respective cohomology rings. w

Theorem B can now be proven by considering the two possible rational ho-
motopy types of a rationally elliptic 5-manifold separately.

Theorem 5.3. Suppose M5 is a smooth, closed, simply connected 5-manifold
which is rationally homotopy equivalent to S5. If M5 admits a double disk-bundle de-
composition, thenM5 is diffeomorphic to either S5 or the Wu manifold SU(3)/SO(3).

Proof. By the Barden-Smale classification of smooth, closed, simply connected
5-manifolds [4, 65], it suffices to show that H2(M5) is either trivial or Z2. By the
Hurewicz theorem and Poincaré duality, this is equivalent to establishing the same
for either Ã2(M5) or H3(M5). AsM5 cQ S

5, by hypothesis, it is already clear that
Ã2(M5) and H3(M5) are at most torsion.

Let DB2 *L DB+ be a double disk-bundle decomposition of M5, with B±
connected, and let F be the homotopy fiber of the inclusion L³ M5. Since M5 is
rationally homotopy equivalent to S5, Theorem 4.11 implies that the loop-space
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factor of F must have non-trivial rational Ã4 and, hence, the loop-space factor
must be 'S5. It follows from Table 4.1 that Ã1(F) b Z2 and, therefore, that
rank(Ã1(F)) à 1. Thus, by Lemma 4.7, a singular leaf B * {B±} must have
finite fundamental group. By Proposition 4.2, dim(B) à 3 and, therefore, B is
finitely covered by either S2 or S3. In particular, this implies that Ã2(B) is either
trivial or isomorphic to Z. The long exact homotopy sequence for the fibration
S3 ³ L³ B, where 1 à 3 à 4, now yields that Ã2(L) is free abelian.

Consider then the long exact homotopy sequence for the homotopy fibration

F ³ L³ M5. Assume first that ÃQ2 (F) = 0, that is, that Ã2(F) is at most tor-
sion, and suppose that Ã2(M5) b 0, that is, that M5 6g S5. Since Ã2(L) is free
abelian, it follows that Ã2(L) = 0 and, hence, that the torsion group Ã2(M5) in-
jects into Ã1(F). However, by Table 4.1, Ã1(F) contains a torsion subgroup only
if Ã1(F) * {Q8,Z·Z2}. Since the loop-space factor of F is 'S5, Table 4.1 implies
that Ã1(F) = Q8 is impossible. Therefore, Ã1(F) = Z · Z2 and the only possi-
bility is that Ã2(M5) = Z2, that is, that M5 is diffeomorphic to the Wu manifold
SU(3)/SO(3).

Assume, on the other hand, that ÃQ2 (F) b 0. As the loop-space factor of
F is 'S5, it follows from Table 4.1 that Ã1(F) = 0, F cQ S2 × S2 × 'S5 and
codim(B±) = 3. The long exact homotopy sequences for F ³ L ³ M5 and
S2 ³ L ³ B± yield, in addition, that Ã1(L) = Ã1(B±) = 0. Therefore, B± g S2

and L is an S2-bundle over S2. Thus, L is diffeomorphic to either S2 × S2 or the

non-trivial bundle CP2#CP
2
.

Since M5 is simply connected and has the same rational cohomology as S5, it
follows from the Universal Coefficient Theorem that H2(M5) = 0. The Mayer-
Vietoris sequence for the decomposition DB2 *L DB+ now yields the short exact
sequence

0 -³ H2(B2)·H
2(B+)

Ã722Ã
7
+

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------³H2(L) -³ H3(M5) -³ 0,

where Ã± : L ³ B± are the sphere-bundle projection maps. In particular, the ho-
momorphism Ã722Ã

7
+ : H2(B2)·H2(B+)³ H2(L)must be injective. Therefore,

the images Ã7± (z±) * H
2(L) of generators z± * H2(B±) cannot differ by a sign,

since, otherwise, there is an · * {±1} such that (Ã72 2Ã
7
+ )(z2, ·z+) = 0.

Now, from the Gysin sequences for S2 ³ L
Ã±
---------------------------------------------------------------------³ B±, we see that the images

Ã7± (z±) * H
2(L) are primitive elements which must necessarily square to zero.

Thus, by Lemma 5.2, together with the above observationÃ72 (z2) b ±Ã
7
+ (z+), it

follows there exist ·1, ·2 * {±1} such that {Ã72 (z2),Ã
7
+ (z+)} is equal (as a set) to

either {·1x, ·2y} or {·1(u+v), ·2(u2v)}, depending on whether the bundle L is
trivial or not. In turn, this implies the map Ã72 2Ã

7
+ : H2(B2)·H2(B+)³ H2(L)

is surjective whenever L g S2×S2, and of index 2 whenever L g CP2#CP
2
. Finally,

as desired, this implies either H3(M5) = 0 or H3(M5) = Z2. w
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To complete the proof of Theorem B, it remains only to deal with the case of
manifolds rationally homotopy equivalent to S3 × S2.

Theorem 5.4. Suppose M5 is a smooth, closed, simply connected 5-manifold
which is rationally homotopy equivalent to S3 × S2. If M5 admits a double disk-
bundle decomposition, thenM5 is diffeomorphic to S3×S2 or to the unique non-trivial
S3-bundle over S2.

Proof. As in the proof of Theorem 5.3, the proof appeals to the Barden-Smale
classification of closed, simply connected 5-manifolds [4, 65]. In particular, it is
sufficient to show that Ã2(M5) g H2(M5) g H3(M5) g Z.

To begin, let DB2 *L DB+ be a double disk-bundle decomposition of M5,
with B± connected, and let F be the homotopy fiber of the inclusion L ³ M5. By

hypothesis, ÃQ2 (M
5) = Q and ÃQ3 (M

5) = Q2. As ÃQ3 (M
5) is the only odd-degree

rational homotopy group ofM5 which is non-trivial, it follows from Theorem 4.11
that the loop-space factor of F must have non-trivial rational Ã2. Thus, by Table
4.1, F is rationally homotopy equivalent to one of S1 × S1 ×'S3 or S2 ×'S3.

Suppose F is rationally homotopy equivalent to S1×S1×'S3. From Table 4.1,

this implies that Ã1(F) = Z2 and ÃQ2 (F) = Q, and that L is an S1-bundle over
each of the closed 3-manifolds B±. From the long exact homotopy sequences for
F ³ L³ M5 and S1 ³ L ³ B±, it is now apparent that Ã1(L) and Ã1(B±) are
abelian. As in the proof of Proposition 4.6, this implies each of B± is finitely
covered by one of S3, S2 × S1 or T 3. In particular, it follows that Ã2(B±) is free
abelian. Therefore, from the long exact homotopy sequence for S1 ³ L³ B±, it is
now clear that Ã2(L) must also be free abelian. However, given that Ã1(F) = Z2,
applying this fact to the long exact homotopy sequence for F ³ L ³ M5 yields
that Ã2(M5) is free abelian. Since rank(Ã2(M5)) = 1, it may be concluded that
Ã2(M5) = Z, as desired.

Assume now F is rationally homotopy equivalent to S2×'S3. From Table 4.1,
this implies that Ã1(F) = 0 and that L is an S2-bundle over each of the closed
2-manifolds B±. The long exact homotopy sequences for F ³ L ³ M5 and
S1 ³ L ³ B± yield Ã1(L) = Ã1(B±) = 0. Therefore, B± g S2 and, hence, L is

diffeomorphic to either S2 × S2 or CP2#CP
2
.

