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ABSTRACT

The rate of spread of an emerging epidemic is frequently
characterized via the doubling time, which is the time it takes for the
number of cases to double. This paper explores different ways to
estimate doubling time, and investigates the estimation of doubling
time in relationship to parameters in the HawkesN model and the
SQUIDER (Susceptible, Quarantine, Undetected Infected, Infected,
Dead, Exposed, Recovered) model. We observe an approximately
exponential relationship between the productivity parameter k in the
HawkesN model and doubling time. We also evaluate the performance
of the models in forecasting doubling times and compare to empirical
doubling times using daily reported statewide totals for SARS-CoV-2
infections in California, and find that the HawkesN model forecasts
doubling times more accurately, with 3.6% smaller root mean
squared errors in Spring 2020, 79.4% smaller root mean squared
errors in Autumn 2020, and 5.4% smaller root mean squared errors
in Summer 2021. The HawkesN and SQUIDER models appear to
forecast daily rate doubling times accurately at most times, though the
SQUIDER forecasts of daily rate doubling times are far more volatile
and thus occasionally have much larger errors, particularly in Fall
2020.

Keywords: Contagious diseases, epidemics, Hawkes model, Point
process, SARS-Cov-2, Self-exciting.
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1. Introduction

During the outbreak of an infectious disease,
epidemiologists often characterize the rate of spread
of the disease by discussing its doubling time. The
term doubling time dates back to ancient Babylonian
and Assyrian times to describe the growth of
financial assets bearing interest, and has also been
used frequently in population dynamics. The term is
easily understood by the general public and is a
useful summary of how quickly the population of
infected individuals is expected to grow.

In the context of infectious diseases, however, there
is some ambiguity in the definition of doubling time.
Epidemiologists typically define doubling time as the
time needed before the total cumulative number of
cases is expected to double2 One may alternatively
be interested in the time needed for the rate of daily
new cases to double. We explore both here, and refer
to the former as the cumulative doubling time and
the latter as the rate doubling time. When the growth
rate is exponential, the two constructs are identical,
but when the growth of the epidemic is not perfectly
exponential, various ambiguities and problems in
estimating doubling time can arise.

The main questions explored in this paper are how
accurately the doubling time can be estimated using
two commonly used models for the spread of Covid-
19 (SARS-CoV-2), and how this doubling time is
related to parameters in these models. Despite the
prevalence of the concept of doubling time in media
reports and popular communication surrounding
epidemic diseases such as Covid-19, surprisingly few
studies have focused on doubling time in the
scientific literature. A notable exception is the
exploration of the relationship between doubling
time and the reproduction number parameter, Ro,
for the Susceptible-Infected-Recovered (SIR) model
classically used in epidemiology to describe the
spread of contagious diseases®. The SIR model may
be overly simplistic, however, and presently, more
sophisticated models are used to model Covid-19,
such as the SQUIDER (Susceptible, Quarantine,
Undetected Infected, Infected, Dead, Exposed,
Recovered) model* and HawkesN model®. Here, we
attempt to extend previous results on the SIR model
and doubling time® by examining the relationship
between doubling time and parameters in these
more refined models for Covid-19, and we also
consider the accuracy of estimates of doubling time
using these models, employing data on confirmed
SARS-CoV-2 cases in California during surges in 2020
and 2021. Studying doubling times using such a
dataset is important not only for the purpose of
understanding the relationship between doubling
times and parameters in such models as HawkesN
and SQUIDER which were used in forecasting the
spread of Covid-19, but also to further our
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understanding of how to estimate doubling time and
what level of accuracy can be anticipated for future
epidemics.

The structure of the remainder of this paper is as
follows. Following a brief description of HawkesN
and SQUIDER models in Section 2, the California
Covid-19 data used in the analysis are described in
Section 3. Section 4 summarizes the results for
estimating doubling time and its relation to
HawkesN and SQUIDER parameters, and a
discussion is given in Section 5.

2. HawkesN and SQUIDER Models.

2.1. THE HAWKESN MODEL

The self-exciting Hawkes model®is a commonly used
point process model to describe clustering of
random events occurring in time or space-time. Such
point process models are typically characterized via
their conditional intensity A(t), which is the expected
rate of occurrence of points around time t given
information on all previously occurring points’. For
the temporal Hawkes model, the conditional
intensity is posited to obey

At) =+ K Xii <¢ g(E — ), 1)

where u is the background rate at which points are
immigrating into the current location, g is the
triggering density governing the time it takes for one
individual to infect another, and the parameter x is
called the productivity and ti represents the expected
number of people directly infected by each infected
individual. Common choices for g are the
exponential, Pareto, or normal densities, though
sometimes non-parametric estimates are used. The
parameter k is closely connected to the reproduction
number in compartmental models such as SIR. If k <
1 is constant, then each point is expected to spread
to k+k? +k* +.. = 1/(1-x)-1 = x/(1-«) triggered
points. As a result, in a Hawkes process with k < 1,
the expected fraction of background points is 1 - k.
In recent applications to epidemic diseases®®, the
productivity k is typically allowed to vary over time,
and thus is represented as a function k(t).

