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ABSTRACT. Under mild topological restrictions, this article es-
tablishes that a smooth, closed, simply connected manifold of
dimension at most seven which can be decomposed as the union
of two disk bundles must be rationally elliptic. In dimension
five, such manifolds are classified up to diffeomorphism, while
the same is true in dimension six when either the second Betti
number vanishes or the third Betti number is non-trivial.

1. INTRODUCTION

A closed manifold is said to admit a double disk-bundle decomposition if it can
be written as the union of two disk bundles glued together along their common
boundary by a diffeomorphism. For example, a sphere S™, n > 2, is well known to
admit at least two such decompositions: D" UD™ and (S¥ x DAty U (DP*1 xS9),
wheren =p +q + 1.

Frequently, in the differential geometry literature, such decompositions ei-
ther arise naturally from geometric hypotheses (see, e.g., [39], [54] and [62]) or
are used to create novel, often non-homogeneous, examples of certain interesting
phenomena. Although it would be impossible to give an exhaustive listing, it is
perhaps instructive to highlight just some of the many situations where double
disk-bundle decompositions appear.

In the study of isoparametric and Dupin hypersurfaces, double disk-bundle
decompositions play a central role (see, e.g., [54], [30] and [66]). In [68], it
was shown that all fake quaternionic projective planes (see [12]) admit a Rie-
mannian metric such that there is a point through which all geodesics are simply
closed and of the same length. As particular examples of singular Riemannian
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foliations [61], double disk-bundle decompositions are also well understood from
the point of view of mean curvature flow [1].

There is a vast literature dealing with the special case of cohomogeneity-one
manifolds, where the decomposition arises as a result of the existence of a Lie group
action with one-dimensional orbit space. For example, the additional symmetry
afforded by such an action has been exploited to study minimal hypersurfaces
in spheres [43], construct infinite families of inhomogeneous Einstein manifolds
(6], and construct new examples of inhomogeneous nearly-Kihler structures on
6-manifolds [19].

In the study of positive and non-negative sectional curvature, the presence
of a decomposition as the union of two disk bundles has proven useful both in
producmg exciting new examples (see, e.g., [9], [26], [27], [34] and [306]) and
in proving classification results under additional symmetry assumptions (see, e.g.,
[31], [32] and [33]). In particular, this extra structure has led to the proof of some
special cases (see [22] and [67]) of the Bott conjecture, which asserts that a closed,
simply connected Riemannian manifold admitting a metric with non-negative
sectional curvature must be rationally elliptic. Recall that a closed manifold M is
said to be rationally elliptic if dimq (174 (M) ® Q) < o0, and rationally hyperbolic
otherwise.

Given the Bott conjecture, the prevalence of double disk-bundle decompo-
sitions among known examples of manifolds admitting non-negative or positive
sectional curvature, and given that the Double-Soul conjecture [29] asks whether
every non-negatively curved, closed, simply connected Riemannian manifold ad-
mits a double disk-bundle decomposition, the present work is motivated by a
desire to understand whether there is any connection between rational ellipticity
and these decompositions, even independent of curvature assumptions.

After a moments thought, it is clear that some topological restrictions are
necessary in any such investigation. Indeed, for all n > 2 and all m > 3, the
(n + 4)-dimensional manifold §" x #}*, CP? is rationally hyperbolic and admits a
double disk-bundle decomposition. Nevertheless, it turns out that, in low dimen-
sions, the required topological restrictions are very mild.

Theorem A. Let M™ be a smooth, closed, simply connected manifold of dimension
N < 7 which admits a double disk-bundle decomposition. Then, M™ is rationally
elliptic if and only if either n < 5 or else n = 6 and by(M®) < 3 (respectively, n = 7
ﬂnd bz (M7) )

Note that, if M® (respectively, M”) is rationally elliptic, then it is well known
that b,(M®) < 3 (respectively, b2(M7) < 2) ( see, e.g., [40]). Therefore, in light
of the examples given above, the statement is optimal in respect of restrictions on
the second Betti number in dimensions < 7. Furthermore, notice Theorem A may
be restated as follows: a smooth, closed, simply connected manifold of dimension
< 7 which admits a double-disk bundle decomposition is rationally elliptic if and
only if it has the same Betti numbers as a rationally elliptic manifold. This state-
ment is optimal in respect of dimension since there are counterexamples already
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in dimension eight. For example, for all n > 2, the (n + 6)-dimensional manifold
S™ X ((S? x S*)#(S? x $*)) is rationally hyperbolic, yet admits a double disk-
bundle decomposition and has the same Betti numbers as the rationally elliptic
space S™ x §? x CP2. For completeness, however, recall that a consequence of the
work of Miller [51] is that, for k = 2, a smooth, closed, (k — 1)-connected mani-
fold of dimension < 4k — 2 is rationally elliptic whenever its rational cohomology
ring is isomorphic to that of a rationally elliptic space.

Closed, smooth, simply connected manifolds of dimension four which admit
a double disk-bundle decomposition were classified up to diffeomorphism in [24].
The only such manifolds are S4, CP2, S x S2, and CP2# + CP?—precisely those
simply connected 4-manifolds known to admit a metric of non-negative sectional
curvature. In dimension five, it turns out that an analogous statement is true.

Theorem B. A smooth, closed, simply connected manifold of dimension five ad-
mits a double disk-bundle decomposition if and only if it is diffeomorphic to S°, the
Wu manifold SU(3)/ SO(3), S® x S2, or the unique non-trivial S*-bundle over S*.

Theorem B may be viewed as further evidence that this is the complete list of
simply connected 5-manifolds admitting a metric of non-negative sectional cur-
vature (e.g., see [23], where decompositions as the union of two disk bundles play
a key role). Note that, by [42], each of the manifolds in Theorem B admits a
cohomogeneity-one action and, hence, a double disk-bundle decomposition.

Recall that a closed, simply connected, rationally elliptic 5-manifold must be
rationally homotopy equivalent to either S° or S? x S? (see, e.g., [57]). However,
each of these rational homotopy types contains infinitely many distinct homotopy
types. Indeed, since the Wu manifold SU(3)/SO(3) is a rational homology 5-
sphere with H»(SU(3)/ SO(3);Z) = 7, taking the connected sum of a smooth,
closed, simply connected 5-manifold with SU(3)/SO(3) will change its homo-
topy type, but not its rational homotopy type.

Corollary C. There are infinitely many smooth, closed, simply connected, ratio-
nally elliptic 5-manifolds which do not admit a double disk-bundle decomposition.

It is an intriguing coincidence that the diffeomorphism types of manifolds
of dimension < 5 which admit a double disk-bundle decomposition are precisely
those for which there exists a Riemannian metric with trivial topological entropy
(see [56]). It would be interesting to know whether this is also true in higher
dimensions.

In dimensions six and seven, it is well known that there are infinitely many
rational homotopy types of closed, smooth, simply connected manifolds (see [40],
[69]). Many of these rational homotopy types can be represented by a nice model
space which, by Proposition 3.1, can easily be seen to admit a double disk-bundle
decomposition. In particular, an infinite family of 2-connected, rational homology
7-spheres, each admitting infinitely many double disk-bundle decompositions,
was constructed in [26], including many spaces which are not even homotopy
equivalent to an S?>-bundle over $* [27]. On the other hand, there are infin-
itely many rational homotopy types for which no nice representative is known,
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nor whether any representative can be decomposed as the union of two disk bun-
dles. Therefore, a classification in dimensions six and seven up to diffeomorphism,
similar to that in Theorem B, seems beyond the scope of the present article. Nev-
ertheless, it is possible to obtain some partial results.

Theorem D. A smooth, closed, simply connected 6-manifold M® with by(M°) =
0 admits a double disk-bundle decomposition if and only if it is diffeomorphic to either
S6 0r §% x S°.

Observe that the conclusion of Theorem D excludes all smooth, closed, sim-
ply connected 6-manifolds M® with b(M®) = 0 which have torsion in their co-
homology, including all (non-trivial) rational homology spheres.

Corollary E. There are infinitely many smooth, closed, simply connected, ratio-
nally elliptic 6-manifolds which do not admit a double disk-bundle decomposition.

In fact, even without any assumption on by (M 6) in Theorem D above, M°
must be diffeomorphic to S3 x S if b3(M®) # 0. Therefore, in combination
with Theorem A, it follows that a rationally hyperbolic 6-manifold which admits
a double disk-bundle decomposition has its rational cohomology concentrated in
even degrees and Euler characteristic x > 10.

Corollary F. If M® is a smooth, closed, simply connected, rationally hyperbolic
6-manifold which admits a double disk-bundle decomposition, then by(M®) > 4 and
b3(M®) = 0.

The results in this article may be viewed as evidence that admitting a double
disk-bundle decomposition imposes strong restrictions on the topology of a man-
ifold. Consequently, it might be hoped that, in general, the rational homotopy
type of such a manifold is determined by its rational cohomology ring, a property
known as formality. It follows from work of Miller [51] that all closed, simply
connected manifolds of dimension < 6 are (intrinsically) formal, while, by recent
work of Crowley and Nordstréom [8], a closed, simply connected 7-manifold is
(intrinsically) formal if its cohomology ring satisfies a certain hard Lefschetz prop-
erty.

Theorem G. There are infinitely many non-formal, smooth, closed, simply con-
nected, rationally elliptic 7-manifolds which admir a double disk-bundle decomposi-

tion.

The manifolds in Theorem G are a certain family of biquotients of the form
(S3 x S3 x 83) /T2, all of the same rational homotopy type and distinguished by
the order of the torsion in their cohomology rings. In particular, the unit tangent
bundle of $? x S? is one such space.

Returning to the original motivations for this work, we conclude this intro-
duction with some final observations which are likely already well known to the
experts. First, every known example of a simply connected manifold admitting
a Riemannian metric of positive sectional curvature admits a double disk-bundle
decomposition (see Theorem 3.3). While this is evidence for the validity of the
Double-Soul conjecture, the conjecture is completely open even in some of the
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simplest cases of manifolds admitting non-negative curvature. Indeed, among
compact Lie groups, it is currently unknown whether a semi-simple Lie group
with all simple factors being either E; or Eg can be decomposed as the union of
two disk bundles (see Lemma 3.2).

Ever since the discovery of exotic spheres, there has been interest in deter-
mining to what extent their geometry resembles that of the standard sphere. In
dimension seven, it is now known that all exotic spheres admit a metric of non-
negative sectional curvature [26]. The key to obtaining such a metric is the re-
sult of Grove and Ziller ensuring that every cohomogeneity-one manifold with
codimension-two singular orbits admits such a metric [36]. It is natural to ask
whether something similar will work for higher-dimensional exotic spheres. As it
turns out, a (rational homology) sphere can be decomposed as the union of two
2-disk bundles only if it has dimension < 7 (see Corollary 4.12 and also [13]).
Therefore, new techniques and ideas will be required to construct a metric with
non-negative curvature on a higher-dimensional exotic sphere.

One of the main tools used to obtain many of the results in the paper, includ-
ing Corollary 4.12, is the generalization Theorem 4.11 of a result of Grove and
Halperin [30, Lemma 6.3] showing the non-triviality of the connecting homo-
morphism in a certain long exact sequence of rational homotopy groups naturally
associated with a double disk-bundle decomposition.

Organization. In Section 2, the notation to be used throughout the paper
is introduced and a summary is provided of the parts of rational homotopy theory
relevant to this work. In Section 3, some sufficient conditions are collected which
ensure the existence of a double disk-bundle decomposition and are then used
to examine compact Lie groups and manifolds known to admit positive sectional
curvature. Section 4 focuses upon establishing general topological results relevant
to manifolds admitting a double disk-bundle decomposition, with the main result
being Theorem 4.11. Sections 5, 6, and 7 are devoted to studying double disk-
bundle decompositions in dimensions at most five, equal to six and equal to seven,
respectively.

2. PRELIMINARIES

2.1. Terminology and notation. Suppose D%+! . DB, — B. are smooth
disk bundles of rank £+ + 1, respectively, over smooth, closed manifolds B~, and
that there is a diffeomorphism f: 0DB_ — 0DB. of the boundaries. Identifying
these boundaries via the diffeomorphism f, the resulting smooth manifold M =
DB_ Uy DB, is called a double disk bundle. 1f L denotes the common image of
ODB. in M, then it is clear there are sphere bundles Sl - [ - B..

An arbitrary smooth, closed, connected manifold M is said to admit a double
disk-bundle decomposition if there exists a diffeomorphism ®: M — DB_ Uy DB,
from M to a double disk bundle DB_ Uy DB,. By an abuse of notation, B+ and
L will be used to denote the images of pulling back to M via ® the corresponding
objects in the double disk bundle DB_ U¢ DB, while the decomposition itself
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will often be denoted by DB_ Uy DB, whenever the precise gluing map is not
needed. As a consequence of Proposition 4.1 below, B+ will usually be assumed to
be connected, without additional comment.

It is clear that knowledge of the dimensions £~ of the fibers of the sphere bun-
dles S*= — L — B. will play a role in understanding the topology of M. Therefore,
manifolds admitting a double disk-bundle decomposition will often be discussed
under additional restrictions on £+. Recall, moreover, that the diffeomorphism
group Diff(S¥) deformation retracts onto O(k + 1) whenever k < 3 [3,37, 63].
Hence, it will be implicitly assumed that S/ — L — B. is a linear bundle if
{. < 3, respectively. The inclusion L — M gives rise to an additional homotopy
fibration F — L — M, where F denotes the so-called homotopy fiber.

n [61], Qian and Tang showed that every manifold M admitting a double
disk-bundle decomposition DB_ Uy DB also admits a codimension-one singular
Riemannian foliation with singular leaves diffeomorphic to B and regular leaf
diffeomorphic to L. Thus, it will at times be convenient to abuse this suggestive
terminology and refer to B+ and L as the singular and regular leaves, respectively,
of the double disk-bundle decomposition of M.

