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Abstract
A novel estimator for the parameters governing spatial-temporal point processes is proposed. AQ1  Unlike the maximum likelihood
estimator, the proposed estimator is fast and easy to compute, and does not require the computation or approximation of a
computationally expensive integral. This parametric estimator is based on the Stoyan–Grabarnik (sum of inverse intensity) statistic and
is shown to be consistent, AQ2  under quite general conditions. Simulations are presented demonstrating the performance of the
estimator.
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1.  Introduction
A realization of a spatial-temporal point process is often characterized via its conditional intensity , the parameters of which are typically
fit via maximum likelihood estimation (MLE) or Markov chain Monte Carlo (MCMC) methods. Specifically, for a realization

 of the point process N, one typically estimates the parameter vector  by computing
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Such estimates are, under quite general conditions, consistent, asymptotically normal, asymptotically unbiased, and efficient, with standard
errors readily constructed using the diagonal elements of the inverse of the Hessian (Krickeberg, 1982 ; Ogata, 1978 ). Unfortunately, for
many point processes, the integral term on the right in Eq. ( 1 ) is often extremely difficult to compute (Harte, 2010 ; Ogata, 1998 )
especially when the conditional intensity  is highly volatile, as in this situation the user must approximate the integral of a highly variable
and often high-dimensional stochastic process, which is not at all easy to do.

Approximation methods proposed for certain processes such as Hawkes processes suggest a computationally intensive numerical
integration method (Ogata & Katsura, 1988 ; Schoenberg, 2013 ), but in general, the problem of computation or estimation of the integral
term in the log-likelihood can be burdensome (Harte, 2010 ; Reinhart, 2018 ). Despite computational limitations, maximum likelihood
remains the most common method for estimating the parameters of point process intensities (Reinhart, 2018 ).

We propose an alternative class of estimators based on the Stoyan–Grabarnik summed inverse intensity statistic introduced in Stoyan and
Grabarnik (1991 ). The Stoyan–Grabarnik (“SG”) statistic

was introduced as the exponential “mean mark” in the context of the Palm distribution of marked Gibbs processes (Stoyan & Grabarnik,
1991 ). As a primary property of Eq. ( 2 ), it is noted in Stoyan and Grabarnik (1991 ) that the expectation of the sum of the exponential
marks corresponding to the points observed in some region is equal to the Lebesgue measure  of that region. For the purposes of this
paper, we define the SG statistic corresponding to a parameter vector  and a realization  of the point process N on spatial-temporal
region  as

The SG statistic has been suggested as a goodness-of-fit model diagnostic for point processes (Baddeley et al., 2005 ) and, more recently,
has been proposed for finding the optimum bandwidth for kernel smoothing to estimate the intensity of a spatial Poisson process (Cronie &
Van Lieshout, 2018 ). Here, we consider a general spatial-temporal point process and suggest dividing the observation region into cells and
estimating the parameters of the process by minimizing the sum of squared differences between the Stoyan–Grabarnik statistic and its
expected value. We show that the resulting estimator is generally consistent and far easier to compute than the MLE.

We begin with notational definitions and basic characterizations of the properties of point processes in Sect. 2 . Section 3  formally

introduces the Stoyan–Grabarnik statistic and estimator, and in Sect. 4 , we prove the consistency of two Stoyan–Grabarnik-type

estimators. Section 5  provides some discussion and examples of the analytical properties and extensions of the estimator, and Sect. 6
contains a brief simulation study.

2.  Preliminaries
A point process is a measurable mapping from a filtered probability space  onto , the set of -valued random measures
(counting measures) on a complete separable metric space (CSMS)  (Daley & Jones, 2003 ), where  denotes the set of positive
integers. Following convention (e.g., Daley and Jones (2003 )), we will restrict our attention to point processes that are boundedly finite,
i.e., processes having only a finite number of points inside any bounded set. For a spatial-temporal point process,  is a portion of

 or  where  and  represent the set of positive real numbers and d-dimensional Euclidean space, respectively. The
point process is assumed to be adapted to the filtration  containing all information on the process N at all locations and all times up
to and including time t. In what follows we will assume the spatial domain of the point process  is a finite and bounded portion of the
plane  and denote point i of the process as , though the results here extend in obvious ways to the case where the spatial
domain is a portion of .