Hawkes models have been used in a wide variety of
applications  including the forecasting of
earthquakes'®!!, violent crimes!?!? and the spread of
epidemic diseases'***. Such models have also been
shown to be the best fitting models for forecasting
seismicity in rigorous, purely prospective
earthquake forecasting studies such as the
Collaboratory for the Study of Earthquake
Predictability (CSEP)*6-22,

Recent evidence has shown that Hawkes models,
when fit to case counts of SARS-CoV-2 in the United
States or Europe, Ebola in West Africa, or other
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epidemics, typically result in smaller forecast errors
compared to alternative models such as
compartmental models?*25>, When used to model
SARS-CoV-2 in the United States, Hawkes models
resulted in a 31% reduction in root-mean-square
(RMS) error, compared to SEIR models?*. Further,
Hawkes models and their variants such as the
HawkesN model®>?®, and the recursive model?” have
been shown to be accurate for modeling not only

SARS-CoV-28, but also Ebola 2> Chlamydia” SARS
3031 measles®?, meningococcal disease®, and Rocky
Mountain Spotted Fever?’.

The idea behind the HawkesN model is that, as the
number of previously infected individuals gets large
relative to the total population size, the rate of
spread of the disease should decrease due to herd

immunity®. Thus, the HawkesN model has
conditional intensity obeying

N
A = (1 - Pt kXig< gt —t] (2)

where the triggering density g is often chosen to be
the exponential density function

g(u) = pen (3)
Here, N is the size of the population, and Nt is the

number of individuals who have been infected prior
to time t. The HawkesN model allows for the process
to be non-stationary yet stable and non-explosive
when k > 1, since the rate of spread slows as the
number of remaining susceptible individuals drops
over time. The HawkesN model has been shown to be
effective for forecasting statewide SARS-CoV-2 data
in the United States®, SARS-CoV-2 transmission in
Indiana® and national SARS-CoV-2 data in the United
States?.

2.2. THE SQUIDER MODEL

Many compartmental models have been developed
for describing the spread of epidemic diseases such
as SARS-CoV-2. In the most basic compartmental
model, the Susceptible Infected Recovered (SIR)
model, the population is modeled as belonging to one
of the three categories, and in each time unit, some
proportion of the Susceptible population becomes
Infected, and some proportion of the Infected
proportion becomes Recovered. These proportions
are typically modeled as fixed, i.e. not changing over
time. A host of variants of the SIR model have been
proposed, typically with more than just three
compartments. One such variant is the Susceptible,
Quarantine, Undetected Infected, Infected, Dead,
Exposed, Recovered (SQUIDER) model, which has
been shown to fit well and forecast accurately for the
initial SARS-CoV-2 surge in the United States® Like
the SIR model, SQUIDER is a closed system of
differential equations where individuals susceptible
to the virus move from one compartment to another
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at fixed rates. The model is relatively simple, easily
interpretable, and generally fits well to epidemic
outbreaks, including SARS-CoV-2%4,

The SQUIDER model adds four additional
compartments beyond what is present in the basic
SIR model in order to take into account specifics
regarding the behavior of the SARS-CoV-2 pandemic.
The quarantine state (Q) takes into account subjects
who have either been potentially exposed and
quarantining at home for the required 10 days3* or
those who are staying at home voluntarily due to
stay-at-home orders®. The undetected infected (U)
and the undetected recovered / dead (E) states
account for the fact that not all cases are detected,
due to a lack of testing and unreported cases***. The
dead (D) state represents the population of
individuals who pass away from complications due
to SARS-CoV-2% The SQUIDER adaptation allows for
a more accurate fit to SARS-CoV-2 cases in New York
State than the basic SIR model, which is too simplistic
to accurately predict various inflection points for
confirmed infections®.

The system of differential equations governing the
SQUIDER model is thus as follows:

2 =-0SU%- qS +p(E+R),
2 = -0sU™ ~(q+e+8)U,

al

ge_ 8U - (y + O()I,

i al - pR,

o _

%o

g_g = q(U + S),

P €U - pE,

where q = 0 except on days when quarantine periods
(or stay-at-home orders) initiate or end.