The symbol = will be used to indicate either that two manifolds are diffeo-
morphic or that two groups are isomorphic, depending on the context. Finally,
homology and cohomology will be taken with integral coefficients, unless explic-
itly indicated otherwise.

2.2. Rational homotopy theory. Borrowing heavily from [21], the basics
of rational homotopy theory required in this work can be summarized as follows.
(For a full treatment, see [16—18].)

A path-connected topological space X is said to be nilpotent if its fundamental
group 711 (X) is a nilpotent group which acts nilpotently on the higher homotopy
groups Tk (X), k > 2, by the action described in [18, p. 31]. Recall that a group
G acts nilpotently on a group H if there is a finite chain

H=Ho>H &> - ->Hpy={e}

of subgroups such that, for each j € {1,...,m}, H; is normal in H;j_; and closed
under the action of G, the quotients H;_;/H; are abelian, and the induced action
of G on H;_1/Hj is trivial. In particular, a group G is nilpotent if and only if it
acts on itself nilpotently by conjugation.

Recall that the rank of an abelian group A is the dimension of the rational
vector space A ® Q. Building on this, the rank of a nilpotent group G is given by

n
rank(G) = > rank(G;-1/Gj),
j=1
where {G J'};L=0 denotes the lower central series of G, and where each of the groups
Gj-1/Gj, j = 1, is abelian; that is, Go = G and Gj = [Gj-1,G] for j > 1. In
particular, the quaternion group Qg = {+1, i, +j, £k} has rank(Qg) = 0.
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Let X be a nilpotent topological space. The rational homotopy groups of X
are the Q-vector spaces 1T1Q(X) = 1i(X) ® Q, i = 2, of dimension d;(X) =
dimq (12 (X)). The space X is rationally elliptic if

dimg H*(X;Q) < ® and dimg(m2(X)) = > di(X) < co.
i=2

If, instead, dimq (T2 (X)) = co, then X is said to be rationally hyperbolic.
Whenever dimg H*(X; Q) < oo, there is an integer ny, called the formal
dimension of X, such that H"*(X;Q) # 0 and H/(X;Q) = 0, for all j > ny. If
X is a closed, orientable manifold, then clearly nx = dim(X).
If X is a rationally elliptic space, then the dimensions d;(X) of the rational
homotopy groups of X satisfy, among others, the relations

(2.1) nx = > 2id(X),
ieN
(2.2) ny = —d2(X) + > (21 — 1) (dai-1(X) — dai(X)).
i=2

From the homotopy groups, one can construct a graded vector space Vy =
@B,V associated with X, where V? = Q, dimg V' = rank(r; (X)) and, for
i>2,

Vi = Hom(mi(X),Q) = m (X) = Q%)

Clearly, V! = 0 whenever 111 (X) is a finite (nilpotent) group. An element v € V!
is said to be homogeneous of degree deg(v) = i.

The tensor algebra TVy on Vy has an associative multiplication, with a unit
1eVo, given by the tensor product TWx®T/Vy — THiVy, where T¥Vy = V®k
Taking the quotient of TVx by the ideal generated by the elements

veow - (-DVwev,

where deg(v) = i, deg(w) = j, yields the free commutative graded algebra AVx.
In particular, multiplication in AV satisfies v - w = ( -D¥w - v, forallv e Vi
and w e VJ,

Given a homogeneous basis {v1,...,Un} of VX, set A(V1,...,UN)
We denote the linear span of elements v, vy, - - - vi, € AVx, 1 < i) <13
iy < N, of word-length g by A9Vx. Define /\+VX = Dgs1 A1V

The graded algebra AVx has a linear differential dx, that is, a linear map
dx : NVx — AVy satisfying the following properties:

AVx.

<--.<

(1) dx hasdegree +1, i.e., dx maps elements of degree i to elements of degree
i+ 1.
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(2) d% =0.

(3) dyx is a derivation, i.e., dx(V - w) = dx(v) - w + (=14 y . dy(w).

(4) dx is nilpotent, i.e., there is an increasing sequence of graded subspaces
V(0) € V(1) € - - - such that we have V = Uy_, V (k), dx|v(o) = 0, and
dx:V(k) - AV(k-1), forallk > 1.

In addition, dy satisfies the following:
(5) dx is decomposable, i.e., Im(dx) = AZ?Vy.

Since dx is a derivation, it clearly depends only on its restriction to Vx. The
pair (AVx, dx) is called the minimal model for X, and its corresponding (rational)
cohomology satisfies H* (AVx, dx) = H* (X; Q).

The minimal models of a nilpotent space X and its universal cover X are
related as follows. If (AVy,dg) and (AW, d) denote the minimal models of X
and the classifying space B of G = 1 (X), respectively, then W = W', Vi = 0,
and the minimal model of X is given by

(AVx,dx) = (AW ® /\V)g,dx) =(A(We VX),dx),

where dx|,w =d and dx(v) —dg(v) € ATW ® AV forall v e Vy.

By a slight abuse of terminology, two nilpotent spaces X and Y will be said
to be rationally homotopy equivalent (denoted X ~q Y) if their minimal models
are isomorphic, that is, if there is a linear isomorphism f: A Vx — AVy which
respects the grading and satisfies fodx = dy o fand f(v-w) = f(v) - f(w). It
is important to note that, first, it is not assumed that 7, (X) = 1 (Y) and, second,
the isomorphism f'is not necessarily induced by a map between X and Y. In fact,
X =q Y ifand only if there is a chain of maps X — Y; — Y, — - -+ < Y5 — Y such
that the induced maps on rational cohomology are all isomorphisms. Observe that
X and Y have isomorphic rational homotopy and rational cohomology groups
whenever X ~q Y.

A nilpotent space X with minimal model (AVx,dx) is said to be formal if
there is a morphism

(AVx,dx) — (H*(X;Q),0)

of differential graded algebras inducing an isomorphism in cohomology. If formal
spaces X and Y have isomorphic rational cohomology rings, then X =q Y. On
the other hand, there are examples of nilpotent spaces Y with rational cohomology
ring isomorphic to that of a formal space X and yet X #q Y (see, e.g., [49,
Section 7]). A nilpotent space X is intrinsically formal if every nilpotent space
Y with rational cohomology ring isomorphic to H* (X; Q) satisfies X ~q Y and,
hence, is formal; that is, there is a unique rational homotopy type (minimal model)
associated with the cohomology ring H* (X; Q). In particular, a product of spheres
is intrinsically formal [14].
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3. EXAMPLES OF DOUBLE DISK BUNDLES

Many interesting geometric examples have arisen via double disk bundle con-
structions. In the hope of achieving a deeper understanding of the topological
implications of certain geometric conditions, it is then natural to investigate the
prevalence of manifolds admitting a double disk-bundle decomposition. To this
end, recall that a smooth, effective action of a compact Lie group G on a smooth
manifold M is of cohomogeneity one if the orbit space M* = M/G of the action
is one dimensional or, equivalently, if there is a G-orbit of codimension one. Al-
ternatively, if the fixed-point set of the action of G on M is non-empty and has a
component of codimension one in M*, it is said to be fixed-point homogeneous.

Proposition 3.1. A smooth, closed, simply connected manifold M admits a double
disk-bundle decomposition if at least one of the following conditions holds:

(@) M is a connected sum of two compact, rank-one symmetric spaces.
(b) M admits a smooth, effective action of cohomogeneity one.
(c) M is the quotient of a cohomogeneity-one manifold by a free subaction.

(d) M is the total space of a smooth fiber bundle over a manifold which admits a
double disk-bundle decomposition.

(e) M is the total space of a linear sphere bundle admitting a smooth section.

(£) M admits a Riemannian metric with non-negative sectional curvature which
is invariant under an isometric fixed-point-homogeneous action.

Proof. (a) This is a simple consequence of the standard fact that removing
a point from a non-spherical, simply connected, compact, rank-one symmetric
space yields a disk bundle over a lower-dimensional compact, rank-one symmetric
space.

(b): In this case, the statement is well known and follows from the Slice
Theorem and fundamental group considerations (see, e.g., Section 1 in [42] and
[35, Section 1]). In particular, if G acts on M with cohomogeneity one, then
there are closed subgroups H < K+ < G with K. /H = S’ and such that M is
equivariantly diffeomorphic to the union of the disk bundles G xx. D*! glued
(equivariantly) along their common boundary G xx, S = G/H.

(c): Suppose G acts on M" with cohomogeneity one and there is a subgroup
U < G which acts freely on M” with quotient M. Observe first that the U action on
M’ preserves the orbits of the G action. Now, via the equivariant diffeomorphism
mentioned in the proof of (b) above, U acts freely on each of the disk bundles
G Xk, D'=*! by the action induced from the action of U by left multiplication
on the first factor of the product G x D¥*1, As the U action commutes with the
action of K. on the right of the first factor, it follows that U \ (G xk. DY=+1y g
diffeomorphic to (U \ G) Xk, DY+, These disk bundles both have boundary
diffeomorphic to the biquotient U \ G/H, and the equivariant gluing map in the
double disk-bundle decomposition of M’ now induces a gluing of the quotient
disk bundles, yielding the desired double disk-bundle decomposition of M.
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(d) Suppose Y — M — N is a fiber bundle such that N is diffeomorphic to a
double disk bundle DB_ Uy DB,. By [61], there is a Riemannian metric gy on N
yielding a singular Riemannian foliation with singular leaves B.. and regular leaf
diffeomorphic to L. If (gx)xen is a smoothly varying family of Riemannian met-
rics on the fibers (that is, on Y), then a standard partition-of-unity argument yields
a (unique) complete Riemannian metric gy on M inducing the metric gx on the
fiber Yy, for each x € N, and such that the projection map (M, gm) — (N, gn)
is a Riemannian submersion.

On the other hand, it is well known that, by pulling back the leaves of the fo-
liation on the base, a singular Riemannian foliation can be lifted via a Riemannian
submersion and, moreover, the codimensions of the leaves are preserved. There-
fore, (M, gm) admits a codimension-one singular Riemannian foliation with two
singular leaves and, hence, a double disk-bundle decomposition (see, e.g., [7]).

(e): Suppose S¥ — M — N is a linear sphere bundle admitting a smooth
section 0 : N — M. This can be viewed as the unit-sphere subbundle of a rank-
(k +1) vector bundle 77 : E — N equipped with a smooth fiberwise inner product
(,). Therefore, M can be decomposed as the union of the disk bundles

M_=|J{vesk|(v,o(x)) <0} and My = [J{vesk|(v,ox)) >0}

xeN xXeN

over N.

(f) This assertion is taken directly from the Ph.D. thesis of Spindeler [67]. D
Whereas the double disk-bundle decomposition in Proposition 3.1 (b) ad-

mits a natural codimension-one singular Riemannian foliation with homogeneous
leaves, notice that the decomposition in (c) admits a codimension-one singu-
lar Riemannian foliation with biquotient leaves, all the while retaining many of
the characteristics of a cohomogeneity-one manifold. This breaking of symmetry
should have many applications and, indeed, has already been applied in [26]. Fur-
thermore, observe that such decompositions arise whenever one has a compact Lie
group G and closed subgroups H € K+ < G X G with K+ /H = S’ and such that
K. act freely on G via the respective restrictions of the action

(GXG)XG ~ G;((g1,82),9) —~ 91995 -

This observation now follows easily from the well-known diffeomorphism G =
AG\ (G X G), where AG is the diagonal subgroup in G X G, after first constructing
a cohomogeneity-one (G x G)-manifold with the given data and then applying
Proposition 3.1 (¢) to the free AG subaction.

Manifolds admitting double disk-bundle decompositions arise frequently in
geometry, as the following examples illustrate.

Lemma 3.2. Let G be a compact, connected Lie group which is not isomorphic to
a finite quotient of a product [1;~, Gy, where G; € {E7,Eg} foralli € {1,...,m}.
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Then, G admits a cohomogeneity-one action and, hence, a double disk-bundle decom-
position.

Proof- Recall that every compact, connected Lie group G is isomorphic to the
quotient G'/T of a product G’ = T* x []"; G; by a finite subgroup T of the
center of G', where T¥ is a torus of rank k and each G; is a simply connected,
compact, simple Lie group. In particular, if K’ € G’ x G" acts effectively on G’
with cohomogeneity one, then it commutes with the action of T' and induces an
effective cohomogeneity-one K" = K’/ (K" NT') action on G'/T. The only possible
quotient spaces under this action are a closed interval and a circle. In the first
case, it follows as in Proposition 3.1 (b) that G’ /T’ admits a double disk-bundle
decomposition. In the case that the quotient space is a circle, all K" orbits are
principal G’ /T and the quotient map G’ /T — S! is a bundle projection map. In
particular, it now follows from Proposition 3.1 (d) that G’ /T admits a double disk-
bundle decomposition. By making use of the isomorphism, it is clear that in each
case G also admits a cohomogeneity-one action and, hence, a double disk-bundle
decomposition.

It now remains only to show there is a cohomogeneity-one action on each pos-
sible product group G’ = Tk x[1%; Gi. If there is some iy € {1,...,m} such that
Gi, ¢ {E7,Es}, then the statement follows immediately from the classification by
Kollross of cohomogeneity-one actions on compact, simple Lie groups [45, 46].
Indeed, if ig = m, for example, then there is a subgroup Hy & Gy X Gy acting
on G, by cohomogeneity one and, therefore, the group K’ = Tk x ]_[?Sl GixHm
acts on G’ with cohomogeneity one, as desired.

On the other hand, if G’ = T* x [[™, G;, with k > 0 and G; € {E7,Eg}
forall i € {1,...,m}, then it is clear that K’ = T*~! x [T, G; acts on G’ with
cohomogeneity one and quotient space S'. (m

In [45] and [46], Kollross made the additional observation that the simple
Lie groups E; and Eg, when equipped with a bi-invariant metric, do not admit
any isometric action of cohomogeneity one. More generally, it is currently un-
known whether E; and Eg even admit a double disk-bundle decomposition. As
compact Lie groups with bi-invariant metrics are the simplest examples of Rie-
mannian manifolds with non-negative sectional curvature, this suggests Grove’s
Double-Soul conjecture [29] is quite subtle and difficult. On the other hand, as
noted in [29], the situation appears to be better in the case of positive curvature.

