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ABSTRACT  
The rate of spread of an emerging epidemic is frequently 
characterized via the doubling time, which is the time it takes for the 
number of cases to double. This paper explores different ways to 
estimate doubling time, and investigates the estimation of doubling 
time in relationship to parameters in the HawkesN model and the 
SQUIDER (Susceptible, Quarantine, Undetected Infected, Infected, 
Dead, Exposed, Recovered) model. We observe an approximately 
exponential relationship between the productivity parameter κ in the 
HawkesN model and doubling time. We also evaluate the performance 
of the models in forecasting doubling times and compare to empirical 
doubling times using daily reported statewide totals for SARS-CoV-2 
infections in California, and find that the HawkesN model forecasts 
doubling times more accurately, with 3.6% smaller root mean 
squared errors in Spring 2020, 79.4% smaller root mean squared 
errors in Autumn 2020, and 5.4% smaller root mean squared errors 
in Summer 2021. The HawkesN and SQUIDER models appear to 
forecast daily rate doubling times accurately at most times, though the 
SQUIDER forecasts of daily rate doubling times are far more volatile 
and thus occasionally have much larger errors, particularly in Fall 
2020.  
Keywords: Contagious diseases, epidemics, Hawkes model, Point 
process, SARS-Cov-2, Self-exciting.  
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1. Introduction  
During the outbreak of an infectious disease, 
epidemiologists often characterize the rate of spread 
of the disease by discussing its doubling time. The 
term doubling time dates back to ancient Babylonian 
and Assyrian times to describe the growth of 
financial assets bearing interest, and has also been 
used frequently in population dynamics. The term is 
easily understood by the general public and is a 
useful summary of how quickly the population of 
infected individuals is expected to grow.  
 
In the context of infectious diseases, however, there 
is some ambiguity in the definition of doubling time. 
Epidemiologists typically define doubling time as the 
time needed before the total cumulative number of 
cases is expected to double1,2. One may alternatively 
be interested in the time needed for the rate of daily 
new cases to double. We explore both here, and refer 
to the former as the cumulative doubling time and 
the latter as the rate doubling time. When the growth 
rate is exponential, the two constructs are identical, 
but when the growth of the epidemic is not perfectly 
exponential, various ambiguities and problems in 
estimating doubling time can arise.  
 
The main questions explored in this paper are how 
accurately the doubling time can be estimated using 
two commonly used models for the spread of Covid-
19 (SARS-CoV-2), and how this doubling time is 
related to parameters in these models. Despite the 
prevalence of the concept of doubling time in media 
reports and popular communication surrounding 
epidemic diseases such as Covid-19, surprisingly few 
studies have focused on doubling time in the 
scientific literature. A notable exception is the 
exploration of the relationship between doubling 
time and the reproduction number parameter, R0, 
for the Susceptible-Infected-Recovered (SIR) model 
classically used in epidemiology to describe the 
spread of contagious diseases3. The SIR model may 
be overly simplistic, however, and presently, more 
sophisticated models are used to model Covid-19, 
such as the SQUIDER (Susceptible, Quarantine, 
Undetected Infected, Infected, Dead, Exposed, 
Recovered) model4 and HawkesN model5. Here, we 
attempt to extend previous results on the SIR model 
and doubling time3 by examining the relationship 
between doubling time and parameters in these 
more refined models for Covid-19, and we also 
consider the accuracy of estimates of doubling time 
using these models, employing data on confirmed 
SARS-CoV-2 cases in California during surges in 2020 
and 2021. Studying doubling times using such a 
dataset is important not only for the purpose of 
understanding the relationship between doubling 
times and parameters in such models as HawkesN 
and SQUIDER which were used in forecasting the 
spread of Covid-19, but also to further our 

understanding of how to estimate doubling time and 
what level of accuracy can be anticipated for future 
epidemics.  
 
The structure of the remainder of this paper is as 
follows. Following a brief description of HawkesN 
and SQUIDER models in Section 2, the California 
Covid-19 data used in the analysis are described in 
Section 3. Section 4 summarizes the results for 
estimating doubling time and its relation to 
HawkesN and SQUIDER parameters, and a 
discussion is given in Section 5.  
 