If z± * H2(B±) are generators, then the Gysin sequences for S2 ³ L
Ã±
---------------------------------------------------------------------³ B±

yield that their images Ã7± (z±) * H
2(L) are primitive elements which must nec-

essarily square to zero. Therefore, by Lemma 5.2, Ã7± (z±) lie in either {±x,±y}
or {±(u+ v),±(u2 v)}, depending on whether the bundle L is trivial or not.

Now, since M5 is simply connected and has the same rational cohomology
as S3 × S2, the Universal Coefficient Theorem yields H2(M5) = Z. The Mayer-
Vietoris sequence for the decomposition DB2*LDB+ therefore provides the exact
sequence

0 -³ H2(M5) -³ H2(B2)·H
2(B+)

Ã722Ã
7
+

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------³H2(L) -³ H3(M5) -³ 0.
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In particular, the homomorphism Ã72 2Ã
7
+ : H2(B2)·H2(B+)³ H2(L) has ker-

nel isomorphic to H2(M5) = Z, and hence, some linear combination of Ã7± (z±)
must be trivial. However, by the above observations about these elements, this is
impossible unless Ã7± (z±) agree up to sign. Therefore, in either case,

H3(M5) g H2(L)/〈Ã72 (z2),Ã
7
+ (z+)〉 g H

2(L)/〈Ã72 (z2)〉 g Z,

as desired. w

6. DOUBLE DISK BUNDLES IN DIMENSION 6

As mentioned in the Introduction, there exist closed, simply connected, smooth
six-dimensional counter-examples to the rational ellipticity of double disk bun-
dles. The main goals of this section are to establish Theorem A in dimension six
and Theorem D.

Throughout this section, M6 will denote a smooth, closed, simply connected
6-manifold which admits a double disk-bundle decomposition DB2*LDB+ with
B± connected.

As a consequence of Proposition 4.6, M6 is rationally elliptic whenever one of
B± is of codimension á 3. Therefore, only the case of codimension-two singular
leaves B± needs to be considered in what follows. In this case, Table 4.1 yields that
the homotopy fiber F of the inclusion L³ M6 has Ã1(F) * {Q8,Z· Z2,Z2}.

Lemma 6.1. Suppose the singular leaves B± in the double disk-bundle decompo-
sition of M6 are both of codimension two and that some B * {B±} has finite funda-
mental group. Then,

rank(Ã1(F))+ rank(Ã2(B)) = b2(M
6)+ 1.

Proof. Since the fundamental group Ã1(B) is finite, the universal cover B̃ of B
is a smooth, closed, simply connected 4-manifold which satisfies Poincaré duality
and has Ãj(B̃) = Ãj(B) for all j á 2. Together with the Hurewicz and Universal
Coefficient theorems, it may thus be concluded that H2(B̃) g Ã2(B̃) = Ã2(B) is
free abelian.

From the long exact homotopy sequence for the fibration S1 ³ L ³ B, it
follows that Ã2(L) is also free abelian and

(6.1) rank(Ã2(B)) = rank(Ã2(L))2 rank(Ã1(L))+ 1.

By Table 4.1, there is a unique j0 * N, such that Ã2j0(F) is of positive rank
(= 1). If Ã1(F) * {Q8,Z · Z2}, then rank(Ã2(F)) = 0, while rank(Ã2(F)) = 1
whenever Ã1(F) = Z2. In this latter case, Table 4.1 yields that F is rationally ho-
motopy equivalent to S1×S1×'S3. Therefore, as a consequence of Theorem 4.11,
the image of the homomorphism Ã2(F) ³ Ã2(L) in the long exact sequence for
the homotopy fibration F ³ L ³ M6 has rank 0. In other words, the free abelian
group Ã2(L) must inject into Ã2(M6).
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It now follows from exactness and the Hurewicz theorem that, in all three
cases,

(6.2) rank(Ã1(F)) = b2(M
6)2 rank(Ã2(L))+ rank(Ã1(L)).

By equations (6.1) and (6.2) together, rank(Ã1(F))+ rank(Ã2(B)) = b2(M6)+ 1,
as desired. w

Theorem 6.2. Suppose that the singular leaves B± in the double disk-bundle
decomposition of M6 are both of codimension two and that at least one of the bundles
S1 ³ L ³ B± is non-orientable. Then, M6 is rationally elliptic with b2(M6) à 2.

Proof. Observe first that, by Table 4.1, the hypothesis that at least one of the
bundles S1 ³ L ³ B± is non-orientable is equivalent to Ã1(F) being either Q8 or
Z· Z2. Therefore, by Lemma 4.7, some B * {B±} has finite fundamental group.
By Lemma 6.1, if b2(M6) 2 rank(Ã1(F)) à 1, then rank(Ã2(B)) à 2. In this
case, the Hurewicz and Universal Coefficient theorems ensure that the universal
cover B̃ of B has H2(B̃) = Ã2(B̃) = Ã2(B) free abelian of rank at most 2. From
the classification of smooth, closed, simply connected 4-manifolds [20], it now
follows that B̃ is homeomorphic to one of S4, CP2, S2 × S2 or CP2# ± CP2 and,
hence, rationally elliptic. As Ãj(B̃) = Ãj(B) for all j á 2, the rational ellipticity
of M6 now follows from Lemma 4.5.

It remains, therefore, to show that the inequality

b2(M
6)2 rank(Ã1(F)) > 1

is not possible under the present hypotheses. To this end, note that the integral
homology of F has been determined in Table 1.5 of [30]. It is a simple application
of the Universal Coefficient Theorem to compute the rational cohomology groups
of F , namely,

Hj(F ;Q) =

ù
üüú
üüû

Q, j = 0,

Q2, j > 0 and j c 0 mod 3,

0, otherwise

(6.3)

if Ã1(F) = Q8,

Hj(F ;Q) =

ù
üüú
üüû

Q, j = 0 or j odd,

Q2, j > 0 and j c 0 mod 4,

0, otherwise

(6.4)

if Ã1(F) = Z· Z2.

Consider the rational Serre spectral sequence (Ej , dj) associated with the ho-

motopy fibration F ³ L ³ M6. In particular, H5(L;Q) =
⊕

k+l=5 E
k,l
> . On
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the other hand, as L is a codimension-1 submanifold of the closed, simply con-
nected 6-manifold M6, it is orientable and, hence, has H5(L;Q) = Q (see, e.g.,
[41, p. 107]). These facts will place restrictions on the Betti numbers of M6. For

convenience, denote by dk,lj the differential dj : Ek,lj ³ E
k+j,l+12j
j and by &5

j the

diagonal {Ek,lj | k+ l = 5} on the Ej-page of (Ej , dj).

If Ã1(F) = Q8, the only non-trivial entry on the diagonal &5
2 is

E
2,3
2 = H2(M6;H3(F ;Q)) = H2(M6;Q2) = Q2b2(M6).

Since we have that d2,3
4 = (d4 : E2,3

4 = E
2,3
2 ³ E

6,0
4 = Q) is the only possible non-

trivial differential on any page which involves E2,3
2 , it follows thatQ = H5(L;Q) =

ker(d2,3
4 ) ¦ Q2b2(M6). However, since rank(d2,3

4 ) à 1, one concludes that

2b2(M
6)2 1 à 2b2(M

6)2 rank(d2,3
4 ) = dim(ker(d2,3

4 )) = 1 à 2b2(M
6),

which immediately yields b2(M6)2 rank(Ã1(F)) = b2(M6) = 1.
Suppose now that Ã1(F) = Z · Z2. The non-trivial entries on the diagonal

&5
2 consist of E0,5

2 = Q, E2,3
2 = Qb2(M6) and E4,1

2 = Qb2(M6). By considering
all possible differentials which have these entries as either domain or range, one

obtains that the contribution of E0,5
2 to H5(L;Q) = Q has rank

12 rank(d0,5
2 )2 rank(d0,5

3 )2 rank(d0,5
6 ),

while the contribution of E2,3
2 has rank

b2(M
6)2 rank(d0,4

2 )2 rank(d2,3
4 ),

and E4,1
2 contributes rank

b2(M
6)2 rank(d4,1

2 )2 rank(d0,4
4 ).