Theorem 3.3. Every known example of a manifold admitting positive sectional
curvature admits a double disk-bundle decomposition.

Proof. As described in [72], the known examples of closed, simply connected
Riemannian manifolds with positive sectional curvature comprise compact rank-
one symmetric spaces (CROSSes), an infinite family of Eschenburg spaces in di-
mension 7, and an infinite family of Bazaikin spaces in dimension 13, as well
as the following sporadic examples: the homogeneous flag manifolds SU(3)/T?,
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Sp(3)/Sp(1)3, and F4/ Spin(8); the Berger space SO(5)/ SO(3)max, where the
embedding SO(3) — SO(3)max € SO(5) is induced from the unique irreducible
5-dimensional representation of SO(3); a biquotient SU(3) // T? (the inhomoge-
neous flag); and a cohomogeneity-one manifold P;.

It is well known that the CROSSes admit smooth cohomogeneity-one actions,
as does P, by construction. Each of the homogeneous flag manifolds can be
written as a linear sphere bundle over a CROSS, while the inhomogeneous flag
SU(3)//T? is the total space of a linear S>-bundle over CP?, and it was shown
in [28] that SO(5)/ SO(3)max is diffeomorphic to a linear $3-bundle over S4,
Therefore, it follows from Proposition 3.1 (d) that each admits a double disk-
bundle decomposition.

On the other hand, in general, the Eschenburg spaces SU(3) /S}, ; and the
Bazaikin spaces SU(5)//(Sp(2) - S}) neither admit a cohomogeneity-one action
nor appear as the total space of a nice fiber bundle. Still, the free quotient action
in each case is (or, at least, can be rewritten as) a subaction of a cohomogeneity-
one action on SU(3) or SU(5), respectively. By Proposition 3.1 (c), it then follows
that each admits a double disk-bundle decomposition. O

4. TOPOLOGY OF DOUBLE DISK BUNDLES

Given the relative simplicity of the construction, it is possible to say quite a lot
about the topology of double disk bundles. Some useful results in this regard are
collected here.

To begin, observe that the cylinder D! x 8! is a disk bundle over S! for which
the boundary is disconnected, by the fact that D! = S° = {+1}. Hence, each
component of the boundary of D! x S! may be glued to (a component of) the
boundary of a distinct disk bundle. Therefore, it is possible that a closed manifold
could decompose into more than two disk bundles. For example, the sphere S?
can be decomposed as the union of a chain of cylinders glued end to end and
capped off by two disks D? x {pt}. Of course, it is clear that capping off one
end of the union of such a chain of cylinders yields a manifold diffeomorphic
to the 2-disk, so that the above decomposition of $? reduces to the union of
two disks. The following proposition shows that this reduction to a double disk-
bundle decomposition is a general phenomenon.

Proposition 4.1. Let M be a smooth, closed, connected manifold which can be
decomposed as the union of disk bundles glued together via diffeomorphisms of the
components of their respective boundaries. Then, M admirs a double disk-bundle
decomposition DB_ Uy DB, for which both B are connected.

Proof. Since M is closed, it can be decomposed as the union of at most finitely
many disk bundles. Let D%+l . DB; — B;, i = 1,...,m, be the disk bundles
in such a decomposition. As each DB; < M is compact, it follows that each base
manifold B; is closed. Furthermore, it may be assumed without loss of generality
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that each B; is connected. Let S’ — SB; — B;, i = 1,...,m, denote the corre-
sponding sphere bundles. The long exact homotopy sequence for S¥i — SB; — B;
yields that SB; has at most two components, where SB; being disconnected im-
plies that ¢; = 0 and that DB; = B; x [-1,1].

As M is closed and connected, either all of the sphere bundles SB;, i =
1,...,m, are disconnected, or there are precisely two disk bundles with connected
boundary. After relabelling the disk bundles DB; and, if necessary, reparametrizing
their fibers, it follows from the hypothesis that, if all SB; are disconnected, there
are diffeomorphisms fi: B; X {+1} — Bijs1 X {—1}, foralli € {1,...,m — 1},
and fin: B X {+1} — By X {—1}. On the other hand, if SBy and SB,, are con-
nected (and m > 2), then the diffeomorphisms f; and fin—1 may be replaced by
fi1:SBy — By x {—1} and fim-1: Bm—1 X {+1} — SBj, respectively, while fi,
does not occur.

It is, however, well known that in both cases DBy Uy, + - - Uy, , DBy is dif-
feomorphic to DBy, independent of the choices of diffeomorphisms fi,..., fin—2
(see, e.g., [47, Chapter VI, Section 5]). Hence, there is always a diffeomorphism
f: SBy — SBy, such that M is diffeomorphic to DB; U DBy, as desired. |

Recall that, if a manifold M is the total space of a fiber bundle over S!, then
M has infinite fundamental group and, by Proposition 3.1 (d), it admits a double
disk-bundle decomposition (B- x [-1,1]) Uy (B x [-1,1]) with B_ = B, of
codimension one. In fact, the permissible codimensions of B+ in a double disk
bundle M = DB_ Uy DB, are always restricted by the fundamental group of M.

Proposition 4.2. Let M be a smooth, closed, simply connected manifold which
admits a double disk-bundle decomposition DB_ Uy DB, with B+ connected. Then,
B are both of codimension > 2.

Proof. Suppose, without loss of generality, that B < M is of codimension
one, and let - : DB_ — B_ denote the bundle projection map. Thus, the
fiber m=1(b) = DB_ over a point b € B_ is diffeomorphic to an interval and
intersects B_ transversally in a single point. Moreover, if the two points comprising
=1 (b) N L are joined by an arbitrary curve ¢, in DBy, then the closed curve
cp = m-1(b) U cy in M intersects the closed submanifold B_ transversally in a
single point. Consequently, the intersection form

IM:Hn_l(M) XH](M) A

yields In; ([B-1, [cp]) = =1, where [B_] and [cp] are the homology classes repre-
sented by B_ and ¢y, respectively. However, this is a contradiction, since M being
simply connected implies that H; (M) = 0 and, hence, that the intersection form
Iy is trivial. Therefore, the codimension of B_ must be at least two. O

Note that an analogue of the above proposition for closed, smooth, simply
connected, cohomogeneity-one manifolds appeared in [35, Lemma 1.6].
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The following characterization of trivial orientable circle bundles is often use-
ful when dealing with double disk-bundle decompositions where at least one of
the singular leaves is of codimension two. In the sequel, an element of a finitely
generated abelian group A will be called a generator if it is neither torsion nor a
non-trivial multiple of any other element. Equivalently, an element of A will be
called a generator if it generates a free abelian subgroup of rank one which is not
properly contained in any other free abelian subgroup of rank one.

Theorem 4.3. LetS' — L — B be an orientable circle bundle over a connected
manifold B with 10, (L) abelian. Then, the bundle is trivial if and only if the induced
homomorphism Tt (SY) — 101(L) is injective with image containing a generator of
T (L)

Proof- Recall, for example, from [53, Proposition 6.15], that every orientable
circle bundle S' — L — B is principal and, hence, classified by its Euler class
e € H%(B). In particular, $' — L — B is trivial if and only if e = 0.

The Gysin sequence corresponding to S! — L — B yields an exact sequence

0~ H'(B) - H' (L)-L H*(B)—% H>(B) — - - - .

Let i : S! — L be inclusion of a circle fiber, and let j : (D?,S') — (E,L) be
the corresponding fiber inclusion of pairs, where D> — E — B is the disk bundle
with boundary S! — L — B. There then exists a commutative diagram (see, e.g.,

[38, Section 4D])

HU(SH ~—"Hi(1) —L~ HO®B)

| =

H%(D?,SY) <7H2(E,L)

where the vertical maps are those in the long exact sequences for the pairs, j* is
an isomorphism, ® is the Thom isomorphism, and f is the map in the Gysin
sequence above. Therefore, the above Gysin sequence can be modified to yield a
commutative diagram

0 H'(B) H'(L) —L > HO(B) —*~ H2(B) — > - - - .

T

Hl(sl)

Clearly, therefore, the Euler class e is trivial if and only if i* : H'(L) — H!(S!) is
surjective. But, since H 1(S1) is free abelian, we see that i* is surjective if and only
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ifie:H{(SY) — H{(L) is injective and maps a generator of H;(S!) to a generator
of Hy(L). Since 1 (L) is abelian, naturality in the Hurewicz theorem now ensures
that e = 0 if and only if the induced homomorphism is : 1 (S') — (L) is
injective and maps a generator of 171 (S!) to a generator of 111 (L), as desired. [

In [30], Grove and Halperin systematically studied spaces admitting a double
disk-bundle decomposition from the perspective of rational homotopy theory. For
the present work, it is useful to have a summary of their results adapted to the
current situation.

Theorem 4.4 (Grove-Halperin [30]). Suppose that a smooth, closed, simply
connected manifold M admits a double disk-bundle decomposition DB_ Uy DB,
where B are both connected. If F denotes the homotopy fiber of the inclusion L — M,
then L and F are nilpotent spaces and F is rationally rational homotopy equivalent ro
one of the spaces listed in Table 4.1, where Ay (4) denotes a certain simply connected
topological space whose non-trivial rational homotopy groups are in degrees 4, 7 and
4m — 1. Moreover, the possible fundamental groups of F and codimensions of B+ are
indicated in Table 4. 1.

Observe from the long exact homotopy sequence for the homotopy fibration
F — L — M tha, in particular, 77 (L) must be abelian whenever rank(mr; (L)) > 1.
As a first, simple application of Theorem 4.4, one obtains a criterion for a double
disk bundle to be rationally elliptic.

Lemma 4.5. Let M be a smooth, closed, simply connected manifold which admits
a double disk-bundle decomposition DB_ Uy DB, with B connected. If there exists a
Jo € N such that the rational homotopy groups of some X € {L,B.} satisfy TTJQ(X ) =
0, for all j = jo, then M is rationally elliptic.

Proof. In either case, since L is a sphere bundle over B., all rational homotopy
groups TrJQ(L) of L must vanish whenever j > jo, for some jo € N. Let F be
the homotopy fiber of the inclusion map L — M. By Theorem 4.4, the rational
homotopy groups of F vanish in sufficiently high dimensions. The long exact
homotopy sequence for the homotopy fibration F — L — M now yields that there
is some j; € N such that TFJQ(M) = 0, for all j > j;, and, hence, that M is
rationally elliptic. O

If a manifold M of arbitrary dimension admits a double disk-bundle decom-
position DB_ Uy DB, with a singular leaf B € {B.} of sufficiently low dimension,
it turns out that M is always rationally elliptic.

Proposition 4.6. Suppose that M is a smooth, closed, simply connected manifold
which admits a double disk-bundle decomposition DB_ Uy DB, with B+ connected
and dim(B) < 3, for some B € {B+}. Then, M is rationally elliptic.

Proof. If F is the homotopy fiber of the inclusion L — M then, since M is sim-
ply connected, the long exact homotopy sequence associated with the homotopy
fibration F — L — M ensures that 11 (F) — 11(L) is surjective. From the list of
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i (F) F=~q (o) = (0} | renadiiyof
- S' x 8! x QS’ Both
L&, S! x §3 x QS5 l=a=8 One
Qs $7 x 8% x QS’ Neither
Z S' x $F x QsF*2 l=a<p Both
S! x §2B+1 % §2B+3 | 1 = ot < B, B odd S!-bundle
S* x §B x QSx+h+1 l<a<§B
SX % OSx-+1 l<a=p
SU(3)/T? x QS7
0 Sp(2)/T? x QS° 2=a=R Boch
G, /T? x Q813
Sp(3)/ Sp(1)3 x QS3
A4(4) x QS 4=a=p
Ag(4) x Q8?5
F4 / Spin(8) x QS$% 8=u=2

TABLE 4.1. Properties of the homotopy fiber F and the bundles

S’ — I — B. associated with a double disk-bundle decomposi-
tion DB_ Uy DB,

possible fundamental groups of F given in Table 4.1, it follows that 71 (L) is either
Qs or abelian. Considering the sphere bundle S’ — L — B corresponding to B,
it is clear that 111 (B) is itself either Qg or abelian. As dim(B) < 3, this implies B
is finitely covered by one of S!, S2, T2, S, §2 x S!, or T? (see, e.g., [2, Table 2,
p- 25]). In particular, by Lemma 4.5, M is rationally elliptic. O

As there are well-known classifications of simply connected, closed manifolds
in low dimensions, it is convenient to have a criterion which ensures there is a sin-
gular leaf in a double disk-bundle decomposition whose universal cover is closed.

Lemma 4.7. Suppose M is a smooth, closed, simply connected manifold which
admits a double disk-bundle decomposition DB_ Up DB, with B+ connected. Then,
rank(111 (L)) < 1 if and only if at least one of the singular leaves B has finite funda-
mental group.
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Proof- Assume rank(r; (L)) < 1, and suppose 171 (B) are both infinite. The
long exact homotopy sequences for the bundles $¥ — L — B. then yield

1 < rank(71; (B+)) < rank(mr(L)) <1

and, hence, that 711 (L) and its quotients 17 (B+) are abelian of rank one. Further-
more, the images of the homomorphisms ($%=) = 11, (L) in the respective long
exact sequences are both finite and, hence, cannot together generate 1 (L). Since
(M) = 0, this is a contradiction to equation (3.7) of [30].

Assume, on the other hand, there is some B € {B.} with 711 (B) finite. Then,
since rank (711 (S%*)) < 1, the long exact homotopy sequences for Sl I - B,
ensure rank (11 (L)) < 1, as desired. |

Recall that a topological space is said to be of finite gpe if it is weakly homo-
topy equivalent to a CW-complex with finitely many k-cells for each k. It turns
out that, for a nilpotent space X, being of finite type is equivalent to the integral
homology groups H;(X) being finitely generated for all j > 1, and to the homo-
topy groups T;(X) being finitely generated for all j > 1 (see Theorem 4.5.2 in
[50]).