2. HawkesN and SQUIDER Models.  
2.1. THE HAWKESN MODEL  
The self-exciting Hawkes model6 is a commonly used 
point process model to describe clustering of 
random events occurring in time or space-time. Such 
point process models are typically characterized via 
their conditional intensity λ(t), which is the expected 
rate of occurrence of points around time t given 
information on all previously occurring points7. For 
the temporal Hawkes model, the conditional 
intensity is posited to obey 
 

λ(t) = μ + κ ∑  𝑔(𝑡 − 𝑡𝑖:ti <𝑡 i),               (1)   
 

where μ is the background rate at which points are 
immigrating into the current location, g is the 
triggering density governing the time it takes for one 
individual to infect another, and the parameter κ is 
called the productivity and ti represents the expected 
number of people directly infected by each infected 
individual. Common choices for g are the 
exponential, Pareto, or normal densities, though 
sometimes non-parametric estimates are used. The 
parameter κ is closely connected to the reproduction 
number in compartmental models such as SIR. If κ < 
1 is constant, then each point is expected to spread 
to κ+κ2 +κ3 +... = 1/(1−κ)−1 = κ/(1−κ) triggered 
points. As a result, in a Hawkes process with κ < 1, 
the expected fraction of background points is 1 − κ. 
In recent applications to epidemic diseases8,9, the 
productivity κ is typically allowed to vary over time, 
and thus is represented as a function κ(t).  
 
Hawkes models have been used in a wide variety of 
applications including the forecasting of 
earthquakes10,11, violent crimes12,13 and the spread of 
epidemic diseases14,15. Such models have also been 
shown to be the best fitting models for forecasting 
seismicity in rigorous, purely prospective 
earthquake forecasting studies such as the 
Collaboratory for the Study of Earthquake 
Predictability (CSEP)16−21.  
 
Recent evidence has shown that Hawkes models, 
when fit to case counts of SARS-CoV-2 in the United 
States or Europe, Ebola in West Africa, or other 
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epidemics, typically result in smaller forecast errors 
compared to alternative models such as 
compartmental models22−25. When used to model 
SARS-CoV-2 in the United States, Hawkes models 
resulted in a 31% reduction in root-mean-square 
(RMS) error, compared to SEIR models24. Further, 
Hawkes models and their variants such as the 
HawkesN model5,26, and the recursive model27 have 
been shown to be accurate for modeling not only 
SARS-CoV-28, but also Ebola 23,28 Chlamydia29 SARS 
30,31 measles32, meningococcal disease33, and Rocky 
Mountain Spotted Fever27.  
 
The idea behind the HawkesN model is that, as the 
number of previously infected individuals gets large 
relative to the total population size, the rate of 
spread of the disease should decrease due to herd 
immunity5. Thus, the HawkesN model has 
conditional intensity obeying  
 

λ(t)  =  (1 − Nt 
𝑁

)[µ + κ ∑  𝑔(𝑡 − 𝑡𝑖: 𝑡i <𝑡 i)],             (2) 
 

where the triggering density g is often chosen to be 
the exponential density function  
  

g(u) = βe-βµ               (3)  
 

Here, N is the size of the population, and Nt is the 
number of individuals who have been infected prior 
to time t. The HawkesN model allows for the process 
to be non-stationary yet stable and non-explosive 
when κ > 1, since the rate of spread slows as the 
number of remaining susceptible individuals drops 
over time. The HawkesN model has been shown to be 
effective for forecasting statewide SARS-CoV-2 data 
in the United States9, SARS-CoV-2 transmission in 
Indiana8 and national SARS-CoV-2 data in the United 
States25.  
 
