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Inter-continental variability in the
relationship of oxidative potential and
cytotoxicity with PM2.5 mass

Sudheer Salana 1, Haoran Yu1,2, Zhuying Dai1, P. S. Ganesh Subramanian 1,
Joseph V. Puthussery 1,3, Yixiang Wang1,4, Ajit Singh 5,6, Francis D. Pope 5,
Manuel A. Leiva G.7, Neeraj Rastogi 8, Sachchida Nand Tripathi 9,10,
Rodney J. Weber 11 & Vishal Verma 1

Most fine ambient particulate matter (PM2.5)-based epidemiological models
use globalized concentration-response (CR) functions assuming that the
toxicity of PM2.5 is solely mass-dependent without considering its chemical
composition. Although oxidative potential (OP) has emerged as an alternate
metric of PM2.5 toxicity, the association between PM2.5 mass and OP on a large
spatial extent has not been investigated. In this study, we evaluate this rela-
tionship using 385 PM2.5 samples collected from 14 different sites across 4
different continents and using 5 differentOP (and cytotoxicity) endpoints. Our
results show that the relationship betweenPM2.5mass vs. OP (and cytotoxicity)
is largely non-linear due to significant differences in the intrinsic toxicity,
resulting froma spatially heterogeneous chemical composition of PM2.5. These
results emphasize the need to develop localized CR functions incorporating
other measures of PM2.5 properties (e.g., OP) to better predict the PM2.5-
attributed health burdens.

Air quality policy measures are largely dictated by epidemiological
studies. In these studies, fine ambient particulate matter (i.e., parti-
cles below 2.5 µm in aerodynamic diameter, called PM2.5 hereafter)-
induced mortality due to various causes such as stroke, lung cancer,
or lower respiratory infection (LRI) is often estimated using globa-
lized concentration-response (CR) functions1,2. These CR relation-
ships have been constructed using relative risk (RR) estimates from
cohort studies conducted in limited regions, mostly in North Amer-
ica, Europe, and China3–5, and/or using the RR estimates from certain
PM2.5 sources such as solid cooking fuel, second-hand tobacco

smoke, and active smoking to account for higher concentration
exposure1,3,6. Accordingly, these CR functions neither cover the entire
range of sources of ambient PM2.5, nor account for the spatio-
temporal variations in its chemical composition which varies widely
across the world7,8. Moreover, globalized CR functions do not
account for the variations in health responses of the individuals liv-
ing in different geographical regions, owing to their different phy-
siological, climatic, and social backgrounds. Therefore, studies
estimating global mortality risk from ambient PM2.5 based on these
CR functions, such as Global Burden of Disease report9 include an
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inherent assumption that the toxicity of PM2.5 is a function of mass
alone and is immune to different emission sources, atmospheric
processing, the resulting chemical composition, and disparity in
health responses of the individuals living in different geographical
regions. Predictions from such studies eventually lead to policy
measures which are solely focused on reducing total ambient PM2.5

mass concentrations, while ignoring source contributions and
atmospheric processing of the PM2.5. However, whether such policy
measureswould yield equivalent health benefits is unclear due to two
reasons. First, PM2.5 is a mixture of several chemical components and
the toxicities of these chemical species have been shown to be
different10,11. And 2nd, there is a dearth of literature comparing the
spatiotemporal variations in toxic PM2.5 components versus PM2.5

mass, to validate the assumption that PM2.5 mass by itself can suffi-
ciently capture the spatiotemporal variation in the toxicity of ambi-
ent PM2.5. Owing to these concerns, the effectiveness of the PM2.5-
mass-based approach to establish cause and effect between air
quality and health impact is questionable.

Among several routinely measured properties of the PM2.5,
determining the most health-relevant property is also a topic of great
research. In the last few decades, oxidative stress, which is caused by
an imbalance of reactive oxygen species (ROS) and antioxidants12, has
emerged as the underlying pathology of many diseases13–15. Oxidative
potential (OP) is defined as the capability of PM2.5 to induce oxidative
stress, and therefore, OP has been purported as a possible proxy for
PM2.5 toxicity. Different endpoints to quantify OP have been used and
these include both acellular16,17 and cellular assays18–20 to measure ROS
generation and antioxidant depletion.While toxicological studies have
linked OP with several cellular endpoints such as cytotoxicity21,22, cel-
lular oxidative stress16, and inflammatory response16,23, clinical studies
have also shown association of OP with respiratory and cardiac dis-
eases such as asthma and rhinitis24, ischemic heart disease25, and
congestive heart failure (CHD)26. Several epidemiological studies have
also indicated a better association of OPwith adverse health endpoints
such as low birth weight27, lung cancer mortality28, diabetes29, emer-
gency room visits for myocardial infarction30, asthma, wheeze, and
CHD31, and temperature-induced cardiovascular events32, than with
PM2.5 mass.

Although, there have been several studies in recent years which
have investigated the spatiotemporal distribution of OP18,33–35, these
studies are very limited in terms of their spatial scope, often focusing
on a limited number of sites in the same geographical region such as
southeast US36, Western US37–39, Midwest US18,33, and Europe34, while
mostly focusing on one kind of assays (i.e., either acellular or cellular).
Moreover, the observed relationships between OP and PM2.5 mass in
these studies could be influenced by specific chemical composition in
that region. For example, if the main drivers (i.e., PM2.5 chemical
constituents) of OP correlate well with PM2.5 mass in a region, mass
could seem to capture the PM2.5 toxicity or OP well, but this relation-
ship will change when OP drivers no longer correlate with mass.
Therefore, the relationshipbetween PM2.5mass,OP, and toxicity needs
to be investigated in diverse emission scenarios and geographical
settings, so that the biases from specific chemical composition could
beminimized. And as of now, we are not aware of any study which has
investigated these relationships on a large spatial extent. The results
from such a study can be used to test the validity of the main
assumption of epidemiological models mentioned earlier, i.e., if spa-
tiotemporal variations in toxic PM2.5 components vs. PM2.5 mass are
similar?