Therefore, the rank of H5(L;Q) = Q is given by

1 = (12 rank(d0,5
2 )2 rank(d0,5

3 )2 rank(d0,5
6 ))

+ (b2(M
6)2 rank(d0,4

2 )2 rank(d2,3
4 ))

+ (b2(M
6)2 rank(d4,1

2 )2 rank(d0,4
4 ))

= 1+ 2b2(M
6)2 (rank(d0,5

2 )+ rank(d0,5
3 )+ rank(d0,5

6 ))

2 (rank(d0,4
2 )+ rank(d0,4

4 ))

2 (rank(d4,1
2 )+ rank(d2,3

4 )).
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Now, since E0,4
2 = Q2, E0,5

2 = Q and E6,0
2 = Q, this implies

1 á 2b2(M
6)+ 12 12 22 1 = 2b2(M

6)2 3,

which immediately yields b2(M6) à 2, hence, b2(M6)2 rank(Ã1(F)) à 1. w

As a consequence of Theorem 6.2, one can make the following additional
general observation, which may be useful in its own right.

Corollary 6.3. Suppose that the singular leaves B± in the double disk-bundle
decomposition of M6 are both of codimension two and that b2(M6) á 3. Then, both
of the bundles S1 ³ L³ B± are orientable.

In the case where each singular leaf is of codimension two and has infinite fun-
damental group, a classification up to diffeomorphism is achieved. In particular,
one may obtain a decomposition of S3 × S3 of this form (with singular leaves dif-
feomorphic to S1×S3) via the well-known decomposition of one of the S3 factors
into two solid tori.

Theorem 6.4. Suppose that the singular leaves B± in the double disk-bundle
decomposition of M6 are both of codimension two, with rank(Ã1(B±)) á 1. Then,
M6 is diffeomorphic to S3 × S3 and, hence, rationally elliptic.

Proof. Since B± have infinite fundamental groups, Lemma 4.7, together with
Table 4.1, implies that Ã1(F) = Ã1(L) = Z2. Furthermore, recall that, since
Ã1(M6) = 0, equation (3.7) of [30] implies that Ã1(L) is generated by the images
of the homomorphisms Ã1(S1) ³ Ã1(L) in the long exact homotopy sequences
for the bundles S1 ³ L ³ B±. Therefore, Ã1(B±) = Z and Ã2(L) = Ã2(B±). By
applying the Hurewicz and Universal Coefficient theorems, it follows in addition
that H2(B±) is free abelian.

By Table 4.1, the circle bundles S1 ³ L ³ B± are orientable. Thus, by Propo-
sition 6.15 of [53], these are principal S1-bundles and, therefore, are determined
by their Euler classes e± * H2(B±). Moreover, as M6 is simply connected, the
regular leaf L is also orientable. Altogether, this implies that the 4-manifolds B±
are orientable and, in particular, satisfy Poincaré duality.

By Theorem 4.3, the bundles S1 ³ L ³ B± are trivial, that is, L g S1 × B±
and e± = 0. The respective Gysin sequences then yield, in addition, that H2(L) =

Zb2(B±)+1; in particular, this implies b2(B2) = b2(B+).
By Proposition 4.9, the maximal free abelian cover L̄ of L satisfies

H7(L̄;Q) g H7(S3;Q).

Since Ã2(L) = Ã2(B±), it thus follows from the rational Hurewicz theorem that

rank(Ã2(B±)) = rank(Ã2(L)) = rank(Ã2(L̄)) = b2(L̄) = 0.
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Therefore, by Lemma 4.10, B± are nilpotent spaces with ÃQ1 (B±) = Q and

ÃQ2 (B±) = 0. From their minimal models, it follows that b2(B±) = 0 and, being
free abelian, that H2(B±) = 0.

The Mayer-Vietoris sequence corresponding to the double disk-bundle de-
composition of M6 now yields

0³ H1(B2)·H
1(B+) = Z

2 ³ H1(L) = Z2 ³ H2(M6) = Zb2(M6) ³ 0.

Since H2(M6) is free abelian, the injectionH1(B2)·H1(B+) = Z2 ³ H1(L) = Z2

is an isomorphism, from which one concludes that H2(M6) = 0. Furthermore,
from

0³ H2(L) = Z³ H3(M6)³ H3(B2)·H
3(B+) = Z

2 ³ ·· · ,

it is clear that H3(M6) is free abelian of rank 0 < b3(M6) à 3. However, being a
6-manifold, b3(M6) must be even. Therefore, H3(M6) = Z2 and, from the clas-
sification of closed, simply connected smooth 6-manifolds [44, 70, 71], it follows
that M6 is diffeomorphic to S3 × S3. w

All the ingredients necessary to prove Theorem A in dimension six are now in
place.

Theorem 6.5. Let M6 be a closed, smooth, simply connected 6-manifold with
second Betti number b2(M6) à 3 which admits a double disk-bundle decomposition.
Then, M6 is rationally elliptic.

Proof. By Proposition 4.6, it suffices to consider singular leaves B± of codi-
mension two. Suppose there is some B * {B±} with finite fundamental group.
If both of the bundles S1 ³ L ³ B± are orientable, that is, if Ã1(F) = Z2,
then, by Lemma 6.1 together with the hypothesis b2(M6) à 3, it is clear that
rank(Ã2(B)) = b2(M6) 2 1 à 2. As in the proof of Theorem 6.2, it follows that
M6 is rationally elliptic. All remaining cases have been dealt with in Theorems 6.2
and 6.4, thus completing the proof. w

Remark 6.6. Notice that the hypothesis b2(M6) à 3 has been used in only
one scenario, namely, in the case where the singular leaves B± are of codimen-
sion 2, at least one of Ã1(B±) is finite, and the bundles S1 ³ L ³ B± are both
orientable, that is, Ã1(F) = Z2 by Table 4.1. In all other cases, assuming only
that M6 admits a double disk-bundle decomposition ensures that M6 is rationally
elliptic.

In light of Theorem 6.4, it is tempting to seek a classification up to diffeo-
morphism of rationally elliptic 6-manifolds which admit a double disk-bundle
decomposition. However, as suggested by the work in [40], such a classification
seems out of reach at present. Nevertheless, imposing further restrictions on the
Betti numbers allows one to make some progress.
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Theorem 6.7. Let M6 be a closed, smooth, simply connected 6-manifold with
H7(M6;Q) = H7(S6;Q) which admits a double disk-bundle decomposition. Then,
M6 is diffeomorphic to S6.

Proof. By Smale’s resolution of the Generalized Poincáre Conjecture [64], it
suffices to show that M6 is an integral (co)homology sphere. Since M6 is simply
connected, it is clear from the Universal Coefficient Theorem and Poincaré duality
that Hj(M6) = 0, for j * {1,2,5}, and that H3(M6) g H4(M6). Therefore, it is
enough to show that the torsion group H3(M6) g H4(M6) is trivial.