2.2. THE SQUIDER MODEL  
Many compartmental models have been developed 
for describing the spread of epidemic diseases such 
as SARS-CoV-2. In the most basic compartmental 
model, the Susceptible Infected Recovered (SIR) 
model, the population is modeled as belonging to one 
of the three categories, and in each time unit, some 
proportion of the Susceptible population becomes 
Infected, and some proportion of the Infected 
proportion becomes Recovered. These proportions 
are typically modeled as fixed, i.e. not changing over 
time. A host of variants of the SIR model have been 
proposed, typically with more than just three 
compartments. One such variant is the Susceptible, 
Quarantine, Undetected Infected, Infected, Dead, 
Exposed, Recovered (SQUIDER) model, which has 
been shown to fit well and forecast accurately for the 
initial SARS-CoV-2 surge in the United States4. Like 
the SIR model, SQUIDER is a closed system of 
differential equations where individuals susceptible 
to the virus move from one compartment to another 

at fixed rates. The model is relatively simple, easily 
interpretable, and generally fits well to epidemic 
outbreaks, including SARS-CoV-224.  
 
The SQUIDER model adds four additional 
compartments beyond what is present in the basic 
SIR model in order to take into account specifics 
regarding the behavior of the SARS-CoV-2 pandemic. 
The quarantine state (Q) takes into account subjects 
who have either been potentially exposed and 
quarantining at home for the required 10 days34 or 
those who are staying at home voluntarily due to 
stay-at-home orders4. The undetected infected (U) 
and the undetected recovered / dead (E) states 
account for the fact that not all cases are detected, 
due to a lack of testing and unreported cases4,35. The 
dead (D) state represents the population of 
individuals who pass away from complications due 
to SARS-CoV-24. The SQUIDER adaptation allows for 
a more accurate fit to SARS-CoV-2 cases in New York 
State than the basic SIR model, which is too simplistic 
to accurately predict various inflection points for 
confirmed infections4.  
 
The system of differential equations governing the 
SQUIDER model is thus as follows:  
 

 𝜕𝑆
𝜕𝑡

 = −ΘSUa − qS + ρ(E + R),  

 𝜕𝑈 
𝜕𝑡

 = −ΘSUa −(q+ε+δ)U,  

 𝜕𝐼
𝜕𝑡

 = δU − (γ + α)I,  
 𝜕𝑅

𝜕𝑡
 = αI − ρR,   

 𝜕𝐷
𝜕𝑡

 = γI,  

 𝜕𝑄
𝜕𝑡

 = q(U + S),  

 𝜕𝐸
𝜕𝑡

 = εU − ρE,  
 

where q = 0 except on days when quarantine periods 
(or stay-at-home orders) initiate or end.  
 
3. Methods 
3.1. PARAMETER ESTIMATION  
When detailed occurrence times are available, the 
parameters in the Hawkes or HawkesN model are 
conventionally fit using maximum likelihood 
estimates, which are known to have desirable 
asymptotic properties including efficiency, 
consistency and asymptotic normality36. However, 
when only daily totals are available, as in the case for 
SARS-CoV-2 data in California, we use the least 
squares technique advocated in previous studies9 
based on the relationship observed between Hawkes 
processes and autoregressive time series37,38.  
 
Specifically, for the HawkesN model we find the least 
squares estimate  
 
θ̂ =  argmin

θ
{∑ (𝑁(𝑡) − [µ + 𝑇

𝑡=1 κ(t) ∑  𝑔(𝑖) 𝑁(𝑡 − 𝑡𝑖: 𝑡i <𝑡 i)])2},  (4)  
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where θ = {μ,κ(t),β}, g obeys (3), T is the total length 
of the fitting period, N(t) is the number of observed 
infections on day t, and κ(t) is assumed to be constant 
within each surge but is permitted to vary from surge 
to surge. In other words, the parameters are chosen 
to minimize the sum of squared differences between 
the observed daily infection counts and the 
estimated case counts forecast using the HawkesN 
model (2). This least squares method is shown to be 
a reliable method of fitting Hawkes and HawkesN 
models in epidemiologic settings8,9,25. 
To fit the SQUIDER model, we follow the procedure 
recommended in previous studies, minimizing the 
sum of squared differences between expected and 
observed case and death counts4. The resulting fitted 
parameters include estimates of the rates of 
transmission (Θ), testing (δ), recovery (α), known 
deaths (γ), waning immunity (ρ) and undetected 
outcomes (ε) as well as the original proportion of 
undetected infected individuals, U(0), and Ua which 
allows the susceptible and undetected infectious 
populations to mix at a variable rate4. For the 
quarantine compartment in the SQUIDER model, 
both the time of the initial quarantine and the size of 
the population obeying the quarantine are to be 
estimated4. For this paper, since the quarantine 
origin and end times are known, we need only 
estimate the share of the population entering or 
leaving quarantine during each of the two stay-at-
home orders issued in California39,40 That is, we 
estimate q1 = the number of Californians who began 
obeying the stay-at-home orders that commenced 
March 19th, 2020, q2 = the number who ceased 
staying at home when the orders ended on May 18th, 
2020, q3 = the number obeying the stay-at-home 
orders beginning on November 19, 2020, and q4 = 
the number who stopped following stay-at-home 
orders when they ended on January 25, 2021.  
 