3. Methods

3.1. PARAMETER ESTIMATION

When detailed occurrence times are available, the
parameters in the Hawkes or HawkesN model are
conventionally fit using maximum likelihood
estimates, which are known to have desirable
asymptotic  properties including efficiency,
consistency and asymptotic normality®®. However,
when only daily totals are available, as in the case for
SARS-CoV-2 data in California, we use the least
squares technique advocated in previous studies®
based on the relationship observed between Hawkes
processes and autoregressive time series®’38,

Specifically, for the HawkesN model we find the least
squares estimate

6= argglin{ﬂ:l(N(t) — [+ kO X< 9O N =), (4)
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where 0 = {,k(t),[5}, g obeys (3), T is the total length
of the fitting period, N(t) is the number of observed
infections on day t, and k(t) is assumed to be constant
within each surge but is permitted to vary from surge
to surge. In other words, the parameters are chosen
to minimize the sum of squared differences between
the observed daily infection counts and the
estimated case counts forecast using the HawkesN
model (2). This least squares method is shown to be
a reliable method of fitting Hawkes and HawkesN
models in epidemiologic settings®°2°,

To fit the SQUIDER model, we follow the procedure
recommended in previous studies, minimizing the
sum of squared differences between expected and
observed case and death counts® The resulting fitted
parameters include estimates of the rates of
transmission (@), testing (8), recovery (a), known
deaths (y), waning immunity (p) and undetected
outcomes (€) as well as the original proportion of
undetected infected individuals, U(0), and U2 which
allows the susceptible and undetected infectious
populations to mix at a variable rate* For the
quarantine compartment in the SQUIDER model,
both the time of the initial quarantine and the size of
the population obeying the quarantine are to be
estimated*. For this paper, since the quarantine
origin and end times are known, we need only
estimate the share of the population entering or
leaving quarantine during each of the two stay-at-
home orders issued in California394% That is, we
estimate g, = the number of Californians who began

obeying the stay-at-home orders that commenced
March 19th, 2020, q, = the number who ceased

staying at home when the orders ended on May 18th,
2020, q; = the number obeying the stay-at-home

orders beginning on November 19, 2020, and q4 =

the number who stopped following stay-at-home
orders when they ended on January 25, 2021.

3.2.DATA

Records of California statewide totals of official daily
reported cases of SARS-CoV-2 were obtained from
the California Department of Public Health via their
website, https://data.chhs.ca.gov/dataset/covid-19-
time-series-metrics-by-county-and-state . The data
were updated daily Mondays through Saturdays
following their review and verification, and include
all SARS-CoV-2 cases reported by state and
territorial jurisdictions, including both confirmed
and probable SARS-CoV-2 cases and deaths. Daily
counts were obtained from February 16, 2020
through December 31, 2021, for a period of 684 days.
Since doubling time is only defined during surges of
an epidemic, we focus here on three surges: one
beginning on 2/16/20, one beginning on 10/25/20,
and one beginning on 6/20/21. To standardize the
analysis we consider the first 31 days of each of these
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surges. The estimated total population of California

40
was obtained from 2020 census records .

The dates corresponding to the recorded cases
analyzed here may be quite different from the actual
dates of onset of disease. Missing data are a serious
potential problem with any study of SARS-CoV-2, as
estimation of the number of unreported cases is
exceedingly difficult 2426, A number of detailed
studies were performed by the CDC in the Spring and
Summer of 2020 in order to estimate the
seroprevalence of the virus in several locations using
sampling and testing of subjects at random*l.
Unfortunately, such careful studies ceased after the
Trump administration cut funding for the CDC in
summer 202042, Further details on SARS-CoV-2 case
surveillance data collection can be obtained from the
California Department of Public Health*0 or CDC243.

Of the three waves analyzed here, the first surge in
Spring 2020 occurred when the California
population had not yet been exposed to the novel
coronavirus as shown by a retrospective study of
1700 individuals with respiratory symptoms in
December, 2019, none of whom had SARS-CoV-244,
During this time, testing for the virus was limited in
California and there were major problems with
testing*s. The second surge during Autumn 2020 was
also characterized by a dramatic increase in
hospitalizations and fatalities statewide2. Although
there had been some population exposure during
Spring and Summer 2020, the proportion previously
exposed was insufficient to provide general herd
immunity?246. The third wave during Summer 2021
occurred when the more infectious Delta variant of
SARS-CoV-2 became dominant in California4’. By this
time, vaccines effective against the Delta strain such
as BNT162b2 developed by Pfizer® had been
approved for emergency use by the U.S. Food and
Drug Administration for those over the age of 12
years*. However, only 68% of the eligible
population in California was fully vaccinated by June
20, 20214° which did not provide for sufficient herd
immunity against the Delta variant.