A process is -predictable if it is adapted to the filtration generated by the left continuous processes . Intuitively,  represents the
history of a process up to, but not including time t. A rigorous definition of  can be found in Daley and Vere-Jones (2007 ). Assuming it
exists, the -conditional intensity  of N is an integrable, non-negative, -predictable process, such that

where  is a ball centered at location (x, y) with radius , and  represents the history of the process N up to but not including time
t.

A point process is simple if with probability one, all the points are distinct. Since the conditional intensity  uniquely determines the finite-
dimensional distributions of any simple point process (Proposition 7.2.IV of Daley and Jones (2003 )), one typically models a simple
spatial-temporal point process by specifying a model for . A point process is stationary if the specified model has a structure which is
invariant over shifts in space or time.

An important spatial-temporal point process result sometimes called the martingale formula states that, for any non-negative predictable
process f,
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where the expectation is with respect to .

For a rigorous derivation of the martingale formula using Campbell measures, see Proposition 14.2.1 of Daley and Vere-Jones (2007 ). This
result is the motivating impetus for exploring the Stoyan–Grabarnik estimator below. The martingale formula is a generalization of the
Campbell formula which accommodates a non-negative deterministic function f (Cronie & Van Lieshout, 2018 ) and the Georgii–Nyugen–
Zessin formula which accommodates an analogous equality using Papangelou intensities in a purely spatial context (Baddeley et al., 2005 ).

3.  The Stoyan–Grabarnik estimator
Suppose the spatial-temporal domain  is partitioned into p cells . Define the estimator

Because  is non-negative and predictable, so is , and therefore, by the martingale formula, at the true value of the parameter vector ,

where the expectation is with respect to . Thus, the computationally intensive integral term necessary to find the MLE is replaced with a
term which is computationally trivial to compute, namely the volume of the cell . Therefore, in practice, it is convenient to plug in the
volume of  for  and thus define the SG estimator as

The SG estimator is closely related to the scaled residual random field described in Baddeley et al. (2005 ). Specifically, for a fixed spatial-
temporal kernel density  with fixed bandwidth b, let

for s any location in space-time. Then if  is the observation window,

where the approximation in ( 6 ) stems from the fact that the integral over  of the kernel density will be close to unity provided the
bandwidth is sufficiently small in relation to the size of the observation window . Ignoring such edge effects, the SG estimator minimizes
the sum of squares of the integral of this residual field over cells in the partition, but one may alternatively find parameters  minimizing
some other criterion, such as for example the integral of  over , or over cells of the partition. Given unbiased edge correction, ( 5 ) is
exactly equal to zero.

4.  Results
This section establishes the consistency of  and , for a simple and stationary spatial-temporal point process N with conditional intensity

, where  is a location in space-time, and  depends on the parameter vector  which is an element of some parameter
space . Let  denote the true parameter vector, and suppose N is observed on the spatial-temporal domain , where 
represents the spatial domain equipped with Borel measure , and  is some CSMS. The following assumptions regarding N,  and  are
useful in establishing consistency of the estimators.
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4.1.  Assumptions

Assumption A1 The spatial observation region  allows a partitioning scheme

such that  , for some fixed finite number p. We further assume that p is large enough that for any  and , if
, then

or equivalently

, where .

Note on Assumption A1: The assumption that p is sufficiently large that condition ( 7 ) or equivalently ( 8 ) holds is needed for the

identifiability of  and . The minimal value of p to satisfy this condition appears to depend on the underlying structure of the conditional

intensity . In practice, a large value of p can be selected to ensure that condition ( 7 ) is met, although the computational expense of the

estimator increases as p increases, and more importantly, the efficiency of the estimator appears to decrease as p grows (see Fig. 5 ). For

finite datasets, p must not be chosen to be too small so as to ensure that  . Note also that the cells  need not necessarily be
connected, closed, or otherwise regular.

Assumption A2  is a complete separable metric space and . Further,  admits a finite partition of compact subsets
 such that  is a continuous function of  within  .