3.2. DATA  
Records of California statewide totals of official daily 
reported cases of SARS-CoV-2 were obtained from 
the California Department of Public Health via their 
website, https://data.chhs.ca.gov/dataset/covid-19-
time-series-metrics-by-county-and-state . The data 
were updated daily Mondays through Saturdays 
following their review and verification, and include 
all SARS-CoV-2 cases reported by state and 
territorial jurisdictions, including both confirmed 
and probable SARS-CoV-2 cases and deaths. Daily 
counts were obtained from February 16, 2020 
through December 31, 2021, for a period of 684 days. 
Since doubling time is only defined during surges of 
an epidemic, we focus here on three surges: one 
beginning on 2/16/20, one beginning on 10/25/20, 
and one beginning on 6/20/21. To standardize the 
analysis we consider the first 31 days of each of these 

surges. The estimated total population of California 
was obtained from 2020 census records40.  
 
The dates corresponding to the recorded cases 
analyzed here may be quite different from the actual 
dates of onset of disease. Missing data are a serious 
potential problem with any study of SARS-CoV-2, as 
estimation of the number of unreported cases is 
exceedingly difficult 24,26. A number of detailed 
studies were performed by the CDC in the Spring and 
Summer of 2020 in order to estimate the 
seroprevalence of the virus in several locations using 
sampling and testing of subjects at random41. 
Unfortunately, such careful studies ceased after the 
Trump administration cut funding for the CDC in 
summer 202042. Further details on SARS-CoV-2 case 
surveillance data collection can be obtained from the 
California Department of Public Health40 or CDC2,43. 
 
Of the three waves analyzed here, the first surge in 
Spring 2020 occurred when the California 
population had not yet been exposed to the novel 
coronavirus as shown by a retrospective study of 
1700 individuals with respiratory symptoms in 
December, 2019, none of whom had SARS-CoV-244. 
During this time, testing for the virus was limited in 
California and there were major problems with 
testing45. The second surge during Autumn 2020 was 
also characterized by a dramatic increase in 
hospitalizations and fatalities statewide2. Although 
there had been some population exposure during 
Spring and Summer 2020, the proportion previously 
exposed was insufficient to provide general herd 
immunity2,46. The third wave during Summer 2021 
occurred when the more infectious Delta variant of 
SARS-CoV-2 became dominant in California47. By this 
time, vaccines effective against the Delta strain such 
as BNT162b2 developed by Pfizer48 had been 
approved for emergency use by the U.S. Food and 
Drug Administration for those over the age of 12 
years49. However, only 68% of the eligible 
population in California was fully vaccinated by June 
20, 202140 which did not provide for sufficient herd 
immunity against the Delta variant.  
 
3.3. FORECASTING  
The accuracy of doubling time estimates is 
considered for both retrospective and prospective 
analysis. That is, we assess the accuracy of doubling 
time estimates according to the fitted model with 
parameters estimated using data from the entire 
surge, and we also assess the accuracy of 
prospective, forecast doubling times, where for day 
t, the parameters in the model are fit using only 
observations up to and including day t. We then 
compare the observed doubling time with the 
median doubling time from simulations of the given 
HawkesN or SQUIDER model. In each case, the 
median of 100 simulated doubling times is used as 

https://esmed.org/MRA/index.php/mra/article/view/5137
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the estimated doubling time, for both the rate 
doubling time and cumulative case doubling time, 
meaning the time elapsed until the daily number of 
cases at least doubles, and the time elapsed until the 
total cumulative number of cases at least doubles, 
respectively. HawkesN simulations are performed 
using the HawkesN Process Generator described in 
Appendix A, and SQUIDER simulations are 
performed using the method described in previous 
studies4. The root-mean-squared error (RMSE) is 
used to summarize the errors in the forecast 
doubling times based on the simulations of the 
models.  
 