By Theorem 6.5, M6 is rationally elliptic. Thus, by the rational Hurewicz
theorem and the relations (2.1), (2.2), the only non-trivial rational homotopy

groups of M6 are ÃQ6 (M
6) = Q and ÃQ11(M

6) = Q. From Theorem 4.11, it
now follows that the homotopy fiber F of the inclusion L ³ M6 has a loop-space
factor 'S6 or 'S11. From Table 4.1, together with the fact that 1 à 3± à 5, this
implies that F is rationally homotopy equivalent to S32 × S3+ ×'S32+3++1, with
{3±} = {1,4} or {2,3}, or else to S5 × S5 ×'S11 cQ S

5 ×'S6, with 3± = 5.
Observe, however, that 3± = 5 implies that the singular leaves B± are points

and, hence, that M6 is the union of two six-dimensional disks. Consequently, in
this case M6 is homeomorphic and, thus, diffeomorphic to S6.

Suppose, on the other hand, that {3±} = {1,4}. From Table 4.1 it fol-
lows that Ã1(F) = Z, while the Hurewicz theorem and Poincaré duality ensure
that Ã2(M6) g H2(M6) g H4(M6) is torsion. Therefore, the homomorphism
Ã2(L) ³ Ã2(M6) in the long exact homotopy sequence for F ³ L ³ M6 must be
surjective. On the other hand, since one of the singular leaves B± is a connected,
codimension-five submanifold of M6, the regular leaf L is an S4-bundle over S1.
In particular, the long exact homotopy sequence for this bundle yields Ã2(L) = 0
and, hence, H4(M6) g Ã2(M6) = 0, as desired.

Suppose, finally, that {3±} = {2,3}. By Table 4.1, Ã1(F) = 0 and the bundles
S3± ³ L ³ B± are both orientable. It follows from the long exact homotopy se-
quence for F ³ L³ M6 thatÃ1(L) = 0, while the long exact homotopy sequences
for S3± ³ L ³ B± yield Ã1(B±) = 0. Since {3±} = {2,3}, the classification
of surfaces and Perelman’s resolution of the Poincaré conjecture [58–60] imply
{B±} = {S2,S3}. Hence, L is the total space of orientable bundles S3 ³ L ³ S2

and S2 ³ L ³ S3. In particular, from the Gysin sequence for S3 ³ L ³ S2,
the regular leaf L has the same cohomology as S3 × S2, and the bundle projection
induces an isomorphism H2(S2)³ H2(L). Since {B±} = {S2,S3} and H3(M6) is
torsion, applying this observation to the Mayer-Vietoris sequence for the decom-
position DB2 *L DB+ of M6 now yields

H2(M6) = 0³ H2(B2)·H
2(B+) = Z

g
------------------------------------------³H2(L) = Z³ H3(M6)³ 0,

from which it follows that H3(M6) = 0, as desired. w
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Recall that Wall’s Splitting Theorem [70] implies every closed, smooth, sim-
ply connected 6-manifold M6 splits as a connected sum M6

0 #M6
1 , where M6

0 has
finite H3(M6

0 ) and M6
1 is a connected sum of b3(M6)/2 copies of S3 × S3. As a

consequence of the following theorem, if such a manifold is rationally hyperbolic
and admits a double disk-bundle decomposition, then b3(M6) = 0.

Theorem 6.8. Let M6 be a closed, smooth, simply connected 6-manifold with
b3(M6) b 0 which admits a double disk-bundle decomposition. Then, M6 is diffeo-
morphic to S3 × S3.

Proof. Suppose first that M6 is rationally hyperbolic. By Theorem 6.5 and
Remark 6.6, this is possible only if the singular leaves B± are both of codimension
two, at least one of Ã1(B±) is finite, the bundles S1 ³ L³ B± are both orientable,
and Ã1(F) = Z2. By [41, p. 107], L is orientable and, therefore, so too are B±. As
such, B± both satisfy Poincaré duality and, hence, b1(B±) = b3(B±).

Now, recall that, by excision and the Poincaré-Lefschetz duality, there are iso-
morphisms Hj(M6,DB±) g Hj(DB3, L) g H62j(B3) for all j á 0. Therefore,
from the portion

· · · ³ H3(M6,DB±)³ H
3(M6)³ H3(B±)³ ·· ·

of the long exact sequence for the pair (M6,DB±), it follows that

b3(M
6) à b1(B2)+ b1(B+) à 1,

where the final inequality follows from Lemma 4.7 and the long exact homotopy
sequences for S1 ³ L³ B±. However, since b3(M6) must be even, one concludes
that b3(M6) = 0, a contradiction.

Assume, therefore, that M6 is rationally elliptic. Since b3(M6) b 0, by the
work of Pavlov [57] (see also [40]), M6 must be rationally homotopy equivalent
to S3 × S3. In particular, rank(Ã2(M6)) = 0 and the only non-trivial rational

homotopy group is ÃQ3 (M
6) = Q2. By Theorem 4.11, the homotopy fiber F of

the inclusion L ³ M6 has a loop-space factor 'S2 or 'S3. By Table 4.1, only
'S3 is possible and there are only two possible scenarios: either 3± = 1 and
Ã1(F) = Z2, or else 3± = 2, Ã1(F) = 0 and F cQ S2 ×'S3.

Suppose 3± = 1 and Ã1(F) = Z2. Since rank(Ã2(M6)) = 0, the long exact
homotopy sequence for F ³ L ³ M6 yields that Ã1(L) = Ã1(F) = Z2. Applying
equation (3.7) of [30] to the long exact homotopy sequences for S1 ³ L ³ B±
now yields that Ã1(B±) = Z. By Theorem 6.4, it follows that M6 is diffeomorphic
to S3 × S3.

Suppose, on the other hand, that 3± = 2, Ã1(F) = 0 and F cQ S2 × 'S3.
By Table 4.1, the bundles S2 ³ L ³ B± are both orientable, and it follows from
the long exact homotopy sequences for F ³ L ³ M6 and S3± ³ L ³ B± that
Ã1(B±) = Ã1(L) = 0. Being closed, simply connected 3-manifolds, it follows
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from Perelman’s resolution of the Poincaré Conjecture [58–60] that B± = S3.
Therefore, by the Gysin sequence, L has the integral cohomology of S3 × S2. The
Mayer-Vietoris sequence for the decomposition DB2 *L DB+ of M6 now gives

H2(B2)·H
2(B+) =

= 0³ H2(L) = Z³ H3(M6)³ H2(B2)·H
2(B+) = Z

2 ³ ·· · .

Therefore, by exactness, H3(M6) is free abelian, that is, H3(M6) = Z2. Since
H7(M6;Q) = H7(S3×S3;Q), it follows from the Universal Coefficient Theorem
and Poincaré duality that M6 is an integral cohomology S3 × S3. By the classifica-
tion of closed, smooth, simply connected 6-manifolds [44, 70, 71], it follows that
M6 is diffeomorphic to S3 × S3. w

Theorems 6.7 and 6.8 together give a characterization of all six-dimensional
double disk bundles with vanishing second Betti number.

Corollary 6.9. Let M6 be a closed, smooth, simply connected 6-manifold with
b2(M6) = 0 which admits a double disk-bundle decomposition. Then, M6 is diffeo-
morphic to either S6 or S3 × S3.

Proof. By the Poincaré duality, the only possible non-trivial Betti number is
b3(M6). The result now follows easily from Theorems 6.7 and 6.8. w

7. DOUBLE DISK BUNDLES IN DIMENSION 7

In this section, Theorem A will be proven in dimension seven via a careful analysis
of all possible cases. Throughout, M7 will denote a smooth, closed, simply con-
nected 7-manifold which admits a double disk-bundle decomposition DB2 *L
DB+ with B± connected. As before, let F denote the homotopy fiber of the inclu-
sion L³ M7.