Lemma 4.8. Suppose X is a nilpotent space of finite type and p : X — X isa
covering map. Then, X is also a nilpotent space of finite type.

Proof. Recall that the map p induces an injection on fundamental groups and
an isomorphism on higher homotopy groups. In particular, by the discussion
immediately preceding the lemma, it thus suffices to show that X is a nilpotent
space. As subgroups of nilpotent groups are nilpotent, the nilpotency of 1 (X)
ensures that 111 (X) = p4 (111(X)) € 1 (X) is nilpotent, while the isomorphisms
Py : T(X) — T(X), k > 2, are, by definition, equivariant with respect to the
action of 111 (X) (see [38, pp. 341-342]); that is,

Px(y - @) =p«(y) - px (@)

forall y € 11(X) and all @ € m(X). It now follows easily from the nilpotency
of the space X that X is nilpotent. O

This lemma finds a useful application in the context of double disk bundles.
Indeed, the regular leaf, after taking an appropriate cover, behaves, up to homo-
topy, like a closed manifold of possibly lower dimension. Recall that the maximal
free abelian cover N of a closed, smooth, orientable manifold N with first Betti
number b; (N) is the total space of a principal Z?'™)-bundle over N. Indeed, N is
a smooth, orientable manifold, with finite fundamental group an extension of the
torsion subgroup of H; (N) by the commutator subgroup of 711 (N), and the group
of deck transformations for the covering is Z?'™). For example, the maximal free
abelian cover of a product T* x N is R¥ x N whenever 1 (N) is finite.
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Proposition 4.9. Let M be a smooth, closed, simply connected manifold which
admits a double disk-bundle decomposition DB_ Up DB, with B+ connected. Then,
the maximal free abelian cover L of L is a rational Poincaré-duality nilpotent space of
formal dimension dim(L) — by (L).

Proof- Recall from Theorem 4.4 that L is a nilpotent space. Now, being
a closed, smooth, codimension-one submanifold of a closed, simply connected
manifold, L must also be orientable (by [41, p. 107]) with H;(L) finitely gener-
ated for all j > 1. Therefore, by [50, Theorem 4.5.2] and Lemma 4.8, the maxi-
mal free abelian cover L of L is a smooth, orientable manifold which is nilpotent
and of finite type. In particular, dimg Hy (L; Q) must be finite dimensional. It
now follows from Milnor-Barge duality (see [5], [52] and also [48, Theorem 5.2])
that there is an integral homology class [L] € Hgimr-p, (1) (L) such that the cap
product

~[L]: H/(L; Q) = Hgim(r)-by1)—j (L : Q)

is an isomorphism for all j > 0, as desired. |

Observe that, if F is the homotopy fiber of the inclusion L — M, it follows
from Table 4.1, the Hurewicz theorem, and the long exact homotopy sequence
for the homotopy fibration F — L — M that b;(L) = rank(m;(L)) < 2. In
other words, the maximal free abelian cover I of the regular leaf L behaves on
the level of rational cohomology like a closed, simply connected manifold with
dim(L) — 2 < dim(L) < dim(L).

Just as it is convenient to know that the maximal free abelian cover of the
regular leaf L is nilpotent, it is often useful to have a criterion ensuring that a
singular leaf is a nilpotent space.

Lemma 4.10. Suppose S' —~ L— B is a circle bundle such that the induced
homomorphism 1t (S') — 101 (L) is injective. If L is nilpotent, then so too is B.

Proof. From the long exact homotopy sequence for the bundle, it is clear that
the homomorphism 7y : (L) — 1 (B) is surjective. Being the image of a
nilpotent group under a homomorphism, it follows that 7, (B) is nilpotent.

Since 111 (S!) injects into 11y (L), the long exact homotopy sequence yields
isomorphisms 1Ty : Tk (L) — T (B) for all k > 2.

For k > 2, let

m(l) =G> Gk - =GR = {1}

be the chain of subgroups associated with the abelian group (L) which witness
the nilpotency of the action of 111 (L). Define subgroups H}‘ = TTy (Gf,?) < 1 (B)

for j € {0,...,m}. Since we know T4 is an isomorphism, it is clear that, for each
Jje{l,...,m}, Hjis normal in H;_;; that is,

T (B) = Hy & Hf & - - - & Hy, = {1}.
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It remains to show that the action of 71 (B) = 114 (111 (L)) preserves each H;
and induces a trivial action on each Hj_;/H ;. By definition (see, e.g., [38, p. 341—
342]), it is clear that 114 : 1 (L) — 11k (B) is equivariant with respect to the action
of 1 (L); that is,

T (Y - @) = T (Y) - T (@)

forall y € (L) and all @ € mi(L). Since T (B) = 14 (111 (L)), it now clearly
follows that H; is closed under the action of 7 (B) for all j € {0,...,m}.

Finally, if y € m (L) and ¢ € Gj_, it follows from the nilpotency of the
171 (L) action that

T (Y) - T (@) = T (y - @) € T (@ - Gj) = T (Q)Hj,

and, hence, that 111 (B) acts trivially on each H;_; /H;. O

Recall now that the Lusternik-Schnirelmann category cat(Y) of a topological
space Y is defined to be the least integer m € N such that Y is the union of m + 1
open sets, each of which is contractible in Y. The rational Lusternik-Schnirelmann
category catg(Y) of Y, on the other hand, is defined to be the minimal cat(Z)
among all Z which are rationally homotopy equivalent to Y.

The following theorem will be an important tool in the remainder of the
paper. Although our interest is restricted to the manifold case, the statement re-
mains true in the setting of double mapping cylinders (see [30]) as long as cato (L)
is finite; in this way, it is a generalization of Lemma 6.3 of [30]. (See [11, Propo-
sition 2.7] for another related statement under different hypotheses.)

By Table 4.1, the homotopy fiber F of the inclusion map L — M always has
a loop-space factor of the form QS for some k € N. Denote by s the degree of
the unique non-trivial rational homotopy group of QS* of even degree. That is,
s=k—-1,ifkisodd,and s = 2(k — 1), if k is even.

Theorem 4.11. Suppose M is a smooth, closed, simply connected manifold which
admits a double disk-bundle decomposition DB_ Up DB, with B+ connected. Then,
in the long exact sequence of rational homotopy groups associated with the homotopy
fibration F — L — M, the connecting homomorphism 0: n;Q;l (M) — Q(F) is
non-trivial.

Proof. Suppose the homomorphism 0 is trivial. In particular, it then follows

from the long exact sequence that the map mQ(F) — m&(L) is injective.
Consider now the space W_; in the Whitehead tower

s> Wy, - W - Wy - F
associated with F, that is, an (s — 1)-connected space such that the map Ws_; — F

induces an isomorphism 1;(Ws_;) — T;(F) for every j > s. Therefore, by
Table 4.1, there are three possible configurations of non-trivial rational homotopy
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groups for Ws_;. First, if £+ are even with _ = ¥, and F ~q Sl- x OS?-*1, then
17 (F) = 0 and

a - QZ; j:SZE—;
T (Weoy) = {Q’ j=20_—1.

Second, if £+ are even and €_ # ¥, then F ~q St- xSl x QSt-+++1 7 (F) = 0
and

Q, j=s=0_+7.,

Q _
Ty (W1 = {Q, j=2max{l.} —1>s.

In all other cases, the only non-trivial rational homotopy group is
T (Ws) = Q.

In all three scenarios, by computing the minimal model it becomes clear there
is an element x € H*(Ws_1;Q) # 0 such that x™ = 0 for all m € N. In
particular, this implies Ws_; has cup-length cup(W;_1) = 0. Moreover, from
Propositions 27.14 and 28.1 of [16] it now follows that

catg(Ws—1) = cup(Ws_1) = oo.

On the other hand, the composition Ws_; — F — L induces (by assumption)
an injection 2, (Ws_1) — 12, (L), while the kernel of ﬂgd(Ws—ﬂ - "é%d(L)

has dimension k € {0, 1}. By Theorem 4.4, L (and F) is nilpotent. Therefore,
the mapping theorem [18, Theorem 2.81] yields cato(Ws_1) < catg(L) whenever
k = 0. By combining Propositions 27.2 and 27.5 and Lemma 28.2 of [16], it may
thus be concluded in the case k = 0 that

oo = catg(Ws_1) < catg(L) <cat(L) <n—1 < oo,

a contradiction.
Suppose, therefore, that k = 1, and hence, that TT(%d(Ws—l) = 0. Observe
first that the mapping theorem applied to the map Wy_; — F yields

oo = catyg(Ws_1) < caty(F).

In the case where £+ are even with £_ = £, and F =g S¥ x QS’-*1, the
unique non-trivial rational homotopy group in even degrees is nd(F) = Q2
which, by assumption, injects into T (L). Therefore, T2, (F) — w2, (L) is
injective, while the kernel of

"Sld(F) = "2),1(1:) = Q — odd®(L)
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is one dimensional (since k = 1). Hence, Theorem II of [15] implies
oo = catg(F) < catg(L) + 1 < n < oo,

again a contradiction.
Finally, suppose £+ (and k = 1) are even with £_ # £, that is,

F =g S'- x 8t x Qsl-+t+1,

In particular, F has exactly five non-trivial rational homotopy groups, occurring
in degrees

min{f:} < max{f.}, 2min{l.} -1 <s=4_+ L, <2max{l.} -1,

and each of rank 1. Therefore, the kernel of Tr;%d(F) =Q? - Tr;%d(L) has dimen-
sion € {1,2} (since k = 1). Moreover, as mentioned above, F, and hence L, are
simply connected. If ©Q, (F) — m&,, (L) is injective, then Theorem II of [15]

even even
yields a contradiction

oo =caty(F) <cag(L) + 1 <sn+1< o

as before. Therefore, given the assumption that n&(F) — (L) is injective, it
remains only to show that Trg (F) =Q — TTE (L) are injective. It clearly suffices
to show that these homomorphisms are non-trivial.

To this end, observe that the inclusion L — M factors through the disk bundles
DB., and that the inclusions L — DB. and DB. — M are homotopic to the
corresponding sphere-bundle projection maps L — B- and inclusions B. — M,

respectively. Therefore, the homomorphism Trﬁ (L) — Trﬁ (M) decomposes as a
composition 1y (L) — 1} (B.) — 1% (M). 7 7

Now, if TT?I(F ) =Q — ﬂg (L) is trivial, then the long exact sequence for
F-L-M ir;lplies that Wg (L) — .t (M) is injective, which, by the above
observations, further implies that Trg (L) - Trg (B ) is injective. However, since
catg(S?) = 2, Theorem II of [15] applied to the sphere bundle St - [ - B,
reveals that Tré% (S*) = Q — Tré% (L) must be injective and, hence, by exactness,
that ker(nﬁ (Li) - Trﬁ (B:)) # 70, a contradiction. Thus, the homomorphisms
Trﬁ (F) = Q - Tr}oi (L)imust be non-trivial, as desired. O

As mentioned in the Introduction, it was shown in [26] that every homo-
topy 7-sphere admits a metric of non-negative curvature. Crucial to establishing
this fact was the observation that every homotopy 7-sphere admits a double disk-
bundle decomposition with €+ = 1. The following corollary shows that a similar

strategy to obtain non-negative curvature on exotic spheres in higher dimensions
will not work.
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Corollary 4.12. Suppose M is a homotopy sphere. Then, M admits a double
disk-bundle decomposition DB_ Uy, DB.. with B connected and codim(B+) = 2 if
and only if it is either diffeomorphic to S, n € {2, 3,4, 5}, or homeomorphic to S’.

Proof. If M admits a double disk-bundle decomposition DB_ Uy DB, with
B. connected and codim(B+) = 2, that is, with £+ = 1, then Table 4.1 implies
that the corresponding homotopy fiber F of the inclusion L — M has a factor QS*
with k € {3,5,7}. In the notation above, it follows that s € {2,4,6} and, by
Theorem 4.11, that M has a homotopy group of positive rank in one of degrees
3, 5 or 7. Since M is a homotopy sphere, it must therefore be of dimension
ne {2,3,4,5,7}. If 2 < n <5, then M must be diffeomorphic to S". Indeed, if
n € {2,3,5}, this follows from the corresponding Smooth Poincaré Conjecture,
while for n = 4, it was established in [25].

On the other hand, the standard actions of S! on S? and T? on S3 are of
cohomogeneity one and have codimension-two singular orbits. Similar actions
on $% and $° can be found in [55] and [33], respectively. Finally, if n = 7, the
construction in [26] ensures that every homotopy 7-sphere admits a double disk-
bundle decomposition with £, = 1. O

In Corollary 4.12, one still obtains the restriction dim(M) € {2,3,4,5,7} un-
der the weaker hypothesis that M is only a simply connected rational homotopy
sphere (see [13] for this and related observations). However, in this case much re-
mains unknown about which such M admit a double disk-bundle decomposition
with €+ = 1. Indeed, although it was demonstrated in [26] that a large family of
2-connected, rational 7-spheres admit such a structure, it was subsequently shown
in [27] that this family does not contain all possible homotopy types of such man-
ifolds: for example, the family does not contain any 2-connected 7-manifold M”
with H4(M’7) = Zs and non-standard linking form. In a forthcoming work, the
authors will detail general obstructions to the existence of any double disk-bundle
decomposition for highly connected, rational homology spheres, as well as for
more general spaces.

5. DOUBLE DISK BUNDLES IN DIMENSION AT MOST FIVE

As discussed in the Introduction, the smooth classification of simply connected
manifolds of dimension at most four admitting a double disk-bundle decompo-
sition is well known. Using this, the case of manifolds of dimension at most five
in Theorem A is then a simple consequence of the preliminary results obtained in
Section 4.