4. Results  
Figure 1 shows how the estimated productivity 
parameter (κ) in the fitted HawkesN model evolves 
over time during each of the three surges. Along with 
the estimates of κ, the number of recorded cases per 
day of SARS-CoV-2 cases in California is also shown. 
In each of the three surges, the estimates of κ appear 
to stabilize after approximately 20 days. In the 
Spring 2020 surge, estimates of κ settled mostly 
between 3.3 and 4.6, whereas in the Fall 2020 and 

Summer 2021 surges, the estimates of κ were 
considerably lower, settling in the ranges of 1.8-2.2 
and 2.0-2.7, respectively.  
 
Figure 2 shows, based on simulations, how the 
cumulative and daily rate doubling times relate to 
the productivity parameter κ in the HawkesN model. 
The cumulative doubling time decreases 
approximately exponentially as κ increases, and this 
exponential decrease appears not to depend on the 
parameter β governing the transmission time 
density. The daily rate doubling time also appears to 
decrease roughly exponentially as κ increases, 
though the daily rate doubling times are 
considerably more noisy, as expected. For fixed κ, 
cumulative doubling times increase as β decreases, 
since β represents the inverse of generation length, 
so when β is very small, the disease is spreading 
more slowly. Both the cumulative doubling time and 
daily rate doubling time are calculated here as the 
time elapsed from the 50th recorded infection until 
the time of the corresponding doubling, as in the 
Johns Hopkins University and Medicine COVID-19 
Dashboard50. 
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Figure 1: Daily number of reported cases and estimated productivity, κ̂, for fitted HawkesN model, for Spring 
2020 time period (top), Autumn 2020 (middle), Summer 2021 (bottom). For each day t, productivity is 
estimated using data from beginning of the plotted period up to and including day t.  
 
Table 1 shows how the HawkesN parameter 
estimates, fit by least squares to the California SARS-
CoV-2 data, vary as the length of the observation 
period increases. The estimated background rate μ 
was highest for the Autumn 2020 time period, 
whereas the estimates of κ were highest during the 
initial Spring 2020 surge, when more of the 
population was susceptible and only minimal 

mitigation efforts were in place, in agreement with 
the justification for the recursive version of the 
Hawkes model27. Estimates of β were generally 
higher during the initial Spring 2020 surge, perhaps 
due to a longer time period between exposure and 
symptomatic disease for the original variant43,47.  
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Table 1: Estimated HawkesN parameters μ, κ, β for training periods of varying lengths. Parameters are 
estimated by least squares.  
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Figure 2: Doubling times over 500 simulations where β = {1/3, 1/5, 1/10, 1/20} . Top: median cumulative 
doubling time from the time when 50 total cases have been reported during the current surge. Bottom: median 
daily rate doubling time from the time when 50 total infections have been reported during the current surge.  
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Table 2: Fitted values for selected parameters α, Θ, δ and γ in the SQUIDER model, estimated for training 
periods of varying lengths.  
 
Table 2 provides estimates for selected parameters 
(Θ, δ, γ, α) for the SQUIDER model fit to the same 
California SARS-CoV-2 data. The estimated contact 
rate Θ is relatively constant for most fit lengths in all 
three time periods, ranging between 0.6 and 0.9. The 
estimated testing rate δ is generally higher during 
the Autumn 2020 and Summer 2021 SARS-CoV-2 
surges than during Spring 2020. The estimates of the 
fatality rate γ are generally highest in the Autumn 
2020 time period, and correspondingly the 
estimated recovery rate α is lowest during Autumn 
2020 as well.  
 