3.3. FORECASTING

The accuracy of doubling time estimates is
considered for both retrospective and prospective
analysis. That is, we assess the accuracy of doubling
time estimates according to the fitted model with
parameters estimated using data from the entire
surge, and we also assess the accuracy of
prospective, forecast doubling times, where for day
t, the parameters in the model are fit using only
observations up to and including day t. We then
compare the observed doubling time with the
median doubling time from simulations of the given
HawkesN or SQUIDER model. In each case, the
median of 100 simulated doubling times is used as
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the estimated doubling time, for both the rate
doubling time and cumulative case doubling time,
meaning the time elapsed until the daily number of
cases at least doubles, and the time elapsed until the
total cumulative number of cases at least doubles,
respectively. HawkesN simulations are performed
using the HawkesN Process Generator described in
Appendix A, and SQUIDER simulations are
performed using the method described in previous
studies®. The root-mean-squared error (RMSE) is
used to summarize the errors in the forecast
doubling times based on the simulations of the
models.

4. Results

Figure 1 shows how the estimated productivity
parameter (k) in the fitted HawkesN model evolves
over time during each of the three surges. Along with
the estimates of k, the number of recorded cases per
day of SARS-CoV-2 cases in California is also shown.
In each of the three surges, the estimates of k appear
to stabilize after approximately 20 days. In the
Spring 2020 surge, estimates of x settled mostly
between 3.3 and 4.6, whereas in the Fall 2020 and
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Summer 2021 surges, the estimates of k were
considerably lower, settling in the ranges of 1.8-2.2
and 2.0-2.7, respectively.

Figure 2 shows, based on simulations, how the
cumulative and daily rate doubling times relate to
the productivity parameter x in the HawkesN model.
The cumulative doubling time decreases
approximately exponentially as k increases, and this
exponential decrease appears not to depend on the
parameter [3 governing the transmission time
density. The daily rate doubling time also appears to
decrease roughly exponentially as k increases,
though the daily rate doubling times are
considerably more noisy, as expected. For fixed «,
cumulative doubling times increase as 8 decreases,
since 3 represents the inverse of generation length,
so when B is very small, the disease is spreading
more slowly. Both the cumulative doubling time and
daily rate doubling time are calculated here as the
time elapsed from the 50th recorded infection until
the time of the corresponding doubling, as in the
Johns Hopkins University and Medicine COVID-19
Dashboard®®.
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Figure 1: Daily number of reported cases and estimated productivity, &, for fitted HawkesN model, for Spring
2020 time period (top), Autumn 2020 (middle), Summer 2021 (bottom). For each day ¢, productivity is
estimated using data from beginning of the plotted period up to and including day ¢.

Table 1 shows how the HawkesN parameter
estimates, fit by least squares to the California SARS-
CoV-2 data, vary as the length of the observation
period increases. The estimated background rate p
was highest for the Autumn 2020 time period,
whereas the estimates of k were highest during the
initial Spring 2020 surge, when more of the
population was susceptible and only minimal