Note on Assumption A2: A2 ensures that , i.e., that our estimator for  exists within the parameter space.

Assumption A3 Given an open neighborhood  around ,  is uniformly bounded away from zero for .

Note on Assumption A3: A3 ensures that  is identifiable. In particular, this assumption excludes the case where  does not depend on .

Assumption A4  is finite and bounded away from zero across all cells , i.e.,  such that

for j in .

Note on Assumption A4: This assumption is needed for uniform integrability and precludes cases such as  where only
finitely many points occur as , and therefore,  is not consistently estimable via the SG estimator (or via MLE, for that matter).
Similarly, because we restrict to stationary point processes, we similarly ensure that there are never finitely many points that occur as

 which a parameter to be estimated is dependent on.

4.2.  Results

Theorem 1 Under Assumptions A1–A4, the estimate  defined in ( 3 ) is a consistent estimator of .
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Proof For any  and any neighborhood  around , for all sufficiently large T,

We begin with demonstrating that

for  as . For a partition of  with index j, let

 is a -martingale since  is predictable. By Jensen’s inequality,  is a sub-martingale as  is a convex
function. Letting

M is a sub-martingale. It follows from martingale convergence, and the fact that  is absolutely continuous as a function of  from
Assumptions A2 and A4, that  uniformly.

We next demonstrate that

concluding this result in lines ( 18 ) and ( 19 ). Note that for a given cell j in the partition,

for all . One can find the second moment, as follows:

If , then

by applying the Martingale formula to both the first and last terms in ( 10 ). The middle cross-term can be evaluated as follows:
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16

17

Therefore, combining ( 11 ) and ( 14 ),

Solving for the second moment of  when , one similarly obtains

again applying the Martingale formula to the first and third terms in ( 15 ). Equation ( 17 ) is obtained from ( 16 ) using the same logic as in

lines 12 - 13 .

Consider the division of  into two regions: the spatial-temporal locations where

and

for  That is, we can express  as the sum of three integrals:
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where

We proceed by evaluating cases C1 and C2 separately for notational simplicity. In Case C1, we show that
 as follows:

Therefore, , since given the assumptions of Case C1,

Equivalently,

and by the assumption of Case C1,

Assumption A3 guarantees that  such that  and therefore this condition is satisfied given Assumption A4.

In Case C2, as 

and therefore , since

Note that , , so the LHS of relation ( 20 ) is positive. The RHS is nonzero by the assumption

of Case C2 and the fact that  is nonzero as given by Assumption A4. As  is the sum of  for each partition
, we can therefore conclude that for any ,  such that

Finally, by Assumption A2, and given that  uniformly, and  as proven above,
we conclude that for sufficiently large T (or equivalently, sufficiently large space-time volume ) and ,
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Theorem 2 The estimator

is a consistent estimator for . This estimator will be henceforth referred to as the SG estimator.

Proof This results can be proven using the same method as in the proof of Theorem 1. A brief sketch of the proof is given below. When
,

Define

and note that although  is not generally a sub-martingale,  is. It follows as in the proof of Theorem 1 that
, and by absolute continuity of  with respect to , this convergence is uniform. Similarly,

because

where  is defined analogously to  in Theorem 1, and

Relation ( 21 ) follows directly from the fact that

From this one concludes exactly as in Theorem 1 that for any , for sufficiently large T, . 

4.3.  Discussion
In practice, a partitioning scheme and a set value of p must be decided upon before computing  for realization N given a specified model

. Analogous partitioning problems in the context of quadrature schemes needed for numerical approximation of likelihoods have been
discussed, see Berman and Turner (1992 ); Baddeley and Turner (2005 ). A general solution or methodology for constructing a partitioning
scheme which yields maximally accurate SG estimates is a difficult problem and future work.

Asymptotically, a very general class of partitioning schemes is sufficient to produce consistent SG-type estimates of the parameters of
conditional intensity functions. As previously noted, cells are not assumed to be connected, closed, regular, or disjoint. The primary
consideration for choosing a partitioning scheme in an asymptotic context is finding p large enough such that Assumption A1 is met and
identifiability is ensured.