In Figures 3 and 4, the cumulative and rate doubling 
times for the fitted HawkesN and SQUIDER models 
are compared retrospectively, where the models are 
fit using the entire surge, and for each value of t, the 

simulated, model-based estimate of the doubling 
time is compared with the observed time required to 
at least double the number of cases having occurred 
on day t. For estimating cumulative doubling times, 
the HawkesN model has a higher retrospective RMSE 
than the SQUIDER model during Spring 2020 and a 
somewhat lower retrospective RMSE than the 
SQUIDER model during Fall 2020, especially for t in 
the range of 25 to 31 days. The retrospective RMSE 
of estimates of daily rate doubling times is higher for 
the HawkesN model than for the SQUIDER model 
especially during the Spring 2020 and Summer 2021 
surges, particularly for t less than 26 days, though for 
Fall 2020 the HawkesN model’s retrospective daily 
rate doubling times have lower RMSE than those of 
the SQUIDER model.  
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Table 3: Root-mean-squared errors (RMSE), in days, for prospective, forecasted cumulative and daily rate 
doubling times for each model.  
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Figure 3: Root-mean-squared errors (RMSEs) of retrospective cumulative doubling time estimates for the 
HawkesN and SQUIDER models. Spring 2020 surge (top), Fall 2020 surge (middle), Summer 2021 surge 
(bottom).  
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Figure 4: Root-mean-squared errors (RMSEs) of retrospective daily rate doubling time estimates for the 
HawkesN and SQUIDER models. Spring 2020 surge (top), Fall 2020 surge (middle), Summer 2021 surge 
(bottom).  
 
However, as shown in Table 3, the prospective or 
forecasting doubling time estimates for the HawkesN 
model are more accurate overall than those of the 
SQUIDER model. An exception is Spring 2020, when 
the SQUIDER model estimates of cumulative 
doubling times have lower RMSE than those of 
HawkesN. However, in Fall 2020 and Summer 2021, 
the HawkesN estimates of cumulative doubling time 
are more accurate, and when estimating daily rate 

doubling times, the HawkesN estimates are more 
accurate than the SQUIDER estimates in all three 
surges. The daily rate doubling estimates for the 
HawkesN model are particularly more accurate than 
those for the SQUIDER model, with an RMSE of 4.251 
days for the HawkesN forecast daily rate doubling 
times, compared to an RMSE of 20.621 days for the 
SQUIDER forecasts.  
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Figure 5: Prospective forecast cumulative doubling time estimates for the HawkesN model (red) and SQUIDER 
model (blue), along with the observed cumulative doubling time (black). For the HawkesN model, the thick red 
line represents the median of 100 simulations and the thin dashed red lines represent the middle 90% bounds 
based on the simulations. Spring 2020 surge (top), Fall 2020 surge (middle), Summer 2021 surge (bottom).  
 
The forecast cumulative doubling times for the 
HawkesN and SQUIDER models are shown in Figure 
5, along with the observed cumulative doubling 
times. For the initial SARS-CoV-2 surge in Spring 
2020, both the SQUIDER model and the HawkesN 
model appear to slightly overestimate the 
cumulative doubling time when the fitting period is 
19 to 24 days in length and considerably 
underestimate cumulative doubling times when the 
fitting period is 28 days or longer. The middle 90 
percent ranges of HawkesN simulations contain the 
true cumulative doubling times in 10 out of 22 
forecasts in Spring 2020, and are within one day of 
doing so in 8 other instances. For the Fall 2020 SARS-
CoV-2 surge, while the SQUIDER model substantially 
underpredicts the cumulative doubling times 
particularly when the fitting period is 29-30 days, the 
HawkesN model appears to forecast accurately, with 
the middle 90% of forecasted cumulative doubling 
times containing the observed cumulative doubling 
time in 18 of 22 forecasts. The HawkesN model 
forecasts also have higher accuracy than the 
SQUIDER model during the Summer 2021 SARS-CoV-
2 increase, with the SQUIDER model 

underestimating the cumulative doubling time when 
the fitting period is 25 days or longer. During 
Summer 2021, the middle 90% ranges of simulated 
cumulative doubling times for the HawkesN model 
contain the observed cumulative doubling times in 
18 out of the 22 forecasts, and are within one day of 
doing so for all 22 forecasts in both Autumn 2020 
and Summer 2021.  
 