Our current study explores the nature of the relationship among
PM2.5 mass, OP, and cytotoxicity on a relatively large spatial extent.
Here, we have used PM2.5 samples (N = 385) collected from fourteen
different sites across four different continents (Asia, Europe,North and
South America) and evaluated five commonly used measures to sur-
rogate for PM2.5 toxicity [3 acellular OP endpoints – dithiothreitol

depletion (OPDTT), glutathione depletion (OPGSH), hydroxyl radical for-
mation (OPOH); 2 cellular endpoints – cytotoxicity [or cell death (CD)]
using crystal violet assay and cellular OP (OPC) using dichloro-
fluorescein diacetate (DCFH-DA) in a human lung epithelial cell line
(A549)]. We then used these measurements to investigate two ques-
tions: (1) is PM2.5 mass correlated with extrinsic OP and cytotoxicity?
and if so, (2) is the association between PM2.5 mass and extrinsic OP
and cytotoxicity spatially uniform? Our study compares the responses
of themostwidely usedOP and toxicological assays for a large number
of PM2.5 samples collected from an extensive spatial scale. In addition,
the samples collected from diverse environmental settings provided
us a rare opportunity to investigate the effect of substantially different
PM2.5 chemical composition as a result of uniquely different emission
sources (e.g., pertinent to the specific regions) and atmospheric con-
ditions, on intrinsic OP and toxicity, and the relationship between
extrinsic OP and PM2.5 mass. Essentially, through these measurements
and comparisons, we demonstrate the need for developing localized
CR functions based on the intrinsic toxicity and chemical composition
of the PM2.5 and investigating other metrics of PM2.5 to better repre-
sent its health effects.

Results and discussion
Variations in PM2.5 characteristics
Figure 1 shows the PM2.5 mass concentrations, extrinsic OP and cyto-
toxicity [i.e., per m3 of air; denoted as OPDTTv, OPGSHv, and OPOHv for
three acellular OP endpoints, OPCv for cellular OP, and CDv for cyto-
toxicity] at five geographical regions, i.e., Midwest US (average of
Chicago, Bondville, Champaign, St. Louis, and Indianapolis), West
Midlands, UK (average of an urban and background site in Birming-
ham), India (average of Ahmedabad, Hisar, Patiala, and Faridabad),
Southeast US (Atlanta) and Chile (average of Santiago and Chillan), in
different seasons. The corresponding data on intrinsic OP and cyto-
toxicity [i.e., per µg of PM2.5; denoted as OPm and CDm] are shown in
Supplementary Fig. 5 in supplementary information (SI). All the data
was normalized by the MinMax scaler technique40, which first deter-
mines theminimum (xmin) andmaximum value (xmax) in a dataset, and
then each value in the dataset is scaled using Eq. (1):

xscaled = x�xmin
xmax�xmin

ð1Þ

where xscaled is the normalized value.
Thus, all the data is normalized between 0 and 1 for direct

comparison among different endpoints, which were having very wide
ranges. Further details of normalization methodology and the rela-
ted equations are described in SI. The absolute values of the average
mass, OP, and cytotoxicity (both extrinsic and intrinsic) in different
seasons at these regions are shown in Supplementary Fig. 6, and
Supplementary Table 4 in SI shows this dataset at all the individual
sampling sites (i.e., without averaging them into specific geo-
graphical regions). PM2.5 mass concentrations were the highest in
India (n = 18; median: 228 µgm−3; Supplementary Fig. 6), while West
Midlands had the lowest concentration (n = 21; range: 2–17 µgm−3;
median: 6 µgm−3), followed by Midwest US (n = 241; median:
11.0 µgm−3). PM2.5 mass concentrations in Chile (n = 85; range:
5–127 µgm−3; median: 24 µgm−3) were higher than in the Midwest US
but much lower than in India. Notably, the range of normalized
extrinsic OP and cytotoxicity was higher than the normalized PM2.5

mass concentrations in all the regions (Fig. 1).
To further quantify and compare relative variabilities in PM2.5

mass vs. OP or cytotoxicity, we calculated coefficients of variation
(CoVs) for PM2.5 mass, extrinsic OP, and cytotoxicity in different
regions, which are shown in Fig. 2. The CoVs of intrinsic endpoints in
these regions are shown in Supplementary Fig. 7. Since CoV is more
sensitive to the outliers and can be inflated in the cases when arith-
metic average of the data approaches zero, we also quantified the
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Fig. 1 | Seasonal distribution of normalized extrinsic cytotoxicity (CDv), oxi-
dative potential (OPv), and PM2.5mass concentration in different geographical
regions. The six panels are (a) CDv; (b) extrinsic acellular OP measured using
hydroxyl radical generation rate (OPOHv); (c) extrinsic acellular OP measured
using glutathione depletion rate (OPGSHv); (d) extrinsic cellular OP (OPCv); (e)
extrinsic acellular OP measured using dithiothreitol depletion rate (OPDTTv);
and (f) PM2.5 mass. In all the panels, the bars on the left side of the red dotted
line must be read against the primary Y-axis (left side), and the bars on the
right side of the red dotted line must be read against the secondary Y-axis
(right side). In the Midwest US, samples were collected in summer [n = 69 for
all endpoints except for OPCv (n = 66) and CDv (n = 65)], fall [n = 56 for all
endpoints except for OPCv (n = 52), CDv (n = 50) and OPOHv (n = 54)], winter
[n = 57 for all endpoints except OPCv (n = 56) and CDv (n = 54)] and spring

[n = 59 for all endpoints except CDv (n = 54) and OPOHv (n = 57)]. Similarly, in
Chile, samples were collected in summer [n = 15 for all endpoints except OPCv
and CDv (n = 13)], fall (n = 20 for all endpoints), winter [n = 30 for all end-
points except OPOHv (n = 29)] and spring [n = 20 for all endpoints except
OPDTTv (n = 19)]. In West Midlands, samples were collected only in fall [n = 21
for all endpoints except OPDTTv (n = 20)] and in India, samples were collected
only during winter [n = 18 for all endpoints except OPDTTv (n = 17)]. In Atlanta,
samples were collected in summer and winter (n = 10 each, for all endpoints).
The box contains the 25–75th percentile of the measurements, the center line
of the box denotes the median, and the whiskers denote 1.5 times the
interquartile range of the respective endpoints. The black triangle represents
the mean. Figure made using Seaborn93. Source data are provided as a Source
Data file.
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variations in different endpoints using two more metrics: robust
coefficient of variation based on interquartile range (RCVQ) calculated
by Eq. (2)41:

RCVQ =0:75 ×
interquartile range

median
× 100 ð2Þ

and robust coefficient of variation based onmedian (RCVM) calculated
by Eq. (3)41:

RCVM = 1:483×
median absolute deviation

median
× 100 ð3Þ

The RCVQ and RCVM values for different extrinsic endpoints (i.e.,
PM2.5 mass, OPv, and CDv) at various sites are given in Supplemen-
tary Fig. 8. Interestingly, despite the longest sampling span in the
Midwest US (one year), the variation in PM2.5 mass concentrations
(CoV = 32%; Fig. 2) was lower (p < 0.05; see Supplementary Table 3 in
SI for statistical significance of the differences in CoVs observed
between different sites and endpoints) than in most of the regions
except Atlanta. The variation in PM2.5 mass concentrations in India
was significantly larger (CoV = 49%), compared to the Midwest US
(p = 0.01) despite only 18 samples collected from India. CoVs of PM2.5

mass in Chile (CoV = 77%) were higher than in the Midwest US
(p < 0.001) and Atlanta (p = 0.02). In general, the variations in PM2.5

mass were significantly lower than that in OPv and CDv at most sites
with few exceptions (see Supplementary Table 3), which was sup-
ported by all three metrics used to assess variability, i.e., CoV, RCVQ,
and RCVM.

We also calculated the CoV, RCVQ, and RCVM for the chemical
components measured in our study (Supplementary Fig. 8 in SI). A

simple correlation analysis conducted between OP (or cytotoxicity)
vs. measured chemical components (Supplementary Table 5 in SI)
showed that different OP and cytotoxicity endpoints were associated
with different chemical species in different regions. In general, OPOHv
showed a strong correlation with Fe, Cu, and WSOC (r > 0.5), OPDTTv
was strongly correlated with Fe, Mn, and Cu (r > 0.6), and OPCv was
associated with Co, Mn, Fe, and Cu (r > 0.5). OPGSHv showed a mod-
erate correlation with Cu, Al, and K, while CDv showed a strong
correlation only with Fe and WSOC (r > 0.5). Note, WSOC is a bulk
species containing a variety of organic compounds, such as poly-
cyclic aromatic hydrocarbons (PAHs), quinones, carboxylic acids,
aldehydes, and amides42, and measuring the composition of organic
aerosols at such a chemically resolved scale is beyond the scope of
our current study. Nevertheless, the measured chemical species
showed higher variations than PM2.5 mass at most sites (see Sup-
plementary Fig. 8). For example, the CoVs for chemical species such
as Fe, Mn, andWSOCwere 2 times, and CoVs of Cu and Ni were 4 and
7 times greater than the CoVs of PM2.5 mass concentrations at all the
sites in the Midwest US. In India, although the variability of PM2.5

mass was similar to that of WSOC and Fe, other redox-active metallic
species such as Cu, Mn, Ni, As, and Pb showed much more (2 times
that of PM2.5 mass) variability. Similarly, in Chile, although the
variability of WSOC was lower than that of PM2.5 mass, several redox-
active metallic species (Fe, Cu, Mn, Ni, and Cr) varied significantly (2
times than that of PM2.5 mass). In West Midlands, the variation in
PM2.5 mass was similar to the variation in the concentrations of Mn
and WSOC; however, Fe and Ni showed higher CoVs (2 times than
that of PM2.5 mass). Both RCVQ and RCVM showed a similar trend as
CoV, i.e., higher values for chemical components than PM2.5 mass.
Thus, the higher variability in OP and cytotoxicity is attributed to
larger spatiotemporal variations in redox-active chemical compo-
nents than PM2.5 mass.

Fig. 2 | Coefficient of Variation [CoV (%)] for PM2.5 mass concentration and
various extrinsic PM2.5 cytotoxicity (CDv) and oxidative potential (OPv) end-
points.CoVs are shown for extrinsic endpoints i.e., mass, acellular and cellular OP,
and CD for various geographical regions, i.e., Midwest US [n = 241 for mass and
extrinsic acellular OP measured using glutathione depletion rate (OPGSHv), n = 237
for extrinsic acellular OP measured using hydroxyl radical generation rate (OPOHv),

n = 223 for CDv and n = 233 for extrinsic cellular OP (OPCv)], Atlanta (n = 20), Chile
[n = 85 for mass and OPGSHv, n = 84 for extrinsic acellular OP measured using
dithiothreitol depletion rate (OPDTTv) andOPOHv and n = 83 for CDv andOPCv],West
Midlands[n = 21 for all endpoints except OPDTTv (n = 20)] and India [n = 18 for all
endpoints except OPDTTv (n = 17)]. Figure made using Matplotlib94. Source data are
provided as a Source Data file.
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Relationship between PM2.5 mass and OP/cytotoxicity
Figure 3 shows a simple linear regression between extrinsic OP (and
CD) vs. PM2.5 mass concentrations (µgm−3). A heatmap of the corre-
lation coefficients (Pearson’s r) among all thefivedifferent endpoints is
shown in SI (see Supplementary Fig. 9 and the related discussion in
Supplementary Discussion 1). Interestingly, the relationships between

extrinsic OP (and CD) vs. PM2.5 mass varied from site to site. For
example, there was a strong correlation (R2 > 0.5) between PM2.5 mass
and almost all the OPv endpoints and CDv for the samples collected in
WestMidlands. Similarly, for the samples collected in Chile, PM2.5mass
showed a strong correlation with almost all the endpoints except for
OPGSHv and CDv with which it had a moderate correlation (R2 < 0.3).
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Fig. 3 | Relationship between extrinsic oxidative potential (OPv) [and extrinsic
cytotoxicity (CDv)] vs. PM2.5 mass concentrations at different geographical
regions. Simple linear regression for OPv and CDv vs. PM2.5 mass concentrations
are shown for five geographical regions, i.e., Midwest US [n = 241 for extrinsic
acellular OP measured using glutathione depletion rate (OPGSHv), n = 237 for
extrinsic acellular OP measured using hydroxyl radical generation rate (OPOHv),