By Proposition 4.6, M7 is rationally elliptic whenever one of B± is of codi-
mension á 4. Therefore, together with Proposition 4.2, it may be assumed that
the fibers of the bundles S3± ³ L³ B± satisfy 1 à 3± à 2.

Theorem 7.1. If the bundles S3± ³ L ³ B± are both non-orientable, then M7 is
rationally elliptic.

Proof. By Table 4.1, the hypothesis is equivalent to taking 3± = 1, Ã1(F) =
Q8 and F to be rationally homotopy equivalent to S3 × S3 ×'S7. From the long
exact homotopy sequence for F ³ L ³ M7, this implies, in particular, that Ã1(L)
is finite.

Now, consider the Serre spectral sequence (Ej , dj) that is associated with
F ³ L ³ M7, where the rational cohomology of F is given by (6.3), (6.4). In

particular, no non-trivial differential can hit either E5,0
2 = H5(M7;Q) g Qb2(M)

or E2,3
2 = H2(M7;Q) ·H3(F ;Q) g Q2b2(M7). Thus, these entries survive to the

E>-page and, being the only non-trivial entries on the diagonal {Ek,l2 | k+ l = 5},
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it follows that H5(L;Q) =
⊕

k+l=5 E
k,l
> g Q3b2(M7). On the other hand, as L is a

codimension-one submanifold of the closed, simply connected manifold M7, it is
orientable by [41, p. 107]. Thus, L satisfies Poincaré duality and, since Ã1(L) is
finite, it follows that H5(L;Q) = 0. Hence, b2(M7) = 0.

Consequently, all entries on the diagonal {Ek,l2 | k + l = 2} are trivial,
which in turn implies that H2(L;Q) = 0. By Poincaré duality, it now follows
that H4(L;Q) = 0. Therefore, in the spectral sequence (Ej , dj), the differen-

tial d0,3
4 : E0,3

4 g H3(F ;Q) = Q2 ³ E
4,0
4 g H4(M7;Q) = Qb4(M7) must be

surjective, so b4(M7) = 2 2 dim(kerd0,3
4 ). On the other hand, the only non-

trivial entries on the diagonal {Ek,l5 | k + l = 3} are E0,3
5 g Qdim(kerd0,3

4 ) and

E
3,0
5 g H3(M7;Q) = Qb3(M7), and both of these survive to the E>-page. There-

fore, H3(L;Q) = Qb3(M7)+dim(kerd0,3
4 ). However, by Poincaré duality, b3(M7) =

b4(M7), and hence,

b3(L) = b3(M
7)+ dim(kerd0,3

4 ) = b4(M
7)+ dim(kerd0,3

4 ) = 2.

Altogether, these observations imply H7(L;Q) = H7(S3 × S3;Q). Since L is
nilpotent, by Theorem 1.3 of [30], and Ã1(L) is finite, it has a (simply connected)
minimal model. Moreover, since a product of spheres is intrinsically formal, it

follows that L cQ S3 × S3. This implies, in particular, that ÃQj (L) = 0 for all

j á 4. By Lemma 4.5, it now follows that M7 is rationally elliptic. w

Remark 7.2. Notice that in Theorem 7.1 there were no restrictions placed on
b2(M7). Together with Theorem 6.2 and Theorem 5.1, it follows that a closed,
smooth, simply connected manifold of dimension à 7 that admits a double disk-
bundle decomposition DB2*LDB+ for which both of the bundles S3± ³ L³ B±
(equivalently, both of B±) are non-orientable must be rationally elliptic. This
result is false in all dimensions á 8. To see this, first observe that S4 admits a well-
known SO(3) action of cohomogeneity one, with singular orbits diffeomorphic
to RP2. Furthermore, in every dimension á 4, there exist infinitely many closed,
smooth, simply connected, rationally hyperbolic manifolds. If N is one such man-
ifold, it now follows from Proposition 3.1 (d) that the closed, smooth, simply
connected, rationally hyperbolic manifold S4 × N admits a double disk-bundle
decomposition with non-orientable singular leaves diffeomorphic to RP2 ×N.

As a consequence of the standard decomposition of S3 into a union of two
solid tori, for every closed, simply connected, smooth 4-manifold X4 there is a
double disk-bundle decomposition induced on the product M7 = X4 × S3 such
that the bundles S1 ³ L³ B± are both orientable. In particular, if X4 is rationally
hyperbolic, then so too isM7. Moreover, as b2(#

n
k=1CP

2) = n, there are rationally
hyperbolic manifoldsM7 = X4×S3 achieving every possible b2(M7) á 3. If one is
interested in rational ellipticity in the case that both circle bundles are orientable,
it turns out that b2(M7) is the only obstruction.
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Theorem 7.3. Suppose that the singular leaves B± are both of codimension two
and that the bundles S1 ³ L ³ B± are both orientable. If b2(M7) à 2, then M7 is
rationally elliptic.

Proof. By Table 4.1, the hypotheses are equivalent to letting Ã1(F) = Z2.
Therefore, F is rationally homotopy equivalent to S1 × S1 ×'S3.

The long exact homotopy sequence for the homotopy fibration F ³ L ³ M7

yields

. . .³ Ã3(M
7) ³ Ã2(F) ³ Ã2(L)(7.1)

³ Ã2(M
7)³ Ã1(F)³ Ã1(L) ³ 0,

from which it is clear that rank(Ã1(L)) à 2, with equality if and only if Ã1(L) =
Z2.

Assume first that Ã1(L) = Z2. Theorem 4.11 and (7.1) together imply
that rank(Ã2(L)) = rank(Ã2(M7)) and hence, by the Hurewicz theorem, that
rank(Ã2(L)) = b2(M7) à 2.

By Proposition 4.9, the rational cohomology ring of the maximal free abelian
cover L̄ of L is isomorphic to that of a closed, simply connected, four-dimensional
manifold N4. Given

b2(N
4) = b2(L̄) = rank(Ã2(L̄)) = rank(Ã2(L)) à 2,

it follows from Freedman’s classification of smooth, closed, simply connected 4-
manifolds [20] thatN4 is homeomorphic to one of S4, CP2, S2×S2 or CP2#±CP2

and, hence, rationally elliptic. Moreover, in [51] (see also [49]) Miller proved that,
for all k á 2, if X is a (rationally) (k 2 1)-connected space of formal dimension
à 4k22 with H7(X;Q) satisfying Poincaré duality, then X is intrinsically formal.
In the present setting, this implies L̄ is intrinsically formal and, hence, that its
minimal model is isomorphic to that of the rationally elliptic space N4. Therefore,
as Ãj(L̄) = Ãj(L) for all j á 2, the rational ellipticity of M7 now follows from
Lemma 4.5.

Assume now that rank(Ã1(L)) à 1. By Lemma 4.7, at least one of Ã1(B±) is
finite. Let B * {B±} such that Ã1(B) is finite, and let B̃ be its universal cover, a
closed, smooth, simply connected 5-manifold. From the classification of Barden
and Smale [4, 65], together with the Hurewicz theorem, it follows that B̃, and
therefore B, is rationally elliptic if rank(Ã2(B)) = rank(Ã2(B̃)) = b2(B̃) à 1. In
this case, the rational ellipticity of M7 follows immediately from Lemma 4.5.

To establish that rank(Ã2(B)) à 1, observe that exactness in the long exact
homotopy sequence for the bundle S1 ³ L ³ B yields

rank(Ã2(B)) = 1+ rank(Ã2(L))2 rank(Ã1(L)).
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On the other hand, exactness in (7.1), together with Theorem 4.11 and the
Hurewicz theorem, yields

rank(Ã2(L))2 rank(Ã1(L)) = rank(Ã2(M
7))2 rank(Ã1(F)) = b2(M

7)2 2.