As shown in Figure 6, both the HawkesN and 
SQUIDER models forecast daily rate doubling times 
accurately in most cases. However, the SQUIDER 
forecasts of daily rate doubling times appear to be far 
more volatile and thus occasionally have much larger 
errors, particularly in Fall 2020. However, both 
models underpredict the daily rate doubling time in 
late March and early April 2020, when the rate of 
daily new recorded infections slowed, as neither 
model was able to anticipate this change. During 
both Fall 2020 and Spring 2021, the middle 90% 
range of simulations of HawkesN forecasts of daily 
rate doubling times contain the observed daily rate 
doubling time in 39 out of these 44 forecasts.  
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Figure 6: Prospective forecast daily rate doubling time estimates for the HawkesN model (red) and SQUIDER 
model (blue), along with the observed daily rate doubling time (black). For the HawkesN model, the thick red 
line represents the median of 100 simulations and the thin dashed red lines represent the middle 90% bounds 
based on the simulations. Spring 2020 surge (top), Fall 2020 surge (middle), Summer 2021 surge (bottom).  
 
5. Discussion  
The approximately exponential relationship 
between the productivity parameter κ in the 
HawkesN model and the corresponding doubling 
time is not surprising, as such an exponential 
relationship is consistent with the exponential 

growth characteristic of the HawkesN model as well 
as compartmental models. The finding here that the 
HawkesN model forecasts doubling times more 
accurately than the SQUIDER model, with 3.6% 
smaller root mean squared errors in Spring 2020, 
79.4% smaller root mean squared errors in Autumn 
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2020, and 5.4% smaller root mean squared errors in 
Summer 2021, is somewhat surprising, however, 
given the prevalent use of SQUIDER and other 
compartmental models in modeling Covid-19. The 
HawkesN and SQUIDER models appear to forecast 
daily rate doubling times accurately at most times, 
though the SQUIDER forecasts of daily rate doubling 
times are far more volatile and thus occasionally had 
much larger errors, particularly in Fall 2020.  
 
The higher RMSE in estimated cumulative doubling 
times and daily rate doubling times during the Spring 
2020 surge for the HawkesN model compared to the 
SQUIDER model is likely attributable to the fact that 
the HawkesN model is simpler, with only three fitted 
parameters compared to twelve in the SQUIDER 
model. As a result of these extra fitted parameters, 
the SQUIDER model likely overfits, which would 
explain why the HawkesN model is substantially 
more accurate than the SQUIDER model for 
forecasting both daily and cumulative doubling 
times, particularly for the Fall 2020 wave of SARS-
CoV-2.  
 
An important item for future research would be to 
explore better ways to estimate the susceptible 
population when applying HawkesN to epidemic 
diseases such as SARS-CoV-2 and its variants. The 
analysis here essentially assumes everyone in 
California is susceptible, other than those 
corresponding to previously reported cases. 
Estimating the size of the susceptible population at 
any given point in time is not trivial and may perhaps 
be estimated by simulating a portion of the 
branching process first5. Another potentially fruitful 
line of research may involve combining the HawkesN 
model and the recursive model, which could perhaps 

allow for a finite population as well as varying 
productivity, both shown to add to model 
performance individually when applied to 
forecasting epidemic diseases including SARS-CoV-2.  
In addition, future research should explore whether 
the models assessed herein might be improved by 
taking into account vaccine uptake and waning 
immunity to the SARS-CoV-2 virus as well as the 
impact of new variants47. For this application, we 
examined doubling times during three distinct 
periods, each of length 1-2 months, of sustained 
increase during which the population’s immunity 
was unlikely to change substantially, but a longer 
term forecast might benefit from taking these extra 
factors into account. In the current formulation of the 
SQUIDER model, a subject is removed from the 
susceptible population if infected. Perhaps future 
formulations could remove individuals from the 
susceptible population when they take the 
recommended doses of vaccines such as BNT162b2 
which was 95% effective against the original strain 
of SARS-CoV-243 and should be added back in when 
immunity wanes51 or a new variant reduces the 
effectiveness of such a vaccine47. Estimating these 
quantities might be difficult, however, and the 
results here suggest that, for estimating doubling 
times at least, the SQUIDER model may already be 
prone to overfitting and thus yield larger errors 
compared to the simpler HawkesN model with fewer 
estimated parameters.  
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6. Appendix 
 