n = 223 for CDv, and n = 233 for extrinsic cellular OP (OPCv)], Atlanta (n = 20), Chile
[n = 85 for OPGSHv, n = 84 for extrinsic acellular OP measured using dithiothreitol
depletion rate (OPDTTv) and OPOHv, and n = 83 for CDv and OPCv], West Midlands
[n = 21 for all endpoints except OPDTTv (n = 20)] and India [n = 18 for all endpoints
except OPDTTv (n = 17)]. Figure made using Plotly95. Source data are provided as a
Source Data file.
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However, none of these endpoints had a strong correlation (R2 < 0.3)
with PM2.5 mass for the samples collected from Midwest US, whereas
only CDv (R2 = 0.44), OPGSHv (R2 = 0.40), and OPOHv (R2 = 0.37) were
moderately correlated with PM2.5 mass for the samples collected from
India. For samples collected in Atlanta, PM2.5 mass displayed a strong
correlation only with OPCv (R2 = 0.83) and CDv (R2 = 0.63) and a mod-
erate correlation with OPDTTv (R2 = 0.28). More importantly, even for
the sites showing strong correlations, the slopes (OPv or CDv vs. PM2.5

mass) varied substantially, indicating differential levels of intrinsic
toxicities among these sites. For example, although OPCv is strongly
correlated with PM2.5 mass at Atlanta, Chile, and West Midlands, the
slope for West Midlands is nearly five times higher and the slope for
Atlanta is six times higher than that of Chile. Similarly, although OPOHv
is strongly correlated with PM2.5 mass for both Chile and West Mid-
lands, the slope forWestMidlands is nearly two times higher than that
for Chile.

Importance of intrinsic OP or cytotoxicity of PM2.5

Figure 4 plots the entire dataset collected from all the sites, to inves-
tigate the relationship between PM2.5 mass, OP, and cytotoxicity of
PM2.5 across the spatial scale encompassed in our study. Figure 4a
shows the linear regression analysis of extrinsic OP and cytotoxicity vs.
PM2.5 mass for the regional averages, while Fig. 4b shows the same
regression plot for the entire dataset using both linear and non-linear
regression curves. We used logistic regression tomodel the non-linear
relationship betweenOPv (andCDv) vs. PM2.5mass. Logistic regression
has been extensively used in several epidemiological studies to explain
the relationships between PM2.5 mass and health effects, such as the
relationship between exposure to PM2.5 and under-5 mortality in
China43, all-cause mortality in the US44, asthma morbidity in rural
USA45, acute myocardial infarction in USA46, and elevated platelet
counts in Taiwanese adults47. Details about various parameters and the
softwarepackage used to fit the logistic regression curve aregiven in SI
(see Supplementary Method 6). A key message from Fig. 4a is that
overall, there is a decent correlation between OPv and PM2.5 mass,
demonstrating that mass plays a very important role in determining
the overall toxicity and possibly the health effects of the aerosols. For
example,WestMidlands, UK, which had the lowest average PM2.5mass
concentrations, had the lowest averageOPDTTv, OPGSHv, OPCv, and CDv.
Similarly, India, which had the highest average PM2.5 mass concentra-
tions, had the highest average OPDTTv, OPOHv, OPCv, and CDv. This
justifies a strong and consistent relationship between PM2.5 mass and
mortality/morbidity observed worldwide in epidemiological
studies48–52. However, one must exercise caution in generalizing these
results, because there is a significant scatter in these plots, which are
somewhat hidden because of India results being substantially higher
than the rest of the sites [note a significant drop inR2 and an increase in
root mean squared error (RMSE) after removing India results in most
cases]. This scatter can be explained by differences in intrinsic toxi-
cities of PM2.5 at these sites. The intrinsic PM2.5 toxicity in India was
significantly lower than most sites for almost all the endpoints. PM2.5

samples collected from Midwest USA during fall and summer seasons
had significantly higher intrinsic cytotoxicity and OP (p <0.05) com-
pared to the PM2.5 collected from West Midlands, India, and Chile,
irrespective of the endpoints. Similarly, PM2.5 samples collected from
Atlanta had significantly higher intrinsic OP (for three endpoints:
OPDTTm, OPGSHm, and OPCm; p < 0.05) compared to the PM2.5 samples
collected from West Midlands, India, Chile (spring and summer) and
Midwest US sites. In fact, Atlanta had the highest average OPDTTm
(0.03 min−1 µg−1), OPGSHm (0.08 nmolmin−1 µg−1), and OPCm (25% µg−1)
among all the sites (see Supplementary Fig. 6).

This difference in intrinsic toxicity of the PM2.5 actually results in a
non-proportional relationship between PM2.5 mass and extrinsic OP
and cytotoxicity, i.e., the ratios of PM2.5 mass measured at two sites
were much higher than the ratios of extrinsic OP at those sites. For

example, the average PM2.5 mass concentration in theMidwest US was
20 times lower than that in India; however, the average OPGSHv, OPOHv,
OPDTTv, and OPCv were only 5, 10, 7, and 10 times lower, respectively
(Supplementary Fig. 6). Similarly, although the average PM2.5 mass
concentration during the fall season in Chile was 4 times higher than
that in the Midwest US, average OPOHv, and OPCv were only 3 and 2
times higher, respectively. In some cases, the ratios of PM2.5 mass
concentrations between the sites were lower than the respective ratios
of extrinsic OP. For example, although the average PM2.5 mass con-
centration inAtlantawas3 times higher than that inWestMidlands, the
OPGSHv and OPCv were 53 and 5 times higher than that in West Mid-
lands, respectively. On the contrary, PM2.5 mass and OPv were in fact
inversely related for some site pairs. For example, although the aver-
age PM2.5 mass concentrations during the winter season were sig-
nificantly higher in Chile as compared to Atlanta (3 times), the OPGSHv
in Atlanta was 5 times higher than the average OPGSHv in Chile.

This non-proportionality between OPv and PM2.5 mass becomes
more apparent when we plotted the entire dataset from all the sites
instead of the regional averages (Fig. 4b). Interestingly, the OPv (and
CDv) vs. PM2.5 mass curves exhibit a non-linear trend, with a steep
slope at lower PM2.5 mass (<50 µgm−3) and gradual flattening at higher
mass concentrations (>300 µgm−3). Note, there is a significant increase
in R2 and a decrease in RMSE when replacing a linear curve with a non-
linear fitting curve for almost all of the endpoints (except OPGSHv).
These results, which are strikingly consistent with newer epidemiolo-
gical studies demonstrating a supralinear relationship between PM2.5

mass and mortality observed at lower PM2.5 concentrations
53 and the

flattening of the CR curve at higher PM2.5 concentrations
54, provide an

important mechanistic basis for the non-linear relationship between
PM2.5 mass and health effects.