As b2(M7)à2 by hypothesis, these identities give rank(Ã2(B))=b2(M7)2 1 à 1,
as desired. w

In the remaining case with singular leaves of codimension two to be discussed
below, where exactly one of the singular leaves is orientable, it turns out there
are no such double disk bundles whenever b2(M7) á 3. An example of such a
decomposition can be found on S3×CP2 by taking advantage of the fact that CP2

decomposes as the union of disk bundles over S2 and RP2 [24].

Theorem 7.4. Suppose that the singular leaves B± are both of codimension two
and that exactly one of the bundles S1 ³ L³ B± is orientable. Then, M7 is rationally
elliptic.

Proof. This proof will follow the same basic strategy used in the proof of The-
orem 6.2, but the computation is significantly more involved.

By Table 4.1, the hypotheses are equivalent to letting Ã1(F) = Z · Z2 and,
hence, that F is rationally homotopy equivalent to S1 × S3 ×'S5. Observe now,
using the long exact homotopy sequences for F ³ L³ M7 and S1 ³ L³ B±, that
Ã1(L) and Ã1(B±) are abelian groups satisfying rank(Ã1(B±)) à rank(Ã1(L)) à
rank(Ã1(F)) = 1. In particular, H1(L) g Ã1(L) and H1(B±) g Ã1(B±).

Without loss of generality, suppose that S1 ³ L ³ B2 is orientable and that
S1 ³ L ³ B+ is non-orientable. By [41, p. 107], L is orientable and, hence, B2 is
a closed, orientable 5-manifold, while B+ is non-orientable. In particular, L and
B2 satisfy Poincaré duality, whereas H5(B+) = 0.

Consider the pairs (M7,DB±) and (DB±, L). By excision and the Poincaré-
Lefschetz duality, and recalling that DB± is homotopy equivalent to B±, there are
isomorphisms

(7.2) Hj(M,DB±) g H
j(DB3, L) g H72j(B3),

for all j á 0. Thus, the portion

· · · ³ H1(M) ³ H1(B2)³ H
2(M,DB2)³ ·· ·

of the long exact sequence for the pair (M7,DB2) yields that H1(B2) = 0. Apply-
ing the Universal Coefficient Theorem, it may be deduced that Ã1(B2) g H1(B2)
is finite.

As a result, the universal cover B̃2 of B2 is a closed, simply connected 5-
manifold. By the classification of Barden and Smale [4, 65], together with the
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Hurewicz theorem, it follows that B̃2, and therefore B2, is rationally elliptic pro-
vided that rank(Ã2(B2)) = rank(Ã2(B̃2)) = b2(B̃2) à 1. In this case, the rational
ellipticity of M7 follows immediately from Lemma 4.5.

In order to show that M7 is rationally elliptic, it therefore suffices to show
rank(Ã2(B2)) à 1. To this end, assume instead rank(Ã2(B2)) á 2. It will be
demonstrated, by placing the focus on b3(M7), that this assumption leads to a
contradiction. Some initial setup is required.

Observe that the long exact sequence for the pair (DB+, L) yields

· · · ³ H5(B+)³ H
5(L)³ H6(DB+, L)³ H

6(B+) = 0.

By the Universal Coefficient Theorem, H5(B+) must be finite. Therefore, it fol-
lows from Poincaré duality and (7.2) that

rank(Ã1(L)) = b1(L) = b5(L) = b1(B+) = rank(Ã1(B+)).

Since S1 ³ L³ B2 is orientable, there exists a Gysin sequence

· · · ³ Hj+1(L)³ Hj(B2)³ H
j+2(B2) ³ H

j+2(L) ³ Hj+1(B2)³ ·· ·

and, because b4(B2) = b1(B2) = 0 and b2(B2) = b3(B2) by Poincaré duality, it
follows that

(7.3) b3(L) = 2b2(B2) = 2(b2(L)2 b1(L)+ 1).

Since F cQ S1 × S3 × 'S5, one obtains from the long exact homotopy se-
quences for F ³ L ³ M7 and S1 ³ L ³ B± that

b2(M
7) = rank(Ã2(M

7)) = rank(Ã2(L))2 rank(Ã1(L))+ 1(7.4)

= rank(Ã2(B±))2 rank(Ã1(B±))

and, hence, that b2(M7) = rank(Ã2(B2)) á 2.
Consider now the rational Serre spectral sequence (Ej , dj) associated with the

homotopy fibration F ³ L³ M7, where the rational cohomology of F is given by

(6.3), (6.4), and the E2-page is shown in Figure 7.1. Recall that Ek,l2 = E
k,0
2 · E

0,l
2

for all k, l á 0. As in the proof of Theorem 6.2, it is convenient to denote by dk,lj
the differential dj : Ek,lj ³ E

k+j,l+12j
j and by &mj the diagonal {Ek,lj | k+ l =m}

on the Ej-page of (Ej , dj).

From the differential d0,1
2 = (d2 : E0,1

2 = Q ³ E
2,0
2 = Qb2(M7)) and (7.4), it is

clear that

b2(L) = b2(M
7)2 (12 b1(L)) = b2(M

7)2 1+ rank(Ã1(L))(7.5)

= rank(Ã2(L))
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F 4 Q2 0

3 Q 0 Qb2(M7) Qb3(M7) Qb3(M7) Qb2(M7) 0

2 0 0 0 0 0 0 0

1 Q 0 Qb2(M7) Qb3(M7) Qb3(M7) Qb2(M7) 0

0 Q 0 Qb2(M7) Qb3(M7) Qb3(M7) Qb2(M7) 0

0 1 2 3 4 5 6 M7

FIGURE 7.1. E2-page of spectral sequence for F ³ L³ M7

and, therefore, by combining equations (7.3) and (7.4), that

(7.6) b3(L) = 2b2(M
7) á 4.

Suppose first that b3(M7) à 1. If b3(M7) = 0, then, for all j á 2, all differ-
entials involving terms along the diagonal &3

j are trivial, and hence, H3(L;Q) =
⊕

k+l=3 E
k,l
> = Qb2(M7)+1. However, since b2(M7) á 2, this implies b3(L) =

b2(M7)+ 1 < 2b2(M7), contradicting the inequality (7.6).
If, on the other hand, b3(M7) = 1, then, by (7.6),

4 à 2b2(M
7) = b3(L) à rank

( ⊕

k+l=3

E
k,l
2

)
= b2(M

7)+ 2,

from which it follows that b2(M7) = 2 and b3(L) = 4. Moreover, this implies
that, for all j á 2, all differentials involving terms along the diagonal &3

j are

trivial. As a result, H4(L;Q) is entirely determined by the kernels of differentials

with domain along the diagonal &4
j . The product rule implies that rank(d3,1

2 ) à

rank(d0,1
2 ) = 1 2 b1(L), while the total rank r of all differentials d0,4

j , j á 2, is
clearly at most 2. Therefore, Poincaré duality and (7.5) together yield

1+ b1(L) = b2(L) = b4(L) á 42 rank(d3,1
2 )2 r á 1+ b1(L)

and, hence, the identities rank(d3,1
2 ) = 12 b1(L) and r = 2.