6.1. HawkesN Process Generator  
In order to obtain estimates for doubling time, we have developed an algorithm to simulate HawkesN processes 
given the background rate μ, productivity rate κ, generational length β and susceptible population N. It has 
been shown that one can simulate a disease process using a SEIR-Hawkes process, taking advantage of both 
the easy interpretability of terms from the SIR compartmental family of models as well as the point process 
properties of Hawkes24. The conditional intensity of new infections is given by  
 

λE(t)  =  (1 − NE
t 

𝑁
) ∑  R0 γ 𝑒𝑥𝑝{−γ(𝑡 − 𝑡jI𝑡>𝑡j

I )},        (5) 
and infecton times are generated by  
 

P(tjI > tjE + c) = ∫ µ 𝑒𝑥𝑝(−µ(s − tjE))ds∞
c .         (6) 

 

In (5), the conditional intensity is still a function of the susceptible population, productivity and triggering 
function as in (2), but the SIR parameters representing total infections up to time t (NE(t)), transmission rate 
(R0) and infection rate (γ) take the place of the usual HawkesN terms (Kresin et al., 2021). Also, in (6), a new 
infection tIj is generated at some time interval c after the previous one dependent on an exponential kernel 
featuring the rate of exposure μ (different from the HawkesN background rate in (2)). The SEIR-Hawkes 
process can be simulated using an iterative process as shown in previous studies24.  
In this paper, we develop an algorithm to simulate HawkesN processes using a similar method to the one used 
in prior studies24. The goal is to simulate a HawkesN process until a defined termination time Tend. This method 
simulates a branching process where the first set of accepted points consist merely of background infections 
randomly scattered from time 0 to Tend with rate μ. Then candidate offspring are proposed for each 
background point and are either accepted or rejected to imitate the triggering function g. The next generation 
then includes the original background points and the most recent accepted offspring and the process repeats 
until the branching process from time 0 to Tend has been exhausted.  
Set R0 = κ and γ = β. After the time of infection has been established for each of the initial background events, 
each iteration of the branching process is comprised of the following steps:  
Part 1: For each accepted point from the previous generation, a, the number of candidate offspring is 
determined by drawing a random number M ∼ Poisson(R0). Then for each of M proposed future events, offset 
the time of exposure from the ancestor’s by exp(μ). Last, sort in chronological order all of the accepted points 
and all of the candidate points together. These will be known as simulated points, or s. The previously accepted 
points should also be kept in chronological order independently.  
Part 2: For each candidate point, c:  
 

λc(t)  =  (1 − Na 
𝑁

) ∑  R0 γ 𝑒𝑥𝑝{−γ[𝑡(𝑐) − 𝑡(𝑎jNa𝑖=1 )]},      (7)  
and  
 

νc = ∑  R0 γ 𝑒𝑥𝑝{−γ[𝑡(𝑐) − 𝑡(𝑠jNS𝑖=1 )]},         (8)  
 

where t(c) is the proposed time of infection for the candidate point, t(ai) is the event time  
for accepted point i and t(si) is the infection time for simulated point i. Also, Na is the number of accepted points 
with an infection time before that of the candidate point and Ns is interpreted similarly, but including all 
simulated points.  
Part 3: Accept or reject each candidate point using Lewis’ thinning method52. That is, accept the candidate 
point if  
Dc ∼ Unif[0, 1] < λc

νc 
 .          (9) 

Part 4: Finally, to take into account exposure time before infection, the time of infection for each newly accepted 
point is offset by an exponential amount:  
t(a) = t(a) + exp(γ).           (10)  
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