We hypothesize that differences in the slopes of the OPv and
CDv vs. PM2.5 mass at different sites (Fig. 3) and the resultant non-
linearity in the OPv trend in the entire dataset (Fig. 4b) is largely
caused by substantial differences in the PM2.5 chemical composition
among different regions. To further test this hypothesis, we chose
the dataset obtained from Chile because that is the only region
among our study sites where PM2.5 mass ranged most widely from 5
to 127 µgm−3, with minimal variation in the chemical composition. As
can be seen from Supplementary Fig. 8, unlike other sites, the CoVs
for various relevant chemical components known to be redox-active
(e.g., Cu55–57, Mn31,56 andWSOC18,58) are in the similar range as for PM2.5

mass at both sites in Chile (Chillan and Santiago). Interestingly,
despite such a large variation in the PM2.5 mass concentration, the
relationship between OPv (or CDv) vs. PM2.5 mass is largely linear for
most endpoints, with an R2 ranging from 0.28 to 0.83, which doesn’t
improve further by attempting a flattening curve at higher PM2.5

concentration ranges (see Supplementary Fig. 10). It suggests that
the use of a fixed CR curve based on PM2.5 mass for a given region is
reasonable, so far there are no substantial spatial or temporal
changes in the chemical composition.

Based on a presumption that OP is closely related to the health
effects (as suggested by the studies discussed earlier showing a
stronger association of OP with distinct toxicological/clinical end-
points than PM2.5 mass), our results imply that the relationship
between PM2.5 and health effects is not solely driven by PM2.5 mass
and the role of chemical composition which drives its intrinsic toxi-
city cannot be ignored. Our results emphasize the need for devel-
oping region-specific CR curves, rather than using a generalized
curve globally. This conclusion is supported by various recent epi-
demiological studies which have found that the hazard ratio esti-
mates from cohort studies in China were much different from those
of Integrated CR function estimates59,60, that risk of all-cause mor-
tality can vary between different regions within a country60, and that
there were clear urban-rural disparities in the association ofmortality
and PM2.5 mass61–63. Thus, using globally generalized linear CR curves
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to predict the health effects of PM2.5 in high PM2.5 concentration
regions such as China and India might cause unrealistic estimations
of morbidity and mortality64. Consequently, the policy measures
focused on reducing PM2.5 concentrations alone based on globally
generalized linear CR curves would not yield equivalent reductions in
the health effects65.

Limitations and implications
Although substantial efforts were resourced in our study to coordinate
PM2.5 sampling in various parts of the world, it had some limitations
which should be carefully considered before the general implication of
our results. First, the collection and transport of filters from such an
extensive spatial scale leads to unavoidable artifacts related to offline

Fig. 4 | Relationship between extrinsic oxidative potential (OPv) [and extrinsic
cytotoxicity (CDv)] vs. PM2.5 mass concentrations based on the entire dataset
plotted together. Here, the intrinsic OP and cytotoxicity are represented by the
size of the bubble. Curves are fitted for (a) the seasonally averaged data for all five
regions considered in this study (n = 12); and (b) the entire dataset for all sites:
extrinsic acellular OP measured using dithiothreitol depletion rate (OPDTTv)
(n = 382), extrinsic cellular OP (OPCv) (n = 375), extrinsic acellular OP measured

using glutathione depletion rate (OPGSHv) (n = 385), extrinsic acellular OPmeasured
using hydroxyl radical generation rate (OPOHv) (n = 380) and CDv (n = 365). In (a),
the blue line represents the linear curve fitted for all five regions and the orange line
represents the linear curve after excluding India. In (b), the blue line represents a
linear curve, and the red line represents the fitted logistic curve. RMSE represents
rootmean squared error. Figuremade using Seaborn93. Source data are provided as
a Source Data file.
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filter collection and the variable periods of sample storage, which
could result in the loss of short-lived redox-active compounds, e.g.,
peroxy radicals and peroxide-containing highly oxygenatedmolecules
(HOMs)66–68, and semi-volatile organic compounds67. Thus, the OP and
cytotoxicity of the PM2.5 samples collected in our study could have
been underestimated. Second, our study focused only on water-
soluble extracts of PM2.5. Water-insoluble species of PM2.5 have also
been shown to contribute to PM2.5 toxicity33,69,70, and thus water-
soluble fraction of the PM2.5 used in our study can be considered as the
lower limit, as it does not fully substitute for the overall toxicity of
PM2.5. Note, our choice of water-soluble fractionwas driven by the lack
of a standardized protocol tomeasure total OP or cytotoxicity of PM2.5

that is equally applicable to both acellular and cellular assays.
Although, several solvents (e.g., methanol, dichloromethane, hexane,
acetone, and acetonitrile) have been suggested to extract the water-
insoluble fraction of PM2.5

70–72, the adequacy of these solvents to retain
PM2.5 chemical composition, which is physiologically relevant for the
cellular exposure has not been tested. The choice of our cell line and
the endpoints could also limit the implication of cellular toxicity
results. Although, A549 is a widely used alveolar epithelial cell line
relevant to alveolar exposure to PM2.5, its responses cannot be equated
to other cell lines such as BEAS-2B, 16-HBE14o, Calu-3 (relevant to
broncho tracheal region exposure to PM2.5), and pulmonary and car-
diovascular cell lines [e.g., THP-1 (macrophages), HEK-293, HMVEC-L
and HULEC-5a (human lung microvascular endothelial cells), and
H9C2]. Measurement of cellular responses other than cellular OP and
cytotoxicity, such as inflammatory cytokines, gene expressions, and
specific type of cell death (e.g., necrosis, apoptosis, and autophagy)
could provide more valuable insights into the toxicity mechanisms
triggered by PM2.5. We also acknowledge that although we measured
the time-dependent responses of acellular assays, given the laborious
protocols of cellular assays, we followed the conventional method
based on measuring cellular responses only at 24 h, which could
underestimate some of these endpoints.