Given that d0,3
j is trivial for all j á 2, it follows from the product rule that

d
2,3
j is also trivial for all j á 2. Therefore, the differentials with domain in Wj =
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E
2,3
j ·E

4,1
j ·E

0,5
j are trivial for all j á 2, meaning that the contribution ofW2 = Q

5

to H5(L;Q) has rank 5 2 rank(d3,1
2 ) 2 r = 2 + b1(L). However, since b5(L) =

b1(L) à 1 by Poincaré duality, this is impossible.
Suppose, finally, that b3(M7) á 2. From the ring structure of

H7(F ;Q) = H7(S1 × S3 ×'S5;Q),

it is clear that rank(d0,1
2 ) = 12 b1(L) and d0,3

2 = 0 together imply that

rank(d0,4
2 ) á 12 b1(L).

Thus, E0,4
4 = E

0,4
3 has rank à 1 + b1(L) and, consequently, the image of d0,4

4

has rank à 1 + b1(L) in E4,1
4 . As d0,4

4 is the only possible non-trivial differential

involving E4,1
j , j á 2, it follows from Poincaré duality that

b1(L) = b5(L) á rank(E4,1
> ) á b3(M

7)2 (1+ b1(L)),

and it may, therefore, be deduced that 2 à b3(M7) à 2b1(L) + 1. This forces

b1(L) = 1, which, in turn implies that dk,12 is trivial for all k á 0.

Since d2,1
2 is trivial, it follows that

2b2(M
7) = b3(L) á rank(E2,1

> · E3,0
> ) = b2(M

7)+ b3(M
7)

and, therefore, that b2(M7) á b3(M7) á 2. Now, from this inequality and the

fact that d3,1
2 and d4,1

2 are trivial, one obtains

1 = b1(L) = b5(L)

á rank(E2,3
2 · E

4,1
2 · E

5,0
2 )2 rank(d0,4

4 )2 rank(d0,4
5 )

á 2b2(M
7)+ b3(M

7)2 2

á 4,

which is absurd. This completes the proof. w

It remains only to deal with the cases where there is at least one singular leaf
of codimension three. Recall first that, for all p,q á 0, the sphere Sp+q+1 can be
decomposed as Sp+q+1 = (Sp ×Dq+1)* (Dp+1 × Sq). In particular, this implies
S7 and, by Proposition 3.1, every S3-bundle over S4 admits a double disk-bundle
decomposition with {3±} = {1,2}. From a rational homotopy perspective, this is
all that can happen.

Theorem 7.5. If the bundles S3± ³ L ³ B± have {3±} = {1,2}, then M7 is
rationally homotopy equivalent to S7 or S3 × S4.
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Proof. Suppose, without loss of generality, that 32 = 1, 3+ = 2. By Table 4.1,
both of the bundles S3± ³ L ³ B± are orientable, Ã1(F) = Z, and F is rationally
homotopy equivalent to S1 × S2 ×'S4. Moreover, since M7 is simply connected
and 3+ = 2, equation (3.7) of [30] implies that the homomorphism Ã1(S1) ³
Ã1(L) in the long exact homotopy sequence for S1 ³ L ³ B2 must be surjective.
In particular, it follows that Ã1(B2) = 0. On the other hand, the long exact
homotopy sequence for S2 ³ L ³ B+ yields Ã1(L) = Ã1(B+) and, thus, b1(L) =
b1(B+), while the long exact homotopy sequence for F ³ L ³ M7 yields that
either Ã1(L) = Z or Ã1(L) is finite. Observe, finally, that the orientability of the
bundles S3± ³ L ³ B± and [41, p. 107] together ensure that L and B± are all
orientable and, hence, satisfy Poincaré duality.

In order to establish that M7 is rationally elliptic, it suffices, via the classi-
fication of Barden and Smale [4, 65], the Hurewicz theorem, and Lemma 4.5,
to demonstrate that b2(B2) à 1, because B2 is a closed, simply connected 5-
manifold.

Now, from exactness in the portion of the Gysin sequence for the bundle
S1 ³ L ³ B2 given by

0 = H1(B2)³ H
1(L) ³ H0(B2)³ ·· ·

· · · ³ H3(L) ³ H2(B2)³ H
4(B2) = 0,

together with Poincaré duality, it may easily be deduced that

(7.7) b3(L) = 2b2(B2) = 2(b2(L)2 b1(L)+ 1).

On the other hand, note that exactness in the portion of the Gysin sequence for
S2 ³ L ³ B+ given by

0 = H21(B+)³ H
2(B+)³ H

2(L) ³ H0(B+)³ ·· ·

· · · ³ H2(B+)³ H
5(B+) = 0

yields

(7.8) 2b2(B+) = 2(b2(L)+ b1(L)2 1)2 b3(L).

By combining equations (7.7) and (7.8), it may be concluded that b2(B+) =
2(b1(L) 2 1) à 0, whence it follows that b1(B+) = b1(L) = 1 and b2(B+) = 0.
From the Gysin sequence for S2 ³ L ³ B+ it now follows that b2(B2) = b2(L) à
b0(B+) = 1 and, therefore, M7 is rationally elliptic.

Furthermore, in the rational long exact sequence for the pair (M7,DB+) there
is a short exact sequence
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0 = H1(M7;Q)³ H1(B+;Q)³ H2(M7,DB+;Q)

³ H2(M7;Q)³ H2(B+;Q) = 0.

Since, by excision and Poincaré-Lefschetz duality,

H2(M7,DB+;Q) g H2(DB2, L;Q) g H5(B2;Q) = Q,

it follows from the Hurewicz theorem that rank(Ã2(M7)) = b2(M7) = 0. Now,
by [40], or by simply examining the inequalities in (2.1), (2.2), a rationally elliptic
manifold M7 with rank(Ã2(M7)) = 0 must be rationally homotopy equivalent to
S7 or S3 × S4, as desired. w

By taking advantage of the standard decomposition of S3 as the union of two
3-disks, it is clear that, for any closed, smooth, simply connected 4-manifold N4,
the product S3 × N4 admits a double disk-bundle decomposition with singular
leaves both of codimension three. Therefore, to avoid rationally hyperbolic 7-
manifolds admitting such a double disk-bundle decomposition, it is necessary to
impose some topological restrictions.

Theorem 7.6. If the singular leaves B± are both of codimension three, and if
b2(M7) à 2, then M7 is rationally elliptic.

Proof. By Table 4.1, the hypothesis on the singular leaves is equivalent to F
being simply connected and rationally homotopy equivalent to one of

S
2 ×'S3, S2 × S2 ×'S5, SU(3)/T 2 ×'S7, Sp(2)/T 2 ×'S9, or G2/T

2 ×'S13.

In particular, observe that rank(Ã2(F)) = 2 and 1 à rank(Ã3(F)) à 2 in all cases.
From the long exact homotopy sequences for F ³ L³ M7 and S2 ³ L³ B±,

it is clear that Ã1(L) = Ã1(B±) = 0. In particular, note that each of the bundles
S2 ³ L ³ B± possesses a Gysin sequence, from which it may easily be concluded
that

H2(L) = H2(B±)· Z and H3(L) = 0,

given that B± are closed, simply connected 4-manifolds.
By the classification of closed, simply connected 4-manifolds [20], and by

Lemma 4.5, it suffices to show that b2(B±) à 2 in order to establish that M7 is
rationally elliptic. Suppose to the contrary, therefore, that 3 à b2(B±) = b2(L)21.

The hypothesis b2(M7) à 2, together with exactness in the portion

0 = H1(L) ³ H2(M7)³ H2(B2)·H
2(B+)³ H

2(L)

³ H3(M7)³ H3(B2)·H
3(B+) = 0
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of the Mayer-Vietoris sequence for M7 = DB2 *L DB+, now yields

2 á b2(M
7)

= b3(M
7)+ b2(B2)+ b2(B+)2 b2(L)

= b3(M
7)+ b2(B2)2 1

á b3(M
7)+ 2

á 2,

from which it immediately follows that b2(M7) = 2, b3(M7) = 0, b2(B±) = 3
and b2(L) = 4. In particular, by the Hurewicz theorem, it is now clear that
rank(Ã2(M7)) = 2 and rank(Ã2(L)) = 4.