mitigation efforts were in place, in agreement with
the justification for the recursive version of the
Hawkes model?. Estimates of B were generally
higher during the initial Spring 2020 surge, perhaps
due to a longer time period between exposure and
symptomatic disease for the original variant**7,
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Fitting Period (Days) Spring 2020 Autumn 2020 Summer 2021
— p | k| B I k| B po| k| B
10 104 | 2.3 1 0.09 | 3167.0 | 2.1 | 0.05 | 91.1 | 1.7 | 0.10
11 10.9 | 3.7 | 0.08 | 3468.7 | 1.9 | 0.05 | 95.8 | 1.5 | 0.05
12 10.2 | 1.9 | 0.10 | 3567.3 | 2.2 | 0.06 | 89.2 | 1.6 | 0.07
13 9.1 | 2.8 0.06 3183926 |0.03]| 90.6 |1.1]0.07
14 9.3 | 2.7]0.05|3564.2 | 1.4 | 0.07 | 86.6 | 1.1 | 0.08
15 6.0 | 3.2 | 0.08 | 2466.5 | 1.3 | 0.10 | 88.2 | 1.3 | 0.04
16 4.4 |3.1]0.08]|2159.2|1.40.09|100.1 | 1.5 0.06
17 12.1 | 3.1 | 0.07 | 2408.2 | 1.7 | 0.06 | 100.7 | 1.8 | 0.06
18 83 |3.2]0.07|23600|16|006 | 92.5 | 2.4 | 0.04
19 11.9 | 3.1 | 0.06 | 2434.2 | 1.6 | 0.06 | 109.0 | 2.4 | 0.04
20 10.1 | 3.3 | 0.06 | 2420.3 | 1.6 | 0.06 | 102.7 | 2.1 | 0.05
21 8.7 | 3.5 0.06 | 2222.0 | 2.0 | 0.05 | 105.4 | 2.7 | 0.05
22 10.0 | 3.6 | 0.06 | 2413.5 | 1.6 | 0.06 | 110.0 | 2.3 | 0.03
23 12.0 | 4.1 | 0.06 | 2402.1 | 2.0 | 0.05 | 119.1 | 2.9 | 0.04
24 10.0 | 4.0 | 0.06 | 2409.0 | 2.0 | 0.05 | 100.2 | 2.4 | 0.04
25 2.0 |1 3.3 0.07 | 2402.4 | 2.0 | 0.05 | 101.2 | 2.8 | 0.04
26 8.0 | 3.8 0.06|2329.7 | 2.1|0.04 | 104.0 | 2.7 | 0.03
27 2.0 3.3 007 | 21827 |22 0.04 | 102.3 | 2.2 | 0.04
28 18.0 | 4.6 | 0.05 | 2189.0 | 2.0 | 0.04 | 88.0 | 2.8 | 0.03
29 18.0 | 4.6 | 0.05 | 1862.3 | 1.9 | 0.05 | 104.1 | 2.8 | 0.04
30 17.9 | 4.8 | 0.05 | 2081.3 | 2.2 | 0.04 | 103.0 | 2.8 | 0.04
31 20.0 | 4.8 | 0.04 | 2366.0 | 2.2 | 0.04 | 102.7 | 2.8 | 0.04

Table 1: Estimated HawkesN parameters |, x, § for training periods of varying lengths. Parameters are
estimated by least squares.
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Figure 2: Doubling times over 500 simulations where = {1/3, 1/5, 1/10, 1/20} . Top: median cumulative
doubling time from the time when 50 total cases have been reported during the current surge. Bottom: median
daily rate doubling time from the time when 50 total infections have been reported during the current surge.
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Fit days Spring 2020 Autumn 2020 Summer 2021

— B8 é y o' B ) ¥ o B8 ) ¥ o

10 0.696 | 0.473 | 6.639 | 0.337 | 0.999 | 0.128 | 7.077 | 0.092 | 0.885 | 0.828 | 6.142 | 0.298
11 0.703 | 0.526 | 5.587 | 0.275 | 0.792 | 0.457 | 6.889 | 0.001 | 0.841 | 0.502 | 6.149 | 0.303
12 0.689 | 0.491 | 4.870 | 0.339 | 0.681 | 0.471 | 6.647 | 0.110 | 0.696 | 0.522 | 6.107 | 0.244
13 0.705 | 0.501 | 4.165 | 0.321 | 0.919 | 0.830 | 6.447 | 0.073 | 0.825 | 0.759 | 6.046 | 0.097
14 0.691 | 0.492 | 3.623 | 0.315 | 0.707 | 0.570 | 6.266 | 0.048 | 0.529 | 0.275 | 5.974 | 0.215
15 0.682 | 0.480 | 3.134 | 0.114 | 0.865 | 0.840 | 6.155 | 0.136 | 0.726 | 0.607 | 5.890 | 0.210
16 0.699 | 0.490 | 2.642 | 0.283 | 0.998 | 0.903 | 6.567 | 0.727 | 0.819 | 0.104 | 5.802 | 0.001
17 0.732 | 0.509 | 2.696 | 0.299 | 0.804 | 0.531 | 5.914 | 0.961 | 0.937 | 0.318 | 5.698 | 0.129
18 0.705 | 0.490 | 2.922 | 0.297 | 0.891 | 0.579 | 5.799 | 0.054 | 0.915 | 0.793 | 5.575 | 0.132
19 0.678 | 0.474 | 2.908 | 0.261 | 0.689 | 0.608 | 5.705 | 0.091 | 0.911 | 0.667 | 5.443 | 0.247
20 0.712 | 0.489 | 3.083 | 0.282 | 0.726 | 0.504 | 5.629 | 0.043 | 0.731 | 0.683 | 5.311 | 0.161
21 0.695 | 0.484 | 3.040 | 0.272 | 0.672 | 0.631 | 5.565 | 0.024 | 0.952 | 0.695 | 5.194 | 0.233
22 0.719 | 0.496 | 2.903 | 0.297 | 0.687 | 0.679 | 5.517 | 0.070 | 0.270 | 0.134 | 5.089 | 0.019
23 0.717 | 0.495 | 3.081 | 0.284 | 0.836 | 0.792 | 5.496 | 0.001 | 0.729 | 0.675 | 4.974 | 0.141
24 0.721 | 0.486 | 3.076 | 0.344 | 0.999 | 0.947 | 5.345 | 0.141 | 0.727 | 0.698 | 4.839 | 0.092
25 0.755 | 0.509 | 3.017 | 0.302 | 0.999 | 0.899 | 5.688 | 0.094 | 0.778 | 0.746 | 4.700 | 0.045
26 0.704 | 0.467 | 2.805 | 0.294 | 0.802 | 0.671 | 5.735 | 0.192 | 0.856 | 0.318 | 4.567 | 0.002
27 0.686 | 0.467 | 2.656 | 0.269 | 0.984 | 0.990 | 5.256 | 0.045 | 0.685 | 0.506 | 4.509 | 0.291
28 0.720 | 0.470 | 2.460 | 0.457 | 0.770 | 0.432 | 5.592 | 0.001 | 0.533 | 0.480 | 4.325 | 0.091
29 0.721 | 0.480 | 2.379 | 0.353 | 0.802 | 0.421 | 5.339 | 0.001 | 0.999 | 0.955 | 4.120 | 0.511
30 0.771 | 0.528 | 2.464 | 0.363 | 0.590 | 0.484 | 5.324 | 0.001 | 0.744 | 0.663 | 4.101 | 0.218
31 0.694 | 0.468 | 2.637 | 0.272 | 0.944 | 0.585 | 5.168 | 0.001 | 0.522 | 0.385 | 3.996 | 0.044