Although, the overall range of PM2.5 mass concentrations
obtained from our samples is quite large (2–561μgm−3), it is still
mostly dominated by the samples with mass concentrations
<50μgm−3 (354 out of 385 samples), with only 19 samples havingmass
concentrations in the range of 50–200μgm−3. Thus, the curves shown
in Fig. 4 could be somewhat biased by the samples with low PM2.5mass
concentrations. Future studies should focus onmoremeasurements at
medium and high PM2.5 concentrations to better constrain the non-
proportional relationships between health metrics and PM2.5 mass.
Finally, we acknowledge that developing localized CR curves for spe-
cific regions will require substantial efforts on the part of epidemio-
logical research. Moreover, the variabilities in the PM2.5 chemical
composition caused by other factors such as varying weather, chan-
ging landscape of emissions (e.g., introduction of electric vehicles,
etc.), makes it even more complicated to ascertain the boundary
conditions (i.e., time and space) for conducting such epidemiological
studies. Therefore, in addition to these studies, we suggest that alter-
native metrics which can better represent the array of health effects
associatedwith PM2.5 pollution should be explored.OP could beoneof
suchmetrics, but more world-wide studies (such as the current one or
evenmore extensive in termsof space and time) need to be conducted
to understand its spatiotemporal distribution and test its health rele-
vance, by integrating them in epidemiological studies.

Methods
Sampling site and sampling periods
A total of 385 ambient PM2.5 samples were collected from 14 different
sites on four different continents. These include five sites in the Mid-
west US: Champaign, IL (51 samples), Chicago, IL (44 samples), India-
napolis, IN (54 samples), St. Louis, MO (47 samples) and Bondville, IL
(45 samples); two sites in Chile: Santiago (50 samples), Chillan

(35 samples); one site in Southeast US: Atlanta (20 samples); two sites
inWestMidlands, Birmingham(UK): a roadside site [EROS (8 samples)]
and an urban background site [BROS (13 samples)], and four sites in
India: Ahmedabad (3 samples), Hisar (5 samples), Patiala (5 samples)
and Faridabad (5 samples). The sampling dates and respective PM2.5

mass concentrations for all the sites are provided in Supplementary
Table 1 of SI.

Quartz filters were used for collecting PM2.5 at all the sites, except
in West Midlands and Chile, where Teflon and glass fiber filters were
used, respectively. Previous studies have shown that themeasurement
of OP is not significantly influenced by the type of filter for commonly
used OP assays such as OPDTT [ref. 69 (slope = 1.26 and R2 = 0.88 for
quartz vs. Teflon filters) and ref. 73 (slope = 1.05 and R2 = 0.98 for glass
fiber vs. Teflon filters)] and OPOH (Shen and Anastasio74) as long as a
consistent extractionprocedure is followed for all filters. The sampling
equipment and site-related information for the PM2.5 samples col-
lected in the Midwest US have been discussed in detail in our previous
publications17,18,33. Briefly, PM2.5 samples (integrated samples for a
continuous sampling duration of 72 h) were collected using a Hi-Vol
sampler (flow rate: 1.13m3min−1) between May 22, 2018, and May 30,
2019. Similarly, PM2.5 samples (continuous sampling duration of 24h)
were collected at Jefferson Street site in Atlanta using a Hi-Vol sampler
(flow rate: 1.13m3min−1) between January 26, 2018, and December 26,
201855. This site is located roughly 4 km northwest of downtown
Atlanta and is representative of the urban Atlanta region. In India, 10 h
(for Patiala) and 24 h (for Ahmedabad, Hisar, and Faridabad) inte-
grated samples were collected using a Hi-Vol sampler (Thermo Sci-
entific, USA, flow rate: 1.13m3min−1). Samples in Patiala were collected
between October 26, 2011, and February 4, 2012, whereas for the rest
of the sites, samples were collected during themonths of late October
and November in 2019 and 2020. The sampling site in Patiala was
located on the terrace of the Department of Physics, Punjabi Uni-
versity, Patiala, ~20m above ground level (AGL)75. The sampling site in
Hisar was located at the Agrimet Observatory, Chaudhary Charan
SinghHaryana Agricultural University (CCSHAU), Hisar. The site was at
the ground level and <200m away from a moderately busy road76.
Sampling in Faridabad was carried out at Manav Rachna International
Institute of Research and Studies [MRIIRS; second floor of the C block
building (~7m AGL)]. The site was close to a busy road with traffic load
from heavy-duty trucks76. The sampling in Ahmedabadwas carried out
at the rooftop of a multi-storied building (~50m AGL) of the Physical
Research Laboratory using a Hi-Vol sampler (Thermo Scientific, flow
rate: 1.13m3min−1). Ahmedabad is an urban city (population > 7 mil-
lion) in the semi-arid region of western India with many industries and
thermal power plants in the surroundings77.

24 h integrated PM2.5 samples (frommidnight tomidnight) in two
cities of Chile — Chillan and Santiago, were collected using a Hi-Vol
sampler [model CAV-A/mb, MCV SA, Barcelona, Spain (flow rate:
0.5m3min−1)] between December 12, 2018, and January 14, 2020. The
Santiagometropolitan sampling sitewas situated on the rooftopof the
Faculty of Science at the University of Chile. The site is in proximity to
both residential and commercial centers, with a significant presenceof
vehicular traffic. The Chillan sampling site was located on the rooftop
of the University of Bío-Bío, which is located within the central busi-
ness district. 120 h integrated PM2.5 samples in Birmingham (UK) were
collected using a Hi-Vol sampler [Ecotech HiVol 3000 (flow rate:
0.5m3min−1)] between August 12, 2019, and November 26, 2019. The
sampling site in Birmingham was located at the ‘Birmingham Air
Quality Supersite’, within the Edgbaston campus of the University of
Birmingham. Nearby potential anthropogenic emission sources
include a suburban rail line (located approximately 90m northwest of
the site) and a suburban road (~125m east of the site)78. After sampling,
the filters collected from all the sites were gravimetrically weighed at
the respective laboratory facility near the site, except Atlanta where
PM2.5 mass concentrations were measured using a Tapered Element
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OscillatingMicrobalance (TEOM). The filterswere subsequently stored
in hermetically sealed containers at a temperature of −20 °C until
shipped to the University of Illinois at Urbana-Champaign (UIUC) in a
thermally insulated box containing blue ice tominimize PM2.5 loss and
stored immediately in a freezer (at −20 °C) upon arrival. All the filters
were analyzed forOP, cytotoxicity, and chemical composition analyses
within 1 year of storage at UIUC. The details of various instruments
used for PM2.5 sample collection, and measurement of mass, chemical
composition, OP, and cytotoxicity are provided in Supplementary
Table 2.