Theorem 5.1. Let M be a smooth, closed, simply connected manifold which ad-
mits a double disk-bundle decomposition. If dim(M) < 5, then M is rationally ellip-
tic. If dim(M) < 4, then M is diffeomorphic to one of S*, S3, S, CP?, S2 X S? or
CP%# + CP2,
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Proof- Since dim(M) < 5, Propositions 4.1 and 4.2 imply M admits a decom-
position DB_ Uy DB, with B connected and dim(B-+) < 3. By Proposition 4.6,
it now follows that M is rationally elliptic.

In dimensions 2 and 3, a smooth, closed, simply connected manifold must be
diffeomorphic to a sphere, whereas the four-dimensional statement was proven by

Ge and Radeschi [24]. O

To prove Theorem B, assume for the remainder of this section that M 5isa
smooth, closed, simply connected 5-manifold which admits a double disk-bundle
decomposition DB_ Uy DB, with B+ connected. It was already shown in The-
orem 5.1 that such an M3 must be rationally elliptic. Recall that, according to
Pavlov [57], a five-dimensional, rationally elliptic manifold is rationally homo-
topy equivalent to either $> or S x S2. The following lemma will be helpful
later.

Lemma 5.2. Under the identifications

H*(S* x §%) = Z[x,y]/{x* = y* = 0},
H*(CP2#CP") = Z[u,v]/ {u® + v = uv = 0},

every automorphism of H* (82 x S?2) maps {+x,+y} to itself, while every automor-
phism of H* (CPX#CP") maps {+(u +v), £(u — v)} to itself

Proof. In the case of H* (S? X S?), notice that, for any ax +by € H*(S?x$?),
the identity (ax + by)? = 2abxy holds. Thus, (ax + by)? = 0 if and only
if either a = 0 or b = 0. On the other hand, in the case of H*(CPZ#C_PZ),
(au + bv)? = 0 if and only if @ = +b. It follows that the sets {+x,+)} and
{=(u +v),=(u — v)} characterize all primitive elements of degree two in their
respective rings which square to 0. Therefore, these two sets are fixed by any
automorphism of their respective cohomology rings. O

Theorem B can now be proven by considering the two possible rational ho-
motopy types of a rationally elliptic 5-manifold separately.

Theorem 5.3. Suppose M° is a smooth, closed, simply connected 5-manifold
which is rationally homotopy equivalent to S°. If M admits a double disk-bundle de-
composition, then M5 is diffeomorphic to either S5 or the Wu manifold SU(3) / SO(3).

Proof. By the Barden-Smale classification of smooth, closed, simply connected
5-manifolds [4, 65], it suffices to show that H,(M?) is either trivial or Z,. By the
Hurewicz theorem and Poincaré duality, this is equivalent to establishing the same
for either 112 (M°) or H?>(M?). As M® ~q S°, by hypothesis, it is already clear that
115 (M?) and H3(M?) are at most torsion.

Let DB_ Uy, DB, be a double disk-bundle decomposition of M>, with B.
connected, and let F be the homotopy fiber of the inclusion L — M 5. Since M° is
rationally homotopy equivalent to $°, Theorem 4.11 implies that the loop-space
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factor of F must have non-trivial rational 114 and, hence, the loop-space factor
must be QS°. It follows from Table 4.1 that 71 (F) # 72 and, therefore, that
rank(m) (F)) < 1. Thus, by Lemma 4.7, a singular leaf B € {B.} must have
finite fundamental group. By Proposition 4.2, dim(B) < 3 and, therefore, B is
finitely covered by either S? or $3. In particular, this implies that 11, (B) is either
trivial or isomorphic to Z. The long exact homotopy sequence for the fibration
S [ — B, where 1 < ¥ < 4, now yields that 112 (L) is free abelian.

Consider then the long exact homotopy sequence for the homotopy fibration
F — L — M>. Assume first that TréQ(F) = 0, that is, that 1, (F) is at most tor-
sion, and suppose that T1,(M>) # 0, that is, that M> # S3. Since m,(L) is free
abelian, it follows that 71, (L) = 0 and, hence, that the torsion group 1, (M 5) in-
jects into 11 (F). However, by Table 4.1, 111 (F) contains a torsion subgroup only
if 11 (F) € {Qs,Z®7Z,}. Since the loop-space factor of F is QS°, Table 4.1 implies
that 111 (F) = Qg is impossible. Therefore, 1, (F) = Z @ Z, and the only possi-
bility is that 71,(M°) = Z,, that is, that M° is diffeomorphic to the Wu manifold
SU(3)/S0O(3).

Assume, on the other hand, that 5 (F) # 0. As the loop-space factor of
F is QS°, it follows from Table 4.1 that m;(F) = 0, F ~g $? X $* X QS° and
codim(B+) = 3. The long exact homotopy sequences for F — L — M> and
S? — L — B. yield, in addition, that 711 (L) = 11;(B+) = 0. Therefore, B. = S?
and L is an S?-bundle over S?. Thus, L is diffeomorphic to either $? x S? or the
non-trivial bundle CP2#CP".

Since M is simply connected and has the same rational cohomology as S5, it
follows from the Universal Coefficient Theorem that H?(M3) = 0. The Mayer-
Vietoris sequence for the decomposition DB_ Uy, DB, now yields the short exact
sequence

X -t

0 — H%(B_) ® H*(B.) H*(L) — H3*(M?) — 0,

where 1T+ : L — B. are the sphere-bundle projection maps. In particular, the ho-
momorphism w* =7t} : H2(B_)®H?(B,) — H*(L) must be injective. Therefore,
the images 11} (z+) € H?(L) of generators z+ € H?(B.) cannot differ by a sign,
since, otherwise, there is an € € {1} such that (T* — ) (z_,ez,) = 0.

Now, from the Gysin sequences for $* — L. B., we see that the images
¥ (z+) € H?(L) are primitive elements which must necessarily square to zero.
Thus, by Lemma 5.2, together with the above observation m*(z_) # +mf(z.), it
follows there exist €1, &, € {1} such that {1t*(z_), 7w} (z4)} is equal (as a set) to
either {£1x, &2} or {&1(u+v), &2(u—v)}, depending on whether the bundle L is
trivial or not. In turn, this implies the map * — ¥ : H2(B_) @ H*(B,) — H*(L)
is surjective whenever L = S?xS?, and of index 2 whenever L = CP2#CP". Finally,
as desired, this implies either H3(M°) = 0 or H>(M°) = 7. O



Manifolds thar Admit a Double Disk-Bundle Decomposition 1527

To complete the proof of Theorem B, it remains only to deal with the case of
manifolds rationally homotopy equivalent to S® x S2.

Theorem 5.4. Suppose M° is a smooth, closed, simply connected S-manifold
which is rationally homotopy equivalent to S> x S*. If M° admits a double disk-
bundle decomposition, then M° is diffeomorphic to S> X S? or to the unique non-trivial
S3-bundle over S2.

Proof. As in the proof of Theorem 5.3, the proof appeals to the Barden-Smale
classification of closed, simply connected 5-manifolds [4, 65]. In particular, it is
sufficient to show that m,(M°) = H,(M°) = H3(M°) = 7.

To begin, let DB_ U DB, be a double disk-bundle decomposition of M,
with B connected, and let F be the homotopy fiber of the inclusion L — M>. By
hypothesis, 7T£Q (M®) = Q and TT;Q(MS) = Q2 As W?(MS) is the only odd-degree
rational homotopy group of M> which is non-trivial, it follows from Theorem 4.11
that the loop-space factor of F must have non-trivial rational 1r;. Thus, by Table
4.1, F is rationally homotopy equivalent to one of S! x §! x QS3 or §? x QS°.

Suppose F is rationally homotopy equivalent to S! xS! x QS?. From Table 4.1,
this implies that 7 (F) = Z? and W?(F ) = Q, and that L is an S'-bundle over
each of the closed 3-manifolds B+. From the long exact homotopy sequences for
F—L—MandS' — L — B., it is now apparent that 111 (L) and 17y (B+) are
abelian. As in the proof of Proposition 4.6, this implies each of B. is finitely
covered by one of S3, §2 x S! or T?. In particular, it follows that 7, (B..) is free
abelian. Therefore, from the long exact homotopy sequence for ! — L — B., itis
now clear that 71, (L) must also be free abelian. However, given that 11y (F) = 72,
applying this fact to the long exact homotopy sequence for F — L — M° yields
that 11,(M?) is free abelian. Since rank(1r,(M°)) = 1, it may be concluded that
1T, (M°) = Z, as desired.

Assume now F is rationally homotopy equivalent to $2xQS3. From Table 4.1,
this implies that 71 (F) = 0 and that L is an S2-bundle over each of the closed
2-manifolds B.. The long exact homotopy sequences for F — L — M° and
S! — L — B. yield 7m;(L) = 111(B+) = 0. Therefore, B. = S? and, hence, L is
diffeomorphic to either S? x §? or CP2#CP".

If z. € H%(B.) are generators, then the Gysin sequences for $? — Ry
yield that their images 1} (z.) € H?(L) are primitive elements which must nec-
essarily square to zero. Therefore, by Lemma 5.2, 1t (z.) lie in either {+x, +y}
or {x(u +v),+(u — v)}, depending on whether the bundle L is trivial or not.

Now, since M is simply connected and has the same rational cohomology
as $% x S?, the Universal Coefficient Theorem yields H>(M°) = Z. The Mayer-
Vietoris sequence for the decomposition DB_ Uy DB, therefore provides the exact
sequence

X -1}

0 — H*(M’) — H2(B_) ® H*(B,) H%*(L) — H3(M°) — 0.
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In particular, the homomorphism * — 7t : H>(B_) ® H*>(B) — H?(L) has ker-
nel isomorphic to H?(M?%) = Z, and hence, some linear combination of 71} (z.)
must be trivial. However, by the above observations about these elements, this is
impossible unless 1T (z. ) agree up to sign. Therefore, in either case,

H>(M°) = HX(L) /(¥ (z_), 7t} (24)) = H* (L) /{Tt*(2_)) = Z,
as desired. O

6. DOUBLE DISK BUNDLES IN DIMENSION 6

As mentioned in the Introduction, there exist closed, simply connected, smooth
six-dimensional counter-examples to the rational ellipticity of double disk bun-
dles. The main goals of this section are to establish Theorem A in dimension six
and Theorem D.

Throughout this section, M® will denote a smooth, closed, simply connected
6-manifold which admits a double disk-bundle decomposition DB_ Uy DB, with
B. connected.

As a consequence of Proposition 4.6, M® is rationally elliptic whenever one of
B. is of codimension > 3. Therefore, only the case of codimension-two singular
leaves B needs to be considered in what follows. In this case, Table 4.1 yields that
the homotopy fiber F of the inclusion L — M has 11, (F) € {Qg,Z ® 75,7°}.

Lemma 6.1. Suppose the singular leaves Bx in the double disk-bundle decompo-
sition of M 6 are both of codimension two and that some B € {B.} has finite funda-
mental group. Then,

rank(17y (F)) + rank (11, (B)) = by (M®) + 1.

Proof. Since the fundamental group 77 (B) is finite, the universal cover BofB
is a smooth, closed, simply connected 4-manifold which satisfies Poincaré duality
and has TTJ'(E) = 11;(B) for all j > 2. Together with the Hurewicz and Universal
Coeflicient theorems, it may thus be concluded that H,(B) = my(B) = my(B) is
free abelian.

From the long exact homotopy sequence for the fibration ! — L — B, it
follows that 115 (L) is also free abelian and

(6.1) rank (715 (B)) = rank(m, (L)) — rank(7r1 (L)) + 1.

By Table 4.1, there is a unique jo € N, such that 1, (F) is of positive rank
(= 1). If m(F) € {Qg,Z & Z,}, then rank(1>(F)) = 0, while rank (11, (F)) =1
whenever 111 (F) = Z2. In this latter case, Table 4.1 yields that F is rationally ho-
motopy equivalent to S! xS! xQS3. Therefore, as a consequence of Theorem 4.11,
the image of the homomorphism 1, (F) — (L) in the long exact sequence for
the homotopy fibration F — L — M® has rank 0. In other words, the free abelian
group T2 (L) must inject into ™, (M©).
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It now follows from exactness and the Hurewicz theorem that, in all three
cases,

(6.2) rank (111 (F)) = by (M®) — rank (11, (L)) + rank(rr; (L)).

By equations (6.1) and (6.2) together, rank (1, (F)) + rank(1m,(B)) = b, (M®) + 1,
as desired. 0

Theorem 6.2. Suppose that the singular leaves B+ in the double disk-bundle
decomposition of M are both of codimension two and that at least one of the bundles
S! — [ — B. is non-orientable. Then, M® is rationally elliptic with by (M 6) < 2.

Proof. Observe first that, by Table 4.1, the hypothesis that at least one of the
bundles S' — L — B. is non-orientable is equivalent to 77 (F) being either Qg or
Z ® Z,. Therefore, by Lemma 4.7, some B € {B.} has finite fundamental group.
By Lemma 6.1, if by (M®) — rank(1; (F)) < 1, then rank(m;(B)) < 2. In this
case, the Hurewicz and Universal Coefficient theorems ensure that the universal
cover B of B has H,(B) = 1, (B) = 1, (B) free abelian of rank at most 2. From
the classification of smooth, closed, simply connected 4-manifolds [20], it now
follows that B is homeomorphic to one of $%, CP2, §2 x S or CP2# + CP? and,
hence, rationally elliptic. As Trj(f?) = 1j(B) for all j > 2, the rational ellipticity
of M now follows from Lemma 4.5.

It remains, therefore, to show that the inequality

by (M®) = rank(mr; (F)) > 1

is not possible under the present hypotheses. To this end, note that the integral
homology of F has been determined in Table 1.5 of [30]. It is a simple application
of the Universal Coefficient Theorem to compute the rational cohomology groups
of F, namely,

VQ’ J = O’
(6.3) HI/(F;Q)={Q?% j>0andj=0modS3,
0, otherwise

if m (F) = Qs,
(Q, j=0o0rjodd,
(6.4 HI/(F;Q)={Q?% j>0andj=0mod4,

0, otherwise

ifTrl(F) =7 17,.