Table 2: Fitted values for selected parameters a, 0, § and y in the SQUIDER model, estimated for training

periods of varying lengths.

Table 2 provides estimates for selected parameters
(0, 6, v, a) for the SQUIDER model fit to the same
California SARS-CoV-2 data. The estimated contact
rate O is relatively constant for most fit lengths in all
three time periods, ranging between 0.6 and 0.9. The
estimated testing rate § is generally higher during
the Autumn 2020 and Summer 2021 SARS-CoV-2
surges than during Spring 2020. The estimates of the
fatality rate y are generally highest in the Autumn
2020 time period, and correspondingly the
estimated recovery rate a is lowest during Autumn
2020 as well.

In Figures 3 and 4, the cumulative and rate doubling
times for the fitted HawkesN and SQUIDER models
are compared retrospectively, where the models are
fit using the entire surge, and for each value of t, the

simulated, model-based estimate of the doubling
time is compared with the observed time required to
at least double the number of cases having occurred
on day t. For estimating cumulative doubling times,
the HawkesN model has a higher retrospective RMSE
than the SQUIDER model during Spring 2020 and a
somewhat lower retrospective RMSE than the
SQUIDER model during Fall 2020, especially for t in
the range of 25 to 31 days. The retrospective RMSE
of estimates of daily rate doubling times is higher for
the HawkesN model than for the SQUIDER model
especially during the Spring 2020 and Summer 2021
surges, particularly for tless than 26 days, though for
Fall 2020 the HawkesN model’s retrospective daily
rate doubling times have lower RMSE than those of
the SQUIDER model.
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ifjji:: Forecasting Doubling Time of SARS-CoV-2 using Hawkes and SQUIDER Models
Metric Model Spring 2020 | Autumn 2020 | Summer 2021
Cumulative | HawkesN 1.461 1.324 1.475
Cumulative | SQUIDER 1.087 2.637 1.552
Daily Cases | HawkesN 7.210 4.251 5.378
Daily Cases | SQUIDER 7.477 20.621 5.685

Table 3: Root-mean-squared errors (RMSE), in days, for prospective, forecasted cumulative and daily rate

doubling times for each model.
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Figure 4: Root-mean-squared errors (RMSEs) of retrospective daily rate doubling time estimates for the
HawkesN and SQUIDER models. Spring 2020 surge (top), Fall 2020 surge (middle), Summer 2021 surge

(bottom).