Extraction of PM2.5 filters
PM2.5 water-soluble extracts were prepared by immersing a single
circular section of 2.5 cm diameter from the PM2.5 filters in deionized
water (DI; Milli-Q; resistivity = 18.2MΩ cm−1) and sonicating in an
ultrasonic water bath (Cole-Parmer, Vernon Hills, IL, USA) for 1 h. The
volume of DI was adjusted such that the final concentration of the
extract for exposure in the reaction vial (RV) for both cellular and
acellular assays was 30 µgmL−1 (please see the section “Cellular OP and
cytotoxicitymeasurements” for the justification of this concentration).
After sonication, the extracts were passed through a 0.45μmpore size
polytetrafluoroethylene (PTFE) filter to remove any insoluble particles
and/or filter fibers. These water-soluble extracts were then analyzed
for cellular OP, cytotoxicity, acellular OP, and chemical composition
analyses.

Cell culture
In this study, a lung epithelial cell line, A549 (adenocarcinoma human
alveolar basal epithelial cells; ATCC CCL-185), which is used as amodel
of Type II lung epithelium cells, was used to measure the impact of
PM2.5 water-soluble extracts on cell viability and cellular OP. A549 is
one of themostwidely used cell lines in PM2.5 toxicological studies

79–81,
and is representative of the cells responsible for the diffusion of sub-
stances, such as water and electrolytes across alveoli of the lungs. The
cells in this region play a crucial role in preventing inflammation82 and
maintaining the normal lung architecture by renewing other types of
alveolar cells83. Moreover, the alveolar region facilitates the entrain-
ment of particles and their constituents into other regions of the body
by crossing the blood-air barrier84, making A549 a suitable choice for
our study. Cells were grown inHam’s F-12K (Kaighn’s) culturemedium,
consisting of 15% heat-inactivated fetal bovine serum, 2mM L-gluta-
mine, and 1500mgL−1 sodium bicarbonate. Plastic petri dishes with a
cell concentration of 1 × 104 viable cells cm−2 were used to culture the
cells. The petri dishes were kept in a humidified incubator at 5% CO2

and 37 °C and subcultures were prepared once every week. The med-
ium was renewed 2 times per week.

Cellular OP and cytotoxicity measurements
The cellular OP measurement protocol was adapted from previous
studies which used DCFH-DA tomeasure intracellular ROS18,85–87. In the
first step, 1 × 104 cells suspended in 200 µL of Ham’s F-12K culture
medium were added to the wells of 96-well plates and incubated for
24 h. After incubation, the culturemediumwas aspirated, and the cells
were washed thrice with PBS. In the second step, PM2.5 water extract
(78μL), a working solution of 450 µM DCFH-DA (22μL; DCFH-DA
preparation details are given in the SupplementaryMethod 1 in SI) and
culture medium (100 μL), were added and the cells were incubated in
the dark for 24 h. The exposure duration of 24h was chosen because
the working solution of DCFH-DA was found to be stable till at least
25 h in our initial experiments. Details of the experiment showing the
time-dependent absolute fluorescence of DCFH-DA are provided in
Supplementary Method 2 and Supplementary Fig. 1 in SI. After incu-
bation, the cell culturemedia (also containing dead cells floating in the
media, if any) from eachwell was aspirated and transferred to separate
2mL vials. Then, 30 µL of 0.25% trypsin (with 2.21mM EDTA) was

added to eachwell to detach the viable cells (attached to the bottomof
the plate) and incubated for 4min, followingwhich the constituents of
the wells were aspirated and transferred to their respective 2mL vials.
Finally, an aliquot of 60 µL was taken from each vial and diluted 100
times, beforemeasuring itsfluorescence intensity at 488 nmexcitation
and 532 nm emission wavelengths using a bench-top spectro-
fluorometer (RF-5301 pc, Shimadzu Co., Japan). The measured fluor-
escence is proportional to the amount of ROS generated as a result of
PM2.5 exposure to the cells. The fluorescence intensity of negative
control (a blank filter extracted in DI and exposed to the cells in the
same way as the PM2.5 sample) was subtracted from the fluorescence
intensity of each sample andOP results are reported as the percentage
increase in fluorescence relative to the negative control.

For calculation of intrinsic (i.e., normalized by PM2.5 mass) and
extrinsic (i.e., normalized by volume of air) cellular OP, it is necessary
to choose an appropriate PM2.5 extract concentration such that it lies
in the linear range of the dose-response curve. To determine that, we
randomly selected eight PM2.5 samples andmeasured their cellular OP
for different concentrations of PM2.5 water extracts (5, 10, 20, 30, 50,
100, 200, 300 µg of PM2.5mL−1). As shown in Supplementary Fig. 2, the
curve is roughly linear for almost all of the PM2.5 samples within the
concentration range of 20 to 300 µgmL−1, justifying the choice of PM2.5

extract concentration (30 µgmL−1) used in this study for cellular OP
measurements. The exact procedure used for intrinsic and extrinsic
cellular OP calculations is given in SI (Supplementary Method 3).

Cell viability was measured using crystal violet assay as described
in refs. 22,88 with some modifications. In the first step, 1 × 104 cells
suspended in 200 µLofHam’s F-12K culturemediumwere added to the
wells of 96-well plates and incubated for 24h. After incubation, the
culture medium was aspirated, and the cells were washed with PBS. In
the second step, PM2.5 extract (78μL) and culture medium (122μL)
were added. All the plates were then sealed using a sterile aluminum
film (AlumaSeal®) to prevent cross-contamination and loss of liquid
due to evaporation. Six technical replicates (i.e., six consecutive wells
in one column of the 96-well plate) were used for each sample and one
column (of six consecutive wells) of each microplate served as the
negative control comprising solely of culture medium and field blank
extracts along with the cells. Two columns (of six consecutive wells) in
each microplate comprising solely of culture medium alone without
any cells served as the background controls. Two separate experi-
ments were performed on the cells from different subcultures to
represent two biological replicates. After 24 h, the culture medium
containing PM2.5 extracts was removed from the well of the 96-well
plate and the cells were fixed by adding 50 µL of methanol. The cells
were then stored in the dark for 10min. After that, the methanol was
removed, and the plate was thoroughly tapped to ensure there was no
methanol remaining in the wells. The cells were then stained with 1%
crystal violet solution in 50% methanol for another 10min. The plate
was then washed thoroughly in a water bath to remove excess crystal
violet dye, tapped dry and 100 µL of 75% DMSO (v/v) and 25% (v/v)
methanolwas added to thewells. Theplateswere incubated in thedark
for 10min before being analyzed for the absorbance measurement at
595 nm using a Bio Tek Epoch2 microplate reader (Agilent, CA). The
absorbance of each well was recorded and corrected for background.
The average absorbance of the six wells containing negative control
was defined as 100% viability, and viability in thewells containing PM2.5

extract was calculated based on their absorbance relative to the
negative control. Cytotoxicity or Cell death (CD) was then derived
from cell viability using the formula: CD= 100% � cell viability. The
detailed procedure to calculate intrinsic and extrinsic CD is given in SI
(Supplementary Method 4). Both cellular OP and cytotoxicity were
measured on the same day and in the cells obtained from the same
culture plates.