Consider the rational Serre spectral sequence (Ej, d ) associated with the ho-
motopy fibration F - L — M¢. In particular, H>(L; Q) = @Dpyi=s EXL. On
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the other hand, as L is a codimension-1 submanifold of the closed, simply con-
nected 6-manifold M?, it is orientable and, hence, has H>(L; Q) = Q (see, e.g.,
[41, p. 107]). These facts will place restrictions on the Betti numbers of M°. For

convenience, denote by d?’l the differential d: Ef;’l - E}CH P17 and by A;- the
diagonal {E;C’l | k+1=5} on the Ej-page of (Ej,d;).
If 11 (F) = Qs, the only non-trivial entry on the diagonal Ag is

Ey° = H*(M% HY(F;Q) = H*(M%Q?) = @,

Since we have that d3° = (d4: E;° = E3° — EY° = Q) is the only possible non-
trivial differential on any page which involves E% 3 it follows that Q = H>(L; Q) =
ker(di’3) c Q2:(M°) However, since rank(dﬁ’s) < 1, one concludes that

2b(M®) — 1 < 2b3(M°) — rank(d}”) = dim(ker(d;?)) = 1 < 2b,(M®),

which immediately yields b, (M®) — rank (111 (F)) = by (M®) = 1.

Suppose now that 1 (F) = Z @ Z,. The non-trivial entries on the diagonal
A5 consist of E§'5 = Q, E§’3 = QM) and E§’1 = QbM°), By considering
all possible differentials which have these entries as either domain or range, one
obtains that the contribution of Eg’s to H>(L; Q) = Q has rank

1 - rank(dS”) - rank(d$”) — rank(dg”),
while the contribution of E;” has rank
by (M) — rank(dy?) — rank(d2?),
and Eg’l contributes rank
by (M) — rank(d5") — rank(d*).
Therefore, the rank of H>(L; Q) = Q is given by

1=(1- rank(dg’ﬁ) — rank(dg'i) - rank(dg's))
+ (by(M°) — rank(dgA) - rank(dij))
+ (b (M®) — rank(d3") — rank(d$*))
= 1+ 2by(M%) — (rank(d3”) + rank(d3”) + rank(dg”))
- (rank(dgA) + rank(dgA))
— (rank(d3") + rank(d”)).
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Now, since 53’4 = Q?, Eg’s =Q and E§'° = Q, this implies
1>2b,(M®) +1—-1-2-1=2b,(M°) -3,

which immediately yields b, (M®) < 2, hence, by (M®) — rank(1r; (F)) < 1. O

As a consequence of Theorem 6.2, one can make the following additional
general observation, which may be useful in its own right.

Corollary 6.3. Suppose that the singular leaves B in the double disk-bundle
decomposition of M 6 are both of codimension two and that by(M 6) = 3. Then, both
of the bundles S' — L — B.. are orientable.

In the case where each singular leaf is of codimension two and has infinite fun-
damental group, a classification up to diffeomorphism is achieved. In particular,
one may obtain a decomposition of S? x $? of this form (with singular leaves dif-
feomorphic to S! x $?) via the well-known decomposition of one of the S factors
into two solid tori.

Theorem 6.4. Suppose that the singular leaves B in the double disk-bundle
decomposition of M S are both of codimension two, with rank(tr;(B+)) > 1. Then,
MO s diffeomorphic to S* X S3 and, hence, rationally elliptic.

Proof- Since B. have infinite fundamental groups, Lemma 4.7, together with
Table 4.1, implies that 111 (F) = 1;(L) = Z?. Furthermore, recall that, since
1 (M®) = 0, equation (3.7) of [30] implies that 111 (L) is generated by the images
of the homomorphisms 171 (S!) — 711 (L) in the long exact homotopy sequences
for the bundles S' — L — B.. Therefore, 1 (B.) = Z and 12(L) = m(B.). By
applying the Hurewicz and Universal Coeflicient theorems, it follows in addition
that H2(B..) is free abelian.

By Table 4.1, the circle bundles ' — L — B.. are orientable. Thus, by Propo-
sition 6.15 of [53], these are principal S'-bundles and, therefore, are determined
by their Euler classes e. € H?*(B.). Moreover, as M° is simply connected, the
regular leaf L is also orientable. Altogether, this implies that the 4-manifolds B~
are orientable and, in particular, satisfy Poincaré duality.

By Theorem 4.3, the bundles S! — L — B are trivial, that is, L = S' X B
and e = 0. The respective Gysin sequences then yield, in addition, that H*(L) =
ZP>B)+15 in particular, this implies b,(B-) = by(B.).

By Proposition 4.9, the maximal free abelian cover L of L satisfies

H*(L;Q) = H*(S*; Q).
Since 115 (L) = 115 (Bs), it thus follows from the rational Hurewicz theorem that

rank(1m; (Bs)) = rank(112(L)) = rank(1, (L)) = by (L) = 0.
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Therefore, by Lemma 4.10, B. are nilpotent spaces with m2(B.) = Q and
1T5Q(Bi) = 0. From their minimal models, it follows that b,(B+) = 0 and, being
free abelian, that H%(B.) = 0.

The Mayer-Vietoris sequence corresponding to the double disk-bundle de-
composition of M® now yields

0~ H'(B.)®H'(B,) =7%—~ H'(L) = 7> — H*(M®) = 702 _ 0,

Since H?(M?©) is free abelian, the injection H'(B_) @ H' (B,) = 7> — H'(L) = 7?
is an isomorphism, from which one concludes that H?(M 6) = 0. Furthermore,
from

0—~H*L)=2—-H>M® -~ H>(B_) ®H>(B;) = 7% — - - -,

it is clear that H3(M®) is free abelian of rank 0 < b3(M®) < 3. However, being a
6-manifold, b3 (M®) must be even. Therefore, H>(M°¢) = 72 and, from the clas-
sification of closed, simply connected smooth 6-manifolds [44,70,71], it follows
that M® is diffeomorphic to S x S3. O

e ingredients necessary to prove Theorem A in dimension six are now in
All the ingredient yt Th Aind
place.

Theorem 6.5. Let MC be a closed, smooth, simply connected G-manifold with
second Betti number by (M®) < 3 which admits a double disk-bundle decomposition.
Then, M© is rationally elliptic.

Proof. By Proposition 4.0, it suffices to consider singular leaves B of codi-
mension two. Suppose there is some B € {B.} with finite fundamental group.
If both of the bundles S — L — B. are orientable, that is, if m;(F) = 72,
then, by Lemma 6.1 together with the hypothesis b,(M®) < 3, it is clear that
rank (11, (B)) = by(M®) — 1 < 2. As in the proof of Theorem 6.2, it follows that
M® is rationally elliptic. All remaining cases have been dealt with in Theorems 6.2
and 6.4, thus completing the proof. O

Remark 6.6. Notice that the hypothesis b, (M®) < 3 has been used in only
one scenario, namely, in the case where the singular leaves B are of codimen-
sion 2, at least one of 111 (B+) is finite, and the bundles S! — L — B. are both
orientable, that is, 11 (F) = 72 by Table 4.1. In all other cases, assuming only
that M® admits a double disk-bundle decomposition ensures that M® is rationally
elliptic.

In light of Theorem 6.4, it is tempting to seek a classification up to diffeo-
morphism of rationally elliptic 6-manifolds which admit a double disk-bundle
decomposition. However, as suggested by the work in [40], such a classification
seems out of reach at present. Nevertheless, imposing further restrictions on the
Betti numbers allows one to make some progress.
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Theorem 6.7. Let M® be a closed, smooth, simply connected 6-manifold with
H*(M®% Q) = H*(8% Q) which admits a double disk-bundle decomposition. Then,
M® is diffeomorphic to S°.

Proof- By Smale’s resolution of the Generalized Poincare Conjecture [64], it
suffices to show that M© is an integral (co)homology sphere. Since M® is simply
connected, it is clear from the Universal Coeflicient Theorem and Poincaré duality
that H/(M®) = 0, for j € {1,2,5}, and that H3(M°¢) = H*(M°). Therefore, it is
enough to show that the torsion group H3(M®) = H4(M®) is trivial.

By Theorem 6.5, M® is rationally elliptic. Thus, by the rational Hurewicz
theorem and the relations (2.1), (2.2), the only non-trivial rational homotopy
groups of MS are TréQ(MG) = Q and n% (M®) = Q. From Theorem 4.11, it
now follows that the homotopy fiber F of the inclusion L — M® has a loop-space
factor QS° or QS''. From Table 4.1, together with the fact that 1 < €. < 5, this
implies that F is rationally homotopy equivalent to ¥~ x ¢+ x QS{-+0++1  with
{£.} = {1,4} or {2,3}, orelse t0 S° X §> X QS!! ~¢ §° x QOS°, with £ = 5.

Observe, however, that - = 5 implies that the singular leaves B are points
and, hence, that M is the union of two six-dimensional disks. Consequently, in
this case M© is homeomorphic and, thus, diffeomorphic to SO.

Suppose, on the other hand, that {£.} = {1,4}. From Table 4.1 it fol-
lows that 11, (F) = Z, while the Hurewicz theorem and Poincaré duality ensure
that 1, (M%) = H,(M®) = H*(M®°) is torsion. Therefore, the homomorphism
(L) — 12 (M®) in the long exact homotopy sequence for F — L — M® must be
surjective. On the other hand, since one of the singular leaves B. is a connected,
codimension-five submanifold of M, the regular leaf L is an S%-bundle over S!.
In particular, the long exact homotopy sequence for this bundle yields 1, (L) = 0
and, hence, H4(M®) = 11,(M®) = 0, as desired.

Suppose, finally, that {£+} = {2,3}. By Table 4.1, ; (F) = 0 and the bundles
S’ — L — B. are both orientable. It follows from the long exact homotopy se-
quence for F — L — M that 11 (L) = 0, while the long exact homotopy sequences
for S — L — B. yield 1(B+) = 0. Since {£.} = {2,3}, the classification
of surfaces and Perelman’s resolution of the Poincaré conjecture [58—60] imply
{B.} = {S?,S%}. Hence, L is the total space of orientable bundles S* — L — S?
and $2 — L — S3. In particular, from the Gysin sequence for S — L — S2,
the regular leaf L has the same cohomology as $° x $?, and the bundle projection
induces an isomorphism H?(S?) — H2(L). Since {B.} = {S?,$?} and H3(M?°) is
torsion, applying this observation to the Mayer-Vietoris sequence for the decom-
position DB_ Uy DB, of M® now yields

H2(M%) =0 — H*(B_) @ H*(B,) = 7— H*(L) = 7 — H?>(M°) — 0,

from which it follows that H3 (M%) = 0, as desired. O
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Recall that Wall’s Splitting Theorem [70] implies every closed, smooth, sim-
ply connected 6-manifold M® splits as a connected sum MS#MY, where M§ has
finite H3(M$) and M? is a connected sum of b3(M©)/2 copies of > x S3. As a
consequence of the following theorem, if such a manifold is rationally hyperbolic
and admits a double disk-bundle decomposition, then b3(M®) = 0.

Theorem 6.8. Let M® be a closed, smooth, simply connected 6-manifold with
b3(M°) = 0 which admits a double disk-bundle decomposition. Then, M 6 js diffeo-
morphic to S x S3.

Proof: Suppose first that M® is rationally hyperbolic. By Theorem 6.5 and
Remark 6.6, this is possible only if the singular leaves B are both of codimension
two, at least one of 11 (B..) is finite, the bundles S' — L — B. are both orientable,
and 11y (F) = Z2. By [41, p. 107], L is orientable and, therefore, so too are Bs. As
such, B both satisfy Poincaré duality and, hence, b; (B+) = b3(B-).

Now, recall that, by excision and the Poincaré-Lefschetz duality, there are iso-
morphisms H/(M® DB.) = H/(DB+,L) = Hq_j(B=) for all j > 0. Therefore,
from the portion

- — H3(M® DB.) - H*(M®) — H?(B.) — - - -
of the long exact sequence for the pair (M 6 DB.), it follows that
b3(M®) < by(B-) + by (B,) <1,

where the final inequality follows from Lemma 4.7 and the long exact homotopy
sequences for ' — L — B.. However, since b3 (M 6) must be even, one concludes
that b3(M°) = 0, a contradiction.

Assume, therefore, that M© is rationally elliptic. Since b3 (M 6) = 0, by the
work of Pavlov [57] (see also [40]), M® must be rationally homotopy equivalent
to $? X $3. In particular, rank(71,(M®)) = 0 and the only non-trivial rational
homotopy group is 152 (M%) = Q2. By Theorem 4.11, the homotopy fiber F of
the inclusion L — M?® has a loop-space factor QS? or QS3. By Table 4.1, only
QS? is possible and there are only two possible scenarios: either £+ = 1 and
M (F) = 7%, orelse £+ = 2, 11 (F) = 0 and F ~q $? x QS>.

Suppose £+ = 1 and 11, (F) = Z2. Since rank(m,(M®)) = 0, the long exact
homotopy sequence for F — L — M® yields that 7 (L) = 111 (F) = Z2. Applying
equation (3.7) of [30] to the long exact homotopy sequences for S — L — B.
now yields that 111 (B+) = Z. By Theorem 6.4, it follows that M 6 is diffeomorphic
to S% x S3.

Suppose, on the other hand, that . = 2, (F) = 0 and F ~q S? x QS°.
By Table 4.1, the bundles S> — L — B. are both orientable, and it follows from
the long exact homotopy sequences for F — L — M° and $** — L — B. that
m (B:) = m(L) = 0. Being closed, simply connected 3-manifolds, it follows
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from Perelman’s resolution of the Poincaré Conjecture [58-60] that B. = S°.
Therefore, by the Gysin sequence, L has the integral cohomology of $* x $2. The
Mayer-Vietoris sequence for the decomposition DB_ Uy DB, of M® now gives

H?*(B_) ® H2(B,) =
=0—H*(L)=7 - H*(M°) - H*(B_) ® H*(B,) = 7> — - - -

Therefore, by exactness, H3(M°) is free abelian, that is, H*(M®) = Z?. Since
H*(M% Q) = H*(S? x S3; Q), it follows from the Universal Coefficient Theorem
and Poincaré duality that M is an integral cohomology S? x $3. By the classifica-
tion of closed, smooth, simply connected 6-manifolds [44,70,71], it follows that
M?¢ is diffeomorphic to $3 x S°. O

Theorems 6.7 and 6.8 together give a characterization of all six-dimensional
double disk bundles with vanishing second Betti number.