However, as shown in Table 3, the prospective or
forecasting doubling time estimates for the HawkesN
model are more accurate overall than those of the
SQUIDER model. An exception is Spring 2020, when
the SQUIDER model estimates of cumulative
doubling times have lower RMSE than those of
HawkesN. However, in Fall 2020 and Summer 2021,
the HawkesN estimates of cumulative doubling time
are more accurate, and when estimating daily rate

doubling times, the HawkesN estimates are more
accurate than the SQUIDER estimates in all three
surges. The daily rate doubling estimates for the
HawkesN model are particularly more accurate than
those for the SQUIDER model, with an RMSE of 4.251
days for the HawkesN forecast daily rate doubling
times, compared to an RMSE of 20.621 days for the
SQUIDER forecasts.
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Figure 5: Prospective forecast cumulative doubling time estimates for the HawkesN model (red) and SQUIDER
model (blue), along with the observed cumulative doubling time (black). For the HawkesN model, the thick red
line represents the median of 100 simulations and the thin dashed red lines represent the middle 90% bounds
based on the simulations. Spring 2020 surge (top), Fall 2020 surge (middle), Summer 2021 surge (bottom).

The forecast cumulative doubling times for the
HawkesN and SQUIDER models are shown in Figure
5, along with the observed cumulative doubling
times. For the initial SARS-CoV-2 surge in Spring
2020, both the SQUIDER model and the HawkesN
model appear to slightly overestimate the
cumulative doubling time when the fitting period is
19 to 24 days in length and considerably
underestimate cumulative doubling times when the
fitting period is 28 days or longer. The middle 90
percent ranges of HawkesN simulations contain the
true cumulative doubling times in 10 out of 22
forecasts in Spring 2020, and are within one day of
doing so in 8 other instances. For the Fall 2020 SARS-
CoV-2 surge, while the SQUIDER model substantially
underpredicts the cumulative doubling times
particularly when the fitting period is 29-30 days, the
HawkesN model appears to forecast accurately, with
the middle 90% of forecasted cumulative doubling
times containing the observed cumulative doubling
time in 18 of 22 forecasts. The HawkesN model
forecasts also have higher accuracy than the
SQUIDER model during the Summer 2021 SARS-CoV-
2 increase, with the SQUIDER model

underestimating the cumulative doubling time when
the fitting period is 25 days or longer. During
Summer 2021, the middle 90% ranges of simulated
cumulative doubling times for the HawkesN model
contain the observed cumulative doubling times in
18 out of the 22 forecasts, and are within one day of
doing so for all 22 forecasts in both Autumn 2020
and Summer 2021.

As shown in Figure 6, both the HawkesN and
SQUIDER models forecast daily rate doubling times
accurately in most cases. However, the SQUIDER
forecasts of daily rate doubling times appear to be far
more volatile and thus occasionally have much larger
errors, particularly in Fall 2020. However, both
models underpredict the daily rate doubling time in
late March and early April 2020, when the rate of
daily new recorded infections slowed, as neither
model was able to anticipate this change. During
both Fall 2020 and Spring 2021, the middle 90%
range of simulations of HawkesN forecasts of daily
rate doubling times contain the observed daily rate
doubling time in 39 out of these 44 forecasts.
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Figure 6: Prospective forecast daily rate doubling time estimates for the HawkesN model (red) and SQUIDER
model (blue), along with the observed daily rate doubling time (black). For the HawkesN model, the thick red
line represents the median of 100 simulations and the thin dashed red lines represent the middle 90% bounds
based on the simulations. Spring 2020 surge (top), Fall 2020 surge (middle), Summer 2021 surge (bottom).

5. Discussion

The approximately exponential relationship
between the productivity parameter k in the
HawkesN model and the corresponding doubling
time is not surprising, as such an exponential
relationship is consistent with the exponential

growth characteristic of the HawkesN model as well
as compartmental models. The finding here that the
HawkesN model forecasts doubling times more
accurately than the SQUIDER model, with 3.6%
smaller root mean squared errors in Spring 2020,
79.4% smaller root mean squared errors in Autumn
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2020, and 5.4% smaller root mean squared errors in
Summer 2021, is somewhat surprising, however,
given the prevalent use of SQUIDER and other
compartmental models in modeling Covid-19. The
HawkesN and SQUIDER models appear to forecast
daily rate doubling times accurately at most times,
though the SQUIDER forecasts of daily rate doubling
times are far more volatile and thus occasionally had
much larger errors, particularly in Fall 2020.

The higher RMSE in estimated cumulative doubling
times and daily rate doubling times during the Spring
2020 surge for the HawkesN model compared to the
SQUIDER model is likely attributable to the fact that
the HawkesN model is simpler, with only three fitted
parameters compared to twelve in the SQUIDER
model. As a result of these extra fitted parameters,
the SQUIDER model likely overfits, which would
explain why the HawkesN model is substantially
more accurate than the SQUIDER model for
forecasting both daily and cumulative doubling
times, particularly for the Fall 2020 wave of SARS-
CoV-2.