Similar to cellular OP, we also ensured that the PM2.5 extract
concentration chosen tomeasure cytotoxicity lies in the linear rangeof
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the dose-response curve. We plotted the cell viability vs. PM2.5 extract
concentration curves for different extract concentrations (5, 10, 20,
30, 50, 75, 100, 200, 300 µg of PM2.5mL−1) for the same PM2.5 samples
used to evaluate extract concentration-cellular OP relationship. As
shown in Supplementary Fig. 3, the curve is roughly linear for all PM2.5

samples (r >0.8) for concentrations between 25 and 300 µgmL−1,
which justifies the concentration (30 µgmL−1) chosen for our cyto-
toxicity experiments.

Acellular OP measurements
We measured the following three OP endpoints – GSH depletion rate,
DTT consumption rate, and OH• (OH-SLF) generation rate in a surro-
gate lung fluid (SLF). SLF was prepared by mixing four different anti-
oxidants to achieve final concentrations of AA, GSH, Uric Acid (UA),
and Citric Acid (CA) as 200 µM, 100 µM, 100 µM, and 300 µM,
respectively89. Similar to cellular OP and cytotoxicity measurements,
we used a fixed concentration of 30 µgmL−1 of PM2.5 extract in the RV
for all acellular OP measurements to avoid non-linear dose-response
effects caused by certain PM2.5 components such as Cu and Mn90.
Acellular OP measurements were conducted using a semi-automated
multi-endpoint ROS-activity analyzer (SAMERA) developed in our lab17.
The design and operating procedure for SAMERA are described in
ref. 17. DTT consumption rate was measured using the 5,5’-dithiobis-
(2-nitrobenzoic acid) (DTNB) method57. Briefly, DTNB and a small ali-
quot from the RV containing a mixture of PM2.5 extract and DTT were
added to ameasurement vial (MV). The DTNB reacts with residual DTT
to form a yellow-colored compound called 2-nitro-5-thiobenzoic acid
(TNB). TNB was then diluted using DI and passed through a liquid
waveguide capillary cell (LWCC-3100; World Precision Instruments,
Inc., Sarasota, FL, USA), where the absorbance at 412 nm and 600nm
(background)wasmeasuredby the spectrophotometer (OceanOptics;
Dunedin, FL, US). This process was repeated at time intervals of 5, 17,
29, 41, and 53min to obtain the PM2.5-catalyzed DTT decay rate. GSH
depletion rate was measured using the o-phthaldialdehyde (OPA)
method17. In this method, a small aliquot from the RV containing PM2.5

extract and SLF was withdrawn at time intervals of 5, 24, 43, 62, and
81min, and transferred to a MV along with OPA. GSH reacts with OPA
to forma fluorescent product called GS-OPA, and the fluorescencewas
measured at an emission wavelength of 427 nm (excitation wave-
length = 310 nm) to estimate the residual GSH concentration. Finally,
OH• generation rate was measured using 2-OHTA method17. In this
method, disodium terephthalate (TPT) is added to the RV containing
SLF andPM2.5 extract to capture theOH•generatedduring the reaction
of PM2.5 with the antioxidants contained in SLF. The reaction between
TPT and OH• produces a fluorescent product: 2-OHTA, which was
withdrawn from the RV at time intervals of 10, 29, 48, 67, and 86min,
and diluted with DI in a MV. The diluted 2-OHTA was then passed
through the flow cell of the spectrofluorometer (Fluoromax-4, Horiba
Scientific, Edison, NJ, USA) to measure its fluorescence (excitation:
310 nm; emission: 427 nm). The instrument was calibrated with known
standards of 2-OHTA (0-200nM) and a yield factor of 0.35 (formation
of 2-OHTA from OH•) was applied to determine the concentration of
OH•. The slopes of the DTT, GSH, and OH• concentration vs. time
curves were then used to determine the consumption (in case of DTT
andGSH) andgeneration (in caseofOH•) rates (µMmin−1 and nMmin−1,
respectively) in various OP assays. Detailed information about the
positive controls used for these OP endpoints is given in the SI (see
Supplementary Fig. 4).

Chemical composition analyses
We analyzed thewater-soluble PM2.5 extracts for water-soluble organic
carbon (WSOC) using total organic carbon analyzer (TOC analyzer;
TOC-VCPH, Shimadzu Co., Japan) and the concentrations of various
elemental species (Li, Al, K, V, Cd, Co, Cr, Ni, As, Rb, Sr, Ba, Pb, Zn, Cu,
Fe, Ga, and Mn) using inductively coupled plasma mass spectrometer

(ICP-MS; NexION 300, Perkin Elmer, Waltham, MA)18 as described in
Supplementary Method 7.

Statistical analyses
Thenormality of thedistributionofOP andcytotoxicitymeasurements
was tested using the Shapiro-Wilk test which showed statistically
insignificant results (p >0.05) indicating that the data was normally
distributed. Simple linear and logistic regression curves between PM2.5

mass and OP (or CD) were fitted using the optimization package from
an open-source Python library called SciPy and coefficient of deter-
mination (R2) and RMSE were used to evaluate the performance of
linear and logistic regressions. A two-tailed t-test was conducted to
determine the statistical significance of the differences between PM2.5

OP (or CD) in various regions. Statistical significance of the differences
in CoVs observed between different sites and OP (or cytotoxicity)
endpoints was determined by the asymptotic test for the equality of
CoVs as proposed by Feltz and Miller91 using the R package cvequality
(Version 0.1.3)92. Uncertainties in all measurements were estimated by
propagating the uncertainties in various instruments and methodol-
ogies used for PM2.5 sampling, sample extraction, OP and chemical
characterization, and cytotoxicity measurement (see Supplementary
Table 2 in SI).

Data availability
Source data are provided with this paper. https://doi.org/10.6084/m9.
figshare.25538341.
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