We therefore suggest that practitioners choose a simple partitioning scheme (e.g., a grid or Voronoï tessellation based on some subset of
points in N) and some  where c is the cardinality of . For relatively larger realizations of a process,  may be an appropriate
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choice. AQ3 This suggestion is only informed by trial and error via simulation of Hawkes, Cox and Poisson processes across various p for
a given partitioning scheme. In the case of Poisson processes, it appears that for a Poisson intensity expressed as a polynomial, 
and any grid partitioning scheme is sufficient to produce consistent SG estimates, where c is the number of polynomial coefficients to be
estimated. We note that in general, computational expense increases as p increases. Further, there appears to be a bias-variance trade-off
wherein larger p results in less bias but more variance, see Fig. 5 . AQ4 Resultant bias and variance as a function of the number of
parameters estimated, number of points realized, and selected p is the subject of future work.

5.  Examples: Estimation of Poisson processes
5.1.  Homogeneous Poisson process
Suppose N is a homogeneous Poisson process, i.e.,  for some . In this simple case, an analytical solution for the SG estimator

 can be derived.

and setting the derivative to zero:

Thus,  satisfies

Equation ( 22 ) has an interesting geometric interpretation. For the positive integer vector  and the positive real
vector  we can express  as

Note that , the angle between  and , is constrained to  due to the signs of  and .

Equation ( 23 ) provides insight into the nature of the partitioning scheme chosen. As  and  become closer to orthogonal, 

approaches 0, forcing  to become arbitrarily large. Alternatively, if  and  are parallel,  and in this case

Equation ( 24 ) achieves the minimum value that  can attain over  and is possible if there exists  such that

 for all . It immediately follows that a partitioning scheme P minimizes Eq. ( 24 ) if it is chosen such that
 for all j. This suggests that in the homogeneous Poisson case, ideally the partition will have roughly equal numbers of points

per unit area in each cell.

Note a special case of Eq. ( 24 ). If , then

In this special case, the SG estimator is equivalent to the MLE and therefore inherits the desirable properties of the MLE such as
consistency, asymptotic normality, asymptotic unbiasedness and efficiency (Ogata, 1978 ). For instance, if N has 100 points in an observed
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spatial-temporal region  such that , then , as expected.

5.1.1.  ,QKRPRJHQHRXV�3RLVVRQ�ZLWK�VWHS�IXQFWLRQ�LQWHQVLW\
We now assume that N has conditional intensity

for  and . Thus, N is homogeneous Poisson within each cell, but with an intensity varying from cell to cell.

The properties of similar processes have been discussed in the context of Poisson Voronoi Tessellations (PVTs) (Błaszczyszyn & Schott,
2003 , 2005 ). Total variation error bounds for approximation of an inhomogeneous Poisson process via a mixture of locally
homogeneous Poisson processes are provided in Błaszczyszyn and Schott (2003 ), where the error is due to the “spill-over” or overlap of
optimal cell partitioning. Further, the existence of an approximation for such a decomposition is described using a modulated PVT
((Błaszczyszyn & Schott, 2003 ), Proposition 4.1).

In this case, the SG estimator must satisfy

 in this case is a vector of the p estimates . Each  is itself a SG estimator corresponding to a disjoint homogeneous Poisson process
on the observation region . Following the same reasoning as in the homogeneous Poisson case, the resulting estimator reduces to when
the partitioning scheme is such that  is the only cell, i.e., the observation region is equal to a single cell and . We can therefore
express the solution for the estimated coefficient within a single cell as

and again is equivalent to the MLE and therefore in this case the SG estimator, like the MLE, is consistent, asymptotically normal,
asymptotic unbiased and efficient (Ogata, 1978 ). As each estimator  is consistent, we can conclude that the sum  is also consistent by
Slutsky’s Theorem.

6.  Simulation study
As a proof of concept, we demonstrate that the SG estimates tend to be reasonably accurate and become increasingly accurate as T gets
large for a variety of simple point processes. Figure 1  shows a simulated Cox process directed by intensity

on , where  and W(x, y) is a two-dimensional Brownian sheet. The estimated intensity using the SG
estimator of  closely resembles the true intensity even though T is only 1.