An important item for future research would be to
explore better ways to estimate the susceptible
population when applying HawkesN to epidemic
diseases such as SARS-CoV-2 and its variants. The
analysis here essentially assumes everyone in
California is susceptible, other than those
corresponding to previously reported cases.
Estimating the size of the susceptible population at
any given point in time is not trivial and may perhaps
be estimated by simulating a portion of the
branching process first®. Another potentially fruitful
line of research may involve combining the HawkesN
model and the recursive model, which could perhaps

Forecasting Doubling Time of SARS-CoV-2 using Hawkes and SQUIDER Models

allow for a finite population as well as varying
productivity, both shown to add to model
performance individually when applied to
forecasting epidemic diseases including SARS-CoV-2.
In addition, future research should explore whether
the models assessed herein might be improved by
taking into account vaccine uptake and waning
immunity to the SARS-CoV-2 virus as well as the
impact of new variants*’. For this application, we
examined doubling times during three distinct
periods, each of length 1-2 months, of sustained
increase during which the population’s immunity
was unlikely to change substantially, but a longer
term forecast might benefit from taking these extra
factors into account. In the current formulation of the
SQUIDER model, a subject is removed from the
susceptible population if infected. Perhaps future
formulations could remove individuals from the
susceptible population when they take the
recommended doses of vaccines such as BNT162b2
which was 95% effective against the original strain
of SARS-CoV-2*® and should be added back in when
immunity wanes®! or a new variant reduces the
effectiveness of such a vaccine?’. Estimating these
quantities might be difficult, however, and the
results here suggest that, for estimating doubling
times at least, the SQUIDER model may already be
prone to overfitting and thus yield larger errors
compared to the simpler HawkesN model with fewer
estimated parameters.
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6. Appendix

6.1. HawkesN Process Generator

In order to obtain estimates for doubling time, we have developed an algorithm to simulate HawkesN processes
given the background rate p, productivity rate k, generational length  and susceptible population N. It has
been shown that one can simulate a disease process using a SEIR-Hawkes process, taking advantage of both
the easy interpretability of terms from the SIR compartmental family of models as well as the point process
properties of Hawkes24 The conditional intensity of new infections is given by

E
N

A = @ - 25Ty Royexp{-y(t - tj), (5)

and infecton times are generated by

P(tj' > 45 + ) = [ wexp(—u(s — 5))ds. (6)

In (5), the conditional intensity is still a function of the susceptible population, productivity and triggering

function as in (2), but the SIR parameters representing total infections up to time t (NE(t)), transmission rate
(Ro) and infection rate (y) take the place of the usual HawkesN terms (Kresin et al., 2021). Also, in (6), a new
infection t'j is generated at some time interval c after the previous one dependent on an exponential kernel
featuring the rate of exposure p (different from the HawkesN background rate in (2)). The SEIR-Hawkes
process can be simulated using an iterative process as shown in previous studies?.

In this paper, we develop an algorithm to simulate HawkesN processes using a similar method to the one used
in prior studies?*. The goal is to simulate a HawkesN process until a defined termination time Tepd. This method

simulates a branching process where the first set of accepted points consist merely of background infections
randomly scattered from time 0 to Tepd with rate p. Then candidate offspring are proposed for each

background point and are either accepted or rejected to imitate the triggering function g. The next generation
then includes the original background points and the most recent accepted offspring and the process repeats
until the branching process from time 0 to Tepd has been exhausted.

Set Ro = k and y = (3. After the time of infection has been established for each of the initial background events,
each iteration of the branching process is comprised of the following steps:

Part 1: For each accepted point from the previous generation, a, the number of candidate offspring is
determined by drawing a random number M ~ Poisson(Rg). Then for each of M proposed future events, offset
the time of exposure from the ancestor’s by exp(u). Last, sort in chronological order all of the accepted points
and all of the candidate points together. These will be known as simulated points, or s. The previously accepted
points should also be kept in chronological order independently.

Part 2: For each candidate point, c:

Ac®) = (1 - Nya) YNa Roy exp{—v[t(c) — t(aj)]}, (7)
and
ve =208, Roy exp{—y[t(c) — t(sj)]}, (8)

where t(c) is the proposed time of infection for the candidate point, t(a;) is the event time

for accepted pointiand t(s;j) is the infection time for simulated point i. Also, Ng is the number of accepted points
with an infection time before that of the candidate point and Ny is interpreted similarly, but including all
simulated points.

Part 3: Accept or reject each candidate point using Lewis’ thinning method®2. That is, accept the candidate
point if

D¢ ~ Unif[0, 1] < ‘—z . (9)

Part 4: Finally, to take into account exposure time before infection, the time of infection for each newly accepted
point is offset by an exponential amount:

t(a) = t(a) + exp(y). (10)
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