Let ('VX , dX) be the minimal model of a simply connected space X, where

VX =
⊕>
j=0 V

j , with V 0 = Q, V 1 = 0, and V j g ÃQj (X), for all j á 2. Recall dX
is decomposable, and so satisfies dX(V 2) = 0 and dX(V 3) ¦ V 2 · V 2 ¦ ker(dX).
In particular, if H3(X;Q) = 0, then dX must map V 3 injectively into V 2 · V 2.
Therefore,

rank(Ã3(X)) = dimQ(V
3) à dimQ(V

2 · V 2)

=
1
2

rank(Ã2(X))(rank(Ã2(X))+ 1),

while

b4(X) á dimQ(V
2 · V 2)dimQ(V

3)

=
1
2

rank(Ã2(X))(rank(Ã2(X))+ 1)2 rank(Ã3(X)) á 0.

Now, by Poincaré duality, b4(M7) = b3(M7) = 0 and b4(L) = b2(L) = 4.
Thus, the inequalities above, together with the identities

rank(Ã2(M
7)) = 2 and rank(Ã2(L)) = 4,

yield

rank(Ã3(M
7)) = 3 and rank(Ã3(L)) á 102 b4(L) = 6.

However, from the long exact homotopy sequence for F ³ L³ M, one has

rank(Ã3(L)) à rank(Ã3(M
7))+ rank(Ã3(F)) à 5,

a contradiction. w

The main result of this section is now a simple consequence of all the preced-
ing groundwork.
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Theorem 7.7. Let M7 be a closed, smooth, simply connected 7-manifold with
second Betti number b2(M7) à 2 which admits a double disk-bundle decomposition.
Then, M7 is rationally elliptic.

Proof. By Proposition 4.6, it suffices here to consider singular leaves of co-
dimension at most three. All such cases have been dealt with in Theorems 7.1,
7.3, 7.4, 7.5, and 7.6, thus completing the proof. w

Remark 7.8. Notice that the hypothesis b2(M7) à 2 has been used only in
the cases where the singular leaves B± are of codimension 1 à 32 = 3+ à 2 and the
bundles S3± ³ L ³ B± are both orientable. In these scenarios, standard decom-
positions of S3 lead to counterexamples whenever b2(M7) á 3 is permitted. In all
other cases, assuming only that M7 admits a double disk-bundle decomposition is
enough to conclude that M7 is rationally elliptic.

In contrast with the six-dimensional case, recall that a large family of closed,
2-connected 7-manifolds admitting double-disk bundle decompositions was con-
structed in [26], each having rational cohomology ring isomorphic to either
H7(S7;Q) or H7(S3 × S4;Q). Moreover, in [27] it was observed that this family
does not contain all possible homotopy types of such manifolds: for example, it
does not contain any 2-connected 7-manifold M7 with H4(M7) = Z5 and non-
standard linking form. It is unknown whether these excluded spaces also admit a
double disk-bundle decomposition.

Being unable to address even the case of rational 7-spheres at present, a classi-
fication up to diffeomorphism of simply connected, rationally elliptic 7-manifolds
which admit a double disk-bundle decomposition seems out of reach for the mo-
ment. Recall, however, that Herrmann has shown that a simply connected, ra-
tionally elliptic 7-manifold must be rationally homotopy equivalent to one of S7,
S2 × S5, S3 × S4, S3 ×CP2, N7 or M7

Ã , for Ã * Q7/(Q7)2. The manifold N7 has
minimal model

('V,d) = ('(x1, x2, y1, y2, y3), d),

where deg(xi) = 2, i * {1,2}, deg(yj) = 3, j * {1,2,3}, and the differential d
is given by

(7.9) d(x1) = d(x2) = 0, d(y1) = x
2
1 , d(y2) = x

2
2 , d(y3) = x1x2.

By [21, Theorem 6.1], the unit tangent bundle of S2 × S2 is a concrete represen-
tative of this rational homotopy type. Moreover, from Example 2.91 of [18] it is
known that any manifold with minimal model (7.9) is not formal.

The family M7
Ã consists of spaces with minimal model

('VÃ , dÃ ) = ('(x1, x2, y1, y2, y3), dÃ ),
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where deg(xi) = 2, i * {1,2}, deg(yj) = 3, j * {1,2,3}, and the differential dÃ
is given, for Ã * Q7/(Q7)2, by

(7.10)

ù
üüú
üüû

dÃ (x1) = dÃ (x2) = dÃ (y3) = 0,

dÃ (y1) = x1x2,

dÃ (y2) = x
2
1 2 Ãx

2
2 .

The spaces M7
1 and M7

21 are rationally homotopy equivalent to S3 × (CP2#CP2)

and S3 × (CP2#CP
2
) cQ S3 × S2 × S2 respectively, whereas no concrete represen-

tative of the rational homotopy type is currently known when Ã b ±1.

Theorem 7.9. Each of the minimal models (7.9) and (7.10), Ã = ±1, is realized
by biquotients (S3×S3×S3)//T 2, and hence, has a representative admitting a double
disk-bundle decomposition. Moreover, there are infinitely many such biquotients with
minimal model (7.9), each of which is not formal.

Proof. By [18, Example 2.91], a space with minimal model (7.9) is not for-
mal. Biquotients of the form (S3 × S3 × S3)//T 2 have been studied in [10] and
[21]. The minimal models were determined in the proof of Theorem 6.1 in [21],
while the integral cohomology rings and characteristic classes were determined
in [10, Proposition 4.35]. In particular, a biquotient with minimal model (7.9)
generically has torsion in its cohomology ring: for example, there is a nice subfam-
ily N7

m,m * Z, of such spaces consisting of S3-bundles over S2×S2 with structure
group T 2, H2(N7

m) = Z
2, H3(N7

m) = 0 and H4(N7
m) = Zm2 . This subfamily is

described by the action

T 2 × (S3 × S3 × S3)³ (S3 × S3 × S3),

((z,w), (q1, q2, q3))� (zq1,wq2, z
mu3 +w

mv3j),

where m * Z and q3 = u3 + v3j * S3, u3, v3 * C, |u3|
2 + |v3|

2 = 1. By the
proof of [21, Theorem 6.1], the unit tangent bundle of S2 × S2 is given by setting
m = 2.

That all biquotients (S3 × S3 × S3)//T 2 admit a double disk-bundle decom-
position follows from Proposition 3.1 (c), since the free T 2 action on S3 × S3 × S3

is a subaction of a cohomogeneity-one action by T 2 × (S3 × S3)× (S3 × S3). w

Finally, note that it is unknown whether there is a representative of each ra-
tional homotopy type (7.10), Ã b ±1, which admits either a double disk-bundle
decomposition or a metric with non-negative sectional curvature.
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[5] J. BARGE, Dualité dans les revêtements galoisiens, Invent. Math. 58 (1980), no. 1, 101–106
(French). https://dx.doi.org/10.1007/BF01402276. MR570876
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[62] B. SCÁRDUA and J. SEADE, Codimension one foliations with Bott-Morse singularities. I,

J. Differential Geom. 83 (2009), no. 1, 189–212. http://dx.doi.org/10.4310/jdg/

1253804355. MR2545034
[63] S. SMALE, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10 (1959), no. 4, 621–626.

https://dx.doi.org/10.2307/2033664. MR112149
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