Figure 2  shows a simulated Hawkes process on the unit square and in time interval [0, 1000] with conditional intensity

where  on ,  for . Here, the parameters to be estimated are  and the true values are
. As with the Cox process, the conditional intensity estimated using the SG estimator is a close approximation of the true

conditional intensity for the Hawkes process.

Figure 3  shows a comparison of the root-mean-square error (RMSE) and R computation time for MLE and SG estimates of the process

simulated in Fig. 2  observed on  for various values of T. For this comparison, the integral approximation technique

detailed in Schoenberg (2013 ) is used for MLE and  is chosen for the SG estimator.

Figures 4  and 5  show the behavior of SG estimates as T increases for an inhomogenous Poisson process on . We
simulated six partitioning schemes ranging from  to , and various values of increasingly large T. We chose intensity

where the vector of parameters to be estimated is

The conditional intensity specified has t constant to avoid an explosive process or a process where too few points are observed as T gets
larger. The estimates of  are seen to converge to  as .

7.  Conclusion and future work
The SG estimator is very simple and efficient computationally and, like the MLE, is a consistent estimator for a wide class of point process
models. We recommend its use as a complement to the MLE, in the many cases where the integral term in the loglikelihood is
computationally burdensome to estimate accurately. This may be especially true for the rapidly emerging cases of big data where the
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observed number of points is very large and/or the spatial observation region is very large or complex. In situations where MLE is preferred
but is sensitive to the choice of starting values in the optimization, a practical option may be to use the SG estimator as a starting value.

Future research should focus on how best to choose the nature and number of cells in the partition when implementing SG estimation. For
example, in some cases, efficiency gains might be achieved via data-dependent partitioning schemes, such as Voronoi tessellations. Our
preliminary investigations suggest, however, that any reasonable choice of partition will do, provided p is large enough to satisfy
Assumption A1. Partitions for the case where the spatial dimension is 3 or higher are also important areas for future study.

As mentioned in Sect. 3 , the SG estimator proposed here minimizes the sum of squares of the integral of the residual field over cells in a
partition, but another area for future research would be to consider alternatively minimizing some other criterion, such as for example the
integral of . Such an alternative may avoid the need for choosing a rather arbitrary partition, but would replace this with the need to
choose a bandwidth for the kernel smoother.

Another possibility for estimating point process parameters is via partial log-likelihood maximization (Diggle et al., 2010 ), and like the SG
estimator, such estimators also do not require the computation or approximation of the integral term in the ordinary log-likelihood. As noted
in the discussion in Diggle (2006 ), the partial log-likelihood estimate may be less efficient than the MLE but can be much easier and faster
to compute. Future studies should investigate the advantages and disadvantages of such estimators relative to the SG estimator, both in
terms of accuracy and computation speed.

Fig. 1

Clockwise from top left: a simulated Cox process with intensity dependent on a two-dimensional Brownian sheet. b The true intensity
 on , where W(x, y) is a two-dimensional Brownian sheet with zero

drift and standard deviation . The true parameter vector . c The estimated intensity using the SG
estimator of 

Fig. 2

Conditional intensity of a simulated Hawkes process with  where  on  and

 for  on . . Clockwise from top left: a true conditional
intensity at time . b Conditional intensity estimated via SG, at time . c True conditional intensity at time . d
Conditional intensity estimated via SG, at time 
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Fig. 3

Comparison of estimate accuracy and computational (time) expense for MLE and SG estimators. Conditional intensity of a simulated Hawkes
process with  where  on  and  for  observed on

. . Left: root-mean-square error (RMSE) of parameter estimates for MLE and SG
estimates across various T. Right: computational runtime in seconds for computing MLE and SG estimates

Fig. 4

Intensity  estimated using  partitions. Parameter estimates become increasingly accurate as
. Horizontal dotted lines indicate true parameter values
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Fig. 5

Estimates of a single parameter for a Poisson process with intensity  Note that if  or ,
estimates are not accurate as Assumption A1 is violated
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