Corollary 6.9. Let M® be a closed, smooth, simply connected 6-manifold with
by (M®) = 0 which admits a double disk-bundle decomposition. Then, M 6 /s diffeo-
morphic to either S® or $3 x S3.

Proof. By the Poincaré duality, the only possible non-trivial Betti number is
b3(M?®). The result now follows easily from Theorems 6.7 and 6.8. |

7. DOUBLE DISK BUNDLES IN DIMENSION 7

In this section, Theorem A will be proven in dimension seven via a careful analysis
of all possible cases. Throughout, M7 will denote a smooth, closed, simply con-
nected 7-manifold which admits a double disk-bundle decomposition DB_ Uy
DB, with B+ connected. As before, let F denote the homotopy fiber of the inclu-
sion L — M”.

By Proposition 4.6, M7 is rationally elliptic whenever one of B. is of codi-
mension > 4. Therefore, together with Proposition 4.2, it may be assumed that
the fibers of the bundles S+ — I — B.. satisfy 1 < £. < 2.

Theorem 7.1. If the bundles Sl I — B. are both non-orientable, then M7 is
rationally elliptic.

Proof. By Table 4.1, the hypothesis is equivalent to taking £+ = 1, m(F) =
Qs and F to be rationally homotopy equivalent to S? x $3 x QS’. From the long
exact homotopy sequence for F — L — M7, this implies, in particular, that 11, (L)
is finite.

Now, consider the Serre spectral sequence (Ej,d;) that is associated with
F — L — M/, where the rational cohomology of F is given by (6.3), (6.4). In
particular, no non-trivial differential can hit either E}O = H3(M7;Q) = Q™)
or E§’3 = H2(M7;Q) ® H3(F; Q) =~ Q2™ Thus, these entries survive to the

E«-page and, being the only non-trivial entries on the diagonal {E§ oL | k+1=5},
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it follows that H>(L; Q) = Py.i-s ENl = Q32(M") | On the other hand, as L is a
codimension-one submanifold of the closed, simply connected manifold M7, it is
orientable by [41, p. 107]. Thus, L satisfies Poincaré duality and, since 111 (L) is
finite, it follows that H>(L; Q) = 0. Hence, b, (M7) = 0.

Consequently, all entries on the diagonal {Ef’l | k+1 = 2} are trivial,
which in turn implies that H?(L; Q) = 0. By Poincaré duality, it now follows
that H4(L;Q) = 0. Therefore, in the spectral sequence (Ej,d;), the differen-
dal d3° : E® = H3(F;Q) = Q* — E{° = HYM7;Q) = QY™ must be
surjective, so bg(M7) = 2 — dim(kerdy”). On the other hand, the only non-
trivial entries on the diagonal {E?‘l | k+1 = 3} are Eg’3 =~ Qdim(kerds®) 5nd
Eg‘o = H3(M7;Q) = Q™) and both of these survive to the Ee-page. There-
fore, H3(L; Q) = QbsM)+dim(kerdi™) - However, by Poincaré duality, b3(M7) =
b4(M7), and hence,

b3(L) = b3(M7) + dim(kerd}?) = bs(M7) + dim(kerd}”) = 2.

Altogether, these observations imply H*(L; Q) = H*(S? x $?;Q). Since L is
nilpotent, by Theorem 1.3 of [30], and 77 (L) is finite, it has a (simply connected)
minimal model. Moreover, since a product of spheres is intrinsically formal, it
follows that L ~q S? x S$3. This implies, in particular, that TFJQ(L) = 0 for all
J = 4. By Lemma 4.5, it now follows that M” is rationally elliptic. O

Remark 7.2. Notice that in Theorem 7.1 there were no restrictions placed on
b,(M7). Together with Theorem 6.2 and Theorem 5.1, it follows that a closed,
smooth, simply connected manifold of dimension < 7 that admits a double disk-
bundle decomposition DB_ Uy, DB, for which both of the bundles Sl -1 - B.
(equivalently, both of B.) are non-orientable must be rationally elliptic. This
result is false in all dimensions = 8. To see this, first observe that $% admits a well-
known SO(3) action of cohomogeneity one, with singular orbits diffeomorphic
to RP2. Furthermore, in every dimension > 4, there exist infinitely many closed,
smooth, simply connected, rationally hyperbolic manifolds. If N is one such man-
ifold, it now follows from Proposition 3.1 (d) that the closed, smooth, simply
connected, rationally hyperbolic manifold $* x N admits a double disk-bundle
decomposition with non-orientable singular leaves diffeomorphic to RP? X N.

As a consequence of the standard decomposition of $3 into a union of two
solid tori, for every closed, simply connected, smooth 4-manifold X4 there is a
double disk-bundle decomposition induced on the product M7 = X* x $3 such
that the bundles ' — L — B.. are both orientable. In particular, if X is rationally
hyperbolic, then so too is M”. Moreover, as b, (#_;CP?) = n, there are rationally
hyperbolic manifolds M7 = X4xS3 achieving every possible b, (M”) > 3. If one is
interested in rational ellipticity in the case that both circle bundles are orientable,
it turns out that b, (M”) is the only obstruction.
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Theorem 7.3. Suppose that the singular leaves B are both of codimension rwo
and that the bundles S' — L — B are both orientable. Ifby(M”) < 2, then M7 is
rationally elliptic.

Proof’ By Table 4.1, the hypotheses are equivalent to letting 1 (F) = Z2.
Therefore, F is rationally homotopy equivalent to S! x S! x QS3.

The long exact homotopy sequence for the homotopy fibration F — L — M’
yields

(71) ...—>7T3(M7) —*T('z(F) —*T('z(L)
— (M) — 1 (F) — 11 (L) — 0,

from which it is clear that rank (1 (L)) < 2, with equality if and only if (L) =
72

Assume first that (L) = Z?. Theorem 4.11 and (7.1) together imply
that rank(1,(L)) = rank(m2(M”)) and hence, by the Hurewicz theorem, that
rank(Trz(L)) = bz(M7) < 2.

By Proposition 4.9, the rational cohomology ring of the maximal free abelian
cover L of L is isomorphic to that of a closed, simply connected, four-dimensional
manifold N*. Given

by(N*) = by(L) = rank(1r, (L)) = rank(1(L)) < 2,

it follows from Freedman’s classification of smooth, closed, simply connected 4-
manifolds [20] that N4 is homeomorphic to one of $%, CP?, $?xS? or CP?#+CP?
and, hence, rationally elliptic. Moreover, in [51] (see also [49]) Miller proved that,
for all k > 2, if X is a (rationally) (k — 1)-connected space of formal dimension
< 4k —2 with H* (X; Q) satisfying Poincaré duality, then X is intrinsically formal.
In the present setting, this implies L is intrinsically formal and, hence, that its
minimal model is isomorphic to that of the rationally elliptic space N*. Therefore,
as TTJ'(I:) = m;(L) for all j > 2, the rational ellipticity of M” now follows from
Lemma 4.5.

Assume now that rank (71 (L)) < 1. By Lemma 4.7, at least one of 11, (B.) is
finite. Let B € {B.} such that 111 (B) is finite, and let B be its universal cover, a
closed, smooth, simply connected 5-manifold. From the classification of Barden
and Smale [4, 65], together with the Hurewicz theorem, it follows that B, and
therefore B, is rationally elliptic if rank(1m,(B)) = rank(11,(B)) = b,(B) < 1. In
this case, the rational ellipticity of M” follows immediately from Lemma 4.5.

To establish that rank(7r,(B)) < 1, observe that exactness in the long exact
homotopy sequence for the bundle S' — L — B yields

rank(1m(B)) = 1 + rank(1r2(L)) — rank (717 (L)).
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On the other hand, exactness in (7.1), together with Theorem 4.11 and the
Hurewicz theorem, yields

rank(11, (L)) — rank(11y (L)) = rank(11,(M7)) — rank(11; (F)) = by(M7) = 2.

As b, (M7) <2 by hypothesis, these identities give rank (1, (B)) =by(M7) — 1 < 1,
as desired. (|

In the remaining case with singular leaves of codimension two to be discussed
below, where exactly one of the singular leaves is orientable, it turns out there
are no such double disk bundles whenever b,(M”) > 3. An example of such a
decomposition can be found on $3 X CP? by taking advantage of the fact that CP?
decomposes as the union of disk bundles over $? and RP? [24].

Theorem 7.4. Suppose that the singular leaves B+ are both of codimension two
and that exactly one of the bundles S' — L — B is orientable. Then, M is rationally
elliptic.

Proof- This proof will follow the same basic strategy used in the proof of The-
orem 6.2, but the computation is significantly more involved.

By Table 4.1, the hypotheses are equivalent to letting 1 (F) = Z @ Z; and,
hence, that F is rationally homotopy equivalent to S' x §3 x QS>. Observe now,
using the long exact homotopy sequences for F — L — M7 and S! — L — B., that
(L) and 17 (B ) are abelian groups satisfying rank (77 (B+)) < rank(mr(L)) <
rank(71; (F)) = 1. In particular, Hy (L) = 11;(L) and H; (B+) = 11 (B+).

Without loss of generality, suppose that S! — L — B_ is orientable and that
S! — L — B, is non-orientable. By [41, p. 107], L is orientable and, hence, B_ is
a closed, orientable 5-manifold, while B, is non-orientable. In particular, L and
B_ satisfy Poincaré duality, whereas Hs(B.) = 0.

Consider the pairs (M7, DB.) and (DBx,L). By excision and the Poincaré-
Lefschetz duality, and recalling that DB. is homotopy equivalent to B, there are
isomorphisms

(7.2) H’/(M,DB.) = H (DBs,L) = H7_j(Bs),
forall j = 0. Thus, the portion
. - HY(M) - H'(B_) - H*(M,DB_) — - - -
of the long exact sequence for the pair (M7, DB_) yields that H! (B_) = 0. Apply-
i?% Itllil; .Universal Coefhcient Theorem, it may be deduced that 7y (B-) = H; (B-)

As a result, the universal cover B_ of B_ is a closed, simply connected 5-
manifold. By the classification of Barden and Smale [4, 65], together with the
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Hurewicz theorem, it follows that B_, and therefore B_, is rationally elliptic pro-
vided that rank (11, (B_)) = rank(11,(B_)) = b,(B_) < 1. In this case, the rational
ellipticity of M’ follows immediately from Lemma 4.5.

In order to show that M7 is rationally elliptic, it therefore suffices to show
rank(1m2(B_)) < 1. To this end, assume instead rank(m,(B-)) = 2. It will be
demonstrated, by placing the focus on b3(M7), that this assumption leads to a
contradiction. Some initial setup is required.

Observe that the long exact sequence for the pair (DB, L) yields

. — H(B,) — H(L) — H(DB.,L) — H°(B.) = 0.

By the Universal Coefficient Theorem, H>(B.) must be finite. Therefore, it fol-
lows from Poincaré duality and (7.2) that

rank (111 (L)) = b1 (L) = bs(L) = b1(B+) = rank(11; (B.)).
Since S! — L — B_ is orientable, there exists a Gysin sequence
- — H/"Y(L) -~ H/(B_) - H/**(B_) - H/*>(L) - H/*'(B_) — - - -

and, because b4(B-) = b;(B-) = 0 and b,(B-) = b3(B_) by Poincaré duality, it
follows that

(7.3) b3(L) = 2by(B-) = 2(b2(L) — b1 (L) + 1).

Since F ~q S! X §? X QS°, one obtains from the long exact homotopy se-
quences for F — L — M7 and S! — L — B that

(7.4) b, (M7) = rank(112(M7)) = rank(1m, (L)) — rank(mr; (L)) + 1
= rank(m1,(B+)) — rank(71;(B=+))

and, hence, that by (M7) = rank(12(B_)) = 2.
Consider now the rational Serre spectral sequence (E;, d ) associated with the
homotopy fibration F — L — M’, where the rational cohomology of F is given by

(6.3), (6.4), and the E»-page is shown in Figure 7.1. Recall that EX = E¥0 o EO!
for all k, 1 > 0. As in the proof of Theorem 6.2, it is convenient to denote by d?’l
the differential d; : E}(’l - Ef”‘”l_j and by A;” the diagonal {Ef’l |k +1=m}
on the Ej-page of (Ej, d;).

From the differential dy' = (d, : EY' = Q — E?° = QP2M")) and (7.4), it is
clear that
(7.5) by(L) = by(M7) = (1 = by (L)) = ba(M”) — 1 + rank(rr; (L))

= rank(115(L))
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FIGURE 7.1. E;-page of spectral sequence for F — L — M’

and, therefore, by combining equations (7.3) and (7.4), that
(7.6) bs3(L) = 2b,(M7) > 4.

Suppose first that b3(M7) < 1. If b3(M”) = 0, then, for all j > 2, all differ-
entials involving terms along the diagonal A? are trivial, and hence, H*(L; Q) =

Drii-3 EX! = QL2M)+1 " However, since b, (M7) > 2, this implies b3(L) =
by(M7) + 1 < 2by(M7), contradicting the inequality (7.6).
If, on the other hand, b3(M”) = 1, then, by (7.6),

4<2by(M7) = b3(L) < rank ( @ E5') = ba(M7) +2,
k+1=3

from which it follows that b,(M7) = 2 and b3(L) = 4. Moreover, this implies
that, for all j > 2, all differentials involving terms along the diagonal A; are
trivial. As a result, H4(L; Q) is entirely determined by the kernels of differentials
with domain along the diagonal A?. The product rule implies that rank(dy") <

rank(dg‘l) = 1 — by (L), while the total rank 7 of all differentials d2‘4, j=2,is
clearly at most 2. Therefore, Poincaré duality and (7.5) together yield

1+ bi(L) = by(L) = by(L) > 4 —rank(d>") —v = 1+ by (L)

and, hence, the identities rank(d%’l) =1-bi(L) andr = 2.
Given that d2‘3 is trivial for all j > 2, it follows from the product rule that

d?‘S is also trivial for all j > 2. Therefore, the differentials with domain in W; =
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EJZ-‘3 ean“l GBE?’S are trivial for all j > 2, meaning that the contribution of W, = Q>

to H>(L; Q) has rank 5 — rank(dg’l) — v = 2 + b1(L). However, since bs(L) =
b (L) < 1 by Poincaré duality, this is impossible.
Suppose, finally, that b3(M”) > 2. From the ring structure of

H*(F;Q) = H*(S! x §° x Q8% Q),
it is clear that rank(d5'') = 1 — by (L) and d3” = 0 together imply that
rank(dS%) > 1 - by (L).

Thus, E2’4 = EgA has rank < 1 + b;(L) and, consequently, the image of d2‘4
has rank < 1 + b;(L) in Ej’l. As d2‘4 is the only possible non-trivial differential
involving Ej’l, J = 2, it follows from Poincaré duality that

bi(L) = bs(L) > rank(E%") = b3(M7) — (1 + by (L)),

and it may, therefore, be deduced that 2 < b3(M”) < 2b;(L) + 1. This forces
by (L) = 1, which, in turn implies that d’;’l is trivial for all k > 0.
Since d%’l is trivial, it follows that

2by(M7) = b3(L) > rank(E%' @ E3°) = b,(M7) + b3(M7)

and, therefore, that b,(M7) = b3(M7) = 2. Now, from this inequality and the
fact that d3' and dé’l are trivial, one obtains

1=Db(L) = bs(L)
> rank(}:"g’3 ® Ef‘l ® ES’O) - rank(dgA) - rank(d(s)A)

> 2b,(M7) + b3 (M7) -2
4,

\%

which is absurd. This completes the proof. O

It remains only to deal with the cases where there is at least one singular leaf
of codimension three. Recall first that, for all p,q > 0, the sphere SP*9*1 can be
decomposed as SP 74! = (SP x D4*1) U (DP*! x §4). In particular, this implies
S7 and, by Proposition 3.1, every S3>-bundle over $* admits a double disk-bundle
decomposition with {£+} = {1,2}. From a rational homotopy perspective, this is
all that can happen.

Theorem 7.5. If the bundles St — L — B, have {£.} = {1,2}, then M7 is
rationally homotopy equivalent ro S7 orS3 x S4.
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Proof. Suppose, without loss of generality, that £ = 1, £, = 2. By Table 4.1,
both of the bundles S — L — B.. are orientable, 111 (F) = Z, and F is rationally
homotopy equivalent to S' x $? x QS*. Moreover, since M is simply connected
and ¢, = 2, equation (3.7) of [30] implies that the homomorphism r;(S') —
11 (L) in the long exact homotopy sequence for S' — L — B_ must be surjective.
In particular, it follows that 711(B-) = 0. On the other hand, the long exact
homotopy sequence for S? — L — B, yields (L) = m(B4) and, thus, by (L) =
by (B;), while the long exact homotopy sequence for F — L — M7 yields that
either 11 (L) = Z or 111 (L) is finite. Observe, finally, that the orientability of the
bundles S — L — B. and [41, p. 107] together ensure that L and B. are all
orientable and, hence, satisfy Poincaré duality.

In order to establish that M7 is rationally elliptic, it suffices, via the classi-
fication of Barden and Smale [4, 65], the Hurewicz theorem, and Lemma 4.5,
to demonstrate that by (B-) < 1, because B_ is a closed, simply connected 5-
manifold.

Now, from exactness in the portion of the Gysin sequence for the bundle
S! — L — B_ given by

0=H"B.) - HY(L) - H'(B_) - - - -
- — H3(L) — H*(B_) — H*(B_) = 0,

together with Poincaré duality, it may easily be deduced that
(7.7) b3(L) = 2by(B-) = 2(b2(L) — by (L) + 1).

On the other hand, note that exactness in the portion of the Gysin sequence for
S? — L — B, given by

0=H'(B;) - H*(B;) — HX(L) — H*(B;) — - - -
i HZ(B+) - HS(B+) =0

yields
(7.8) 2by(B+) = 2(b2(L) + b1 (L) = 1) = b3(L).

By combining equations (7.7) and (7.8), it may be concluded that b, (B.) =
2(b1 (L) — 1) < 0, whence it follows that b; (B;) = b1(L) = 1 and b,(B;) = 0.
From the Gysin sequence for S — L — B, it now follows that by (B-) = by(L) <
bo(B4) = 1 and, therefore, M7 is rationally elliptic.

Furthermore, in the rational long exact sequence for the pair (M7, DB..) there
is a short exact sequence
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0=H"(M";Q) -~ H' (B;;Q) — H*(M’,DB,; Q)
- H*(M7;Q) — H*(B,; Q) = 0.

Since, by excision and Poincaré-Lefschetz duality,
H*(M7,DB,;Q) = H*(DB-,L;Q) = H’(B_;Q) = Q,

it follows from the Hurewicz theorem that rank(1;(M7)) = by(M7) = 0. Now,
by [40], or by simply examining the inequalities in (2.1), (2.2), a rationally elliptic
manifold M7 with rank(1r,(M”)) = 0 must be rationally homotopy equivalent to
S7 or $3 x S4, as desired. O

By taking advantage of the standard decomposition of S° as the union of two
3-disks, it is clear that, for any closed, smooth, simply connected 4-manifold N 4
the product $* x N* admits a double disk-bundle decomposition with singular
leaves both of codimension three. Therefore, to avoid rationally hyperbolic 7-
manifolds admitting such a double disk-bundle decomposition, it is necessary to
impose some topological restrictions.

Theorem 7.6. If the singular leaves B+ are both of codimension three, and if
by(M7) < 2, then M is rationally elliptic.

Proof. By Table 4.1, the hypothesis on the singular leaves is equivalent to F
being simply connected and rationally homotopy equivalent to one of

S2 x 083, $? x §? xQS°, SUB)/T? x QS’, Sp(2)/T* x QS°, or G2/T? x QS'.

In particular, observe that rank (1, (F)) = 2 and 1 < rank(m3(F)) < 2 in all cases.
From the long exact homotopy sequences for F — L — M’ and $* — L — B.,
it is clear that 11 (L) = m(B+) = 0. In particular, note that each of the bundles
S? — L — B. possesses a Gysin sequence, from which it may easily be concluded
that
H*(L) =H*(B:)®Z and  H’(L) =0,

given that B- are closed, simply connected 4-manifolds.

By the classification of closed, simply connected 4-manifolds [20], and by
Lemma 4.5, it suffices to show that b, (B+) < 2 in order to establish that M7 is
rationally elliptic. Suppose to the contrary, therefore, that 3 < by(B+) = by (L)—1.

The hypothesis b, (M7) < 2, together with exactness in the portion

0=HYL) - H*(M’) - H*(B_) ® H*(B.) — H*(L)
—~ H3(M7) - H3(B_) ® H3(B,) =0
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of the Mayer-Vietoris sequence for M’ = DB_ Uy DB, now yields

2> by(M7)
=b3(M’) + by(B_) + by(By) — by(L)
= b3(M’) + b2(B-) — 1

bs(M7) +2

2,

=
=

from which it immediately follows that b,(M7) = 2, b3(M”) = 0, by(Bs) = 3
and by(L) = 4. In particular, by the Hurewicz theorem, it is now clear that
rank (1, (M7)) = 2 and rank(m, (L)) = 4.

Let (AVx,dx) be the minimal model of a simply connected space X, where
Vx = @7, V/, withV? =Q, V! =0,and V/ = ‘ITJQ(X), forall j > 2. Recall dy
is decomposable, and so satisfies dx (V?) = 0 and dx(V?3) < V2 - V2 c ker(dx).
In particular, if H*(X;Q) = 0, then dx must map V3 injectively into V2 - V2.
Therefore,

rank (113 (X)) = dimq (V?) < dimg (V? - V?)

= %rank(rrz(X))(rank(TTz(X)) +1),

while
bs(X) = dimg (V? - V?) dimq (V?)

= %rank(TrZ(X))(rank(Trz(X)) + 1) — rank(1m3(X)) = 0.

Now, by Poincaré duality, b4(M”) = b3(M’) = 0 and b4(L) = by(L) = 4.
Thus, the inequalities above, together with the identities

rank(m,(M7)) =2 and rank(m, (L)) = 4,
yield
rank(1r3(M7)) =3 and rank(m3(L)) = 10 — b4(L) = 6.

However, from the long exact homotopy sequence for F — L — M, one has
rank(mr3(L)) < rank(1r3(M7)) + rank(mm3(F)) < 5,

a contradiction. O

The main result of this section is now a simple consequence of all the preced-
ing groundwork.
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Theorem 7.7. Let M7 be a closed, smooth, simply connected 7-manifold with
second Betti number by(M7) < 2 which admits a double disk-bundle decomposition.
Then, M7 is rationally elliptic.

Proof- By Proposition 4.6, it suffices here to consider singular leaves of co-
dimension at most three. All such cases have been dealt with in Theorems 7.1,
7.3,7.4,7.5, and 7.6, thus completing the proof. O

Remark 7.8. Notice that the hypothesis by(M”7) < 2 has been used only in
the cases where the singular leaves B. are of codimension 1 < - = ¥ <2 and the
bundles S¥* — L — B. are both orientable. In these scenarios, standard decom-
positions of S lead to counterexamples whenever b, (M”) > 3 is permitted. In all
other cases, assuming only that M7 admits a double disk-bundle decomposition is
enough to conclude that M7 is rationally elliptic.

In contrast with the six-dimensional case, recall that a large family of closed,
2-connected 7-manifolds admitting double-disk bundle decompositions was con-
structed in [26], each having rational cohomology ring isomorphic to either
H*(S7;Q) or H*(S? x $%;Q). Moreover, in [27] it was observed that this family
does not contain all possible homotopy types of such manifolds: for example, it
does not contain any 2-connected 7-manifold M7 with H4(M’) = Zs and non-
standard linking form. It is unknown whether these excluded spaces also admit a
double disk-bundle decomposition.

Being unable to address even the case of rational 7-spheres at present, a classi-
fication up to diffeomorphism of simply connected, rationally elliptic 7-manifolds
which admit a double disk-bundle decomposition seems out of reach for the mo-
ment. Recall, however, that Herrmann has shown that a simply connected, ra-
tionally elliptic 7-manifold must be rationally homotopy equivalent to one of §7,
$2x 8%, 83 x84, 83 x CP2, N7 or MZ, for 0 € Q*/(Q*)2. The manifold N7 has
minimal model

(AV,d) = (AN(X1,X2, 21, Y2, ¥3), d),

where deg(x;) = 2,1 € {1,2}, deg(y}) = 3, j € {1,2,3}, and the differential d
is given by

(7.9) d(x1) =d(x2) =0, d(n)=x3 dO)=x3 d(y) =xix.
By [21, Theorem 6.1], the unit tangent bundle of $? X S? is a concrete represen-
tative of this rational homotopy type. Moreover, from Example 2.91 of [18] it is

known that any manifold with minimal model (7.9) is not formal.
The family M/ consists of spaces with minimal model

(AVg,dg) = (AN(Xx1,X2, V1,2, Y3),do),
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where deg(x;) = 2,1 € {1,2}, deg(y;) = 3, j € {1,2,3}, and the differential d
is given, for 0 € Q*/(Q*)2, by

do(x1) =dg(x2) =de(y3) =0,
(7.10) do (Y1) = x1X2,
de(¥2) = X7 — ox3.

The spaces M{ and M’ are rationally homotopy equivalent to 3 x (CP2#CP?)

and 83 x (CP2#CP’) =g S3 X S? x S? respectively, whereas no concrete represen-
tative of the rational homotopy type is currently known when o + +1.

Theorem 7.9. Each of the minimal models (7.9) and (7.10), o = +1, is realized
by biquotients (S> X S® X $3) || T2, and hence, has a representative admitting a double
disk-bundle decomposition. Moreover, there are infinitely many such biquotients with
minimal model (7.9), each of which is not formal.

Proof. By [18, Example 2.91], a space with minimal model (7.9) is not for-
mal. Biquotients of the form (S? x $3 x §3) /T2 have been studied in [10] and
[21]. The minimal models were determined in the proof of Theorem 6.1 in [21],
while the integral cohomology rings and characteristic classes were determined
in [10, Proposition 4.35]. In particular, a biquotient with minimal model (7.9)
generically has torsion in its cohomology ring: for example, there is a nice subfam-
ily N7,, m € Z, of such spaces consisting of $?>-bundles over $? x §? with structure
group T2, H*(N},) = 72, H3(N},) = 0 and H*(N},) = Zp2. This subfamily is
described by the action

T2 x (S xS?xS%) = (S xS xS%),

((z,w),(q1,q2,a3)) — (za1,waz, z™usz + wmvszj),

where m € Z and g3 = us + v3j € $3, u3,v3 € C, |usl? + |vs|*> = 1. By the
proof of [21, Theorem 6.1], the unit tangent bundle of $? x S? is given by setting
m = 2.

That all biquotients (S? x $3 x §3) / T? admit a double disk-bundle decom-
position follows from Proposition 3.1 (c), since the free T? action on $? x §? x §?
is a subaction of a cohomogeneity-one action by T2 x ($3x83) x($3xS3). O

Finally, note that it is unknown whether there is a representative of each ra-
tional homotopy type (7.10), o # =1, which admits either a double disk-bundle
decomposition or a metric with non-negative sectional curvature.
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